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Abstract

We study a functional equation whose unknown maps a Euclidean
space into the space of probability distributions on [0, 1]. We prove
existence and uniqueness of its solution under suitable regularity and
boundary conditions, we show that it depends continuously on the
boundary datum, and we characterize solutions that are diffuse on
[0, 1]. A canonical solution is obtained by means of a Randomly Re-
inforced Urn with different reinforcement distributions having equal
means. The general solution to the functional equation defines a new
parametric collection of distributions on [0, 1] generalizing the Beta
family.

1



1 Introduction

The present work treats a particular functional equation whose unknown
maps a Euclidean space into the space P([0, 1]) of probability distributions
on [0, 1].

Consider two probability distributions µ and ν on the interval [0, β],
with β > 0, and assume that µ and ν have the same positive mean. Then,
for (x, y) ranging over the subspace S = [0,∞)2 \ {(0, 0)} of R2, define the
following equation with parameters µ and ν:

x

∫ β

0
(G(x, y)−G(x+k, y))µ(dk)+y

∫ β

0
(G(x, y)−G(x, y+k))ν(dk) = 0; (1)

the unknown is the function

G : S→ P([0,1]).

Without additional constraints or requirements, equation (1) in its com-
plete generality admits infinitely many solutions. For instance, any con-
stant function G satisfies (1). We will show that under suitable regularity
and boundary conditions, the problem described by (1) is well-posed in the
sense that its solution exists, it is unique and depends continuously on the
boundary datum. Moreover, we will also prove that the solution depends
continuously on the parameters µ and ν and we will characterize a class
of solutions G mapping the interior of S into the subspace of probability
distributions diffuse on [0, 1].

A particular instance of the problem considered in this paper has been
studied in [1] where it is proved that, when the two parameters µ and ν are
equal, there exists one and only one continuous solution to (1) that maps
the x-axis and y-axis borders of S in the point mass at 1 or at 0, respectively,
and that approaches the point mass at x/(x+ y) as x+ y tends to infinity.
We here extend this result to the case of different parameters µ and ν with
the same mean, and to more general boundary conditions. These will be
described by means of a continuous function ϕ : [0, 1] → P([0, 1]) that will
represent the boundary datum of the problem.

From a probabilistic point of view, (1) is naturally connected to the
dynamics of a two-color randomly reinforced urn with reinforcement distri-
butions µ and ν.

Indeed, for (x, y) ∈ S, consider an urn containing initially x black balls
and y white balls. The urn is sequentially sampled. At time n = 1, 2, . . . a
ball is drawn from the urn and its color is observed: if the sampled ball is
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black, it is replaced in the urn together with a random number of black balls
having distribution µ, if the sampled ball is white it is replaced in the urn
together with a random number of white balls having distribution ν. The
extra balls added every time the urn is sampled are called reinforcements.
This urn scheme is called a two-color randomly reinforced urn (RRU ); it has
been introduced in [5, 8, 4, 10, 11] and further studied in [3, 1, 2, 9, 12] as
a general model for learning through reinforcement with direct applications
in statistics as a device for adaptive sampling.

If {G(x, y), (x, y) ∈ S} is a family of distributions on [0, 1] parameterized
by the elements of S and γ is a distribution on S, we use G(X,Y ) ∧ γ to
indicate the distribution on [0, 1] obtained by mixing the distributions G
according to γ. This can be thought of as the distribution of a random value
in [0, 1] generated through a two-step procedure: first sample (X,Y ) ∈ S
with distribution γ and then, given (X,Y ) = (x, y), sample a random value
in [0, 1] according to the distribution G(x, y).

Now let (X1, Y1) be the random number of black and white balls respec-
tively present in a RRU after it has been sampled for the first time and
indicate with γ1(x, y) the distribution of (X1, Y1) on S, which depends on
µ, ν and the initial urn composition (x, y). Finally let A to be an operator
acting on the distributions G and defined as

(AG)(x, y) = G(X,Y ) ∧ γ1(x, y).

A solution G of equation (1) is a fixed point of A : AG = G. Indeed
we will also show that if G(x, y) is the distribution of the limit proportion
of black balls of a RRU with initial composition (x, y) and reinforcement
distributions µ and ν, then G is a fixed point of A satisfying specific boundary
conditions.

As a prototypical example, consider an RRU whose reinforcement dis-
tributions µ and ν are both point masses at 1; this is a Pólya urn scheme.
It is well known that if (x, y) ∈ S is the initial composition of a Pólya urn,
then the limit proportion of black balls generated by this urn scheme has
distribution Beta(x, y). In fact the family of Beta distributions is a fixed
point of the operator A related to the Pólya urn. In this sense, the general
solution of (1) defines a collection of distributions on [0, 1] parameterized by
elements of S and generalizing the Beta.

In the next section we set notation and terminology, we formally describe
the functional equation problem and we state three results concerning its
solution; they will be proved in the rest of the paper. Section 3 deals with
the construction of the canonical solution to (1) for the special case when
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the boundary datum ϕ(t) is the point mass at t, for all t ∈ [0, 1]; indeed, the
canonical solution is obtained by means of a RRU. Canonical solutions are
the building blocks for proving existence, uniqueness and regularity proper-
ties of the solution to the functional equation problem with a general bound-
ary datum; this will be shown in Section 4. Section 5 describes functional
equation problems whose solution maps the interior of S into the subspace
of P([0, 1]) consisting of probability distributions with no point masses. The
final Section 6 illustrates some examples extending the solution of equation
(1) well beyond the case of the Beta family. Auxiliary technical results have
been postponed to the Appendix.

2 Problem and main results

In this section we set notation and terminology and we describe the func-
tional equation problem in detail. We also state three main results concern-
ing its solution; they will be proved in the rest of the paper.

2.1 The Wasserstein metric for spaces of probability distri-
butions

For any β ∈ (0,∞), we endow the set P([0, β]) of probability distributions
on the real interval [0, β] with the 1–Wasserstein metric dW which metrizes
weak convergence. Recall that, for ξ1, ξ2 ∈ P([0, β]),

dW (ξ1, ξ2) =

∫ β

0
|Fξ1(t)− Fξ2(t)|dt =

∫ 1

0
|qξ1(t)− qξ2(t)|dt,

where Fξ and qξ are the cumulative distribution function and the quantile
function of ξ ∈ P([0, β]), respectively (see [6] for more details). Moreover,
by the Kantorovich-Rubinstein Theorem,

dW (ξ1, ξ2) = inf{E(|X1 −X2|) : X1 ∼ ξ1, X2 ∼ ξ2} (2)

where the infimum is taken over all joint distributions for the vector of
random variables (X1, X2) with marginal distributions equal to ξ1 and ξ2,
respectively. The metric space (P([0, β]), dW ) is complete and compact.

2.2 The set P of parameters

For 0 < m0 ≤ β <∞, endow the cartesian product P([0, β])×P([0, β]) with
the Manhattan-distance

dM ((µ1, ν1), (µ2, ν2)) = dW (µ1, µ2) + dW (ν1, ν2)
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and consider the subset P of couples (µ, ν) of probability distributions with
support in [0, β] having means that are equal and that are both greater than
or equal to m0, i.e. such that∫ β

0
kµ(dk) =

∫ β

0
kν(dk) ≥ m0.

The elements of P will act as the parameters for the functional equation
(1); note that P is a closed subset of the metric space P([0, β]) × P([0, β])
and therefore it is compact.

2.3 The set C([0, 1],P([0, 1])) of boundary data

A boundary datum ϕ is defined as a continuous map from [0, 1] to P([0, 1]).
We endow the set of boundary data C([0, 1],P([0, 1])) with the sup-distance

d∞(ϕ1, ϕ2) = sup
t∈[0,1]

dW (ϕ1(t), ϕ2(t));

then (C([0, 1],P([0, 1])), d∞) is a complete metric space.
From now on, δ will indicate the element of C([0, 1],P([0, 1])) defined by

setting δ(t) = δt for t ∈ [0, 1], where δt denotes the point mass at t.

2.4 The set C(S,P([0, 1])) where solutions are to be found

Let S = [0,∞)2 \ {(0, 0)} and C(S,P([0, 1])) be the set of the continuous
maps G : S→ P([0,1]).

For n = 1, 2, . . . let Sn = {(x, y) ∈ S : x + y ≥ 1/n} and consider the
distance between elements G1,G2 ∈ C(Sn,P([0, 1])) defined by

dn(G1,G2) = sup
(x,y)∈Sn

dW (G1(x, y),G2(x, y)).

We then define a new distance d by setting, for all G1,G2 ∈ C(S,P([0, 1])),

d(G1,G2) =

∞∑
n=1

1

2n
· dn(G1 |Sn ,G2 |Sn)

1 + dn(G1 |Sn ,G2 |Sn)

where G |Sn indicates the restriction to Sn of a G ∈ C(S,P([0, 1])).
The distance d metrizes the uniform weak convergence in any closed

subset of S
⋃
{(0, 0)} which does not contain the origin. Note that conver-

gence with respect to d is equivalent to convergence with respect to all dn
of the corresponding restrictions. The set (C(S,P([0, 1])), d) is a complete
metric space; we will look for elements of this space that are solutions of the
functional equation (1).
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2.5 The functional equation problem

The Problem object of this paper is now easily stated:
given

(µ, ν) ∈ P and the boundary datum ϕ ∈ C([0, 1],P([0, 1])),

find
G ∈ C(S,P([0, 1])) (3a)

such that, for all (x, y) ∈ S,

x

∫ β

0
(G(x, y)− G(x+ k, y))µ(dk)

+ y

∫ β

0
(G(x, y)− G(x, y + k))ν(dk) = 0,

(3b)

G(0, y) = ϕ(0), (3c)

G(x, 0) = ϕ(1), (3d)

dW

(
G(x, y), ϕ

( x

x+ y

))
−→

x+y→∞
0. (3e)

2.6 Main results

Our first result states that Problem (3) is well-posed in the sense of Hadamard.

Theorem 2.1. A solution to Problem (3) exists, it is unique, and it depends
continuously on the boundary datum.

In the rest of the paper, we denote with Gϕ(µ,ν) the unique solution to

Problem (3). Theorem 2.1 will be proved first in the special case when the
boundary datum is the map δ. Indeed Gδ(µ,ν) is a canonical solution for the

problem since, for any other boundary datum ϕ ∈ C([0, 1],P([0, 1])), we will
show that

Gϕ(µ,ν) = Ψϕ(Gδ(µ,ν)), (4)

where
Ψϕ : C(S,P([0, 1]))→ C(S,P([0, 1]))

is the linear map defined by setting, for all G ∈ C(S,P([0, 1])),

Ψϕ(G)(x, y) =

∫ 1

0
ϕ(t)G(x, y)(dt) (5)

with (x, y) ranging over S.
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The second theorem concerns the continuity of the solution to Problem
(3) when the parameters of the equation are let to change. Indicate with Gϕ

the set of solutions to Problem (3) obtained by holding fixed the boundary
datum ϕ ∈ C([0, 1],P([0, 1])) and by letting the parameters (µ, ν) range over
P :

Gϕ =
{
Gϕ(µ,ν) : (µ, ν) ∈ P

}
.

Theorem 2.2. For any given boundary datum ϕ ∈ C([0, 1],P([0, 1])), the
map

(µ, ν) 7→ Gϕ(µ,ν),

from P to Gϕ, is uniformly continuous and Gϕ is compact.

To prove Theorem 2.2 we will first show that it holds for canonical solu-
tions, i.e. for Gδ, and then we will prove that the map Ψϕ is continuous.

The third result regards a different regularity property of the solution
to Problem (3), which depends on the boundary datum ϕ but not on the
parameters (µ, ν). Indeed we characterize solutions Gϕ(µ,ν) mapping the inte-

rior of S into the class of probability distributions on [0, 1] having no point
masses; such solutions will be called diffuse.

A boundary datum ϕ ∈ C([0, 1],P([0, 1])) is said to be monotonic if, for
all s, t ∈ [0, 1], s ≤ t,

ϕ(s) ≤st ϕ(t).

For a given ϕ ∈ C([0, 1],P([0, 1])), indicate with Φ the probability distribu-
tion on [0, 1] obtained as the convex combination with uniform weights of
the members of the family {ϕ(t) : t ∈ [0, 1]}; i.e. Φ =

∫ 1
0 ϕ(t)dt.

Theorem 2.3. Assume that the boundary datum ϕ is monotonic and let
Gϕ(µ,ν) be the unique solution to Problem (3). Then:

1. If there is (x0, y0) in the interior of S such that Gϕ(µ,ν)(x0, y0) has no

point masses in [0, 1], then Φ =
∫ 1

0 ϕ(t)dt has no point masses in [0, 1].

2. If Φ =
∫ 1

0 ϕ(t)dt has no point masses in [0, 1], then Gϕ(µ,ν)(x, y) has no

point masses in [0, 1] for all (x, y) in the interior of S.

Once again, in Section 5, we will first prove Theorem 2.3 for canonical
solutions and then for the general solution Gϕ(µ,ν) .
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3 Existence of canonical solutions: a Randomly
Reinforced Urn

In this section we assume that the boundary datum of Problem (3) is the
map δ ∈ C([0, 1],P([0, 1])); we prove the existence of a solution for this
special instance of the problem, by constructing it through a RRU scheme.
This solution will be called canonical since the solution to Problem (3) for
a general boundary datum will be obtained by transforming the canonical
solution through a suitable map. While constructing canonical solutions, we
will also provide two novel results concerning the continuity of the distribu-
tion of the limit proportion of black balls generated by an RRU by proving
its continuity with respect to the initial urn composition (Lemma 3.3) as
well as with respect to the reinforcement distributions (Proposition 3.2);
the continuity is uniform in any closed subset of S which does not contains
the origin.

On a rich enough probability space (Ω,A, P ), define two independent
infinite sequences of random elements, {Un} and {(Vn,Wn)}; {Un} is a
sequence of i.i.d. random variables uniformly distributed on [0, 1], while
{(Vn,Wn)} is a sequence of i.i.d. bivariate random vectors with components
uniformly distributed on [0, 1]. Then, define an infinite sequence {(RX(n), RY (n))}
of bivariate random vectors by setting, for all n,

RX(n) = qµ(Vn) and RY (n) = qν(Wn),

where qµ and qν are the quantile functions of two distributions µ and ν
having support in [0, β], with β > 0. Let x and y be two non-negative real
numbers such that x+ y > 0. Set X0 = x, Y0 = y, and, for n = 0, 1, 2, ..., let{

Xn+1 = Xn +RX(n+ 1)I(n+ 1),
Yn+1 = Yn +RY (n+ 1)(1− I(n+ 1)),

(6)

where the variable I(n+ 1) is the indicator of the event {Un+1 ≤ Xn(Xn +
Yn)−1}. The law of {(Xn, Yn)} is that of the stochastic process counting,
along the sampling sequence, the number of black and white balls present in
a RRU with initial composition (x, y) and reinforcement distributions equal
to µ and ν, respectively.

For n = 0, 1, 2, . . . let Dn = Xn+Yn be the total number of balls present
in the urn at time n and set

Zn(x, y) = Xn/Dn;
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Zn(x, y) represents the proportion of black balls in a RRU with initial com-
position (x, y), before the (n + 1)-th ball is sampled from it. In [11] it is
proved that {Zn(x, y)} is eventually a bounded sub- or super-martingale,
and it thus converges almost surely, and in Lp, for 1 ≤ p ≤ ∞, to a random
variable Z∞(x, y) ∈ [0, 1]; moreover, when µ and ν have different means,
Z∞(x, y) is the point mass concentrated in 1 or 0, according to whether the
mean of µ is greater or smaller than that of ν. However, when the means of
µ and ν are the same, the distribution of Z∞(x, y) is unknown, apart from
a few special cases, see [1] and [9].

For a given couple (µ, ν) ∈ P , let

L(µ,ν) : S→ P([0, 1])

be the map which assigns to every (x, y) ∈ S the distribution of the limit
proportion Z∞(x, y) of a RRU with initial composition (x, y) and reinforce-
ment distributions µ and ν. In the special case where µ = ν, the map L(µ,µ)

has been characterized in [1] as the unique solution to Problem (3) when
the boundary datum is δ. We now extend this result to the general case
(µ, ν) ∈ P .

Proposition 3.1. L(µ,ν) is a solution to Problem (3) when its boundary
datum is equal to δ.

In order to prove Proposition 3.1 we need some auxiliary results; when
they do not depend on the parameters (µ, ν) ∈ P , and there is no place for
misunderstanding, we write L for L(µ,ν). Some technicalities connected with
the Doob’s decomposition of the process {Zn} have been postponed to the
Appendix.

The distance between L, evaluated at (x, y), and the boundary datum,
evaluated at x/(x+ y), is controlled in the following lemma; this distance is
uniformly bounded, provided that the size of the urn initial composition is
sufficiently large.

Lemma 3.1. If x+ y ≥ 2β,

dW
(
L(x, y), δ x

x+y

)
< 2

√
β

x+ y
.

Proof. Note that, by (2), dW
(
L(x, y), δ x

x+y

)
= E(|Z∞(x, y) − x

x+y |). More-

over, E(|Z∞(x, y) − x
x+y |) = E(|A∞(x, y) + M∞(x, y)|), where (An)n and

(Mn)n are the Doob’s decomposition processes (see Appendix) of (Zn)n.
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Note that E(|M∞|) ≤
√
E(〈M〉∞) by Jensen inequality and thus, from

triangular inequality, Lemma A.2, Lemma A.3 with n = 0, and because

x+ y ≥ 2β implies
√

β
x+y < 1, we get

dW
(
L(x, y), δ x

x+y

)
≤ β

x+ y
+

√
β

x+ y
<

√
β

x+ y
+

√
β

x+ y
.

The Markov inequality together with Lemma 3.1 imply the following
corollary.

Corollary 3.1. If x+ y ≥ 2β,

P
(∣∣Z∞(x, y)− x

x+ y

∣∣ > h0

)
≤ 2

h0

√
β

x+ y

for every h0 > 0.

Lemma 3.2. For all n0 ≥ 1 and ε > 0, there is N = N(ε, n0) such that,

E
(
|Zn(x, y)− Z∞(x, y)|

)
≤ ε,

if n ≥ N and x+ y ≥ 1/n0.

Proof. Equation (A.28) yields, for all t > 0,

P(Dn < t) = P
( 1

Dn
>

1

t

)
≤ tE 1

Dn
< t

1 + n0(β −m0)

m0(n− 1) + β
(7)

where m0 is given in Section 2.2. Set

t = max{16β/ε2, 2β} (8)

and

N ≥
2t
ε (1 + n0(β −m0))− β

m0
+ 1. (9)

From (7) and (9), we get

P(DN < t) <
ε

2
. (10)

Moreover, since the process {(Xn, Yn)} is Markov, it follows from Lemma 3.1
and (8) that, for n ≥ N and ω ∈ {DN ≥ t},

E
(
|Z∞ − Zn|

∣∣∣(Xn, Yn)
)

(ω) = dW

(
L(Xn(ω), Yn(ω)), δ Xn(ω)

Xn(ω)+Yn(ω)

)
≤ ε

2
.

(11)
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Since {Dn+1 < t} ⊆ {Dn < t} for all n, (10) and (11) imply that

E[|Z∞ − Zn|] = E[|Z∞ − Zn|; {Dn ≥ t}] + E[|Z∞ − Zn|; {Dn < t}]
≤ E

(
E(|Z∞ − Zn|1{Dn≥t}

∣∣(Xn, Yn))
)

+ P(DN < t)

≤ ε

for n ≥ N.

The next result can be read as a bound on the modulus of continuity of
L when evaluated at the inner points of S.

Lemma 3.3. For all n0 ≥ 1 and ε > 0, there is η = η(ε, n0), increasing
with ε and 1/n0, such that

dW (L(x, y),L(x̄, ȳ)) < ε,

if |x− x̄|+ |y − ȳ| < η and min{x+ y, x̄+ ȳ} ≥ 1/n0.

Proof. Let N = N(ε/4, n0) be given by Lemma 3.2. Then:

dW (L(x, y),L(x̄, ȳ))

≤ E[|Z∞(x, y)− ZN (x, y)|] + E[|Z∞(x̄, ȳ)− ZN (x̄, ȳ)|]
+E[|ZN (x, y)− ZN (x̄, ȳ)|]

≤ ε

2
+ E[|ZN (x, y)− ZN (x̄, ȳ)|].

For controlling the last term, we adopt a coupling argument as in [1].
Consider two different randomly reinforced urns, the first one with initial
composition (x, y) and second one with (x̄, ȳ). The two urns are coupled
in the sense that the same processes {Un} and {(Vn,Wn)} generate both
{(Xn(x, y), Yn(x, y))} and {(Xn(x̄, ȳ), Yn(x̄, ȳ)) according to the dynamics
described in (6). With the same arguments as in [1, pages 701-702], one
may show that

E[|ZN (x, y)− ZN (x̄, ȳ)|] ≤ (1 +N)
|x− x̄|+ |y − ȳ|

min{x+ y, x̄+ ȳ}
;

therefore, if η ≤ ε
2(1+N)n0

,

E[|ZN (x, y)− ZN (x̄, ȳ)|] ≤ ε

2
.
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Proof of Proposition 3.1. By considering the conditional distribution of Z∞(x, y),
given I(1), RX(1) and RY (1), and taking the expected values, one immedi-
ately verifies that L(µ,ν) satisfies equation (3b) for all (x, y) ∈ S. Conditions
(3c) and (3d) are also easily verified when ϕ = δ. Finally, (3a) and (3e) are
consequences of Lemma 3.3 and of Lemma 3.1, respectively.

The next result proves a further regularity property of L(µ,ν) .

Proposition 3.2. The map

(µ, ν) 7→ L(µ,ν),

from (P , dM ) to (C(S,P([0, 1])), d), is uniformly continuous.

Proof. Let A : C(S,P([0, 1]))×P → C(S,P([0, 1])) be the operator defined
by setting, for every H ∈ C(S,P([0, 1])) and (µ, ν) ∈ P ,

A(H, (µ, ν))(x, y) = x
x+y

∫ β

0
H(x+ k, y)µ(dk) + y

x+y

∫ β

0
H(x, y + k)ν(dk)

= x
x+y

∫ 1

0
H(x+ qµ(t), y)dt+ y

x+y

∫ 1

0
H(x, y + qν(t))dt,

where (x, y) ranges over S.
Let n ≥ 1. Then

dn(A(H1, (µ, ν))|Sn , A(H2, (µ, ν))|Sn) ≤ dn(H1|Sn ,H2|Sn), (12)

for every H1,H2 ∈ C(S,P([0, 1])) and (µ, ν) ∈ P . Indeed, for every (x, y) ∈
Sn,

dW (A(H1, (µ, ν))(x, y), A(H2, (µ, ν))(x, y))

≤ x

x+ y

∫ β

0
dW (H1(x+ k, y),H2(x+ k, y))µ(dk)

+
y

x+ y

∫ β

0
dW (H1(x, y + k),H2(x, y + k))ν(dk)

≤ sup
(x′,y′)∈Sn

dW (H1(x′, y′),H2(x′, y′)).

Moreover, if H ∈ C(S,P([0, 1])) is Lipschitz on Sn with Lipschitz constant
Kn, then, for every (µ1, ν1), (µ2, ν2) ∈ P ,

dn(A(H, (µ1, ν1))|Sn , A(H, (µ2, ν2))|Sn) ≤ KndM ((µ1, ν1), (µ2, ν2)), (13)
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since, for every (x, y) ∈ Sn,

dW (A(H, (µ1, ν1))(x, y), A(H, (µ2, ν2))(x, y))

≤ x

x+ y

∫ 1

0
dW (H(x+ qµ1(t), y),H(x+ qµ2(t), y))dt

+
y

x+ y

∫ 1

0
dW (H(x, y + qν1(t)),H(x, y + qν2(t)))dt

≤ Kn( x
x+ydW (µ1, µ2) + y

x+ydW (ν1, ν2))

≤ KndM ((µ1, ν1), (µ2, ν2)).

(14)

Now, for every H ∈ C(S,P([0, 1])) and (µ, ν) ∈ P , set A0(H, (µ, ν)) = H
and, for N = 1, 2, ... define iteratively

AN (H, (µ, ν)) = A(AN−1(H, (µ, ν)), (µ, ν)).

Consider H0 ∈ C(S,P([0, 1])) defined by setting H0(x, y) = δ( x
x+y ) for every

(x, y) ∈ S; then Z
(µ,ν)
0 (x, y) has distribution H0(x, y), while, for N = 1, 2, ...,

Z
(µ,ν)
N (x, y) has distribution AN (H0, (µ, ν))(x, y), where, for clarity of ex-

position, the exponent of the Z variables is evidence for the reinforcement
distributions of the RRU under consideration. Note that, for n ≥ 1, H0 is
a Lipschitz map from Sn to P([0, 1]) with Lipschitz constant n. Moreover,
it is not difficult to show, with computations analogous to those appear-
ing in (14), that the operator A preserves the Lipschitz property with the
same constant; hence, for (µ, ν) ∈ P and N = 1, 2, ..., AN (H0, (µ, ν)) is a
Lipschitz map from Sn to P([0, 1]) with Lipschitz constant n.

Let (µ1, ν1), (µ2, ν2) ∈ P , n,N ≥ 1 and, for ease of notation, set

Hi = AN−1(H0, (µi, νi)),

for i = 1, 2; then

dn(AN (H0, (µ1, ν1))|Sn ,AN (H0, (µ2, ν2))|Sn)

= dn(A(H1, (µ1, ν1))|Sn , A(H2, (µ2, ν2))|Sn)

≤ dn(A(H1, (µ1, ν1))|Sn , A(H2, (µ1, ν1)|Sn))

+ dn(A(H2, (µ1, ν1))|Sn , A(H2, (µ2, ν2))|Sn)

≤ dn(H1|Sn ,H2|Sn) + ndM ((µ1, ν1), (µ2, ν2)),
(15)

the last inequality being a consequence of (12) and (13). By iteratively
applying (15), it follows that

dn(AN (H0, (µ1, ν1)), AN (H0, (µ2, ν2))) ≤ nNdM ((µ1, ν1), (µ2, ν2)).
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Therefore, for every n ≥ 1 and ε > 0, if N = N(ε, n) is chosen according to
Lemma 3.2, we obtain

dn(L(µ1,ν1) |Sn ,L(µ2,ν2) |Sn) ≤ dn(L(µ1,ν1) |Sn , AN (H0, (µ1, ν1))|Sn)

+ dn(AN (H0, (µ1, ν1))|Sn , AN (H0, (µ2, ν2))|Sn)

+ dn(AN (H0, (µ2, ν2))|Sn ,L(µ2,ν2) |Sn)

≤ nNdM ((µ1, ν1), (µ2, ν2))

+ sup
(x,y)∈Sn

[
E
(
|Z(µ1,ν1)
∞ (x, y)− Z(µ1,ν1)

N (x, y)|
)

+ E
(
|Z(µ2,ν2)
N (x, y)− Z(µ2,ν2)

∞ (x, y)|
)]

≤ nNdM ((µ1, ν1), (µ2, ν2)) + 2ε.

This shows that the map (µ, ν) 7→ L(µ,ν) |Sn , from (P , dM ) to (C(Sn,P([0, 1])), dn),
is continuous for every n.
Hence the map (µ, ν) 7→ L(µ,ν) from (P , dM ) to (C(S,P([0, 1])), d) is con-
tinuous; since P is compact, it is also uniformly continuous.

4 The solution to the functional equation problem

In this section we prove Theorem 2.1 and Theorem 2.2. In particular we show
existence and uniqueness of the solution to Problem (3) when the boundary
datum is a generic element of C([0, 1],P([0, 1])). Existence is shown by means
of a constructive proof based on the canonical solution described in Section
3. Uniqueness is proved through a fixed point argument.

Given ϕ ∈ C([0, 1],P([0, 1])), define the map Γϕ : P([0, 1]) → P([0, 1])
by setting, for every ξ ∈ P([0, 1]),

Γϕ(ξ)(B) =

∫ 1

0
ϕ(t)(B)ξ(dt),

where B ranges over the Borel sets in [0, 1].

Lemma 4.1. For any given ϕ ∈ C([0, 1],P([0, 1])), the map Γϕ is uniformly
continuous.

Proof. Since ϕ ∈ C([0, 1],P([0, 1])), ϕ is uniformly continuous and bounded:
i.e. for any ε > 0, there is an η = η(ε, ϕ) such that

dW (ϕ(t1), ϕ(t2)) ≤ ε, if |t1 − t2| ≤ η, (16)
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while
dW (ϕ(t1), ϕ(t2)) ≤ 1, for all t1, t2 ∈ [0, 1]. (17)

Now, take ξ1, ξ2 ∈ P([0, 1]) such that dW (ξ1, ξ2) < εη. We are going to prove
that dW (Γϕ(ξ1),Γϕ(ξ2)) ≤ 2ε.

Because of (2), there is a probability space (Ω̃, Ã, P̃) carrying a couple
of random variables X1, X2 such that X1 ∼ ξ1, X2 ∼ ξ2, and dW (ξ1, ξ2) =
E(|X1 −X2|) ≤ εη; by Markov inequality,

P̃(|X1 −X2| > η) ≤ ε. (18)

On the product probability space (Ω̃× [0, 1], Ã ⊗ B([0, 1]), P̃⊗ λ[0,1]) define
the random variables

ζ1(ω, t) = inf
{
z :

∫
[0,z]

ϕ(η1(ω))(ds) ≥ t
}

= qϕ(η1(ω))(t)

and

ζ2(ω, t) = inf
{
z :

∫
[0,z]

ϕ(η2(ω))(ds) ≥ t
}

= qϕ(η2(ω))(t),

where qξ indicates the quantile function relative to the probability distribu-
tion ξ ∈ P([0, 1]).

For i = 1, 2, note that ϕ(Xi) is the conditional distribution of ζi, given
Xi; thus, ζi ∼ Γϕ(ξi). Moreover, for all ω ∈ Ω̃,

dW (ϕ(X1(ω)), ϕ(X2(ω))) =

∫ 1

0
|qϕ(X1(ω))(t)− qϕ(X2(ω))(t)|dt

=

∫ 1

0
|ζ1(ω, t)− ζ2(ω, t)|dt.

Hence,

dW (Γϕ(ξ1),Γϕ(ξ2)) ≤ E(|ζ1 − ζ2|)
= E

(
E
(
|ζ1 − ζ2|

∣∣X1, X2

))
= E

(
dW (ϕ(X1), ϕ(X2))

)
. (19)

Now, let F = {|X1 −X2| > η}. From (16), (17) and (18) one obtains:

E
(
dW (ϕ(X1), ϕ(X2))

)
= E

(
dW (ϕ(X1), ϕ(X2));F

)
+ E

(
dW (ϕ(X1), ϕ(X2));F c

)
≤ P̃(F ) + εP̃(F c) ≤ 2ε.

The last inequality, together with (19), concludes the proof.
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Proof of Theorem 2.1. (i) Existence. When the boundary datum ϕ = δ, the
existence of a solution Gδ(µ,ν) is guaranteed by Proposition 3.1, and this is
F(µ,ν).

Now let ϕ ∈ C([0, 1],P([0, 1])) and define, for all (x, y) ∈ S,

Gϕ(µ,ν)(x, y) = Γϕ(Gδ(µ,ν)(x, y));

we are going to show that Gϕ(µ,ν) is indeed a solution to Problem (3) when
the bondary datum is ϕ. In other words, the composition

(x, y) 7→ Gδ(µ,ν)(x, y) 7→ Γϕ(Gδ(µ,ν)(x, y))

gives a solution to Problem (3), i.e., (4) holds if the map Ψϕ is defined by
setting, for all G ∈ C(S,P([0, 1])),

Ψϕ(G)(x, y) = Γϕ(G(x, y)) =

∫ 1

0
ϕ(t) G(x, y)(dt)

with (x, y) ranging over S.
Because of Proposition 3.1, Gδ(µ,ν) satisfies (3b) when the border datum

is δ. Since Γϕ is linear, this implies that, for all (x, y) ∈ S,

Ψϕ(Gδ(µ,ν))(x, y) = Γϕ(Gδ(µ,ν)(x, y))

= Γϕ

( x

x+ y

∫
Gδ(µ,ν)(x+ k, y)µ(dk) +

y

x+ y

∫
Gδ(µ,ν)(x, y + k)ν(dk)

)
=

x

x+ y

∫
Ψϕ(Gδ(µ,ν))(x+ k, y)µ(dk) +

y

x+ y

∫
Ψϕ(Gδ(µ,ν))(x, y + k)ν(dk);

hence Ψϕ(Gδ(µ,ν)) satisfies (3b) when the border datum is ϕ.Now, by Lemma 4.1,

Ψϕ(Gδ(µ,ν)) is a continuous map from S to P([0, 1]), being the composition

of the continuous maps Γϕ and Gδ(µ,ν); hence (3a), (3c), (3d) and (3e) also
hold true.

(ii) Uniqueness. Sketch of the argument. Our argument in [1, Section 5]
can be easily extended to this more general situation.

Condition (3e) requires G to be continuous at the projective infinite
points. It is therefore convenient to transform the space S along the projec-
tive automorphism τ of P2 so defined:

(x : y : u)
τ7→(u : x : x+ y).

The automorphism τ has the following properties:
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- the space S is mapped into the affine space S∗ = [0,∞)× [0, 1];

- the positive x–axis is mapped into itself by (x, 0)→ (1/x, 0);

- the positive y–axis is mapped into the semiline {y∗ = 1, x∗ > 0} by
(0, y) 7→ (1/y, 1);

- the projective infinite point relative to the direction x
x+y = k is mapped

in the point (0, k);

- the origin is mapped in the projective infinite point (1 : 0 : 0).

The inverse map of τ is (x∗ : y∗ : u∗)
τ−1

7→ (y∗ : u∗ − y∗ : x∗). Problem (3) can
be equivalently formulated on S∗ as follows:
given

(µ, ν) ∈ P and the boundary datum ϕ ∈ C([0, 1],P([0, 1])),

find
G∗ ∈ C(S∗,P([0, 1])) (20a)

such that, for all (x, y) ∈ S∗,

G∗(x∗, y∗) = y∗
∫
G∗
( x∗

1 + kx∗
,
y∗ + kx∗

1 + kx∗

)
µ(dk)+

+ (1− y∗)
∫
G∗
( x∗

1 + kx∗
,

y∗

1 + kx∗

)
ν(dk),

(20b)

G∗(x∗, 0) = ϕ(0), (20c)

G∗(x∗, 1) = ϕ(1), (20d)

G∗(0, y∗) = ϕ(y∗). (20e)

In fact, (20b) is just (3b) in the new coordinates. Indeed, the transforma-
tions

G(x, y) = G∗(τ(x, y))

G∗(x∗, y∗) =

{
G(τ−1(x∗, y∗)) if (x∗, y∗) ∈ (0,∞)× [0, 1];

lim
s∗→0

G(τ−1(s∗, y∗)) if x∗ = 0, y∗ ∈ [0, 1],

show the equivalence of Problem (3) and Problem (20).
Now, let C∗ϕ(S∗) be the space of continuous function H∗ : S∗ → P([0, 1])

such that, for every (x∗, y∗) ∈ S∗,

H∗(x∗, 0) = ϕ(0), H∗(x∗, 1) = ϕ(1) and H∗(0, y∗) = ϕ(y∗).
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Define the following operator A∗ mapping C∗ϕ(S∗) into C∗ϕ(S∗):

A∗(H∗)(x∗, y∗) = y∗
∫
H∗
( x∗

1 + kx∗
,
y∗ + kx∗

1 + kx∗

)
µ(dk)+

+ (1− y∗)
∫
H∗
( x∗

1 + kx∗
,

y∗

1 + kx∗

)
ν(dk)

with (x∗, y∗) ranging over S∗.
With the same argument used in [1, Theorem 5.2], one can prove that A∗

has at most one fixed point; hence Problem (20) has at most one solution.

(iii) Continuity with respect to the boundary datum. We prove this last
part by showing that

d(Gϕ1

(µ,ν),G
ϕ2

(µ,ν)) ≤ d∞(ϕ1, ϕ2) (21)

for all ϕ1, ϕ2 ∈ C([0, 1],P([0, 1])). We recall here that (see, e.g., [6])

dW (η1, η2) = sup
{∣∣∣ ∫ h(t)η1(dt)−

∫
h(t)η2(dt)

∣∣∣ : ‖h‖L ≤ 1
}

(22)

where ‖h‖L is the Lipschitz norm. Then, for h such that ‖h‖L ≤ 1 and
(x, y) ∈ S, we get∣∣∣ ∫ h(s)Gϕ1

(µ,ν)(x, y)(ds)−
∫
h(s)Gϕ2

(µ,ν)(x, y)(ds)
∣∣∣

=
∣∣∣ ∫ h(s)

∫
ϕ1(t)(ds)Gδ(µ,ν)(x, y)(dt)

−
∫
h(s)

∫
ϕ2(t)(ds)Gδ(µ,ν)(x, y)(dt)

∣∣∣
≤
∫ ∣∣∣ ∫ h(s)ϕ1(t)(ds)−

∫
h(s)ϕ2(t)(ds)

∣∣∣Gδ(µ,ν)(x, y)(dt)

≤
∫
dW (ϕ1(t), ϕ2(t))Gδ(µ,ν)(x, y)(dt) ≤ d∞(ϕ1, ϕ2);

hence dW (Gϕ1

(µ,ν)(x, y),Gϕ2

(µ,ν)(x, y)) ≤ d∞(ϕ1, ϕ2), again by (22). Inequality

(21) follows easily.

Remark 4.1. Given (µ, ν) ∈ P , the inequality (21) can be completed as
follows: for all ϕ1, ϕ2 ∈ C([0, 1],P([0, 1]),

d(Gϕ1

(µ,ν),G
ϕ2

(µ,ν)) ≤ d∞(ϕ1, ϕ2) ≤ 2d(Gϕ1

(µ,ν),G
ϕ2

(µ,ν)). (23)

18



Hence, for any given (µ, ν) ∈ P , we have an embedding

C([0, 1],P([0, 1]))
Ψϕ
↪→C(S,P([0, 1])).

Indeed, for n = 1, 2, ..., (3e) implies that

d∞(ϕ1, ϕ2) ≤ dn(Gϕ1

(µ,ν),G
ϕ2

(µ,ν));

since dn ≤ 1, and thus dn ≤ 2 dn
1+dn

, this implies the right inequality in (23).

Remark 4.2. Let m be the common mean of (µ, ν) ∈ P. For p ∈ [m0/m, 1],
set (µ′, ν ′) = (pµ+(1−p)δ0, pν+(1−p)δ0). Then (µ′, ν ′) ∈ P and Gϕ(µ′,ν′) =

Gϕ(µ,ν) .

Remark 4.3. Let h : [0, 1] → [0, 1] be a continuous function and ϕ ∈
C([0, 1],P([0, 1])) a boundary datum. For ξ ∈ P([0, 1]), denote with h◦ ξ the
distribution of the random variable h(W ), where W is a random variable

with probability distribution ξ. Then Gh◦ϕ(µ,ν)(x, y) = h ◦ Gϕ(µ,ν)(x, y), for all

(x, y) ∈ S.

Remark 4.4. One may notice that the boundary conditions (3c) and (3d)
are redundant. Indeed, if (3b) and (3e) are true for a G : S → P([0, 1]),
then G satisfies (3c) and (3d). To see this, let x > 0 and consider G(x, 0).
By iteratively applying (3b), one obtains

G(x, 0) =

∫ β

0
G(x+ k1, 0)µ(dk1)

=

∫ β

0

∫ β

0
G(x+ k1 + k2, 0)µ(dk1)µ(dk2)

· · ·

=

∫ β

0
· · ·
∫ β

0
G(x+ k1 + · · ·+ kn, 0)µ(dk1) · · ·µ(dkn)

for all n = 1, 2, .... However, because of (3e), if
∑n

i=1 ki → ∞ as n → ∞,
then

lim
n→∞

dW (G(x+

n∑
i=1

ki, 0), ϕ(1)) = 0.

Hence, the Law of Large Numbers and the Dominated Convergence Theorem
imply that G(x, 0) = ϕ(1). The argument for proving that G(0, y) = ϕ(0), if
y > 0, is analogous.
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Remark 4.5. For n = 1, 2, ... let γn(x, y) be the distribution of (Xn, Yn), the
number of black and white balls respectively present in a RRU, with initial
composition (x, y) ∈ S and reinforcement distribution µ and ν, after is has
been sampled for the n-th time.

Since {(Xn, Yn)} is Markov, if G is a solution to Problem (3), it is easy
to prove, by induction on n, that

G(X,Y ) ∧ γn(x, y) = G(x, y)

for all n and (x, y) ∈ S. However one can show that (3e) implies that

dW (G(X,Y ) ∧ γn(x, y), ϕ
( X

X + Y

)
∧ γn(x, y)) −→

n→∞
0.

Hence

ϕ
( X

X + Y

)
∧ γn(x, y)

dW−→
n→∞

G(x, y)

and this shows the uniqueness of the solution G . This interesting remark has
been pointed out by a referee.

We are finally in the position to prove Theorem 2.2.

Proof of Theorem 2.2. The theorem is true when the boundary datum is δ,
as follows from Proposition 3.2 and the fact that P is compact. For a general
boundary datum ϕ ∈ C([0, 1],P([0, 1])) the result follows once it is proved
that the map Ψϕ is continuous; but this is a consequence of Lemma 4.1.

5 Diffuse solutions

As an immediate consequence of Proposition 3.1 and [2, Theorem 3.2] we
have the following result, which is a particular instance of Theorem 2.3 and
represents a tool for proving it.

Proposition 5.1. For all (x, y) in the interior of S and z ∈ [0, 1],

Gδ(µ,ν)(x, y)({z}) = 0.

Proof of Theorem 2.3. Given z ∈ [0, 1], note that ϕz(t) = ϕ(t)({z}) is a
measurable function of t, since it is the monotone limit of the sequence of

continuous functions k
(n)
z defined by setting, for n = 1, 2, ... and t ∈ [0, 1],

k(n)
z (t) =

∫
h(n)
z (s)ϕ(t)(ds),
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where

h(n)
z (s) =


ns− nz + 1, if z − 1/n ≤ s ≤ z,
nz − ns+ 1, if z < s ≤ z + 1/n,

0, otherwise.

The two functions

ϕ−z (t) = sup
w<z

Fϕ(t)(w), ϕ+
z (t) = Fϕ(t)(z)

are monotonically nonincreasing in t, since ϕ is monotone. Moreover, ϕz(t) =
ϕ+
z (t)−ϕ−z (t). Therefore ϕz is a bounded variation function and it thus has

at most a countable number of points of discontinuity. Note that

Φ({z}) =

∫ 1

0
φz(t)dt =

∫ 1

0
(φ+
z (t)− φ−z (t))dt.

Proof of part 1. Let (x0, y0) be a point in the interior of S such that
Gϕ(µ,ν)(x0, y0) has no point masses in [0, 1]. By way of contradiction, sup-

pose there is a z ∈ [0, 1] such that Φ({z}) > 0.
Since Φ({z}) > 0, there are ε > 0, a > 0 and z∗ ∈ [0, 1] such that

ϕz(t) > ε, for all t ∈ I∗ = [z∗ − a, z∗ + a] ∩ [0, 1]. (24)

Set

R =
{

(x, y) ∈ S : x ≥ max(2β,
64β

a2
),

y =
(1

z
− 1
)
x
(
z =

x

x+ y

)
,

z ∈
[
z∗ −

a

2
, z∗ +

a

2

]
∩ [0, 1]

}
.

For all (x, y) ∈ R, Corollary 3.1 with h0 = a
4 implies that

P
(
Z∞(x, y) 6∈ I∗

)
≤ P

(
|Z∞(x, y)− z| > a

2

)
≤ 4

a

√
β

x
≤ 1

2

and thus Gδ(µ,ν)(x, y)(I∗) ≥ 1
2 . Then, because of (24), for all (x, y) ∈ R,

Gϕ(µ,ν)(x, y)({z}) =

∫ 1

0
ϕz(t)Gδ(µ,ν)(x, y)(dt) ≥ ε

∫
I∗

Gδ(µ,ν)(x, y)(dt) ≥ ε

2
.

Now, set

τ = inf{n ≥ 0: (Xn(x0, y0), Yn(x0, y0)) ∈ R} (inf ∅ =∞);
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it is not difficult to show that P(τ <∞) = p > 0. Thus the strong Markov
property implies that Gδ(µ,ν)(x0, y0)(I∗) ≥ p

2 ; therefore Gϕ(µ,ν)(x0, y0)({z}) ≥
p ε2 contradicting the assumption that Gϕ(µ,ν)(x0, y0) has no point masses in

[0, 1]. This concludes the proof of part 1.

Proof of part 2. Let now z ∈ [0, 1]; by assumption Φ({z}) = 0. Since
ϕz has at most a countable number of points of discontinuity, ϕz ≥ 0 and∫
ϕz(t)dt = 0, there is a sequence t1, t2, ... such that ϕz(t) = 0 for all t ∈

F = (∪i{ti})c. Then, given any (x, y) in the interior of S,

Gϕ(µ,ν)(x, y)({z}) =

∫
[0,1]

ϕz(t)Gδ(µ,ν)(x, y)(dt)

=

∫
[0,1]∩F

ϕz(t)Gδ(µ,ν)(x, y)(dt) +
∑
ti

ϕz(ti)Gδ(µ,ν)(x, y)({ti})

= 0

the last term being zero because of Proposition 5.1.

6 Examples

In this section we give explicit descriptions of the solution Gϕ(µ,ν) for some

specific choices of the reinforcement distributions (µ, ν) ∈ P and of the
boundary datum ϕ ∈ C([0, 1],P([0, 1])). The first example is prototypical
since it considers the Pólya urn scheme and the family of Beta distributions,
whose properties had a central role in originating most of the problems
tackled in this paper.

6.1 The Pólya urn scheme and the family of Beta distribu-
tions

We indicate with Beta(x, y) the beta distribution on [0, 1] with parameters
(x, y) ∈ S. If (x, y) is a point in the interior of S, Beta(x, y) has a density
given by

fBeta(x,y)(t) =
Γ(x+ y)

Γ(x)Γ(y)
tx−1(1− t)y−1,

for t ∈ [0, 1]; it is convenient to indicate with Beta(0, y) and Beta(x, 0) the
point mass at 0 or at 1, respectively.

The random limit composition of a Pólya urn with initial composition
(x, y) ∈ S and constant reinforcement equal to 1 has distribution Beta(x, y);
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indeed a Pólya urn is a special RRU with reinforcements µ = ν = δ1. The
same result holds when µ = ν = Bernoulli(p), for p > 0; see [4] and the
references therein. Hence, for p > 0,

Gδ(δ1,δ1)(x, y) = Gδ(Bernoulli(p),Bernoulli(p))(x, y) = Beta(x, y),

for all (x, y) ∈ S.
Different families of distributions related to the Beta can be generated

through the Pólya urn scheme, where both reinforcement distributions are
equal to the same point mass, by modifying the boundary datum and solving
Problem (3).

For instance, let λ > 0, define ϕλ : [0, 1] → P([0, 1]) by setting ϕλ(t) =
δ(t1/λ), for t ∈ [0, 1], and consider Problem (3) with µ = ν = δ1 and bound-
ary datum equal to ϕλ. Note that ϕλ is monotone and thus the unique
solution to the problem is diffuse. Indeed for (x, y) in the interior S, the
distribution Gϕλ(δ1,δ1)(x, y) has density

fGϕλ
(δ1,δ1)

(x,y)(t) = λ
Γ(x+ y)

Γ(x)Γ(y)
tλx−1(1− tλ)y−1,

for t ∈ [0, 1]. For x = 1 and y > 0, the solution Gϕλ(δ1,δ1)(1, y) is called the

Kumaraswamy distribution with shape parameters λ and y; see [7].
A captivating family of distributions is generated along these lines by

setting the boundary datum ϕ to be the function mapping t ∈ [0, 1] to the
exponential distribution with parameter t truncated to [0, 1] : hence, for
t ∈ (0, 1], the density of ϕ(t) is

fϕ(t)(z) =
t exp(−zt)

1− exp(−t)
1[0,1](z),

while fϕ(0)(z) = 1[0,1](z).
Then (4) and (5) imply that, for (x, y) in the interior S, the distribution

Gϕ(δ1,δ1)(x, y) has density

fGϕ
(δ1,δ1)

(x,y)(z) =

∫ 1

0

t exp(−zt)
1− exp(−t)

Γ(x+ y)

Γ(x)Γ(y)
tx−1(1− t)y−1 dt.

This density admits an interesting representation in terms of the Hurwitz
zeta function.

Indeed, since (1− exp(−t))−1 =
∑

n≥0(exp(−t))n,
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fGϕ
(δ1,δ1)

(x,y)(z) =
Γ(x+ y)

Γ(x)Γ(y)

∞∑
n=0

∫ 1

0
te−(z+n)ttx−1(1− t)y−1 dt

=
Γ(x+ y)

Γ(x)Γ(y)

Γ(x+ 1)Γ(y)

Γ(x+ y + 1)

∑
n≥0

Γ(x+ y + 1)

Γ(x+ 1)Γ(y)

∫ 1

0
e−(z+n)ttx(1− t)y−1 dt

=
x

x+ y

∑
n≥0

M(x+ 1, x+ y + 1,−(z + n)),

whereM(a, b, z) is the Kummer’s (confluent hypergeometric) function. When
the real parts <(a) and <(b) of a and b are such that <(b) > <(a) > 0, the
function M can be represented as a Barnes integral:

M(a, b,−z) =
1

2πi

Γ(b)

Γ(a)

∫ i∞

−i∞

Γ(−s)Γ(a+ s)

Γ(b+ s)
zsds

where the contour of integration separates the poles of Γ(a + s), which
are {−a,−a + 1,−a + 2, . . .}, from those of Γ(−s), which are {0, 1, 2, . . .}.
Therefore this contour may be taken in the halfplane <(s) < −1 whenever
<(a) > 1. Moreover, for z ∈ (0, 1) and <(s) < −1,∑

n≥0

(z + n)s = ζ(−s, z)

where ζ is the Hurwitz zeta function. Therefore

fGϕ
(δ1,δ1)

(x,y)(z) =
x

x+ y

∑
n≥0

1

2πi

Γ(x+ y + 1)

Γ(x+ 1)

∫ i∞

−i∞

Γ(−s)Γ(x+ 1 + s)

Γ(x+ y + 1 + s)
(z + n)sds

=
x

x+ y

1

2πi

Γ(x+ y + 1)

Γ(x+ 1)

∫ i∞

−i∞

Γ(−s)Γ(x+ 1 + s)

Γ(x+ y + 1 + s)
ζ(−s, z)ds

=
1

2πi

Γ(x+ y)

Γ(x)

∫ i∞

−i∞

Γ(−s)Γ(x+ 1 + s)

Γ(x+ y + 1 + s)
ζ(−s, z)ds

where the contour of integration may be chosen in the halfplane <(s) < −1,
since <(x+ 1) > 1.

6.2 Bernoulli reinforcements

A more intriguing extension which goes well beyond the Pólya urn scheme
is obtained by considering reinforcement distributions (µ, ν) ∈ P different
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from equal point masses; we here treat the case where µ and ν are scaled
Bernoulli distributions with the same mean. Let m ≥ kµ ≥ kν > 0, and
assume that µ and ν are the distributions of two random variables, say RX
and RY , such that RX/kµ has distribution Bernoulli(m/kµ) while RY /kν
has distribution Bernoulli(m/kν).

Equation (1), with (µ, ν) as above, reads

x

kµ

(
G(x, y)− G(x+ kµ, y

))
+

y

kν

(
G(x, y)− G(x, y + kν

))
= 0,

which does not depend on m. One easily verifies that the equation is satisfied
by the continuous map G : S→ P([0, 1]) defined by setting, for all (x, y) ∈ S,

G(x, y) = Beta(
x

kµ
,
y

kν
).

Moreover, note that,

dW
(
Beta(

x

kµ
,
y

kν
), δ(

xkν
xkν + ykµ

)
)
−→

x+y→∞
0.

Hence, if h : [0, 1]→ [0, 1] is defined by setting

h(t) =
tkν

tkν + (1− t)kµ

for all t ∈ [0, 1], then

Gh◦δ(µ,ν)(x, y) = Beta(
x

kµ
,
y

kν
),

for (x, y) ∈ S, is the unique solution to Problem (3) when µ and ν are the
scaled Bernoulli distributions defined above and the boundary datum is the
continuous map h ◦ δ : [0, 1]→ P([0, 1]) defined by setting

h ◦ δ(t) = δ(
tkν

tkν + (1− t)kµ
)

for all t ∈ [0, 1].
We now want to find the distribution of the limit composition of a RRU

whose reinforcements are distributed according to the scaled Bernoulli dis-
tributions µ and ν. Note that h is continuous, monotonically increasing and
its inverse is

h−1(u) =
ukµ

ukµ + (1− u)kν
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for u ∈ [0, 1]. Then it follows from Remark 4.3 that,

Gδ(µ,ν)(x, y) = Gh−1◦h◦δ
(µ,ν) (x, y) = h−1 ◦ Beta(

x

kµ
,
y

kν
),

for all (x, y) ∈ S. For (x, y) in the interior of S, Gδ(µ,ν)(x, y) has a density and
this is

fGδ(µ,ν)(x,y)(t) = k
y
kν
µ k

x
kµ
ν

Γ(x/kµ + y/kν)

Γ(x/kµ)Γ(y/kν)

t
x
kµ
−1

(1− t)
y
kν
−1

[tkν + (1− t)kµ]
x
kµ

+ y
kν

for t ∈ [0, 1]. Apart from the Polya urn scheme, to the best of our knowledge
this is the first example of an RRU where the analytical expression of the
density of the urn limit composition is known; notably it has been found by
solving Problem (3).

A Doob decomposition of the RRU process

This appendix provides a series of auxiliary results necessary to prove Propo-
sitions 3.1 and 3.2. We will refer to the notations introduced in Section 3.
For n = 1, 2, ... letAn = σ(δ1, RX(1), RY (1), . . . , δn, RX(n), RY (n)) and con-
sider the filtration {An}; then, given the initial urn composition (x, y) ∈ S,
the Doob’s semi-martingale decomposition of Zn(x, y) is

Zn(x, y) = Z0(x, y) +Mn(x, y) +An(x, y)

where {Mn} is a zero mean martingale and the previsible process {An} is
eventually increasing (decreasing), again by [11, Theorem 2]. We also denote
by {〈M〉n} the bracket process associated to {Mn}, i.e. the previsible process
obtained by the Doob’s decomposition of M2

n.
We first provide some auxiliary inequalities. As a consequence of [2,

Lemma 4.1], we can bound the increments ∆An of the Zn-compensator
process and the increments ∆〈M〉n of the bracket process associated to
{Mn}. In fact, an easy computation gives

∆An+1 = E(∆Zn+1|An) = Zn(1− Zn)A∗n+1

and
E((∆Zn+1)2|An) = Zn(1− Zn)Z∗n+1.

where

A∗n+1 = E
( RX(n+1)

Dn

1 + RX(n+1)
Dn

−
RY (n+1)

Dn

1 + RY (n+1)
Dn

∣∣∣An),
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and

Z∗n+1 = E
(

(1− Zn)
( RX(n+1)

Dn

1 + RX(n+1)
Dn

)2
+ Zn

( RY (n+1)
Dn

1 + RY (n+1)
Dn

)2∣∣∣An).
Now, [2, Lemma 4.2] with m =

∫ β
0 kµ(dk) =

∫ β
0 kν(dk) gives

|A∗n+1| ≤
m

m+Dn
− m

β +Dn
. (A.25)

By applying [2, Lemma 4.1] with h(x, t) = ( x
x+t)

2, BD = [2β,∞), D = Dn,
R = RX(n+ 1) or R = RY (n+ 1) and A = An, one obtains:

Zn(1−Zn)
( m

m+Dn

)2
≤ E((∆Zn+1)2|An) ≤ Zn(1−Zn)

mβ

(β +Dn)2
, (A.26)

on the set {Dn ≥ 2β}. Since

E((∆Zn+1)2|An) = E((∆An+1 + ∆Mn+1)2|An) = (∆An+1)2 + ∆〈M〉n+1,

if D0 ≥ 2β, and thus β +Dn ≥ 3β, (A.25) together with (A.26) yields

∆〈M〉n+1 ≥ Zn(1− Zn)
( m

m+Dn

)2(
1−

( β −m
β +Dn

)2)
≥ 8

9
Zn(1− Zn)

( m

m+Dn

)2
,

∆〈M〉n+1 ≤ Zn(1− Zn)
mβ

(β +Dn)2
.

(A.27)

Lemma A.1. For all k = 1, 2, ...,

E(
1

Dk
) ≤ 1 + (β −m)/D0

D0 +m(k − 1) + β
. (A.28)

If, in addition, D0 ≥ 2β then, for all k, n = 1, 2, ...,∣∣∣E( 1

c+Dk+n
− 1

d+Dk+n

∣∣∣An)∣∣∣ ≤ β −m+ d

m

( 1

bk
− 1

bk+1

)
, (A.29)

when d ≥ c ≥ 0 and bk = c+Dn − β +mk.

Proof. Let η∗ be a random variable independent of A∞ and let η1 be a
random variable independent of σ(A∞, η∗) and such that η1/β has distri-
bution Binomial(1,m/β). Define A∗k+n− = σ(η∗,Ak+n−1, I(k + n)); by [2,
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Lemma 4.1], if D > 0 is A∗k+n−-measurable and 0 ≤ R ≤ β with E(R) = m
is independent of A∗k+n− , one obtains

E
( 1

D +R

∣∣∣A∗k+n−

)
≤ m

β

1

D + β
+
β −m
β

1

D
= E

( 1

D + η1

∣∣∣A∗k+n−

)
,

and thus

E
( 1

Dk+n + η∗

∣∣∣A∗k+n−

)
= I(k + n)E

( 1

Dk+n−1 + η∗ +RX(k + n)

∣∣∣A∗k+n−

)
+ (1− I(k + n))E

( 1

Dk+n−1 + η∗ +RY (k + n)

∣∣∣A∗k+n−

)
≤ I(k + n)E

( 1

Dk+n−1 + η∗ + η1

∣∣∣A∗k+n−

)
+ (1− I(k + n))E

( 1

Dk+n−1 + η∗ + η1

∣∣∣A∗k+n−

)
= E

( 1

Dk+n−1 + η∗ + η1

∣∣∣A∗k+n−

)
.

(A.30)

Therefore, for c ≥ 0, by applying (A.30) k-times, we get

E
( 1

Dk+n + c

∣∣∣An) ≤ E
( 1

Dn + c+ ηk

∣∣∣An) (A.31)

where ηk is independent of σ(A∞) and ηk/β has distribution Binomial(k,m/β).
Equation (A.28) is now a consequence of [13, Eq. (21)]: if η̃k ∼ Binomial(k, r)
and l > 0,

E
( 1

l + η̃k

)
≤
(

1 +
1− r
l

) 1

l + kr + (1− r)
.

Apply this to (A.31) with n = 0, η̃k = ηk/β, l = D0/β and r = m/β to
obtain (A.28).

Equation (A.29) is a consequence of [13, Eq. (25)]: if η̃k ∼ Binomial(k, r)
and l > 1,

E
( 1

l + η̃k

)
≤ 1

l + kr − (1− r)
.

Apply this to (A.31) with η̃k = ηk/β, l = Dn + c/β (which is greater than
2) and r = m/β to obtain

E
( 1

c+Dn+k

∣∣∣An) ≤ 1

c+Dn +m(k + 1)− β
.
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Jensen’s inequality yields E((d+Dn+k)
−1|An) ≥ (d+Dn+mk)−1, and thus∣∣∣E( 1

c+Dn+k
− 1

d+Dn+k

∣∣∣An)∣∣∣ ≤ β −m+ d− c
(c+Dn +m(k + 1)− β)(d+Dn +mk)

.

Since

1

bk
− 1

bk+1
=

m

(c+Dn − β +mk)(c+Dn − β +m(k + 1))

we get (A.29):∣∣∣E( 1
c+Dn+k

− 1
d+Dn+k

∣∣∣An)∣∣∣
1
bk
− 1

bk+1

≤ β −m+ d− c
m

c+Dn − β +mk

d+Dn +mk

≤ β −m+ d− c
m

.

The following Lemma A.2 and Lemma A.3 provide inequalities which
control the previsible and the martingale part of the process Zn respectively;
they require that the initial composition of the urn is sufficiently large.

Lemma A.2. If D0 ≥ 2β, then

E(sup
r
|Ar|) ≤

β

D0
.

Proof. Apply (A.29) with n = 0, c = m, d = β. Equation (A.25) then reads

E(|A∗k+1|) ≤ (2β −m)
( 1

bk
− 1

bk+1

)
,

if bk = km+D0 − (β −m). Since A0 = 0,

E(sup
r
|Ar|) ≤ E

(∑
k

|∆Ak+1|
)
≤
∑
k

1

4
E(|A∗k+1|)

≤ 2β −m
4

∑
k

( 1

bk
− 1

bk+1

)
=

2β −m
4

1

D0 − (β −m)

≤ β

D0
,

where the last inequality is true because β −m ≤ β ≤ D0/2.
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Lemma A.3. Let D0 ≥ 2β. For all n ≥ 0,

E(〈M〉∞ − 〈M〉n|An) ≤ β

D0
.

Proof. Since Zn+k(1− Zn+k) ≤ 1/4, by (A.27), one gets

∆〈M〉n+k+1 ≤
mβ

4(β +Dn+k)2
≤ m

4

( 1

Dn+k
− 1

β +Dn+k

)
.

Apply (A.29) with c = 0 and d = β, obtaining

E(∆〈M〉n+k+1|An) ≤ m

4

2β −m
m

( 1

bk
− 1

bk+1

)
,

if bk = km+Dn − β. Thus

E(〈M〉∞ − 〈M〉n|An) = E
(∑
k≥0

∆〈M〉k+n+1

∣∣∣An)
≤ 2β −m

4

∑
k≥0

( 1

bk
− 1

bk+1

)
≤ 2β

2

1

2(Dn − β)
≤ β

D0
,

since 2(Dn − β) ≥ 2(D0 − β) ≥ D0.
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