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The importance of X chromosome in the aetiology of premature ovarian failure (POF) is well-known but in many cases POF still
remains idiopathic. Chromosome aneuploidy increase is a physiological phenomenon related to aging, but the role of low-level
sex chromosome mosaicism in ovarian function is still undiscovered. Standard cytogenetic analysis was carried out in a total of
269 patients affected by POF: 27 chromosomal abnormalities were identified, including X chromosome and autosomal structural
and numerical abnormalities. In 47 patients with 46,XX karyotype we performed interphase FISH using X alpha-satellite probe in
order to identify X chromosome mosaicism rate. Aneuploidy rate in the patient group was significantly higher than the general
population group. These findings underline the importance of X chromosome in the aetiology of POF and highlight the potential
role of low-level sex chromosome mosaicism in ovarian aging that may lead to a premature onset of menopause.

1. Introduction

The increase of chromosome aneuploidy in human lympho-
cytes with aging has been described since early 1960s [1, 2].
Numerous reports confirmed the observations of Jacobs and
colleagues and showed that hypodiploidy increases with age
and is more common than hyperdiploidy [3–6]. Subsequent
studies on metaphase spreads from peripheral blood lym-
phocytes demonstrated that there was a preferential loss of X
and Y chromosomes in female and male, respectively [7–10],
suggesting that loss of sex chromosomes follows an upward
trend according to aging. An increase in micronucleus
formation with age has been highlighted in many studies and
in particular a high overrepresentation of the X chromosome
in lymphocyte micronuclei of women [6, 11–14].

Premature ovarian failure (POF, OMIM 311360) is
defined as the cessation of ovarian function before the age

of 40, associated with elevated gonadotropins serum levels
(FSH ≥ 40 UI/l) and affects at least 1%–3% of women
of reproductive age [15]. The aetiology of POF is highly
heterogeneous including genetic, autoimmune, metabolic
and infectious causes, but in most cases the aetiology is still
unknown [16, 17]. The most common genetic causes of POF
are X chromosome abnormalities [18, 19], ranging from
numerical defects, deletions, X-autosome translocations, and
isochromosomes [17]. Turner syndrome, associated to X
monosomy, leads to ovarian dysgenesis and accelerated
follicular atresia, showing that two intact X chromosomes are
essential for the maintenance of ovarian function as many
genes, probably involved in ovarian function, escape X inac-
tivation and are required for a normal ovarian development
and maintenance [16, 20–22]. On the other hand, X trisomy
seems to be related to ovarian dysfunction as 47,XXX women
might experience oligomenorrhea, secondary amenorrhea,
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and early menopause [23]. Moreover the role of low-level
sex chromosome mosaicism in ovarian function is still
unknown, in most cases they escape diagnosis because they
do not seem to cause any phenotypic effect [24, 25].

The aim of this work is to carry out a study on a
group of 269 patients affected by POF, through a cytogenetic
investigation, in order to identify chromosomal abnormal-
ities. Moreover, we assessed an analysis on X chromosome
aneuploidy, by means of FISH on interphase nuclei, to
evaluate low-level sex chromosome mosaicism rate, trying to
understand if there is a correlation between advanced and
increased loss of X chromosome and POF.

2. Materials and Methods

2.1. Clinical Population. A total of 269 patients affected
by POF referred to genetic laboratory for conventional
cytogenetic analysis. A subpart of this case group has been
already published in previous works by Vegetti et al. (1998);
Tibiletti et al. (1999) and Marozzi et al. (2000) [26–28]. In
this study all of the patients had the cessation of menses
for a duration of 6 months or longer, with FSH levels ≥
of 40 IU/l, before or at the age of 40 (POF1), or between
the age of 41 and 45 years (POF2). Also patients affected
by primary amenorrhea were included in the study group,
as this clinical condition can be considered the most severe
cause of ovarian insufficiency [29, 30]. These patients did
not show any typical features of Turner syndrome. All of the
patients underwent a complete clinical assessment, including
complete medical and gynaecological history, in order to
exclude any other related pathology. Informed consent was
obtained from all participants.

The general population group was composed by 357
uncultured female amniocytes derived from routinely diag-
nostic procedures, in order to establish the best unbiased ref-
erence group. All foetuses showed normal female karyotype
after culture using standard cytogenetic techniques.

2.2. Conventional Cytogenetics. Metaphase-chromosome
spreads were obtained from phytohaemagglutinin-stimulat-
ed peripheral blood lymphocytes using standard methods.
The chromosomes were QFQ-banded using quinacrine mus
tard, and slides were mounted in McIlvaine buffer. A range
of 30–50 cells were analyzed for karyotype following the
guidelines of the International System for Chromosome
Nomenclature 2009 (ISCN 2009) with the exclusion of
mosaicism at 10%–6% grade, with 95% confidential level
[31].

2.3. FISH Analysis on Interphase Nuclei. FISH analysis on
interphase nuclei from lymphocytes was assessed on patients
(n = 47) with normal constitutional karyotype and on
uncultured amniocytes. The mean age of the patients at the
time of the study was 34 years (range 12–45). FISH study
was performed using alpha satellite probes of chromosomes
X, Y, and 18 (AneuVysion Multicolor DNA Probe Kit,
Vysis, Abbott Molecular) and performed according to the
manufacturer’s instructions. Chromosome 18 centromeric

probe was used as reference signal in order to evaluate
hybridization efficiency. A range of 40–210 nuclei was
analyzed for each case. only monosomic and trisomic cells
for X chromosome were taken into account to determine the
aneuploidy rate, since other anomalous categories are small
and so irrelevant [32].

2.4. Statistical Analysis. χ2 test was carried out on raw data
using a Microsoft Excel spreadsheet (Microsoft Corporation,
Redmond, WA). Data analysis between the two groups
analyzed was considered significant, setting a threshold equal
to P < .05.

3. Results

High-resolution cytogenetic analysis (QFQ banding)
of peripheral blood lymphocytes from 269 patients
revealed 27 chromosomal abnormalities (Table 1 and
Figure 1). There were 13 nonmosaic X chromosome
structural abnormalities (48.2% of detected abnormalities),
including X-autosome translocations, X;Y translocations,
Xq deletions, and pseudodicentric chromosomes. The
46,X,der(X)t(X;Y)(q26.2;q11.223) was a maternal inherited
translocation and the mother ceased her menses at 40
years of age. The 46,X,der(X)t(X;19)(p21.1;13.42) case is
a maternal inherited translocation, but the sister of this
patient, who has inherited the same aberration is not
affected by POF [33]. X chromosome was also involved
in 3 (11.1%) cases of 45,X mosaic with the other cell
line characterized by a pseudodicentric X chromosome. 6
(22.2%) patients showed X chromosome aneuploidy, in
particular one patients was nonmosaic 47,XXX, one patient
nonmosaic 45,X, 3 patients were 45,X/46,XX mosaic and one
patient was 46,XX/47,XXX mosaic. In addition, 3 (11.1%)
autosomal structural abnormalities were identified, one
involving chromosomes 4 and 5 and a patient was mosaic
for an isochromosome 9p. The patient with the 46,XX,
t(3;7)(q23;p12) karyotype was characterized by primary
amenorrhea and bilateral euryblepharon. The chromosome
3 breakpoint fell under the FOXL2 locus and she was not
affected by the blepharophimosis-ptosis-epicanthus inversus
syndrome. Autosomal numerical abnormalities were found
in 2 patients (7.4%) including a 47,XX,+21 case and a
46,XX/47,XX+18 mosaic case successively described by
Bettio et al. (2003) [34].

The distribution of aneuploidy rate for the patients and
reference group is given in Tables 2 and 3. FISH analysis on
interphase nuclei from amniocytes on the general population
group revealed X chromosome monosomy in 2.7% (range
0%–11.4%) of cases and triple X signal in 0.6% (range 0%–
6.1%) of cells. POF patient group showed higher aneuploidy
values than reference group, in particular the percentage of
cells with only one detectable signal was 7.5% (range 2.0%–
19.2%), while a triple X chromosome signals were found
in 3.3% (0%–12%) of cells. All these data were referred
to cells with 2 visible 18 chromosome signals in order to
evaluate only the cells with right hybridization efficiency. We
established three 18:X categories and in detail: (i) 2:1 (two 18
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Table 1: Summary of the chromosomal abnormalities found in the POF patient group.

X chromosome structural abnormalities

nonmosaic 46,X,t(X;2)(q21.33;q14.3)

nonmosaic 46,X,der(X)t(X;9)(q21.33;p22.3)∗

nonmosaic 46,X,der(X)t(X;19)(p21.1;13.42)#

nonmosaic 46,X,der(X)t(X,X)(q21.3;p21)∗

nonmosaic 46,X,del(X)(q21.2→qter)∗

nonmosaic 46,X,del(X)(q22.3→q27)∗

nonmosaic 46,X,del(X)(q26.2→qter)∗

nonmosaic 46,X,del(X)(p21→pter?)

nonmosaic 46,X,del(X)(p21.2)

nonmosaic 46,X,psudic(X)(q10;q10)

nonmosaic 46,X,del(X)(q21.1;q21.3)

nonmosaic 46,X,der(Y)t(X;Y)(q13.1;q11.223)†

nonmosaic 46,X,der(X)t(X;Y)(q26.2;q11.223)

mosaic 46,X,psudic(X)(q23;q23)[75]/45,X[25]

mosaic 45,X[97]/46,X,psudic(X)(q22;q22)[3]∗

mosaic 45,X[29]/46,X,der(X)t(X;X)(q21.2;p22.33)[47]

X chromosome numerical abnormalities

nonmosaic 47,XXX

nonmosaic 45,X

mosaic 46,XX[99]/45(X)[24]

mosaic 46,XX[96]/47,XXX[4]

mosaic 46,X[96]/45,X[4]

mosaic 46,X[96]/45,X[4]

Autosomal structural abnormalities

nonmosaic 46,XX,t(4;5)

nonmosaic 46,XX,t(3;7)(q23;p12)

mosaic 47,XX,+i(9)(p10)[72]/46,XX[28]

Autosomal numerical abnormalities
nonmosaic 47,XX,+21

mosaic 46,XX[54]/47,XX+18[36]§
∗

Marozzi et al. (2000) [28]; # Maraschio and Fraccaro (1983) [33]; §Bettio et al. (2003) [34]; †Lissoni et al. (2009) [35]. Square brackets, placed after
the karyotype description, are used to designate the absolute number of cells in each clone, as stated by the International System for Human Cytogenetic
Nomenclature 2009.

signals and one X signal), (ii) 2:2, and (iii) 2:3 (Figure 2). All
the cells that did not fall within these three categories were
classified as “other” and their percentage was 5.1% and 4.8%
for the reference and patient groups, respectively.

X chromosome aneuploidy comparison of raw data
between the two groups by the means of statistical analysis
using the χ2 test for variance showed a significant difference
between the data distribution of the two groups (P < .001).
Interestingly, there was no difference in the distribution of
so-called “other” signals, so the difference of X chromosome
aneuploidy between the two groups can not be attributed to
different signal dispersion (Table 3).

4. Discussion

Cytogenetic analysis on blood lymphocytes derived from
POF patients is an important tool in the detection of
cytogenetic abnormalities that lead to premature ovarian

insufficiency. In this study we identified 27 chromosomal
abnormalities out of 269 cases of POF occurred to our
attention. Cytogenetic findings include X chromosome and
autosomal structural and numerical abnormalities. Our data
show a prevalence of X structural abnormalities (16 chro-
mosomal abnormalities out of 27 found, equal to 59.3%),
highlighting the importance of X chromosome in ovarian
function and POF aetiology as described in the literature
[18, 19]. Conventional cytogenetic analysis through QFQ
banding is a powerful tool for a first round of screening, but a
wide range of POF cases remains defined as idiopathic. Some
of these cases may be explained by FRAXA premutation or
mutations in BMP15 or inhibin alpha gene [36–38] but a
large group of cases still remains with unknown cause.

Turner syndrome is the chromosomal disorder most
commonly associated with POF, but the correlation between
ovarian function and karyotype is less clear [39, 40]. Never-
theless, the highest number of follicles were found in subjects
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Table 2: Detailed list of 18:X chromosome signals found in the patient group.

Case no. Diagnosis
Age at
menopause

Number of signals (18:X)
Other Total

2: 1 2:2 2:3

1 POF2-FAM2 45 5 51 5 0 61

2 PA / 7 54 3 0 64

3 POF1-FAM2 40 11 69 10 0 90

4 POF1 27 6 86 8 0 100

5 POF1 33 13 99 7 0 119

6 POF2 42 16 82 2 0 100

7 POF1-FAM2 36 3 138 9 0 150

8 PA-FAM1 / 12 56 11 20 99

9 POF2-FAM1 41 7 81 3 9 100

10 POF1-FAM2 35 16 72 3 8 99

11 POF1-FAM1 34 12 76 3 8 99

12 POF1 12 10 74 9 8 101

13 POF2 42 17 74 2 11 104

14 POF1-FAM1 33 8 72 3 13 96

15 POF1-FAM1 38 19 62 3 15 99

16 PA / 15 74 2 9 100

17 POF1 32 5 83 2 11 101

18 POF1 35 11 75 4 10 100

19 POF1 37 10 74 6 9 99

20 POF1-FAM1 25 4 88 6 2 100

21 POF1 40 6 89 1 4 100

22 POF1-FAM1 37 10 76 6 8 100

23 POF1 34 6 32 8 54 100

24 POF1-FAM2 34 4 35 6 5 50

25 POF1 37 6 80 10 4 100

26 POF1-FAM1 18 9 87 4 5 105

27 POF1-FAM1 34 12 176 6 14 208

28 POF1 30 11 167 0 6 184

29 POF1-FAM2 35 16 167 5 12 200

30 POF1 34 13 168 6 7 194

31 POF1 27 9 180 7 3 199

32 POF1 40 14 183 8 2 207

33 POF1 40 6 190 4 3 203

34 POF1-FAM1 40 13 182 4 5 204

35 POF2 41 15 177 5 7 204

36 POF1 26 12 182 4 5 203

37 POF2 44 12 188 2 2 204

38 POF1-FAM2 30 10 187 4 4 205

39 POF1-FAM2 33 4 176 8 14 202

40 PA / 23 177 2 3 205

41 PA / 12 192 2 2 208

42 POF1-FAM1 38 12 192 1 4 209

43 POF1 38 13 191 5 5 214

44 POF1-FAM1 18 10 190 2 3 205

45 POF1 38 15 181 6 7 209

46 POF1-FAM1 17 15 185 3 3 206

47 POF1-FAM1/2 31 17 184 4 5 210

% 7.4 84.4 3.3 4.8

POF1: menopause before or at the age of 40; POF2: menopause between 41 and 45 years of age; PA: primary amenorrhea; FAM1: at least one relative with
POF1; FAM2: at least one relative with POF2.
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Figure 1: Conventional cytogenetic analysis. (a) Ideograms of the normal chromosomes (550-band level). (b)–(f) Chromosomal
abnormalities found in 5 patients affected by POF. Partial Q-banding karyotype on the left and ideograms of derivative chromosome on
the right.

Table 3: FISH analysis on interphase nuclei data and statistical analysis.

Number of signals (18:X)

2:1 2:2 2:3 Other Total

Patients (n = 47)
512
(7.5%)

5754
(84.4%)

224
(3.3%)

329
(4.8%)

6819

Reference group (n = 357)
596
(2.7%)

20020
(91.5%)

139
(0.6%)

1121
(5.1%)

21876

P-value∗

patients versus reference group
.001 .001 .001 .161 /

∗
χ2 test.

with mosaic Turner syndrome and, above all, in subjects with
the lowest percentage of cells with the 45,X karyotype [41].
These data strengthen the importance of X chromosome
in ovarian function, showing that a double dose of some
genes located on the X chromosome is essential in ovary
maintenance, preventing follicle apoptosis and atresia [22].
Evaluating the implication of 45,X low level mosaicism in
POF patients could give some clues in understanding the role

of low level sex chromosome mosaicism in ovarian function
even if the precise role is still unknown [24, 25].

In order to evaluate X chromosome aneuploidy we
performed FISH analysis using alpha satellite probes on
interphase cells because the exclusive analysis of metaphase
chromosome may provide only partial information since the
analysis is restricted to a specific type of cycling cells and in
this way nondividing cells would remain undetected [42].
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(a) (b) (c)

Figure 2: FISH analysis on interphase nuclei. FISH was performed using alpha satellite probes of X (green) and 18 (aqua) chromosomes.
The images show the three different categories of signals detected: (a) X monosomy (two 18 signals and one X signal); (b) X disomy and (c)
X trisomy.
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Figure 3: Percentage of X monosomy related to aging. The graph
shows the linear trend of X monosomy both in POF patient group
and in two different reference groups described in two reports
from the literature: ∗(1) Guttenbach et al. (1995) [10] and (2)
Lakhal et al. (2010) [25].

Moreover, FISH analysis on interphase cells is a sensitive
method for detecting low-level sex chromosome mosaicism
and also avoids artifacts and problems that may be associated
to metaphase chromosome preparations [24, 43]. Indeed,
metaphase chromosome spreads only allow the exclusion
of 10 to 6% of mosaicism at confidence level of 95% [31]
while the detection of low-level mosaicism increases from
30%–40% of cases to 74% using standard karyotyping and
molecular techniques (FISHs), respectively [39].

Many reports describe the increase of X chromosome
aneuploidy with aging and that the increasing age-related
loss of sex chromosome loss associates with a higher level of
micronuclei formation [6, 10, 13, 14, 33]. Instead, few works
try to correlate X chromosome loss and POF [24, 25, 44] or at
most, it is possible to find some studies that are more general
and amenorrhea or aneuploidy only represent a secondary
aspects [45, 46].

We studied a group of 47 POF patients with normal kary-
otype among our case group, using interphase FISH analysis,

in order to detect low-level X chromosome mosaicism and to
understand if there is a correlation between increased rate of
sex chromosome aneuploidy and POF condition.

The identification of the suitable reference group is
tricky both for the type of disorder itself (POF) and the
kind of analysis (X chromosome aneuploidy). The study
on the impact of X chromosome mosaicism on fertility
is very difficult to assess due to the lack of a normal
fertile reference group [47]. In the literature, the rate of
X monosomy and aging has already been determined by
several works [10, 25, 48] and so we decided to use a new
reference group based on the most possible random and
unbiased group. Thus we established a general population
group composed by uncultured amniocytes derived from
routinely diagnostic procedures and analyzed during the
same period of POF patients. This group can be considered
a sort of rational reference group (a general population)
as, in this specific case, a real reference group can not
be formed, due to the characteristics of the disease itself:
POF can occur till the age of 40(POF1)-45(POF2) and
does not show any early biochemical or phenotypic signal,
furthermore using a general female population, other time-
related variables should be considered, such as personal
habits or occupational exposure. Thus, an age-matched
female group could determine a pre-established bias [49].
Moreover, women with a regular ovarian function normally
cease their menses between 45 and 55 years of age and so
their lymphocytes are already predisposed to X chromosome
aneuploidy as it is a physiological phenomenon related to
aging [50].

In this study we report a higher percentage of X
aneuploidy rate in the POF patient group than in the general
population group and we found also that the percentage of
monosomic nuclei is much higher than trisomic nuclei. In
particular, in the general population group, the percentage
of 45,X cells was 2.7% and 47,XXX was 0.6%. POF group
showed a statistical significant higher percentage rate equal
to 7.5% and 3.3%, respectively (P < .001, χ2 test). We
compared also the percentage of one X chromosome signal in
interphase cells between our patient group and two normal
female population described in the literature in two reports
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by Guttenbach and colleagues in 1995 and Lakhal et al.
(2010) (Figure 3). Guttenbach et al. analyzed X chromosome
mosaicism in a group of female aged 1 week to 91 years and
in particular they found that the percentage of X monosomy
in female aged 16–50 years was 3,13% [10, 25, 48]. The
comparison between this literature age-matched control
group and our patient group showed a significant increase of
X monosomy in POF patient group (7.5% of X monosomy,
P < .001). Similar results were obtained comparing our
patient control group and the control group described by
Lakhal and colleagues (2.33% of X monosomy) [25]. These
data suggest that low-level X chromosome mosaicism may
contribute to POF pathology and these findings are very
interesting because POF is a premature cessation of ovarian
function and probably the lack of adequate number of
follicles may be due to an earlier oocyte aging in these
patients that could lead to premature follicular atresia [24,
25]. In particular, Lakhal and colleagues found a correlation
between X chromosome monosomy and the age of POF
installation in a subgroup (11.5%) of patients, suggesting
that mosaicism in these patients was pathological and linked
to POF [25].

Many studies suggest that the incidence of cells lacking
sex chromosome, however, might be caused by a preferential
cell survival rate than preferential X chromosome loss.
In fact, the loss of sex chromosomes (late replicating X
chromosome for female and Y chromosome for male) should
not affect cell survival as these chromosomes should not
play a critical role in lymphocyte survival [6, 49, 50]. X
chromosome loss could be accounted by aneuploidy of the
late replicating X [51, 52]. Anyway, even if X chromosome
is not fundamental for lymphocyte or other type of cell
survival, it might have an essential role in the ovary, since
various X chromosome abnormalities are associated with
POF and many studies suggest that two intact X chromosome
are essential for proper ovarian function [16, 20–22]. X
chromosome has a pivotal role in ovarian development
and maintenance, so the 45,X mosaicism may influence
survival rate and be related to accelerated aging of ovarian
cells. Follicular deficit of POF patients may be explained by
decreased germ cell number, accelerated oocyte atresia, and
postnatal destruction of germ cells [53]. The X chromosome
appears to play an essential role in the mechanism that leads
to POF phenotype, as females lacking an X chromosome, or
showing extra copies of the X chromosome, are predisposed
to developing POF [54]. In this regard, even trisomy seems
to be related to ovarian dysfunction: although normal
ovarian function and fertility are reported in most 47,XXX
females, some of these patients experience delayed menarche
or premature ovarian failure, late onset menarche, and
oligomenorrhea [23, 55].

The prevalence of X monosomy can not be attributed to
culture artifacts since this phenomenon has been described
both in vitro and in vivo [11–13, 56] and it is unlikely
that the observed hypodiploidy can be due primarily to
technical factors, considering X loss rate in the younger
and older age groups [57]. Peripheral blood lymphocytes
still remain the standard method in cytogenetic diagnosis
procedures because of their accessibility, but it is important

to highlight that the karyotypic pattern of the gonad may be
different [46]. Anyway, blood lymphocytes provide the best
indicator in the detection of senescence, and the increasing of
chromosome aneuploidy with aging was assessed also in skin
fibroblasts (reviewed in [48]). So it is reasonable to use blood
lymphocytes as a model to study chromosome aneuploidy as
the specific tissue of interest is often not available.

Fitzgerald in 1975 suggested a mechanism for X chro-
mosome loss based on premature centromeric division
(PCD), linked to a subsequent chromosome nondisjunction
that may result in cells with an extra X chromosome or
with only one sex chromosome, with a great majority of
45,X cells [58]. Burgoyne and Baker in 1984 suggested
that 45,X/46,XX/47,XXX mosaicism may accelerate follicular
atresia by different mechanisms: (i) aberrant chromosome
pairing during meiosis; (ii) deficiency or overexpression of
specific gene products on the X chromosome may influence
oocyte quality; (iii) an overall impaired genetic control could
be related to X chromosome mosaicism leading to defects
in meiosis-mitosis process, resulting in gonadal damage,
aberrant meiosis, and oocyte atresia [59].

Considering the high rate of X chromosome loss in
POF patients, it is reasonable to hypothesize that POF
represents a disease spectrum with various degrees, maybe
related to X chromosome mosaicism. In fact, considering
our data it is possible to suggest that women with X chro-
mosome mosaicism can experience premature menopause
[24, 25, 44]. The underling pathological mechanism may
be explained by accelerated oocyte aging due to increased
mosaicism rate that leads to premature follicular atresia.

5. Conclusion

We performed a study on a large group of POF patients
and we identified 27 chromosomal abnormalities associated
with POF. Moreover, we assessed a higher frequency of X
chromosome aneuploidy rate in POF patients than in the
general population group, in particular an increased rate of
X chromosome loss, observed by FISH on interphase nuclei.
These findings confirm the importance of X chromosome in
POF aetiology and the incidence of low-level X chromosome
mosaicism in POF patients, as sex chromosome mosaicism
may account for some “idiopathic” POF cases.
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