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To assess the potential impact of lowering exposure to risk factors, 
risk models should include modifiable risk factors. Many breast 
cancer risk projection models include non-modifiable risk factors 
such as family history (1–3), mammographic density (4,5), and  
reproductive and medical factors such as age at menarche and 
number of breast biopsies (6). Some models also include poten-
tially modifiable risk factors, such as body mass index (BMI) (7) 
and alcohol consumption (8,9). Boyle et al. (10) developed breast 
cancer risk models that included dietary information, BMI, alcohol 
consumption, physical activity, and hormone replacement therapy, 
in addition to non-modifiable factors. To the best our knowledge, 
despite these efforts, no systematic estimates of the reduction in 
absolute breast cancer risk that might result from reducing expo-
sure to modifiable factors have been reported.

Epidemiologists often use attributable risk to estimate the pro-
portion of cancers in the population that can be attributed to an 

exposure or a set of exposures (11,12). However, the reduction in 
absolute risk from a prevention strategy can be more important 
than the relative reduction in risk for counseling individual women 
before diagnosis and for assessing the potential public health 
impact of the strategy. Therefore, to determine the potential ben-
efit from modifying behavior and lifestyle factors, we used data 
from a multicenter case–control study of Italian women with inva-
sive breast cancer to develop a model of absolute breast cancer risk 
that includes standard non-modifiable as well as modifiable risk 
factors including BMI, alcohol consumption, and leisure-time 
physical activity. The model takes competing risks into account to 
estimate the probability that a woman of a given age and with 
specific risk factors will develop breast cancer in a defined period. 
We assessed the calibration and discriminatory accuracy of our 
model in independent data from the Florence-European 
Prospective Investigation into Cancer and Nutrition (EPIC) 
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 Background Although modifiable risk factors have been included in previous models that estimate or project breast cancer 
risk, there remains a need to estimate the effects of changes in modifiable risk factors on the absolute risk of 
breast cancer.

 Methods Using data from a case–control study of women in Italy (2569 case patients and 2588 control subjects studied 
from June 1, 1991, to April 1, 1994) and incidence and mortality data from the Florence Registries, we devel-
oped a model to predict the absolute risk of breast cancer that included five non-modifiable risk factors (repro-
ductive characteristics, education, occupational activity, family history, and biopsy history) and three modifiable 
risk factors (alcohol consumption, leisure physical activity, and body mass index). The model was validated 
using independent data, and the percent risk reduction was calculated in high-risk subgroups identified by use 
of the Lorenz curve.

 Results The model was reasonably well calibrated (ratio of expected to observed cancers = 1.10, 95% confidence inter-
val [CI] = 0.96 to 1.26), but the discriminatory accuracy was modest. The absolute risk reduction from exposure 
modifications was nearly proportional to the risk before modifying the risk factors and increased with age and 
risk projection time span. Mean 20-year reductions in absolute risk among women aged 65 years were 1.6% 
(95% CI = 0.9% to 2.3%) in the entire population, 3.2% (95% CI = 1.8% to 4.8%) among women with a positive 
family history of breast cancer, and 4.1% (95% CI = 2.5% to 6.8%) among women who accounted for the highest 
10% of the total population risk, as determined from the Lorenz curve.

 Conclusions These data give perspective on the potential reductions in absolute breast cancer risk from preventative strat-
egies based on lifestyle changes. Our methods are also useful for calculating sample sizes required for trials to 
test lifestyle interventions.
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cohort (13,14). Using criteria to evaluate reductions in absolute 
risk that apply to the individual, the entire population, and sub-
groups of the population, we used the absolute risk model to assess 
the impact of reducing modifiable exposures on absolute risk.

Methods
We developed a relative risk model and estimates of attributable 
risk from case–control data. We combined this information with 
breast cancer incidence rates and mortality rates from Florence 
Registries to produce a model of absolute breast cancer risk. The 
model was validated using independent data from the EPIC 
cohort. We applied the model to the risk factor distributions in 
EPIC to estimate the effect of reductions in modifiable risk factors 

CONTEXT AND CAVEATS

Prior knowledge
Breast cancer risk models to predict the impact of non-modifiable 
risk factors and potentially modifiable risk factors (body mass 
index, physical activity, and alcohol use) on cancer risk have been 
previously described. However, there are no previous reports 
quantifying the potential impact of changing modifiable risk factors 
on absolute breast cancer risk.

Study design
A model of absolute breast cancer risk was developed. The model 
included standard non-modifiable risk factors as well as modifiable 
risk factors including body mass index, alcohol consumption, and 
physical activity. Using independent data from an Italian cohort, 
the model was used to determine the potential impact of reducing 
modifiable exposures on absolute breast cancer risk for individ-
uals, the whole population, and population subgroups.

Contribution
The model was well calibrated overall but overestimated the absolute 
risk of breast cancer in some subgroups, and the discriminatory 
accuracy was similar to that of other absolute risk models reported 
in the literature. The absolute risk reduction including exposure 
modifications was nearly proportional to the risk without including 
these factors and increased with age and risk projection time.

Implications
The absolute risk model developed in this study could help clini-
cians make decisions about implementing interventions to reduce 
a patient’s exposure to modifiable risk factors, thereby reducing 
their absolute risk of breast cancer. Also, the methods used in this 
study could be used to determine sample sizes needed for clinical 
trials investigating modifiable risk factor intervention strategies.

Limitations
Data analysis indicated that the model overestimates absolute risk 
in the highest quintile and that the estimated absolute risk reduc-
tions are sensitive to the estimated odds ratios for modifiable risk 
factors. Also, when applied to individuals, the model’s ability to 
estimate absolute risk reductions was less accurate. Finally, the 
details of the specific interventions were not given for the partici-
pants, so a causal relationship between an intervention and abso-
lute breast cancer risk was undetermined.

From the Editors
 

on absolute risk in the population. The study populations, mathe-
matical models, and statistical methods are described below.

Study Populations
We estimated absolute breast cancer risks from data from a multi-
center case–control study of invasive breast cancer conducted from 
June 1, 1991, to April 1, 1994, in six Italian regions: Milan, Genoa, 
the provinces of Pordenone and Gorizia in northern Italy, the 
provinces of Forlì and Latina in central Italy, and Naples in south-
ern Italy (15). The case–control study included 2569 female case 
patients with breast cancer, aged 23–74 years (median age: 
55 years) who were admitted to the major hospitals in the study 
areas with histologically confirmed breast cancer that was diag-
nosed in the year before the interview, and with no history of 
breast cancer. Women aged 20–74 years (median age: 56 years) 
without breast cancer and admitted for acute conditions to hospi-
tals in the same catchment areas as the case patients were used as 
control subjects (n = 2588). Women admitted for gynecologic, 
hormonal, or neoplastic diseases, or for diseases related to known 
risk factors of breast cancer were not eligible as control subjects. 
Control subjects were admitted for trauma (mostly fractures and 
sprains, 569 subjects, 22%), nontraumatic orthopedic diseases (854 
subjects, 33%), surgical conditions (388 subjects, 15%), eye 
diseases (466 subjects, 18%), or other conditions such as ear,  
nose, throat, skin, or dental conditions (311 subjects, 12%). The 
distributions of age and area of residence were similar among case 
patients and control subjects, although case patients and control 
subjects were not individually matched. All the 5157 study subjects 
signed a consent form at enrollment, and 80 (1.6%) case patients 
and 98 (1.9%) control subjects refused to participate in the study. 
The interviewers were trained centrally, and the same structured 
questionnaire and coding manual were used at all study centers. 
The questionnaire included information on sociodemographic 
characteristics such as education, occupation, and socioeconomic 
indicators; lifelong smoking habits; physical activity at work and in 
leisure-time at selected ages; anthropometric measurements before 
diagnosis (study subjects were asked to report their weight and 
height before cancer or interview) and weight at various ages; 
alcohol and coffee consumption; dietary habits; personal medical 
history and selected questions regarding family history of cancer; 
gynecological and reproductive history; and history of use of oral 
contraceptives, hormone replacement therapy, and female 
hormone preparations for other indications.

To compute absolute risks, we used 5-year age-specific  
incidence rates in the age range of 0–84 years for invasive breast 
cancer from the Florence Cancer Registry collected from January 
1, 1989, to December 12, 1993. Rates were based on an estimated 
population of 1 190 516 residents in the provinces of Florence and 
Prato in 2006. Estimated age-specific hazard rates from competing 
mortality from causes other than breast cancer were also obtained 
from the Florence Cancer Registry. These rates are given in  
Appendix Table 2.

Independent data from the Florence-EPIC cohort study from 
1998 to 2004 were used to assess the validity of our breast cancer 
absolute risk model. The Florence-EPIC cohort included 10 083 
women aged 35–64 years who resided in the Italian provinces of 
Florence and Prato, which are covered by the Florence Cancer 
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Registry. These women were recruited to the Florence portion of 
the EPIC-Italy prospective study on diet and cancer (13,14). All 
participants gave written informed consent at enrollment. The 
Florence-EPIC project was approved by the local ethics com-
mittee, Comitato Etico della Azienda Sanitaria Fiorentina. No 
overlap occurred between the women enrolled in the case–control 
study and those recruited for the Florence-EPIC cohort study.

Detailed information on sociodemographic factors, dietary and 
lifestyle habits, reproductive history, and family history of breast 
cancer was obtained from a standardized questionnaire, and body 
measurements were assessed during a physical examination at the 
study entry (16). Data on current occupational physical activity 
included employment status and the level of physical activity at 
work (nonworker, sedentary, standing, manual, heavy manual, and 
unknown). Information on the frequency and duration of non-
occupational physical activity during the past year included house-
work, home repair, gardening, stair climbing, recreational activities, 
and vigorous physical activity. Walking, cycling, and sports activ-
ities were combined to derive overall recreational activity.

We coded the three modifiable risk factors, alcohol consump-
tion, BMI, and leisure-time exercise, in the Florence-EPIC cohort 
to obtain categories as consistent as possible with those used to 
estimate the relative risks from the case–control data. For physical 
activity at work, we combined standing occupation with non-
worker to represent the intermediate exercise category in the case–
control study because separate analyses yielded similar odds ratios 
for standing occupation and nonworker. We also combined manual 
work and heavy manual work into a high occupational physical 
activity category.

We excluded 30 women who had prevalent breast cancer at the 
time of recruitment and 12 women who were diagnosed with inci-
dent breast cancer within 6 months after recruitment. We also 
excluded 1605 (16%) of the 10 031 women who did not have com-
plete covariate data needed for the final model. Follow-up started 
6 months after recruitment and continued through December 31, 
2004, when the cohort follow-up was last updated. Nineteen 
women were lost to follow-up.

Statistical Methods
Relative Risk Model. Data from the case–control study were used 
to select the non-modifiable and modifiable risk factors and to 
estimate the relative risks and corresponding 95% confidence 
intervals (CIs) from unconditional multiple logistic regression 
models (17). We used data from 2523 (98%) of the 2569 case 
patients and 2504 (97%) of the 2588 control subjects with com-
plete covariate information. The relationship between continuous 
predictors and the logit of risk was investigated by fitting restricted 
cubic splines and using a Wald test for linearity (18). Likelihood 
ratio x2 tests for linear trend and for interactions were calculated 
by comparing models with and without the corresponding param-
eters and setting df equal to the difference in the numbers of 
parameters. The final model included the following variables with 
coding for logistic regression given in Table 1: age at menarche 
(AgeMen), number of previous breast biopsies (NBiops), number 
of first-degree female relatives with breast cancer (NumRel), age at 
first live birth (Age1st), body mass index for women aged 50 years 
and older (Bmi), body mass index for women younger than age  

50 years (InvBmi), alcohol consumption in three categories (never, 
current, and former for women who stopped drinking at least  
1 year before the interview), occupational physical activity at ages 
30–39 years (OccAct), leisure-time physical activity at ages 30–39 
years (LeiAct), educational level (Educat), and age at interview 
(age) and age2. Because BMI was inversely associated with breast 
cancer risk in women aged less than 50 years and positively associated 
in older women, Bmi and InvBmi were not included as main effects 
but only through the products InvBmi × AgeLT50 and Bmi × 
AgeGE50, in which AgeLT50 is an indicator that takes the value 1 
if age is less than 50 years and 0 otherwise, and AgeGE50 is an 
indicator that takes the value 1 if age is 50 years or older. We 
coded all covariates to yield positive relative risk estimates com-
pared with the reference level to facilitate the calculations of 
attributable risk and the baseline hazard. To select variables for 
inclusion in our relative risk model, the association between the 
risk of breast cancer and other risk factors such as oral contracep-
tives, hormone replacement therapy, age at menopause, marital 
status, and parity was also assessed. These factors were not  
included in the final model because the associations were weak or 
non-statistically significant (data not shown).

Absolute Risk Model. The absolute risk, r(a, t, x), for a woman 
of age a and with risk factors x to a subsequent age t was obtained 
from the formula for a piecewise constant hazard model on each 
year [see Equation 6 in Gail et al. (19)]: 
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In this formula, h1j is the baseline cause-specific hazard for 
breast cancer for a woman of age j (in years) with risk factors x = 0; 
h2j is the hazard from non-breast cancer causes of mortality at age 
j and rrj is the relative risk at age j for a woman with risk factors x 
compared with a woman with x = 0. By convention, the last factor 
in Equation 1 equals 1 if j 2 1 < a. We estimated h1j by multiplying 
the invasive breast cancer age-specific incidence rates from the 
Florence Cancer Registry, *

1 jh , by 1 2 [the estimated age-specific 
attributable risks], as described in Gail et al. (19). The age-specific 
attributable risks were obtained from the distribution of risk  
factors in case patients and were separately obtained for women 
younger than 50 years of age and for women aged 50 years and older 
from the formula in Bruzzi et al. (20). The mortality rates h2j were 
also obtained from the Florence Cancer Registry. Because rates 
were constant for 5-year intervals in the Florence Cancer Registry, 
we used this same value for each year j on the 5-year interval.

Confidence intervals for the projected probabilities were 
obtained from a nonparametric bootstrap (21) with 1000 bootstrap 
replications. We assumed that *

1 jh  and h2j were known without 
error, so that all variability in Equation 1 arose from uncertainty in 
relative and attributable risks. Each bootstrap sample was drawn 
with replacement from the case patients and separately from the 
control subjects in the case–control study, with the original 
number of case patients and control subjects in each replication. 
For each bootstrap replication, we applied the logistic regression 
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model to obtain new relative and attributable risk estimates. By 
saving 1000 such sets of these quantities, we could compute 1000 
estimates of absolute risk and obtain 95% confidence intervals as 
the 2.5th and the 97.5th percentiles of the bootstrap distribution. 
Bootstrap confidence intervals on other quantities, such as absolute 
risk reductions, were likewise based on the stored sets of relative 
and attributable risks.

Validation. To test calibration, we computed the expected 
number of invasive breast cancers (E) and compared them with the 
corresponding observed number (O) in the Florence-EPIC cohort. 
For each woman, the projected probability of breast cancer was 
obtained from the age enrollment (initial age) to the final age. The 
final age was defined as the younger of either the age at lost to 

follow-up for women who left the Prato region or the age on 
December 31, 2004. Follow-up did not end on the date of breast 
cancer incidence or death, because these events are already 
accounted for in Equation 1. Calibration was evaluated overall and 
for subgroups of women, defined in terms of either risk factor 
levels or quintiles of the distribution of the expected absolute risks 
in the total population. The x2 test of goodness of fit, based on the 
squared Pearson residuals (O–E)2/E, and the sum of this quantity 
over the risk factor categories or probability levels (with df equal 
to the number of mutually exclusive and exhaustive categories  
for each factor) were also calculated. We used the concordance 
statistic c, which is the area under the receiver operating characteristic 
curve, to measure the discriminatory accuracy of the model (22). 
We calculated c from the independent Florence-EPIC cohort data 

Table 1.  Distribution of case patients (n = 2523) and control subjects (n = 2504) in the Florence-European Prospective Investigation into 
Cancer and Nutrition study, and odds ratios of breast cancer risk*

Risk factor category† Code
No. of case patients (%),  

n = 2523
No. of control subjects (%),  

n = 2504 OR (95% CI)

Age at menarche, y    
 ≥14 0 837 (33.1) 929 (37.1) 1.0 (referent)
 12–13 1 1200 (47.6) 1105 (44.1) 1.04 (0.96 to 1.13)
 7–11 2 486 (19.3) 470 (18.8) 1.09 (1.00 to 1.19)
Age at first live birth, y    
 <20 0 118 (4.7) 209 (8.3) 1.0 (referent)
 20–24 1 775 (30.7) 949 (37.9) 1.30 (1.21 to 1.40)
 25–29 2 1221 (48.4) 1051 (42.0) 1.69 (1.46 to 1.96)
 ≥30 3 409 (16.2) 295 (11.8) 2.20 (1.76 to 2.75)
No. of affected first-degree relatives    
 0 0 2268 (89.9) 2387 (95.3) 1.0 (referent)
 ≥1 1 255 (10.1) 117 (4.7) 2.35 (1.86 to 2.96)
No. of biopsies    
 0 0 2480 (98.3) 2474 (98.8) 1.0 (referent)
 ≥1 1 43 (1.7) 30 (1.2) 1.32 (0.81 to 2.14)
Occupational physical activity level    
 High 0 373 (14.8) 455 (18.2) 1.0 (referent)
 Intermediate 1 1882 (74.6) 1881 (75.1) 1.10 (0.97 to 1.24)
 Low 2 268 (10.6) 168 (6.7) 1.21 (0.95 to 1.54)
Education, y    
 <7 0 1265 (50.1) 1580 (63.1) 1.0 (referent)
 7–12 1 700 (27.7) 606 (24.2) 1.37 (1.26 to 1.49)
 ≥12 2 558 (22.1) 318 (12.7) 1.88 (1.59 to 2.23)
Alcohol drinking habits    
 Never drinker  748 (29.6) 860 (34.3) 1.0 (referent)
 Current drinker  1632 (64.7) 1494 (59.7) 1.27 (1.12 to 1.43)
 Former drinker  143 (5.7) 150 (6.0) 1.23 (0.95 to 1.59)
BMI at age <50 y, kg/m2    
 ≥30.0 0 63 (7.9) 93 (13.4) 1.0 (referent)
 25.0–29.9 1 182 (22.7) 181 (26.1) 1.26 (1.08 to 1.48)
 <25.0 2 557 (69.4) 419 (60.5) 1.60 (1.16 to 2.20)
BMI at age ≥50 y, kg/m2    
 <25.0 0 799 (46.4) 868 (47.9) 1.0 (referent)
 25.0–29.9 1 639 (37.1) 652 (36.0) 1.13 (1.03 to 1.24)
 ≥30.0 2 283 (16.4) 291 (16.1) 1.28 (1.06 to 1.54)
Leisure-time physical activity, h/wk    
 ≥2 0 774 (30.7) 816 (32.6) 1.0 (referent)
 <2 1 1749 (69.3) 1688 (67.4) 1.08 (0.96 to 1.22)

* BMI = body mass index, CI = confidence interval, OR = odds ratio.

† The variables used in Equation 3 have the following equivalences to the variables in this table: AgeMen = age at menarche, Age1st = age at first live birth, 
NumRel = number of affected first-degree relatives, NBiops = number of biopsies, OccAct = occupational physical activity, Educat = education, CurrnDrnk = 
current drinker, ExDrnk = former drinker, InvBmi = body mass index at age <50 years (reference category = “≥ 30.0”), Bmi = body mass index at age ≥50 years 
(reference category = “< 25.0”), LeiAct = leisure-time physical activity.
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with the SAS macro at http://support.sas.com/dsearch?ct=&qt= 
macro+%25roc&col=suppprd&nh=10&qp=&qc=suppsas&ws=1&
qm=1&st=1&lk=1&rf=0&oq=&rq=0. This macro provides an SE 
based on calculations for the Mann–Whitney statistic adapted for 
ties. All 1 df statistical tests were two-sided. P values less than .05 
were considered statistically significant.

Criteria for Assessing Effects of Modifying Risk Factors
Definition of Risk Factor Modifications. We distinguished plau-
sible lifestyle modifications for an individual woman from those of 
the general population. For an individual woman, we changed the 
exposure for current drinkers to that of former drinkers; no 
changes were made for former drinkers or for never drinkers. We 
set BMI to less than 25 kg/m2 for women aged 50 years and older; 
for women aged 49 years and younger, for whom breast cancer risk 
varied inversely with BMI, we did not modify BMI. We did not 
modify levels of leisure activity for women older than age 39 years, 
because the leisure activity variable was defined for women in the 
age range 30–39 years. For women in their 30’s, the variable was 
set to exercising at least 2 hours per week. Our methods allow the 
evaluation of intermediate changes, as for example reducing BMI 
from greater than 30 kg/m2 to the overweight level (ie, 25.0 kg/m2 
≤ BMI ≤ 29.9 kg/m2), but we did not include such intermediate 
values in this study.

For the population, it is possible to imagine additional modifica-
tions. For example, one might hope to increase the proportion of 
the population that exercised at least 2 hours per week when aged 
30–39 years. Likewise, one could hope to increase the proportion of 
“never drinkers” in a population. Thus, for lifestyle modifications at 
the population level, we performed calculations on the optimistic 
assumptions that all current or former drinkers became never 
drinkers, all women who exercised less than 2 hours per week began 
exercising at least 2 hours per week, and all women aged 50 years 
and older maintained a BMI less than 25 kg/m2. These optimistic 
modifications give an upper boundary of risk reductions that could 
be achieved by lifestyle changes in the population, in our model.

Criteria for Individual Counselees and for the Population
We studied the reduction in the absolute risk projections from 
lowering or eliminating exposure to modifiable risk factors,  
whereas keeping the values of non-modifiable risk factors 
unchanged. The effects of modifying risk factors on absolute risk 
projections in individual women were evaluated by means of the 
absolute risk reduction, = − ×100

1 2 1 2 1 20( , ) ( , ) ( , ){ }X X X X X Xd r r . The 
quantities 1 2( , )X Xr  and 

1 20( , )X Xr  represent the non-modified and mod-
ified absolute risks obtained by setting the values for the modifi-
able risk factors, X2, to their modified levels, X20. Vector X1 denotes 
the non-modifiable factors in the model. We computed 95% boot-
strap confidence intervals as previously described.

To evaluate the effects of risk modification at the population 
level, we averaged the risk reduction and fractional risk reduction 
over the entire population of women or within high-risk 
subgroups. High-risk subgroups were defined by particular risk 
factors and by using the Lorenz curve (23) to identify risk factor 
combinations that conferred high risk and accounted for a given 
percentage of the total population risk. We calculated the mean 
risk reduction for a specific subset from the formula: 
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where ∈1 2{( , ) }X X SI  is an indicator function that takes the value 1 if 
∈1 2( , )X X S  and 0 otherwise. 

1 2( , )X XF  denotes the joint distribution of 
the covariates X1 and X2 estimated from the Florence-EPIC cohort. In 
Equation 2, integration is over all the values of X1 and X2, but each X2 
value is changed to X20 in computing r(X1,X20). We estimated different 
joint distributions for women younger than age 50 years and women 
aged 50 years and older. The fractional risk reduction is obtained  
by dividing the quantity in Equation 2 by the mean non-modified 
absolute risk, −

∈ ∈∫ ∫1 2 1 2 1 2 1 2 1 2
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and multiplying by 100. Equation 2 simplifies when S corresponds 
to the entire space of X values, namely the whole population. Then 
the denominator is equal to =∫ 1 2

1 2

( , )
,

1X X
X X

dF  and Equation 2 

reduces to = −∫1 2 1 2 1 20 1 2
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Definition of Subgroups in the Population. The easiest way 
to define subgroups is through combinations of non-modifiable 
risk factors, namely = =∪

1

1 2 1 1{( , ) : }
x

S X X X x , where x1 ranges over a 

set of fixed values. Another way to define high-risk groups is by 
means of the Lorenz curve (23), which describes the proportion of 
ranked population risk that is possessed by the given proportion q 
of population with lowest risk. Assume there are K mutually exclu-
sive and exhaustive combinations of levels of risk factors X1 and X2. 
Not all of these K patterns have different risks. Suppose there are 
only J unique absolute risks rj with probabilities Pj (with J ≤ K) esti-
mated from the Florence-EPIC cohort data. The probabilities Pj 
can be estimated by summing over the corresponding probabilities 
of the contributing risk factor combinations. We ordered the J 
absolute risks rj from smallest to largest and reordered the Pj accord-
ingly so that P1 is the probability of the smallest absolute risk and PJ 

is the probability of the largest absolute risk. Denoting by i(q) the 

smallest integer such that 
=
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P q, we computed the Lorenz curve 

by means of the formula: 
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the mean absolute risk in the population. We determine the unique 
absolute risks rj that account for the top 10% of the total population 

absolute risk by determining the largest j* such that 
=
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where p10 = 1 2 L21(0.9). Because L21(0.9), the inverse of the Lorenz 
curve, defines the proportion of the population at lowest absolute 
risk that contains 90% of the total population absolute risk, the 
quantity p10 is the proportion of the population at the highest abso-
lute risk that contains 10% of the population absolute risk. For each 
j = j*, j* + 1, . . . , J, we find all risk factors combinations Sj = {(X1,X2)
:r(X1,X2) = rj}. Then, the subset of women at the highest absolute 
risk who together account for 10% of total population absolute 

risk is given by 
=

= ∪
*

10

J

j
j j

S S . We similarly defined high–absolute 
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risk subgroups S20, S40, S60, and S80 that accounted for 20%, 40%, 
60%, and 80%, respectively, of the total population absolute risk.

Results
Relative Risk Model
Risk factor codes and distributions, and breast cancer relative risk 
estimates with 95% confidence intervals are given in Table 1. We 
used multivariable logistic regression that included all risk factors 
listed in Table 1 as well as age at interview and age2. Unreported 
spline models for continuous modifiable exposures did not fit the 
data statistically significantly better than the simpler categorical 
coding in Table 1 (data not shown). We found that increased rel-
ative risk of breast cancer was associated with alcohol consumption 
compared with never drinkers, but no dose–response relationship 
was observed among current drinkers. Thus, we categorized 
alcohol consumption into never, current, and former drinkers. We 
found a statistically significant interaction (P < .001), which indi-
cated that increased BMI was protective for women younger than 
age 50 years but increased breast cancer risk above that age. Thus, 
we included the terms InvBmi × AgeLT50 (P = .004) and BMI × 
AgeGE50 (P = .009) in the relative risk model in Equation 3. Our 
unreported data indicated no other important interactions between 
age and other risk factors or among the other risk factors. We  
included previous breast biopsies in the relative risk model despite 
the fact that its association with invasive breast cancer was non-
statistically significant in our data, because it has been associated 
with breast cancer risk in many other studies (24). The final rela-
tive risk model is given by: 

= − + × + ×
+ × + ×
+ × + ×
+ × + ×
+ × + × ×

+ × × + × −

log(odds) 5.3437 0.0411 AgeMen 0.8531 NumRel
0.2627 Age1st 0.2759 NBiops
0.2360 CurrnDrnk 0.2041 ExDrnk
0.3157 Educat 0.0783 LeiAct
0.0946 OccAct 0.2350 InvBmi AgeLT50

0.1247 Bmi AgeGE50 0.1525 age 0 × 2.0013 age

 [3]

The variance–covariance matrix for the coefficients in Equation 3 
is described in Appendix Table 1.

Absolute Risk
We used the rates in Appendix Table 2, relative risks from 
Equation 3, and estimates of attributable risk to estimate the abso-
lute risk of breast cancer from Equation 1. The age-specific attrib-
utable breast cancer risk estimates were 0.77 (95% CI = 0.69 to 
0.83), derived from the 802 case patients aged less than 50 years, 
and 0.66 (95% CI = 0.58 to 0.72), derived from the 1721 case 
patients aged 50 years or more.

We show absolute 10- and 20-year breast cancer absolute risks 
for four risk counselee profiles and for initial ages 45 and 65 years 
(Table 2). A high-risk counselee profile (designated as a) is distin-
guished from a low-risk counselee profile (designated as b). The 
latter corresponds to decreased alcohol consumption, increased 
leisure-time exercise, or reduced obesity in older women, with 
other factors unchanged. Counselee profile 3a corresponds to  
the highest absolute risk, because the age is 65 years and all  
non-modifiable risk factors are at their highest levels. Consider a 
highly educated 45-year-old woman (counselee profile 1a) with an T
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unfavorable profile of regarding both non-modifiable and modifi-
able risk factors. This woman started menstruating before age 11, 
had a mother with breast cancer, had a previous breast biopsy with 
benign histology, and had a first live birth at age 32 years. Her job 
was sedentary, her leisure activity lasted less than 2 hours each 
week, she was a current user of alcohol, and her BMI was less than 
25 kg/m2. On the basis of these data, her 10- and 20-year projected 
absolute risks of breast cancer are 15.0% (95% CI = 9.35% to 
24.9%) and 28.4% (95% CI = 18.2% to 44.4%), respectively.

Validation of the Model in Independent Data From the 
Florence-EPIC Study
Data on the distribution of risk factors, women-years of follow-up, 
and the number of incident breast cancers in the Florence-EPIC 
study cohort are in the Supplementary Data (available online). 
A total of 252 incident breast cancers were diagnosed among 10 031 
women included in the analyses. However, the validation study was 
based on the 8426 women, including 206 with incident invasive 
breast cancer, who had complete data for all risk factors in the model.

Overall, the model predicted 225.7 invasive breast cancers, 
whereas 206 invasive breast cancers were observed, resulting a ratio 
of expected to observed (E/O) breast cancers of 1.10 (95% CI = 0.96 
to 1.26, P = .190) (Table 3). Numbers of breast cancers were over-
estimated by the model for women aged 60 years or more, women 
aged 30 or more at first live birth, and women with 12 years or 
more of education. For the other variables, the E/O ratios were 
non-statistically significantly different from unity. Estimated abso-
lute risks of breast cancer were divided into quintiles, and the sum 
of the absolute risks in each quintile (E) was compared with the 
observed invasive breast cancers (O) (Table 3). Except for the high-
est quintile, the differences between expected and observed counts 
were non-statistically significant. The concordance statistic (dis-
criminatory power) was 0.62 (95% CI = 0.555 to 0.689) for women 
younger than age 50 years, and 0.57 (95% CI = 0.519 to 0.614) for 
women aged 50 years and older.

Absolute Risk Reduction for Individual Counselees
The 20-year estimated absolute risk for counselee profile 1a (Table 2) 
decreased 0.7% when current and former drinkers were compared 
(current vs former drinkers, absolute risk = 28.4% vs 27.7%, 
difference = 0.7%, 95% CI = 25.86% to 7.17%). The 20-year 
absolute risk for a 65-year-old woman with a BMI greater than 30 
kg/m2 (counselee profile 4a) was 29.3%, compared with 23.7% for 
an otherwise identical counselee with a BMI less than 25 kg/m2. 
The estimated absolute risk reduction was 5.6% (95% CI = 
218.5% to 22.5%). The 95% confidence intervals of projected 
absolute risk reductions for individual counselees are much wider 
than for populations.

Risk Reductions in the Entire EPIC Population and in 
High-Risk Subgroups
We present population-averaged estimates of 10- and 20-year 
mean absolute risks of breast cancer before modifying any risk 
factors, together with the average absolute risk reduction and the 
fractional reduction in average absolute risks from reducing mod-
ifiable risk factors to their lowest levels (Table 4). The 10- and 
20-year non-modified mean absolute risks for 45-year-old women 

in the entire population were 3.1% (95% CI = 2.8% to 3.6%) and 
6.5% (95% CI = 5.8% to 7.4%), respectively; for 65-year-old 
women, the 10-year non-modified mean absolute risk was 3.6% 
(95% CI = 3.3% to 4.1%) and the 20-year non-modified mean 
absolute risk was 6.5% (95% CI = 6.0% to 7.4%). Despite the fact 
that 65-year-old women had higher breast cancer incidence rates 
than 45-year-old women (Appendix Table 2), the average absolute 
risks were only slightly higher in the 65-year-old women, because 
the older women had a more favorable distribution of risk factors. 
The corresponding absolute mean risk reductions were 0.6% 
(95% CI = 0.3% to 1.0%) and 1.4% (95% CI = 0.7% to 2.0%) for 
45-year-old women and 0.9% (95% CI = 0.5% to 1.3%) and 1.6% 
(95% CI = 0.9% to 2.3%) for 65-year-old women.

The estimated mean absolute risks and mean absolute risk  
reductions were larger in women with a family history of breast 
cancer (Table 4). They were also larger in women at the highest 
absolute risk who account for 10% of the total population absolute 
risk (Table 4). Among these high-risk women aged 65 years, the 
10- and 20-year non-modified mean absolute risks were almost 
three times higher than in the general population (10-year non-
modified mean absolute risk = 10.7%, 95% CI = 8.4% to 14.0% 
and 20-year non-modified mean absolute risk = 18.6%, 95% CI = 
14.9% to 24.0%). The mean 10- and 20-year absolute risk reduc-
tions for these women were 2.5% (95% CI = 1.5% to 4.1%), and 
4.1% (95% CI = 2.5% to 6.8%), respectively. For 65-year-old 
women with a family history of breast cancer, the 10- and 20-year 
mean absolute risk reductions were 1.9% (95% CI = 1.1% to 
2.9%) and 3.2% (95% CI = 1.8% to 4.8%), respectively.

In contrast to the absolute mean reductions, the fractional risk 
reductions do not depend strongly on the number of years of  
follow-up, age, or presence of strong risk factors (Table 4). These 
fractional risk reductions are about 20% for women younger than 
50 years and approximately 24% for women aged 50 years and 
older (Table 4). Fractional risk reductions are larger in older 
women because weight reduction is not a recommended interven-
tion for younger women, for whom increased BMI is associated 
with lower risk.

Mean absolute risk reduction (ordinate) is directly proportional 
to mean unmodified absolute risk (abscissa) for women aged  
45 years, both in the general population and in high-risk subgroups, 
over 5-, 10-, 20-, and 30-year projection intervals (Figure 1). The 
unmodified absolute risk and the absolute risk reductions tend to 
be greater in women with a positive family history of breast cancer 
and in the highest absolute risk group that accounts for 10% of 
population absolute risk compared with the general population. 
However, there is overlap if the projection intervals differ. For 
example, the 10- and 20-year mean reductions in the whole popu-
lation are nearly the same as the 5- and 10-year reductions for 
women with positive family history of breast cancer.

To see how the average absolute risk reduction varied as the  
high-risk subgroup based on the Lorenz curve was relaxed 
progressively to include women with lower risk, we considered 
subgroups accounting for 10%, 20%, 40%, 60%, 80%, and 100% 
of the total population absolute risk (Figure 2). Mean reductions in 
10-year absolute risk are shown for women of 45 and 55 years, 
together with vertical lines to indicate 95% confidence intervals. 
As the high-risk groups were expanded to include progressively 
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Table 3. Expected and observed breast cancers in the Florence-European Prospective Investigation into Cancer and Nutrition cohort 
(N = 10 031) by risk factor categories and by quintiles of projected absolute risk*

Risk factor category† O E E/O (95% CI) Goodness of fit‡ P

Overall 206 225.7 1.10 (0.96 to 1.26) χ =2
(1) 1.721.72 .19

Age at recruitment, y    χ =2
(4) 9.77 9.77 .04

 30–39 6 10.97 1.82 (0.82 to 4.05)  
 40–49 64 53.82 0.84 (0.66 to 1.07)  
 50–59 105 115.30 1.10 (0.91 to 1.33)  
 ≥60 31 45.60 1.47 (1.03 to 2.09)  
Age at menarche, y    χ =2

(3) 1.80 1.80 .61

 ≥14 44 49.59 1.13 (0.84 to 1.52)  
 12–13 109 117.08 1.07 (0.89 to 1.29)  
 <12 53 59.03 1.11 (0.85 to 1.45)  
Age at first live birth, y    χ =2

(4) 16.10 16.10 .003

 <20 1 3.04 3.04 (0.43 to 21.58)  
 20–24 56 43.40 0.78 (0.60 to 1.01)  
 25–29 113 117.24 1.04 (0.86 to 1.25)  
 ≥30 36 62.02 1.72 (1.24 to 2.38)  
No. of affected first-degree relatives    χ =2

(2) 1.87 1.87 .39

 0 176 190.54 1.08 (0.93 to 1.25)  
 ≥1 30 35.17 1.17 (0.81 to 1.67)  
No. of biopsies    χ =2

(2) 3.59 3.59 .17
 0 195 217.79 1.12 (0.97 to 1.29)  
 ≥1 11 7.91 0.71 (0.39 to 1.28)  
Occupational physical activity level    χ =2

(3) 3.21 3.21 .36

 High 6 10.15 1.69 (0.76 to 3.76)  
 Medium 119 130.59 1.10 (0.92 to 1.32)  
 Low 81 84.97 1.05 (0.84 to 1.31)  
Education, y    χ =2

(3) 9.83 9.83 .02
 <7 48 39.36 0.82 (0.62 to 1.08)  
 7–12 67 64.44 0.96 (0.76 to 1.22)  
 ≥12 91 121.90 1.34 (1.09 to 1.65)  
Alcohol drinking habits    χ =2

(3) 2.96 2.96 .40

 Never drinker 30 30.37 1.01 (0.70 to 1.44)  
 Current drinker 171 186.51 1.09 (0.94 to 1.27)  
 Ex-drinker 5 8.83 1.77 (0.74 to 4.25)  
Leisure-time physical activity, h/wk    χ =2

(2) 3.66 3.66 .16

 ≥2 165 189.23 1.15 (0.99 to 1.34)  
 <2 41 36.48 0.89 (0.66 to 1.21)  
BMI at age <50 y, kg/m2    χ =2

(3) 1.14 1.14 .77

 <25.0 55 47.82 0.87 (0.67 to 1.13)  
 25.0–29.9 13 13.62 1.05 (0.61 to 1.81)  
 ≥30 3 3.34 1.11 (0.36 to 3.44)  
BMI at age ≥50 y, kg/m2    χ =2

(3) 8.49 8.49 .04

 <25.0 67 73.37 1.10 (0.87 to 1.40)  
 25.0–29.9 48 62.41 1.30 (0.98 to 1.73)  
 ≥30 21 25.13 1.20 (0.78 to 1.84)  
Quintile of risk (range), %§    ( )χ =2

5 15.13 15.13 .03

 1 (0–1.57) 26 20.64 0.79 (0.54 to 1.16)  
 2 (1.57–2.10) 31 31.00 1.00 (0.70 to 1.42)  
 3 (2.10–2.69) 43 40.03 0.93 (0.69 to 1.25)  
 4 (2.69–3.53) 52 51.69 0.99 (0.75 to 1.30)  
 5 (≥3.53) 54 82.34 1.52 (1.16 to 1.98)  

* BMI = body mass index, CI = confidence interval, E = expected, O = observed.

† The variables used in Equation 3 have the following equivalences to the variables in this table: AgeMen = age at menarche, Age1st = age at first live birth, 
NumRel = number of affected first-degree relatives, NBiops = number of biopsies, OccAct = occupational physical activity, Educat = education, CurrnDrnk = 
current drinker, LeiAct = leisure-time physical activity.

‡ The x2 test of goodness of fit with df as shown was used to compare the observed and expected number of cases.

§ Ranges show the cutoff values for risk in percent for quintiles of risk.
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more of the total population by lowering the absolute risk thresh-
old for inclusion, the average absolute risk reduction decreased, 
finally reaching the average absolute risk reduction in the entire 
population (100%).

Discussion
We developed a new absolute risk prediction model for invasive 
breast cancer for Italian women. The model includes non-modifiable 
risk factors and three potentially modifiable factors, BMI, leisure-
time physical activity, and alcohol consumption. The model was 
reasonably well calibrated overall in independent data from the 
Florence-EPIC cohort study, but overestimated absolute risk in 
some subgroups such as women aged 60 years or older and women 
whose first live birth occurred at age 30 years or later. The dis-
criminatory accuracy (concordance) in the Florence-EPIC cohort 
data was 0.62 at age less than 50 years and 0.57 for older women, 
and is comparable with that of other absolute risk models for 
breast cancer (4–6,8,25–29).

A novel aspect of this work is the evaluation of the potential 
effects of reducing exposures from modifiable risk factors on abso-
lute breast cancer risk, not only for the individual counselee but 
also for the entire population and high-risk subgroups. We devel-
oped methods based on the Lorenz curve of population absolute 
risk to identify high-risk subgroups. Assessment of the reduction 
in average absolute risk gave a different perspective than assess-
ment of the fractional risk reduction, which is analogous to attrib-
utable risk. Indeed, in the entire population, 20-year fractional risk 
reductions are 20%224%, whereas absolute risk reductions are 
1.4%21.6%. Fractional risk reductions are less useful for clinical 
and public health decisions than absolute risks and absolute risk 
reductions (30). Our methods are also useful for designing inter-
vention trials, because the power of such trials depends on the  
average absolute risk with and without intervention (31,32). In our 
study, the absolute reduction is nearly proportional to absolute risk 
before modification of risk factors, reflecting proportional hazards 
assumptions. Thus the fractional risk reduction was nearly constant 
across categories of risk. However, the fractional risk reductions 
are greater in older women for whom lower BMI was associated 
with reduced risk.

Estimates of the potential effects of interventions on absolute 
risk can provide perspective on whether to pursue prevention  
research or implement interventions. For example, our estimates 
for risk factor modifications indicate an approximate 1.6% abso-
lute risk reduction during 20 years in the general postmenopausal 
population, and an approximate 3.2% absolute risk reduction for 
women with a positive family history of breast cancer. For women 
at the highest absolute risk who account for 10% of total popula-
tion absolute risk, the absolute risk reduction is approximately 
4.4%. In a population of 1 million women, even a 1.6% absolute 
risk reduction amounts to 16 000 fewer cancers. Because programs 
to encourage less alcohol consumption, increase leisure activity, 
and encourage some weight control are likely to be safe, they can 
be widely administered. As emphasized by Rose (33,34), broadly 
applicable interventions can be more effective than interventions 
focused on high-risk subgroups. If these interventions were  
restricted to the 8% of postmenopausal women with a positive family T
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history of breast cancer, then in a population of 1 million women, 
only 2560 breast cancers would be prevented.

A strength of the study was the quality of the data used for  
developing the model and for validation. Selection bias was limited 
in the case–control data because the participation rate was high, 
and the catchment areas were comparable for case patients and 
control subjects. The comparability of recall between case patients 
and control subjects was improved by interviewing all study partic-
ipants in a hospital setting (15).

A number of limitations need to be considered. Although our 
model was reasonably well calibrated, there was evidence of overes-
timation in the highest quintile of absolute risk. Recalibration (35) 
led to smaller odds ratios, improved fit to Florence-EPIC data in 
this quintile, and smaller estimates of the effects of modifying risk 
factors (unreported data). This analysis and other unreported  
numerical studies indicate that the estimated absolute risk reductions 
are sensitive to the estimated odds ratios for modifiable risk factors.

Another limitation was that the estimated absolute risk reduc-
tions are imprecise for the individual counselee. Population level 
estimates are more precise, but both individual- and population-
level estimates are subject to systematic errors, which are not 
reflected in the confidence limits. An ideal study to estimate the 
effects of interventions would be a randomized intervention trial, 
such as the Woman’s Health Initiative (36) or the Breast Cancer 
Prevention Trial (31). Such trials yield unbiased estimates of treat-
ment effect and information on compliance. Although trial results 

may not generalize quantitatively to the general population, they 
provide a good guide to preventative strategy. Estimates from 
case–control data may yield associations that are confounded by 
other factors or biased by differential recall. The associations 
observed in such data may therefore not predict actual preventative 
effects. Without empiric data from intervention studies, we cannot 
test the assumptions underlying our model. A key assumption is 
the proportional hazards assumption, whereby a risk factor modi-
fication acts immediately and indefinitely to multiply the breast 
cancer hazard by a constant factor, unless the model includes an 
interaction with time. In fact, it is unknown how long it will take 
before an intervention affects breast cancer hazard rates or how 
long the effect will last. Under the proportional hazards assump-
tion, our calculations give an idea of the largest reductions in 
absolute risk that might be achieved.

A further limitation is that the interventions are not specified. 
Knowing that a woman with elevated BMI is at increased risk does 
not define the intervention. Yet an estimation of the causal effect 
of the intervention on absolute risk is desired (37). We have made 
optimistic assumptions that interventions could reduce modifiable 
exposures to their lowest risk levels; thus our calculations would 
give an upper bound on the reductions in absolute risk.

With hospital-based controls, associations can be distorted by 
correlations between the risk factors and the control diseases; how-
ever, we chose control diseases to avoid this bias. The Florence-EPIC 
cohort was not a random sample of the population of Italian women, 

Figure 2. Estimated 10-year mean risk reduc-
tions in 45- and 55-year-old women in subsets 
that contain varying proportions of the total 
population risk. Top 10% risk subset = the sub-
set of women that contains the highest 10% of 
population risk. Other subsets are defined simi-
larly. Vertical lines represent 95% confidence 
intervals for the estimated risk reductions.

Figure 1. Estimated 5-, 10-, 20-, 30-year 
projections of the mean risk reduction vs the 
non-modified mean risk in the whole population 
of 45-year-old women and women in two high-
risk subsets of the population. Women with a 
positive family history for breast cancer and 
women who account for the highest 10% of risk 
in the population make up the two high-risk 
subsets. The numbers next to the symbols 
denote the risk projection interval in years.
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and the cohort may have had a more favorable distribution of lifestyle 
risk factors than the general population. Moreover, results may not 
generalize to other countries, where the prevalence of obesity may be 
larger or the frequency of mammographic screening greater.

Cummings et al. (24) reviewed the literature on possible inter-
ventions to reduce breast cancer incidence, and concluded that 
lifestyle interventions such as exercise, weight reduction, low-fat 

diet, and reduced alcohol intake should be included in programs to 
prevent breast cancer. Despite their limitations, calculations of re-
ductions in absolute risk using our model potentially provide addi-
tional perspective on the possible benefits of such prevention 
strategies. If combined with operational definitions of interventions 
and their effect sizes, our methods can provide information needed 
to compute sample sizes for trials to evaluate such interventions.

Appendix Table 2.  Age-specific composite breast cancer incidence rates per 100  000 women-years and age-specific mortality rates per 
100  000 women-years. Data from the Florence Cancer Registry collected from January 1, 1989, to December 12, 1993 (N = 1  190  516)

Age, y Incidence rates Mortality rates

20–25 0 26.8
25–30 5.4 29.4
30–35 23.5 53.5
35–40 75.9 46.0
40–45 118.2 81.2
45–50 190.4 130.5
50–55 215.7 200.0
55–60 215.4 295.6
60–65 237.5 464.9
65–70 278.9 835.0
70–75 264.8 1514.5
75–80 304.8 2729.1
80–85 274.2 5984.3
85–90 275.9 14 401.4

Appendix Table 1. Parameter estimates and covariances for Equation 3*

AgeMen NumRel Age1st NBiops Currndrnk ExDrnk Educat LeiAct OccAct InvBmi Bmi

0.0411 0.8531 0.2627 0.2759 0.2360 0.2041 0.3157 0.0783 0.0946 0.2350 0.1247
0.173 0.001 0.008 0.010 0.011 20.003 20.024 20.008 20.005 0.025 20.010

1.383 0.014 20.028 0.008 0.001 0.005 20.003 20.008 0.009 0.0001
 0.145 0.023 20.002 0.012 20.028 0.004 20.018 20.006 0.007
  6.150 0.0001 0.033 20.029 0.0455 0.027 20.051 0.011
   0.407 0.272 0.003 0.0102 0.011 20.041 0.028
    1.729 0.012 0.0583 0.035 20.022 0.023
     0.189 0.0012 20.065 20.034 0.024
      0.3961 20.040 0.007 20.003
       0.388 20.012 0.017
        0.661 0.928
         0.228

* All covariances are 1022 times the numbers in the table. The covariances are in the triangular array beginning with the second row of numbers. Parameter esti-
mates are in the first row. The variables used in Equation 3 and this table are: AgeMen = age at menarche, Age1st = age at first live birth, NumRel = number of 
affected first-degree relatives, NBiops = number of biopsies, OccAct = occupational physical activity, Educat= education, CurrnDrnk = current drinker, ExDrnk = 
former drinker, InvBmi = body mass index at age <50 years (reference category = “≥30.0”), Bmi = body mass index at age ≥50 years (reference category = 
“<25.0”), LeiAct = leisure-time physical activity.
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