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Abstract. In this paper we propose a method to estimate models in which
an endogenous dichotomous treatment affects a count outcome in the pres-
ence of either sample selection or endogenous participation using maximum
simulated likelihood. We allow for the treatment to have an effect on both
the sample selection or the participation rule and the main outcome. Ap-
plications of this model are frequent in many fields of economics, such as
health, labor, and population economics. We show the performance of the
model using data from Kenkel and Terza (2001), which investigates the effect
of physician advice on the amount of alcohol consumption. Our estimates
suggest that in these data (i) neglecting treatment endogeneity leads to a
perversely signed effect of physician advice on drinking intensity, (ii) ne-
glecting endogenous participation leads to an upward biased estimator of the
treatment effect of physician advice on drinking intensity.
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1 Introduction

There are often cases in health economics in which one is interested in the
effect of an endogenous dichotomous treatment on an outcome which takes
on non-negative integer values with cardinal interpretation (count data). Ex-
amples include — but are not limited to — the effect of physician advice on
individual alcohol consumption (Kenkel and Terza 2001), the effect of health
status on the number of visits to a general pratictioner (Windmaijer and
Santos Silva 1997), or the effect of health insurance coverage on the number
of doctor or hospital visits (Riphahn et al. 2003).1

In all these applications the treatment of interest is likely to be endoge-
nous (endogenous treatment).2 Receiving physician advice to reduce drink-
ing is certainly not exogenous with respect to the intensity of those activities
by patients. Health conditions may not be exogenous with respect to the
number of visits to a doctor since individuals who are less concerned with
their health may engage in health damaging behavior and at the same time
be less prone to see a doctor. Similarly, demand for health insurance is clearly
endogenous as high-risk types are expected to buy more comprehensive cov-
erage.

In addition to an endogeneity problem, in all these cases one is likely
to have also an endogenous participation problem.3 Indeed, participation
to an activity, such as smoking, drinking or seeing a doctor (the extensive
margin) and the intensity of the activity (the number of cigarettes or drinks
consumed or the number of visits, i.e. the intensive margin) may be two very
different processes. For this reason, one might want let the two processes to
be produced by different data generating processes (DGPs, hereafter). For
instance, one may be likely to see a doctor only if she is ill. And the amount
of health insurance coverage may have an effect only on the intensive margin
of the activity, not on the fact that one sees or does not see a doctor.

In other cases, one may have a sample selection issue. In a sample of
smokers or drinkers, for instance, data on cigarette or alcohol consumption
may have not been reported by all individuals, and the data may not be
missing at random (NMAR) with respect to the level of drinking or smoking.
For instance, heavy smokers or drinkers may have not answered the survey.

1See Winkelmann (1998) and Greene (2009) for a review of count data models with
selectivity.

2This issue is acknowledged and addressed in all the articles we cited.
3Here we use a terminology different from that in Greene (2009), who considers self-

selection into the treatment as an instance of ‘endogenous participation.’ In what follows
by ‘participation’ we generally mean participation in the activity measured by the main
(count) outcome variable (e.g., drinking, smoking).
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In this case, neglecting sample selection will lead to inconsistent estimates of
the treatment effects of interest (e.g., physician advice).

A number of previous papers have suggested strategies for estimating
count data models with either sample selection or endogenous treatment,
though not both at the same time. Greene (1997), Terza (1998), Winkelmann
(1998), Miranda (2004) and Miranda and Rabe-Hesketh (2006) discuss fully
parametric methods for estimating count data models based on the Poisson
distribution and normally distributed unobserved heterogeneity. Kenkel and
Terza (2001) use a flexible Box-Cox specification for the count and normally
distributed unobserved heterogeneity to develop a two-step method for es-
timating the endogenous treatment model. Windmaijer and Santos Silva
(1997) discuss a GMM strategy that only requires the specification of the
conditional mean of the count y and it is thus less restrictive in terms of the
distributional assumptions about y that the researcher needs to impose to
achieve a consistent estimator.

The endogenous participation model is closely related to the double-
hurdle model of Cragg (1971), the Tobit-type estimator for censored Poisson
regression of Terza (1985), the hurdle model of Mullahy (1986), the double-
hurdle model of Jones (1989), the two-part model of Mullahy (1998), the
endogenous hurdle of Greene (2009), and the zero-inflated count model of
Melkersson and Rooth (2000). All these models are motivated by the idea
that individuals must cross one or two hurdles before a strictly positive value
of the dependent variable y is observed. Further, the zero outcome is thought
to be special in the sense that a large proportion of the individuals in the
sample chooses y = 0 and that the participation decision is qualitatively
different from the intensity of consumption decision. For these reasons the
models above suggest specifying a different data generating mechanism for
zero and strictly positive y. These models have been used to analyze smoking,
drinking, and fertility behavior among other applications. Endogenous par-
ticipation is allowed in Greene (2009) and Mullahy (1998). However, none of
the aforementioned models allow endogenous participation and endogenous
treatment at the same time.

To the best of our knowledge, to date only Terza et al. (2008) and Li and
Trivedi (2009) have suggested strategies to address endogenous treatment and
endogenous participation at the same time. Terza et al. (2008) put forward
a two-step estimator for a grouped dependent variable which relies on a joint
normality assumption. In this paper, in contrast, we propose an estimation
method which is appropriate to deal with endogenous treatment affects and
with either sample selection or endogenous participation when the dependent
variable is a count. Li and Trivedi (2009), on their side, use a Bayesian ap-
proach and a two-part model to estimate a model for a continuous and non



6

negative dependent variable with endogenous participation and multivariate
treatments. Also in this case, multivariate normality is required. The estima-
tor we propose is similar in spirit to the ones proposed by Terza et al. (2008)
and Li and Trivedi (2009), relies on the same distributional assumptions, and
addresses both treatment endogeneity and endogenous participation or both
treatment endogeneity and sample selection at the same time.4 In addition
to the different type of dependent variable that is used in the two aforemen-
tioned studies, our approach differs from that of Terza et al. in the sense that
we use Maximum Simulated Likelihood (MSL). As a consequence, we gain in
efficiency with respect to the two-step estimator of Terza et al. and obtain
correct standard errors in the usual way unlike the two-step approach where
standard errors need to be corrected after estimation. Our approach differs
from Li and Trivedi (2009), as we use a frequentist rather than a Bayesian
approach.

We illustrate our estimator using data from Kenkel and Terza (2001),
who study the effect of physician advice on drinking.

The structure of the paper is as follows. In the next section we report
a description of the econometric model, focusing on the case of estimating
endogenous treatment and endogenous participation (the case of endogenous
treatment and sample selection is reported in Appendix A). In section 3 we
apply our estimator to Kenkel and Terza (2001) study on physician advice
and drinking. Section 4 summarizes our main findings.

2 The econometric model

We aim to develop a model for a count variable yi that is function of a dummy
variable Ti representing the i-th individual treatment status, with Ti = 1 if
the individual has been treated and Ti = 0 if she has not been treated. The
treatment dummy is always observed and, from a theoretical point of view, is
a potentially genuine (causal) shifter of the conditional distribution of yi. We
say that Ti is an endogenous treatment if treatment status is not random,
but there are unobservable individual characteristics affecting Ti that also
affect the outcome yi.

We define a second dummy that represents either a sample selection rule
or a participation rule. The second dummy is denoted as Pi when it represents
a participation rule and as Si when it represents a sample selection indicator.
Although we will refer to models using individual-level data, the individual
i subscript is omitted throughout to simplify notation.

4The model does not address treatment endogeneity, endogenous participation and
sample selection at the same time.



7

It may be useful to take an example from a specific case to clarify the
problem. Imagine that we want to study the effect of physician advice on
drinking, like in Kenkel and Terza (2001). Physician advice is the treatment
of interest, i.e. T = 1 if the individual received advice and T = 0 otherwise.
The outcome of interest y is the number of drinks consumed in a given
interval of time. However, not all individuals drunk during this period. Some
individuals did not drink because they are non-drinkers and others, although
they generally drink, simply consumed zero alcoholic beverages during the
time interval of the study. In such a context one may model the first or
both types of zeros as ‘non-participation’ in the drinking activity (where
P = 0 are non-participants while P = 1 are participants) considering zero
counts as generated by a different DGP from the one determining strictly
positive number of drinks consumed by occasional or frequent drinkers. This
approach will make it easy to account for the potential problem of endogenous
participation.

In other cases, the most pressing data problem may be that a non-
negligible proportion of the interviewed individuals did not responded to
the drinking question. In this context, response (S = 1) and non-response
(S = 0) may be correlated with the level of drinking or factors related to
drinking and therefore there is potentially a sample selection problem.

In the following subsection we describe the main features of the model
addressing endogenous participation while the description of the model with
sample selection is reported in Appendix A. Both models address the poten-
tial endogeneity of the treatment.

2.1 Endogenous participation: y = 0 when P = 0

The model with (potentially) endogenous participation considers the case
where the dependent count variable y for a given individual is always zero if
the participation dummy P takes on value zero and can be positive or null if
P = 1. In the example above — the effect of physician advice on drinking —
we may have three different types of individuals who did not consume alcohol
in a given period of time, non-drinkers, drinkers who only drink occasionally
and frequent drinkers. Were the three types of individuals distinguishable
(e.g., they declare their type in the survey), a first approach could be to clas-
sify occasional and frequent drinkers as participants and non-drinkers as non
participants. In this case the count variable for the number of drinks will in-
clude also the zeros contributed by occasional or frequent drinkers. However,
in case there is not enough information to distinguish between the individ-
uals, e.g., they were asked about their level of alcohol consumption without
enquiring whether they are non-drinkers, frequent, or occasional drinkers,
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the natural choice is to pull together all zeros and consider as participants
(P = 1) only ‘current participants’, i.e. those who consumed a positive num-
ber of drinks (y > 0) during the period of study. We will use this second
approach in which consumption for individuals with P = 1 is always positive,
and y = 0 when P = 0 as it is more in line with the features of the data used
in Kenkel and Terza (2001).5

The endogenous treatment is denoted as T . The endogenous treatment
and the participation dummies are generated according to a continuous latent
variable model:

T ∗ = z′γ + v, (1)

P ∗ = r′θ + ϕT + q (2)

with T = 1(T ∗ > 0), P = 1(P ∗ > 0), and vectors z and r represent a set of
explanatory variables (including the constant term) with dimension KT × 1
and KP × 1, respectively. γ and θ are conformable vectors of coefficients,
ϕ is the coefficient of the treatment dummy in the participation equation,
and v and q are residual terms. We assume that the count y is generated
according to the following conditional cumulative distribution function,

G (y|η) ≡ P (y|η) =

{
not defined if P = 0

[µy exp (−µ)] /[1− exp(−µ)]y! if P = 1.
(3)

with,

y =

{
0 if P = 0
1, 2, . . . if P = 1

(4)

and where P(.) denotes ‘probability of,’ η is a random variable representing
unobserved individual heterogeneity, and µ ≡ E [y|x, T, η]. We use a zero-
truncated Poisson distribution for y given P = 1. This is done to meet
the requirements of the Kenkel and Terza’s data, where it is not possible
to distinguish among individuals who did not have any drink because they
quitted drinking or are trying to quit, and those who just did not have any
drink by chance.6 We use a log-linear model for specifying the conditional
mean of y given T , P , and η:

ln (µ) = x′β + δT + η, (5)

5As we will see below, Kenkel and Terza (2001) drop from the analysis ‘non-drinkers’,
i.e. according to their definition those individuals who did not drink in the last 12 months.

6Were this piece of information available, a Poisson distribution can be used instead of
the zero-truncated Poisson, allowing for two different types of zeros.



9

where, again, vector x represents a Ky× 1 vector of explanatory variables, β
is a vector of conformable coefficients, and δ is the coefficient of the treatment
dummy in the equation of the main response count y. Finally, correlation
between T , P , and y is allowed by imposing some structure on the residuals
of equations (1) and (2),

v = λ1η + ζ
q = λ2η + ξ,

(6)

where ζ and ξ are ‘idiosyncratic’ error terms and λ = {λ1, λ2} ∈ R2 are free
factor loadings to be estimated along the other parameters.

To close the model we require the covariates to be all exogenous and
impose some distributional conditions

D(η|x, z, r, ζ, ξ) = D(η) (C1)

D(ζ|x, z, r, η) = D(ζ|η) (C2)

D(ξ|x, z, r, η) = D(ξ|η) (C3)

ζ ⊥ ξ | η, (C4)

where D(.) stands for ‘distribution of.’ Condition C1 is the usual random
effects assumption, which requires the unobserved individual heterogeneity
term η to be independent of all explanatory variables in the system as well
as independent of errors ζ and ξ. The conditional independence assumptions
in C2 and C3 are weaker than calling for ζ and/or ξ to be independent of
the explanatory variables and thus accommodate some limited dependence
between control variables and idiosyncratic errors.7 C2-C3 together ensure
the exogeneity of all explanatory variables x, z, and r. Finally, condition C4
requires the idiosyncratic errors to be independent of each other conditional
on η. Again, this does not rule out some dependence between ζ and ξ. In
what follows, we assume that η ∼ N(0, σ2

η) and that ζ|η and ξ|η are both
distributed as independent standard normal variates.

The model is identified by restrictions on the covariance matrix and by
functional form. So, x, z, and r can all have the same elements. How-
ever, specifying some exclusion restrictions for the selection and/or treat-
ment equations is always advisable when it is possible. Note that in this

7If claiming independence between all explanatory variables and the unobserved het-
erogeneity term η is judged untenable for a particular application, instead of requiring
condition C1 one could follow Mundlak (1978) and Chamberlain (1980) approach and as-
sume η|w ∼ N(w′ψ, σ2

a), for a vector w that can contain some elements of x, z, and
r and where ψ is a vector of conformable coefficients. This assumption imposes some
restrictions to the way explanatory variables and the unobserved heterogeneity term η can
be related (namely, some cross-equation coefficient restrictions) but allows at least some
dependence.
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parametrization Var(vi) = (λ2
1σ

2
η + 1) and Var(qi) = (λ2

2σ
2
η + 1) instead of

the usual probit normalization of Var(vi) = Var(qi) = 1. As a consequence,
coefficients in (1) and (2) will be larger than the usual probit coefficients.
After estimation, one can recover the usual probit parametrization multiply-

ing coefficients in (1) and (2) by a factor of 1/
√
λ2

1σ
2
η + 1 and 1/

√
λ2

2σ
2
η + 1,

respectively.
The use of the Poisson distribution for the analysis of count data has

been criticized in the past due to the unattractive feature that the condi-
tional mean and the conditional variance are restricted to be equal, a prop-
erty also known as equidispersion (see, for instance, Winkelmann 2008). In
contrast, in the present model the introduction of the random term η in
the log-linear model for µ allows the count variable y to exhibit overdis-
persion whenever ση 6= 0, that is if significant unobserved heterogeneity is
detected (see Gourieroux 2000, Miranda and Rabe-Hesketh 2006). However,
our model cannot be used to analyze dependent variables which usually ex-
hibit underdispersion, such as the number of children.8

The correlations between the error terms in y, T ∗, and S∗ are functions
of the factor loadings (λ1, λ2) and σ2

η. In particular, the model implies the
following correlations:

ρη,v =
λ1σ

2
η√

σ2
η(λ

2
1σ

2
η + 1)

(7)

ρη,q =
λ2σ

2
η√

σ2
η(λ

2
2σ

2
η + 1)

(8)

ρv,q =
λ1λ2σ

2
η√

(λ2
1σ

2
η + 1)(λ2

2σ
2
η + 1)

. (9)

The treatment dummy T is an exogenous variable in the main response
equation whenever ρη,v = 0. Similarly, if ρη,q = 0 participation is exogenous
in the main response equation. If ρη,v = ρη,q = 0, one can obtain consistent
estimates of δ on the basis of a simple Poisson regression fitted on the sub-
sample for which y > 0 (that is ‘participants’).

Let PP (0|η) denote the conditional probability of P = 0 given η and
PP (1|η) the conditional probability of P = 1 given η. Here, to simplify
notation, we do not explicitly write the conditioning on observable variables.

8To the knowledge of the authors no method has been suggested in the literature that
could deal with underdispersed count data and either sample selection or an endogenous
treatment effect, let alone the two problems together.
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In a similar fashion, PT (τ |η) represents the probability of T = τ given η,
with τ = {0, 1}. Finally, denote by G(y|η) the cumulative distribution of y
given η which is defined by equations (3) and (5) together. The log-likelihood
function is then:

log(L) =
∑

i,Pi=0

∑
τ

ωτ ln
{∫

PP (0|η)PT (τ |η)φ(η)dη
}

+
∑

i,Pi=1

∑
τ

ωτ ln
{∫

PP (1|η)PT (τ |η)G(y|η)φ(η)dη
}
,

(10)

where φ(·) is the density of a normal variate with mean zero and variance
σ2
η, ω0 = 1(T = 0), ω1 = 1(T = 1) and 1(.) is the indicator function. We

will refer to this model as to the the Endogenous Participation Endogenous
Treatment (EPET) Poisson model.

The integrals in equation (10) do not have a closed form solution and
must be numerically evaluated. We use MSL (for a detailed discussion on
MSL, see, Train 2003). To evaluate the integrals we use Halton sequences
instead of uniform pseudorandom sequences. Halton draws have been shown
to achieve high precision with fewer draws than uniform pseudorandom se-
quences because they have a better coverage of the [0, 1] interval. A modified
Newton-Ramphon algorithm is used for maximization, using analytical first
derivatives and numerical second derivatives. At convergence Eicker-Huber-
White robust standard errors are computed.

The use of a common latent factor structure like the one written in (6)
has four main advantages over the alternative of specifying a multivariate
normal distribution for v, q, and η (see Deb and Trivedi 2006). First, the
common latent variable approach can be used quite flexibly to combine ap-
propriately chosen conditional and marginal distributions that generate the
joint distribution that the researcher wants to use. Second, latent factors
have a natural interpretation as proxies for unobserved covariates since they
enter into the equations in the same way as observed covariates. The factor
loadings can therefore be interpreted in much the same way as coefficients
on observed covariates can. Third, it provides a parsimonious representation
of error correlations in models with a large number of equations. Related to
this, and quite importantly for computational feasibility, the latent variable
approach transforms a problem in which calculation of the log-likelihood in-
volves the computation of a three dimensional integral into a problem where
only a one dimensional integral needs to be computed.

The cost of using the one (latent) factor structure is that it implies
some variance-covariance restrictions.9 In our case, there are three implicit

9See for instance, Carneiro et al. (2003). The authors note that these restrictions can
have an arbitrary content and conclude that it is important to appeal to economic theory to
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variance-covariance restrictions as the six elements of the variance-covariance
matrix must be recovered from only three parameters (λ1, λ2 and σ2

η).
10

Hence, the model we propose is especially useful in cases in which the endo-
geneity of both the treatment and the participation decisions are likely to be
determined by a common unobservable variable entering all error terms. In
our early example, we might think of an individual’s intertemporal discount
rate. Individuals with a high intertemporal discount rate are more likely to
engage in health damaging activities such as drinking, to be in bad health,
and to receive drinking advice when seeing a doctor. In particular, they are
both more likely to drink and to drink a high number of drinks. To put it
simply, the omission of a single unobservable which enters all three equations
is likely to generate a positive correlation between all three error terms. The
model is also suitable to cases in which two or more highly correlated un-
observable variables enter all equations. In such a case using a one latent
factor model approach may be a good strategy because after conditioning
on a single summary latent factor η, the remaining components of the error
terms in the three equations can be expected to be approximately orthogonal
(see condition C4).

In Appendix B we investigate the finite sample performance of the EPET-
Poisson model and of the Endogenous Treatment Poisson (ET-Poisson) model,
a model in which only the endogeneity of the treatment status (but not of
participation) is addressed, in a Monte Carlo simulation study.

3 An application to the effect of physician

advice on drinking

In this section we apply the EPET-Poisson model to the problem of estimat-
ing the treatment effect of physician advice on alcohol consumption using
data from Kenkel and Terza (2001).

justify any specific identification scheme. Latent factor models are very popular in health
economics; for some recent examples of normally distributed one-latent factor models see
Kenkel and Terza (2001), Terza et al. (2008) and Terza (2009).

10Let us define the variance-covariance matrix of the error terms as:

V =



σ2
η ση,v ση,q

σ2
v σv,q

σ2
q


 . (11)

The three restrictions are (i) σ2
v = λ2

1σ
2
η + 1, (ii) σ2

q = λ2
2σ

2
η + 1, and (iii) σv,q = (ση,v ·

ση,q)/
√
σ2
vσ

2
q (or ρv,q = ρη,v · ρη,q).



13

3.1 The Kenkel and Terza’s study

For the purpose of illustration, we use the same data — the 1990 National
Health Interview Survey — and adopt the same empirical specification and
exclusion restrictions used by Kenkel and Terza (2001).11 Our aim is to show
how the estimates of treatment effects are sensitive to various assumptions
about endogeneity of treatment status and participation, and which model
better fits the data. In the Kenkel and Terza’s study drinking is measured as
the number of drinks consumed in the last two weeks.12 Physician advice
about drinking is built from respondents’ answers to the following question:
‘Have you ever been told by a physician to drink less?’

The authors drop from the analysis lifetime abstainers and former drinkers
with no drinking in the past year. Because the physician advice to cut drink-
ing was recommended as a way of reducing high blood pressure, they focus
only on men who have drunk alcohol at least once in the last 12 months
(‘drinkers’) and report having been told at some time that they had high
blood pressure.13 In spite of this, Kenkel and Terza observe in their sample
that 21% of drinkers (according to their definition) did not drink at all in the
last two weeks. Various reasons may be behind the excess of zeros. First,
it could be that zeros are contributed by recent quitters or people who were
actively trying to quit drinking in the last 12 months. Second, y = 0 could
also be contributed by individuals who drink only in very special occasions
such as weddings, birthdays, or New Year’s Eve (occasional drikers). Fi-
nally, y = 0 could be contributed by ‘frequent’ drinkers who, by chance, did
not drink any alcohol in the past two weeks; although this last scenario is
less likely as two weeks are a period long enough to expect a strictly posi-
tive number of drinks to be consumed by ‘frequent’ drinkers. Unfortunately,
individuals were asked only their level of alcohol consumption in the last
two weeks without enquiring whether they classify themselves as quitters,
frequent, or occasional drinkers. As a consequence, we cannot separate the

11Although the model is formally identified by covariance restrictions and functional
form, Kenkel and Terza (2001) provide an additional source of identification ‘through
exclusion restrictions involving a set of eleven variables related to health insurance status,
physician contacts, and health problems’ (p. 176). The plausibility of these restrictions is
discussed by the authors.

12Kenkel and Terza states ‘This is calculated as the product of self-reported drinking
frequency (the number of days in the past two weeks with any drinking) and drinking
intensity (the average number of drinks on a day with any drinking)’, (p. 171-172).

13A potential problem with this sample selection is that the decision to quit drinking may
be affected by health status, so that in the sample one is likely to observe only ‘healthy’
drinkers. Kenkel and Terza argue that this is likely to induce only a small selection bias as
in the the National Health Interview Survey only 12% of individuals declare not to drink
because of health problems.
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different types of zeros.
Clearly, the fact that a good proportion (perhaps the majority) of these

zeros are likely to be contributed by occasional drinkers and quitters sug-
gests that the excess zeros cannot be ignored. The authors acknowledge this
and account for the excess zeros by using a flexible functional form for the
conditional mean of drinking based on the inverse Box-Cox transformation.
An alternative way of addressing this issue, which we follow here, is to treat
the zeros and the positive drinking outcomes as if they were generated by
two separate DGPs (see Terza 1998). More details on the data and the
covariates used are available in the original study. Table 1 reports the def-
initions and the means of all the variables, which match the corresponding
means in Kenkel and Terza (2001). The Table also provides information on
which variables are used to identify the model (the exclusion restrictions).

3.2 Results

3.2.1 The effect of the treatment

In this section we focus only on the effect of the treatment of interest (physi-
cian advice). As we said, we use the same specifications (and exclusion
restrictions) as the original article for the treatment and the drinking inten-
sity equations.

The first column of Table 2 reports the marginal effects from a Poisson
model where the potential endogeneity of the treatment — physician advice
— is not addressed.14 The results are similar to those reported by Kenkel
and Terza in the models where physician advice is considered exogenous
(see Table III in their article): advice appears to have a counterintuitive
positive effect on drinking that is statistically significant at 1%. Column (2)
reports the marginal effects of physician advice on the probability of drinking
obtained from a simple probit model, and also in this case, advice turns out
to be positively correlated with drinking. Column (3) reports the marginal
effects when the potential endogeneity of advice is taken into account but
endogenous participation is neglected using the ET-Poisson model. This
model assumes that both zeros and positive y outcomes are produced by
the same DGP but accounts for the endogeneity of the treatment.15 This

14In analogy to Kenkel and Terza (2001), marginal effects are evaluated at the median
value of the dependent variable.

15More details are available upon request from the authors. The model consists of two
equations, the drinking equation in which both zero and positive consumption are modelled
through a Poisson model with unobserved heterogeneity and a physician advice equation.
The model is estimated using MSL, using a one latent factor structure and normality of
the error terms.
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model (and the following models estimated using MSL) was estimated using
1, 600 Halton draws.16 First, note that the correlation between the errors in
the drinking intensity and the physician advice equation ρη,v is positive, as
expected, and statistically significant at 1%. Hence, advice T is endogenous
with respect to drinking y. In other words, individuals who have a higher
latent propensity to drink are also more likely to receive advice. Second,
the marginal effect of physician advice turns out to be negative, statistically
significant, and amounts to a bit less than −51

2
(-5.4) drinks per two weeks.

Both results suggest that the positive effect of T on y that is reported by the
Poisson model with exogenous treatment is spuriously driven by a positive
bias which results from the fact that individuals endogenously sort themselves
into the treatment. In other words, those receiving advice were also the
heaviest drinkers.

When the intensive margin (i.e., drinking participation) and the extensive
margin (i.e., number of drinks conditional on strictly positive drinking) are
allowed to be generated by different DGPs with the EPET-Poisson model
in column (5), the effect of physician advice falls in absolute value by more
than one drink per week, to -4.1 (+25%), and remains highly statistically
significant.17 Physician advice turns out to be endogenous with respect
to drinking participation and ρv,q is positive, which is consistent with the
correlation found between advice and drinking intensity (i.e., ρη,v > 0) and
our theoretical predictions at the end of subsection 2.1. It is also important
to notice that the EPET-Poisson model shows that physician advice has no
effect on the likelihood of drinking (column (4)), a result in sharp contrast
with the one obtained from the simple probit model in which the positive
association between drinking and physician advice was generated by unob-
served heterogeneity. Comparison of the ET and the EPET-Poisson models
allows a better understanding of the effect of physician advice, which does
not seem to induce people not to drink but simply to cut their two-week
drinking. This could be explained by the presence in the population of light
drinkers and heavy drinkers. The first may not quit, following physician ad-
vice, since they do not believe that their limited drinking is damaging their
health, while the second may not quit simply because they have higher levels

16Using 2, 000 Halton draws produced only negligible changes in coefficients and stan-
dard errors of the estimates.

17We included the same set of controls both in the drinking participation and in the
drinking intensity equations. The same is done, for instance, in Terza et al. (2008). In
general, unlike in the sample selection model in which there might be specific factors
affecting non-response but not necessarily affecting intensity of consumption, in the case
of endogenous participation it is hard to think of variables affecting the intensive or the
extensive margin only.
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of addiction. Hence, physician advice may have an effect only on the drinking
intensive margin and not on drinking prevalence.

Table 2 shows the presence of significant unobserved heterogeneity in the
three choices (as σ2

η is statistically different from zero). The last two lines
of the table also clearly suggest that the EPET Poisson model is obviously
much better at predicting the zeros and that it fits the data better than the
two alternative models (Poisson and ET-Poisson) as indicated by the lowest
value of the Bayesian information criterion (BIC).

Two notes are worth of mentioning. Firstly, in Kenkel and Terza’s specific
case pooling the intensive and the extensive margins and forcing the DGPs
to be the same for the two choices is not very harmful because the effect of
the treatment on the two outcomes goes in the same direction, although our
estimates suggest that only the intensive margin is significantly affected by
physician advice. Furthermore, the correlations between unobservables in the
endogenous treatment and drinking intensity, and between the unobservables
in the endogenous treatment and the endogenous participation, all have the
same sign. Secondly, Kenkel and Terza use a flexible functional form — the
non-linear inverse Box-Cox form — that, although imposing the same DGP
for the intensive and extensive drinking margins, produces a marginal effect of
the treatment (about -4.5 drinks) that is somewhat between the one reported
by a model that only deals with the endogenous treatment problem and
the one obtained from a model that deals with both endogenous treatment
and endogenous participation (the EPET-Poisson model). Clearly, in other
applications the consequences of neglecting endogenous participation may be
more substantial.

In order to have an idea of the goodness of the exclusion restrictions, Table
3 reports the marginal effects for the physician advice equation and Wald
tests for the variables identifying the model over and above functional form
and covariance restrictions. In both the ET and the EPET-Poisson models
Wald tests suggest that the “identifying” variables are highly statistically
significant and the model is unlikely to suffer from weak identification.

3.2.2 The effect of other covariates

The main advantage of a model not imposing the same DGPs on the intensive
and the extensive drinking margins is that not only the effect of the treatment
but also that of other covariates are allowed to differ across the two choices.
Think of, for instance, the effect of parental supervision, or strictness of par-
enting styles, on youngsters’ smoking. In this case, parenting style is likely to
affect the likelihood of smoking participation but it is rather unlikely to af-
fect the quantity of cigarettes smoked given participation. Similarly, alcohol
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(cigarette) taxes and prices are more likely to affect the quantity of drinks
(cigarettes) consumed than the drinking (smoking) prevalence itself. Table
4 reports the marginal effects (at the sample mean) of the other covariates
estimated in the EPET-Poisson model, and shows which is the relevant mar-
gin (intensive, extensive or both) affected by the regressors. Just to take a
few examples, it is interesting to notice that years of education are positively
associated with the probability of drinking but negatively associated with the
average number of drinks consumed. Individuals in their forties and fifties
drink less on average, but this effect is entirely accounted for by their lower
probability of drinking. We also reported the marginal effects obtained from
the ET-Poisson model for the sake of completeness.

4 Concluding remarks

In this paper we have proposed a Full Information Maximum Likelihood es-
timator for count data models with endogenous treatment effects and either
sample selection or endogenous participation, which is implemented using
maximum simulated likelihood. Sample selection occurs when the main out-
come is missing for some individuals and the data are not missing at ran-
dom. In contrast, endogenous participation occurs when participation into
an activity (e.g., smoking or drinking) and the intensity of the activity are
produced by two different, but correlated, DGPs.

For illustrative purposes, we have applied our proposed estimator to the
Kenkel and Terza (2001)’s data on physician advice and drinking. Our esti-
mates suggest that in these data (i) neglecting treatment endogeneity leads
to a perversely signed effect of physician advice on drinking intensity, (ii)
neglecting endogenous participation leads to an upward biased estimate of
the treatment effect of physician advice on drinking intensity.

Appendix A. Endogenous sample selection: y

missing when S = 0

The model with (potentially) endogenous sample selection considers the case
where the dependent count variable y for a given individual is missing if
the selection dummy S takes on value zero and is observed if the selection
dummy takes on value one. The endogenous treatment is denoted as T . The
endogenous treatment and the selection dummies are generated according to
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a continuous latent variable model:

T ∗ = z′γ + v, (12)

S∗ = r′θ + ϕT + q (13)

with T = 1(T ∗ > 0), S = 1(S∗ > 0), and vectors z and r represent a set of
explanatory variables (including the constant term) with dimension KT × 1
and KS × 1, respectively. γ and θ are conformable vectors of coefficients, ϕ
is the coefficient of the treatment dummy in the selection equation, and v
and q are residual terms. We assume that the count y is generated according
to the following conditional cumulative distribution function,

F (y|η) ≡ P (y|η) =

{
not defined if S = 0

[µy exp (−µ)] /y! if S = 1.
(14)

with,

y =

{
missing if S = 0
0, 1, 2, . . . if S = 1,

(15)

ln (µ) = x′β + δT + η, (16)

and all other remaining aspects of the model are the same as in subsection
2.1. The main difference from the model presented here and the one in
subsection 2.1 is the fact that here we use a Poisson distribution for y given
S = 1 whereas we used a zero-truncated Poisson for y given P = 1 in the
endogenous participation model. This is a minor modification that reflects
the fact that in the endogenous participation model we considered the y = 0
count as being generated by a different data generating mechanism from
y > 0 counts.

Another important difference is the fact that now only individuals with
S = 1 in the sample will contribute a non missing observation for y. The
likelihood function is now written as follows:

log(L) =
∑

i,Si=0

∑
τ

ωτ ln
{∫

PS(0|η)PT (τ |η)φ(η)dη
}

+
∑

i,Si=1

∑
τ

ωτ ln
{∫

PS(1|η)PT (τ |η)F (y|η)φ(η)dη
}
.

(17)

Again, the model can be estimated using MSL.



19

Appendix B. Monte Carlo simulation study

In this appendix we investigate the finite sample performance of the EPET-
Poisson and the ET-Poisson models in a Monte Carlo simulation study. The
aim of the analysis is twofold: (1) to show that the EPET-Poisson estimator
can recover the true population parameters when the DGP is indeed EPET-
Poisson, and to offer evidence that it is approximately normally distributed
in finite samples of moderate size; (2) to show how large the bias is when
the researcher fits a ET-Poisson model to data that are truly generated by
a EPET-Poisson process and how misleading inference can be if the analyst
assumes that the misspecified ET-Poisson estimator is asymptotically nor-
mality distributed. Given the focus of the study, all experiments discussed
here make assumptions that are favorable to the EPET-Poisson estimator.

Simulations are performed using a total sample size of 1,500 observa-
tions. There are three exogenous variables: x1, x2, and x3. These variables
are distributed as independent standard normal variates. The main count
response is denoted by y, the endogenous treatment by T , and the partici-
pation dummy by P . To facilitate identification, we specify strong exclusion
restrictions. Namely: (1) x1 only enters the equation of T ; (2) x2 only enters
the equation of P ; and (3) x3 only enters the equation of y. We allow the
endogenous treatment T to enter both the participation equation P and the
main count response y. The DGP of the simulated data is EPET-Poisson in
each replication, with the true population parameters as given in Table 5. In
all experiments η ∼ N(0, 0.1).

The values of the parameters in Table 5 and the variance for η were chosen
so that the resulting simulated count response variable y will have approxi-
mately a mean and a standard deviation which are near those exhibited by
the Kenkel and Terza (2001) drinking data. Also, these values ensure that
approximately 70% of the sample in each replication will have P = 1 and
y > 0 (participants) and 30% will have P = 0 and y = 0 (non participants).
Again, this was chosen to more or less match the characteristics of the Kenkel
and Terza drinking data where 21% of the sample have y = 0. We decided to
have E(P ) slightly higher to 0.21 to compensate for the smaller sample size
that is used in the simulations. The true population parameters imply that
approximately half of the sample is subject to treatment (T = 1) in each
replication. In the Kenkel and Terza drinking data the mean of advice is
slightly lower, namely 0.27. Here, again, we set mean of T to 0.5 to compen-
sate for the smaller sample size used in the simulations. In all experiments
the noise/signal ratios are approximately: (a) 0.18 in the T equation; (b)
0.19 in the P equation; and (c) 0.16 in the y equation.

We would like to test that the EPET-Poisson estimator can recover the
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true population parameters regardless the sign that ρη,v, ρη,q, and ρv,q take.
We setup two groups of experiments, which only differ in the size of the
correlation coefficients. Within each group the only thing that varies is the
sign of the aforementioned correlation coefficients:

• Experiment 1: ρη,v = 0.35, ρη,q = 0.35, and ρv,q = 0.13

• Experiment 2: ρη,v = −0.35, ρη,q = 0.35, and ρv,q = −0.13

• Experiment 3: ρη,v = 0.35, ρη,q = −0.35, and ρv,q = −0.13

• Experiment 4: ρη,v = −0.35, ρη,q = −0.35, and ρv,q = 0.13

• Experiment 5: ρη,v = 0.78, ρη,q = 0.78, and ρv,q = 0.61

• Experiment 6: ρη,v = −0.78, ρη,q = 0.78, and ρv,q = −0.61

• Experiment 7: ρη,v = 0.78, ρη,q = −0.78, and ρv,q = −0.61

• Experiment 8: ρη,v = −0.78, ρη,q = −0.78, and ρv,q = 0.61.

Maximum simulated likelihood (MSL) estimators are asymptotically equiv-
alent to Maximum Likelihood estimators as long as R, the number of draws
used to evaluate the simulated likelihood, grows at a faster rate than the
square-root of the sample size

√
N (Gourieroux and Monfort 1993). Simu-

lation delivers an unbiased approximation of the likelihood L(.). However,

MSL maximizes ln[L̂(.)] rather than L̂(.); and simulation of ln[(L̂(.)] does
not give an unbiased estimator for ln[L(.)]. This bias does not affect the con-
sistency of the MSL estimator. However, to achieve asymptotic normality it
is required that

√
N/R → 0. If this condition does not hold the covariance

matrix estimator of MSL is incorrect; see Cameron and Trivedi (2005, p.
394-396) and Train (2003, p. 258-259). For this reason the analyst is advised
to use a large enough number of draws R. There is no general rule to choose
R and how large it should be depends on particular applications. In the case
of the EPET-Poisson, preliminary Monte Carlo simulation experiments with
200 replications showed that MSL estimators using less than 1, 000 Halton
draws deliver slightly underestimated standard errors and that the nominal
coverage of the parameters were below the advertised 95%. Once the num-
ber of Halton draws R was set to values larger than 1, 000 the EPET-Poisson
behaved well.

Tables 6 and 7 present Monte Carlo simulation results for experiments 1 to
4. In all these experiments we used 1, 600 Halton draws. Table 6 reports the
performance of EPET-Poisson and ET-Poisson in terms of bias and Monte
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Carlo standard deviation (SD). Results show that, as expected, the EPET-
Poisson delivers largely unbiased estimators of all the parameters. In fact,
for all parameters, percentage bias is below 3.1%. In all four experiments the
computed bias for the coefficient of main interest byT (i.e., the coefficient of
the treatment T on the main count response y) is not statistically different
from zero at a significance level of 5%.

In the case of the ET-Poisson model the reported bias is large with respect
to the size of the parameters. To give a relative idea of the size of the bias,
the reader can consider that the percentage bias of byT in ET-Poisson is 76%
in experiment 1 and 78% in experiment 4. This bias is significantly different
from zero at 5% in all the four experiments.

Moving to Table 7 the reader can see the performance of the EPET-
Poisson and the ET-Poisson in terms of standard error and nominal cover-
age. From this table the reader can see that the EPET-Poisson estimator
delivers an average standard error that is broadly equal to the Monte Carlo
standard deviation. In other words, the finite sample variation of the EPET-
Poisson estimator is broadly the same as the variation one expects under the
assumption that the EPET-Poisson estimator is normally distributed. This
last observation is also supported by the fact that nominal coverage of all pa-
rameters estimated by EPET-Poisson achieve approximately the advertised
size of 95%. This is true across all four experiments. In conclusion, there is
strong evidence that EPET-Poisson is asymptotically normally distributed
as expected.

Performance of the ET-Poisson in terms of standard error and nominal
coverage is disappointing. Standard errors are largely underestimated and
nominal coverage is far from the advertised 95%. In fact, the true value
of the population parameter for the main coefficient of interest, byT , lied
outside the 95% confidence interval in every single replication and across all
four experiments.

Experiments 5 to 8 (see tables 8 and 9) give similar results and for the
sake of brevity we do not add any further comment on those experiments.18

Summarising, we find that if the DGP is EPET-Poisson: (1) the EPET-

18The only thing to note is that the standard errors for ρ̂v,q are ‘slightly’ larger than the
calculated Monte Carlo standard deviations. This overestimation, however, is relatively
small with respect to the size of ρ̂v,q and it does not affect the nominal coverage in any
case, which remains around 94%. Correlation coefficients are special in the sense that
having to lie between -1 and 1 they cannot truly be distributed as normal variates. Also,
ρ̂v,q is a function of λ1, λ2, and ση and its standard error is calculated using the Delta
method. If ρ̂v,q, as a function of λ1, λ2, and ση is approximately quadratic around the
ML estimates, then a second order approximation of the standard errors for ρ̂v,q will be
precise. However, if ρ̂v,q is not quadratic enough, then calculation of the standard error
of ρ̂v,q by the Delta method may be slightly off target.
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Poisson estimator is consistent and asymptotically normally distributed; (2)
fitting a ET-Poisson delivers a badly biased estimator and underestimated
standard errors. Hence, performing inference on the basis of ET-Poisson
when the DGP is EPET-Poisson may lead to severely misleading inference.
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Table 1. Variable definitions and descriptive statistics

Variable name Definition mean S.D.

Dependent variable
y Total drinks last two weeks 14.697 22.753
Treatment variable
T Physician advice to reduce drinking 0.278 -
Control variables(a)

EDITINC Income ($1,000) 2.575 5.008
AGE30 30 < age ≤ 40 0.180 -
AGE40 40 < age ≤ 50 0.195 -
AGE50 50 < age ≤ 60 0.182 -
AGE60 60 < age ≤ 70 0.199 -
AGEGT70 Age > 70 0.122 -
EDUC Years of schooling 12.925 3.087
BLACK Black d.v. 0.133 -
OTHER Non-white 0.018 -
MARRIED Married 0.645 -
WIDOW Widowed 0.052 -
DIVSEP Divorced or separated 0.160 -
EMPLOYED Employed 0.666 -
UNEMPLOY Unemployed 0.029 -
NORTHE Northeast 0.217 -
MIDWEST Midwest 0.275 -
SOUTH South 0.295 -
Excluded variables(b)

MEDICARE Insurance through Medicare 0.252 -
MEDICAID Insurance through Medicaid 0.031 -
CHAMPUS Military insurance 0.059 -
HLTHINS Health insurance 0.815 -
REGMED Reg. source of care 0.821 -
DRI See same doctor 0.721 -
MAIORLIM Limits on major daily activity 0.086 -
SOMELIM Limits on some daily activity 0.077 -
HVDIAB Have diabetes 0.061 -
HHRTCOND Have heart condition 0.146 -
HADSTROKE Had stroke 0.036 -

(a) These are the variables included in both the main equation (and the
endogenous participation equation) and the endogenous treatment equation;

(b) These are the variables only included in the endogenous treatment
equation.

Note. This table reports the definitions, the means and the standard devia-
tions (S.D.) for the variables used in Kenkel and Terza (2001). Data refer to
the 1990 National Health Interview Survey. The estimation sample includes
2,467 observations.
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Table 2 Marginal effects of physician advice on the number of drinks con-
sumed in the last two weeks and on the probability of drinking

Poisson Probit ET- EPET-
Poisson Poisson

y(a) Pr(y > 0)(b) y(a) Pr(y > 0)(b) y > 0(a)

(1) (2) (3) (4) (5)

Physician advice (T) 3.679*** 0.079*** -5.395*** -0.045 -4.072***
(.558) (.017) (.386) (.049) (.864)

ρ̂η,v 0.832*** 0.689***
(.029) (.092)

ρ̂η,q 0.378***
(.088)

ρ̂v,q 0.261***
(.084)

σ̂2
η 2.190*** 1.456***

(.069) (.099)
N.obs. 2,467 2,467 2,467 2,467
Log-likelihood -32,263 -1,247 -10,184 -10,062

̂Pr(y = 0)
(c)

0.00 0.11 0.22
BIC(d) 64,674.9 20,759.3 20,671

*** significant at 1%. Eicker-Huber-White robust standard errors in parentheses.
(a) Marginal effects are computed at the sample median of the dependent variable, in
analogy to Kenkel and Terza (2001);

(b) Marginal effects are computed at the sample mean of the independent variables.

(c) Probability of the zero outcome predicted by the model.

(d) Bayesian information criterion.

Note. y is the number of alcoholic drinks consumed in the last two weeks, Pr(y > 0)
the probability of drinking in the last two weeks and y > 0 the number of alcoholic
drinks consumed in the last two weeks conditional on drinking. Estimation refers to the
1990 National Health Interview Survey with the sample selection and covariates used in
Kenkel and Terza (2001). T and P are dichotomous indicators of individual treatment
status and participation to the drinking activity, respectively. ET and EPET stand
for Endogenous Treatment and Endogenous Participation Endogenous Treatment, re-
spectively. Both models were estimated using MSL and 1, 600 Halton draws. The joint
Wald test statistic for ρy,T = ρy,P = ρT,P = 0 in the EPET-Poisson model, distributed
as a χ2(3), is 57.904 (p-value=0.00).
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Table 3 Marginal effects of covariates on the physician advice
equation

ET- EPET-
Poisson Poisson

EDITINC 0.000 (0.002) 0.000*** (0.000)
AGE30 0.078** (0.035) 0.098*** (0.035)
AGE40 0.041 (0.035) 0.055 (0.035)
AGE50 0.023 (0.034) 0.039 (0.036)
AGE60 0.022 (0.040) 0.047 (0.041)
AGEGT70 0.041 (0.050) 0.057 (0.051)
EDUC -0.009*** (0.003) -0.010*** (0.000)
BLACK 0.108*** (0.029) 0.106*** (0.026)
OTHER 0.089 (0.063) 0.079 (0.063)
MARRIED 0.047* (0.026) 0.037 (0.026)
WIDOW 0.100** (0.049) 0.083* (0.049)
DIVSEP 0.102*** (0.034) 0.080** (0.033)
EMPLOYED -0.006 (0.027) -0.013 (0.027)
UNEMPLOY 0.084 (0.055) 0.042 (0.049)
NORTHE 0.023 (0.025) 0.030 (0.026)
MIDWEST -0.021 (0.024) -0.009 (0.024)
SOUTH -0.017 (0.024) -0.006 (0.024)

Excluded variables
MEDICARE 0.014 (0.045) 0.011 (0.043)
MEDICAID 0.006 (0.033) 0.016 (0.037)
CHAMPUS -0.049** (0.022) -0.069*** (0.024)
HLTHINS 0.041* (0.025) 0.065** (0.026)
REGMED 0.011 (0.021) -0.006 (0.025)
DRI 0.051 (0.034) 0.008 (0.031)
MAIORLIM 0.011 (0.027) 0.000 (0.028)
SOMELIM 0.108*** (0.034) 0.085** (0.034)
HVDIAB 0.063*** (0.023) 0.068*** (0.023)
HHRTCOND 0.029 (0.036) 0.059 (0.040)
HADSTROKE -0.009 (0.029) -0.020 (0.030)

F-test excluded variables 49.22 53.8
[0.00] [0.00]

*** significant at 1%; ** significant at 5%; * significant at 10%. Eicker-
Huber-White robust standard errors in parentheses, p-values in brack-
ets.
(a) Variables excluded from the drinking equations for (economic)
identification;

Note. The dependent variable is the probability of receiving physician
advice of not drinking. The table reports the marginal effects at the
sample means of covariates included in the physician advice equation
and the F-tests for the exclusion of the identifying variables in the ET
and the EPET-Poisson models.
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Table 4. Marginal effects of other covariates

ET- EPET-
Poisson Poisson

y Pr(y > 0) y > 0

EDITINC 0.047 (0.040) 0.001** (0.001) 0.074** (0.030)
AGE30 0.961 (0.735) -0.027 (0.015) 1.298 (0.869)
AGE40 -0.158 (0.683) -0.049*** (0.016) 0.101 (0.833)
AGE50 -0.991* (0.520) -0.063*** (0.018) -1.071 (0.839)
AGE60 -0.763 (0.646) -0.025 (0.018) -1.396* (0.771)
AGEGT70 -1.192* (0.651) 0.001 (0.020) -2.140*** (0.739)
EDUC -0.101 (0.067) 0.008*** (0.002) -0.324*** (0.086)
BLACK 0.298 (0.663) 0.014 (0.013) -0.930 (0.600)
OTHER -1.068 (0.891) 0.042 (0.026) -3.215*** (1.093)
MARRIED 0.024 (0.541) -0.006 (0.012) -0.500 (0.609)
WIDOW 2.396** (1.087) 0.011 (0.022) 1.308 (1.482)
DIVSEP 2.061** (0.848) 0.009 (0.015) 2.103** (0.978)
EMPLOYED 0.213 (0.538) 0.072*** (0.013) -0.464 (0.711)
UNEMPLOY 5.240*** (1.972) 0.092*** (0.017) 3.286* (1.887)
NORTHE -0.192 (0.516) -0.034*** (0.013) 0.060 (0.783)
MIDWEST -1.284*** (0.474) -0.046*** (0.012) -0.965 (0.703)
SOUTH -1.103** (0.468) -0.043*** (0.012) -0.864 (0.740)

*** significant at 1%; ** significant at 5%; * significant at 10%. Eicker-Huber-White
robust standard errors in parentheses.

Note. y is the number of alcoholic drinks consumed in the last two weeks, Pr(y > 0)
the probability of drinking in the last two weeks and y > 0 the number of alcoholic
drinks consumed in the last two weeks conditional on drinking. Marginal effects are
computed at the sample means of the independent variables.

Table 5. Monte Carlo Simulations: True population parameters

parameter T P y

constant 0 0.5 1.56
T - 1.5 1
x1 2.5 0 0
x2 0 -1.9 0
x3 0 0 -0.8
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Table 6. Montecarlo simulations: Bias and SD

ρη,v = 0.35 ρη,v = −0.35 ρη,v = 0.35 ρTy = −0.35
Parameters ρη,q = 0.35 ρη,q = 0.35 ρη,q = −0.35 ρη,q = −0.35

ρv,q = 0.13 ρv,q = −0.13 ρv,q = −0.13 ρv,q = 0.13

bias SD bias SD bias SD bias SD

EPET-Poisson
ρ̂η,v 0.0036 0.0967 0.0047 0.0978 0.0043 0.0979 0.0057 0.0998
ρ̂η,q 0.0040 0.1333 -0.0039 0.1311 -0.0013 0.1247 -0.0045 0.1292
ρ̂v,q 0.0012 0.0567 -0.0004 0.0563 0.0005 0.0555 -0.0009 0.0553
b̂PT 0.0136 0.1209 0.0018 0.1210 0.0071 0.1174 0.0068 0.1211
b̂yT 0.0008 0.0390 0.0016 0.0383 0.0004 0.0392 0.0031 0.0410
ET-Poisson
ρ̂η,q -0.3257 0.0636 -0.1345 0.0618 -0.4200 0.0633 -0.2185 0.0641
b̂yT 0.7600 0.0657 0.7603 0.0681 0.7777 0.0643 0.7786 0.0647

Note. Monte Carlo simulation study with 1, 000 replications, N=1, 500, and 1, 600
Halton draws. SD ≡ Monte Carlo standard deviation.

Table 7. Monte Carlo simulations: ASE/SD and nominal coverage

ρη,v = 0.35 ρη,v = −0.35 ρη,v = 0.35 ρTy = −0.35
Parameters ρη,q = 0.35 ρη,q = 0.35 ρη,q = −0.35 ρη,q = −0.35

ρv,q = 0.13 ρv,q = −0.13 ρv,q = −0.13 ρv,q = 0.13

ASE/SD Ncov ASE/SD Ncov ASE/SD Ncov ASE/SD Ncov

EPET-Poisson
ρ̂η,v 1.041 95.4 1.015 95.1 1.033 95.8 1.010 95.0
ρ̂η,q 0.992 93.6 0.996 94.4 1.019 94.2 0.990 93.9
ρ̂v,q 1.022 92.9 1.032 92.5 1.039 94.2 1.023 94.0
b̂PT 1.014 94.9 0.971 94.5 1.003 95.6 1.010 95.4
b̂yT 1.012 94.8 0.994 94.3 1.001 95.0 0.968 94.0
ET-Poisson
ρ̂η,q 1.109 0.02 1.139 53.5 1.123 0 1.131 11.6
b̂yT 1.623 0 1.607 0 1.648 0 1.634 0

Note. ASE/SD ≡ (average standard error / Montecarlo standard deviation). Ncov ≡
nominal coverage (%).
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Table 8. Montecarlo simulations: Bias and SD

ρη,v = 0.78 ρη,v = −0.78 ρη,v = 0.78 ρTy = −0.78
Parameters ρη,q = 0.78 ρη,q = 0.78 ρη,q = −0.78 ρη,q = −0.78

ρv,q = 0.61 ρv,q = −0.61 ρv,q = −0.61 ρv,q = 0.61

bias SD bias SD bias SD bias SD

EPET-Poisson
ρ̂η,v 0.0027 0.0667 0.0046 0.0635 0.0026 0.0683 0.0053 0.0666
ρ̂η,q -0.0024 0.0790 -0.0011 0.0797 0.0004 0.0743 -0.0016 0.0764
ρ̂v,q -0.0012 0.0699 0.0016 0.0709 0.0008 0.0663 0.0014 0.0669
b̂PT 0.0053 0.1345 0.0006 0.1122 0.0108 0.1104 0.0073 0.1352
b̂yT -0.0014 0.0364 0.0001 0.0344 -0.0005 0.0364 0.0005 0.0384
ET-Poisson
ρ̂η,q -0.4849 0.0602 -0.3051 0.0589 -0.9426 0.0647 -0.7292 0.0668
b̂yT 0.7398 0.0663 0.7504 0.0679 0.7904 0.0593 0.7908 0.0616

Note. Monte Carlo simulation study with 1, 000 replications, N=1, 500, and 1, 600
Halton draws. SD ≡ Monte Carlo standard deviation.

Table 9. Monte Carlo simulations: ASE/SD and nominal coverage

ρη,v = 0.78 ρη,v = −0.78 ρη,v = 0.78 ρTy = −0.78
Parameters ρη,q = 0.78 ρη,q = 0.78 ρη,q = −0.78 ρη,q = −0.78

ρv,q = 0.61 ρv,q = −0.61 ρv,q = −0.61 ρv,q = 0.61

ASE/SD Ncov ASE/SD Ncov ASE/SD Ncov ASE/SD Ncov

EPET-Poisson
ρ̂η,v 0.983 93.8 1.004 94.1 0.970 93.0 0.989 93.3
ρ̂η,q 1.036 94.9 0.999 94.4 1.025 94.7 1.021 95.8
ρ̂v,q 2.337 94.1 7.157 92.8 3.472 92.9 2.523 93.0
b̂PT 1.006 95.3 0.981 95.3 1.007 94.3 0.994 95.6
b̂yT 0.997 95.5 0.988 94.8 0.984 95.3 0.965 93.7
ET-Poisson
ρ̂η,q 1.076 0 1.047 0 1.079 0 1.123 0
b̂yT 1.546 0 1.650 0 1.818 0 1.670 0

Note. ASE/SD ≡ (average standard error / Montecarlo standard deviation). Ncov ≡
nominal coverage (%).


