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Minimal model SG overestimation and SI underestimation:
improved accuracy by a Bayesian two-compartment model

CLAUDIO COBELLI,1 ANDREA CAUMO,2 AND MATTEO OMENETTO1

1Department of Electronics and Informatics, University of Padova, 35131 Padova;
and 2Scientific Institute San Raffaele, 20132 Milano, Italy

Cobelli, Claudio, Andrea Caumo, and Matteo Omen-
etto. Minimal model SG overestimation and SI underestima-
tion: improved accuracy by a Bayesian two-compartment
model. Am. J. Physiol. 277 (Endocrinol. Metab. 40): E481–
E488, 1999.—The intravenous glucose tolerance test (IVGTT)
single-compartment minimal model (1CMM) method has
recently been shown to overestimate glucose effectiveness
and underestimate insulin sensitivity. Undermodeling, i.e.,
use of single- instead of two-compartment description of
glucose kinetics, has been advocated to explain these limita-
tions. We describe a new two-compartment minimal model
(2CMM) into which we incorporate certain available knowl-
edge on glucose kinetics. 2CMM is numerically identified
using a Bayesian approach. Twenty-two standard IVGTT
(0.30 g/kg) in normal humans were analyzed. In six subjects,
the clamp-based index of insulin sensitivity (SI

c) was also
measured. 2CMM glucose effectiveness (SG

2 ) and insulin sen-
sitivity (SI

2) were, respectively, 60% lower (P , 0.0001) and
35% higher (P , 0.0001) than the corresponding 1CMM SG

1

and SI
1 indexes: 2.81 6 0.29 (SE) vs. SG

1 5 4.27 6 0.33
ml·min21 ·kg21 and SI

2 5 11.67 6 1.71 vs. SI
1 5 8.68 6 1.62 102

ml·min21 ·kg21 per µU/ml. SI
2 was not different from SI

c 5
12.61 6 2.13 102 ml·min21 ·kg21 per µU/ml (nonsignificant),
whereas SI

1 was 60% lower (P , 0.02). In conclusion, a new
2CMM has been presented that improves the accuracy of
glucose effectiveness and insulin sensitivity estimates of the
classic 1CMM from a standard IVGTT in normal humans.

glucose effectiveness; insulin sensitivity; glucose kinetics;
glucose clamp technique

THE SINGLE-COMPARTMENT minimal model (1CMM)
method (4) is widely used in clinical and epidemiologi-
cal studies to estimate indexes of glucose effectiveness
(SG) and insulin sensitivity (SI) from an intravenous
glucose tolerance test (IVGTT). However, recent re-
ports indicate that SG is overestimated (11, 18, 20) and
SI underestimated (22). Undermodeling of glucose kinet-
ics by 1CMM during the highly dynamic IVGTT pertur-
bation, i.e., the use of a single- instead of a two-
compartment description, has been advocated to explain
SG overestimation and SI underestimation (8–10). Un-
fortunately, a two-compartment model is only resolv-
able if a tracer is added to the IVGTT bolus (7, 14, 23).
However, the labeled IVGTT is not going to reach the
widespread application of the standard IVGTT because
of the additional technicalities and costs involved. It is
therefore of interest to determine whether use of cer-

tain available a priori knowledge on glucose kinetics
allows us to resolve a two-compartment model.

This was exactly the aim of this paper. We formulated
a two-compartment minimal model (2CMM) by append-
ing a second, nonaccessible compartment to the classic
1CMM. Theory shows that resolution of this 2CMM
from an IVGTT requires a priori knowledge on glucose
exchange kinetics. We incorporated such knowledge
(12, 13, 17, 19) into the 2CMM in a probabilistic context
by using the Bayesian approach (24). Indexes of glucose
effectiveness and insulin sensitivity were then derived
from the 2CMM and compared with those provided by
the 1CMM. In addition, in a subset of six subjects (6 of
22), the indexes of insulin sensitivity provided by the
two minimal models were also compared with the
insulin sensitivity index provided by the glucose clamp
technique. Our results in normal humans show that
this approach is able to improve the accuracy of SG and
SI estimation of the 1CMM from a standard IVGTT.

MATERIALS AND METHODS

The IVGTT Data Base

Twenty-two standard IVGTT [dose 302 6 7 (SE) mg/kg]
performed in normal humans (age 28 6 1 yr; body weight
72 6 2 kg) were considered. Sixteen IVGTT have already been
published (2, 3, 23), whereas six are new. In these last six
subjects, insulin sensitivity was also measured by the eugly-
cemic hyperinsulinemic clamp technique, with insulin in-
fused at 1 mU·min21 ·kg21 (16; and unpublished data of Dr.
R. C. Bonadonna). The protocol was approved by the ethical
committee of the University of Verona, School of Medicine,
Verona, Italy).

The Single-Compartment Minimal Model

The classic 1CMM (Fig. 1A) (4, 13) can be conveniently
written with its uniquely identifiable parameters as

Q̇(t) 5 2[p1 1 X(t)]Q(t) 1 p1Qb Q(0) 5 Qb 1 D (1)

Ẋ(t) 5 2p2X(t) 1 p3[I(t) 2 Ib] X(0) 5 0 (2)

G(t) 5 Q(t)/V (3)

where Q is glucose mass (mg/kg), with Qb denoting its basal
(end-test) steady-state value; D is the glucose dose (mg/kg); X
is a variable related to insulin concentration (deviation from
basal) in a compartment remote from plasma, X(t) 5
(k41k6)I8(t), where k4 and k6 are rate parameters (min21); I(t)
is plasma insulin concentration (µU/ml), with Ib denoting its
basal value; G is plasma glucose concentration, with Gb
denoting its basal value; V is the distribution volume per unit
body weight (ml/kg); and p15 k11k5, p2 5 k3, and p3 5
k2(k41k6) are rate parameters expressed in min21, min21, and

The costs of publication of this article were defrayed in part by the
payment of page charges. The article must therefore be hereby
marked ‘‘advertisement’’ in accordance with 18 U.S.C. Section 1734
solely to indicate this fact.
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min22 ·µU21 ·ml, respectively. Clearly one has Qb 5 GbV. From
the 1CMM one can derive indexes of glucose effectiveness
(SG

1 ) and insulin sensitivity (SI
1)

SG
1 5 2

­Q̇(t)

­G(t)
5 p1V 5 SGV (ml·min21 ·kg21) (4)

SI
1 5

2
­2Q̇(t)

­I(t)­G(t)
5

p3

p2
V 5 SIV (ml·min21·kg21 per µU/ml)

(5)

where the subscript ss denotes steady state.
It is important to note that SG

1 and SI
1, at variance with the

fractional (i.e., per unit volume) indexes SG and SI commonly
expressed elsewhere, have the same units of the analogous
glucose clamp indexes, thus allowing a direct comparison
(10). Also, because the 1CMM and 2CMM have different
accessible pool volumes (see Model structure), the choice of
these indexes is the most appropriate for comparing the two
models.

The 1CMM parameters were estimated (4, 6, 14) by
weighted nonlinear least squares [using the ADAPT software
(15), see Bayesian identification] with weights optimally
chosen, i.e., equal to the inverse of the variance of the glucose
measurement error assumed to be additive, independent,
Gaussian zero mean, and with a constant coefficient of
variation (CV) of 2%. Precision of parameter estimates was
obtained from the inverse of the Fisher information matrix
(6). As normally done with the 1CMM, the first 8- to 10-min
glucose samples were ignored in model identification. The
glucose dose administration was described as a 1-min rectan-
gular infusion.

The Two-Compartment Minimal Model

Model structure. The 2CMM is the natural evolution of the
classic 1CMM: a second, nonaccessible compartment is ap-
pended to it (Fig. 1, B), and the only difference is the exchange
between the accessible and nonaccessible pools. It is de-
scribed by

Q̇1(t) 5 2[p1 1 k21 1 X(t)]Q1(t) 1 k12Q2(t) 1 p1Q1b

Q1(0) 5 Q1b
1 D

(6)

Q̇2(t) 5 k21Q1(t) 2 k12Q2(t) Q2(0) 5 Q2b (7)

Ẋ(t) 5 2p2X(t) 1 p3[I(t) 2 Ib] X(0) 5 0 (8)

G(t) 5 Q1(t)/V1 (9)

where Q1 and Q2 (mg/kg) denote the glucose masses in the
accessible and nonaccessible compartments, respectively, with
subscript b denoting their basal (end-test) steady-state val-
ues; V1 is the volume of the accessible compartment (ml/kg);
k12 and k21 (min21) are rate parameters describing glucose
exchange kinetics; D, G, I, X, p1, p2, and p3 are variables and
parameters already defined for the 1CMM. One has Q1b 5
GbV1, and thus Q1(0) has a similar expression to Q(0) of Eq. 1,
with V1 in place of V. Q2(0) is k21Q1b/k12 from the steady-state
constraint.

From the 2CMM one can calculate, as for the 1CMM,
indexes of glucose effectiveness (at basal insulin) and insulin
sensitivity. The 2CMM glucose effectiveness (SG

2 ; superscript
‘‘2’’ denotes the second compartment) is

SG
2 5 2

­Q̇1(t)

­G(t)
5 p1V1 5 SGV1 (ml·min21 ·kg21) (10)

and insulin sensitivity (SI
2) is

SI
2 5 2

­2Q̇1(t)

­I(t)­G(t)
5

p3

p2
V1

5 SIV1 (ml·min21·kg21 per µU/ml)

(11)

The 2CMM differs from the 1CMM only in allowing an
exchange of glucose between the accessible and the nonacces-
sible compartment, i.e., the terms k21Q1 and k12Q2 in Eqs. 1
and 2 (cf. Fig. 1). Unfortunately, this small added complexity
brings a priori identifiability problems. By employing the a
priori identifiability analysis method for nonlinear models
described in Ref. 6, it can be shown (see APPENDIX A) that only
V1, p2, and p3 are uniquely identifiable, whereas p1, k21, and
k12 are not. In particular, one can only estimate their aggre-
gates p11k21 and k21k12. This means that unique identifiabil-
ity of the 2CMM can only be reached by resorting to addi-
tional independent knowledge of glucose exchange kinetic
parameters k21 and k12.

Glucose tracer kinetic studies do in principle contain this
information. We have reanalyzed published tracer bolus
injection data obtained in the basal state in normal humans
(12, 13, 17, 19) with a two-compartment model corresponding
to that of Fig. 1B, i.e., with no irreversible loss from the
nonaccessible pool. The model has been numerically identi-
fied in fourteen subjects, and population values of k21 and k12
were obtained (in addition to values of V1 and k01). This
kinetic knowledge has been used to resolve the 2CMM with
the strategy described in Bayesian identification.

Bayesian identification. Bayesian estimation allows a flex-
ible, theoretically sound incorporation of a priori knowledge

Fig. 1. The classic single-compartment minimal model (1CMM, A)
and the two-compartment minimal model (2CMM, B). For meaning
of abbreviated terms, see MATERIALS AND METHODS.
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into model identification. In particular, the so-called Maxi-
mum a Posteriori (MAP) Bayesian estimator (24) was chosen.
Briefly, the unknown model parameters are partitioned into
two uncorrelated components. The first is formed by V1, p1, p2,
and p3, of which we assume to have no a priori knowledge, i.e.,
their estimates will be data driven. The second component is
formed by the glucose exchange kinetic parameters k21 and
k12, of which we assume to have some prior knowledge
available, i.e., their estimates will be both data and a priori
knowledge driven. In particular, from the above reanalysis of
basal state tracer data, k21 and k12 are assumed to be
normally distributed, with means and standard deviations of
0.050 6 0.013 and 0.070 6 0.018 min21, respectively, and with
a correlation coefficient of 0.90.

The cost function for a MAP Bayesian estimator is similar
to that of weighted nonlinear least squares, with an addi-
tional term pertaining to k21 and k12 a priori knowledge
(APPENDIX B, Eq. B3). As for the 1CMM, weights were chosen
optimally, and precision of parameter estimates was obtained
from the inverse of the Fisher information matrix (6). All
glucose data (usually starting from 2 min) were used in model
identification. A 1-min rectangular infusion was used to
describe the glucose administration format. Parameter esti-
mation was performed with the ADAPT software (15), which
contains a MAP Bayesian estimation feature.

Glucose Clamp Insulin Sensitivity

Insulin sensitivity measured with the euglycemic hyperin-
sulinemic glucose clamp technique (SI

c) was calculated as in
Ref. 3a

SI
c 5

DGIR

Gb·DI
(ml·min21 ·kg21 per µU/ml) (12)

where DGIR and DI are increments of the exogenous glucose

infusion rate and plasma insulin concentration, respectively,
and Gb is basal plasma glucose concentration.

Statistical Analysis

Results are given as means 6 SE. Student’s t-test for
paired data was used to evaluate differences between
indexes estimated with 1CMM, 2CMM, and the glucose
clamp. In addition, the value of SI

c has been compared
with the 2CMM and the 1CMM by the use of a
statistical approach that assesses the agreement be-
tween two methods for measuring a clinical variable by
displaying on the y-axis the difference between meth-
ods and on the x-axis the mean of the two methods (1).

RESULTS

The individual results of Bayesian identification of
the 2CMM are shown in Tables 1 and 2; Fig. 2 shows
the mean weighted residuals. The residuals (Fig. 2)
have a satisfactory behavior, in terms of both pattern
and amplitude: in particular, the 2CMM (A) is able to
describe the initial portion of the IVGTT (8–10 min),
which is not possible with the 1CMM (B). Parameters
were generally estimated with an acceptable precision
(Tables 1 and 2). In a few circumstances, the exchange
kinetic parameters, and particularly so k12, were diffi-
cult to resolve with precision. As expected, the 2CMM
accessible pool volume was lower than the 1CMM
volume (128.9 6 7.4 vs. 152.9 6 5.2 ml/kg).

The individual estimates of 2CMM (SG
2 , SI

2) and
1CMM (SG

1 , SI
1) and glucose effectiveness and insulin

sensitivity shown in Table 2 are summarized in Fig. 3,

Table 1. 2CMM parameter estimation results

Subject No.

Parameters

V1, ml/kg k21, min21 k12, min21 p1, min21 p2, min21 p3, 103 ml·min22 ·kg21 per µU/ml

1 129.5 (3) 0.0681 (14) 0.1110 (11) 0.021 (34) 0.0445 (29) 1.657 (43)
2 141.1 (2) 0.0044 (213) 0.0098 (140) 0.030 (34) 0.0140 (25) 0.738 (58)
3 132.0 (2) 0.0060 (171) 0.0041 (340) 0.023 (51) 0.0190 (136) 0.389 (66)
4 151.1 (2) 0.0057 (174) 0.0141 (111) 0.010 (105) 0.0489 (40) 1.256 (27)
5 97.7 (3) 0.1113 (9) 0.1842 (7) 0.039 (13) 0.0374 (14) 4.190 (14)
6 122.5 (3) 0.1226 (9) 0.1971 (7) 0.029 (26) 0.0515 (14) 4.406 (27)
7 101.7 (6) 0.1616 (7) 0.2553 (6) 0.058 (28) 0.0603 (32) 5.198 (44)
8 196.2 (4) 0.0111 (95) 0.0018 (740) 0.013 (94) 0.0216 (68) 4.524 (32)
9 178.3 (2) 0.0129 (54) 0.0037 (101) 0.006 (116) 0.0333 (36) 2.933 (26)

10 156.9 (3) 0.0077 (85) 0.0208 (62) 0.022 (16) 0.0540 (43) 1.230 (28)
11 145.1 (4) 0.0504 (19) 0.1087 (13) 0.022 (42) 0.0385 (58) 3.846 (66)
12 129.5 (3) 0.0240 (35) 0.0150 (47) 0.009 (145) 0.0582 (23) 5.657 (23)
13 72.8 (3) 0.1110 (8) 0.1610 (6) 0.037 (10) 0.0314 (10) 6.356 (16)
14 95.3 (4) 0.1042 (10) 0.1544 (9) 0.021 (26) 0.0476 (6) 8.153 (12)
15 164.5 (5) 0.0047 (215) 0.0152 (87) 0.016 (40) 0.0367 (61) 3.854 (32)
16 168.9 (1) 0.0089 (116) 0.0018 (755) 0.014 (77) 0.0142 (165) 1.235 (22)
17 173.1 (5) 0.0163 (51) 0.0035 (241) 0.004 (371) 0.0272 (83) 2.967 (62)
18 124.4 (2) 0.0120 (92) 0.0173 (89) 0.030 (48) 0.0147 (44) 0.906 (128)
19 109.0 (4) 0.0958 (11) 0.1552 (8) 0.017 (69) 0.0394 (34) 3.788 (61)
20 94.1 (7) 0.1099 (9) 0.1653 (7) 0.027 (69) 0.0283 (65) 3.092 (102)
21 84.6 (5) 0.1254 (8) 0.1920 (7) 0.067 (21) 0.0356 (65) 2.814 (101)
22 68.2 (5) 0.1019 (10) 0.1552 (9) 0.020 (41) 0.0167 (26) 0.771 (30)

Mean6SE 128.967.4 0.058060.011 0.088560.018 0.02460.003 0.035160.003 3.18060.43

Mean Precision (4) (64) (127) (67) (9) (46)

Values in parentheses show precision of estimate expressed as percent coefficient of variation. 2CMM, two-compartment minimal model. For
meaning of parameters, see MATERIALS AND METHODS.
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together with the insulin sensitivity clamp index
(SI

c). SG
2 was almost one-half of (P , 0.0001) SG

1 [2.81 6
0.29 (SE) vs. 4.27 6 0.33 ml·min21 ·kg21] and SI

2 was
35% higher (P , 0.0001) than SI

1 (11.67 6 1.71 vs.
8.68 6 1.62 102 ml·min21 ·kg21 per µU/ml). Precision of

the 2CMM indexes was comparable to that of the
1CMM indexes: standard deviations are virtually the
same for SG

2 , SG
1 and SI

2, SI
1, whereas the CV is greater for

SG
2 (less for SI

2), because the parameter estimate is less
(greater for SI

2).

Fig. 2. Mean weighted residuals, i.e., difference be-
tween data and model predictions divided by the stan-
dard deviation averaged over all subjects, of the 2CMM
(A) and 1CMM (B).

Table 2. Glucose effectiveness and insulin sensitivity estimated from the 2CMM and the 1CMM minimal models,
and insulin sensitivity measured in 6 subjects by the glucose clamp technique

Subject No.

Glucose Effectiveness, ml·min21 ·kg21 Insulin Sensitivity, 102 ml·min21 ·kg21 per µU/ml

SG
2 SG

1 SI
2 SI

1 SI
c

1 2.72 (33)° 5.32 (10) 4.82 (17) 2.52 (15)
2 4.26 (34) 5.07 (3) 7.47 (71) 5.74 (9)
3 3.02 (50) 3.84 (39) 2.70 (171) 1.78 (108)
4 1.45 (104) 1.84 (79) 3.88 (34) 3.56 (19)
5 3.82 (11) 4.35 (13) 10.94 (3) 10.50 (4)
6 3.55 (23) 6.79 (36) 10.48 (17) 2.75 (198)
7 5.91 (23) 7.43 (71) 8.77 (18) 5.47 (113)
8 2.63 (92) 5.13 (130) 41.15 (53) 39.07 (6)
9 1.11 (115) 3.95 (24) 15.71 (28) 9.31 (14)

10 3.49 (16) 2.88 (13) 3.58 (24) 3.88 (10)
11 3.21 (40) 4.07 (36) 14.51 (11) 10.34 (23)
12 1.12 (142) 6.77 (45) 12.58 (25) 3.88 (105)
13 2.69 (9) 3.13 (8) 14.73 (9) 13.98 (9)
14 2.04 (23) 3.24 (17) 16.33 (11) 12.32 (15)
15 2.68 (41) 3.95 (21) 17.28 (36) 11.88 (23)
16 2.29 (77) 3.55 (24) 14.73 (179) 12.54 (15)
17 0.64 (366) 4.71 (58) 18.86 (55) 10.21 (41) 18.15
18 3.72 (48) 3.98 (11) 7.65 (101) 4.87 (28) 8.50
19 1.87 (66) 2.99 (152) 10.48 (31) 7.50 (147) 19.20
20 2.58 (62) 2.85 (168) 10.29 (43) 9.93 (121) 10.50
21 5.68 (16) 6.44 (62) 6.68 (42) 6.01 (177) 14.72
22 1.33 (37) 1.75 (66) 3.16 (8) 2.93 (13) 4.60

Mean6SE 2.8160.29 4.2760.33 11.6761.71 8.6861.62 12.6162.13

Mean Precision (65) (49) (45) (55) SI
2 59.5261.98

SI
1 56.9161.07

Values in parentheses show precision of estimate expressed as percent coefficient of variation. SG
2 and SG

1 , glucose effectiveness in the 2CMM
and single-compartment minimal model (1CMM), respectively. SI

2 and SI
1, insulin sensitivity in the 2CMM and 1CMM, respectively. SI

c, SI
measured in subjects 17–22 by glucose clamp technique.
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Of interest is the comparison of SI
2 and SI

1 with the
glucose clamp measure SI

c in the subsample of six
subjects. SI

2 was not statistically different from SI
c

[9.52 6 1.98 (SE) vs. 12.61 6 2.13 102 ml·min21 ·kg21

per µU/ml], whereas SI
1 (6.91 6 1.07) was significantly

lower (P , 0.02). To better assess the agreement of SI
2

and SI
1 with SI

c, the ‘‘difference against average of
methods’’ comparison plots were examined (Fig. 4). The
small amount of data prevents any definite conclusion.
However, one can safely say that 2CMM SI

2 underesti-
mates SI

c (B) much less than 1CMM SI
1 (A).

DISCUSSION

One of the assumptions of the 1CMM method is that
glucose exhibits single-compartment kinetics. To favor
the domain of validity of this assumption, the initial
portion of the glucose concentration data (usually the
first 8–10 min) is not used in model identification. In
fact, albeit the necessity of a two-compartment descrip-
tion of glucose kinetics in a highly dynamic nonsteady
state like the IVGTT is a well-established notion, it is
virtually impossible to resolve from an IVGTT a two-
compartment model without the addition of a glucose
tracer. However, evidence has become available that
undermodeling of glucose kinetics, i.e., the use of a one-
instead of a two-compartment description, is the major
factor responsible for 1CMM overestimation of SG and
underestimation of SI (8–11). The goal of this paper was
to improve on these 1CMM limitations by exploiting
available knowledge on glucose kinetics and by using a
Bayesian approach to identify a 2CMM.

The new 2CMM provides estimates of glucose effec-
tiveness, SG

2 , and insulin sensitivity, SI
2, which improve

Fig. 3. Indexes of glucose effectiveness (SG) and insulin sensitivity (SI) for the 1CMM (SG
1 , SI

1) and the 2CMM (SG
2 ,

SI
2). Insulin sensitivity measured with the glucose clamp technique (SI

c) is also shown and compared with SI
1 and SI

2 in
the same subset of subjects. Data are expressed as means 6 SE.

Fig. 4. Insulin sensitivity comparison of the glucose clamp method,
with 1CMM (A) and the 2CMM (B) minimal model methods. Differ-
ence between methods (y-axis) is shown against the average of the
methods (x-axis) with regression line.
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the accuracy of the 1CMM SG
1 and SI

1 (Fig. 3): SG
2 5

2.81 6 0.29 ml·min21 ·kg21 is almost one-half of the
value of SG

1 , and SI
2 5 11.67 6 1.71 102 ml·min21 ·kg21

per µU/ml is 35% higher than SI
1. These values are in

agreement with recently published values measured
with the glucose clamp technique in normal humans.
Best et al. (5) report for glucose effectiveness measured
with the glucose clamp, SG

c , a value of 2.4 ml·min21 ·
kg21 and a value for the 1CMM SG

1 (using the 1CMM
volume of 150 ml/kg) 62% higher than SG

c . Saad et al.
(22) report for SI

c a value of 10.1 102 ml·min21 ·kg21 per
µU/ml, and for the 1CMM SI

1 (using the 1CMM volume
of 150 ml/kg) a value 53% lower than SI

c. This trend is
also confirmed by the glucose clamp insulin sensitivity
measurements we perfomed in a subset of subjects: SI

2,
but not SI

1, was not different from SI
c (Fig. 3), and

association of SI
2 with SI

c is stronger than that with SI
1

(Fig. 4).
Theory indicates that resolving a 2CMM from a

standard (nonlabeled) IVGTT requires independent
knowledge of glucose kinetics. A theoretically sound
approach to incorporate such knowledge in probabilis-
tic terms is the so-called MAP Bayesian approach (24),
which, although frequently used in pharmacokinetic/
pharmacodynamic studies (see references in Ref. 15),
has not yet been fully exploited in the endocrine-
metabolic area. The glucose kinetic parameters k21 and
k12 are described as Gaussian variables, with their
mean, variance, and covariance determined from inde-
pendent studies. The theory of this approach is well
established (24), and software for Bayesian model
identification is available (15). The results were very
satisfactory both in terms of capability of the model to
describe the data (Fig. 2) and in terms of parameter
estimation (Tables 1 and 2).

The structure chosen for the 2CMM follows in some
sense a minimum assumption strategy, i.e., the added
complexity to the 1CMM (Fig. 1A) is simply a nonacces-
sible compartment attached to it (Fig. 1B). However,
one should note that this description of glucose kinet-
ics, i.e., with a time-varying irreversible loss in the
accessible pool and no loss in the nonaccessible pool, is
equivalent to that proposed by Radziuk et al. (21),
which has become the most widely used model to
analyze non-steady-state glucose kinetics. Although
the description of glucose kinetics incorporated into the
2CMM is reasonable, the question arises of its physi-
ological plausibility compared with other descriptions
that have been proposed in the literature. Other com-
monly used structures also have a constrained irrevers-
ible loss in the nonaccessible pool (13, 17, 21). The use
of an irreversible loss in the nonaccessible pool (even
without the one in the accessible pool) means addi-
tional complexity: in fact, a new parameter is required
in the 2CMM to separate the effect of insulin on glucose
production from that on glucose utilization (this is not
required with an irreversible loss in the accessible pool
only). A priori knowledge of this additional parameter
is scarce and would make even the Bayesian approach a
difficult route to follow. Therefore, the proposed descrip-

tion of glucose kinetics is a reasonable necessity. An
important plus of the chosen structure with a single
irreversible loss in the accessible pool is that it is the
one that makes the glucose exchange parameters k21
and k12 less dependent on insulin levels with respect to
structures with an irreversible loss also, or exclusively,
in the nonaccessible pool; (when the basal and elevated
insulin data of Refs. 13 and 17 are reanalyzed with this
model, k21 and k12 in the elevated insulin state are not
statistically different from the basal ones). Thus with
respect to other models, the chosen structure makes the
assumption that k21 and k12 do not vary appreciably
during the IVGTT more tenable.

The glucose clamp technique is considered in the
literature the gold standard for measuring insulin
sensitivity. The availability of this measure in a subset
of subjects (n 5 6) thus allows us to address the validity
of the 1CMM and the 2CMM measurements. Usually
this comparison is made in the literature by resorting
to correlation plots and correlation coefficients (see,
e.g., Ref. 22) as indicators of agreement. However, this
strategy is not the most appropriate one (1). A plot of
the difference against the mean of the methods is more
informative (1) (Fig. 4). Albeit the amount of data is
small, one can state that 2CMM SI

2 is providing much
closer values to SI

c (B) than 1CMM SI
1 (A). However, an

underestimation is still present and, in addition, one
can note an increase of the difference between the two
methods with the increase of the insulin sensitivity
value. Another issue of relevance here is more general:
do we really have to expect a ‘‘one to one’’ concordance
between the minimal model and the glucose clamp
methods? In the literature there is almost a unanimous
consensus on the glucose clamp technique being consid-
ered the gold standard. The answer is yes in theory,
because both methods rely on the same insulin sensitiv-
ity definition. In practice, however, for SI

2 (and SI
1) to be

equivalent to SI
c, a number of conditions must be met

(also described in Ref. 10), the most important of which
are that 1) insulin dose independence of the glucose
clamp technique across the insulin range experienced
during an IVGTT, i.e., insulin effect of the aggregation
of glucose production and utilization, increases linearly
with insulin concentration, and that 2) the 2CMM
description of glucose kinetics and their control by
insulin is ‘‘correct.’’ There is good evidence that neither
of these requirements is fully met. For instance, the
nonlinear effect of insulin on glucose production is a
well accepted notion, and this renders the glucose
clamp measurement of ‘‘local’’ validity, i.e., dose depen-
dent. On the other hand, the way in which the 2CMM
depicts glucose production, distribution, and utilization
bears some approximation, e.g., glucose utilization may
not be accurately described by the single accessible pool
irreversible loss, and the description of glucose and
insulin control on glucose production embodied in the
2CMM (and 1CMM) may be too rude. Given this
scenario, one should interpret with caution the plots of
Fig. 4: the reassuring ‘‘take home message’’ is the closer
association with SI

c of SI
2 than of SI

1.
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In conclusion, a new 2CMM approach for the estima-
tion of glucose effectiveness and insulin sensitivity
from an IVGTT has been presented that improves on
the 1CMM limitation. The present studies in normal
humans are an obvious prerequisite, but further work
is needed to assess the reliability of this approach. For
instance, investigations are required to better define
the role of the description of glucose production cur-
rently embodied in the 2CMM and to assess the reliabil-
ity of the Bayesian approach in other situations, like
the insulin-modified IVGTT, and pathophysiological
states.

APPENDIX A

We analyze here the a priori identifiability of the 2CMM
described by Eqs. 6–9. The model is nonlinear, and one has to
resort to the Taylor series expansion of the measured vari-
able, i.e., glucose concentration, around time 0 (immediately
after the bolus) to check a priori identifiability (6). The
unknown parameters are p1, p2, p3, k21, k12, and V1. The
exhaustive summary of the model is given by

Gb 1
D

V1
5 G(0) (A1)

2(p1 1 k21) ·
D

V1
5 GI(0) (A2)

(p1 1 k21)2 ·
D

V1
1 k12 ·k21 ·

D

V1
5 GII(0) (A3)

2(p1 1 k21)3 ·
D

V1
2 2·k12 ·k21 · (p1 1 k21) ·

D

V1

2 k12
2 ·k21 ·

D

V1
1 2p3 · 1Gb 1

D

V1
2 · İ(0) 5 GIII(0)

(A4)

where G(0), GI(0), GII(0), GIII(0), and GIV(0) are the known
glucose concentration and its first, second, third, and fourth
derivatives at time 0; (the fifth derivative does not add
independent knowledge).

By solving the system of Eqs. A1–A5, one sees immediately
that whereas Eqs. A1, A2, and A3 give V1, p1 1 k21, and k12k21,
respectively, Eqs. A4 and A5 only provide a relationship
between k12 and p3 and among k12, p3, and p2, respectively.
Therefore, the model is a priori nonidentifiable, and unique
identifiability can only be reached by using an independent
additional relationship between k21 and k12.

APPENDIX B

We briefly review here some fundamentals of Bayesian
estimation.

Consider the problem of estimating a parameter vector p 5
(p1, ..., pP)T from a set of N noisy measurements

zi 5 y(ti, p) 1 vi i 5 1, . . . , N (B1)

where y(ti, p) is the model prediction at time ti, and vi denotes
the (additive) error that affects the i-th measurement zi. To
solve the problem, a commonly used approach is nonlinear
least squares (LS) (6). A more sophisticated but less used
approach is maximum a posteriori (MAP) estimation. The
major difference between these two approaches is that MAP
estimation exploits not only the data but also certain a priori
available statistical information on the unknown parameters.
In other words, while LS is a Fisherian approach to param-
eter estimation, i.e., data are the only information supplied to
the estimator, MAP is a Bayesian approach, i.e., a priori
information, e.g., obtained from population studies, is used in
addition to the data (termed a posteriori information) in the
numerical estimation of the model parameters. Bayesian
estimation can be of relevant interest because it can signifi-
cantly improve the precision of parameter estimates with
respect to Fisher estimation or allow (as in this paper) the
adoption of more complex, and thus more physiologically
plausible, models than those resolvable by a Fisherian ap-
proach. Clearly, one has to pay a price for this, i.e., the supply
of a priori information.

Let’s now turn to a more formal framework. As previously
stated, Bayesian estimation is based on the concept of a priori
information on the unknown parameter vector p, mathemati-
cally specified by its a priori probability density function fp.
For instance, one can expect a priori, i.e., before having ‘‘seen’’
the data vector z 5 (z1, ..., zN)T, that the unknown vector p is
sampled from a normal distribution with mean µ and covari-
ance matrix V. After having ‘‘observed’’ the data vector z, the
probability density function from which we expect that p is
sampled obviously changes. This function, conditional on the
data vector z, goes under the name of an a posteriori
probability density function and is denoted by fp0z (p0z); (p0z
reads as ‘‘p given z’’ and stays for ‘‘p given the data z’’). The

MAP estimate of p is the vector p̂, which maximizes the a
posteriori probability density function fp0z(p0z)

p̂ 5 arg max
p

fp 0z (p 0z) (B2)

Equation B2 gives the general definition of the MAP
estimator. In practical applications, the functional in the
right side of Eq. B2 depends on the specific form of both fp(p)
and noise statistics in Eq. B1. For example, if vector p is
Gaussian, with mean µ and covariance matrix V, and the
measurement errors vi are also Gaussian, with zero mean and
variance si

2, by applying the Bayes theorem it is easily shown
(see Ref. 24 for details) that Eq. B2 turns into

p̂ 5 arg min
p 5o

i51

N

3zi 2 yi(ti, p)

si
2 4

2

1 [p 2 µ]TV21[p 2 µ]6 (B3)

(p1 1 k21)4 ·
D

V1
1 3·k12 ·k21 · (p1 1 k21)2 ·

D

V1
1 2·k12

2 ·k21 · (p1 1 k21) ·
D

V1
1 k12

2 ·k21 · (k12 1 k21) ·
D

V1
2 p3 · 1Gb 1

D

V1
2· Ï(0) 1

p3 · 33·(p1 1 k21) ·
D

V1
1 p2 · 1Gb 1

D

V1
21 (p1 1 k21) · 1Gb 1

D

V1
24 · İ(0) 5 GIV(0)

(A5)
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It is worth noting that in the cost function of Eq. B3 there are
two contributions. The first term, which coincides with the
cost function of LS estimation (6), measures the goodness of
fit, i.e., the adherence to the a posteriori information. The
second term weights the adherence of the candidate estimate
to the available a priori knowledge of the parameter vector.
This is why Bayes estimators are said to establish a trade-off
between a priori and a posteriori information, linked to
expectations and data, respectively. It is also worth noting
that if the a priori knowledge becomes weaker and weaker
(i.e., the covariance matrix V tends to infinity), the last term
of Eq. B3 can be neglected, and the MAP estimator collapses
into the LS estimator (only a posteriori information, i.e., the
data, are exploited).

In the 2CMM, the vector p is made up of two components,
i.e., p 5 [k0q]T, with k 5 [V1,p1,p2,p3]T, and q 5 [k1,k12]T; µ is
the vector of the a priori mean of p, i.e., µ 5 [µk,µq]T, and V is
the a priori covariance matrix of p. V is made up of two
components, Vk and Vq, related to k and q, respectively,
which are uncorrelated, and this brings the zero value of the
off-diagonal components

V 5 3
Vk 0

0 Vq
4 (B4)

Because no a priori knowledge is imposed on k (data-driven
parameters), the 4 3 4 Vk matrix has its diagonal elements,
i.e., the variances equal to infinity and its off-diagonal
elements equal to zero. In contrast, we impose a priori
knowledge on q, i.e., Vq is a 2 3 2 matrix with its diagonal and
off-diagonal elements given, respectively, by the population
variances and covariances of k21 and k12.
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