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Abstract

A review is presented to orientate the reader in the vast and complex liter-

ature concerning phase transitions in matrix models that are invariant under

a symmetry group. These phase transitions often have relevant applications

in physics. We also mention on phase transitions that occur in some matrix

ensembles with preferred basis, like the Anderson transition.

1.1 Introduction

Phase transitions were discovered almost thirty years ago in some random ma-

trix ensembles which had a definite interpretation in theoretical physics. Per-

haps the most relevant ones are the Gross - Witten phase transition in two

dimensional Yang - Mills theory and the models of matter coupled to two di-

mensional gravity. The following decades witnessed a vast increase of interest

in the study of random matrices in fields of pure and applied mathematics

and in theoretical physics, together with a development of accurate mathemat-

ical techniques. Phase transitions were found in several models, with universal

properties which are often the main subject of interest.



2 CHAPTER 1.

The simplest setting is the ensemble of n×n Hermitian matrices with prob-

ability density that is invariant under the action of the unitary group. The

partition function Zn =
∫

dH e−n trV (H) can be expressed in terms of the eigen-

values {λi} of the random matrix H and defines the equilibrium statistical

mechanics of a Dyson gas of n particles with positions λi in the line, in the

potential V (λ). Neglecting irrelevant constants,

Zn =

∫

∏

j>k

(λj − λk)
2

n
∏

j=1

e−nV (λj)dλj =

∫

e−En(~λ)dλ1 · · · dλn (1.1.1)

The particles interact by the repulsive electrostatic potential of 2D world and

are bounded by V (λ). The energy of a configuration is En(~λ) = −∑

j>k log(λj−
λk)

2 + n
∑

j V (λj). For large n, the partition function can be reformulated as

a functional integral on normalized particle densities ρn, Zn =
∫

Dρne−n2En ,

with Boltzmann weight

En[ρn] =

∫

ρn(λ)V (λ) dλ +
1

n

∫

ρn(λ) log ρn(λ) dλ

−
∫ ∫

dλ dµ ρn(λ) ρn(µ) log |λ − µ| − 2γ

(
∫

ρn(λ) dλ − 1

)

Two new terms appear: an entropic one resulting from the Jacobian (negligible

in the large n limit) and the Lagrange multiplier γ enforcing normalization.

The large n limit is both the thermodynamic and the zero temperature limit of

the model, and allows for a saddle point evaluation of the partition function.

Under certain conditions on V , there is a unique limit spectral density ρ(λ). It

is the solution of the limit saddle-point equation

1

2
V (λ) −

∫

σ

dµ log |λ − µ| ρ(µ) = γ, λ ∈ σ, (1.1.2)

that also minimizes the limit free energy:

F = lim
n→∞

1

n2
log Zn =

∫

ρ(λ)V (λ)dλ −
∫ ∫

dλ dµ ρ(λ)ρ(µ) log |λ − µ|.(1.1.3)

Generically F is an analytic function of the parameters of the potential, except

for possible critical points or lines. When they occur, they divide the parameter

space into different phases of the model1.

1It may be useful and important to consider also complex potentials. Early papers on the
subject are [Dav91][Moo90] [Fok91]. In the paper by Eynard [Eyn07] many important results
are summarized.
We have chosen to limit ourselves to real potentials to stress the analogy with statistical
mechanics and Boltzmann weight.
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In sect.2 we summarize the results for the simplest model with a non trivial

set of phases, the one-matrix Hermitian model with polynomial potential. We

refer the reader to the beautiful lecture notes by P. Bleher [Ble08] for proofs

and references to the mathematical literature.

We present a view of the several solutions of the saddle point equation, which

simplifies the current analysis of the phases of the model. Generically, the limit

eigenvalue density ρ has support on different numbers of intervals, in different

phases of the model. Its behaviour near an edge of the support is typically a

square root. Parameters can be adjusted to soften this edge singularity and,

in the one-cut phase, the continuum limit of the model is approached. The

universal distributions that describe various scalings of the density in the bulk

or close to an edge are affected by phase transitions; we refer the reader to

Ch.6 of this book. In the orthogonal polynomial approach, a phase transition

manifests in the doubling phenomenon of recurrence equations.

For several matrix models that are invariant under a continuous group it is

possible to obtain a partition function for the eigenvalues only. We call them

Eigenvalue Matrix models. Quite often they display phase transitions. In sect.3

we review circular models and their Cayley transform to Hermitian models,

and fixed trace models. Models with normal, chiral, Wishart and rectangular

matrices are discussed briefly, because they are subjects of chapters in this

book. We do not include results about matrix models in nonzero spacetime.

Though non-Hermitian random matrices are discussed in Ch.18, it is appro-

priate to present here, in sect.4, the curious single-ring theorem, restricting the

phase transitions of complex spectra with rotational symmetry.

Multi-matrix models are recalled in sect. 5, with their spectacular success

in describing phase transitions of classical statistical models on fluctuating two-

dimensional surfaces. We refer the reader to chapters 15 and 16.

A large and important number of matrix models have a preferred basis; their

analysis is usually performed with specific tools. In sect.6 the delocalization

transition is summarized for the Anderson, Hatano-Nelson, and Euclidean RM

models.

1.2 One-matrix models with polynomial potential

In our view the occurrence of phase transitions is best understood in the steepest

descent solution of matrix models. As it happens with many discoveries, the

two-cut and other one-cut asymmetric solutions of the saddle point equation

were discovered at least twice, first by Shimamune in D = 0, 1, next by Cicuta

et al.[Shi82][Cic86]. Soon after, two puzzling features emerged: 1) Multi-cut
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solutions of the (derivative of the) saddle point equation

1

2
V ′(λ) = P

∫

σ

dµ
ρ(µ)

λ − µ
, λ ∈ σ (1.2.4)

seemed to have an insufficient number of constraints to fully determine them,

2) the recurrence relations which determine the large n behaviour of orthogonal

polynomials were found to need two interpolating functions in correspondence

of the two-cut phase [Mol88]. The intriguing feature was that the recurrence

relations seemed to exhibit unstable behaviour [Jur91] [Sen92].

The following decades witnessed a rigorous derivation of the limit spectral den-

sity as the solution of a variational problem [Joh98], and the development of

Riemann-Hilbert and resolvent-based approaches [Dei],[Pas06]. The latter seem

crucial for the present understanding of the quasi-periodic asymptotics of re-

currence coefficients. The rigorous derivations confirmed much of the previous

heuristic work of theoretical physicists, including the set of missing equations

(1.2.10), which were predicted [Jur90],[Lec91].

We outline the multi-cut solutions of the saddle point equation for poly-

nomial potentials. The interest in this model was revived by recent work on

the ”birth of a cut” [Ble03],[Eyn06],[Cla08],[Mo07] 2. Consider the Hermitian

one-matrix model with a polynomial potential of even degree p, and positive

leading coefficient. The limit density ρ(λ) with its support σ can be evaluated

from the Green function

F (z) =

∫

σ

dλ
ρ(λ)

z − λ
, ρ(λ) =

1

π
Im F (λ − iǫ) (1.2.5)

The saddle point approximation [Bre78] or the loop equations [Wad81] provide

F (z) =
1

2
V ′(z) − 1

2

√

V ′(z)2 − 4Q(z), (1.2.6)

Q(z) =

∫

σ

dλ ρ(λ)
V ′(z) − V ′(λ)

z − λ
. (1.2.7)

Q(z) is a polynomial of degree p − 2, that contains unknown parameters 〈x〉 ,

. . . , 〈xp−2〉, which are moments of the density. Since F (z) ≈ Q(z)/V ′(z) = 1/z

for |z| → ∞, normalization of ρ is ensured. The relevant question arises about

the polynomial V ′(z)2 − 4Q(z): how many are the pairs of simple real zeros?

The pairs of zeros are the endpoints of cuts of the function F (z) that become

intervals in the support of ρ: σ =
⋃q

j=1[aj , bj ]. The remaining 2(p− q−1) zeros

2The merging of the extrema of a cut, leading to its disappearance, and the reverse phe-
nomenon, had been known to some experts for a long time. See for instance sect.6.2 in
[Ake97].
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must be such to factor a squared polynomial M(z)2:

V ′(z)2 − 4Q(z) = M(z)2
q

∏

j=1

(z − aj)(z − bj) (1.2.8)

The density is then evaluated,

ρ(λ) =
1

2π
|M(λ)|

√

√

√

√

q
∏

j=1

|(λ − aj)(bj − λ)|, λ ∈ σ. (1.2.9)

The polynomial identity (1.2.8) provides 2p−1 equations for 2q+(p−q) = p+q

unknowns in the r.h.s. (the endpoints and the coefficients of M). However, the

l.h.s. is fully determined only in its monomials z2p−2, . . . , zp−2. Therefore, only

p + 1 equations are useful to fix the p + q parameters of the density. The

remaining p − 2 are equations for the moments of the density (they are not

self-consistency relations, and add nothing to the knowledge of the density).

The 1-cut density (q = 1) is then completely (but not uniquely!) deter-

mined, while the q-cut density (q > 1) still depends on q − 1 unknown param-

eters. It is a continuum set of normalized solutions of the derivative of the

saddle point equation (1.1.2). This equation, (1.2.4), ensures that the chemical

potential γ is constant for arbitrary λ in a single interval. But the saddle point

equation requires γ to be the same for λ in the whole support σ: this gives

extra q − 1 conditions. They can be chosen as the vanishing of the integrals of

the density on the gaps between the cuts [Jur90][Lec91]:

∫ aj+1

bj

dλ ρ(λ) = 0, j = 1, . . . , q − 1. (1.2.10)

Necessarily M(z) must have at least one real zero in each gap. Hint: the

equations can be obtained by integrating on a gap eq.(1.2.6), with the input of

eq.(1.2.8).

As the parameters of the potential V are changed, the zeros of ρ move

continuously, and eventually two of them collide on the real axis; collisions

provide mechanisms for phase transitions:

• a pair of complex zeros coalesce into a double real zero inside an interval.

The density ceases to be positive, and an extra cut must be considered in

(1.2.6). The reverse is the closure of a gap, with the ends turning into a

complex conjugate pair.

• a pair of complex zeros coalesce into a double real zero outside an interval

and an extra interval is born. The reverse is the closure of an interval,

with the ends turning into a complex conjugate pair.
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• a zero other that an endpoint coalesces with an endpoint, thus changing

the edge’s singular behaviour.

The first two are multicut transitions, the third is an edge singularity transition.

With the conditions (1.2.10) the number of equations equals the number of

parameters that determine the density. However:

1) the decoupling of the algebraic equations produces equations for the single

unknowns which may have several solutions with same q;

2) the requirement that ρ must be non-negative on its support eliminates solu-

tions.

In general one remains with more than one q-cut solution, and selects the saddle

point solution by comparing their free energies.

We have recently redone the analysis of the phase diagram for the quartic

model.3 We summarize the results of the new analysis, which suggest that mul-

tiple solutions with different numbers of cuts are trivially related.

The quartic potential.

The general quartic potential can be rescaled and shifted to V (λ) = hz+ 1
2αλ2+

1
4λ4, which depends on two parameters h and α. Let us first summarize the

simple case h = 0: for α ≥ −2 there is the BIPZ 1-cut solution [Bre78]. At

α = −2 the density has a zero in the middle of its support. For α < −2 one

must consider a two cut solution ρ(λ) ≈ |λ|
√

(b2 − λ2)(λ2 − a2).

In the general case, the plane (h, α) is partitioned in three phases (I,II,III). In

I, which includes the half-plane α ≥ 0, the solution is one-cut; in II only the

two-cut solution exists. In III, three solutions coexist: the two-cut solution and

two one-cut solutions. As we show below, the two-cut solution has lower free

energy. III has the line h = 0 in its interior (α < −
√

15).

In III, before the condition (1.2.10) is imposed, one has a one-parameter family

of two-cut solutions of (1.2.4):

ρ(λ) =
1

2π
|λ − R|

√

∏

j=1,2

|(λ − aj)(λ − bj)|, λ ∈ [a1, b1] ∪ [a2, b2](1.2.11)

If R is chosen as free parameter, it is fixed by eq.(1.2.10)4 . Another choice is

x, that gives the filling fractions of the intervals: x =
∫ b1
a1

ρ(λ) dλ and 1 − x =
∫ b2
a2

ρ(λ) dλ [Bon00]. One checks that the two one-cut solutions which also

exist in III correspond to the limit values x = 0 and x = 1 where an interval

degenerates to a point. The corresponding free energies are then higher. Since

3We studied this same problem long ago [Cic87]. At the time we did not identify the correct
missing equation (1.2.10), which led us to conclusions quite different from those presented here.
A detailed presentation together with a less inadequate bibliography is now being prepared.

4The determination of ρ in the gap (b1, a2) has the factor λ − R without modulus.
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a two-cut solution is analytic in h for small h, there is no spontaneous breaking

of the Z2 symmetry.

The three different phases are separated by lines of third-order phase tran-

sitions. Their occurrence finds application in the study of Homolumo gap in

one-fermion spectrum [And07], structural changes in glasses [Deo02], gluons in

baryons (with addition of log-term in potential) [Kri06].

1.2.1 Orthogonal Polynomials

Multicut phase transitions arise when the matrix potential is endowed by two

or more minima, and the large n limit suppresses tunnelling among the wells.

In the saddle point solution this is manifest in the multicut support of the

eigenvalue density. In the approach with orthogonal polynomials, see Ch.4

(and Ch.5), the phenomenon appears in a different guise.

The partition function, the spectral density and correlators can be evaluated

formally for all n, by expanding the Vandermonde determinant in monic poly-

nomials Pr(x) constrained by orthogonality:
∫

dxe−nV PrPs = hrδrs. Starting

with P0(x) = 1, the relation allows in principle to evaluate all coefficients and

the partition function Zn = n!h0 · · ·hn−1. In practice, one looks for asymptotics

in n as follows. Because of orthogonality the polynomials are linked by a three

term relation xPr = Pr+1 + ArPr + RrPr−1. The coefficients Ar and Rr solve

themselves finite order recurrency equations, resulting from the identities

k

n
=

1

hk−1

∫

dxe−nV V ′Pk−1Pk, 0 =

∫

dxe−nV V ′(x)P 2
k . (1.2.12)

The initial conditions R0 = 0, A0, . . . must be computed explicitly. Since

Rr = hr+1/hr > 0, the free energy is evaluated:

Fn = − 1

n2
log Zn = − 1

n2
log(n!) − 1

n
log h0 −

1

n

n−1
∑

r=1

(1 − r

n
) log Rr (1.2.13)

For large n, the string equations (1.2.12) become equations for interpolat-

ing functions R(x) and A(x), with R(k/n) = Rk and A(k/n) = Ak: x =

w1(R(x), A(x);R′(x), . . .) and 0 = w2(R(x), A(x);R′(x), . . .). The leading or-

der in n is purely algebraic in R and A, and does not involve derivatives. The

solutions must comply with the initial conditions R(0) = 0 = R1 = . . . and

A(0) = A0 = A1 = . . .. However, the finite sets of initial conditions {Rk} and

{Ak} may not collapse in the large n limit to unique values R(0) and A(0).

This is the signal of a multicut phase: coefficients have to be interpolated by as

many functions Rℓ(x) and Aℓ(x) as the initial conditions.
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The quartic potential.

For the symmetric quartic potential V (x) = 1
2αx2 + 1

4x4 the orthogonal poly-

nomials have definite parity (Ak = 0) and only the first string equation is used:

k

n
= αRk + Rk(Rk+1 + Rk + Rk−1) (1.2.14)

with initial conditions R0 = 0 and R1 = 〈x2〉. If α > 0 it is R1 → 0 and a unique

function R(x) is needed, with R(0) = 0. The recurrence equation becomes

the quadratic equation x = αR(x) + 3R(x)2 that leads to the one-cut solution

[Bre78]. If α < 0 it is R1 → |α| and two interpolating functions R1(x) and R2(x)

are needed: R1(2k/n) = R2k with R1(0) = 0 and R2(2k/n+1/n) = R2k+1 with

R2(0) = |α|. They solve: x = αR1 + R2
1 + 2R1R2 and x = αR2 + R2

2 + 2R1R2.

One recovers the solution R1 = R2 but also the new ones R2(x) = −R1(x) − α

and x = gR1(x)R2(x). In the latter case the equation for R1(x) yields a real

positive solution only for α < −2. This is the two-cut phase.

The asymmetric quartic potential is more complicated because of Ak 6= 0. One

reobtains regions I,II,III of the previous discussion.

1.2.2 The edge singularity limit

A special status is owned by the edge singularity limit in the 1-cut phase. The

critical line marks the boundary of analyticity of the perturbative phase where

the partition function can be expanded in all couplings above quadratic. The

perturbative expansion provides numbers that enumerate Feynman diagrams

with fixed numbers of vertices. It is a useful tool in the theory of graphs and

in statistical mechanics, where each graph may correspond to a configuration

in the partition function of some model on random graphs [Amb][Gro92] (see

chapters 30 and 31).

In the topological expansion (’t Hooft) the perturbative series is rearranged

Fn =

∞
∑

h=0

1

n2h−2
Fh(g), Fh(g) =

∑

V

gV Fh,V (1.2.15)

to enumerate the vacuum graphs of given genus h and number V of vertices.

The leading term F0 is the planar free energy. A remarkable feature of the

expansion is that Fh(g) has a finite radius of convergence gc. This singularity

is where two zeros of the eigenvalue density collide, and in the single-well phase

it corresponds to an edge-singularity limit.

The area of a graph is defined as the number of vertices (faces of the dual

graph). The average area at fixed genus diverges near the critical point, thus

providing the continuum limit:

〈area〉 =
1

Fh

∑

V

V gV Fh,V =
1

Fh
g

∂

∂g
Fh ≈ const.

gc

gc − g
. (1.2.16)
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The double scaling is a prescription to reach the critical point, in order to

enhance subleading orders of the topological expansion.

1.3 Eigenvalue Matrix models

Several matrix models with continuous symmetry, after integration of angular

degrees of freedom, produce a partition function that generalizes eq.(1.1.1) and

describes only the eigenvalues or the singular values. Many models, but not all,

derive from classification schemes of the symmetries (Ch.3). Depending on the

eigenvalue measure, phase transitions may appear. The analytic methods are

almost the same as in the previous section.

1.3.1 Unitary circular ensembles

Perhaps the first and most influential phase transition was found by Gross and

Witten in the study of one plaquette in QCD [Gro80], see Ch. 17,

Zn =

∫

dU e
1

g2
tr(U+U†)

, U ∈ U(n) (1.3.17)

Let {eiαk} be the n eigenvalues of the random unitary matrix U , then

Zn =

∫ π

−π

dα1 · · · dαn e
P

i6=j log | sin
αi−αj

2
|+ 2

g2

P

j cos αj (1.3.18)

In the large-n limit the spectral density ρ(α) which makes the energy stationary

is solution of the integral equation

1

g2n
cos α +

∫

ρ(β) log | sin α − β

2
| dβ = 0 (1.3.19)

As it is well known, there are a strong and a weak coupling solution:

ρ(α) =
1

2π
(g2n ≥ 2), ρ(α) =

1

2π

[

1 +
2

g2n
cos α

]

(g2n ≤ 2)

with support on the whole circle or an arc. The Cayley map provides a one-to-

one correspondence between unitary and Hermitian matrices:

U =
i − H

i + H
, dU =

dH

det(1 + H2)

Accordingly, the model (1.3.18) can be mapped into a Hermitian model. The

corresponding partition function is written in terms of the eigenvalues λj of the

Hermitian matrix

Zn =

∫ ∞

−∞

∏

j

dλj e
−n

P

j log(1+λ2
j )+

P

i6=j log |λi−λj |+
2

g2

P

j

1−λ2
j

1+λ2
j
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Instead of eq.(1.3.19) one has the integral equation

log(1 + λ2) − 2

g2n

1 − λ2

1 + λ2
= 2

∫

dµ ρ(µ) log |λ − µ| (1.3.20)

One finds a strong coupling solution with support on the whole real axis,

ρ(λ) =
1

π

[

1

1 + λ2
+

2

g2N

1 − λ2

(1 + λ2)2

]

, 2 ≤ g2n (1.3.21)

Mizoguchi [Miz05] recently studied the weak coupling solution. It has support

on a finite interval

ρ(λ) =
2

π

√
1 + b2

b2

√
b2 − λ2

(1 + λ2)2
, b2 =

g2n

2 − g2n
(1.3.22)

Therefore, the Cayley map takes the Gross - Witten phase transition to a phase

transition in a Hermitian matrix model, where it separates a compact support

phase (typical of confining potentials) and an infinite support phase (typical

of logarithmic external potentials). The Gross - Witten model was solved for

polynomial potentials [Man90] [Dem91], V (U) =
∑

k ckU
k + c∗kU

†k, and phases

with support on several arcs of the unit circle were found. The Cayley map

takes them to multi-cut solutions of Hermitian models.

1.3.2 Restricted trace ensembles

Restricted trace ensembles of Hermitian matrices have joint probability density

p(λ1, · · · , λn) = const. Φ



r2 − 1

n

n
∑

j=1

V (λj)





∏

1≤i<j≤n

|λi − λj|2

with Φ(x) = δ(x) for the fixed trace ensembles or Φ(x) = θ(x) for the bounded

trace ensembles. The constraint replaces the standard Boltzmann factor of

matrix models. These invariant matrix ensembles bear the same relation to

unrestricted ensembles as microcanonical ensembles do with canonical ones in

statistical physics. They were studied at the early stages of random matrix

theory [Ros63], with quadratic potential. It was interesting to generalize them

to polynomial potential, as phase transitions in these models provide good

examples for the limited equivalence of ensembles in the thermodynamic limit.

[Ake99]. Further recent works include [Del00],[Got08], later extended to the

fixed trace beta-ensembles [LeC07],[Liu09].

1.3.3 External field

Ensembles of unitary or Hermitian matrices coupled to a fixed matrix source,

called external field, had been investigated for a long time [Bre80][Gro91]. The
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limiting eigenvalue density of the ensemble depends on the eigenvalue density

of the fixed matrix. Several important tools of one-matrix models may be gen-

eralized to the external field problem to prove that the short distance behaviour

of correlation functions are not affected by the source [Zin98], [Ble08]. We refer

the reader to Ch.16.

If the eigenvalue density of the external source has a gap which may be tuned to

vanish, a new class of universality appears [BrH98]. This phase transition has

a relevant role in several problems, including the spectral statistics of low-lying

eigenvalues of QCD Dirac operator, see Ch.32.

1.3.4 Other models

Several models are described in chapters of this book, and display various crit-

ical behaviours. We list some.

1) Normal matrices have complex spectrum. With the potential XX†+V (X)+

V (X)† the boundary of the support of eigenvalues describes the growth of a

2D fluid droplet, as the parameters change. At singular points the boundary

develops cusp-like singularities. [Teo06] (Ch.38).

2) Chiral matrix ensembles were introduced by Verbaarschot to study spectral

properties of the QCD Dirac operator (Ch.32) linked to the formation of a

condensate, with beautiful accordance with lattice calculations. A natural ap-

plication of chiral RME is the study of single particle excitations in bulk type-II

superconductors [Bah96].

3) Wishart matrices have the form W = R†R, where R is a rectangular matrix.

They occur in multivariate statistics (Ch.28 and 39), in transport (as suggested

by Buttiker’s Landauer formula for conductance) and in the study of rare events

(Ch.36).

4) Transfer matrix ensembles were introduced to reproduce the statistics of

conductance (Ch.35).

5) Models of rectangular matrices n × nL with O(L) symmetry can be viewed

as L−matrix models with square matrices of size n, and the large n limit is

the planar limit of a vector model [Cic87b][And91][Fei97b]. The singular values

undergo a phase transition in the double well potential, where a gap opens near

the origin. Multicritical behaviour and underlying random surfaces are stud-

ied. An ample introduction and refs. to rectangular matrices is in a paper on

colored graphs [DiF03].

6) Non-polynomial potentials may originate different universality classes for

correlation functions. Some of these models may be seen as arising from in-

tegration over additional bosonic or fermionic fields. Early relevant examples

include [Kaz90][Kon92]. Recent examples include [Ake02][Jan02].
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1.4 Complex matrix ensembles

The powerful spectral methods available for Hermitian matrices, based on the

resolvent, do not apply to complex matrices. With the exclusion of normal ma-

trices, it is very difficult to extract a measure for the eigenvalues. By regarding

the eigenvalues as point charges in the complex plane, the search of the density

can be formulated as an electrostatic problem [Cri88]. The ensemble-averaged

logarithmic potential

U(z, z∗) = 〈 1

n
log[det(zIn − X) det(z∗In − X†)]〉 (1.4.23)

and the average eigenvalue density ρ(x, y) = 〈 1
n

∑

a δ(x−Reza)δ(y− Imza)〉 are

linked by the Poisson equation ∂∂∗U = πρ, where z = x+iy and ∂ = 1
2 (∂x−i∂y).

The problem is simplified by introducing the Green function,

G(z, z∗) = 〈 1

n
tr

1

z − M
〉 =

∫

d2w
ρ(w,w∗)

z − w
, (1.4.24)

then: ρ(z, z∗) = 1
π
∂∗G(z, z∗). By noting that, up to a constant, the potential

U contains the determinant of the 2n × 2n Hermitian matrix

H(z, z∗) =

[

0 X − z
X† − z∗ 0

]

(1.4.25)

Feinberg and Zee proposed the Method of Hermitian reduction [Fei97]. It allows

to evaluate the Green function G(z, z∗) from the resolvent matrix of H(z, z∗):

F (η)ab = 〈(η − H)−1
ab 〉. For the Ginibre ensemble [Gin65] the resolvent is

G(z, z∗) = 1/z for |z| > 1 and z∗ for |z| < 1. Then the eigenvalue distribution

is uniform in the disk |z| < 1. Other tools are the extension to non-Hermitian

matrices of Blue functions [Jar06] (the functional inverse of the Green function

G(B(z)) = B(G(z)) = z), or the fermionic replica trick [Nis02].

1.4.1 The single ring theorem

The method of Hermitian reduction can be worked out for the probability dis-

tribution

p(X) = Z−1e−ntrV (XX†) (1.4.26)

where V is a polynomial. The eigenvalue density ρ(x, y) for X only depends on

r =
√

x2 + y2. By resummation of the planar diagrams in the perturbative ex-

pansion of the resolvent F of the hermitized model, Feinberg, Zee and Scalettar

showed that the fraction γ(r) of eigenvalues with modulus less than r solves in

the large n limit the algebraic equation

r2 γ(r)

1 − γ(r)
F

(

r2 γ(r)

1 − γ(r)

)

= 1 (1.4.27)
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It admits various solutions, but only two are r−independent, namely γ = 0 and

γ = 1. The actual solution is obtained by a smooth matching of solutions such

that γ(r) is non decreasing, with b.c. γ(0) = 0 and γ(∞) = 1. Surprisingly,

the support of the density ρ can only be a disk or a single annulus. This is

the single ring theorem [Fei97][Jan97]. The proof is simple: two or more annuli

would imply a gap, hence a solution γ(r) which is constant on the gap interval

of r, and different from the only two allowed values 0, 1.

Although the eigenvalues of the positive matrix XX† may distribute with

a multicut density, the complex eigenvalues of X are only allowed to coalesce

in a disk or in an annulus. As the parameters of the potential V are changed,

one observes phase transitions between the two configurations. For the double

well potential V = tr(2αXX† + g(XX†)2), the phase transition takes place at

α = −√
2g. An interesting insight was provided in [Fyo07], where eq.(1.4.27)

was recovered with the hypothesis that, for large n, the log can be taken out of

the ensemble average (1.4.23), thus simplifying the evaluation.

A disk–annulus transition was observed in other ensembles. Complex tridi-

agonal random matrices have exponentially localized eigenvectors, with inverse

localization length given by the Thouless formula

γ(z) =

∫

d2w log |z − w|ρ(w,w∗) + const. (1.4.28)

If boundary conditions (b.c.) un+1 = enξu1 and u0 = e−nξun are used, then for

ξ > ξc a hole opens in the support of the spectrum [Mol09b]. The eigenvalues

that are removed from the hole belong to eigenvectors that are delocalized by

the b.c., i.e. γ(z) < ξ. For large ξ the complex spectrum becomes circular.

The transition was also observed in the ensemble A + H0, where H0 is a

matrix with a highly unstable zero eigenvalue, and A is random and asymmetric

[Kho96].

1.5 Multi-matrix models.

The free energy of a group-invariant matrix model has a topological large-n

expansion (1.2.15), where the terms associated to inverse powers of n2 (uni-

tary ensembles) or n (orthogonal and symplectic ensembles) are the generating

functions of Feynman graphs embeddable on orientable (or non-orientable, in

the second case) surfaces of different genus.

With two or more matrix variables, each graph has both the meaning of

a random triangulation and fixes a ”configuration” of two or more variables

associated to its vertices or links. The matrix integrations perform simulta-

neously the summation on configurations of variables on a graph (a random

triangulation) and the summation on inequivalent triangulations. Therefore,

multi-matrix models may be considered as a definition for classical statistical
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mechanics on random lattices. By tuning the couplings of the potential to criti-

cal values it is possible to interpret the triangulations provided by the Feynman

graphs, or their duals, as becoming dense and reaching a continuum limit.

In chain models, the potential of two (or more) random matrices has the

form V (A,B) = V1(A)+V2(B)+AB. The analysis of such chain-linked ensem-

bles was possible after two major discoveries:

1) integration of angular variables by Itzykson and Zuber [Itz80] through the

Harish-Chandra-Izkyson-Zuber formula, which reduces the partition function

to integrals on the eigenvalues of the two (or more) random matrices,

2) bi-orthogonal polynomials by Mehta [Meh81], which allow the formal exact

evaluation of the free energy and asymptotic behaviour.

It is well known that near the critical singularities of statistical mechanical

models on fixed, regular 2D lattices, the correlation lengths become much bigger

than the lattice spacing. The critical behaviour of thermodynamic functions are

then described by classes of universality of 2D field theories in the continuum.

Analogous universality classes occur for phase transitions of statistical models

on random surfaces.

If the critical singularities of a model on a fixed lattice are described by

a conformal field theory with central charge c, the Knizhnik-Polyakov-Zamo-

lodchikov relation predicts the conformal dimensions of operators of the corre-

sponding model on inequivalent random triangulations (i.e. dressed by gravity).

This relation was checked in several multi-matrix models: Ising, Potts, O(n),

8-vertex, edge-colouring, . . . . These impressive accomplishments are described

in classical reviews [Amb][DiF95]. More recent ones by Di Francesco [DiF02] fo-

cus on the structure of random lattices. Recent results on the Riemann-Hilbert

problem for the two matrix model are found in [Dui08],[Mo08].

1.6 Matrix ensembles with preferred basis.

1.6.1 Lattice Anderson models

Anderson models describe the dynamics of a particle in a lattice, in a ran-

dom potential; the hopping amplitudes may also be random. They arise as

tight-binding descriptions of a particle in a crystal with impurities, disordered

materials, random alloys.5

The Hamiltonian is H = T + V with kinetic term (Tu)k =
∑

µ uk+µ and

potential (V u)k = vkuk, where k labels the lattice sites. The sum runs on

all sites linked to k, the numbers vk are i.i.d. random variables with uniform

5For physics we address the reader to the reviews [Kra93],[Vol],[Jan98]. For the RMT
approach see Ch.35 and refs therein, [Bee97],[Eve08]. The mathematically oriented reader
can consult the review [Bel04], the books [Pas92],[Car] or (as a start) [Fro]. Material can be
found at the web sites of the Newton and Poincaré Institutes [NI][IHP].
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distribution in the interval [−w/2, w/2] (w is the disorder parameter) or else.

For the Cauchy distribution, p(v) = (w/π)(v2 +w2)−1, the density of states can

be computed analytically. The lattice is usually taken as ZD, but also other

structures have been studied. In direct space the Hamiltonian has a matrix

representation where T is fixed (a Laplacian matrix, up to a diagonal shift) and

V is diagonal and random. The matrix size is equal to the number of sites.

The matrix H is block-tridiagonal, with the number of blocks being equal to

the number of sites in one direction (n = nz), and the size of blocks being equal

to the number of sites in a section (m = nxny). The eigenvalue equation in

terms of the diagonal blocks hk and off diagonal ones (unit matrices if hopping

amplitude is one) is

hkuk + uk+1 + uk−1 = λuk, uk ∈ Cm (1.6.29)

The components of uk are the occupation amplitudes of the m sites having

longitudinal coordinate k, λ is the energy of the particle. A fundamental an-

alytic tool is the transfer matrix, of size 2m × 2m, that links the wave-vector

components at the ends of the sample of length n:
[

un+1

un

]

= T (λ)

[

u1

u0

]

, T (λ) =
∏

k

[

λ − hk −Im

Im 0

]

. (1.6.30)

With Dirichlet b.c. it is un+1 = u0 = 0. The transfer matrix is the product of

n random matrices; its eigenvalues describe the long range behaviour of eigen-

states of the Hamiltonian. Oseledec’s theorem [Pas92][Cri93] states that the

matrix TT † in the limit n → ∞ converges to a nonrandom matrix e−nΓ(λ) and

the eigenvalues of Γ come in pairs ±γ(λ) (Lyapunov spectrum). The smallest

positive one is the inverse localization length, that controls transport proper-

ties. So far no analytic expression is known for the Lyapunov spectrum (in

D = 1 it is Thouless formula). However, for any n and m, the eigenvalues of

the transfer matrix can be linked to the spectrum of the Hamiltonian matrix,

but with non-Hermitian boundary conditions, via an algebraic spectral duality

[Mol09a]:

znm det[λ − H(zn)] = (−1)m det[T (λ) − zn] (1.6.31)

The main feature of Anderson models is a phase transition that occurs in 3D

in the infinite-size limit: for w < wc the spectrum of H is a.c. while for w > wc

the spectrum is p.p. The eigenvectors are, respectively, extended or exponen-

tially localized. Anderson’s transition (also named metal insulator transition,

MIT) and Mott’s transition (due to interaction effects on the band filling) are

cornerstones of the theory of electronic transport (both physicists earned the

Nobel prize in 1977 with van Vleck). The transition is observed in various

experimental situations [Kra93]. Numerically, it can be detected in various
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ways: scaling in transverse dimensions of the smallest Lyapunov exponent of

the transfer matrix [Mac81], spacing distribution of the energy levels [Shk93],

response of energy levels to changes of boundary conditions [Zyc94] (Thouless’

approach to conductance). In the metallic phase the Thouless conductance

is well described by the distribution of level curvatures of the RM ensemble

H(ϕ) = A cos ϕ + B sinϕ, A and B in GOE or GUE, which was conjectured in

[Zak93] and analytically proved in [vOp94].

The two phases are characterized by order parameters: the localization

length (localized phase) and the adimensional conductance g (delocalized phase),

that diverge approaching the transition. A finite size one-parameter scaling the-

ory was established by Abrahams et al. which implies the phase transition in

D = 3, but no transition in D = 1, 2. In D = 1, 2 such as wires or electron layers

in heterostructures, the eigenstates are localized. This is crucial for explaining

the occurrence of plateaux in the integer Quantum Hall effect. Anderson local-

ization is caused by destructive interference on random scatterers, and has been

observed in diverse wave phenomena as electrons, sound, light, Bose-Einstein

condensates.

Mathematical proofs of localization in 1D were available in the late seven-

ties; Molchanov proved localization in 1D continuous case and the Poisson law

for energy levels. Theorems for D>1 appeared in the early eighties (Frohlich,

Spencer, Martinelli and Scoppola [Mar86]) and established localization at large

disorder. Minami proved the Poisson law for energy levels of lattice models.

Multilevel correlators are studied by various groups (see [Aiz08]). The extended

phase still lacks of rigorous results. A Wigner-Dyson statistics is expected and

numerically seen in the transport regime. The level statistics at the Anderson

transition is of new type [Kra94][Zha97] (Ch.12).

The quantization of time-dependent classically chaotic systems brings in

the phenomenon of dynamical localization, which is analogous to the disorder

localization. In model systems such as Kicked Rotator the quantum system does

not increase its energy as classically, but reaches a stationary state [Cas89][Haa].

This has been observed experimentally in optical systems, or in microwave

ionization of Rydberg atoms.

Quantum chaos eventually revived in the early eighties the interest for Band

Random matrices, for the transition in level statistics from Wigner-Dyson to

Poissonian, or the semiclassical limit of quantum mechanics of chaotic sys-

tems [Fei89]. The study of quantum maps suggested that BRM have localized

eigenstates and level statistics with scaling laws governed by the ratio b2/n

[Cas90][Haa], where 2b+1 is the bandwidth. Analytic results became accessible

by supersymmetric methods after the papers by Fyodorov and Mirlin [Fyo91].

BRM are now on stage to study the Anderson transition (Ch.23).
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1.6.2 Hatano - Nelson transition

Hatano and Nelson [Hat96] proposed a model for the depinning of flux tubes

in type II superconductors, which turned out to be useful for studying the

delocalization transition, as well as phase transitions [Nak06]. In essence, it

tests localization through eigenvalue sensitivity to b.c. that drive the model off

Hermiticity. The HN deformation of 1D Anderson model with periodic b.c. is

eξuk+1 + e−ξuk−1 + vkuk = λuk (1.6.32)

By similarity it is equivalent to ũk+1 + ũk−1 + vkũk = λũk with b.c. ũn+1 =

enξũ1 and ũ0 = e−nξũn. For ξ = iϕ (Bloch phase), eigenvalues sweep n non-

intersecting real bands; for ξ real they all enter the gaps. If ξ > ξc they start

to collide and enter the complex plane, where they fill a closed curve [Gol98]

which encloses the depleted segment of real eigenvalues. The extrema of the

segment are “mobility edges” ±λc(ξ) beyond which the eigenvalues are real

and (numerically) unmodified by ξ; their eigenstates are localized enough to

feel not the b.c. The equation of the spectral curve is ξ = γ(λ), where γ is

the Lyapunov exponent. The HN deformation has been applied to complex

tridiagonal matrices [Mol09b].

1.6.3 Euclidean Random Matrix models

Euclidean Random Matrices were introduced by Mézard, Parisi and Zee[Mez99]

to describe statistical properties of disordered systems such as harmonic vi-

brations in fluids, glasses, or electron hopping in amorphous semiconductors.

Given n points {~xi} in RD and a real function F : RD → R, one constructs

the matrix Eij = F (~xi − ~xj). As the n points are chosen randomly, an en-

semble of Euclidean Random Matrices is constructed. In Distance matrices,

F is just the distance of points [Bog03], with interesting connections between

spectral properties and geometry. Another example are the Hessian matri-

ces of some pair potential. For Lennard-Jones potential a mobility edge was

found, i.e. a threshold frequency value between regimes of low energy localized

modes (phonon-like) and a delocalized regime, with the critical exponents of

Anderson’s transition [Gri03][Hua09]. The transition may explain the excess in

the density of vibrational states (Boson peak) with respect to Debye’s ν2 law

observed in glasses.
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