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Abstract
Primary biliary cirrhosis (PBC) is an autoimmune chronic liver disease characterized by progressive
bile duct destruction eventually leading to cirrhosis, liver failure, and death. The autoimmune
pathogenesis is supported by a plethora of experimental and clinical data, such as the presence of
autoreactive T cells and serum autoantibodies. The etiology remains unknown, although evidence
suggests a role for both genetic susceptibility and environmental factors that remain to be determined.
In fact, a number of chemicals and infectious agents have been proposed to induce the disease in
predisposed individuals. The recent availability of several murine models will significantly help in
understanding pathphysiology mechanisms. In this review, we critically summarize the most recent
data on the etiopathogenesis of PBC, discuss the latest theories and developments, and suggest
directions for future research.

INTRODUCTION
Primary biliary cirrhosis (PBC) is a chronic cholestatic liver disease characterized by an
immune-mediated destruction of small and medium-size intra-hepatic bile ducts (1). The
serologic hallmark of PBC is the presence of high-titer serum anti-mitochondrial
autoantibodies (AMA), together with an increased levels of immunoglobulin M (IgM), and
several disease-specific anti-nuclear antibodies (ANA) (1). PBC can be considered a peculiar
organ-specific autoimmune disease from both pathogenetic and clinical points of view (1,2).
Indeed, PBC mainly affects middle-age women with a female to male ratio of up to 10:1 (3,
4), with only anecdotal cases reported in childhood (5). AMA are found in about 95% of patients
with a very high specificity, but no direct correlation with and disease severity (6,7). On the
contrary, disease-specific ANA are detected in one third of patients and are associated with a
more severe and rapidly progressing disease (8–10).

At presentation, patients with PBC may have symptoms such as pruritus, fatigue, and/or
jaundice, but the majority are asymptomatic and diagnosed during clinical workup for other
reasons, including the common autoimmune comorbidities (11,12). Currently, a definite
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diagnosis of PBC is made on a combination of abnormal serum enzymes indicating cholestasis
(i.e. elevated alkaline phosphatase for at least six months), the presence of serum AMA (titer
≥ 1:40), and characteristic histology with florid bile duct lesions (13). A probable diagnosis is
made when two out of these three criteria are present but this definition is not widely accepted.
Serum AMA may precede disease onset by several years but individuals found positive for
these autoantibodies in the absence of other criteria will eventually develop PBC during follow
up (14).

Although several experimental as well as clinical findings support autoimmune mechanisms
for biliary damage in PBC (2,15), the underlying cause of the disease remains largely unknown.
The current hypothesis on the etiopathogenesis of PBC implies that susceptibility is secondary
to genetic predisposition elements that are permissive for host-environmental interactions,
similar to other autoimmune diseases (16). However, the past decade has witnessed several
key advances in understanding the effector mechanisms of PBC. Several lines of evidence
suggest that the primary event in PBC is the loss of tolerance to the E2 subunit of pyruvate
dehydrogenase (PDC-E2), the immunodominant AMA autoantigen. They also suggest that the
destruction of biliary epithelium is based in part upon its unique apoptotic properties in which
the mitochondrial autoantigens remain immunologically intact (17). Furthermore, several
animal models with autoimmune cholangitis have now been described, each with unique
features that recapitulate the human condition.

This review is timely, since we are witnessing an enormous amount of solid data on the
immunomolecular mechanisms underlying the disease onset and perpetuation, which we
believe will allow soon to give fundamental answers. To this regard, we will first discuss the
role of genetic, epigenetic, and environmental factors in triggering the autoimmune aggression
against bile ducts with focus on the recent data from a genome wide association study. We will
then discuss the female predominance in autoimmunity focusing on the presence of major sex
chromosome defects in women with PBC. We will then illustrate several new lines of research
on the target organ and the role of innate immunity, mainly based on animal model studies.
Finally, we will discuss the expanding repertoire of immune-serological diagnostic and
prognostic markers while newer treatments will not be discussed (18–20).

GENETICS FACTORS
As for many autoimmune disorders, genetic factors are known to play a decisive role in
conferring PBC susceptibility (21) but are not related to a single gene but to a complex multi-
genes trait.

Familial and twin aggregation data
The first insights in a genetic component came from early epidemiological studies showing a
higher incidence of disease among first-degree relatives of patients (11). Cumulatively, family
aggregation data indicate that up to 6% of PBC patients have at least one family member
manifesting the disease. It is to note that a recent study from the US demonstrated that there is
an increased incidence of AMA without any sign of disease in first-degree relatives and
offspring of patients with PBC, thus indirectly suggesting the existence of a strong genetic
predisposition (22).

More recent data further strengthen the relevance of the multifactorial genetic basis in PBC,
including a high concordance rate among monozygotic (identical) twins (23), and the
observation that lymphocytes from women with PBC preferentially loose one X chromosome
(24,25). It is of note that while among autoimmune disorders concordance rate in monozygotic
twins have been shown to be on average below 50%, the PBC concordance rate is as high as
63% in 8 monozygotic sets but null among dizygotic twins (23). However, since in some
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concordant sets, PBC phenotype varied significantly within one pair, it can be hypothesized
that other factors, including epigenetics (4,26–28), exposure to environmental factors, or mere
serendipity, may play a role complementary to genetics.

Case-control association studies
Up until most recently, to identify susceptibility gene(s) that predispose for the development
of PBC remained a challenge. The majority of studies on the etiopathogenesis of PBC have
focused upon candidate gene based association studies and were limited by sample size and
poor selecting and control matching criteria. They mainly focused on immune-related genes
with role in maintaining tolerance and belonging to both the HLA loci and non-HLA immune
modulators genes (29,30). Unfortunately, the large part of these studies reported weak and
often contrasting associations (29,30), with the only exception of the consistent associations
found within the HLA region (31–33). Indeed, in contrast to earlier work, we and others
recently demonstrated that PBC is not only associated with the HLA DRB1*08 allele but also
with two protective alleles, HLA DRB1*11 and DRB1*13 (31,32,34). Furthermore, a most
recent Canadian-US study reported the first genome-wide association study and confirmed the
key role in PBC susceptibility of common genetic variants in the HLA class II loci (33). Of
great interest, this study also demonstrated that genes encoding for interleukin 12 and its
receptor are associated with susceptibility to PBC (33). These findings needs to be confirmed
in independent cohorts with a larger number of subjects and variants genotyped, but the
functional role of these molecules should be carefully evaluated in the near future.

ENVIRONMENTAL FACTORS
Despite the key role played by genetics in PBC susceptibility, genes are not sufficient to trigger
the disease and we submit that exposure to certain environmental factor(s), even not harmful
per se, may cause the breakdown of immune tolerance and PBC onset. The role of two main
environmental factors have been evaluate in PBC, i.e. xenobiotics (i.e. chemical compounds),
and infectious agents (viruses and bacteria) (35,36).

Xenobiotics
Experimental and epidemiology evidence, as well as animal models, support the strong role of
environmental factors including xenobiotics in the development of PBC, as illustrated by the
discordant monozygotic twin sets previously discussed.

Xenobiotics are compounds foreign to the human system. The possible mechanisms through
which xenobiotics may trigger an auto-immune response to self proteins are based on the
hypothesis that they may modify their molecular structures or complex to self or non-self
proteins to generate neoantigens. Therefore, the altered protein may induce an auto-immune
response, as is the case for molecular mimicry. Our group recently suggested a possible
pathogenic role of an organic compound in PBC. In particular, a specific halogenated organic
compound was able to elicit AMA production by sera from patients with PBC once attached
to the major mitochondrial epitope backbone (37). This because antibodies against such
modified mitochondrial epitope had a higher affinity than antibodies directed against to the
native epitope (37). With a subsequent study based on a multiplex approach, 2-nonynoic acid
was found to be recognized by patient serum antibodies which did not cross-react with the
PDC-E2 native form. This is very important since 2-nonynoic acid does not occur naturally
and is found in several cosmetic products, including nail polish (11).

Infectious agents
Early epidemiological studies provided the first insight on the role of infectious agents as
potential triggers of PBC (38). Indeed, several authors reported that patients with PBC have
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urinary tract infections more frequently than controls, E. coli being the main etiological agent.
More recently, an epidemiological study on 1032 patients with PBC and 1041 controls (11)
not only confirmed the association of an enhanced risk of PBC and recurrent urinary tract
infections but also increased risk of vaginal infections along with lifestyle factors such as
smoking. Interestingly, we also showed that subjects who frequently use nail polish was
associated with an enhanced risk of develop PBC.

Molecular mimicry is a widely accepted mechanism by which infectious agents may trigger
autoimmune aggression in autoimmune diseases, including PBC. Infectious agents may indeed
trigger a promiscuous antibody- and cell-mediated immune response, because they share a
good degree of amino acid similarity. The highly conserved sequence of mitochondrial
enzymes across all species also strengthens this view. Besides E. coli, a number of other
bacteria have been shown as cross-reactive agents in PBC, including Proteus mirabilis,
Klebsiella pneumoniae, Staphylococcus aureus, Neisseria meningitidis, Salmonella
minnesota, Mycobacterium gordonae, and Trypanosoma brucei (38). We recently provided
serological and molecular evidence suggesting that Novosphingobium aromaticivorans, a
ubiquitous xenobiotic-metabolizing Gram-negative bacterium, is possibly an ideal candidate
for the induction of PBC (39) for two reasons: first, it contains two proteins with the highest
degree of homology with the major epitope of PDC-E2, and secondly N. aromaticivorans can
metabolize organic compounds and estrogens. We also reported that the bacterium can elicit
a specific antibody reactivity (up to 1000-fold higher than against E. coli) in PBC but not in
control sera (39). Furthermore, N. aromaticivorans induced serum autoantibodies and PBC-
specific liver features in a murine model (40).

It has been previously reported that a novel human beta-retrovirus was found in peri-hepatic
lymph nodes and other biological samples from patients with PBC. However, our group could
not replicate these findings and neither confirm such hypothesis in an independent study based
on a larger series of cases and controls (41). In addition, human beta-retrovirus has been
recently found in the liver of patients affected by other liver diseases, including autoimmune
hepatitis and viral hepatitis as well as healthy controls (42), thus excluding a specific role of
this virus in PBC if not as an epiphenomenon. These data cumulatively discourage the use of
antiviral therapies proposed to treat PBC (43).

FEMALE PREPONDERANCE
Similar to other autoimmune diseases, PBC is characterized by a striking female predominance,
with a female to male ratio estimated as 10 to 1 (3,4,26). So far, the reason for this observation
remains unknown, but a role of fetal microchimerism, sex hormones, or X chromosome defects
has been proposed.

Fetal microchimerism
One hypothesis on the PBC female predominance was the persistence of fetal cells and genomic
materials in women years after pregnancy, a phenomenon coined fetal microchimerism. Fetal
cells are semi-allogenic to the maternal immune system and thus might mediate a graft-versus
host disease-like reaction in women. Fetal cells were reported in blood and tissues from women
with autoimmune diseases, such as scleroderma. Conversely, most of the studies failed to find
significant difference in frequency of fetal microchimerism in women with PBC compared to
controls (44,45). Based on these data, we are convinced that fetal microchimerism does not
play a major role in PBC, although it is possible that it is involved in the pathogenesis of other
autoimmune diseases.
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Sex hormones
Although sex hormones were widely investigated in the last five decades and have a number
of immunomodulatory functions (46), we rule them out as major responsible for the female
predominance in PBC. However, estrogens could have direct effects on cholangiocytes, the
specific target organ in PBC, since these cells express estrogen receptors (47). In particular, it
has been shown that cholangiocytes from patients with advanced histological stages do not
express estrogen receptors, thus suggesting a role of estrogen deficiency in the development
of ductopenia in PBC. However, the possible influence of estrogens on PBC onset and
perpetuation needs to be confirmed and further investigated (47).

Sex chromosomes
Few studies have investigated sex chromosomes in autoimmunity. We have recently proposed
a novel hypothesis on the female predominance of autoimmunity based on major defects of
sex chromosomes (3,4). This theory is based on three observations. First, diseases due to X
monosomy or its major abnormalities, such as Turner’s syndrome (48) or premature ovarian
failure (49), are frequently associated with autoimmune features and in some cases chronic
cholestasis. Second, a number of genes that are key factors in the maintenance of immune
tolerance, such as FoxP3, map on the X chromosome (21). Third, diseases due to defect in
single X-linked genes, such as X-linked immunodeficiency, are characterized by a plethora of
autoimmune features (50). The biology of X chromosome is quite complex compared to other
chromosomes as women are functional mosaics for X-linked genes, with most genes on one
X chromosome being silenced as a result of X-chromosome inactivation (XCI) to achieve
equivalent levels of X-linked gene products between sexes. However, more recent data have
shown that the picture is even more complex by demonstrating that at least 15% of X-linked
genes escape XCI in healthy women and are thus expressed from both X chromosomes (51).
A role for X chromosome was first proposed based on experimental evidence that women with
PBC have a significantly higher frequency of peripheral blood cells with a single X
chromosome (i.e. X monosomy) compared to healthy age-matched women (24). Importantly,
this difference was confirmed also in other autoimmune diseases, such as systemic sclerosis
and autoimmune thyroid disease (52), but not in women with systemic lupus erythematosus
(53,54). We also demonstrated that in PBC (and possibly in other autoimmune disorders) X
chromosome loss is preferential and involves more frequently a single parentally inherited X
chromosome (25). Other than chromosome loss, it has been also reported that women with
autoimmune diseases have a non-random XCI pattern in their circulating blood cells (55,56),
thus suggesting a gene dosage effect of X-linked genes but such preferential inactivation was
not found in PBC (25) and in other autoimmune disorders (57).

ANIMAL MODELS
As in other complex diseases, the development of an animal model is of great importance in
dissecting the mechanism underlying the initiation and progression of PBC. In the last few
years, several murine models of PBC (2,58) have been proposed and their major features are
illustrated in Table 1. Mouse strains have been reported to be spontaneous PBC model animals
and two among these animal models, IL-2Rα knockout and dnTGFβRII selective knock-out
mice, strongly indicate the possible role of Tregs deficiency in PBC onset. In particular, the
mouse deficient for IL2 receptor α (IL-2R α), which is highly expressed on T regs, developed
AMA positivity against PDC-E2 in all animals, 80% ANA positivity, and lymphocyte
infiltration around the portal tracts associated with cholangiocyte injury (59). The dominant
negative form of transforming grown factor β (TGFβ) receptor II, (dnTGFβRII) manifests
PBC-like liver disease, such as 100% AMA positivity against PDC-E2 (60). TGFβ receptor II
is known to be essential for signal transduction of TGFβ to regulate lymphocytes activation
(61). A third animal model is a variant of the non-obese diabetic (NOD) mouse model
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(NOD.c3c4). It has been described that NOD.c3c4 mouse develops autoimmune cholestasis
and PBC-specific serology, showing AMA positivity in up to 60% of sera and ANA positivity
in about 90%. Histologically, there is lymphocyte infiltration around portal tracts with
epithelioid granuloma formations and chronic nonsuppurative destructive cholangitis;
However, the morphological features of bile duct damage differ from those in human PBC,
particularly because of the occurrence of cystic changes (62).

Other useful models for PBC have been subsequently developed by immunization with
xenobiotically modified molecular variants of the PDC-E2 epitope (2,58). Firstly, we showed
loss of tolerance in rabbits immunized with 6-bromohexonate, a xenobiotically modified
hapten mimicking lipoic acid. The immunized rabbits produced very high titer AMA directed
at PDC-E2 other than antibodies against the xenobiotic, but did not induce PBC-specific hepatic
lesions at least in the short follow-up (63). Finally, induction of specific PBC features was
obtained in guinea pigs (64) and in a NOD background (65) exposed to xenobiotic
immunization. All these models share some similarities with the human condition (66), yet
manifest specific peculiarities.

CELLULAR IMMUNITY
Autoreactive T cells

The involvement of cellular immune mechanisms in the biliary damage is clearly suggested
by the presence of high number of helper (CD4+) TCR αβ+ and CD8+ T cells in the portal
tracts from patients with PBC (67–72). Autoreactive PDC-E2-specific CD4 T cells have been
reported both in peripheral blood and liver tissue of patients with PBC but not in healthy and
disease controls. In support of their role in the liver damage, a 150-fold increase in number of
CD4 T cells specifically targeting PDC-E2 was found in the peri-hepatic lymph nodes and liver
compared with blood of patients with PBC. Our group also characterized the antigen specificity
of these cells and demonstrated that in HLA DR4*0101 positive patients autoreactive CD4 T
cells recognized a single epitope of 163–176 aa sequence which encompass the lipoic acid
binding residue of the inner lipoyl domain of PDC-E2 which is shared by serum AMA. Finally,
we showed that these cells are of pro-inflammatory nature only in PBC patients but not in
controls, based on the production of pro-inflammatory cytokines such as IFN-γ (69), as later
confirmed in peripheral blood (73).

Based on a plethora of data, autoreactive CD4+ and CD8+ T cells are believed to be involved
in the pathogenesis of PBC and liver infiltration of these cells is one of the major features of
the disease (2), including in AMA-negative cases (74). However, findings point to a
predominant role for the CD8+ T subpopulation in PBC (75,76). It is of note that the HLA
class I restricted epitope for CD8+ T cells, i.e. 159–167 aa sequence, maps closely to the
epitopes recognized by serum AMA as well as by CD4 T cells, that is the autoepitope for both
CD4 and CD8 T cells overlaps with the B cell (AMA) epitope. As for autoreactive CD4+ T
cells, we showed a 10-fold higher frequency of PDC-E2159-167 specific CD8 T cells within
the liver compared to blood of PBC patients. Functionally, it has been shown that autoreactive
CD8 T cells in this disease have the ability to produce IFN-γ rather than IL-4/IL-10 cytokines
(77), but also IL-17 has been recently suggested to be crucial in PBC (76).

Regulatory T cells (Tregs)
Despite extensive data on both autoantibody and autoreactive T cells, the mechanisms that lead
to loss of tolerance in PBC have proven elusive. From a generic perspective there is
considerable discussion that suggests that defects in the regulatory T cell (Treg) compartment
are responsible for antigen specific loss of tolerance (78), possibly based on genetic
mechanisms (79). However, this has been difficult to prove in vivo and, despite widely
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observed, quantitative and/or functional impairments of Tregs in humans and animal models,
it has been difficult to link these observations to bile duct specific autoimmunity. PBC is
overwhelmingly a syndrome of adults, although interestingly there is a PBC-like disease
reported in a child with IL-2 receptor α (CD25) deficiency (80). This observation is particularly
intriguing because of data from murine models of autoimmune cholangitis (59,60,81) in which
CD8 T cells play a critical role in the loss of Treg function in mice (75). We should also note
that quantitative and functional analysis of intrahepatic and circulating Tregs in humans with
PBC suggest a loss of T regulatory function (82–84) but these studies have focused entirely
on CD4+CD25 Treg cells. Based on the murine data, in the future it would be important to
specifically address and analyze the CD8 Treg populations in patients with PBC.

Innate immunity cells
While adaptive immunity recognizes antigens with high specificity, the innate immunity
system, including monocytes, dendrocytes, and natural killer (NK) cells, recognizes distinct
evolutionarily conserved structures generally shared by pathogens and known as pathogen-
associated molecular patterns (PAMPs), and thus allow a rapid recognition and elimination of
infectious agents. PAMPs are known to bind to toll-like receptors (TLRs) which then modulate
the function of both adaptive cellular and humoral immunity (85). Of note, the liver is
considered both structurally and functionally as a major organ of innate immunity, since it
contains the largest resident population of cells of the innate immune system. Growing data
indicate that the innate immune system contributes to the triggering and perpetuation of liver
damage. In particular, PBC exhibits specific immunological features in support of this view,
such as elevated levels of serum IgM in response to bacterial antigens, the presence of
epitheliod granulomas, increased levels of cytokines response and enhanced-responsiveness
to PAMPs by NK cells and monocytes, as explained in details below. Almost all patients with
PBC have elevated IgM levels, independently of their AMA or ANA status (1). A polyclonal
hyper-IgM was found to be secondary to a chronic polyclonal innate immune response of
memory B cells to bacterial unmethylated CpG motifs (86). Moreover, our group also
demonstrated that B cells exposed to CpG motifs express increased amount of CD86 and TRL9
as well as increased production of autoantibodies. These data support a link between bacteria
and PBC and strongly suggests a key role for B cells dysregulation in PBC (87).

PBC monocytes have a pro-inflammatory activity which is enhanced in PBC. More
specifically, monocytes activated by PAMPs through TLRs release pro-inflammatory
cytokines, such as IL-1, IL-6, IL-12, IL-18, and TNF-α which then amplifies the adaptive T
cell mediated immune response against infectious agents. We demonstrated that circulating
monocytes from PBC patients challenged with various PAMPs specific for TLR2, TLR3,
TLR4, TLR5, and TLR9 lead to high levels of all pro-inflammatory cytokines when compared
with cells from controls (88). The mechanisms for such increased sensitivity may well be
secondary to the higher frequency of recurrent urinary tract infections reported in PBC. It is
also possible that both monocytes and B cells constantly exposed to bacterially derived
products (PAMPs) gathered from the portal circulation participate in modulating the adaptive
cellular immune response.

In more recent years, NK T cells are attracting growing attention in autoimmunity (89), being
innate effector cells regulated by self and non-self glycolipid antigens presented by the antigen-
presenting molecule CD1d (90). Such activation leads to a rapid production of cytokines and
chemokines by NK T cells, with consequent modulation of both the adaptive and innate
immune responses. In an early study, we reported a higher frequency of CD1d-restricted NKT
cells in PBC patients compared to controls and that these were more frequent in the liver
compared to peripheral blood of patients (72). Subsequently, we confirmed an increased
number of CD1d-restrcited NKT cells also in the liver of dnTGFβRII mice, one of the
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comprehensive PBC murine models. Finally, we also reported that CD1d-deficient
dnTGFβRII mice had a reduced hepatic lymphoid cell infiltrates and milder cholangitis
compared to controls (89).

Although innate immunity hyper-responsiveness is likely not sufficient to cause the loss of
immune tolerance, we hypothesize that these alterations might play a role in triggering the
autoimmune pathology. In this scenario, it is intriguing that in a murine model of PBC N.
aromaticivorans was able to induce the production of serum AMA and chronic cellular-
mediated autoimmunity against small bile ducts in an NK T cell dependent fashion (40).

AUTOANTIBODIES
Anti-mitochondrial antibody (AMA)

Serum AMA are widely accepted as the diagnostic hallmark of PBC and found in nearly 100%
of affected individuals when tested using techniques based on recombinant mitochondrial
antigens (via immunoblotting or ELISA) (7,91). The extremely high sensitivity and specificity
of AMA make them one of the most specific diagnostic tests of human diseases (6,91). AMA
specifically recognizes lipoilated domains within components of the 2-oxoacid dehydrogenase
(OADC) family of enzymes within the mitochondrial respiratory chain, particularly the
dihydrolipoamide acetyltransferase (E2 component) of the pyruvate dehydrogenase complex
(PDC). Less frequent autoantigens are the E2 components of 2-oxo glutarate dehydrogenase
(OADC-E2) and branched-chain 2-oxo acid dehydrogenase (BCOADC-E2) complexes, the
E3 binding protein (E3BP) and the E1α subunit of the pyruvate dehydrogenase complex (PDC-
E1α) (7,92,93) (Table 2). Indirect immunofluorescence (IIF) using rodent liver, kidney and
stomach sections as substrate, is still the most widely used screening assay for AMA in the
routine setting (13), although immunoblotting and ELISA have an higher sensitivity, and the
use of cloned mitochondrial antigens and bead assay testing system (94) allow to identify AMA
in the sera of patients previously defined as AMA negative. Although extremely useful as
diagnostic marker, AMA are not clinically helpful during follow-up as several studies
demonstrate that they do not correlate with stage (95). It is also to note that AMA are often
detectable for several years before the onset of overt clinical disease (14).

Anti-nuclear antibody (ANA)
Serum ANA are detected in approximately one third of sera from patients with PBC, and
reportedly more frequently in AMA-negative cases (8,96). Over the last three decades, several
nuclear structures have been identified as specific targets of ANA in PBC (10), with the two
most frequent patterns being “multiple nuclear dots” (ND) in which the antigens recognized
are the Sp100 and promyelocytic leukemia proteins (PML), and “perinuclear” based on gp210
and nucleoporin p62 antigens localized within the nuclear pore complex (NPC). Both the
perinuclear and nuclear dot ANA patterns are very specific for PBC (97) (Table 2), while anti
centromere autoantibodies (ACA) are not specific and found in only 10% of PBC patients
(98), similar to other autoantibodies (99). Of interest, the ANA specificities have been found
more frequently in patients with severe disease in cross-sectional studies (8,96–98,100,101)
and, even more interestingly, the presence of anti-NPC is associated with worst prognosis (9,
102–104) in longitudinal observations. These data have obvious relevant implications for the
clinical management of PBC since anti-NPC and ACA testing are important for identifying
asymptomatic patients with an unfavorable disease outcome and warranting early therapy (7).
Unfortunately, the pathogenic role of these antibodies has been poorly investigated and remains
unknown.
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BILIARY EPITHELIAL CELLS (BEC)
PBC is characterized by a highly selective destruction of the small and medium size intrahepatic
bile ducts, lined by BEC (i.e. cholangiocytes). It has been demonstrated that BEC express cell
surface adhesion molecules which permit adhesion and recognition of lymphocytes. In
addition, a number of studies have demonstrated that BEC of both healthy and diseased liver
have the capacity to increase the expression of adhesion molecules, such as ICAM-1 and others,
TNF-α, MHC class I and II, IFN-γ and IL-1 upon stimulation with pro-inflammatory cytokines.
Adhesion molecules expressed on BEC, along with the enhanced levels of pro-inflammatory
cytokines, allow BEC to modulate the intensity and localization of inflammatory reactions.
Moreover BEC have the capacity to act as antigen presenting cells, expressing HLA class II
(105,106), and accessory molecules responsible for the co-stimulatory signal to T cells,
CD80,86 (B7-1, B7-2). The interactions between BEC and T cells might be responsible for
bile duct loss, a key characteristic of progression of disease.

Antigenicity of BEC self-molecules, or highly homologous epitopes, could also be related to
their role in mucosal immunity. As other epithelial cells, BEC actively transfer IgA-AMA
specific for PDC-E2. Interestingly, these specific IgA-type AMA can be detected in all body
fluids of patients with PBC, including saliva, bile, and urine (107,108). Matsumura and
colleagues provided evidence for direct toxic effects of AMA-IgA by exposing canine kidney
cells transfected with the human polymeric Ig receptor to highly purified AMA-IgA (109).
Overall, the immunogenic characteristics of BEC in PBC are summarized in Table 3.

Apoptosis of BECs in PBC may prove crucial for immune tolerance loss (17,110), as in other
conditions (110). Odin and colleagues reported that the glutathiolation of the lysine-lipoic acid
moiety of PDC-E2 was reduced by serum AMA (111). Most recently our group demonstrated
that BEC expose intact immunoreactive PDC-E2 within apoptotic blebs from cells undergoing
apoptosis (17), thus suggesting that the unique characteristics of BECs during apoptosis may
explain the tissue specificity of the autoimmune injury in PBC (112) although experimental
data suggest that BEC may in fact be innocent victims of the autoimmune injury (68).

HYPOTHESIS ON PBC ETIOPATHOGENESIS
Following this discussion of available data, it is possible to propose a unifying view. Three
major events are crucial to the proposed mechanism leading to the breakdown of tolerance and
the resulting PBC onset and perpetuation, i.e. BEC apoptosis, female predominance, and
genetic susceptibility. A microorganism (possibly the ubiquitous N. aromaticivorans) with
highly similar proteins to human PDC-E2 enters the human system through the digestive
mucosa and its mimicking proteins are modified within the liver by xenobiotics to form
immunoreactive antigens. These modifications could be then sufficient to trigger the innate
immune system to initiate a cascade of local inflammatory events resulting in local dendritic
cell activation and antigen processing. Mucosal antigen-presenting cells in turn could activate
autoreactive T and B cells (16) that are directed to the liver through the portal system. T cells,
therefore, could participate directly not only to the autoimmune injury, but also to its
amplification and perpetuation (68). B cells, on the other hand, could secrete AMA, particularly
of the IgA type. AMA-IgA could be then transported to the vascular side of biliary epithelial
cells where they could recognize PDC-E2-like molecules located on the luminal surface cell
membrane. AMA-IgA/PDC-E2-like molecules engagement could initiate apoptotic signaling
cascade. Ultimately, the immune complexes of post-apoptotic PDC-E2 and IgG-AMA and the
direct cytopathic effects of autoreactive T cells (and possibly AMA) lead to the selective BEC
targeting and autoimmune cholangitis development.
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CONCLUSIONS AND FUTURE PERSPECTIVES
There have been substantial advances in the understanding of PBC pathogenesis since the
molecular identification of PDC-E2 in 1987 as the major autoantigen of AMA (92). A number
of questions on the etiology and pathogenesis of PBC still need to find an answer but we believe
that soon we will be able to solve the puzzle. We are also convinced that to achieve this goal,
our efforts should be mainly dedicated to overcoming some logistic difficulties. Firstly, we
encourage the collection of very large series of patients and controls, possibly by mean of
multicentric studies, and the use of genome-wide analysis on thousands of genetic and
epigenetic variants. This will allow defining the individual bases of PBC. Secondly, based on
the most recent evidence, the role of innate immunity in the onset and perpetuation of PBC
should be further studied. Third, it is time to prove the AMA pathogenic role in PBC. Fourth,
it will be important to develop additional animal models to better dissect the molecular
mechanisms underlying the disease. Finally, we are convinced that the growing evidence on
the key role of apoptosis in PBC will provide some intriguing data in the near future. Ultimately,
we believe that while new frontiers are being proposed (113,114) we will be able to understand
the etiopathogenesis of PBC only through a multidisciplinary approach uniting clinicians, basic
immunologists, geneticists, chemists, and microbiologists, possibly through the proposed role
of an autoimmunologist (115).
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Abbreviations

PBC primary biliary cirrhosis

AMA anti-mitochondrial antibodies

IgM immunoglobulin M

ANA anti-nuclear antibody

PDC-E2 E2 subunit of pyruvate dehydrogenase

HLA human leukocyte antigen

XCI X-chromosome inactivation

dnTGFβRII dominant negative form of transforming grown factor β receptor II

NOD non-obese diabetic

Treg regulatory T cell

NK natural killer

PAMPs pathogen-associated molecular patterns

TLRs toll-like receptors

OADC 2-oxoacid dehydrogenase

OADC-E2 E2 components of 2-oxo glutarate dehydrogenase

BCOADC-E2 E2 components of branched-chain 2-oxo acid dehydrogenase

E3BP E3 binding protein

PDC-E1α E1α subunit of the pyruvate dehydrogenase complex

IIF Indirect immunofluorescence
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ND nuclear dots

PML promyelocytic leukemia proteins

NPC nuclear pore complex

ACA anti-centromere antibodies

BEC biliary epithelial cells
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Table 1

Similarities of the acquired and innate immunity compartments between the murine models and human PBC.

Model Adaptive immunity Innate immunity Ref.

Ae2(a.b)-deficient - AMA -- (116)

- Lymphocytic CD8+ infiltrates

- Decreased T regulatory cells

- PBC-like liver lesions

Xenobiotic on - AMA -- (65)

C57BL/6 - Lymphocytic CD8+ infiltrate

- PBC-like liver lesions

NOD.c3c4 - AMA, ANA -- (62)

- lymphocytic infiltrate

IL2Ra−/− - AMA -- (59)

- portal tract CD4+ and CD8+ cells

dnTGFbRII - AMA NKT cells worsen liver injury (60)

- Deficient T reg function

N. aromaticivorans on - AMA NKT cells are required (40)

NOD 1101 - PBC-like liver lesions

- Disease transfer by T cells
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Table 2

Major autoantigens in PBC.

Mitochondrial proteins

E2 subunits of 2-OADC PDC-E2 *

OGDC-E2 *

BCOADC-E2 *

Pyruvate dehydrogenase complex E3BP *

PDC E1α

Nuclear proteins

Multiple nuclear dots Sp100

PML

Nuclear pore complex gp210 *

nucleoporin p62 *

Centromeres CENP A, B and C

*
Specific molecules detectable by immunoblot or ELISA

Abbreviations: 2-OADC: 2-oxo-acid dehydrogenase complex; PDC: pyruvate dehydrogenase complex; OGDC: oxoglutarate dehydrogenase complex;
BCOADC: branched chain 2-oxo-acid dehydrogenase complex; E3BP: dihydrolipoamide dehydrogenase (E3) – binding protein
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Table 3

Imunopathologic characteristics of cholangiocytes in PBC.

PBC Normal

PDC-E2 expression + + + +

Adhesion molecules

- ICAM-1 + + +

- VCAM-1 + −/+

- LFA-1 + −/+

- E-selectins + +

Biliary intra-epithelial lymphocytes Small bile ducts, increased CD4+CD28− Large bile ducts, few CD4+

Cytokines

- INF-γ + + −

- IL-2 + + −

- IL-6 + + −

- IL-6 receptor −/+ −

- TNF-α + + −/+

- TNF receptor + + −/+

BEC phagocytosis of apoptotic + + −

BECs

Apoptosis-related molecules

- Fas (CD95) + −

- granzyme B −/+ −

- perforin −/+ −

- bcl-2 − + +
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