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Chemokines are key players of the cancer-related inflammation. Chemokine ligands and receptors
are downstream of genetic events that cause neoplastic transformation and are abundantly
expressed in chronic inflammatory conditions which predispose to cancer. Components of the
chemokine system affect multiple pathways of tumor progression including: leukocyte

recruitment, neo-angiogenesis, tumor cell proliferation and survival, invasion and metastasis.
Evidence in pre-clinical and clinical settings suggests that the chemokine system represents a
valuable target for the development of innovative therapeutic strategies
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Introduction

Epidemiological and experimental studies have provided clear
evidence that unresolved pathogen infections and chronic inflam-
mation are a prerequisite for carcinogenesis in certain types of
cancer; on the other hand, also tumors unrelated to inflammatory
cues are characterized by the presence of reactive leukocytes and
expression of a large number of inflammatory mediators (e.g.
cytokines, chemokines, enzymes). Chemokines and their receptors
are major players of this cancer-related inflammation (CRI) [1–4].
Over the last decade it has been established that CRI affects many
aspects of malignancy and in particular endorses tumor cell
survival, proliferation and distant spread [3,5,6]. Since their
discovery more than 20 years ago, the chemokine system has
been linked to cancer biology. The early connection was the
identification of theMonocyte Chemotactic Protein-1, later termed
CCL2, in culture supernatants of tumor cell lines [7,8].

A variety of chemokines have been detected in neoplastic
tissues as products of either tumor cells or stromal elements.
Chemokines regulate the directional movement of immune and
other cells, and this tissue trafficking is of great importance both in
physiology (e.g. embryogenesis) and pathology (e.g. resistance to
infections, chronic inflammatory diseases, cancer). Our under-
standing of the chemokine role in tumor biology now ranges from
their ability to recruit blood leukocytes within tumors, to direct
effects on cancer cell survival, metastasis and regulation of
angiogenesis.
Chemokines as targets of genetic lesions causing
cancer

The connection between inflammation and cancer can be
schematically viewed as consisting of an intrinsic pathway, driven
by genetic alterations that cause neoplasia (e.g. oncogenes), that
trigger the inflammatory cascade, and an extrinsic pathway, driven
by leukocytes and mediators that establish inflammatory condi-
tions that increase cancer risk.

In the last few years, a number of studies demonstrated that
chemokines and their receptors are direct targets of the activation
of several oncogenes. For example, components of the RAS-RAF
signalling pathway induce the activation of the transcription factor
NF-κB and the production of several inflammatory chemokines
(e.g. CXCL8) [9,10]. The tyrosine kinase RET, a prototypic
transforming oncogene in human papillary carcinoma of the
thyroid, activates in normal primary human thyrocytes an
inflammatory programme, where chemokines are the most
abundant category in addition to other cytokines and reactive
mediators[11]. Expressed chemokines include CCL2, CCL20, an-
giogenic CXC ligands, CXCL12 and its receptor CXCR4. Recently, we
reported that the oncogenic fusion transcript FUS-CHOP, charac-
teristic of the human myxoid lyposarcoma, trans-activates the
chemokines CCL2, CCL5 and CXCL8 [12]. The transcription factor
Myc, which is overexpressed in many human tumors, in addition
to promoting cell autonomous proliferation, instructs remodelling
of the extracellular microenvironment with inflammatory cells
and mediators (e.g. IL-1) playing key roles. The myc activated
genetic programme includes several CC chemokines which recruit
mast cells. Mast cells have long been known to drive angiogenesis
by sustaining new vessel formation and tumor growth [13]. Other
examples are mutation of p53 in tumor cells, able to trans-activate
CXCL1 [14] and of Notch1 in T cell-acute lymphocytic leukemia,
up-regulating CCR7 expression [15].

The human herpes virus 8 (HHV8) represents an example of
how oncogenic viruses may exploit the chemokine system to drive
tumor progression. HHV8 is the etiologic agent of Kaposi sarcoma
and of hematological malignancies in humans; its genome encodes
the constitutively active viral G-protein coupled receptor (vGPCR)
which recognizes both ELR− and ELR+CXC chemokines. vGPCR
acts as a transforming receptor in vitro and causes vascular lesions
in transgenic mice, thus behaving as an oncogene [16]. Another
example is the chemokine receptor US28 encoded by Cytomega-
lovirus; transgenic mice in which US28 expression was targeted to
intestinal epithelial cells developed intestinal adenoma and
carcinoma [17].

The chemokine system is modulated also by inactivation of
tumour-suppressor genes. Examples are the von Hippel–Lindau
tumour suppressor (VHL) that targets the transcription factor
HIF1αwhich trans-activates CXCR4 [18]. Furthermore, loss of TGF-
β signalling results in increased secretion of CXCL1, CXCL5 and
CCL20 in human breast cancer [19].

In other conditions, transcription factors controlling the
induction of chemokines are deregulated in tumor cells. In
melanoma, constitutive activation of NF-κB is responsible for
CXCL1 production [20,21] and in acutemyelogenous leukemia high
levels of the transcription factor MEF2C induce over-expression of
CCL2, CCL3 and CCL4 [22]. CXCR4 and CCR5 can also be trans-
activated by the Insulin-like Growth Factor-1 or via its receptor
[23,24]. TNF-a signalling up-regulates functional CXCR4 in ovarian
cancer cells and favours peritoneal dissemination [25].

A further demonstration of the importance of chemokines in
cancer biology comes from a recent study on the chemokine
receptor D6, a promiscuous decoy receptor that scavanges several
inflammatory CC chemokines. Genetic ablation of D6 in mice
results in increased carcinogenesis and tumor burden in amodel of
colitis-associated cancer (CAC) [26].

Thus, causative genetic lesions involved in the pathogenesis of
human tumors (oncogenes, mutations) share the capacity to up-
regulate chemokines thereby amplifying the inflammatory
cascade.
Chemokine regulation of leukocyte attraction within
tumors

Chemokines have been historically associated to leukocyte
recruitment in tumors [7,8,27]. Major attractants of monocytic
precursors are the CC-chemokines [27–29]. In a variety of human
cancers, CCL2 and CCL5 levels are correlated with high numbers of
intra-tumor myeloid cells [7,30,31]. Further differentiating in
mature tumor-associated macrophages (TAM) in the local micro-
environment (Fig. 1), these cells are key inflammatory compo-
nents of the cancer stroma, able to affect different aspects of the
neoplastic tissue [32,33].

Experimental evidence indicates that TAM express several
characteristics of M2-polarized macrophages [34], and display
pro-tumoral functions, including promotion of tumor cell and
blood vessel proliferation, matrix remodelling and immune
suppression. The important role of TAM in cancer is supported



Fig. 1 – Tumor-derived chemokines attract blood leukocytes ultimately having a pro-tumoral role. Chemokines secreted by tumor
and stromal cells (e.g. CCL2 and CCL5) regulate the recruitment of circulating monocytes. Differentiated Tumor-Associated
Macrophages (TAM) promote tumor progression by up-regulating neo-angiogenesis, matrix remodeling, cancer cell survival,
proliferation and invasion of surrounding tissues. By producing the chemokines CCL17, CCL18 and CCL22, which attract lymphocytes
devoid of cytotoxic functions and suppressing anti-tumor adaptive immune responses, TAM contribute to tumor immune evasion.
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by clinical studies that found–in most tumors–a correlation
between the high macrophage content and poor patient prognosis
[35]. In turn, genetic studies inmice have shown decreased rates of
tumor growth andmetastasis to be associatedwith decreased TAM
number [36]. Thus cancer cells produce chemokines to attract
blood monocytes to their own advantage.

A major pro-tumoral function of TAM in established tumors, is
the suppression of adaptive anti-tumor immune responses. TAM
are characterized by an IL-12low IL-10high phenotype, high
production of prostaglandins, TGFβ and indoleamine dioxigenase
(IDO) metabolites [34]. In addition, TAM themselves are potent
producers of chemokines. Indeed, part of the immune suppressive
activity of TAM is exerted indirectly by their release of chemokines
such as CCL17 and CCL22 that preferentially attract T cell subsets
devoid of cytotoxic functions (Th2 and Treg cells) (Fig. 1)[30,37].
Further, TAM from ovarian cancer are major producers of CCL18, a
chemokine recruiting naïve T cells [38]. Attraction of naive T cells
in a tissue dominated by M2 macrophages and immune suppres-
sive mediators will induce T cell anergy.

Another example of how chemokines can boost neoplastic
progression by shaping the leukocyte infiltrate of human tumors,
is offered by the oncogenic virus HHV8. Besides the oncogenic
vCGPR, the genome of HHV8 encodes three CC chemokines (vMIP-
I,II and III) that attract Th2 lymphocytes and Treg cells, devoid of
anti-viral activity [30,37,39,40]. These viral inflammatory chemo-
kines represent a strategy to subvert potential effective anti-viral
and anti-tumor immunity.

Tumor immune escape by the loss of homeostatic chemokine
expression has been reported recently. Human keratinocyte-
derived tumors may evade T-cell immunity by down-regulating
the expression of CCL27. Neutralization of CCL27 in mice leads to
decreased immune cell recruitment to tumor masses and
significant increase of primary tumor growth in vivo [41].

Finally, there is evidence that CC and CXC chemokines are
involved also in the attraction of Myeloid Derived Suppressor
Cells (MDSC) in tumors [29]. MDSC are a heterogeneous
population of immature cells with suppressive function, which
includes myeloid-related and mononuclear phagocyte-related
elements [42,43].

The other major leukocyte subset present in the neoplastic
stroma is constituted by Tumor-Infiltrating Lymphocytes (TIL).
Chemokines can also regulate the recruitment and trafficking of
cells of the adaptive immunity to sites of tumor and secondary
lymphoid organs.

Earlier studies demonstrated that transplantable tumor cells
transduced with chemokine genes grew slower in vivo and could
elicit anti-tumor immunity. This was the case for CCL5, CXCL9,
CX3CL1, CCL16 and other [30,37,44,45]. In some experiments, the
anti-tumor effect could be credited to the recruitment of T cells at
the tumor site. In diverse human tumors, especially in colorectal
cancer, an abundance of TIL is a strong prognostic factor and active
research is focusing on the chemokines responsible for their
recruitment [46,47]. TIL have been reported to express the CXCR3
receptor; the corresponding ligands CXCL9 and CXCL10 can elicit
anti-tumoral responses which correlated with increased infiltra-
tion of CD4 and CD8 lymphocytes [48]. In gastric and colorectal
carcinoma [49,50] significant levels of CXCL9 and CXCL10 are
produced by stromal cells, and are correlated with CXCR3-positive
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TIL. Murine tumors engineered with CXCL9 or CXCL10 [51,52], and
intra-tumor injection of CXCL9 [48] further demonstrated the
ability of these chemokines to recruit T as well as NK cells and to
elicit antitumoral responses.

A peculiar chemokine is CXCL16 which contributes to TIL
attraction in tumor stroma. In human glioma, colorectal, breast
and renal cancer, tumors with high CXCL16 expression had slower
progression and showed infiltration of CD4 and CD8 lymphocytes
[53–57]. On the contrary in prostate cancer CXCL16 expression has
been correlated with poor prognosis [58]. Interestingly, it has been
reported that ionizing radiation therapy markedly enhanced
CXCL16 secretion by mouse and human breast cancer cells,
which recruited CXCR6+ effector cells [55].

An original experimental approach to enhance recruitment of
anti-tumor effectors of the adaptive immunity is the forced
expression of homeostatic chemokines which guide T cells to
secondary lymphoid organs. Transfection of LIGHT, a member of
the TNF superfamily, in the tumor environment induced CCL21
expression and subsequent infiltration of naive T cells which are
primed locally and acquire cytotoxic functions [59]. Further, in
mouse cancer models, intra-tumoral injection of CCL21 or stable
transfection of antigen presenting cells lead to potent antitumor
responses [60–62].
Direct and indirect chemokine effects on tumor cells

Angiogenesis and matrix remodeling

The last decade has witnessed a much broader involvement of
chemokine functions in tumor biology. One of the first recognized
mechanism of chemokine functions different from cell chemotaxis
was their effect on angiogenesis. As detailed elsewhere in this
issue, chemokines have important implications in the regulation of
the angiogenic switch in tumors, either directly (through receptors
expressed on endothelial cells) or indirectly, by recruiting
leukocytes that provide angiogenic factors [63]. Endothelial cells
express CXCR4 and its triggering by CXCL12 induces endothelial
cell migration and proliferation; moreover CXCR4 acts synergis-
tically with VEGF to enhance neo-angiogenesis in human ovarian
cancers [64]. CXCL12 promotes tumor angiogenesis also by the
local recruiting of circulating or bone marrow-derived endothelial
precursors [65]. Both CXCR4 and CXCL12 are targets of the hypoxia
transcription factor HIF-1α; during tumor-induced hypoxia both
molecules are up-regulated in tumor cells, TAM and vessels and
participate in the building of vascular network that is essential for
tumor progression [18,66].

In the complexity of the chemokine system, other ligands–
identified by the lack of the tripeptide ELR–are characterized as
powerful antagonistic mediators of angiogenesis. The CXC che-
mokines (CXCL9, CXCL10 and CXCL11) inhibit endothelial cell
proliferation [67] and suppress tumor angiogenesis in diverse
tumors [68–70]. Therefore, the balance of angiogenic ELR+vs.
angiostatic non-ELR chemokines produced in the tumor microen-
vironment may determine the development of angiogenesis
within a tumor tissue and the consequent clinical outcome.

Inflammatory chemokines are also potent activators of matrix-
metalloproteases (MMPs), enzymes that digest the extracellular
matrix. TAM in tumor stroma produce MMPs and other proteolytic
enzymes that affect matrix degradation. The incessant stroma
remodelling which characterizes solid tumors has two major
effects : the release of active growth factors and the promotion of
tumor cell invasion. Chemokines have been shown to induce gene
expression and functional activation of variousMMPs, in particular
MMP-9 [71]. In amodel of primary pancreatic carcinogenesis it has
been shown that neutrophil-derived MMP-9 is essential for the
angiogenic switch, by rendering VEGF available [72].

Tumor cell survival and proliferation

Since the discovery that tumor cells express chemokine receptors
and may functionally respond to ligands, much research focused
on the identification of direct chemokine effects on neoplastic
cells. Earlier studies already pointed out that some tumor cell lines
were able to migrate in response to CXCL8, and that antibodies
against CXCR2 inhibited melanoma cell growth in vitro [20]. In the
last decade several studies have provided evidence that tumor
cells express a wide panel of chemokine receptors. [30,37]. In
general, receptor engagement enhances cancer cell resistance to
apoptotic stimuli and proliferation through the activation of the
MAP/Erk and PI3K pathways (Fig. 2) [30,73].

Most tumors express CXCR4 at levels higher than the normal
corresponding tissues [30,74]; other investigated receptors are for
instance: CCR6 and CX3CR1 in colorectal and pancreatic cancer
[75,76], CXCR6 in prostate cancer [77], CXCR2 in melanoma [78],
and esophageal cancer cells [77], CCR7 in squamous cell carcinoma
of the head and neck [79] and CCR10 in melanoma [80]. In ovarian
cancer cells, the small CXCR4 antagonist CTCE-9908 caused cells
death via a mechanism that was not apoptotic but involved
damage of DNA checkpoint proteins and cell cycle arrest [81].

Interestingly, it has been reported that chemokines and growth
factors can influence each other in some tumors. Estrogens
increase the expression of CXCL12; activation of the CXCR4/
CXCL12 signalling pathway, in turn, promotes estrogen receptor
transcriptional activity [82]. In human glioblastoma cells, activa-
tion of the formyl-peptide chemotactic receptor (a non-chemo-
kine receptor) resulted in the phosphorylation of Epidermal
Growth Factor Receptor. Silencing of both receptors abolished
tumor formation in nude mice [83].

Cellular senescence can have a dual function in cancer
progression, by favoring clearance of DNA damaged cells and in
opposite direction by favoring progression of neighboring cells via
secreted factors [84–86]. Chemokines - and CXCL8 in particular -
have been associated with the phenomenon of cellular senescence
[87,88]. CXCR2 and its ligands are secreted during senescence in a
NFkB and p53-dependent way and reinforce senescence [87,89]. It
is envisaged that in malignancy CXCR2 disregulation or p53
mutation disable this chemokine dependent control pathway,
unleashing the pro-tumorigenic inflammatory paracrine functions
of chemokines.

Tumor cell invasion and migration to distant organs

There is now ample evidence that chemokines can serve as cues for
the secondary localization of tumor cells (Fig. 2). The most
frequently over-expressed chemokine receptor on tumor cells is
CXCR4. In general, CXCR4 is associated with tumor progression
and metastasis [30,37]. In a seminal paper, Muller and colleagues
[90] demonstrated the expression of CXCR4 and its involvement in
metastasis in a model of breast cancer. Leukemic cells expressing



Fig. 2 – Direct effects of chemokines on tumor cells. Cancer cells secrete chemokine ligands (e.g. CXCL12) which act in a paracrine
fashion on receptor-positive tumor cells (e.g.CXCR4) to sustain their resistance to apoptotic stimuli and active proliferation.
Chemokine receptors also guide tumor cell dissemination to distant organs.
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CXCR4 home to bone marrow and access to niches where stromal
cells secrete CXCL12 [73]. In glioblastoma, several CXC receptors
have been reported, with CXCR4 being the most frequent and
being associated with aggressive disease and poor patient survival
[91–93].

CXCR4 is the principal chemokine receptor identified on cancer
stem cells (CSC). CXCR4+ CSC have been isolated from glioblas-
toma [91] and pancreas [94]. In this latter case, a distinct
subpopulation of CD133+/CXCR4+ CSC was identified at the
invasive front of the tumor and determined the metastatic
phenotype of individual tumors [94]. We recently reported that
progenitor cells derived from human glioblastoma are expressing
also the CX3CR1 receptor [95].

Other CXC-receptors have been implicated in the malignant
dissemination to distant organs. For instance, CXCR1, CXCR2 and
CXCR3 in malignant melanoma [96,97]; CXCR3 in B-cell chronic
lymphocytic leukemia cells [98]; CXCR5 in liver metastasis of
colorectal carcinoma [99]. The CX3CR1 receptor is implicated in
the perineural invasion frequently occurring in pancreatic adeno-
carcinoma [76] and inmetastasis to bone of prostatic tumors [100].

Secondary lymphoid organs are a primary site of metastasis; in
several tumors (e.g. breast, melanoma, gastric, non-small cell lung
cancer, head and neck tumors, colorectal carcinoma), CCR7 is up-
regulated and mediates tumor cell dissemination to lymph nodes
[101–106]. In a recent study, brain infiltration by T-cell leukemic
blasts was mediated by CCR7 [15]. Members of the CCR family are
also used by tumor cells to spread to specific tissues such as the
skin, the gut and the liver. CCR6 plays a role in organ selective liver
metastasis of colorectal cancer [107,108]. The skin-homing
receptors CCR4 and CCR10 were found expressed together with
CCR3 in cutaneous lymphoma [109–111]. CCR9 was associated
with intestinal melanoma metastasis [112], and CCR10 with
spread to LN [113]. CCR5 is expressed by Hodgkin lymphoma
[114], in prostate cancer [115] and by mammary tumors [116].

Overall, the above studies have indicated a strong involvement
of the chemokine system in metastasis dissemination. This was
more precisely demonstrated in vivo with mouse tumor models
where receptor-transduced tumor cells indeed metastasized more
than parental cells [25,117]. But how tissue specific is this
phenomenon? Dissemination to bone marrow involves mainly
CXCR4, however not all CXCR4-expressing tumors spread to
bones; most tumors disseminate to LN but only few have been
reported to express CCR7. Another crucial matter is the chemokine
gradient. Tumor tissues usually express higher levels of chemo-
kines compared to surrounding tissues, fluids and blood. Based on
our knowledge of CXCL12 retaining hematopoietic precursor cells
in the BM, chemokines at tumor site should retain neoplastic cells,
rather than encourage distant dissemination. It is however
possible that in certain tumor areas a differential expression of
ligands and receptors occurs, for example due to protein
degradation or changes in oxygen tension (e.g. CXCR4 and
CXCL12).

Another important aspect in the generation of a chemical
gradient is the chemokine production by non-tumoral adjacent
cells (e.g. endothelial cells and fibroblasts, as well as macro-
phages). Cancer-associated fibroblasts (CAF) have been extensive-
ly studied in more recent years and found to be a source of CCL2,
CCL5 and CXC-chemokines; indeed there is a bidirectional cross-
talk between tumor cells and CAF [118,119]. A positive correlation
has been reported between stromal expression of CXCL12 and high
tumor proliferative index [120] and, in another study, with
proliferation of CD44+CD24− breast cancer stem cells [83]. A
notable example was provided in breast cancer, where tumor cells
induced CCL5 secretion in newly recruited mesenchymal cells;
stromal-derived CCL5 then interacted with CCR5-positive tumor
cells enhancing their growth in vivo and metastatic ability [116].

No matter how complex the system, receptor signalling in
tumor cells is likely to grant a pro-motile phenotype with
activation of adhesive molecules and cytoskeleton rearrangement.
Conceivably, chemokines expressed locally in primary tumorsmay
be more important to set tumor cells in motion rather than guide
them at distant sites.

image of Fig.�2
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Therapeutic perspectives

The evidence that cells and mediators of the inflammatory
response are implicated in malignant progression opens the way
for the identification of novel anti-tumor treatments and
approaches for cancer prevention. Chemokines and their receptors
are considered important potential targets of the CRI. Chemokine
production is triggered by inflammatory cytokines (e.g. TNF);
antagonists of TNF are now an available treatment and their
clinical use is being experimented in cancer patients andmay have
an impact also on the chemokine system [121].

Targeting of CCL2 has been actively pursued because of its
crucial role in regulating macrophage accrual within tumors and
effects on angiogenesis. Antibodies against CCL2 have been
investigated in experimental mouse models and a strong case for
anti-CCL2 therapy has been made for prostate cancer [122].
Clinical trials with anti-CCL2 mAb are now being evaluated in
human prostate and ovarian cancer patients.

The most frequently expressed chemokine receptor, CXCR4,
has been targeted by a number of small antagonists such the
bicyclam AMD3100 and peptide analogues. In pre-clinical settings,
CXCR4 antagonists significantly reduced the size of primary
tumors and had anti-metastatic effects in mouse models of
melanoma, osteosarcoma, breast and prostate tumors [123–127].

AMD3100 was unexpectedly found to mobilize CD34+ stem
cells from the bone marrow [128]. This compound is currently in
clinical use for the mobilization of normal hematopoietic stem
cells. Further, mobilization of malignant cells from the bone
marrow niche appears to enhance their sensitivity to chemother-
apy in multiple myeloma and acute myeloid leukemia [129].

The pro-angiogenic chemokine CXCL8 can be successfully
inhibited by specific antibodies. These reagents have shown to
inhibit angiogenesis and reduce tumor growth in nude mice
[130,131]. Humanized anti-CXCL8 mAb are now available for
therapeutic purposes.

Finally, novel chemotherapeutic agents are being studied for
their impact on cancer-related inflammation. The registered
anti-tumor agent of marine origin Trabectedin, in addition to a
strong anti-proliferative effect on cancer cells, is able to down-
modulate the production of a wide set of tumor-related
chemokine, among which CCL2 and CXCL8 [12,132]. This anti-
inflammatory effect of Trabectedin, not shared by conventional
anti-tumor agents, combined with its action on tumor cells,
may represent an ideal therapeutic tool in inflammation-related
tumors.
Concluding remarks

Chemokines are key determinants of leukocyte recruitment in
tumors, a paradigm of the cancer-related inflammation. This
family is a particularly complex network, with a high number of
ligands and receptors, redundant activities and diverse functions
relevant for cancer biology. Yet, experimental in vitro and in vivo
studies have provided unequivocal evidence of the importance of
selected chemokines in specific tumors. Their additional contri-
bution to angiogenesis and direct effects on tumor cell survival
lead to the development of new drugs specifically targeting this
system. Twenty-five years after their association with TAM
infiltration, chemokines are prime targets for pharmacological
intervention. Chemokine inhibition in tumor pre-clinical models
(e.g. CCL2 in prostate cancer) has shown significant antitumor
activity. These results paved the way to testing anti-chemokine
strategies in the clinic.
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