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understanding the determinants of virus transmission is a fundamental step for effective design 
of screening and intervention strategies to control viral epidemics. Phylogenetic analysis can 
be a valid approach for the identification of transmission chains, and very-large data sets can 
be analysed through parallel computation. Here we propose and validate a new methodology 
for the partition of large-scale phylogenies and the inference of transmission clusters. This 
approach, on the basis of a depth-first search algorithm, conjugates the evaluation of node 
reliability, tree topology and patristic distance analysis. The method has been applied to identify 
transmission clusters of a phylogeny of 11,541 human immunodeficiency virus-1 subtype B pol 
gene sequences from a large Italian cohort. molecular transmission chains were characterized 
by means of different clinical/demographic factors, such as the interaction between male 
homosexuals and male heterosexuals. our method takes an advantage of a flexible notion of 
transmission cluster and can become a general framework to analyse other epidemics. 
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The spread of type-1 human immunodeficiency virus (HIV-1) 
infection is influenced by a long duration of the asympto-
matic stage, a high viral evolutionary and replication rate, 

as well as population movements, social behaviour and geopoliti-
cal factors such as infrastructure development and accessibility1,2. 
Phylogenetic analysis can be used to investigate HIV-1 transmission 
events, although the long period of infectivity, coupled with often 
non-uniform spatial and temporal sampling, can limit its efficiency 
in tracing the infection chains3–5.

Several epidemiological factors, for example the mode of HIV-1 
transmission or the disease stage, might be associated to different 
transmission lineages. Antiretroviral therapy (ART) usually sup-
presses HIV-1 replication, reducing the probability of virus transmis-
sion6–8. Drug-resistant strains can be selected by ART exposure, and 
transmitted from patients failing ART or from drug-naive patients 
already carrying a drug-resistant virus9,10. Given the decreasing 
prevalence of virological failures among HIV-1-infected patients 
and of viraemic patients carrying drug resistance over time11, a 
greater proportion of transmitted resistance may be derived from 
ART-naive subjects12–14.

Transmission clusters among HIV-1-infected patients have 
been inferred and analysed across various study cohorts, including 
the United Kingdom15–18, Switzerland19,20, Canada21 and the Neth-
erlands22. Nowadays, parallel computation techniques permit the 
estimation of highly resolved phylogenies for large populations20. 
However, the partition of phylogenetic trees23,24 is a challeng-
ing task and there is not yet an established automated consensus 
methodology to identify transmission clusters, particularly when 
considering large-scale phylogenies. Furthermore, the definition 
of a transmission cluster itself is not standardized15–22. Transmis-
sion clusters have been associated to sub-trees of phylogenies 
containing sequences from at least x distinct subjects15–22 (from a 
minimum of two patients to more than ten patients) with a sub-tree 
reliability of  ≥ y% (usually bootstrap support or posterior prob-
ability, ranging from 80 to 99%21,18). Geographical constraints, that 
is, ≥ z% of sequences from the same country in a cluster (usually  
z ≥ 80%), have been also introduced20. Often, unrelated viral strains 
from different countries are added as controls, and clusters are 
identified by visually inspecting an initial tree or by re-estimating 
smaller trees after reducing the original data set15,17. Cluster selec-
tion based on absolute genetic15,17 and patristic18,21 distance values 
has also been used.

This work proposes a new approach for the automated parti-
tion of large phylogenies, by introducing a flexible (yet statisti-
cally robust) definition of a transmission cluster, which fits also 
the previously introduced definitions. The method is then applied 
for identifying transmission clusters within the HIV-1 subtype B 
epidemic in Italy. Data were drawn from the Antiretroviral Resist-
ance Cohort Analysis (ARCA), a national observational cohort of 
HIV-1-infected patients (www.hivarca.net) followed up at 105 clini-
cal centres. At the time of this study, data from  > 20,000 patients 
and  > 23,000 HIV-1 pol gene sequences were available. A phylogeny 
on the Italian HIV-1 subtype B isolates was estimated by parallel 
computation and, after applying the new partition method, cluster-
ing was linked with patients’ demographic and clinical information. 
As a result, several factors associated with transmission chains were 
identified, suggesting strategies to monitor the epidemic. The meth-
odology proposed here provides a general and robust framework 
for analysing large-scale phylogenies that can be applied in investi-
gating the molecular epidemiology and the intra-host evolutionary 
patterns of a broad range of pathogens.

Results
Automated partition of phylogenetic trees. The definition of 
transmission cluster introduced here requires a rooted phylogeny 
and assumes that two or more patients belong to a potential trans-

mission cluster if their viral sequences are monophyletic and more 
closely related than those from two randomly selected individuals. 
The meaning of ‘more closely related’ refers to the comparison with 
a distance threshold formally defined as follows.

Given a rooted phylogeny, the distribution of all patristic  
distances between pairs of taxa (whole-tree distribution) and the 
distribution of all pairwise patristic distances within any sub-tree 
(sub-tree distribution) are defined. Then, a specific sub-tree is clas-
sified as a transmission cluster if the median value of its distance 
distribution is below a t-percentile threshold (which needs to be 
properly tuned, see below) of the whole-tree distribution.

As complimentary constraints, a sub-tree is considered to be 
eligible as transmission cluster only if it contains sequences from  
≥2 subjects and has a reliability ≥90%. It is important to notice that 
both the threshold (either t-percentile of the whole-tree distribu-
tion or a specific cutoff value) and the other constraints can easily 
be modified so that they conform to previously introduced defini-
tions.

To extract clusters from a phylogeny, a depth-first algorithm was 
used, which is a general strategy for traversing a graph or a tree. 
In brief, after calculating the whole-tree distance distribution, the 
depth-first (Fig. 1) starts from a root node and moves into a sub-tree, 
checking its reliability, number of leaves and calculating the sub-tree 
distribution. If the clustering conditions are not met, the algorithm 
goes deeper into another child sub-tree, otherwise it stops, and the 
leaves of the current sub-tree are placed in a cluster. Then the search 
restarts from the most recent sub-tree that has not been visited. If a 
leaf is reached, no clusters are identified for that path.
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Figure 1 | Automated partition of a phylogenetic tree. Graphical example 
of a depth-first tree search for automated phylogenetic tree partition. The 
method considers nodes/sub-trees with a reliability ≥ 90% and ≥ 2 distinct 
patients, recognizing a sub-tree as a cluster when the median sub-tree 
pairwise patristic distance is below a percentile threshold of the whole-tree 
patristic distance distribution (let it be the 10th percentile). (a) An example 
of a phylogenetic tree, where each patient/sequence is identified by a letter 
(A–Z) and each tree node has an associated value of reliability (which 
might be bootstrap support). (b) Histogram of the whole-tree patristic 
distance distribution. The vertical black line corresponds to the 10th 
percentile distance threshold. The partition method identifies three clusters 
(yellow, red and green) and discards the grey sub-tree.
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To analyse the effect of the threshold t, two independent data 
sets of different sample sizes (n = 127 and n = 1,204 sequences) were 
used, comprising HIV-1 subtype B pol sequences obtained either 
from patients belonging to epidemiologically confirmed transmis-
sion clusters (plus a set of control sequences) or by visually selecting 
the transmission chains from the phylogenetic tree. Our method 
yielded rates of agreement with the epidemiologically confirmed/
visually determined transmission events up to 93%. The optimal 
threshold interval ranged from the 10th to the 35th percentile, with 
a corresponding absolute distance range of 0.04–0.08 nucleotide 
substitutions per site (Supplementary Fig. S1). Additional sensi-
tivity analyses were conducted by comparing cluster sizes, cluster 
numbers, distance and branch length distribution of the study and 
the validation sets, and by comparing against randomly generated 
trees (Methods).

Application of the partition method to HIV-1 phylogeny. A 
total of 11,541 HIV-1 subtype B pol sequences from 7,350 patients 
were included in the analysis, plus two outgroups (subtype C and 
J). Multiple sequence alignment and maximum-likelihood phyl-
ogeny, excluding drug-resistance mutation sites, were carried out 
using parallel computation. Figure 2 shows the phylogenetic tree, 
whereas Figure 3 depicts the median and interquartile (IQR) values 
of branch lengths from a parent node to the child and of number of 
nodes across the tree levels, starting from the root. Branch lengths 
and node levels showed a minimal inverse correlation (r =  − 0.023, 
P < 0.0001). There was also a low but statistically significant corre-
lation between the calendar dates of the leaves and the root-to-tip  
distances (r = 0.25, P < 0.0001, Supplementary Fig. S2), confirmed 
on a multivariable analysis (Supplementary Table S1).

By applying our partition method, the number of clusters 
retrieved using three distinct absolute distance thresholds of 0.04, 
0.07 and 0.08 nucleotide substitutions per site (corresponding to 

the 1st, 15th and 30th percentile thresholds) were 842, 587 and 
292, respectively. For each threshold, each cluster had a median 
(IQR) number of 3 (2–6), 4 (2–9), and 4 (2–10) distinct patients, 
respectively (Supplementary Fig. S3). The proportion of clustered 
isolates was 41.71, 73.44 and 92.23%. Of note, at the 30th percentile 
threshold, about a half of the sequences were placed in two distinct 
clusters (n = 5,785 and n = 1,538), both exceeding in size the number 
of un-clustered isolates (n = 897). At thresholds below the 30th per-
centile, the maximum cluster size was always inferior to the number 
of un-clustered isolates (Supplementary Fig. S4). Thus, the 30th per-
centile threshold behaved as a break-point: all subsequent analyses 
yielded similar results across lower thresholds, whereas the same 
did not always held when considering both thresholds above and 
below the break-point. The partitions retrieved at different thresh-
olds exhibited a mild rate of agreement, with a peak at the 15th per-
centile threshold (Supplementary Fig. S5). Notably, two previously 
published cases25,26 of drug-resistance transmission from ART-naive 
to ART-naive patients in ARCA were correctly identified at any of 
the thresholds considered.

Transmission clusters and factors associated with clustering. The 
phylogeny partition was linked to the patients’ epidemiological and 
clinical information. Descriptive statistics of the study population is 
shown in Table 1.

Table 2 describes the composition of clusters when consider-
ing the threshold distance of 0.07 (15th percentile, highest rate of 
agreement). Sequences without epidemiological information were 
ignored, and only the earliest available sequence per patient was 
considered. Each cluster was evaluated checking if it was composed 
exclusively either by a single or by a mixture of different demo-
graphic factors. The estimated proportions were then compared 
against those that would be expected by chance after randomly shuf-
fling the cluster indices. We found an excess in the proportion of 
clusters composed solely by patients living in the Northern Italy (31 
versus 17%, P < 0.0001), by those living in the Central Italy (25 versus 
16%, P = 0.0008), by male homosexuals (27 versus 16%, P < 0.0001), 
by male homosexuals and heterosexuals together (20 versus 10%, 
P < 0.0001), by patients infected recently (within three years from 
the first HIV-1 positive test, 35 versus 19%, P < 0.0001), by ART-
naive patients without any drug-resistance mutation (15 versus 6%, 
P < 0.0001), by patients with high HIV-1 RNA load (above 10,000 
copies per ml, 43 versus 34%, P = 0.02), by patients carrying at  
least one resistance mutation to nucleoside/nucleotide reverse  
transcriptase inhibitors (NRTI) and protease inhibitors (PI)  

Figure 2 | Phylogeny of Italian HIV-1 subtype B pol isolates. maximum-
likelihood phylogenetic tree of 11,541 HIV-1 subtype B pol gene sequences 
from the Italian ARCA cohort. Tree is rooted on subtype J and depicted 
using three-dimensional hyperbolic geometry. nodes and leaves are 
highlighted by yellow points.
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Figure 3 | Tree topology. Topological analysis of a maximum-likelihood 
phylogenetic tree composed of 11,541 HIV-1 subtype B pol sequences from 
the Italian ARCA cohort, rooted on subtype J. median (interquartile range) 
branch length (blue) and number of nodes (red) for each tree level are 
depicted.
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Table 1 | Study population.

Variables n %

sequences 11,541 100
Patients 7,350 63.69
Patients with known seroconversion date 258 3.51
Patients with known date of first HIV-1  
positive test

2,720 37.01

Country area
 Central Italy 3,274 44.54
 northern Italy 3,528 48.00
 southern Italy 443 6.03
 unknown 105 1.43

Mode of HIV-1 transmission
 Injecting drug user 1,418 19.29
 Heterosexual 1,439 19.58
 male homosexual 1,313 17.86
 other/unknown 3,180 43.27

Gender
 Female 1,677 22.82
 male 5,111 69.54
 unknown 562 7.65

Country of birth
 Italy 4,210 57.28
 other countries 229 3.12
 unknown 2,911 39.60

All sequences (number of patients)
ART-naive 1,287 (1,116) 11.15 (15.18)
ART-experienced 6,962 (3,603) 60.32 (49.02)
unknown ART status 3,292 (2,631) 28.52 (35.80)
Presence of at least one resistance  
mutation for a specific drug class  
(one sequence per patient)

Considering mixtures of resistant  
mutants and wild types at  

specific positions

not considering mixtures of  
resistant mutants and wild types  

at specific positions

Any class
 ART-naive              246 22.04%              164 14.69%
 ART-experienced              2,911 80.79%              2,657 73.74%

NRTI
 ART-naive              125 11.20%              109 9.77%
 ART-experienced              2,712 75.27%              2,512 69.72%

NNRTI
 ART-naive              145 12.99%              76 6.81%
 ART-experienced              1,485 41.21%              1,147 31.83%

PI
 ART-naive               69 6.18%              55 4.93%
 ART-experienced               1,312 36.41%              1,135 31.50%

Numerical markers Median IQR

sequence year 2004 2002–2007
number of sequences per patient 1 1–2

HIV-1 RNA Log10 copies per ml
 ART-naive 4.64 4.04–5.23
 ART-experienced 3.98 3.32–4.65

CD4 +  T cells per mm3

 ART-naive 361 196–556
 ART-experienced 334 191–504

Age (years)
 ART-naive 37 31–44
 ART-experienced 41 37–46

Time passed from the first HIV +  test (years)
 ART-naive 0 0–1
 ART-experienced 10 6–15

ART, antiretroviral therapy; IQR, interquartile range; nnRTI, non-nucleoside reverse transcriptase inhibitors; nRTI, nucleoside/nucleotide reverse transcriptase inhibitors; PI, protease inhibitors.
Characteristics of subtype B HIV-1 infected patients enrolled in the Italian ARCA cohort.
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Table 2 | Demographic factors in transmission clusters.

Factor strata Clusters Random Adjusted P value

n % n %

Country area of residence
 northern Italy 183 31.28 96 17.30  < 0.0001
 Central Italy 146 24.96 90 16.22 0.0009
 southern Italy 8 1.37 7 1.26 0.8985
 northern and Central Italy 158 27.01 230 41.44  < 0.0001
 northern and southern Italy 19 3.25 13 2.34 0.4504
 Central and southern Italy 9 1.54 12 2.16 0.5302
 northern, Central and southern Italy 62 10.60 107 19.28 0.0001

Mode of HIV transmission
 male homosexual 135 27.05 77 15.88  < 0.0001
 Heterosexual 93 18.64 72 14.85 0.1794
 IDu 56 11.22 79 16.29 0.0415
 male homosexual and heterosexual 99 19.84 48 9.90  < 0.0001
 male homosexual and IDu 13 2.61 46 9.48  < 0.0001
 Heterosexual and IDu 50 10.02 42 8.66 0.5564
 male homosexual, heterosexual and IDu 53 10.62 121 24.95  < 0.0001

ART status
 naive 99 19.08 48 9.78 0.0001
 Experienced 227 43.74 231 47.05 0.3921
 naive and experienced 193 37.19 212 43.18 0.0883

Presence of at least one resistance mutation to NRTI
 Yes 153 26.15 102 18.65 0.0069
 no 156 26.67 87 15.90  < 0.0001
 Yes and no 276 47.18 358 65.45  < 0.0001

Presence of at least one resistance mutation to NNRTI
 Yes 67 11.45 58 10.34 0.5998
 no 243 41.54 183 32.62 0.0051
 Yes and no 275 47.01 320 57.04 0.0020

Presence of at least one resistance mutation to PI
 Yes 61 10.43 34 6.09 0.0181
 no 300 51.28 225 40.32 0.0007
 Yes and no 224 38.29 299 53.58  < 0.0001

Presence of at least one drug-resistance mutation to any ARV class
 Yes 188 32.14 161 28.50 0.2574
 no 119 20.34 58 10.27  < 0.0001
 Yes and no 278 47.52 346 61.24  < 0.0001

Years passed from the first HIV-1 positive test
 Below 3 143 34.71 76 18.86  < 0.0001
 Between 3 and 9 53 12.86 48 11.91 0.7235
 Between 9 and 14 33 8.01 49 12.16 0.0851
 Above 14 26 6.31 37 9.18 0.1964
 mixtures with ≥2 factors 157 38.11 193 47.89 0.0121

HIV-1 RNA load (copies per ml)
 Below 1,000 19 3.85 28 6.38 0.1300
 Between 1,000 and 10,000 55 11.16 61 13.90 0.2834
 Above 10,000 212 43.00 151 34.40 0.0169
 mixtures with ≥2 factors 207 41.99 199 45.33 0.4017

Mode of HIV transmission and gender
 male homosexual 130 26.69 76 15.90 0.0001
 male heterosexual and homosexual 66 13.55 19 3.97  < 0.0001
 male heterosexual 45 9.24 40 8.37 0.6846
 male IDu 36 7.39 48 10.04 0.2173
 Female and male heterosexual 22 4.52 10 2.09 0.0649
 Female and male heterosexual, male homosexual 21 4.31 8 1.67 0.0338
 other mixtures 167 34.29 277 57.95  < 0.0001

ART status and presence of at least one drug-resistance mutation to any ARV class
 naive and no-resistance 78 15.00 30 5.93  < 0.0001
 naive and resistance 12 2.31 11 2.17 0.8985
 naive, treated and no-resistance 28 5.38 11 2.17 0.0169
 naive, treated and resistance 22 4.23 24 4.74 0.7247
 other mixtures 380 73.08 430 84.98  < 0.0001

ART, antiretroviral therapy; ARV, antiretroviral; IDu, injecting drug user; nnRTI, non-nucleoside reverse transcriptase inhibitors; nRTI, nucleoside/nucleotide reverse transcriptase inhibitors; PI, protease inhibitors.
Clusters compositions by different demographic factors, using a clustering threshold of 0.07 nucleotide substitutions per site. observed proportions have been compared with a data randomization.
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(26 versus 19%, P = 0.007; 10 versus 6%, P = 0.02, respectively). Con-
versely, we observed a proportion significantly lower than expected 
for clusters comprising male homosexuals and injecting drug users 
(IDUs) together (3 versus 9%, P < 0.0001), male homosexuals and 
heterosexuals and IDU together (11 versus 25%, P < 0.0001), and 
patients living in the Northern Italy and in the Central Italy (27 ver-
sus 42%, P < 0.0001). Notably, although the proportions of clusters 
composed by patients either naive or carrying any drug-resistance 
mutation were exceeding those expected by chance, along with the 
mixtures of ART-exposed/ART-naive and patients with/without 
resistance, there was no excess in the proportion of naive patients 
carrying any drug-resistance mutation (2 versus 2%, P = 0.898). 
Similar results were obtained by considering thresholds up to the 
30th percentile (data not shown).

In Table 3, we report the results from a multivariable analysis con-
ducted calculating the odds of being/not-being included in a trans-
mission cluster, for the thresholds at the 1st, 15th and 30th percen-
tile. At any of the thresholds considered, a higher HIV-1 RNA and 
a higher CD4 +  count were associated with clustering, along with a 
more recent infection and a younger age. On the contrary, the pres-
ence of at least one drug-resistance mutation to NRTI and PI was not 
associated with clustering. The mode of HIV transmission was the 
factor that exhibited opposite behaviours by varying the threshold: 
at low thresholds male homosexuals and heterosexuals tended to 
cluster more than IDU, whereas the contrary held at higher thresh-
olds. This might be explained by the fact that IDU have a larger pool 
of contacts as compared with homosexuals/heterosexuals and thus 
are more likely to be included in larger transmission chains charac-
terized by greater genetic diversity27.

Discussion
A new methodology for the partition of large-scale phylogenies 
and the inference of transmission clusters was introduced. This 
approach conjugates the evaluation of node reliability, tree topology 
and patristic distance analysis. Previous approaches have lacked, in 
general, not only a standardized definition of a transmission cluster, 
but also a formal algorithmic procedure for the detection of reliable 
transmission clusters within a phylogeny. In the studies by Lewis  
et al.15 and Hughes et al.,17 clusters were identified on large data sets 
using a fixed threshold on genetic distances, and then confirmed by 
phylogenetic trees constructed afterwards. Another approach was 
the CTree algorithm24, originally applied to viral sub-typing, which 
does not account for node reliability and is not applicable to large 
data sets in its current implementation. Other available methods 
have used different cluster selection schemes by performing nested 
phylogenetic analyses, and/or adding criteria for geographical con-
sistency15–22, but in most cases the assessment of transmission clus-
ters is still subject to a visual tree inspection. The definition of a 
transmission cluster proposed here is general and can be tuned to 
accommodate any of the previous definitions. The method can be 
of interest for epidemiologists because obtained partitions could be 
used in multi-level modelling.

The depth-first approach was applied to a large study population, 
composed of viral sequences of HIV-1-infected patients followed 
up at the Italian clinics, with the aim to gain knowledge about viral 
transmission clusters and their associated factors. The transmission 
clusters detected in our study population were preferentially com-
posed either by male homosexuals only or by male homosexuals 
and heterosexuals together. As male homosexuals (and presumably 
male bisexuals) are a primary source of the cluster composition, this 
could be considered for designing targeted population screenings 
and interventions. On the other hand, there was a negative associa-
tion between male homosexuals/heterosexuals and IDU. We found 
that ART-naive patients cluster both with other ART-naive and with 
ART-experienced patients, in various configurations with respect 
to the carriage of drug-resistance mutation. Although the direc-

tion of the transmission cannot easily be inferred, the proportion 
of clusters composed exclusively by ART-naive patients carrying 
at least one drug-resistance mutation in our population study (so 
presumably transmitting the resistance to each other) was ≈2%, a 
low proportion, comparable to a previous estimation in the United 
Kingdom16. A substantial responsibility of drug-resistance transmis-
sion is still carried by the ART-experienced population, suggesting  
that any decrease in the prevalence of drug-resistance in the ART-
experienced population could translate into a reduction of the  
proportion of new infections with drug-resistant virus.

Multivariable analysis revealed several factors independently 
associated with the transmission clustering, including a higher 
HIV-1 RNA load and CD4 +  count, but not the presence of drug-
resistance. These results partially agree with those reported from the 
Swiss cohort study19, in which the strongest predictor of clustering 
was the detection of drug-resistance, along with HIV-1 RNA load 
and CD4 +  count. However, that study population was composed 
by newly diagnosed individuals.

The association of a recent HIV-1 positive test with transmission 
clustering could be simply due to the fact that in these individu-
als the intra-host viral evolution is at an early stage and thus it is 
easier to trace the possible transmission source. Another possibility, 
however, is that some newly infected patients might not be aware 
of being infected, and therefore continue to engage in risky sexual 
behaviours. Recently, infected and untreated patients are also more 
likely to have higher viral loads, resulting in higher probability of 
transmission6. Thus, efforts to expand HIV-1 testing programmes 
should be a successful strategy to reduce the rates of HIV-1 trans-
mission. Concomitantly, the association of higher HIV-1 RNA loads 
and CD4 +  counts with transmission clustering emphasizes the 
need of early diagnoses and suggests how early treatment may be 
useful in reducing HIV-1 transmission events.

This work has some limitations. First, epidemiological conclu-
sions may change slightly or dramatically depending on the choice 
of the threshold. By evaluating the algorithm on different data sets, 
and using different definitions of a transmission cluster, the opti-
mal threshold spanned a large range, from 0.04 to 0.08 nucleotide 
substitutions per site, whereas previous studies used more stringent 
criteria (either 0.015 or 0.031)18,21. Ideally, a transmission chain, 
at least in the context of a single subtype phylogeny of HIV-1 iso-
lates, should be defined by an absolute threshold. At the moment, 
the lack of epidemiologically confirmed data precludes such a pre-
cise estimation. Nonetheless, the present method offers a rational 
validation strategy to identify an appropriate cutoff, depending on 
the specific data set under investigation and on the (strict or loose) 
definition of a transmission cluster. Second, complete demographic 
and clinical information were missing for a relevant proportion of 
patients enrolled in ARCA. A non-uniform sequence sampling has 
most likely occurred overtime. Most of the sequences included in 
our analysis were derived from ART-experienced patients tested 
at virological failure. Although repeated measures and convergent 
evolution due to treatments were accounted for, the analysis lacked 
a sample contribution from recently infected patients. Sampling 
could potentially distort results when analysing factors associated 
with transmission chains20. Finally, the partition method is fully 
dependent on the phylogenetic tree: if the tree is unreliable, then 
so is the cluster identification. The estimation of highly resolved 
and reliable phylogenies from large data sets is still a challenge and 
requires massively parallelized routines, especially for maximum 
likelihood or Bayesian tree inference. For this reason, the approach 
based on nested phylogenies might be still a preferable choice.

Some limitations of phylogenetic efficiency in detecting transmission 
chains3 could also be overcome by coupling phylogeny inference with 
models derived from the complex network theory28–31. For instance,  
a phylogeny could be used as a previous knowledge to infer sexual links 
when designing a social network model for HIV-1 infection.
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The analysis of transmission clusters using the method dis-
cussed herein can easily be extended to non-B subtype HIV-1, 
whose circulation is increasing in the Italy and Europe32, as well 
as other viral epidemics, such as hepatitis B or C viruses (HBV/
HCV), influenza and coronavirus infection. In particular, HCV is 
one of the fastest growing pandemics and its evolutionary rate, 
genetic heterogeneity and risk transmission factors are similar to 
HIV-1. Given the upcoming availability of HCV antivirals, sur-
veillance of drug-resistance and analysis of transmission clusters 
using standardized algorithms are expected to be of outstanding 
interest in the near future. Finally, the algorithm described here 
can potentially be used in the study of intra-host phylogenies—
especially for the characterization of infected cellular reservoirs 
and compartments in viruses such as HIV33–36 or simian immu-

nodeficiency virus37—in terms of viral fitness, emergence of drug 
resistance and pathogenesis.

Methods
Study population. HIV-1 pol gene sequences (encompassing at least amino acidic 
positions 1–99 of protease and 1–250 of reverse transcriptase) of ART-naive and 
ART-experienced patients were extracted from ARCA, with sampling dates, plus 
corresponding information (where available) on patients’ age, gender, country 
of origin, country area of residence, mode of HIV-1 transmission, date of first 
HIV-1-positive test, date of first ART, HIV-1 RNA load and CD4 +  T cell count 
contemporary to the sampling date (between  − 30/ + 7 days for HIV-1 RNA, 
between  − 30/ + 30 days for CD4 + ).

Sequence analysis. Viral subtype was assigned by using the Rega subtyping tool 
(http://www.bioafrica.net/rega-genotype/html/subtypinghiv.html). All sequences 
classified as subtype B, excluding any putative recombinant form, were aligned  

Table 3 | Factors associated with transmission clustering.

Factor/threshold 1st Percentile (0.04 ns s − 1) 15th Percentile (0.07 ns s − 1) 30th Percentile (0.08 ns s − 1)

OR 95% CI P value OR 95% CI P value OR 95% CI P value

Calendar year of genotyping 
(per more recent)

1.04 (1.01–1.06) 0.0011 0.98 (0.96–1) 0.1163 0.98 (0.95–1.01) 0.2626

Italian country area of residence (ref. Central)
 northern 0.52 (0.46–0.6)  < 0.0001 0.73 (0.63–0.85)  < 0.0001 1.09 (0.85–1.39) 0.4936
 southern 0.58 (0.45–0.75)  < 0.0001 0.78 (0.6–1.01) 0.0578 1.07 (0.68–1.68) 0.7860
 unknown 0.86 (0.56–1.34) 0.5151 1.05 (0.63–1.76) 0.8583 0.65 (0.32–1.32) 0.2341

Mode of HIV-1 transmission (ref. IDU)
 Heterosexual 1.64 (1.29–2.09)  < 0.0001 1.08 (0.86–1.36) 0.4993 0.27 (0.17–0.44)  < 0.0001
 male homosexual 1.58 (1.24–2.01) 0.0002 1.05 (0.82–1.33) 0.7112 0.16 (0.1–0.25)  < 0.0001
 other/unknown 1.52 (1.19–1.94) 0.0007 1.05 (0.84–1.32) 0.6658 0.33 (0.21–0.52)  < 0.0001

Gender (ref. female)
 male 1.88 (1.56–2.26)  < 0.0001 1.00 (0.83–1.19) 0.9564 0.54 (0.4–0.73)  < 0.0001
 unknown 2.27 (1.73–2.97)  < 0.0001 1.08 (0.82–1.42) 0.5801 0.52 (0.32–0.83) 0.0058

Country of birth (ref. Italy)
 other than Italy 0.64 (0.45–0.91) 0.0142 0.53 (0.37–0.75) 0.0004 0.28 (0.18–0.43)  < 0.0001
 unknown 1.03 (0.86–1.23) 0.7390 1.13 (0.93–1.36) 0.2096 1.12 (0.82–1.53) 0.4867

Age (ref.  > 46 years old)
 ≤36 1.49 (1.23–1.81)  < 0.0001 1.20 (0.98–1.47) 0.0790 1.49 (1.1–2.04) 0.0111
  > 36 and ≤41 1.06 (0.88–1.26) 0.5617 1.00 (0.83–1.21) 0.9656 1.70 (1.26–2.29) 0.0006
  > 41 and ≤46 0.99 (0.84–1.18) 0.9366 1.00 (0.84–1.19) 0.9965 1.44 (1.1–1.9) 0.0082
 unknown 1.02 (0.82–1.26) 0.8910 1.10 (0.87–1.38) 0.4303 1.50 (1.01–2.21) 0.0424

ART status (ref. ART-naive)
 ART-experienced 0.68 (0.56–0.84) 0.0003 1.08 (0.85–1.37) 0.5361 1.18 (0.82–1.7) 0.3708
 unknown 0.72 (0.59–0.89) 0.0020 1.04 (0.82–1.31) 0.7447 0.93 (0.65–1.32) 0.6677

Time from first HIV +  test (ref.  > 14 years)
 ≤3 years 2.56 (1.87–3.51)  < 0.0001 1.78 (1.3–2.45) 0.0004 1.33 (0.75–2.36) 0.3261
  > 3 and ≤9 years 1.70 (1.27–2.26) 0.0003 1.14 (0.87–1.5) 0.3524 0.87 (0.52–1.45) 0.6022
  > 9 and ≤14 years 1.30 (1–1.7) 0.0537 1.18 (0.93–1.51) 0.1804 0.99 (0.62–1.57) 0.9519
 unknown 1.38 (1.04–1.81) 0.0232 0.90 (0.7–1.17) 0.4394 0.77 (0.47–1.24) 0.2809

Presence of at least one drug-resistance mutation*
 nRTI 0.68 (0.6–0.78)  < 0.0001 0.72 (0.62–0.82)  < 0.0001 0.99 (0.8–1.24) 0.9378
 nnRTI 0.93 (0.83–1.04) 0.2271 0.99 (0.88–1.12) 0.8875 0.95 (0.78–1.16) 0.6196
 PI 0.93 (0.82–1.07) 0.3092 0.80 (0.7–0.92) 0.0012 0.77 (0.61–0.97) 0.0274
HIV-1 RnA per one Log10 
copies per ml higher

1.08 (1.01–1.15) 0.0344 1.01 (0.94–1.09) 0.7574 1.04 (0.92–1.17) 0.5722

CD4 +  count per 50 
cells/mm3 higher

1.03 (1.01–1.04) 0.0002 1.02 (1.01–1.04) 0.0057 1.03 (1–1.06) 0.0616

ART, antiretroviral therapy; CI, confidence interval; IDu, injecting drug user; nnRTI, non-nucleoside reverse transcriptase inhibitors; nRTI, nucleoside/tide reverse transcriptase inhibitors; ns s−1, 
nucleotide substitutions per site; oR, odds-ratio; PI, protease inhibitors.
*mixtures of wild-type and resistant mutants are classified as resistant
Adjusted oR of transmission clustering evidence (clustered versus un-clustered isolates) from fitting a multivariable logistic generalized-estimating-equations model, by considering different 
percentile thresholds.
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using the parallel implementation of ClustalW38, and manually edited. Resistance 
to an antiretroviral class (nucleoside-tide/non-nucleoside/protease inhibitors) was 
defined as the presence of at least one major mutation conferring resistance to at 
least one drug belonging to that class according to the 2009 update of the Interna-
tional AIDS Society reference list (http://www.iasusa.org/resistance_mutations/ 
mutations_figures.pdf). Deduced amino-acid mixtures including a major resist-
ance mutation were considered as indicative of resistance, unless otherwise 
specified. Columns of the multiple alignment corresponding to codon positions 
associated to drug-resistance were removed.

Phylogenetic analysis. Maximum-likelihood phylogenetic analysis was performed 
on the alignment, adding HIV-1 subtypes J and C as outgroups. The parallel im-
plementation of FastTree software39 was used, setting up a general-time-reversible 
model, with a 20-parameter gamma optimization, and a mix of nearest-neighbour 
interchanges and sub-tree/prune/regraft moves for tree topology search. Reliability 
of each tree split was calculated by a Shimodaira–Hasegawa test. To visualize the 
large tree as a whole, three-dimensional hyperbolic geometry software was used 
(http://www.caida.org/tools/visualization/walrus/).

Parallel ClustalW multiple alignment required ~10 h on a two quad-core 64bit 
Intel Xeon X5550@2.66GHz, with Hyper-Threading technology, using a total of 16 
processing units and 24GB DDR3 RAM. Parallel FastTree software run for ≈ 40 min.

Automated partition of phylogenies. After obtaining the maximum-likelihood 
phylogenetic tree, rooted on HIV-1 subtype J, tree topology was analysed with a 
depth-first visit 40 by considering the number of sub-trees with a node reliability 
≥ 90%, and an associated number of leaves with at least two distinct patients. At 
each step of the depth-first visit, a sub-tree was identified as a cluster if the median 
value of the sub-tree distance distribution was below a t-percentile threshold of the 
whole-tree distance distribution. If this condition was met in a node, the search at 
that node was stopped, ignoring the children nodes, passing to analyse other node 
siblings. The threshold t was evaluated and optimized over the range [5th, 50th] 
percentile of the whole-tree distance distribution, with a step of 0.05. Cluster  
partitions were compared by using the adjusted Rand index41.

Software implementation and computational complexity. Software has been 
implemented using the java (http://java.sun.com/) programming language, 
released as a free platform-independent standalone application, executable both 
from the command-line and with a graphical user interface (downloadable as a 
Supplementary Software 1 and 2, see Supplementary Note 1, Supplementary Data 
1 and 2, and Supplementary Fig. S6). The software requires a phylogenetic tree 
input file in newick format. Three different options are available: (i) threshold-
based partition algorithm, specifying a threshold value and a maximum number 
of distance comparisons; (ii) topological analysis, with median (IQR) values for 
branch length, reliability and number of nodes at each tree level; (iii) patristic 
distance calculator.

In the partition algorithm (i), the calculation of the branch length difference 
distribution for a tree with k leaves, requires k*(k-1)/2 pairwise comparisons, 
corresponding to 66.6 million for the ARCA phylogenetic tree. In the worst case, 
the depth-first search may require a number of accesses to the distance matrix, 
which is cubic in the number of entries. However, the implemented software has an 
efficient indexing routine that permit the exact calculation of a whole-tree distance 
matrix even for huge trees, at a price of a high random access memory usage. If the 
java virtual machine is initialized with at least 8 Gb of RAM, it is possible to com-
pute exactly a full matrix for a tree with ≈10,000 leaves. Our routine for patristic 
distance calculation was validated by comparing it against the ‘cophenetic’ function 
of the ‘ape’ library in the R software (http://www.R-project.org).

Validation of partition method and threshold optimization. The depth-first 
visit procedure for the automated partition of a phylogenetic tree was evaluated by 
using two different independent data sets.

First, a maximum-likelihood phylogenetic tree was estimated (with the same 
alignment and tree fit procedures as previously described) by considering a set of 
group M subtype B HIV-1 pol sequences obtained from patients with a confirmed 
and known transmission history, plus a set of random control sequences from 
distinct patients of the same geographical area, and two outgroups (HIV-1 subtypes 
J and C). This data set was produced by querying the Los Alamos HIV repository 
(http://www.hiv.lanl.gov/content/index), in which 62 sequences from 35 patients 
were reported to be involved in five distinct transmission events. The number of 
control sequences was the same as that of sequences linked to the transmission 
events. Thus, a total of 127 sequences were considered in the subsequent phylo-
genetic analysis. The phylogenetic tree (Supplementary Fig. S7) was also visually 
inspected to confirm the epidemiological evidence of transmission clustering, as 
follows.

Identification of clusters was performed by examining leaves and nodes exhaus-
tively. Only at a most recent common ancestor (MRCA) node with a reliability 
≥ 90%, all the children leaves were iteratively grouped together, maximizing the 
cluster size, ensuring that any group included isolates from at least two distinct 
patients. In theory, if all nodes with a reliability of  ≥ 90% were scored as transmis-
sion chains, then any highly supported epidemiological cluster with several nested 
highly supported transmission chains would also be considered as a transmission 

chain. However, if two potential transmission clusters happened to share a  
MRCA with a reliability value of ≥ 90%, but the two lineages departing from  
that MRCA exhibited long branch lengths, then they were considered as two  
independent transmission chains. Leaves that did not meet these criteria were  
left un-clustered.

All transmission events were identified as distinct clusters, although some of 
the control sequences were placed in one or more of the five transmission clusters 
and additional clusters were identified (n = 12). The adjusted Rand index that 
compared the visual inspection of the phylogenetic tree against the epidemiological 
evidence was equal to 0.55. The depth-first procedure was executed optimizing the 
threshold t over a percentile interval range (5th, 50th) of the whole-tree distance 
distribution, with a step of 0.05, obtaining a maximum adjusted Rand index of 
0.69 (11 clusters) at t = 10th (0.04 nucleotide substitutions per site) percentile with 
respect to the epidemiological evidence and of 0.93 (10 clusters) at t = 20th (0.062 
nucleotide substitutions per site) percentile with respect to the visual clustering 
(Supplementary Fig. S1).

Successively, another maximum-likelihood phylogenetic tree was estimated 
on the whole set of group M subtype B HIV-1 pol sequences from the Los Alamos 
HIV repository, adding subtypes J and C as outgroups (n = 1,204), and transmis-
sion clusters were inferred by means of a visual inspection. The highest adjusted 
Rand index between the depth-first method and the visual inspection was 0.88, 
corresponding to a threshold of 0.08 nucleotide substitutions per site, that is, the 
35th percentile (Supplementary Fig. S1). As previously found20, the proportion of 
sequences that clustered together from the same country was significantly higher 
than expected by chance.

We also compared the distributions of patristic distances and branch lengths 
in the validation sets and in the ARCA data set. Although significantly different 
in the sample size, the larger tree of Los Alamos (n = 1,204) and that of ARCA 
(n = 11,541) showed a remarkably low absolute difference in the average patristic 
distance values, which was below 0.004 nucleotide substitutions per site. The same 
held when considering the average branch length, with an absolute difference of 
0.018 (Supplementary Fig. S8).

As a final evaluation, we compared the distributions of cluster number and 
cluster sizes across different percentile thresholds by considering several subtype B 
HIV-1 trees estimated on data sub-samples, against randomly generated trees (at 
different birth rates). At all thresholds below the 45th percentile, both the average 
number of clusters and the cluster size of real trees were significantly different from 
the values obtained by a random tree set (Supplementary Figs S9 and S10).

Epidemiological analysis. Multivariable regression analysis was performed to 
identify prognostic factors of belonging to a transmission cluster (using a binomial 
link), and of root-to-tip distance (using linear regression). Generalized-estimat-
ing-equations models were used, using the ‘geepack’ library in the R software, with 
patient codes as identifiers. Covariate of interests were: sequence year (numeric), 
presence of for nucleoside-tide/non-nucleoside/protease inhibitor resistance 
mutations (binary), patient’s area of residence (Northern/Southern/Central Italy 
or unknown), mode of HIV-1 transmission (heterosexual, male homosexual, IDU, 
other/unknown), gender (male/female/unknown), country of origin (Italian/non-
Italian/unknown), age (categorized on the IQR range or unknown), ART status 
(ART-experienced/ART-naive/unknown), time passed from the first HIV-1 posi-
tive determination (categorized on the IQR range or unknown), HIV-1 RNA load 
and CD4 +  cell count (numeric) at the time of genotyping.
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