Elsevier Editorial System(tm) for Tetrahedron
 Manuscript Draft

Manuscript Number: TET-D-11-00487R1
Title: 2-Azidoethoxy Derivatives of 2-Aminocyclohexanecarboxylic acids (ACHC): Interesting Building Blocks for the Synthesis of Cyclic Beta-Peptide Conjugates

Article Type: Full Length Article
Corresponding Author: Prof. Anna BERNARDI,
Corresponding Author's Institution: Universita' degli Studi di Milano
First Author: Anna Bernardi, prof
Order of Authors: Anna Bernardi, prof; Anna BERNARDI; Jose' J Reina, Dr.

Abstract

Oligomers of cyclic beta-aminoacids possess a high resistance to peptidase-catalyzed hydrolysis and display a high intrinsic tendency to adopt regular secondary structures. These characteristics are attractive to develop new biologically active substances. However, cyclic-betapeptides often show limited solubility in water and cannot be conjugated to biologically relevant fragments, such as oligosaccharides, which are often essential for full biololgical activity of natural alfapeptides. In this article, we report the synthesis of one trans- and one cis-2-aminocyclohexane carboxylic acid (ACHC) both functionalized with a hydroxy group, to increase the solubility in water, and an azidoethoxy group to allow the synthesis of cyclic-beta-peptide conjugates by a "click reaction"

UNIVERSITÀ DEGLI STUDI DI MILANO

DIPARTIMENTO DI CHIMICA
ORGANICA E INDUSTRIALE

Prof. Anna Bernardi

Tel: (39)-02-50314092 Fax: (39)-02-50314072
E-mail: anna.bernardi@unimi.it

Ms. Ref. No.: TET-D-11-00487
Title: 2-Azidoethoxy derivatives of 2-aminocyclohexanecarboxylic acids (ACHC): interesting building blocks for the synthesis of cyclic beta- peptide conjugates

Milano May 12, 2011

Dear Prof. Taylor

please find attached the manuscript in object revised as required by the referee and the editorial staff.

The following changes have ben made:

1. Comments on the relation between amount of catalyst and regioisomer ratio in the epoxide opening reaction were added
2. Epoxide opening in $\mathbf{7}$ does not occur without a catalyst. This information was included in the text.
3. Reference 18 was updated as suggested
4. High resolution MS were obtained and added in the Experimental section
5. All the suggested corrections were introduced in the text and Schemes.

All changes are highlighted in red in the revised manuscript

Best personal regards

Anna Bernardi

*Revised Manuscript (Including Graphical Abstract)

Graphical Abstract

To create your abstract, type over the instructions in the template box below.
Fonts or abstract dimensions should not be changed or altered.

2-Azidoethoxy Derivatives of 2-Aminocyclohexanecarboxylic Acids (ACHC): Interesting Building Blocks for the Synthesis of Cyclic β-Peptide Conjugates

José J. Reina ${ }^{\mathrm{a}}$ and Anna Bernardi ${ }^{\text {a }}$ *
${ }^{a}$ Universita' degli Studi di Milano, Dipartimento di Chimica Organica e Industriale and ISTM- CNR - via Venezian 21 - 20133 Milano, Italy

ARTICLE INFO
 ABSTRACT

Abstract

Oligomers of cyclic- β-aminoacids possess a high resistance to peptidase-catalyzed hydrolysis and display a high intrinsic tendency to adopt regular secondary structures. These characteristics are attractive to develop new biologically active substances. However, cyclic- β-peptides often show limited solubility in water and cannot be conjugated to biologically relevant fragments, such as oligosaccharides, which are often essential for full biololgical activity of natural $\alpha-$ peptides. In this article, we report the synthesis of one trans- and one cis-2-aminocyclohexane carboxylic acid (ACHC), both functionalized with a hydroxy group, to increase the solubility in water, and an azidoethoxy group to allow the synthesis of cyclic- β-peptide conjugates by "click reaction".

2009 Elsevier Ltd. All rights reserved

1. Introduction

In the past few years, oligomers of β-aminoacids have become a subject of considerable interest. ${ }^{1-5}$ These unnatural peptides possess a high resistance to peptidase-catalyzed hydrolysis ${ }^{6-7}$ and often present discrete and predictable folding propensities (foldamers). ${ }^{8-11}$ Usually, β-peptides with cyclic β-aminoacid residues display a higher intrinsic tendency to adopt a regular secondary structure (helix, sheet and turn) than acyclic residues do. ${ }^{12-15}$ However, up to now, most of these results have been obtained in organic solvents, because cyclic β-aminoacids and the resulting peptides often show a limited solubility in water. Only some examples of β-peptides with a helical conformation in aqueous solution have been obtained by modification of the cyclic framework with appropriate hydrophilic substituents. ${ }^{12}$

Cyclic- β-aminoacids have also been exploited as scaffolds in the synthesis of glycomimetic compounds. Our group demonstrated the use of ($1 S, 2 R$)-2-amino-cyclohexanecarboxylic acid as a scaffold to prepare a mimic of Lewis-x trisaccharide where sugars or sugar-like fragments are connected avoiding glycosidic bonds. ${ }^{16}$ These modifications of the oligosaccharide structure are used to improve metabolic stability and activity and to simplify the synthesis of the final glycomimetic compounds.

Introduction of additional substituents on cyclic β-aminoacid frameworks has also been actively sought after. ${ }^{17-18}$ Beside improving (water) solubility, additional substituents can be exploited to allow conjugation of β-peptides or other β -aminoacid-containing molecules to additional elements. For instance, β-peptides could be connected to biologically relevant
fragments, such as oligosaccharides, which are often essential for full biological activity of natural α-peptides. In our glycomimetic research program, functionalized cyclic β-aminoacids are required to achieve polyvalent presentation of derived oligosaccharide mimics on dendrimers and other polymeric scaffolds, a topic of current high interest in the field of carbohydrate mimicry. ${ }^{19,20}$

Herein, we report the practical synthesis of enantiomerically pure and orthogonally protected derivatives of trans- and cis-2aminocyclohexanecarboxylic acids (ACHC) $\mathbf{2}$ and $\mathbf{3}$, functionalized in the cyclohexane ring with a hydroxy group, to increase solubility in water, and with a functional 2-azidoethyl linker to be used as a conjugation handle. Azides give acess to various efficient approaches for bioconjugation, ${ }^{21}$ including the 1,3-dipolar cycloaddition known as the "click reaction". ${ }^{22}$

2. Results and discussion

Compounds $\mathbf{2}$ and $\mathbf{3}$ were prepared in a few synthetic steps from commercially available tetrahydrophthalic anhydride 1 through the known protected β-cyclohexenecarboxylic acids 4^{23} and $6{ }^{24}$ Key to our strategy was the stereoselective synthesis of epoxides 5 and 7 and their regio- and stereoselective opening by metalcatalyzed alcoholysis (Scheme 1).

The synthesis of 2 (Scheme 2) began with Bölm desymmetrization ${ }^{25-26}$ of $\mathbf{1}$ in the presence of quinidine. The resulting cis-hemi-ester $\mathbf{8}$ (93% e.e.) was epimerized to the transisomer 9 using potassium t-amylate at $-15^{\circ} \mathrm{C}$, as described by Yue et al, ${ }^{23}$ to afford a 5.5:1 trans : cis mixture. Finally, the trans-

[^0]isomer 9 was selectively crystallized $\left(\mathrm{Et}_{2} \mathrm{O}\right.$-Hexane) as its (R) -α-methylbenzylamine salt $\mathbf{1 0}$, which improved the trans : cis ratio to $11: 1$, and the trans-hemi-ester 9 was liberated from salt carb carbamate moiety, as expected ${ }^{28}$ and previously described for the corresponding ethyl ester. ${ }^{17}$ No trace of the $4 R, 5 S$ isomer could be identified by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy.

For the synthesis of the $(1 S, 2 R)$ cis isomer 3 (Scheme 3), Curtius rearrangement of hemi-ester 8 under the conditions described above afforded the protected cis amino acid $\mathbf{6},{ }^{24}$ which was oxidized with MCPBA to give epoxide 4 in 63% yield, as a single isomer. The structure of epoxide 4 could not be fully determined by NMR spectroscopic analysis, but the formation of a single isomer likely results from H -bonding interaction of MCPBA with the carbamate functionality. ${ }^{28}$ Thus, the structure of 7 was tentatively attributed, and later confirmed upon analysis of the ring-opening products.

Regioselective alcoholysis of $\mathbf{5}$ occurred uneventfully, using $20 \% \mathrm{Cu}(\mathrm{OTf})_{2}$ in chloroethanol, ${ }^{29}$ and afforded 11 in quantitative yield. The position of substituents and the relative configuration of the stereocenters in $\mathbf{1 1}$ could be unequivocally established by NMR spectroscopic analysis and are those expected by transdiaxial opening of a single chair-like conformation of 5, featuring carbomethoxy and amino groups in a trans-diequatorial disposition. Protection of the hydroxyl group is not necessary at this point, but it was performed (TBDMSOTf, lutidine, 97\%) for the sake of obtaining the final compound in a fully orthogonally protected form. Finally, treatment of $\mathbf{1 2}$ with NaN_{3} afforded the required functionalized $(1 R, 2 R)$ trans $-\beta$-aminoacid synthon 2 in quantitative yield (Scheme 2).

Scheme 1. General strategy for the synthesis of functionalized cyclic β-aminoacids $\mathbf{2}$ and $\mathbf{3}$

Scheme 2. Stereoselective synthesis of 2

Scheme 3. Synthesis of epoxide 7

Alcoholysis of $\mathbf{7}$ is complicated by the conformational flexibility of the 6 -membered ring, which can attain two conformations of similar energy, A and \mathbf{B} (Figure 1). Based on the trans-diaxial requirement of epoxide opening reactions, these conformers are expected to react with opposite regioselectivity: conformer \mathbf{A} should undergo C5-opening yielding the chloroethyl ether $\mathbf{1 3}$ and conformer B should react preferentially at C4 affording ether 14 (Figure 1 and Scheme 4). Molecular mechanics (MM2*) calculations predict that the C5-opening product would exist as an equilibrium mixture of two chair conformations 13-c1 and 13c2. On the contrary, the C 4 -opening compound $\mathbf{1 4}$ is expected to adopt mainly conformation 14-c2, featuring the carbomethoxy group in equatorial position. Although somewhat unexpectedly on the basis of A parameters, ${ }^{30}$ a marked conformational bias for equatorial carbalkoxy group over equatorial N -carbamate was previously observed in cis-2-aminocarbalkoxycyclohexanecarboxylic acid esters. ${ }^{16}$
set of experiments allowed to select $\mathrm{Cu}(\mathrm{OTf})_{2}$ as the promoter of choice for the synthesis of $\mathbf{1 4 .}$ The selectivity appears to lightly increase by increasing the amount of catalyst from 5% to The best results were achieved using $20 \% \mathrm{Cu}(\mathrm{OTf})_{2}$ at $40^{\circ} \mathrm{C}$ (Table 1, entry 7): under these conditions, the global yield of chloroethyl ethers was almost quantitative, which gave 14 in a satisfactory 74% yields after chromatography.
${ }^{1}$ H NMR spectroscopic analysis of the chloroethylether products allowed to validate the computational predictions concerning the conformational behavior of these cyclic β-aminoacids. Diagnostic data were obtained from the coupling constants of proton H 1 , which appeared as a quartet with $\mathrm{J}=4.4 \mathrm{~Hz}$ in $\mathbf{1 3}$ and as a doublet of triplets with $J=9.3 \mathrm{~Hz}$ and 4.1 Hz in 14. This is consistent with the prediction that $\mathbf{1 3}$ exists as a pair of interconverting chairs, while $\mathbf{1 4}$ populates one main chair conformation with the carbomethoxy group in equatorial position.

Table 1. Alcoholysis of 7 in chloroethanol ${ }^{\text {a }}$

Entry	Catalyst	\% cat	T $\left({ }^{\circ} \mathbf{C}\right)$	$\mathbf{1 4 / 1 3 ~ r a t i o ~}{ }^{\text {b }}$	$\mathbf{1 4 (\%) ^ { \mathbf { c } }}$
$\mathbf{1}$	$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$	1 eq	25	-	No rxn
$\mathbf{2}$	$\mathrm{La}(\mathrm{OTf})_{3}$	10	25	$1.2 / 1$	Not isol.
$\mathbf{3}$	$\mathrm{Zn}(\mathrm{OTf})_{2}$	10	25	$1 / 1.3$	Not isol.
$\mathbf{4}$	$\mathrm{Cu}(\mathrm{OTf})_{2}$	5	25	$1.4 / 1$	55
$\mathbf{5}$	$\mathrm{Cu}(\mathrm{OTf})_{2}$	10	25	$1.5 / 1$	60
$\mathbf{6}$	$\mathrm{Cu}(\mathrm{OTf})_{2}$	20	25	$2.2 / 1$	65
$\mathbf{7}$	$\mathrm{Cu}(\mathrm{OTf})_{2}$	20	$40^{\circ} \mathrm{C}$	$2.3 / 1$	74

a. Reactions were performed in chloroethanol, for 3 h at the temperature indicated. b. by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy of crude reaction mixtures c . isolated yield

As for the 1,2-trans isomer, the free hydroxyl group of $\mathbf{1 4}$ was protected as ITS silyl ether (Scheme 5, 95% yield) and, finally, chloro-azide exchange in the linker was achieved using excess NaN_{3} in DMF at $50^{\circ} \mathrm{C}$, to obtain $\mathbf{3}$ in quantitative yield. The same sequence on the minor isomer 13 afforded in similar yield the regioisomeric derivative 16 (Scheme 5).

3. Conclusions

In conclusion, in this work we have established a practical synthesis of enantiomerically pure 1,2-trans and 1,2-cis 2 aminocyclohexanecarboxylic acid (ACHC) derivates 2 and 3 featuring a hydroxyl group and a versatile 2 -azidoethyl linker. The regioisomeric 1,2 -cis compound 16 was also prepared, as a minor isomer of 3 . All compounds were prepared in the $2 R$ series using Bölm desymmetrization of tetrahydrophtalic anhydride 1 with quinidine. The enantiomeric $2 S$ series can be prepared using quinine in the initial step. ${ }^{25}$ We have also shown that both $\mathbf{2}$ and $\mathbf{3}$ are conformationally well-defined structures, populating a single (2) or a major (3) chair conformation. The conformational equilibrium of $\mathbf{3}$ appears dominated by an apparent bias of the carbomethoxy group to occupy the equatorial position preferentially over the N-carbamate group. ${ }^{16}$ All the compounds prepared are orthogonally protected and can be used in combination with other ACHC derivatives, as building blocks to construct β-peptides with improved water solubility. The azido group can also be used as a tether to conjugate different residues to the β-peptides like in natural proteins or peptides composed of α-aminoacids.

4. Experimental section

4.1 Material and methods

Solvents were dried by standard procedures: dichloromethane, methanol, N, N-diisopropylethylamine and triethylamine were dried with calcium hydride; chloroform and pyridine were dried with activated molecular sieves. Reactions requiring anhydrous conditions were performed under nitrogen. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 400 MHz with a Bruker AVANCE-400 instrument. Chemical shifts (δ) for the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra are expressed in ppm relative to internal Me 4 Si as standard. Signal multiplicities are abbreviated as follows: s, singlet; br. s, broad singlet; d, doublet; t , triplet; q, quartet; m, multiplet. Mass spectra were obtained with a Bruker ion-trap Esquire 3000 (ESI ionization) or Autospec Fission spectrometer (FAB ionization) and FT-ICR Mass Spectrometer APEX II \& Xmass 4.7 Magnet software (Bruker Daltonics). Thin-layer chromatography (TLC) was carried out on precoated Merck F254 silica gel plates. Flash chromatography (FC) was carried out on Macherey-Nagel silica gel 60 (230-400 mesh).

A solution of $\boldsymbol{9}^{23}$ ($600 \mathrm{mg}, 3.26 \mathrm{mmol}$) in dry Toluene (6 mL) was treated with $\mathrm{Et}_{3} \mathrm{~N}(550 \mu \mathrm{~L}, 2.20 \mathrm{mmol})$ and DPPA ($770 \mu \mathrm{~L}$, 3.42 mmol). The solution was heated slowly at $80^{\circ} \mathrm{C}$, kept at this temperature until evolution N_{2} ceased, and refluxed for 3 hours. Then, the solution was cooled at room temperature and tert$\mathrm{BuOH}(1.67 \mathrm{~mL}, 16.30 \mathrm{mmol})$ and $\mathrm{CuCl}(15 \mathrm{mg}, 0.13 \mathrm{mmol})$ were added and the reaction was stirred in reflux overnight. Then, the reaction mixture was cooled and room temperature and washed with NaHCO_{3} sat. ($2 \times 50 \mathrm{~mL}$). The aqueous phases were extrated with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and

Scheme 5. Synthesis of the 1,2-cis functionalized β-aminoacids.
concentrated under reduce pressure. The residue was purified by flash silica gel column chromathography using as eluent (Hexane-AcOEt, 7:1) to obtain $4(541 \mathrm{mg}, 65 \%)$ as a transparent oil. $[\alpha]_{\mathrm{D}}\left(\mathrm{c} .1 .00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right):-26.6$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm) 5.71-5.52 (m, 2H, $\left.\mathrm{H}_{4}, \mathrm{H}_{5}\right), 4.61\left(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}_{\text {Boc }}\right), 4.02(\mathrm{bs}$, $\left.1 \mathrm{H}, \mathrm{H}_{2}\right), 3.68(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COOMe}), 2.68(\mathrm{dd}, \mathrm{H}, J$
$2.56-2.40\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{3}, \mathrm{H}_{6}\right), 2.33-2.23\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{6} \cdot\right), 2.00-1.90(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{H}_{3} \cdot\right), 1.43\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3 \mathrm{Boc}}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $(\mathrm{ppm}) 174.0(\mathrm{C}=\mathrm{O}), 155.0(\mathrm{C}=\mathrm{O}), 125.0\left(\mathrm{C}_{3}\right.$ or $\left.\mathrm{C}_{4}\right), 124.2\left(\mathrm{C}_{3}\right.$ or $\left.\mathrm{C}_{4}\right), 51.9(\mathrm{COOMe}), 47.25\left(\mathrm{C}_{2}\right), 44.7\left(\mathrm{C}_{1}\right), 31.2\left(\mathrm{C}_{3}\right), 28.3$ $\left(\mathrm{CH}_{3 \text { Boc }}\right), 26.6\left(\overline{\mathrm{C}_{6}}\right) ;$ ESI-MS for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}_{5}$ Calc. M+ 255.1
Exp. $278.3(\mathrm{M}+\mathrm{Na})^{+} ;$HRMS (ESI): $(\mathrm{M}+\mathrm{Na})^{+}$, found 278.13623 , 43 44

To a solution of $\mathbf{5}(130 \mathrm{mg}, 0.48 \mathrm{mmol})$ in 2-chloroethanol (2 $\mathrm{mL})$ was added a catalytic amount of $\mathrm{Cu}(\mathrm{OTf})_{2}(40 \mathrm{mg}, 0.01$ mmol) and the solution was stirred at room temperature under N_{2} atmosphere for 3 hours. The reaction was monitored by TLC (Hex-AcOEt, 2:1). A solution of $\mathrm{NH}_{4} \mathrm{Cl}: \mathrm{NH}_{3}$ aq (1:1) (30 mL) was added to the reaction mixture. Then, the solution was extracted with AcOEt ($2 \times 30 \mathrm{~mL}$). The organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ anh., and the solvent was eliminated in vacuo to obtain 11 ($160 \mathrm{mg}, 95 \%$) without further purification as a transparent oil. $[\alpha]_{\mathrm{D}}\left(\mathrm{c} .0 .4, \mathrm{CHCl}_{3}\right):-16.7$; ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 4.52\left(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}_{\text {Boc }}\right) 3.99\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{2}\right), 3.86-3.76$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}, \mathrm{H}_{5}\right), 3.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.65-3.53(\mathrm{~m}, 3 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}$), 3.44-3.38 (dt, $1 \mathrm{H}, \mathrm{H}_{4}$), 2.70 (bdt, $1 \mathrm{H}, \mathrm{J} 8.8,4.1$ $\left.\mathrm{Hz}, \mathrm{H}_{1}\right), 2.24-2.12\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{6}\right), 1.97-1.66\left(\mathrm{~m}, 3 \mathrm{H}, 2 \mathrm{H}_{3}, \mathrm{H}_{6} \cdot\right), 1.36$ (s, 9H, $\left.\mathrm{CH}_{3 \text { Boc }}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 173.6$ $(\mathrm{C}=\mathrm{O}), 154.9(\mathrm{C}=\mathrm{O}), 78.4\left(\mathrm{C}_{4}\right), 69.3\left(\mathrm{CH}_{2} \mathrm{O}\right), 67.4\left(\mathrm{C}_{5}\right), 52.0$ $\left(\mathrm{OCH}_{3}\right), 43.6\left(\mathrm{C}_{1}\right), 43.2\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 31.1\left(\mathrm{C}_{3}\right), 30.0\left(\mathrm{C}_{6}\right), 28.3$
$\left(\mathrm{CH}_{3}\right)$ ESI-MS for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{ClNO}_{6}$ Calc. $\mathrm{M}^{+} 351.1$ Exp. 374.2

To a solution of $\mathbf{1 1}(43 \mathrm{mg}, 0.122 \mathrm{mmol})$ and 2,6-lutidine (28 $\mu \mathrm{L}, 0.245 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mu \mathrm{~L})$ was added TBDMSOTf (42 $\mu \mathrm{L}, 0.183 \mathrm{mmol}$) and the solution was stirred at room temperature under N_{2} atmosphere for 3 hours. Then, $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$
was added to the reaction. The reaction mixture was extrated with AcOEt (15 mL). The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ anh., and the solvent was eliminated in vacuo. The residue was purified by flash silica gel column chromathography using as eluent (Hexane-AcOEt, 11:1) to obtain 12 ($58 \mathrm{mg}, 97 \%$) as a transparent oil. $[\alpha]_{\mathrm{D}}\left(\mathrm{c} .0 .95, \mathrm{CHCl}_{3}\right):-8.2 ;{ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}$,

To a solution of $\mathbf{1 2}(34 \mathrm{mg}, 0.073 \mathrm{mmol})$ in DMF $(1 \mathrm{~mL})$ were added $\mathrm{NaN}_{3}(38 \mathrm{mg}, 0.58 \mathrm{mmol})$ and a catalytic amount of I_{2}, the reaction was stirred for 72 hours at $50^{\circ} \mathrm{C}$. Then, the solution was diluted in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, washed with water ($3 \times 10 \mathrm{~mL}$) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ anh. The residue was purified by flash chromathography using as eluent (Hex-AcOEt, 8:1) to yield 2 (35 mg , quant.) as an transparent oil.
NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 4.46(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH}), 4.00-3.88$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{2}\right), 3.88\left(\mathrm{dd}, 1 \mathrm{H}, J 6.0,3.3 \mathrm{~Hz}, \mathrm{H}_{5}\right), 3.88-3.78(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{O}$), 3.67 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), $3.60-3.51\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.48-3.38$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{H}_{4}, \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 3.33-3.23\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 2.60(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}$ $\left.12.2,3.5 \mathrm{~Hz}, \mathrm{H}_{1}\right), 2.17-2.05\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{3}, \mathrm{H}_{6}\right), 1.76(\mathrm{td}, 1 \mathrm{H}, J 13.4$, $\left.3.3 \mathrm{~Hz}, \mathrm{H}_{6}\right), 1.67-1.56\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 1.42\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3 \mathrm{Boc}}\right), 0.88(\mathrm{~s}$ $\left.9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.06 \& 0.05\left(2 \mathrm{~s}, 6 \mathrm{H}, \mathrm{SiCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 174.2(\mathrm{C}=\mathrm{O}), 154.9(\mathrm{C}=\mathrm{O}), 78.2\left(\mathrm{C}_{4}\right), 68.2$ $\left(\mathrm{CH}_{2} \mathrm{O}\right), 66.8\left(\mathrm{C}_{5}\right), 51.9\left(\mathrm{CH}_{3} \mathrm{O}\right), 50.9\left(\mathrm{CH}_{2} \mathrm{~N}_{3}\right), 46.5\left(\mathrm{C}_{2}\right), 44.1$ $\left(\mathrm{C}_{1}\right), 30.9\left(\mathrm{C}_{6}, \mathrm{C}_{3}\right), 28.4\left(\mathrm{CH}_{3 \mathrm{Boc}}\right), 25.8\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right),-4.8\left(\mathrm{SiCH}_{3}\right)$,
$-5.0\left(\mathrm{SiCH}_{3}\right)$; ESI-MS for $\mathrm{C}_{21} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{Si}$ Calc.
M^{+} 472.3 Exp. $495.4(\mathrm{M}+\mathrm{Na})^{+} ;$HRMS (ESI): $(\mathrm{M}+\mathrm{Na})^{+}$, found 495.26080 4.7

To a solution of $\mathbf{6}(400 \mathrm{mg}, 1.57 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was added MCPBA ($377 \mathrm{mg}, 2.20 \mathrm{mmol}$) and the solution was stirred at room temperature for 3 hours. The reaction was monitored by TLC (Hex-AcOEt, 2:1). Then, the solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$, washed with NaHCO_{3} sat. solution (3 x 45 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4} \mathrm{anh}$. and concentrated under reduce pressure. The residue was purified by flash silica gel column chromathography using as eluent (Hexane-AcOEt, 4:1) to obtain $7(265 \mathrm{mg}, 63 \%)$ as a transparent oil.

To a solution of $7(24 \mathrm{mg}, 0.088 \mathrm{mmol})$ in 2-chloroethanol $(300 \mu \mathrm{~L})$ was added a catalytic amount of $\mathrm{Cu}(\mathrm{OTf})_{2}(6.5 \mathrm{mg}$, 0.01 mmol) and the solution was stirred at room temperature under N_{2} atmosphere for 3 hours. The reaction was monitored by TLC (Hex-AcOEt, 2:1). A solution of $\mathrm{NH}_{4} \mathrm{Cl}: \mathrm{NH}_{3}$ aq (1:1) (8 mL) was added to the reaction mixture. Then, the solution was extracted with AcOEt (2 x 20 mL). The organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ anh., and the solvent was eliminated in vacuo. The final product was purified by silica gel column chromathography using as eluent (Hexane-AcOEt, 2:1) to obtain $13(9 \mathrm{mg}, 30 \%)$ and $14(20 \mathrm{mg}, 65 \%)$ as a transparent oil.

To a solution of $\mathbf{1 3}(130 \mathrm{mg}, 0.37 \mathrm{mmol})$ and Imidazol (38 $\mathrm{mg}, 0.56 \mathrm{mmol})$ in DMF (1 mL) was added TBDMS-Cl $(83 \mathrm{mg}$, 0.56 mmol) and the reaction was for 6 hours at room temperature. Then, the solution was diluted in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$, washed with water ($3 \times 10 \mathrm{~mL}$) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ anh. The residue was purified by flash chromathography using as eluent (Hex-AcOEt, 9:1) to yield $\mathbf{1 5}(153 \mathrm{mg}, 89 \%)$ as a transparent oil.

Acknowledgments

Financial support by the EU ITN CARMUSYS (PITN-GA-2008-213592) and Ministero dell'Università e della Ricerca (PRIN prot. 2008J4YNJY) is gratefully acknowledged.

References and notes

1. Enantioselective Synthesis of β-Amino Acids, ed. E. Juaristi and V. A. Soloshonok Wiley-Interscience, New York, 2005.
2. F. Fülöp, Chem. Rev., 2001, 101, 2181-2204.
3. J. A. Miller and S.T. Nguyen, Mini-Rev. Org. Chem., 2005, 2, 3945.
4. R. M. Ortuno, A. G. Moglioni and G. Y. Moltrasio, Curr. Org. Chem., 2005, 9, 237-259.
5. S. G. Davies, A. D. Smith and P. D. Price, Tetrahedron: Asymmetry, 2005, 16, 2833-2891.
6. Frackenpohl, J., Arvidsson, P. I., Schreiber, J. V., Seebach, D., ChemBioChem, 2001, 2, 445-455.
7. Weigand, H., Wirz, B., Schweitzer, A., Camenisch, G. P., Rodriguez-Perez, M. I., Gross, R., Woessner, R., Voges, R., Arvidsson, P. I., Franckenpohl, J., Seebach, D., Biopharm. Drug Dispos., 2002, 23, 251-262.
8. Gellman, S. H. Acc. Chem. Res., 1998, 31, 173-180.
9. Kirshenbaum, K., Zuckermann, R. N., Dill, K. A., Curr. Opin. Struct. Biol., 1999, 9, 530-535.
10. Stigers, K. D., Soth, M. L., Nowick, J. S., Curr. Opin. Chem. Biol., 1999, 3, 714-723.
11. Barron, A. E., Zuckermann, R. N., Curr. Opin. Chem. Biol., 1999, 3, 681-687.
12. Appella, D. H., Barchi, J. J., Durell, S., Gellman, S. H., J. Am. Chem. Soc., 1999, 121, 2309-2310.
13. Abele, S., Guichard, G., Seebach, D. Helv. Chim. Acta, 1998, 81, 2141-2156.
14. Gung, B. W., Zou, D., Stalcup, A. M., Cottrell, C. E., J. Org. Chem., 1999, 64, 2176-2177.
15. Appella, D. H., Christianson, L. A., Karle, I. L., Powell, D. R., Gellman, S. H., J. Am. Chem. Soc., 1996, 118, 13071-13072.
16. Timpano, G, Tabarani, G, Anderluh, M., Invernizzi, D., Vasile, F., Potenza, D., Nieto P.M., Rojo, J., Fieschi, F., Bernardi, A., ChemBioChem, 2008, 9, 1921-1930.
17. Kiss, L., Forró, E., Fülöp, F., Tetrahedron Lett., 2006, 47, 28552858.
18. (a) Fulop, F., Palko, M., Forro, E., Dervarics, M., Martinek, T.A., Sillanpaa, R., Eur. J. Org. Chem., 2005, 15, 3214-3220;

19. .(a) Sattin, S., Daghetti, A., Thépaut, M., Berzi, A., SánchezNavarro, M., Tabarani, G., Rojo, J., Fieschi, F., Clerici, M., Bernardi, A., ACS Chem. Biol., 2010, 3, 301-312. (b) Luczkowiak, J., Sattin, S., Sutkevičiūtè, I., Reina, J.J., SánchezNavarro, M., Thépaut, M., Martínez-Prats, L., Daghetti, A., Fieschi, F., Delgado, R., Bernardi, A., Rojo, J., Bioconjugate Chem. (submitted)
20. Garber, K.C.A., Wangkanont, K., Carlson, E.E., Kiessling, L.L, Chem. Comтии., 2010, 46, 6747-6749.
21. Kolb, H. C., Sharpless, K. B., Drug Discovery Today, 2003, 18, 1128-1137.
22. Kolb, H. C., Finn, M. G., Sharpless, K. B., Angew. Chem. Int. Ed., 2002, 41, 2113-2116.
23. Yue, T.-Y., McLeod, D. D., Albertson, K. B., Beck, S. R., Deerberg, J., Fortunak, J. M., Nugent, W. A., Radesca, L. A., Tang, L., Xiang, C. D., Organic Process Research and Development, 2006, 10, 262-271.
24. Kapferer, P., Vasella, A., Helv. Chi. Acta, 2004, 87, 2764-2789.
25. Bölm, C., Gerlach, A., Dinter, C. L., Synlett, 1999, 195-196.
26. Bernardi, A., Arosio, D., Dellavecchia, D., Micheli, F. Tetrahedron: Asymmetry, 1999, 10, 3403-3407.
27. Jacobi, P. A., Murphree, S., Rupprecht, F., Zheng, W., J. Org. Chem. 1996, 61, 2413-2427.
28. (a) O’Brien, P., Childs, A. C., Ensor, G. J., Hill, C. L., Kirby, J. P., Dearden, M. J., Oxenford, S. J., Rosser, C. M., Org. Lett., 2003, 4955-4957. (and references cited therein)
29. Bernardi, A., Arosio, D., Manzoni, L., Micheli, F., Pasquarello, A., Seneci, P., J. Org. Chem., 2001, 66, 6209-6216.
30. Hirsch, J. A., Topics in Stereochemistry, 1967, 1, 199-219

[^0]: * Corresponding author. Tel.: +39-02-5031-4092; fax: +39-02-5031-4072; e-mail: anna.bernardi@unimi.it

