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Abstract

MicroRNA (miRNAs) are endogenous non-coding RNAs of ∼ 22 nu-

cleotides in length that function as post-transcriptional regulators of gene

and protein expression through degradation or translation inhibition of

the target messenger RNAs. MiRNAs show altered expression profiles

in several human pathologies, including cancer. They can act as tumour

suppressors or as oncogenes, depending on the characteristics of their

target genes.

More than half of the mammalian miRNAs, including several of the

miRNAs implicated in breast cancer, are localized within the introns of

protein-coding genes, often organized in clusters, and usually transcribed

together with their host gene. It is therefore possible, at least in prin-

ciple, to identify novel intronic cancer-regulated miRNAs by examining

the expression profile of their host genes by means of microarrays. For

this purpose, we analyzed the regulation of 253 miRNA host genes in five

large breast cancer microarray data sets comprising more than 950 sam-

ples, examining their association with different clinical and pathological

parameters such as tumour grade, estrogen and progesterone receptor

status, p53 status, survival, and occurrence of relapse or metastasis.

We found that MCM7 and SMC4 were the most frequently and signifi-

cantly overexpressed genes in high grade tumours. These genes contain

two well known cancer-associated miRNA clusters: miR25-93-106b and

miR-15b/16-2 respectively. In addition we identified six other miRNA

host genes that were significantly downregulated in high grade tumours

in all the data sets. Much less evidence is available in the literature about



the involvement in cancer of the miRNAs contained in these genes (i.e.,

miR-218-1, miR-342, miR-483, miR-548f-2, miR-1245 and miR-1266 ).

We measured the expression of the selected miRNAs by Real Time PCR

on an independent cohort of 36 formalin-fixed paraffin-embedded (FFPE)

samples, and we observed reduced expressions level of such miRNAs in

high grade tumours. In particular, we found miR-342-3p, miR-342-5p,

miR-483-3p, and miR-483-5p to be the most significantly downregulated

miRNAs. These miRNAs were also found to correlate with bad prognosis

in grade 2 tumours. Finally we provided initial evidence that increased

expression of miR-342-5p, but not miR-342-3p, induces apoptosis in the

highly metastatic MDA-MB-231 breast cancer cell line.
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1

Introduction

1.1 microRNAs

1.1.1 Historical Background

In 1993, in a much cited article, Victor Ambros and colleagues, Rosalind Lee and

Rhonda Feinbaum, discovered that lin-4, a gene known to control the timing of

larval development in C. elegans, produces two small RNAs instead of coding for

a protein (Lee et al., 1993). One of the two RNAs was found to be approximately

22 nucleotide (nt) in length, while the other was about 60 nt. The longer one was

predicted to fold into a stem-loop, which in turn was proposed to be the precursor

of the shorter one. The Ambros and Ruvkun labs than noticed that these lin-4

RNAs had antisense complementarity to multiple sites in the 3′ UTR of the lin-14

gene (Lee et al., 1993; Wightman et al., 1993). This complementarity interval fell in

a region previously proposed to mediate the repression of lin-14 by the lin-4 gene

product (Ambros, 1989). The Ruvkun lab then demonstrated that lin-4 mediated

regulation of lin-14, through these 3’ UTR sites, substantially reduces the amount

of LIN-14 protein, without noticeably changing lin-14 mRNA levels. Together these

findings supported a model in which the lin-4 RNAs pair to the lin-14 3′ UTR to

specify translational repression of lin-14. This repression forms part of a regulatory

pathway that triggers the transition from cell divisions of the first larval stage to

those of the second stage (Lee et al., 1993; Wightman et al., 1993).

1



1. INTRODUCTION

Lin-4 is today regarded as the first example of an abundant class of small,

regulatory, non-coding RNAs called microRNAs (or miRNAs, for short), although

the word microRNA appeared only in 2001 (Lagos-Quintana et al., 2001; Lau et al.,

2001; Lee and Ambros, 2001). Surprisingly, it took seven years after the discovery

of the lin-4 RNA to find another member of this class, during which time interest in

this family of small RNAs approached zero. One of the reasons for this long period

of oblivion, was the fact that, despite extensive efforts to screen more distantly

related nematodes for lin-4, this RNA remained the only example of a small, non-

coding, regulatory RNA (Ambros, 2008). Thus this phenomenon was believed to be

a peculiarity of the developmental timing mechanism of C. elegans. On the other

hand, a number of findings between 1993 and 2000 provided hints for a greater

generality of the lin-4 – lin-14 mechanism of action. It was found, for example, that

lin-4 regulates not only lin-14, but also lin-28 through complementary elements

in its 3′ UTR (Moss et al., 1997). This discovery was suggestive of a potential

evolutionary flexibility for this type of antisense interaction.

In 2000 the Ruvkun lab identified a second small RNA in C. elegans, encoded

by the let-7 gene (Reinhart et al., 2000), another gene controlling developmental

timing in the worm. Like the lin-4 RNA, the 21 nt let-7 RNA is generated from

a double-stranded hairpin precursor, and it controls the production of yet another

developmental timing regulatory molecule, lin-41. Furthermore, the let-7 RNA was

found to work through imprecise antisense base-pairing with 3′ UTR sequences of

its target gene.

Another surprising finding was the observation that in most animals, except C.

elegans, lin-4 and let-7 are clustered closely together in the genome and are appar-

ently transcriptionally co-regulated (Bashirullah, 2003; Sempere et al., 2003; Sokol

et al., 2008). In the following years many examples of miRNA clusters have been

found. There is still little understanding of why certain miRNAs occur in clusters

in the genome, often transcriptionally co-expressed, and often from polycistronic

primary transcripts.

Another fundamental piece in the miRNA puzzle was added when Gary Ruvkun
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and co-workers showed that the let-7 RNA is perfectly conserved across a wide

range of animal phyla (Pasquinelli et al., 2000). This finding indicated that let-7

and lin-4 were members of an evolutionarily ancient class of regulatory molecules,

thus suggesting that the existence of other RNA with the same characteristics, not

only probable, but necessary. Three laboratories, Ambros’s, Tuschl’s and Bartel’s,

undertook the search for new miRNAs almost simultaneously, and their findings were

published on the same issue of Science (Lagos-Quintana et al., 2001; Lau et al., 2001;

Lee and Ambros, 2001).

The fact that the let-7 RNA sequence is perfectly conserved across a vast evolu-

tionary distance added new layers of complexity to the already fairly sophisticated

emerging picture. At that time, there was no reason to expect that a 22 nt sequence

would be conserved to such a large extent.

1.1.2 MicroRNA biogenesis and mechanisms of actions

1.1.2.1 MicroRNAs and short interfering RNAs share much of the molec-

ular machinery

MiRNAs are a remarkable example of a more general category of small (∼ 20 −

30 nt) non-coding RNAs that regulate genes and genomes. This regulation can

occur at different levels, either separately or simultaneously, including at the level

of transcription, translation, chromatin structure, chromosome segregation, RNA

processing and RNA stability. The central theme is that the small RNAs serve as

specificity factors that directly bind effector proteins to target nucleic acid molecules

via base-paring interactions. The core component of the effector machinery is always

a member of the Argonaute protein super-family (Carthew and Sontheimer, 2009).

Many classes of small RNAs have emerged in recent years, the peculiarities of

their origins, structures, associated effector proteins and biological roles have led to

the identification of three main categories: short interfering RNAs (siRNAs), miR-

NAs and piwi-interacting RNAs (piRNAs). These RNAs are known to be present

in eukaryotes only, although the Argonaute proteins that function in eukaryotic si-

lencing can also be found in scattered bacterial and archaeal species. The first two
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categories, siRNAs and miRNAs, are the most broadly distributed, while piRNAs are

primarily found in animals and are less well understood (Carthew and Sontheimer,

2009).

Five years after the discovery of the first miRNA, lin-4, by Ambros and coworkers

in 1993, Andrew Fire, Craig Mello and colleagues reported that exogenous double-

stranded RNA (dsRNA) specifically silences genes through a mechanism called RNA

interference (RNAi) (Fire et al., 1998). For this discovery they were awarded the

Nobel Prize in Physiology and Medicine in 2006. In 1999, silencing in plants was

shown to be accompanied by the appearance of ∼ 20 − 25 nt RNAs that matched

the sequence of the silencing trigger, and very shortly thereafter, the direct con-

version of dsRNAs into ∼ 21 − 23 nt siRNAs was documented. By 2001 the two

categories of small RNAs had become well established: miRNAs as regulators of en-

dogenous genes, and siRNAs, as defenders of genome integrity in response to foreign

or invasive nucleic acids such as viruses, transposons and transgenes (Carthew and

Sontheimer, 2009). Single stranded forms of both miRNAs and siRNAs were found

to associate with effector assemblies known as RNA-induced silencing complexes

(RISCs) (Hammond et al., 2000). In both cases the identities of the genes to be

silenced are specified by the small RNA component, as explained in greater detail

in the next subsection.

MiRNAs and siRNAs appeared to differ in two major aspects: Firstly, miR-

NAs were viewed as endogenous, whereas siRNAs were thought to be essentially

exogenous in origin, deriving from a viral, transposon or transgene trigger. Sec-

ond, miRNAs appeared to be processed from stem-loop precursors with incomplete

double-stranded character, whereas siRNAs were found to be excised from long, fully

complementary double stranded RNAs (dsRNAs). However, it was soon clear that

the similarities between miRNAs and siRNAs significantly exceeded the differences.

Indeed these small RNAs are similar in size, sequence-specific inhibitory functions

and, most importantly, in their dependence on the same two families of proteins:

Dicer enzymes to excise them from their precursors, and Ago proteins, to support

their silencing function.
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1.1 microRNAs

1.1.2.2 Genomic localization of miRNA genes

MiRNAs have been identified in a wide range of organisms, ranging from simple mul-

ticellular ones, such as poriferans (sponges) and cnidarians (starlet sea anemone),

to homo sapiens. Animal miRNAs appear to have evolved separately from those in

plants because their sequences, precursor structure and biogenesis mechanisms are

distinct from those in plants (Chapman and Carrington, 2007; Millar and Water-

house, 2005).

Many mammalian miRNA genes have multiple isoforms, or more appropriately

paralogs, that are probably the result of gene duplications. For an example, in

the human genome there are 12 distinct loci for the let-7 family miRNAs. These

paralogs often have identical sequences in the nt positions 2–7 relative to the 5’ end

of the miRNA. Since these nucleotides, called the seed region, are essential for the

regulatory function of the miRNAs, the paralogs are thought to act redundantly.

As noted above, a large proportion of the known miRNAs, approximately 50%,

are found in close proximity (< 10 kb) to other miRNAs (Yu et al., 2006). These clus-

ters are transcribed from a single polycistronic transcriptional unit (TU), although

there are cases where individual miRNAs are derived from separate promoters (Lee

et al., 2002; Monteys et al., 2010).

Approximately 50% of miRNA loci are located in the intronic region of non-

coding transcripts, whereas 10% are found in the exonic region of non-coding tran-

scriptional units (Griffiths-Jones, 2007; Saini et al., 2007). Examples of the four

possible genomic localizations of miRNAs are shown in Fig. 1.1.

1.1.2.3 From primary to precursor miRNAs: the Drosha enzyme

The first step in the creation of an active, mature miRNA is the synthesis of the

stem-loop primary transcript (pri-miRNA). The transcription of most pri-miRNAs

is mediated by RNA polymerase II (Pol II) (Cai et al., 2004; Lee et al., 2004),

although a small group of miRNAs that are associated with Alu repeats can be

transcribed by Pol III (Borchert et al., 2006). These transcripts are typically several

kilobases long. While still in the nucleus, they undergo a first cleavage at the stem of
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Figure 1.1: Genomic localization of the miRNA loci - a) Intronic mirRNA in
a non-coding transcript, as is the case of miR-15a 16-1 cluster in the non coding
RNA gene DLEU2. b) Exonic miRNAs in non-coding transcripts, as is miR-155
in the RNA gene BIC. c) Intronic miRNAs in protein-coding transcripts, as is the
miR-25 93 106b cluster, located in the intron of the DNA replication licensing factor
MCM7 transcript. d) exonic miRNA in protein-coding transcripts. The miR-935
hairpin is localized in the last exon of CACNG8. Adapted from (Kim et al., 2009).
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the hairpin structure by the RNase III-type protein Drosha. The result of this cleav-

age is a much shorter hairpin RNA, approximately 70 nt long called the precursor

miRNA (pre-miRNA). Drosha alone is not able to achieve this cleavage, but needs

to be supported by a cofactor: the DiGeorge syndrome critical region (DGCR8)

protein in mammals Pasha in D. melanogaster and C. elegans (Denli et al., 2004;

Gregory et al., 2004; Han et al., 2004; Landthaler et al., 2004). Mouse embryonic

stem (ES) cells that are deficient in the Dgcr8 gene fail to produce miRNAs and

manifest defects in proliferation and differentiation (Wang et al., 2007). Typically

a metazoan pri-miRNA consists of a stem of 33 base pairs (bp), a terminal loop

and two flanking single stranded RNA (ssRNA) strands. DGCR8 assists Drosha to

cleave the substrate 11 bp away from the ssRNA-dsRNA junction (Han et al., 2006;

Zeng and Cullen, 2005). Interestingly, Drosha has been found to negatively regulate

also its own cofactor, DGCR8, in that it cleaves the hairpins in the second exon of

the DGCR8 mRNA (Han et al., 2009).

The domain compositions of Drosha, DGCR8 and Dicer (which will be described

in the next subsection) are shown in Fig. 1.2. Drosha is a 130-160 kDa, nuclear

protein, and together with DGCR8 forms a large (∼ 650 kDa in humans) complex

known as the Microprocessor complex. Drosha has two tandem RNase III domains

(RIIIDs) and a double-stranded RNA-binding domain (dsRBD) (Fig. 1.2). The two

RIIIDs interact with each other to make an intramolecular cut in the 3’ strand of

the dsRNA.

Figure 1.2: Domain structure of Drosha - Both Drosha and Dicer are RNase III
proteins, characterized by the presence of two tandem RNase III domains (RIIIDs)
and a double-stranded RNA-binding domain (dsRBD). Adapted from (Kim et al.,
2009).
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Recently, another class of miRNA-like RNAs embedded in short introns in flies

and mammals has been discovered. Their biogenesis differs from miRNAs in that

it is independent of Drosha. This special class of RNAs is sometimes referred to as

mirtrons (Okamura et al., 2007; Ruby et al., 2007).

After being synthesized in the nucleus, the pre-miRNAs are exported to the

cytoplasm (Kim, 2004). This process is mediated by exportin 5, a member of the

nuclear transport receptor family. Exportin 5 recognizes the 14 bp double stranded

RNA stem along with a short 3’ overhang. Initially, this protein was known as

a minor export factor for tRNAs, but it later emerged that miRNAs are its main

cargoes (Bohnsack et al., 2004; Lund et al., 2004).

1.1.2.4 From pre-miRNAs to mature miRNAs: Dicer and the cytoplas-

mic processing

Pre-miRNAs are processed to mature miRNAs by the endoribonuclease called Dicer

(Meister and Tuschl, 2004; Tomari and Zamore, 2005). Dicer enzymes belongs to

a RNase III protein family characterized by several domains in a specific order

going from the amino-to-carboxy terminus: a DEXD/H ATPase domain, a DUF283

domain, a PAZ domain, two tandem RNase III domains, and a dsRNA-binding

domain (see Fig. 1.3). Some organisms such as mammals and nematodes, have only

a single Dicer that controls the biogenesis of both miRNAs and siRNAs, whereas

other organisms have more than one. For instance, Drosophila expresses two distinct

Dicers and Arabidopsis produces four. In general, organisms with multiple Dicers

exhibit a higher degree of specialization, as exemplified by Drosophila, where Dicer-

1 is required for miRNA biogenesis and Dicer-2 is mostly devoted to the siRNA

pathway (Tomari and Zamore, 2005). Biochemical, genetic and structural studies

have converged on a model in which the PAZ and RNase III domains are essential

for excising siRNAs preferentially from the ends of dsRNA molecules (Macrae et al.,

2006; Zhang et al., 2004). PAZ domains are specialized in binding RNA ends,

especially duplex ends with short (∼ 2 nt) 3’ overhangs. When this domain binds to

an RNA end, the dsRNA substrate extends approximately two helical turns along
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Figure 1.3: Domain composition and structure of Dicer proteins - The typi-
cal domain organization of Dicer proteins is shown at the top. Dicer enzymes cleave
dsRNAs through the action of two RNase III domains. The dsRNA ends asso-
ciate with the PAZ domain. The RNase III domains then cleave the ∼ 20 − 30 nt
miRNA/siRNA duplex from the precursor. Adapted from (Carthew and Sontheimer,
2009).

the surface of Dicer before reaching its processing centre. This centre is located in a

cleft of an intramolecular dimer involving the RNase III domains. Each of the two

RNase III active sites cleaves one of the two strands. This model pertains equally

to pre-miRNA stem-loop substrates and to long, perfectly base-paired dsRNAs.

Human Dicer is also known to interact with two closely related proteins, TRBP

(TAR RNA-binding protein, also known as TARBP2) and PACT (also known as

PRKRA), although their roles in miRNA processing have not been completely elu-

cidated yet (Chendrimada et al., 2005; Haase et al., 2005).

1.1.2.5 miRNA mediated silencing: the Argonaute protein family

Following Dicer cleavage, the resulting 22 nt RNA duplex is loaded onto a protein

of the Argounaute superfamily, thereby generating the effector RNA induced silenc-

ing complex (RISC). The Argonaute superfamily can be divided into three separate

subgroups: the Piwi clade that binds piRNAs, the Ago clade that associates with

miRNAs and siRNAs, and a third clade that has only been described thus far in

nematodes (Yigit et al., 2006). All gene-regulatory phenomena involving 20–30 nt

9



1. INTRODUCTION

RNAs are thought to require one or more Argonaute proteins, and these proteins are

the essential building blocks of various forms of RISC. The double-stranded products

of Dicer enter into a RISC assembly pathway that involves duplex unwinding, culmi-

nating in the stable association of only one of the two strands with the Ago effector

protein (Meister and Tuschl, 2004; Tomari and Zamore, 2005). This guide strand

directs target recognition by Watson-Crick base pairing, whereas the other strand

of the original duplex (sometimes called the passenger strand) is discarded. Arg-

onaute proteins are characterized by the presence of four domains: the PAZ domain

(present also in Dicer enzymes), the PIWI domain that is unique to the Argonaute

superfamily, and the N and Mid domains. The arrangement of the domains and the

structure of a typical Ago protein is shown in Fig. 1.4. Many aspects of Argonaute

function have been elucidated by crystallographic studies (Parker et al., 2005; Song

et al., 2004; Yuan et al., 2005). As shown in Fig. 1.4 the protein is bi-lobed, with

Figure 1.4: Argonaute proteins - The canonical arrangement of Ago domains is
given at the top. Below the structure of the Thermus thermophilus Ago protein,
with a bound DNA guide strand, is shown. Adapted from (Carthew and Sontheimer,
2009).

one lobe consisting of the PAZ domain and the other of the PIWI domain flanked by

the N and Mid domains. The PAZ domain binds the 3’ terminus of the guide strand.

The other end of the guide strand engages a binding pocket in the Mid domain, and

the remainder of the guide strand tracks along a positively charged surface to which

each of the domains contributes. Guide strand nt 2–6, known as the seed region, are

exposed and are available for base pairing, while the passenger strand is degraded.
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Studies on siRNA duplexes indicate that the relative thermodynamic stability of the

two ends of the duplex determines which strand is to be selected (Khvorova et al.,

2003; Schwarz et al., 2003). Because strand selection is often not a stringent process,

some hairpins produce miRNAs from both strands at comparable frequencies.

Although some species such as Schizosaccharomyces pombe express only a single

Argonaute protein, most contain multiple Argonaute genes. Drosophila, for example,

has five, humans eight and nematodes twenty-seven paralogues. In humans four of

the eight proteins are from the Ago clade, and associate with both siRNAs and

miRNAs (Meister and Tuschl, 2004; Tomari and Zamore, 2005), but little difference

has been reported thus far in the populations of small RNAs that they bind, so

the degree of functional specialization in mammals remains unclear (Carthew and

Sontheimer, 2009).

1.1.3 How miRNAs regulate their targets

In the last few years much has been understood in terms of how miRNAs act on

their targets; however, there is still a remarkable disagreement on some pivotal

aspects. Two main questions arise when considering the way a miRNA influences

the expression of its targets: 1) how does a miRNA select its targets? 2) how does

it alter their expression?

1.1.3.1 The identification of miRNA targets

Concerning the first question, a significant difference is observed between plants and

animals. In the former, targets can be efficiently detected simply by searching for

extensive complementarity between the miRNA and 3’ UTR sequences, as shown

in (Rhoades et al., 2002). In plants, regulation of transcripts mainly occurs by

means of slicing rather than translational repression. According to (Brodersen and

Voinnet, 2009) however, the possibility that larger numbers of mRNAs are targeted

for translational inhibition by means of imperfect matching has never been tested,

and cannot be excluded a priori. In animals the situation is far more complicated.

Extensive complementarity between miRNA and 3’ UTR sequences exists, but is
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very rare, and the largest part of validated targets interact with their corresponding

miRNA by imperfect base-pairing. The initial effort to reliably identify miRNA

targets in animals heavily relied on computational tools, and a number of different

methods were developed. The list of targets produced by these methods, however,

showed little overlap, suggesting a huge sensitivity of the results to the method-

ological differences (Bartel, 2009). One of the main problems is that, for a given

mature miRNA, there is a large number of 3’ UTR fragments that would achieve an

identical score in terms of sequence alignment to the miRNA (Lewis et al., 2003).

It is nowadays widely accepted that one of the turning points in miRNA target

identification was the inclusion of preferential evolutionary conservation to distin-

guish a true target from the multitude of equally matching 3’ UTR fragments. Today

there is increasing agreement about three major aspects of the miRNA-target inter-

action, all of which will be discussed in greater detail in the next sections:

1. The importance of the seed region, i.e. the region in the miRNA 5’ centered

around nucleotides 2-7

2. The importance of the conservation of the seed region across different species.

3. The observation that highly conserved miRNAs have many conserved targets.

The relevance of the so-called seed region can be summarized in the “seed rule”

(Brodersen and Voinnet, 2009), that states that Watson-Crick base-pairing to the

5’ miRNA nucleotides 2-7 is necessary for the regulatory effect of a miRNA on its

targets (Lewis et al., 2005). This rule is based on the evidence that the seed appears

to be the only contiguous region of miRNAs that, according bioinformatics analyses,

is evolutionarily conserved to an extent significantly greater than expected by chance

(Lewis et al., 2003). Other evidence of the fundamental role played by the seed region

is provided by the fact that mutating nucleotides within the seed-pairing region of

a validated target, abolishes or significantly impairs the miRNA-induced regulation

(Brennecke et al., 2005; Doench and Sharp, 2004). The seed region also turned out

to be the most over-represented motif among targets that act as responders at a

12



1.1 microRNAs

post-translational level as showed by Stable Isotope Labeling with Amino acids in

Cell culture (SILAC) (Baek et al., 2008; Selbach et al., 2008).

Despite the wide agreement on the central role of the seed region, some re-

searchers propose that there might be a large set of “non-seed” targets with biological

relevance, although such sites would be more difficult to identify by computational

approaches (Brodersen and Voinnet, 2009). Some non-seed targets have been identi-

fied in C. elegans (remarkably back in 1996, when neither the term miRNA or seed

were in use, (Ha et al., 1996)), in Drosophila (Easow et al., 2007) and in human

cells (Ørom et al., 2008; Stern-Ginossar et al., 2007). Despite these discoveries, the

frequency of this non-seed regulation mechanism is still unknown and, currently, the

seed-based mechanism is widely regarded as the major one.

Some target prediction methods, in addition to the evolutionarily conserved com-

plementarity of the target’s 3’UTR and the miRNA seed, take other factors into

account. One of these is the type of nucleotide opposite to the first miRNA nu-

cleotide. Some of these (e. g. the TargetScan prediction algorithm (Friedman et al.,

2009; Grimson et al., 2007; Lewis et al., 2005), rewards an A across from position

1 (Bartel, 2009), whereas other algorithms do not treat such a case differently from

others. This difference can find a justification in the increasing evidence that a

non-Watson-Crick pairing at nucleotide 1 is somewhat favoured as confirmed both

by site-conservation analyses, and by array and proteomics data (Baek et al., 2008;

Nielsen et al., 2007).

Another possibility, although less frequent, is the presence of an additional per-

fect match in the eighth position. The summary of the configurations that are today

regarded as canonical is shown in Fig. 1.5.

1.1.3.2 Supplementary and compensatory sites

It is a commonly thought that additional pairing to the remainder of the miRNA

supplements the seed pairing. To date, however, there is no experimental demonstra-

tion of the validity of this assumption (Doench and Sharp, 2004), and an extensive

analysis of mammalian 3’ UTRs showed that the majority of sites have no more
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Figure 1.5: The three canonical 7-8 nt seed-matched sites. - A. The 7mer,
optionally with an additional match when there is an A in the first position (7mer-
A1). B. The 7mer with an additional match at position 8 (7mer-m8). C. The 8mer
site, characterized by the presence of an eighth matching nt. Adapted from (Bartel,
2009).

3’-supplementary pairing than expected by chance (Bartel, 2009; Brennecke et al.,

2005). One complication in the identification of functional and effective supplemen-

tary pairing regions is their very large number. However, an array-based screening

has identified a type of 3’-supplementary site that is associated with a sufficient

number of sites to be screened by means of microarray data sets (Grimson et al.,

2007). This site is centered on the miRNA nt 13–16 and is predicted to be highly

sensitive to bulges, mismatches or wobbles, preferring at least 3-4 contiguous unin-

terrupted pairs (Fig. 1.6, top). These sites are predicted with greater specificity, but

their efficacy in terms of target downregulation seems to be only slightly superior to

that of the canonical sites.

Sometimes the presence of additional pairing to the miRNA 3’ UTR can represent

a form of compensation for a defective pairing to the miRNA seed. The presence

of one single mismatch in the seed can require a substantial perfect match (at least

9 nt) starting from a region comprised between nt 13 and 17 (Fig. 1.6, bottom).

These compensatory sites are, however, far less conserved through evolution, most
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probably due to their greater structural complexity. According to Bartel (Bartel,

2009) they represent about 1% of the preferentially conserved sites in mammals.

Figure 1.6: Compensatory and supplementary sites - Top: 3’-supplementary
sites usually have Watson-Crick pairing centering around miRNA nt 13-16 to supple-
ment a 6-8 nt site. Bottom: 3’-compensatory sites also have Watson-Crick pairing
around nt 13-16, but are required to compensate for a seed mismatch, thereby cre-
ating a functional site. Adapted from (Bartel, 2009).

1.1.3.3 Bartel’s mechanistic model

Bartel and co-workers have developed a mechanistic model in which the contribu-

tion of each miRNA region is contextualized according to the available experimental

evidence (Bartel, 2004). According to this model (Fig. 1.7), the RISC complex

presents the 5’ nt 2-8 to the target mRNA to favour pairing (Fig. 1.7 A). These

nucleotides are pre-organized in an A-form helix to improve affinity for the target.

Thermodynamical and topological considerations show that both longer or shorter

stretches of miRNA nucleotides would have a lower affinity and specificity (Bartel,

2009). According to the model, the miRNA undergoes an important conformational

accommodation to facilitate Watson-Crick pairing. Moreover the miRNA is pre-

dicted to be bound along its entire length to the Argonaute protein to prevent its

backbone being accessed by cellular RNase (Fig. 1.7 A). Once nucleation occurs at

the seed, the Argonaute protein progressively loosens its grip on the central and 3’

regions of the miRNA (Fig. 1.7 C). These miRNA regions are then free to wrap

around the mRNA, thus forming a miRNA-mRNA duplex consisting of two helical
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turns. After this rearrangement, the Argonaute protein rebinds to the central and 3’

regions of the miRNA thus strengthening the linkage to the miRNA-mRNA duplex

(Fig. 1.7 D), and allowing its cleavage.

Figure 1.7: A model for miRNAs regulatory mechanism - A The Ago protein
carries the miRNA guide strand (in red). The target mRNA is shown in blue. B
The 8mer matching occurs in the binding pocket. C - D Following the target
recognition, a large conformational change occurs. The active site is now in position
to be cleaved. E In case of 3’ supplementary pairing nucleotides 13-16 are also
matched. This prevents the miRNA-mRNA duplex from further wrapping around
each other. Adapted from (Bartel, 2009).

1.1.3.4 Many targets have a poorly conserved complementary seed se-

quence

The experimental evidence about the importance of the seed sequence and its conser-

vation does not exclude the existence of fully effective, but poorly conserved target

sites. From a purely computational point of view, poorly conserved target sites ex-

ceed well conserved sites by about ten to one (Bartel, 2009). The obvious question is

what fraction of this large number of mRNAs is composed by true miRNA targets.

Heterologous reporter assays show that a large number of non-conserved sites in

RNA can be functional (Farh et al., 2005). Analyzing simultaneously miRNA and

mRNA expression profiles, it appears that these non-conserved targets are primar-

ily found in tissues where the cognate miRNA is absent (Farh et al., 2005). This

phenomenon of mutual avoidance, where mRNAs “try” not to co-localize with their

cognate miRNAs, is sometimes referred to as selective avoidance. One possible ex-

planation of this phenomenon is that, over the course of evolution, sites for miRNAs
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that are absent in the cells where the mRNA is expressed, can accumulate without

consequence, whereas sites for miRNAs that are highly expressed in the same cell

where the mRNA functions, would impart a selective disadvantage, and thus fail to

be fixed in the population (Farh et al., 2005; Stark et al., 2005). However, because

so many mRNAs have non-conserved 7 nt sites for each miRNA, the minority of

mRNAs that are co-expressed with the miRNA will still constitute a large number,

possibly exceeding the conserved sites (Farh et al., 2005; Krützfeldt et al., 2005).

1.1.3.5 The UTR context is important for miRNA mediated regulation

The conservation or the complementarity of miRNA target sites in the 3’ UTR of

mRNAs are not sufficient to completely explain of the mechanisms underpinning

miRNA mediated repression. A clear demonstration of this is provided by the fact

that identical miRNA target sites in two different mRNAs can lead to repression

in one case and have no effect in the other (Brennecke et al., 2005; Farh et al.,

2005). The position of such target sites inside the UTR of the target, as well as the

composition of the site’s flanking regions, can have a huge impact on the efficacy of

the miRNA machinery to regulate the mRNA. According to Bartel (Bartel, 2009)

the following features enhance the regulatory effect of a miRNA on its target: 1) the

target site is located at least 15 nt from the stop codon; 2) the target site is not close

to the the center of long UTRs; 3) the region surrounding the target site is rich in

AU nucleotides; 4) there are multiple target sites recognized by the same miRNA or

by co-expressed miRNAs acting cooperatively to repress same target gene (Grimson

et al., 2007).

Both computational and experimental evidence show that targeting can occur

not only in the 3’ UTR of the mRNA, but also in the 5’ UTR and in the open

reading frames (ORFs) (Baek et al., 2008; Farh et al., 2005; Grimson et al., 2007).

Targeting in ORFs is less frequent than in 3’ UTRs, but is still, however, much

more frequent than in 5’ UTR. One possible explanation for this phenomenon could

be the interference of the translational machinery with the RISC complex (Bartel,

2004).
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Many mRNAs have multiple target sites in their 3’ UTRs that can be recog-

nized by the same or by different miRNAs. This observation raises the question of

how multiple miRNAs act on the same targets. It has been proposed that miRNAs

can act either independently or in a coordinated way; however evidence appears to

favour the former hypothesis, as the response of mRNAs having multiple target sites

is almost identical to the response we would expect if each site contributed indepen-

dently. The net effect of this independent repression would be multiplicative and

not additive (Grimson et al., 2007; Nielsen et al., 2007). Even so, however, there are

exceptions to this mode of action, as shown by Grimson (Grimson et al., 2007): two

target sites located at 8-40 nt from each other, led to an enhancement in repression

that is far superior to the repression expected if the two acted independently.

Figure 1.8 summarizes, in a qualitative way, the mean efficacy of the miRNA

target sites described so far in terms of destabilization of target mRNA after over-

expression of a miRNA. The table refers to the effect at the mRNA level although,

as we shall describe later, the effect at the translational level only might be equally

relevant.

Figure 1.8: Relative efficacy of miRNA target sites. - The efficacy is defined as
the mean downregulation (on a logarithmic scale) of target mRNAs possessing the
indicated sites. The various typologies of sites have been classified in the categories
labeled A-E. Adapted from (Bartel, 2009).
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1.1.3.6 Does miRNA-mediated regulation occur at the transcriptional

or translational level?

Initially, miRNAs were thought to regulate their targets by repressing protein output

with marginal or no effect on the mRNA. This belief was initially motivated by the

observation that miRNA lin-4 downregulates lin-14 without appreciably affecting

the abundance of its mRNA (Lee et al., 1993; Olsen and Ambros, 1999; Wightman

et al., 1993). Two questions arose: 1) to what extent, if any , is the targets mRNA

abundance altered? 2) does translational repression occur during the initiation of

translation, or at post-initiation steps?

In the last three years, a number of studies have cast some light on the first issue,

although already in 2005 Lim and collaborators (Lim et al., 2005) showed, using

microarrays, that the effect of miRNA overexpression was largely detectable at the

mRNA level. They transfected two mature miRNAs, miR-124 and miR-1 into HeLa

cells and observed that, in each case, about 100 mRNAs were downregulated 12 hours

after transfection. The presence of the corresponding seed motifs was significantly

enriched in the 3’ UTR of these mRNAs. In addition, Selbach and collaborators

in Rajewsky’s lab (Selbach et al., 2008) exploited a modified version of the SILAC

technology to quantify the change in protein levels upon miR-223 deletion in mouse

neutrophils. They also measured the levels of the corresponding transcripts and

found a strong positive correlation between the two. Despite evidence for some

translational-only repression, all proteins up-regulated by more than 50% derived

from transcripts that were detectably increased upon miR-223 deletion. Similarly,

Baek and collaborators in Bartel’s lab, observed a strong correlation between protein

and mRNA levels upon miR-1 overexpression (Baek et al., 2008).

Hendrickson and colleagues (Hendrickson et al., 2009) used a different technique:

they focused on miR-124 and identified its targets by looking at the mRNAs that

were recruited to Argonaute proteins in response to ectopic miR-124 expression in

the human embryonic kidney HEK293T cell line. In order to quantify the effects of

the miRNA at the protein level, the authors considered two parameters: the ribo-

some occupancy and the ribosome density. The former is defined as the fraction of
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mRNA species bound by at least one ribosome and, presumably, undergoing transla-

tion. The latter refers only to those mRNAs that have at least one bound ribosome

and is the average number of ribosomes bound every 100 bases of coding sequence.

To reliably identify the real targets of miR-124 the authors lysed the cells trans-

fected with the miRNA and isolated the Argounaute-associated mRNAs by means

of immunoprecipitation. This procedure was performed also on mock-transfected

cells and the mRNAs specifically recruited to the Ago proteins by miR-124 were

identified by Significance Analysis of Microarrays (SAM) (Tusher et al., 2001). This

study concluded that miR-124 reduces both translation and transcription of its tar-

gets over a wide range of values and, most importantly, that approximately 75% of

the variation at the protein level can be explained by changes in the abundance of

the corresponding mRNAs. Also in this case, however, the change in protein levels

was smaller than that at the mRNA level, with an average decrease of protein abun-

dance around 12%, compared with a corresponding decrease in mRNA abundance of

34%. Therefore, despite the initial reports describing miRNA-regulated repression

as a purely translational effect, there is accumulating evidence that the effect of

miRNAs on mRNA is relevant and detectable.

1.1.3.7 The regulation of most intragenic miRNAs mirrors that of their

host genes

The fact that a large fraction (almost half) of mammalian miRNAs are contained

within the boundaries of transcriptional units suggests that the regulation of the

pri-miRNA should replicate that of the host gene. The reality, however, is far

more complex. It has been long held that, while intergenic miRNAs have their own

promoter, intronic ones were under the transcriptional control of the host gene’s

promoter. This picture has changed with the recent publication of a number of works

showing that a significant fraction of intronic miRNAs have a host gene-independent

promoter (Corcoran et al., 2009; Ozsolak et al., 2008; Wang et al., 2009). Monteys

and collaborators (Monteys et al., 2010) performed an extensive genomic analysis of

intronic miRNAs, and they found that approximately 35% of them have upstream
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regulatory elements consistent with promoter function.

Despite this evidence, the majority of intronic miRNAs have been found to follow

the pattern of regulation of their host genes, as shown by Baskerville and Bartel

(Baskerville and Bartel, 2005). To analyze the global expression of miRNAs in

human tissues they considered a panel of 175 human miRNAs across 24 different

organs. They observed that intronic miRNAs are usually coordinately expressed

with their host gene mRNA, implying that they generally derive from a common

transcript. In two cases they noticed a negative correlation between the expression

of the mature miRNA and that of the host gene. This was, for example, the case of

miR-26a and the CTDSLP gene. Since this miRNA does not show any evidence of a

host gene-independent promoter, there must be another explanation for this finding.

In fact, there are two distinct pri-miRNAs, hsa-mir-26a-1 and hsa-mir-26a-2, that

can produce the same mature miRNA, miR-26a. These pri-miRNAs are localized

in the CTDSPL (3p21.3) and CTDSPL2 (12q13-q15) genes respectively. CTDSPL2

is usually more highly expressed than CTDSPL and the expression of the two genes

was found to be negatively correlated. Thus miR-26a can be highly expressed even

when the CTDSLP gene is downregulated, as it is derived from the alternative pri-

miRNA, hsa-mir-26a-2. The authors also found that proximal pairs of miRNAs are

usually co-expressed, and noticed that an abrupt drop in the correlation between

pairs of expressed miRNAs occurs at a mutual distance of 50kb.

When there is no sign of host-gene independent promoters, there are essentially

two scenarios that can lead to contradictory results when comparing the expression

patterns of a miRNA and its host gene. The first case is when the same mature

miRNA is produced by two (or more, although we will assume just two to simplify the

example) primary transcripts, both of which are intragenic, but located in different

genes, as it is the case of the aforementioned miR-206a. The second case is when

the same mature miRNA is produced by two primary transcripts, one of which

is intragenic, while the other is intergenic. In this latter case, one should expect

to observe no correlation between the expression of the mature miRNA and the

host gene if only the intragenic miRNA was expressed. An example of this class is
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provided by hsa-miR-24, which is produced by the hsa-mir-24-1 and hsa-mir-24-2

primary transcripts. The first is localized in the C9orf3 gene, on chromosome 9,

while the second is an intragenic miRNA localized on chromosome 19. Finally, as

described previously, maturation of a miRNA is accomplished in several steps and

is mediated by different nuclear and cytosolic enzymes. Thus, the expression of a

mature miRNA does not necessarily correlate with the expression of its pri-miRNA

and host gene.

1.2 MiRNAs and cancer

The first direct link between cancer and miRNAs was observed by Carlo Croce and

collaborators while attempting to clone a tumour suppressor gene, located in the

chromosomal region 13q14, which is frequently lost in chronic lymphocytic leukemia

(CLL) (Adrian et al., 2002). They observed that none of the protein coding genes

were altered, but detected a translocation and, in one case, a very small deletion,

both localized exactly in this region. Within the boundaries of the deleted region,

they found two miRNA genes, hsa-mir-15a and hsa-mir-16-1. The translocation

breakpoints cut precisely the precursor of these two miRNAs. The importance of

these two miRNAs in connection with CLL was reinforced by the finding that they

are lost in approximately 70% of the patients, suggesting that such a loss might be

an early event.

1.2.1 MiRNAs can act as tumour suppressors or as oncogenes

The loss of miR-15a and miR-16-1 in CLL led to the natural hypothesis that they

might act as tumour suppressors. Since this discovery, many other miRNAs have

been shown to be lost in a wide range of tumours. For example, the members of

the let-7 family, which consists of 12 miRNAs with very similar, and in some cases

identical, mature sequences are located in chromosomal regions that are deleted in

multiple tumours, including breast, lung, ovarian and cervical cancer (Croce, 2009).

A direct causal role of the members of the let-7 family in cancer, however, was only
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established in 2005, when Johnson and collaborators demonstrated that a loss of let-7

family members determines a constitutive RAS overexpression, an oncogene known

to contribute to the pathogenesis of several types of tumours Johnson et al. (2005).

Still in 2005, Cimmino et al. found that miR-15a and miR-16b target another well

known oncogene, the B cell leukemia/lymphoma 2 (BCL2) gene, which has an anti-

apoptotic function and its overexpression is a major cause of follicular lymphoma

(Cimmino et al., 2005). Since the vast majority of miRNAs have an inhibitory effect

on their targets, an oncogene-targeting miRNA acts in turn as a tumour suppressor.

Importantly miRNAs, like tumour suppressor genes, can be silenced by epigenetic

mechanisms such as methylation. This has been observed for miR-15a, miR-16-1,

miR-29 and in members of the let-7 family (Calin and Croce, 2006).

Deletion or downregulation, however, are not the only mechanisms through which

miRNAs exert their oncogenic potential. In fact, miRNAs have also been found to

be overexpressed in human tumours, thus acting as oncogenes. However, defining a

particular miRNA as either a tumour suppressor or as an oncogene, is often incorrect,

since their function strongly depends on the cellular context. For example, miR-221

and miR-222 behave as tumour suppressors in erythroblastic leukemia targeting the

oncogene KIT. In contrast, in a number of solid tumours they behave as oncogenes,

targeting no less than four tumour suppressors (Felli et al., 2005; Pineau et al., 2010).

The first miRNAs that were found to behave as oncogenes were miR-155 and the

cluster miR-17-92. The latter is a group of 6 miRNAs belonging to four families

based on their seed sequences (see Fig. 1.9), located in a region of 800 bp in the

non-protein coding gene C13orf25 at 13q31.3 (He et al., 2005). Both the sequences

and the organization of the members of this cluster are highly conserved in all

vertebrates. Despite being under the transcriptional control of the same promoter,

not all the members of the cluster have necessarily the same expression profiles. The

mRNA splicing regulator hnRNP, for example, exclusively stimulates maturation of

miR-18a, hence acting as a chaperone for recognition and cropping of this specific

miRNA, without affecting the other members of the cluster (Guil and Caceres,

2007). Two cluster paralogs of miR-17-92 exist in mammals, presumably due to
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gene duplication events (Mendell, 2008). One is found on chromosome 7, within the

third intron of the MCM7 protein coding gene, and contains 3 miRNAs, miR-106b,

miR-93 and miR-25. The other cluster is found in chromosome X and contains

6 miRNAs (Fig. 1.9). According to Mendell et al. this cluster is undetectable or

expressed at trace levels in all the experimental settings that have been explored so

far (Mendell, 2008). The members of the miR-17-92 cluster represent probably

Figure 1.9: Genomic organization and sequences of the miR-17-92 cluster
and its paralogs - A: Genomic organization of the human miR-17-92 cluster and
its paralogs. B: MiRNAs belonging to the miR-17-92 cluster are organized in four
families on the basis of their seed sequence and, consequently, of their putative
targets. Adapted from (Mendell, 2008).

the best studied example of oncogenic miRNAs. Several studies have experimentally

demonstrated that the proapoptotic gene BCL2L11/BIM is a direct target of miR-

17-92 (Koralov et al., 2008; Petrocca et al., 2008b)). Moreover the c-Myc oncogene,

which is a known, potent inducer of tumour angiogenesis, was shown not only to

induce expression of the miR-17-92 cluster, but also to exert its angiogenic activity,

at least in part, by the downstream activation of the cluster itself (Dews et al.,

2006). Finally, miR-17-92 targets directly E2F1, E2F2 and E2F3, members of the

E2F family of transcription factors, which are critical regulators of the cell cycle

and apoptosis (Mendell, 2008; Ventura et al., 2008). Interestingly, both E2F1 and

E2F3 can directly activate transcription of these miRNAs, giving rise to a negative
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feedback loop (O’Donnell et al., 2005; Petrocca et al., 2008b). In addition to the

members of the miR-17-92 cluster, several other miRNAs have been found to target

important tumour suppressors, such as miR-21 which targets PTEN, a tumour

suppressor playing a fundamental role in preventing cells from growing and dividing

too rapidly (Garofalo et al., 2009).

1.2.2 Breast cancer

According to the United States Cancer Statistics (data refer to the 1999-2006 pe-

riod), breast cancer is the second cause of death among women in the western world

after lung cancer (Harris et al., 2007). Despite several advances in the field, the

molecular pathogenesis of this disease is still not completely understood. Human

breast tumours have been classified into 18 categories, based on the histological

features of the primary tumour at the time of diagnosis (Fattaneh Tavassoli, 2003).

Lesion size, nuclear grade, mitotic index, necrosis, and cellular organization are some

of the features that are commonly used to classify human breast tumours.

Many breast cancer molecular markers have been proposed, but the most reliable

ones, according to the guidelines of the American Society of Clinical Oncology, are

the estrogen receptor (ER), the progesterone receptor (PgR) and the ErbB2 status

(Harris et al., 2007). These clinical parameters are considered the most valuable in

identifying patients that would benefit from endocrine forms of therapy. ER negative

patients, for instance, do not benefit from endocrine interventions, and have usually

a poor prognosis (Harris et al., 2007). There are currently two hypotheses trying to

explain the association of the ER with breast cancer. The first assumes that binding

of estrogens to the ER stimulates proliferation of mammary cells. This increase

in cell division and DNA synthesis elevates the risk for replication errors and, as

a consequence, the acquisition of detrimental mutations. The second hypothesis

states that estrogen metabolism leads to the production of genotoxic by-products

that could directly damage DNA (Deroo and Korach, 2006).

ErbB2 is one of the four members of the ErbB family of receptor tyrosine ki-

nases, which also includes the epidermal growth factor receptor (EGFR), ErbB3 and
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ErbB4. ErbB2 and EGFR are implicated in the development of a number of human

cancers, and several alterations in their genes have been detected in tumours, in-

cluding gene amplification, mutations leading to the activation of the kinase domain,

and in-frame deletions (Hynes and MacDonald, 2009). Breast tumours with ERbB2

gene amplification and receptor overexpression are often labelled as ErbB2+.

The standard method to assess ER, PgR and ErbB2 status is immunohistochem-

istry (IHC). Despite being routinely used, this method has been shown to have some

drawbacks, including a modest positive predictive value (PPV)1 ranging from 30%

to 60% (Bonneterre et al., 2000; Mouridsen et al., 2001), and a large false negative

rate (30% - 60%). The interpretation of staining patterns can be a further cause of

variability, being subjective to the individual pathologist or the threshold setting of

the image analysis system in use (Rhodes, 2003).

Recently, with the advent of high-throughput, gene-expression profiling methods,

a variety of novel biomarkers have been proposed and, more importantly, several ge-

netic signatures have been described that can accurately identify different breast

cancer molecular subtypes with distinct pathological behaviors (Sotiriou and Pusz-

tai, 2009). These findings have not only offered alternative methods to refine the

diagnosis of breast cancer, but have also opened new and more ambitious possibil-

ities for an improved therapeutic intervention. The seminal work in this direction

was Charles Perou’s study (Perou et al., 2000), where the analysis of gene expres-

sion patterns suggested that at least four major molecular subtypes (or “molecular

portraits”, to use the definition provided by the authors) of breast cancer exist:

luminal-like, basal-like, normal-like, and HER-2 positive. Luminal-like tumours are

mostly ER positive, while basal-like tumours are essentially triple negative, i.e.,

negative for ER, PgR, and ErbB2. Luminal tumours derive their name from the

fact that they express high amounts of luminal cytokeratins and genetic markers of

luminal epithelial cells of normal breast tissue (Rakha et al., 2007). Instead, some,

but not all basal-like breast cancers, display high expression of “basal” cytokeratins

such as CK5, and a variety of growth factors, including the epidermal and insulin

1The positive predictive value of a test is the proportion of patients with positive test results
who are correctly diagnosed.
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growth factors (Sørlie et al., 2003; Sotiriou et al., 2003). A second study suggested

that further molecular subgroups exist, splitting the luminal-like tumours in luminal-

A, luminal-B and luminal-C (Sørlie et al., 2001). In a third study the basal-like,

normal-like, HER-2 positive and two luminal-like categories were observed (Sørlie

et al., 2003).

Despite this apparent reproducibility, these categories are not immune to crit-

icism. Different computational methods have been applied with the purpose of

validating the number of subtypes and establishing their robustness. McShane, for

example, proposed a method to assess subgroup stability that, when applied to the

original data, showed a very low reproducibility of the luminal subgroups (McShane

et al., 2002). Similarly Kapp, using a clustering-based validation method (see (Kapp

and Tibshirani, 2007) for details), was able to confirm the existence of the basal-

like, luminal-B and ErbB2 positive groups, while the normal-like and the luminal-A

groups could not be reliably reproduced (Kapp et al., 2006).

There are several possible explanations for these controversial results. The lack of

a standardized procedure for subtype definition is, however, one of the most probable

causes. It is today widely accepted that a still unknown number of molecular breast

cancer subclasses exist, differing in prognosis and in response to chemotherapy. It

is apparent that the large overlap between the basal and luminal classes on the

one hand, and the ER negative and positive on the other, is a major confounding

factor. Other, more technical reasons, concerning the methodology used to identify

the subclasses, also exist. A thorough discussion can be found in (Pusztai et al.,

2006).

1.2.3 MiRNAs and breast cancer

Several miRNAs have been found to be deregulated in breast cancer, displaying

the complex scenario of regulation patterns that we have previously illustrated (see

Section 1.2.2. The locus containing the miR-17-92 cluster, for example, is known

to undergo loss of heterozygosity in breast cancer as well as in other types of cancer

(Mendell, 2008). In addition, it has been found to downregulate the AIB1 (amplified
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in breast cancer 1) protein, which acts as an oncogene and is commonly amplified

in breast, ovarian and pancreatic cancer (Mertens-Talcott et al., 2007). Similarly,

the 11q23-24 region that contains miR-125b, is frequently deleted in breast cancer,

as well as ovarian and lung (Negrini et al., 1995). Mir-21, an oncogenic miRNA, is

associated with increased invasion and metastatic potential in breast tumours (Yan

et al., 2008), while mir-335 is markedly downregulated in lung metastatic breast

cancer cells.

Intriguingly some miRNAs have been found to be strongly associated to the

molecular subtype of breast cancer. In bead-based flow cytometric miRNA expres-

sion profiling of 93 primary tumours, a number of miRNAs were found to be dif-

ferentially expressed between the luminal A, luminal B, basal-like, ErbB2 positive,

and normal-like subtypes (Blenkiron et al., 2007). Moreover, numerous publications

show a strict correlation between miRNA levels and ER, PgR or ErbB2 status.

Lowery et al. for example, identified a miRNA signature that accurately predicts

ER, PgR and ErbB2 status. They demonstrated that miR-342, miR-299, miR-217,

miR-190, miR-135b and miR-218 are most strongly associated to ER status, while

miR-520g, miR-377, miR527-518a and miR-520f-520c are predictive of PgR sta-

tus. Finally miR-520d, miR-181c, miR-302c, miR-376b, and miR-30e constitute

the ErbB2 signature (Lowery et al., 2009).

MiRNAs have also been implicated in breast cancer progression. A large body of

evidence indicates that estrogen receptor-α-negative (ERα−) breast tumours, which

are more aggressive and less responsive to hormonal therapy, originate from ER-

α-positive (ERα+) tumours through different molecular pathways. For example,

estrogen withdrawal (Santen et al., 2002), hypoxia (Stoner et al., 2002), overexpres-

sion of ErbB2 which results in hyperactivation of mitogen-activated protein kinase

(MAPK) (Oh et al., 2001), and DNA methylation at the ERα promoter (Yan et al.,

2001) have all been proposed to account for this transition. However, a very recent

study hsa shown that the overexpression of a miRNA cluster containing miR-221

and miR-222 suppresses the ERα protein in ERα+ cells, thus turning them into

ERα− (Di Leva et al., 2010). In the same study ERα was found to negatively reg-
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ulate the expression of miR-221 and miR-222 by binding to their promoter, thus

giving rise to a negative feedback loop .

1.2.4 Rationale of the project

Taken all together, these data highlight the importance of miRNAs in regulating

gene expression in normal and pathological conditions. However, a comprehensive

picture of the expression profiles of miRNAs in cancer and their relative correla-

tion with different molecular and pathological tumour characteristics is still lacking.

Therefore, we decided to perform a high-throughput transcriptional study of intronic

miRNAs by analyzing the expression profiles of their host genes in publicly available

Affymetrix breast cancer data sets.

As previously described, more than half of the human miRNAs are contained

within the boundaries of transcriptional units. Although computational methods

predict that roughly one third of these intragenic miRNAs might have an indepen-

dent promoter, this is most probably an overestimation, since only a very small

fraction of these predictions has so far been validated (Monteys et al., 2010). As

a consequence, we should expect no less than two thirds of the intragenic miRNAs

to be under the transcriptional control of their host gene promoter, hence it should

be possible to predict miRNA expression by analyzing to the microarray expression

profile of its host gene.

Microarrays represent the first and most diffused tool to simultaneously measure

the expression of thousands of transcripts. Since their appearance, almost fifteen

years ago, they microarrays been used to investigate the regulation of genes in hun-

dreds of species. In Humans they have been exploited to explore the genomic aspects

of many diseases and of almost every type of cancer. A number of publicly accessible

microarray data repositories exist, the largest being the Gene Expression Omnibus

(GEO) (Barrett et al., 2005). As of July 2010, GEO contains 450,535 entries, mostly

but not only, from microarray experiments.

Breast cancer was one of the first types of cancers to be analyzed by means of

microarrays. The pioneering work of van’t Veer and collaborators (van ’t Veer et al.,
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2002) opened the search for groups of genes whose expression is coherently regulated

between two or more conditions. These “gene signatures”, as they are often called,

have two main fields of application: the first aims to identify subgroups of tumours,

as is the case of the molecular subtypes previously described; the second tries to

identify novel markers for predicting of clinical outcome, response to therapy etc.

Hundreds of such predictive signatures have been published, and in some cases they

have represented the basis for the development of diagnostic tests that are today in

routine clinical use. One such case is the MammaPrint molecular diagnostic test,

which is used to predict the risk of metastasis in breast cancer patients with primary

tumours less than 5 cm in diameter, no sign of lymph node metastasis, and less than

61 years of age (Buyse et al., 2006; Mook et al., 2009; van ’t Veer et al., 2002).

In conclusion, the large fraction of intragenic miRNAs that are supposed to follow

the regulation profile of their host gene, together with the huge amount of freely

accessible breast cancer microarray data sets, offer an unprecedented opportunity

to search for novel miRNAs involved in breast cancer, and the subversion of their

related pathways. Results from our screening hold the potential to identify novel

miRNA-based genetic signatures which can be used as diagnostic/prognostic tools

for breast cancer. The miRNA signatures may offer an advantage over mRNA

based signatures due to their exceptional stability even in formalin-fixed paraffin-

embedded (FFPE) tissues (Li et al., 2007). At the same time, the identification of

miRNAs with a role in breast cancer progression should increase our understanding

of the genetics of metastasis, and allow us to explore novel miRNA-based epigenetic

mechanisms subverted in human neoplasia.
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Materials & methods

2.1 E1A and SV40 experiments

2.1.1 Affymetrix microarray preparation

Total RNA was extracted using TRIZOL (Invitrogen), and RNA integrity was

checked with the 2100 Bioanalyzer (Agilent). Next, 5 µl containing of total RNA (1

µg/µl) were retrotranscribed in double stranded cDNA using T7-Oligo(dT) primers

by SuperScript II kit (Invitrogen), as follows:

1. samples were incubated at 70◦C for 10 minutes, then placed on ice

2. 3.5 µl of FS mix were added and samples were placed at 37◦C for 2 minutes

3. 0.5 µl of SSII enzyme were added, then samples were incubated at 42◦C for 1

hour

4. 65 µl of SS mix were added, then samples were placed at 16◦C for 2 hours

5. 1 µl of T4 polymerase was added, then samples were placed at 16◦C for 5

minutes

6. 5 µl of EDTA were added to stop reaction.

Double stranded cDNA was then purified by precipitation by adding 2 µl of

glicogen, 80 µl of ammonium acetate and 400 µl of 100% ethanol, and incubated
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at −80◦C for 20 minutes. Samples were centrifuged at 10.000 rpm at 4◦C for 30

minutes, and pellets washed by ice cold 70% ethanol (400 µl) followed by a 10 minutes

centrifugation at 10.000 rpm at 4◦C. Dry pellets were then resuspended in 1.5 µl of

DEPC treated water. In vitro anti-sense RNA transcription was performed through

an Eberwines modified in vitro transcription reaction (MEGAscript, Ambion) using

labeled rNTP (Enzo R© BioArrayTM HighYieldTM RNA Transcript Labeling Kit,

ENZO Biolabs). In particular, we added 14.5 µl of rNTPs mix, 2 µl of T7 polymerase

and 2 µl of reaction buffer to the 1.5 µl of purified cDNA, and the reaction mix was

incubated at 37◦C for 6 hours. Labeled cRNA were then fragmented (30-200 base

fragments), checked by agarose gel, and hybridized on Affymetrix expression arrays

(i.e. E1A experiments on a MOE 430 Plus 2 array, and SV40 experiment on a

HG-U133A 2.0 array) using Affymetrix standard protocols.

2.1.2 E1A experiment

Infection of murine terminally differentiated myotubes with E1A is explained else-

where (see (Nicassio et al., 2005)). Two independent experiments were performed on

two different days (biological replicates). RNA was extracted from E1A infected and

from control cells 24 and 36 hours after infection (“early” and “late” time points).

RNA from each extraction was used to hybridize two Affymetrix Gene Chip Mouse

Genome 430-2 (Affymetrix) arrays (technical replication). Microarrays were nor-

malized using the RMA algorithm (Irizarry et al., 2003) implemented in the affy

package from the Bioconductor suite of software libraries for the R programming

language (Gentleman et al., 2004; R Development Core Team, 2010). All normal-

izations were performed using the default settings of the software.

Information relative to mouse intragenic miRNAs, associated host genes, and ma-

ture miRNA sequences was retrieved from the miRBase database (www.mirbase.org),

release 13.0. The Entrez identifiers for the murine miRNA host genes were obtained

from the org.Mm.eg.db Bioconductor annotation package. Probe sets mapping to

miRNA host genes were identified by retrieving the probe set Entrez IDs from the

mouse4302.db Bioconductor annotation package and successively matching these
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IDs to the host genes Entrez ID.

Differentially expressed Probe sets upon E1A infection were identified in the

early and the late time points by means of the limma Bioconductor package (Smyth,

2004, 2005). All the tests were two-sided. P-values were adjusted according to

the Benjamini-Hochberg correction for multiple hypothesis testing (Benjamini and

Hochberg, 1995). Probe sets were declared significant if the p-value was less than

0.1.

RT-PCR data were obtained from the TaqMan Human MicroRNA Array V.1.0

microfluidic card (Applied Biosystems). For each card, the median of the CT values

below 33 cycles was calculated, and TaqMan probes were normalized to this median

CT value. Relative expression for each mature miRNA was expressed as the ratio

relative to the control cells.

We identified the human TaqMan probes that exactly matched a murine in-

tronic mature miRNA by aligning the sequences of the TaqMan probes to the se-

quences of mouse mature miRNAs. Sequence alignment was performed using the

pairwiseAlignment function, included in the Biostrings library from the Biocon-

ductor suite. The default values of penalization for gap openings (-10) and gap

extension (-4) were used.

We measured the strength and the significance of the agreement between Taq-

Man probes and the probe sets associated to miRNA host genes. The strength was

quantified using the Spearman correlation coefficient. The significance of the agree-

ment was measured by first transforming the Spearman’s correlation coefficient into

a new variable θ as shown in Eq. 2.1.

θ =

√
n− 2
1− r2

s

(2.1)

For large samples (n > 30), θ has a t distribution with n−2 degrees of freedom, thus

the null hypothesis of zero correlation can be tested with a t-test (Altman, 1990).
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2.1.3 The SV40 experiment

The pBABE-neo vector containing the SV40-largeT antigen was transfected in am-

photrophic Phoenix cells using calcium phosphate transfection reagent. 48 hours

after transfection, viral supernatant was collected and used to infect MCF10A tar-

get cells. 48 hours after infection, cells were collected and total RNA was extracted.

Two Affymetrix HG-U133A2 arrays were hybridized with RNA extracted from

control cells (i.e., infected with “empty” retroviruses). and two arrays with RNA

extracted from SV40 infected cells. The four arrays were normalized with the RMA

algorithm. The same mRNA was used to hybridize two TaqMan Human MicroRNA

Array V.1.0 cards, one for the control cells, and one for the SV40 infected cells.

Information on human intronic miRNAs, associated host genes and mature

miRNA sequences was retrieved from miRBase 13.0. The Entrez IDs of the miRNA

host genes was extracted from the org.Hs.eg.db Bioconductor annotation package.

Probe sets mapping to miRNA host genes were identified by retrieving probe sets

Entrez IDs by means of the Bioconductor hgu133a2.db Bioconductor annotation

package, and matching such Entrez IDs to those of the miRNA host genes.

Similarly to the E1A experiment, differentially expressed probe sets were iden-

tified by means of the limma package, and probe sets were declared statistically

significant if their Benjamini-Hochberg adjusted p-value was less than 0.1. The

strength and statistical significance of the association of the TaqMan probes with

the Affymetrix probe sets was measured, by the Spearman’s correlation coefficient

and by the t-test after transforming the correlation coefficient as shown in Eq 2.1.

2.2 The breast cancer microarray data sets

Breast cancer microarray data sets and the associated clinical information were

downloaded from the Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/)

data base. The accession numbers for the selected data sets are shown in Table 3.14.

Information relative to human intronic miRNAs and associated host genes was re-

trieved from miRBase 14.0. All data sets were based on the Affymetrix HG-U133A
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chip. We retrieved the CEL files of each data set from GEO and checked for the

presence of defective arrays by means of the quality control procedure described

below.

2.2.1 The quality control procedure

We have developed a semi-automated quality control procedure aimed to identify

flawed arrays. The procedure is based on two statistical measures: the Relative Log

Expression (RLE) and the Normalized Unscaled Standard Error (NUSE) (Bolstad,

2004; Gentleman et al., 2004).

For each data set we performed the following steps:

1. We computed the median value and the IQR of both the NUSE and the RLE

statistics for each array. This gave four values for each chip: MNUSE , MRLE ,

IQRNUSE and IQRRLE .

2. We compared each of these values with a corresponding cutoff value. If any

value exceeded the cutoff, the chip was tagged as “dubious”.

3. We calculated the IQRs of MNUSE , MRLE , IQRNUSE and IQRRLE across

the arrays. This gave four values: IQRMNUSE
, IQRMRLE

, IQRIQRNUSE
and

IQRIQRRLE
.

4. If any of these IQR values was greater than q3 + 1.5IQR or less than q1 −

1.5IQR, where q1 and q3 are the first and the third quartile of the distribution,

we considered such values as outliers and flagged the corresponding array as

“rejected”.

5. We made diagnostic plots for both the dubious and the rejected arrays for a

successive visual analysis.

Cutoff values were chosen heuristically, with a preference for overestimating the

number of poor quality chips rather than failing to identify a compromised chip.

The four cutoff values are shown in Table 2.1. Arrays identified as defective were
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MNUSE MRLE IQRNUSE IQRRLE

1.10 0.2 0.10 1.0

Table 2.1: The chosen cutoff values for the four quantities defined in step 1 of the
quality control procedure.

removed from the data set before normalization. Each data set was normalized sep-

arately using the RMA algorithm with default settings. The Entrez IDs of miRNA

host genes was retrieved by means of the org.Hs.eg.db Bioconductor annotation

package. Probe sets mapping to miRNA host genes were identified by retrieving

the probe set Entrez IDs from the hgu133a.db annotation package and successively

matching these IDs to the host genes Entrez ID. Probe sets were filtered for signal

intensity using the Bioconductor genefilter package. Only the probe sets that

had a normalized signal greater than 150 (7.2 on the log2 scale) in at least 10% of

the samples were retained for further analysis. Significantly regulated probe sets

between the states of any given clinical parameter were identified by means of the

limma package. Probe sets with a Benjamini-Hochberg-adjusted p-value less than

0.05 were declared significantly regulated.

2.2.2 Permutation test

We performed a permutation test to determine whether the percentage of signifi-

cantly regulated miRNA host genes found in a data set would also have resulted if

we had considered genes that do not contain miRNAs. For each data set:

1. We removed all miRNA-associated probe sets from the data set.

2. We randomly selected n probe sets where n is the number of miRNA-associated

probe sets (n = 465).

3. We filtered this data set with respect to probe set intensity (intensity > 150

in at least 10% of the samples.

4. We determined the number of probe sets that were significantly regulated

between G3 vs. G1 and ER+ vs. ER- tumours.
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5. Repeated steps 2–4, 999 times

An empirical p-value was calculated as the fraction of simulations yielding a larger

list of significantly regulated probe sets than the list obtained in the original analysis.

2.3 The cell lines and the FFPE samples

2.3.1 miRNA extraction and Real Time PCR analysis.

Total RNA was extracted from cell lines using the TRIZOL reagent (Invitrogen) and

from FFPE archive breast tumors using the RNAeasy FFPE kit (QIAGEN). Next,

0.5 µg of total RNA was retrotranscribed using the miSCRIPT reverse transcription

kit (QIAGEN). A total of 5 ng of cDNA was used as a template for real time PCR

(LightCycler 480, Roche) in a 25µl reaction by using the miSCRIPT primer assay

(QIAGEN) and miScript SYBR Grees PCR kit (QIAGEN). The following PCR

protocol was used: i) hold, 15 minutes at 95◦C; ii) 40 cycles, 15 seconds at 95 ◦C,

30 seconds at 55◦C, 30 seconds at 70◦C; iii) (Melting curve) 15 seconds at 95◦C, 30

seconds at 55◦C then ramp to 95◦C (0.11◦C per second).

Six miRNAs were screened on a panel of commercial cell lines for validation. The

selected miRNAs were miR-342, miR-483, miR-548f-2, miR-218, miR-1245, miR-

1266. Primers were ordered for both the 3p and 5p strands of miR-218, miR-342,

and miR-483. The normal breast HMEC and MCF10A cell lines, and the breast

tumour MB-231, MB-361, MCF7, BT474 cell lines. Expression was normalized to

the housekeeping small nuclear RNA U6. The expression levels of mir-218/218*,

miR-342-3p/5p, miR-483-3p/5p and miR-1266 was screened on a collection of 36

FFPE tumour samples provided by the European Institute of Oncology, Milan.

Expression was normalized to the housekeeping small nuclear RNA U5A.

The statistical significance of miRNA regulation with respect to tumour grade

(G3 vs. G1) and ER status was assessed by Mann-Whitney tests, performed with

the R statistical environment.
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2.4 Reclassification of G2 samples

Hierarchical clustering of expression data was performed using the heatmap.2 func-

tion from the gplot library. Data were row-standardized by subtracting the mean

and dividing by the standard deviation. We used euclidean distance as a measure

of dissimilarity and the “average linkage” method to build the cluster hierarchy.

Survival analysis was performed using the functions included in the survival R

library. Survival was estimated by Kaplan-Meier estimation procedure, and differ-

ence in survival between groups was tested by logrank test.

2.5 MiRNA overexpression

MDA-MB-231 breast cancer cells (ATCC) were transfected with 20nM miScript

miRNA Mimics (QIAGEN) using Lipofectamine 2000 transfection reagents (Invit-

rogen). After 72 hours post-transfection, total RNA was extracted using TRIZOL

and real Time PCR performed (as previously described) to check for the expression

of miR-342-3p and miR-342-342-5p mimics. AllStars Negative Control siRNA (QI-

AGEN) was used as negative control siRNA. This siRNA has no homology to any

known mammalian gene. FACS analysis of transfected cells was used to monitor cell

cycle distribution and apoptosis (TUNEL assay). Briefly, one million cells of every

condition were resuspended in formaldehyde 2% and incubated on ice for 20 min-

utes. Cells were then washed in PBS 1% BSA (Bovine Serum Albumin, SIGMA),

fixed in 3:4 ethanol 100% and incubated on ice for 30 minutes. Next, cells were

washed again in PBS BSA 1%, resuspended in 50 µl of TdT solution (in Situ Cell

Death Detection Kit, Fluorescein, ROCHE) and incubated 1 hour at 37◦C. Lastly,

cells were washed in PBS 1% BSA and stained in a 500ul PBS solution of Propidium

Iodide (2.5 µg/ml) plus RNAse (6.25 µg/ml), and incubated overnight at 4◦C before

FACS analysis.
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Results

3.1 Introduction

The overall aim of this thesis is the identification of novel onco-miRNAs relevant to

breast cancer through the analysis of microarray gene expression data. A necessary

first step in our analysis was to determine whether microarray data could indeed be

used to reliably infer the expression of intronic miRNAs by measuring the expression

of the relative host genes. This first part of our analysis is referred to as the “proof

of principle”. We used two experimental model systems that are relevant to cancer

for the proof of principle. The first model is based on terminally differentiated (TD)

murine myotube cells induced to re-enter the cell-cycle by infection with the early

region 1 A (E1A) viral oncogene, an early gene product of tumorigenic adenoviruses

(Crescenzi et al., 1995; Kirshenbaum and Schneider, 1995; Tiainen et al., 1996) (see

Sec. 3.2). The second model is based on transformation of the non tumorigenic

human breast cell line MCF10A by infection with the Simian vacuolating virus 40

(SV40) (Hahn et al., 1999; Van Der Haegen and Shay, 1993) (see Sec. 3.3). In

both experimental systems, we measured the regulation of the miRNA host genes

by Affymetrix and compared it with the regulation of the relative mature miRNAs,

measured by real time-PCR (RT-PCR). Following the “proof of principle” experi-

ments, we proceeded to the second part of our analysis, i.e., the identification of

cancer regulated miRNAs through the profiling of more than 900 microarrays from
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five distinct breast cancer data sets (see Sec. 3.4).

3.2 The proof of principle - E1A experiment

The E1A viral oncogene is able to force re-entry into the cell cycle of terminally

differentiated (TD) mouse myotubes derived from C2C12 myoblasts upon serum

deprivation (Tiainen et al., 1996). The action of E1A has been largely linked to

its interference with the growth suppression function of the pRb-family proteins

(Bandara and La Thangue, 1991; Whyte et al., 1988). The, the deletion of pRb

alone, however, is not sufficient to induce cell cycle re-entry of TD cells (Camarda

et al., 2004; Huh et al., 2004). Thus, additional E1A-induced pathways must also be

involved, most probably the E1A-regulated pocket protein/pRb-independent path-

ways, including those relying on CycAE/CDK2, C-terminal binding protein (CtBP),

transformation/transcription domain-associated protein (TRRAP), p400, PCAF–

associated factor (PCAF) and other chromatin remodeling activities (Alevizopoulos

et al., 1998; Deleu et al., 2001; Faha et al., 1993; Fuchs et al., 2001; Ghosh and

Harter, 2003; Reid et al., 1998; Shi et al., 2003). Considering the number and com-

plexity of the molecular mechanisms required for cell cycle re-entry of TD cells, we

expected miRNAs to play a relevant role in this process. We thus measured the

change in expression of the mature intronic-miRNAs upon E1A infection, and com-

pared it to the regulation of their host genes in the same experimental conditions,

to assess their correlation and, at the same time, to possibly identify E1A regulated

intronic miRNAs.

The gene expression profiling was based on Affymetrix MOUSE430-2 murine mi-

croarrays. mRNA was extracted 24 and 36 hours after E1A infection. The purpose

of this double extraction was to identify genes that are regulated at an early stage

of infection, mainly by pocket protein/pRb dependent pathways, and those regu-

lated at a late phase by pocket protein/pRb-independent pathways (Nicassio et al.,

2005). We used eight microarrays: four for the E1A infected samples, and four for

controls infected with a deleted mutant of E1A that completely abrogates its ac-
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tivity (Tiainen et al., 1996). We performed two independent mRNA extractions on

different days (biological replicates) and used each of these replicates to hybridize

two microarrays (technical replication). Thus, the technical replicates were nested

within the biological replicates (see Fig. 3.1). At the time of this analysis, no high

Figure 3.1: Design of the E1A experiment. We extracted the RNA from the con-
trol (i.e., an E1A deleted mutant) and the E1A infected cells on two different days,
thus having two independent biological replicates of the two experimental condition.
Each of these RNAs was used to hybridize two microarrays (technical replication).
The same scheme was used both for the “early” and the “late” experiments.

throughput RT-PCR platform was available to investigate the expression of mature

miRNAs in mouse. For this reason the mature miRNA profiling was based on the

Applied Biosystems TaqMan Human MicroRNA Array V. 1.0 which contains 365

probes designed to target an equal number of mature human sequences. The probes

on the card were based on the mature sequences stored in the miRBase miRNA

database (www.mirbase.org) release 10.0. Since these probes refer to human ma-

ture sequences, it was necessary to identify which mature miRNAs were conserved

between mouse and human. In the RT-PCR experiment one card was used for the

41

file:www.mirbase.org


3. RESULTS

All Intragenic Transcript Names
Mus Musculus 547 254 244

Table 3.1: Total number of pri-miRNAs, intragenic miRNAs, and associated tran-
script names in Mus Musculus according to miRBase release 13.0.

E1A transfected cells, and another for the control cells. To determine which miR-

NAs were regulated, we considered the fold change of expression between the two

experimental conditions (control vs. E1A infected cells).

To compare the Affymetrix probe sets with the TaqMan PCR probes we:

1. Identified the intronic miRNAs, their host genes, and the mature miRNAs

they produce in mouse.

2. Identified which of these mature miRNAs were conserved in human, and could

therefore be analyzed by a human TaqMan microfluidic card.

3. Determined which Affymetrix probe sets could be associated with the murine

miRNA host genes.

4. Identified potentially problematic cases (see below).

5. Analyzed the microarray experiment, identified all the statistically significant

probe sets associated with an intronic miRNA host gene, and compared their

regulation to that of the corresponding mature miRNA.

We used miRBase (release 13.0) as a source of information for our analysis. In

miRBase, miRNAs are classified either as intragenic or as associated with a tran-

script name, usually (in the case of murine miRNAs) a Mouse Genome Informatics

(MGI) symbol. In some cases however, the transcript name refers to other types

of identifiers, such as NCBI Nucleotide loci, MGI nucleotide/probe clones etc. The

total number of mouse miRNAs and the number of the intragenic mouse miRNAs,

are shown in Table 3.1.

We retrieved the NCBI Entrez Gene identifier (Entrez ID) of the host genes

of the intragenic miRNA. This step was necessary for the successive mapping of

miRNA host genes to Affymetrix probe sets. To retrieve the Entrez IDs, we took

42



3.2 The proof of principle - E1A experiment

pri-miRNAs mature miRNAs Entrez Ids Affy probes Taqman probes
66 63 58 156 63

Table 3.2: Number of Pri-miRNAs, mature miRNAs, Entrez Ids, Affymetrix probe
sets and TaqMan probes that could be reliably used for the comparison of the miRNA
host genes with the corresponding mature sequences

advantage of the R statistical environment (R Development Core Team, 2010), and

of the Bioconductor suite of bioinformatics packages (Gentleman et al., 2004). More

specifically we used the org.Mm.eg.db annotation package, which provides the map-

ping of the Entrez IDs to a large number of biological identifiers, including the MGI

symbols and their aliases. We found that 194 of the 244 available transcript names

had an associated Entrez Gene ID.

To map murine mature sequences to human TaqMan probes we assumed that

even a single nucleotide mismatch could compromise the specificity of the probe. We,

therefore, applied a stringent sequence alignment procedure to identify the TaqMan

probes that perfectly matched the mature murine sequences, or contained them

completely without mismatches. For this purpose we used the functions available

in the Biostrings library, from the Bioconductor suite. From this alignment, we

found that 128 human TaqMan probes could reliably be associated with the same

number of murine mature miRNAs and to 150 miRNA host genes1. Sixty-six of

these 150 miRNA host genes could be mapped to 156 Affymetrix probe sets. For

this mapping we used the mouse4302.db annotation package from Bioconductor,

which contains the mapping from the probe set IDs of the Mouse-420-2 chip to

several other identifiers, including the Entrez ID. The summary of this mapping

step is shown in Table 3.2.

While the majority of mature miRNAs are the product of a single precursor (we

refer to this category of miRNAs as singletons), some mature miRNAs have more

than one precursor. Table 3.3 shows the number of mature miRNAs ordered by the

number of precursors from which they are derived. For the mature miRNAs that

have more than one precursor, and are thus encoded by different miRNA genes, we

1We have more miRNA genes than mature sequences because different miRNA genes can pro-
duce the same mature miRNA.
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No. of precursors 1 2 3 6
Frequency 522 40 7 1

Table 3.3: The same mature sequence can be produced by more than one precursor.
Here we report the frequency of mature miRNAs having a given number of pre-
cursors. In the vast majority of cases one precursor produces one mature sequence
(singletons).

mature miRNAs Singletons all intergenic all intragenic inter and intragenic

All miRNAs 570 522 16 12 20
selected miRNAs 63 48 0 4 11

Table 3.4: Classification of the murine mature miRNAs stored in miRBase release
13.0 with respect to the typology of the precursors.

can have three situations: 1) all the precursors are intergenic, 2) all the precursors

are intragenic, 3) some of the precursors are intergenic, while others are intragenic.

The first case does not represent a problem, since we are not able to infer the

regulation of such miRNAs with gene expression microarrays. Both the second and

the third cases can however be problematic, since the information obtained from the

Affymetrix probe sets would be only partial, and therefore potentially misleading.

The 547 murine precursors sequences contained in miRBase 13.0 correspond to 570

mature miRNAs1, which can be classified as shown in Table 3.4.

Restricting our attention to miRNAs that can be simultaneously mapped to an

Affymetrix probe set and to a TaqMan probe, we found that 48 mature miRNAs

were intragenic singletons, 4 had intragenic only precursors, and 11 had inter and

intragenic precursors.

3.2.0.1 Analysis Of The Microarray Data

Before identifying the differentially expressed probe sets we performed a quality con-

trol procedure on the Affymetrix chips ensure that no artifacts or technical problems

were present. We used the affyPLM library from the Bioconductor suite (Bolstad,

2004), which provides a false color visualization of the surface of chips, making

scratches or other spatial defects clearly visible. From the quality control procedure

1There are more mature miRNAs than precursors because one precursor can give rise to two
distinct miRNAs, depending on the selected strand
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Time point Probe sets Gene Symbols Precursors Mature miRNAs
Early 53 30 36 33
Late 46 31 38 36

Table 3.5: Number of probe sets and corresponding gene symbols, precursors and
mature miRNAs that were differentially expressed upon E1A transfection at the
early and late time point.

no particular problems emerged. We therefore proceeded to normalize the arrays

with the Robust Multichip Average algorithm (Irizarry et al., 2003). The Affymetrix

Mouse-430-2 array contains 45,101 probe sets, of which 37,316 could be unambigu-

ously mapped to 20,448 gene symbols. We restricted the data set to the 156 probe

sets that could be associated with a TaqMan probe and examined their regulation

at the early and late time points separately. We used the limma Bioconductor pack-

age (Smyth, 2004, 2005) to identify the differentially expressed probe sets. The

relatively complex design of the experiment, with technical replicates nested into

biological replicates, made the use of a t-test highly inefficient. The limma package,

instead, is well suited to this kind of experimental designs. We adjusted the p-values

with the Benjamini-Hochberg procedure to control the false discovery rate (FDR)1

(Benjamini and Hochberg, 1995) and retained only the probe sets with an adjusted

p-value smaller than 0.1. We opted for this relatively mild cutoff to compensate for

the limited statistical power due to the small sample size. We identified 53 regu-

lated probe sets at the “early” time point, corresponding to 30 gene symbols, 36

precursors, and 33 mature miRNAs. At the “late” time point, we identified 46 reg-

ulated probe sets corresponding to 31 gene symbols, 38 precursors2 and 36 mature

miRNAs. These numbers are summarized in Table 3.5.

We considered the Affymetrix probe set/TaqMan probe pairs separately, instead

of taking the average or the median of the probe sets referring to the same gene, as is

common practice in the field. This practice can be misleading, as illustrated by the

following example: the estrogen receptor 1 (ESR1 ) gene is mapped by nine probe

1Since these values relate to FDRs rather than rejection probabilities, they are sometimes called
q-values.

2The fact that there are more precursors than host genes is due to the fact that some miRNA
genes are clustered within the same host gene.
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sets in the Affymetrix HG-U133A array. By definition, ER+ samples have higher

levels of ESR1 than ER- samples. If we plot the boxplots of the expression levels of

these nine probe sets, stratifying by ER status, the difference between the probe sets

clearly emerges (Fig. 3.2). Only the 205225_at probe set clearly discriminates the

ER+ from the ER- samples, while such discrimination is much weaker, or absent, in

the other probe sets. Thus, averaging these probe sets would make this difference

undetectable. This example explains why an increasing number of software tools

select only the most regulated probe set for each gene, discarding the others, when

two or more probe sets match the same gene. This is, for example, the default setting

in the Gene Set Enrichment Analysis (GSEA) software package (Subramanian et al.,

2005).

We compared the regulation of the miRNA host genes, measured by Affymetrix,

and of their corresponding mature miRNAs, measured by TaqMan. The results of

these comparisons are shown in Figs. 3.3 and 3.4 for the early and late time points

respectively. These plots show all the Affymetrix probe set/TaqMan probe pairs,

including the problematic cases; however, for the quantitative comparison of the two

technologies only the singleton miRNAs were considered.

At the early time point, 31 of the 42 statistically significant probe sets (i.e.,

74%) had the same direction of regulation as the corresponding TaqMan probes

(Spearman correlation coefficient rs = 0.70, p-value 6 × 10−9)1. At the late time

point 34 of the 39 significant probe sets (i.e., 87%) were regulated coherently with the

corresponding TaqMan probes (correlation coefficient rs = 0.62, p-value 2× 10−6).

Affymetrix probe set/TaqMan probe pairs displaying an opposite direction of

regulation are referred to as the “disagreeing” cases. At the early time point there

were 6 disagreeing cases (Table 3.6), while at the late time point there were 3

disagreeing cases (Table 3.7). For more than half of these cases the CT values

were greater than 30 in both the E1A transfected and control samples. Thus, the

estimation of the log fold change is unreliable for these samples.

The miRNAs let-7g and mir-27b, however, have CT values less than 28, therefore,

1The p-value were calculated based on a correlation-test, where the null hypothesis was that
the correlation coefficient equaled zero.
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Figure 3.2: Boxplot of the expression values of the nine probe sets mapping the ESR1
gene, stratified by ER status. The probe set in the lower left corner, 205225 at,
clearly discriminates the two groups, while the other probe sets display little regu-
lation.

transcript name mature miRNA PCR log-FC Affy log-FC Ct e1a 24h Ct ctrl
Tln2 hsa-miR-190 0.11 -0.20 33.79 33.90
2610318N02Rik hsa-miR-130b -0.17 0.63 29.71 29.54
2010111I01Rik hsa-miR-27b 0.25 -0.66 27.09 27.33
Nfyc hsa-miR-30e-5p -0.18 0.34 30.95 30.76
Wdr82 hsa-let-7g -0.31 0.22 27.97 27.66
3110082I17Rik hsa-miR-339 -0.66 0.35 31.02 30.37

Table 3.6: Disagreeing cases at the early time point. The host gene (transcript
name), mature miRNA ID, TaqMan (PCR) and Affymetrix (Affy)log fold change
(log-FC), and adjusted CT values for the E1A-infected (E1A-24h) and control (ctrl)
samples, are reported for the disagreeing cases.
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Figure 3.3: Comparison of the regulation of the mature miRNAs and of
their host genes at the early time point. - The log-2 fold change of the mature
miRNAs, as measured by TaqMan is shown on the x-axis. The log-2 fold change of
the corresponding host genes, as measured by Affymetrix, is shown on the y-axis.
More than one probe set can be associated with the same mature miRNA and vice
versa. Triangles indicate mature miRNAs that have both intergenic and intragenic
precursors. Vertical crosses refer to mature miRNAs having multiple precursors
that are all intragenic, although located within different genes (multiple sources).
Red circles indicate cases in which the CT of the control cells was above 33 cycles
(meaning that the results were not reliable). Orange circles refer to a similar problem
in the E1A transfected cells. Finally red crosses indicate that the CT of both the
infected and the control cells were above 33 cycles. The dashed line represents the
ideal case of a perfect agreement between Affymetrix and TaqMan data.
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Figure 3.4: Comparison of the fold change of the mature miRNAs and of
the host genes at the late time point - Same plot as in Fig. 3.3 although for
the late time point.
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the estimation of the log fold change should be more reliable for these miRNAs. A

possible explanation for the discrepancy in results could be the presence of upstream

regulatory elements that control the expression of miRNAs independently from the

host gene promoter. Indeed, Monteys and collaborators have demonstrated that

roughly one third of human intronic miRNAs, including let-7g and miR-27b have

upstream regulatory elements possessing features consistent with promoter function

(Monteys et al., 2010). It is therefore plausible that in mouse these miRNAs might

be regulated in a host gene independent fashion. In addition Newman and co-

workers showed that some RNA binding proteins, such as LIN-28, can inhibit the

processing of the let-7g precursor, thus preventing the accumulation of its mature

form (Newman et al., 2008).

At both the early and late time points, several probe set/TaqMan pairs showed

the same direction of regulation, although the degree of regulation was strikingly

different. This was the case for miR-106b, miR-25 and miR-93 (Figs 3.3 and 3.4)

which are members of a cluster contained in the MCM7 gene. The four probe sets

that mapped this gene were 5 to 8 fold up-regulated at both time points (2.5 to 3

fold on the log scale), while the up-regulation of the three TaqMan probes matching

these miRNAs ranged from 1.2 to 1.5 fold (0.25 to 0.5 on the log scale). Similarly

to let-7g and miR-27b, regulatory elements with features compatible with promoter

functions have been found upstream of the miR-25-93-106b cluster, suggesting that

the it might be regulated independently of its host gene (Monteys et al., 2010).

In this analysis we only considered the probe sets that displayed statistical signif-

icance. When, however, we considered all probe set/TaqMan probe pairs, without

filtering for significance, we observed no correlation between the Affymetrix and

transcript name mature miRNA PCR log-FC Affy log-FC Ct e1a 36h Ct ctrl
Fgf13 hsa-miR-504 1.22 -1.04 34.12 35.34
Nfyc hsa-miR-30e-5p -0.32 0.27 31.08 30.76
Wdr82 hsa-let-7g -0.13 0.30 27.79 27.66

Table 3.7: Disagreeing cases at the E1A late time point. The host gene (Transcript
name), mature miRNA ID, TaqMan (PCR) and Affymetrix (Affy) log fold change
(log-FC), and adjusted CT values for the E1A infected (E1A 36h) and control (ctrl)
samples, are reported for the disagreeing.

50



3.3 The proof of principle - SV40 experiment

Total Intragenic Intergenic
706 407 299

Table 3.8: Total number of intragenic and intergenic human miRNAs in release 13.0
of miRBase.

the TaqMan measurements (Fig. 3.5). This result demonstrates the importance of

filtering for significance.

3.3 The proof of principle - SV40 experiment

SV40 is a polyomavirus that is found in both monkeys and humans. It was first

identified in 1960 in cultures of rhesus monkey kidney cells that were being used

to produce polio vaccine. We used SV40 to transform the non-tumorigenic breast

cancer cell line, MCF10A, and performed gene expression profiling of both SV40-

transformed and control cells. The microarray experiment consisted of four Affymetrix

HG-U133A2 arrays, each containing 22,277 probe sets corresponding to 12,690 gene

symbols. Two arrays were hybridized with RNA extracted from SV40 infected cells,

and two with the RNA from the control cells (i.e., the empty retroviral vector). In

the RT-PCR TaqMan experiment, we used one microfluidic card for the infected

cells, and one card for the control cells. The card was the same as the one used

in the E1A experiment (TaqMan Human MicroRNA Array V. 1.0). We followed

the same procedure as described for the E1A experiment to analyze data from the

SV40 experiment, with the exception of step 2, i.e., the mapping from murine to

human miRNAs. This step was not necessary because we used the human cell line,

MCF10A, in the SV40 experiment.

Release 13.0 of miRBase contains 706 human pri-miRNAs, corresponding to 703

mature miRNAs. The number of inter and intragenic miRNAs in human is shown

in Table 3.8.

The 407 intragenic miRNAs were associated with 386 transcript names, 317 of

which had a unique Entrez ID. We aligned TaqMan probe sequences to the mature

miRNA sequences contained in miRBase 13.0 to remove possible erroneously de-

signed probes, and found that 268 of the 365 probes on the card reliably matched a
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Figure 3.5: Comparison of the log fold-changes of all the probe sets, irre-
spective of their statistical significance, in the E1A experiment. Top: same
plot as in fig. 3.3, although without filtering the probe sets for statistical significance.
Bottom: analogous plot for the late time point.
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3.3 The proof of principle - SV40 experiment

N. of precursors 1 2 3 4 5 8
Frequency 632 59 7 3 1 1

Table 3.9: Distribution of the number of human mature miRNAs associated with a
particular number of precursors.

mature sequence.

As in the E1A experiment we determined the number of mature miRNAs falling

into the different precursor categories and identified the problematic cases (Ta-

ble 3.10).

For the Affymetrix data, we used the hgu133a2.db annotation package from

Bioconductor to retrieve the probe sets from the Entrez IDs and found 436 probe

sets mapping to the 317 Entrez IDs. We identified 102 mature miRNAs that could

be associated with both a TaqMan probe and at least one Affymetrix probe set

(Table 3.11).

As in the previous analysis, we used the limma package to identify significantly

regulated probe sets using a cutoff adjusted p-value of less than 0.1 (Benjamini-

Hochberg adjustment). We identified 56 significantly regulated probe sets, corre-

sponding to 42 gene symbols and 54 intragenic miRNAs.

Excluding the problematic cases, we found that 21 of the 29 (72%) statisti-

cally significant probe sets probe/TaqMan pairs had the same direction of regula-

tion (Fig. 3.6). The Spearman correlation coefficient was positive (rs = 0.44), and

significantly different from zero (p = 0.008). We observed 8 disagreeing probe

set/TaqMan probe pairs (Table 3.12).

For 6 of the disagreeing cases, the CT values were greater than 30 in both the

control and infected samples, indicating that these results are unreliable. In contrast,

hsa-miR-149 and hsa-miR-328 displayed low CT values and, therefore, the results

should be reliable. The presence of a putative promoter region upstream of the hsa-

singletons all intergenic all intragenic inter and intragenic
632 30 22 19

Table 3.10: Distribution of human mature miRNAs in the different precursor cate-
gories.
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pri-miRNAs mature miRNAs Entrez Ids Affy probes Taqman probes
111 102 89 154 102

Table 3.11: Number of Pri-miRNAs, mature miRNAs, Entrez Ids, Affymetrix probe
sets and TaqMan probes that could be reliably used for the comparison of the miRNA
host genes and the mature sequences

Figure 3.6: Results of the SV40 experiment - Comparison of the log fold changes
of the mature miRNAs and of the host genes of their precursors in the SV40 exper-
iment.
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3.4 The breast cancer data sets

transcript name assay name PCR log-FC Affy log-FC Ct SV40 Ct ctrl
SREBF2 hsa-miR-33 0.86 -0.53 32.42 33.28
GPC1 hsa-miR-149 0.81 -0.66 25.43 26.24
DNM3 hsa-miR-214 -0.35 0.57 32.36 32.02
LARP7 hsa-miR-302c -0.86 0.42 36.24 35.38
LARP7 hsa-miR-367 -1.87 0.42 36.60 34.73
KIAA1199 hsa-miR-549 3.15 -1.42 32.86 36.01
ELMO3 hsa-miR-328 2.58 -0.98 25.90 28.48
DENND1A hsa-miR-601 0.50 -0.65 34.38 34.88

Table 3.12: Transcript name, mature miRNA, PCR and Affymetrix log fold change,
adjusted CT values in the infected and in the control cases for the disagreeing case
in the SV40 experiment.

miR-149 host gene, GPC1, might explain the apparent discrepancy in the results

for this miRNA (Monteys et al., 2010).

3.3.0.2 Proof of principle - conclusions

The main goal of the proof of principle experiments was to determine whether the

regulation of intronic miRNAs could be inferred from Affymetrix profiling experi-

ments assessing gene expression levels. Overall we found a good correlation between

the expression of miRNA host genes, assessed by Affymetrix, and mature miRNA

expression assessed by RT-PCR. In terms of direction of regulation, the agreement

between the Affymetrix and PCR results ranged from 72% (in the SV40 experiment)

to 87% (in the E1A late experiment). In terms of the Spearman correlation coeffi-

cient, the agreement ranged from a minimum of rs = 0.44 (SV40 experiment) to a

maximum of rs = 0.77 (E1A, early time point). In some cases the two technologies,

despite being in agreement regarding the direction of regulation, were remarkably

different in terms of quantification of the effect. This was not surprising consider-

ing the different sensitivities of the two methods, and the small sample size of the

Affymetrix experiments.

3.4 The breast cancer data sets

The second step of the present research project was the identification of novel onco-

miRNAs in breast cancer. Breast cancer microarray data sets were taken from Gene
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Expression Omnibus (GEO) database (Barrett et al., 2005) which is the largest

repository of publicly available gene expression data. The database contains more

than 450,000 entries, most of which come from microarray experiments, although

Next Generation Sequencing and high throughput RT-PCR data are also available.

We used four criteria to select microarray data for our analysis. First, data sets had

to have a large sample size in order to achieve high statistical power. Second, data

sets had to be accompanied with adequate clinical and pathological information.

Third, data sets needed to be based on the same microarray platform, to avoid the

introduction of additional non-biological variability. Fourth, the raw needed to be

available. The raw data were necessary because we wanted to perform an accurate

quality control of the samples in order to reduce the noise introduced by poor quality

arrays. In the E1A and SV40 experiments, the small number of arrays allowed for

a visual inspection of every chip. To analyze hundreds of arrays, however, it was

necessary to develop a quality control pipeline that allowed us to automatically

identify potentially compromised arrays, which could then be visually inspected.

3.4.1 The quality control procedure

Microarray experiments can be influenced by two types of problems: those affect-

ing single arrays, and those conditioning a significant portion of the data set (batch

effects). In the first case it usually suffices to remove the defective array. In the

second case, however, no easy solution can be provided, and additional analyses

need to be performed. Affymetrix arrays are designed to be robust against local

effects, but a large spatial defect such as the one shown in Fig. 3.7 can compromise

the array’s reliability. Two statistical measures have been introduced by Benjamin

Bolstad, which allow the identification of this kind of defect, the Relative Log Ex-

pression (RLE) and the Normalized Unscaled Standard Error (NUSE) (Gentleman

et al., 2004). In the RLE approach, the log scale estimates of the expression θ̂gi

of each gene g on each array i are used to compute the median expression mg of

each gene across arrays. The relative expression is then defined as Mg1 = θ̂gi −mg.

These values are used to draw a boxplot for each array. Normally, we expect that
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3.4 The breast cancer data sets

Figure 3.7: An example of an extensive spatial defect on the surface of an
Affymetrix microarray - By design Affymetrix arrays are robust against small
defects, scratches or dust. The affyPLM Bioconductor library allows the false colour
visualization of the surface of the array. A large region of inhomogeneity, such as the
region shown in red in the top left hand corner of the array, represents an artefact
which renders the array unusable.
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the majority of genes are not differentially expressed, therefore the boxplots should

be centered around M = 0 and have small spread1. The NUSE approach, instead,

uses an estimate of the standard error of each gene on each array obtained from the

affyPLM library previously described. To account for the fact that variability differs

considerably between genes, the standard error is standardized, so that the median

value across arrays is 1 for each gene. The NUSE values are calculated using Eq. 3.1.

NUSE(θ̂gi) =
SE(θ̂gi)

medi(SE(θ̂gi))
(3.1)

Low quality arrays have boxplots that are significantly shifted from 1 or that have

a large spread (i.e., a larger IQR).

Since our analysis involves a large number of arrays, we automated the computa-

tion of the NUSE and RLE statistics. For each data set we performed the following

steps:

1. We computed the median value and the IQR of both the NUSE and the RLE

statistics for each array. This gave four values for each chip: MNUSE , MRLE ,

IQRNUSE and IQRRLE .

2. We compared each of these values with a corresponding cutoff value (see Ta-

ble 3.13). If any value exceeded the cutoff, the chip was tagged as “dubious”.

3. We then generated the distributions of MNUSE , MRLE , IQRNUSE and IQRRLE

across the arrays and calculated its IQR. This gave four values: IQRMNUSE
,

IQRMRLE
, IQRIQRNUSE

and IQRIQRRLE
.

4. If any of these IQR values were greater than q3 + 1.5IQR or less than q1 −

1.5IQR, where q1 and q3 are the first and the third quartile of the distribution,

we considered such values as outliers and flagged the corresponding array as

“rejected”2.

1Henceforth, we will use the interquartile range (IQR) as a measure of spread, which is defined
as the difference between the third and the first quartile of the values under consideration.

2This definition of an outlier is the one adopted by most statistical software when plotting
boxplots.
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3.4 The breast cancer data sets

MNUSE MRLE IQRNUSE IQRRLE

1.10 0.2 0.10 1.0

Table 3.13: The chosen cutoff values for the four quantities defined in step 1 of the
quality control procedure.

5. We made diagnostic plots for both the dubious and the rejected arrays for a

successive visual analysis.

The four cutoff values were selected using a trial and error approach, with a

preference for overestimating the number of poor quality chips rather than failing

to identify a compromised chip.

3.4.2 The chosen data sets

The data sets used in our screening are summarized in Table 3.14. These data sets

were chosen according to the criteria outlined in Section 3.4. Additional details on

the data sets are provided in the following sections.

Data Set Year Samples (filtered) Reference GEO acc.
Ivshina 2006 289 (242) (Ivshina et al., 2006) GSE4922

Pawitan 2005 159 (150) (Pawitan et al., 2005) GSE1456

Sotiriou 2006 189 (85) (Sotiriou et al., 2006) GSE2990

TRANSBIG 2007 198 (189) (Desmedt et al., 2007) GSE7390

Wang 2005 286 (286) (Wang et al., 2005) GSE2034

Table 3.14: The data sets used in the breast cancer microarray screening. The year
of publication, number of samples before and after the filtering (in parenthesis), the
relative publication and the GEO accession number are reported.

3.4.2.1 The Ivshina data set

The Ivshina data set is comprised of samples from two institutes, referred to as the

Uppsala and Singapore cohorts (Ivshina et al., 2006). The data set retrieved from

the GEO database (accession no. GSE4922) included data on 289 patients, 40 of

which came from the Singapore cohort and 249 from the Uppsala cohort. RNA

from these patients was used to hybridize Affymetrix HG-U133A and HG-U133B
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microarrays, for a total of 578 arrays. We only analyzed the 289 arrays based on

HG-U133A because the HG-U133B arrays were available for some but not all of the

selected data sets. Samples from Singapore were also excluded, due to the lack of

clinical information, leaving an initial sample size of 249 samples.

We performed the quality control procedure on the 249 samples and, as a result,

14 arrays were flagged as “dubious” and 3 as “rejected”. After visual inspection, we

removed 7 of these flagged arrays from the data set, and proceeded to analyze the

remaining 242 samples. The arrays were then normalized using the RMA algorithm

with default parameters. The same normalization procedure was used for all the

other data sets.

The available clinical parameters for the Ivshina data set were tumour grade,

event, disease free survival, ER status, lymph node (LN) status, p53 status, age and

tumour size. The definition of “event” was rather broad: “any type of recurrence

(local, regional or distant) or death from breast cancer”.

We mapped 465 Affymetrix probe sets to 253 miRNA host genes, which were

in turn associated with 286 pri-miRNAs, representing 40% of the 721 human pri-

miRNAs contained in miRBase, release 14. In this, and in the following analy-

ses, we filtered out probe sets with signals less than 150 (linear scale) in at least

10% of the samples. After this filtering step we had 278 probe sets. We used

the geneFilter package for the filtering, and the limma package for the succes-

sive analysis. Both packages are part of the Bioconductor suite. Probe sets having

a Benjamini-Hochberg adjusted p-value less than 0.05 were considered as statisti-

cally significant. We performed a series of comparisons to determine the number

of significantly regulated probe sets between different clinical states. We found 146

significantly regulated probe sets between grade 1 (G1) and G3 (G3) tumours, 122

between grade 3 and grade 2 (G2), and 45 between G2 and G1 tumours (Table 3.15).

Table 3.15 suggests that G1 tumours are genetically more different from G3

tumours than from G2 tumours, since the number of regulated probe sets in the first

comparison approximately three times larger than in the second comparison. The

probe sets that were regulated in the various comparisons were largely overlapping.
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3.4 The breast cancer data sets

Comparison (N. of observations) Probe sets Host genes Pri-miRNAs
G3 (55) vs. G1 (66) 146 108 110

G3 (55) vs. G2 (121) 122 95 106
G2 (121) vs. G1 (66) 45 39 44

Table 3.15: Number of regulated probe sets, host genes and pri-miRNAs across the
possible comparisons concerning the tumour grade in the Ivshina data set.

For example 106 probe sets were common to both the G3 vs. G1 list (146 probe

sets) and the G3 vs. G2 (122 probe sets) list. We then determined the number of

significantly regulated probe sets with respect to ER status, LN status, P53 status,

and the occurrence of an event (Table 3.16).

Comparison (N. of observations) Probe sets Host genes Pri-miRNAs
ER+ (204) vs. ER- (34) 127 99 111
LN+ (78) vs. LN- (155) 23 18 22

wild type p53 (182) vs. mutated p53 (58) 124 94 100
Event (85) vs. no event (157) 6 5 5

Table 3.16: Identification of significantly regulated probe sets in the Ivshina data
set. The type of comparison and the number of significantly regulated probe sets,
host genes and pri-miRNAs are reported.

Interestingly, the number of significantly regulated probe sets in the G3 vs. G1,

ER+ vs. ER-, p53 wild type vs. p53 mutated comparisons were similar. Therefore

we determined the extent of overlap between these lists of probe sets.

From Table 3.17 it is quite clear that a large overlap exists, presumably due to

the high degree of correlation between these clinical parameters. Some caution is

therefore necessary in the interpretation of these data, since we cannot confidently

distinguish the source of the regulation of the probe sets. To separate the individual

contributions of the different clinical parameters, we re-analyzed the data stratifying

Comparison Common probe sets
(G3 vs. G1) ∩ (ER+ vs. ER-) 98

(G3 vs. G1) ∩ (p53 wt vs. p53 mut) 114
(ER+ vs. ER-) ∩ (p53 wt vs. p53 mut) 97

Table 3.17: Number of overlapping probe sets in the G3 vs. G1, ER+ vs. ER- and
p53 mutated vs. p53 wild type lists from the Ivshina data set. The ∩ sign indicates
intersection.
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with respect to the ER status (Tables 3.18 and 3.19).

Considering samples restricted for ER status, we observed very few regulated

probe sets in the ER- samples, which can be easily explained by the small sample

size. There were in fact only 34 ER- samples compared with 204 ER+ samples (the

ER status was missing in 4 samples). We also found that 93% of the significantly

regulated probe sets in the G3 vs. G1 comparison, were also included in the un-

restricted data set list. Similarly all probe sets in the G3 vs. G2 list in the ER+

data set were also included in the corresponding unrestricted list. We performed a

similar analysis stratifying with respect to the p53 status. No significant probe sets

were found in the mutated p53 subset for any of the above comparisons, while 90%

of the significant probe sets in the G3 vs. G1, and 88% of those in the G3 vs. G2

comparisons, restricted to the wild type p53 restricted set, were contained in the

corresponding unrestricted list. These results suggest that tumour grade is the main

cause of probe set regulation.

3.4.2.2 The Pawitan data set

The Pawitan data set consists of 159 breast cancer patients operated at the Karolin-

ska Hospital from January 1994 to December 1996 (Pawitan et al., 2005). The clin-

ical data includes information on: tumour grade, occurrence and time until breast

cancer relapse, death from any cause, time until death, and death specifically due

to breast cancer.

ER Positive samples
Comparison (N. of observations) Probe sets Host genes Pri-miRNAs

G3 (34) vs. G1 (61) 122 96 99
G3 (34) vs. G2 (109) 73 60 68
G2 (102) vs. G1 (61) 0 0 0

Event (72) vs. no event (132) 6 6 6
LN+ (66) vs. LN- (132) 0 0 0

p53 wt (163) vs. p53 mutated (39) 86 67 77

Table 3.18: Identification of significantly regulated probe sets in the subset of ER+
samples from the Ivshina data set. Thy type of comparison and the number of
significantly regulated probe sets, host genes and pri-miRNAs are reported.
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ER Negative samples
Comparison (N. of observations) Probe sets Host genes Pri-miRNAs

G3 (21) vs. G1 (2) 3 2 2
G3 (21) vs. G2 (11) 0 0 0
G2 (11) vs. G1 (2) 0 0 0

Event (12) vs. no event (22) 0 0 0
LN+ (12) vs. LN- (20) 0 0 0

p53 wt (15) vs. p53 mutated (19) 0 0 0

Table 3.19: Identification of significantly regulated probe sets in the subset of ER-
samples from the Ivshina data set. Thy type of comparison and the number of
significantly regulated probe sets, host genes and pri-miRNAs are reported

Comparison (N. of observations) Probe sets Host gene Pri-miRNAs
G3 (58) vs. G1 (27) 69 53 63
G3 (58) vs. G2 (54) 87 66 74
G2 (54) vs. G1 (27) 0 0 0

Relapse (38) vs. no relapse (112) 56 49 56

Death from any reason (36) vs. no death (114) 20 17 18

Death from breast cancer (27) vs. no death (123) 43 38 41

Table 3.20: Identification of significantly regulated probe sets in the Pawitan data
set. The type of comparison and the number of significantly regulated probe sets,
host genes and pri-miRNAs are reported.

We applied our quality control procedure to the data set: 10 arrays were flagged

as “dubious” and one as “rejected”. Following the visual inspection of these arrays

we excluded 9 arrays from our analysis. The remaining 150 samples, were then

normalized using the RMA method and filtered to remove low signal probe sets

leaving 234 probe sets. We then performed a series of comparisons to determine the

number of significantly regulated probe sets between different clinical parameters

(Table 3.20).

We found more regulated probe sets in the G3 vs. G2 comparison (87) than in

the G3 vs. G1 comparison (69, see Table A.4 off the appendix for the complete list).

This finding can be explained by the fact that the G2 group is twice as large as the

G1 group. Thus the statistical power of the G3 vs. G2. comparison is greater than

that of the G3 vs. G1 comparison. Moreover, we identified 55 i.e., 82% of the G3

vs. G1 list, that were common to both lists. We also identified probe sets that were
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Origin (label) Samples Treatment
Uppsala (KIT) 24 Yes
Oxford (OXFT) 40 Yes
Uppsala (KIU) 64 No
Oxford (OXFU) 61 No

Table 3.21: Partition of the samples in the Sotiriou data set with respect to the
institute of the origin and the treatment.

significantly associated with relapse (see Table A.5) and death (see Tables A.6 and

A.7); however, the fold change in expression was low for these probe sets.

3.4.2.3 The Sotiriou data set

The Sotiriou data set (GEO database accession GSE2990) contains information on

189 patients with primary operable invasive breast cancer. The frozen tumour spec-

imens were obtained from two institutes: the John Radcliffe Hospital (Oxford, UK)

and the Uppsala University Hospital (Uppsala, Sweden). RNA samples from Oxford

were processed at the Jules Bordet Institute in Brussels, Belgium (Sotiriou et al.,

2006). For the Uppsala samples, RNA was extracted at the Karolinska Institute and

processed at the Genome Institute of Singapore. Some of the patients were treated

with tamoxifen while others were not. Table 3.21 shows the partition of the samples

with respect to the institute of origin and treatment. We performed the quality

control procedure on the Sotiriou data set, which led to the exclusion of 5 arrays,

leaving 184 for the successive analysis.

The fact that the samples were from different institutes and had undergone

different manipulations was a reason of concern. We plotted the boxplots of the raw

signal of the 184 arrays using different colours to indicate the institute/treatment

combinations (Fig. 3.8). A strong batch effect was clearly visible: the intensity

distributions in the OXFT group of arrays were significantly shifted to the low signal

end compared with the other three groups. Normalization, at least to some extent,

should correct this kind of problem, so we proceeded to check whether the batch

effect was relevant even after normalizing the data set. We normalized the arrays

using RMA and we removed all of low signal probe sets. Additionally, we removed
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Figure 3.8: Batch effect in the Sotiriou data set. - Boxplot showing the log-
intensity of each array at the probe level (i.e.,, before normalizing). Different colours
indicate the four origin/treatment possibilities. A clear batch effect is visible, in that
the arrays in the OXFT group have systematically a lower signal compared with the
other groups.
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all probe sets that did not have an IQR of the log-scale expression level greater

than 0.8. The purpose of this second filtering step was to remove the “flat” probe

sets, thus keeping only those that showed some variability. This filtering, although

not particularly stringent, left only 1677 of the initial 22,283 probe sets. We then

performed a probe-set level ANOVA adjusting the p-values with the Benjamini-

Hochberg method, and found that 1256 of the 1677 probe sets (i.e., 75%) were

significantly associated with the institute of origin using a cutoff of 5%. We selected

the 100 most significant probe sets and performed a hierarchical clustering to visually

assess differences between the groups (Fig. 3.9). The difference between the Oxford

and the Uppsala data sets was still present: the Uppsala and the Oxford samples

form two perfectly separated groups. Within these two clusters we observed that

the OXFT and the OXFU groups were well separated, while there was no marked

difference between the KIT and the KIU samples. We, therefore, concluded that it

was inappropriate to treat the data as a single data set. Thus, we analyzed only the

85 arrays from Uppsala group that had passed the initial quality control.

After restricting the data set to the 465 probe sets associated with miRNA

host genes, we filtered them to remove probe sets having weak intensities, leaving

280 probe sets. We then compared the expression of these probe sets according to

different clinical parameters as summarized in Table 3.22. We found 101 probe sets

significantly regulated in G3 vs. G1, 13 in G3 vs. G2 and 42 in ER positive vs. ER-.

Again we observed a large overlap between the lists of significantly regulated probe

sets: the 13 probe sets regulated in G3 vs. G2 are included in the 101 regulated

probe sets in G3 vs. G1 while 32 of the 42 probe sets (i.e., 76% ) regulated in ER+

vs. ER- are contained in the G3 vs. G1 probe set list.

We then restricted our analysis to the ER+ samples (Table 3.23). The overlap

between regulated probe sets in the G3 vs. G1 and the G3 vs. G2 comparisons was

very high: 82 of the 88 (i.e., 93%) regulated probe sets in G3 vs. G1 restricted

to the ER+ samples also appear in the same comparison performed on the whole

data set (Table 3.22). Similarly, all the 13 probe sets in the unrestricted G3 vs.

G2 list (Table 3.22) were contained in the corresponding list from the ER+ subset
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Figure 3.9: Hierarchical clustering of the 184 arrays from the Sotiriou data
set that passed the quality control procedure. - Clustering was performed
using the 100 probe sets that were most significantly associated with the institute of
origin. We used the euclidean distance as a dissimilarity measure and the complete
linkage method to group clusters. The colour key indicates the log-2 expression
ratios.
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Comparison (N. of observations) Probe sets Host genes Pri-miRNAs
G3 (20) vs. G1 (36) 101 78 84
G3 (20) vs. G2 (26) 13 12 14
G2 (26) vs. G1 (36) 0 0 0

ER+ (74) vs. ER- (10) 42 42 37
LN+ (14) vs. LN- (67) 0 0 0

Recurrence (27) vs. no recurrence (56) 0 0 0
Distant metastasis (16) vs. no metastasis (66) 0 0 0

Table 3.22: Identification of significantly regulated probe sets in the Sotiriou-Uppsala
data set. The type of comparison and the number of significantly regulated probe
sets, host genes and pri-miRNAs are reported.

Comparison Probe sets Host genes Pri-miRNAs
G3 (16) vs. G1 (34) 88 72 78
G3 (16) vs. G2 (21) 44 34 41

Table 3.23: Identification of significantly regulated probe sets in the Sotiriou-Uppsala
data set restricted to the ER+ samples. The type of comparison and the number of
significantly regulated probe sets, host genes and pri-miRNAs are reported.

(Table 3.23). The fact that only 10 samples were ER- justifies the fact that we could

not find any significantly regulated probe set for any comparison in that subset.

We also stratified patients with respect to the tamoxifen treatment. Table 3.24

shows the distribution of tumour grade and ER status between the treated and

untreated groups. We then identified significantly regulated probe sets between G3

vs. G1, G3 vs. G2 and ER+ vs. ER- samples for the two groups (Table 3.25) The

regulated probe sets in the untreated group largely overlapped with the regulated

probe sets in the corresponding comparisons performed on the complete data set

(Table 3.22). In fact 90% of the G3 vs. G1 regulated probe sets the untreated

group were also identified in the same comparison performed on the complete data

set. There were more regulated probe sets (33) for the G3 vs. G2 comparison

in the untreated group than in the complete data set (13 probe sets). This was

Tamoxifen treatment G1 G2 G3 ER+ ER-
No 26 16 10 10 51
Yes 10 0 10 0 23

Table 3.24: Distribution of patients according to tumour grade, ER status and
tamoxifen treatment in the Sotiriou Uppsala data set.

68



3.4 The breast cancer data sets

Tamoxifen untreated Tamoxifen treated
Comparison probe sets host genes pri-miRNAs probe sets host genes pri-miRNAs
G3 vs. G1 86 66 73 5 5 5
G3 vs. G2 33 27 33 0 0 0

ER+ vs. ER- 42 33 37 0 0 0

Table 3.25: Identification of significantly regulated probe sets in the Sotiriou-Uppsala
data set stratified by treatment. The type of comparison and the number of signifi-
cantly regulated probe set, host genes and pri-miRNAs are reported for the tamox-
ifen untreated and treated groups..

presumably a consequence of the fact that the untreated group included the ER-

tumours, i.e., the most aggressive tumours, whereas the G3 tumours in the tamoxifen

group should, as a consequence of the treatment, be less aggressive. Moreover, 11

of the 13 probe sets of the latter list were also included in the former list. The

complete list of significantly regulated probe sets for the G3 vs. G1 and the ER+

vs. ER- comparisons can be found in Tables A.8 and Table A.9 respectively.

3.4.2.4 The TRANSBIG data set

TRANSBIG is a consortium that was launched in 2004 to promote international col-

laboration in translational research (Buyse et al., 2006). According to the TRANS-

BIG website it comprises 40 institutions in 22 countries. The data set stored in

the GEO data base with accession ID GSE7390 contains 198 arrays. A complete

description of the data set can be found in (Buyse et al., 2006) and (Desmedt et al.,

2007). The frozen tumour samples originated from five different institutes, but the

pathological evaluation of ER status and tumour grade was performed in a single

institute (European Institute of Oncology, Milan, Italy). Similarly, RNA was ex-

tracted in a single institute (Netherlands Cancer Institute, Amsterdam) with the

exception of one subset of arrays (those from the Centre René Huguenin, Saint

Cloud). The institutes of origin were: Institut Gustave Roussy, Villejuif, France

(IGR); Karolinska Institute, Stockholm and Uppsala University Hospital, Uppsala,

Sweden (KAR); Centre Rene Huguenin, Saint-Cloud, France (RH); Guys Hospital,

London, United Kingdom (GUY); John Radcliffe Hospital, Oxford, United Kingdom

(JRH). The distribution of the samples across the institutes is shown in Table 3.26.
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GUY IGR JRH KAR RH
36 50 24 51 37

Table 3.26: Distribution of the patients across the five institutes composing the
TRANSBIG data set.

We applied our quality control procedure, which led to the exclusion of 9 arrays

from the data set, leaving 189 for the successive analysis. We also checked for the

presence of batch effects as described for the Sotiriou data set by plotting an array-

wise boxplot using the raw data (Fig. 3.10). No obvious batch effects were observed.
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Figure 3.10: Boxplot of the raw data of the TRANSBIG data set - Different
colours indicate the different hospitals that provided patient samples.

The available clinical data for the TRANSBIG data set includes information on

tumour grade, ER status, death from any cause, occurrence of relapse, occurrence

of distant metastasis. All patients were lymph node negative. Only 103 probe sets
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Comparison (N. of observations) Probe sets Host genes Pri-miRNAs
G3 (80) vs. G1 (27) 39 33 38
G3 (80) vs. G2 (80) 54 42 47
G2 (80) vs. G1 (27) 0 0 0

ER+ (128) vs. ER- (61) 52 43 47
Recurrence (89) vs. no recurrence (100) 0 0 0

Distant metastasis (62) vs. no metastasis (127) 0 0 0
Death from any cause (56) vs. no death (133) 0 0 0

Table 3.27: Identification of significantly regulated probe sets in the TRANSBIG
data set. The type of comparison and the number of significantly regulated probe
sets, host genes and pri-miRNAs are reported.

Comparison Length 1st list Length 2nd list Common
(G3 vs. G1) ∩ (G3 vs. G2) 39 54 35
(G3 vs. G1) ∩ (ER+. vs. ER-.) 39 52 31
(G3 vs. G2) ∩ (ER+. vs. ER-.) 54 52 43

Table 3.28: Overlap of the lists of significantly regulated probe sets in the tumour
grade and ER status comparisons in TRANSBIG data set.

of the initial 465 passed the probe set-signal intensity filtering. We determined the

number of significantly regulated probe sets between different types of samples based

on clinical parameters (Table 3.27)

As with the Sotiriou data set, we observed more regulated probe sets in G3 vs.

G2 comparison than in G3 vs. G1 comparison, which is likely due to the larger

number of G2 samples. Again, there was a large overlap between the two lists: 35

of the 39 probe sets (i.e., 90%) in the G3 vs. G1 probe set list, also appeared in the

G3 vs. G2 list. There was also a large overlap between the ER status list and the

tumour grade lists, as shown in Table 3.28.

We then considered ER+ and ER- patients separately. In our filtered data set

there were 61 ER- and 128 ER+ samples. In the ER- subset we identified only one

significantly regulated probe set in G3 vs. G1. In the ER+ subset there was a large

overlap between the lists of regulated probe sets: 8 of the 12 probe sets (i.e 67%) in

the G3 vs. G1 list were also present in the G3 vs. G2 list (Table 3.29). Moreover, 11

of the 12 significantly regulated probe sets in the G3 vs. G1 comparison in the ER+

subset (i.e., 92%) were included in the corresponding list of significantly regulated

probe sets in the complete (Table 3.27) data set. This observation suggests that
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Comparison Probe sets Genes Pri-miRNAs
G3 (35) vs. G1 (26) 12 12 13
G3 (35) vs. G2 (65) 19 15 18

Table 3.29: Identification of significantly regulated probe sets in the ER+ subset of
the TRANSBIG data set. The type of comparison and the number of significantly
regulated probe sets, host genes and pri-miRNAs are reported.

stratifying with respect to the ER status does not add any additional information.

The complete list of significantly regulated probe sets, the log-fold change, the for

the G3 vs. G1 and the ER+ vs. ER- comparisons, can be found in Tables A.10 and

A.11 respectively.

3.4.2.5 The Wang data set

The Wang data set consists of 286 samples from LN- patients. This data set was

not initially included in our repository, due to some technical issues. First, the raw

data were not available. Thus no quality control procedure was possible. Second,

the clinical information was limited to the ER status, the LN status (negative for

all samples), the occurrence of relapse and the time to relapse or to the last follow

up, and the occurrence of brain relapse. Third, the arrays had been normalized

with Affymetrix MAS5 algorithm, while we used RMA to normalize all the other

data sets. Nevertheless, we decided to include this data set in our analysis for the

following reasons: First, the large sample size should minimize any negative effects

due to the presence of a small number of defective arrays. Second, the addition of

this data set allowed us to have four data sets with information on ER status (not

available in the Pawitan data set) and four with information on tumour grade (not

available in the Wang set). Third, we re-normalized our data sets with the MAS5

method, repeated the analyses, and compared the results with those obtained with

the RMA normalized data. We found that the lists of significantly regulated probe

sets were almost identical with similar p-values and fold changes. For example we

show the log fold change of significantly regulated the probe sets in the G3 vs. G1

comparison for the MAS and the RMA normalized data from the Wang data set

were in good agreement (Fig. 3.11).
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Figure 3.11: Comparison of the results obtained with MAS and RMA
normalized data from the Wang data set. - Scatterplot of the log fold changes
in the G3 vs. G1 comparison for the probe sets that were significantly regulated both
in the MAS (x-axis) and the RMA (y-axis) normalized data. The colors represent the
log-intensity of the probe sets. The points most deviating from perfect agreement
(grey dashed line) have very low average intensities.
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Comparison (N. of observations) Probe sets Gene symbols miRNAs
ER+ (209) vs. ER- (77) 162 125 145

Relapse (107) vs. No relapse (179) 6 5 7
Brain relapse (10) vs. No relapse (276) 7 6 9

Table 3.30: Identification of significantly regulated probe sets in the Wang data set.
The type of comparison and the number of significantly regulated probe sets, host
genes and pri-miRNAs are reported

We filtered the probe sets for signal intensity: leaving 372 probe sets for our anal-

ysis. The number of significantly regulated probe sets for the different comparisons

is shown in Table 3.30. The data set contains 209 ER+ and 77 ER- samples. We

stratified the analysis with respect to the ER status, and found only 4 significantly

regulated probe sets in Relapse vs. No relapse and 3 in Brain relapse vs. No relapse.

The complete list of significantly regulated probe sets for all comparisons can be

found in (Tables A.12, A.13, and A.14).

3.4.3 Permutation test on results

From the above analyses we made the following conclusions:

1. The majority of significantly regulated probe sets/miRNA host genes were

found in the tumour grade (G3 vs. G1, G3 vs. G2) and ER status (ER+ vs.

ER-) comparisons.

2. The G3 vs. G1 and G3 vs. G2 lists of regulated probe sets overlapped exten-

sively.

3. Stratifying the tumour grade comparisons with respect to the ER status was

not informative due to the small number of ER- samples.

4. In the comparisons of other clinical parameters (e.g., LN status, event occur-

rence), we identified few significantly regulated probe sets, which displayed

smaller fold changes in expression and/or higher p-values than the tumour

grade/ER status comparisons.

Based on these conclusions, we focused our attention on the tumour grade and

ER status comparisons. A summary of the G3 vs. G1 and ER+ vs. ER- comparison
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G3 vs. G1 ER+ vs. ER-
Data set probe sets host genes pri-miRNAs probe sets host genes pri-miRNAs
Ivshina 146 108 110 127 109 111
Pawitan 69 53 63 NA NA NA
Sotiriou 101 78 84 42 42 37

TRANSBIG 39 33 38 52 43 47
Wang NA NA NA 162 125 145

Table 3.31: Summary of the number of significantly regulated probe sets, host genes,
and pri-miRNAs in each of the five data sets for the tumour grade and ER status
analyses.

for the five data sets is shown in Table 3.31. Overall we observed that a large

percentage (ranging from 29% to 55%) of the tested probe sets were significantly

regulated in the tumour grade and ER status comparisons.

To determine whether a similar percentage would have resulted if we had con-

sidered genes that do not contain miRNAs, we performed the following simulation

on each data set:

1. We removed all miRNA-associated probe sets from the data set.

2. We randomly selected n probe sets where n is the number of miRNA-associated

probe sets (465 in our case).

3. We filtered this data set with respect to probe set intensity (intensity > 150

in at least 10% of the samples.

4. We determined the number of probe sets that were significantly regulated

between G3 vs. G1 and ER+ vs. ER- tumours.

5. Repeated steps 2–4, 999 times

For each data set, and for each comparison, we thus had an empirical distribution

of the expected number of significantly regulated probe sets. Each distribution

contained 1000 values, 999 from the simulations and one deriving from our analysis.

From these distributions, we then determined the number of simulations that had

a regulated probe set list as large or larger than the original list. The empirical

p-value is given by the ratio of this number to the total number of simulations. For
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the G3 vs. G1 comparison, we observed that the lists identified through our analyses

were significantly larger than what we should expect according to the distribution

(Fig. 3.12). Thus the difference in expression of miRNA host genes between low

and high grade tumours is greater than for non-host genes. This results suggests

that intronic miRNAs might be involved in cancer progression and the switch to a

more aggressive phenotype (e.g. enhanced proliferation, invasion and resistance to

apoptosis)

For ER status comparison the the situation is less clear. For three of the data

sets, Ivshina, Sotiriou and Wang, the lists identified through our analyses were

significantly larger than the majority of simulated lists (Fig. 3.13) In contrast, for

the TRANSBIG data set, the empirical p-value was non-significant. On the basis of

this simulation, we considered as prime candidates for onco-miRNAs those associated

with the probe sets significantly regulated between G1 and G3 tumours.

3.4.4 Identification of candidate miRNAs involved in breast cancer

We observed that many probe sets were significantly regulated, with similar fold

changes in expression, in both the tumour grade and ER status comparison in all

data sets. These probe sets, therefore, represented a good starting point for the

identification of novel onco-miRNAs involved in breast cancer (see Tables A.17 and

A.18 of the Appendix for the complete list). From the list of commonly regulated

probe sets/miRNAs (Table A.17), we selected those that were regulated by at least

1.5 fold in either direction in all data sets. This resulted in a list of 11 probe sets

specific for 8 genes containing a total of 11 miRNAs, 6 of which were downregu-

lated and 5 up-regulated in G3 tumours (Table A.19). The up-regulated miRNAs

were already known to be involved in cancer (see Sec. 1.2), while few reports had

been published on the downregulated miRNAs. Thus we focused our search for

novel onco-miRNAs on these downregulated miRNAs. The up-regulated miRNAs

belong to the miR-25-93-106b, and miR-15b/16-2 clusters, contained in the MCM7

and SMC4 genes, respectively. The miR-25-93-106b cluster has been implicated in

hepatocellular carcinoma (Li et al., 2009), gastric cancer (Petrocca et al., 2008b)
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(d) TRANSBIG data set.

Figure 3.12: Results of the simulations for the G3 vs. G1 comparisons. Distribution
histograms for the indicated data sets. The dashed lines indicate the positions
within the distributions of the probe set lists determined through our analyses. The
p-values indicate the fraction of lists with an equal or larger number of significantly
regulated probe sets compared with the ones from our analyses.
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Figure 3.13: Results of the simulation for the ER status comparison on the indicated
data sets. Figure as described in Fig 3.12.
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and renal cell carcinoma (Slaby et al., 2010). This cluster also interferes with cell

cycle arrest and apoptosis when over-expressed in gastrointestinal and other cancer

cells, by modulating TGFβ signaling (Petrocca et al., 2008a). It has also recently

been demonstrated that the miR-25-93-106b cluster targets the tumour suppressor

PTEN and, simultaneously, cooperates with its host gene MCM7, to induce cel-

lular transformation both in vitro and in vivo. Indeed, concomitant expression of

the miR-25-93-106b cluster and MCM7 triggers prostatic intraepithelial neoplasia

in transgenic mice (Poliseno et al., 2010). The miR-15b/16-2 cluster has also been

implicated in cancer, in particular malignant melanoma (Satzger et al., 2010). In ad-

dition it induces cell cycle progression by targeting cyclins in glioma cells (Xia et al.,

2009), and apoptosis by targeting BCL2 in chronic lymphocytic leukemia (Cimmino

et al., 2005). In contrast with the up-regulated miRNAs, there are few reports in

the literature of an involvement of the down-regulated miRNAs (i.e., miR-218-1,

miR-342, miR-483, miR-548f-2, miR-1245, and miR-1266 ) in cancer. Mir-218-1

has been shown to be downregulated in metastatic cancer together with its host

gene, SLIT3 (Tie et al., 2010). MiR-342 has been associated with acute promyelo-

cytic leukemia (De Marchis et al., 2009; Garzon et al., 2007) and colorectal cancer

(Grady et al., 2008). Moreover, in breast cancer, the downregulation/expression of

this miRNA correlates with ER status (Lowery et al., 2009) and tamoxifen resistance

(Miller et al., 2008) but, to our knowledge, no direct correlation with tumor grade

has been reported. For miR-483 , 2 recent articles published after we performed

our analysis, have linked this miRNA to cancer. In particular, miR-483 has been

described as a potential prognostic predictor in adrenocortical cancer (Soon et al.,

2009) and the mature form of this miRNA has been shown to be over-expressed in

Wilm’s tumours and in a fraction of liver cancers (Veronese et al., 2010). Finally,

to date, there are no publications describing the role miR-548f-2, miR-1245 , and

miR-1266 either in cancer or in any other biological context.
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3.4.5 Validation of results

We first examined the expression of the downregulated miRNAs in normal and tu-

mour breast cell lines by RT-PCR. This screening allowed us to verify the expression

of these miRNAs in mammary cells, as well as to optimize the RT-PCR protocol, for

the subsequent analysis on tumour specimens. Two normal (HMEC and MCF10A),

and four tumour (MB-231, MB-361, MCF7, BT474) cell lines were screened. For

miR-218, miR-342 and miR-483 we examined the expression of both the 3p and

5p1 versions. MiRNAs with a CT values equal to 40 cycles were considered as “not

amplified” (i.e., undetectable). The results of the RT-PCR are shown in Fig. 3.14:

the top panel shows the raw CT values of the target miRNAs and of the correspond-

ing housekeeping RNA, while the bottom panel shows the absolute ∆CT s values

calculated with respect to the housekeeping RNA. In this latter plot, the higher the

∆CT value, the less expressed the miRNA. From these results we made the following

observations 1) miR-342-3p and miR-342-5p were both strongly expressed in all the

cell lines; 2) miR-483-3p and, in particular, miR-483-5p were expressed at low levels

in the majority of cell lines, the exceptions being MB-361 and MCF7; 3) miR-1266

is very weakly expressed; 4) miR-218 and miR-218* were very weakly expressed or

undetectable in all cell lines; 5) the results for miR-1245 were untrustworthy due

to technical problems (i.e., the amplification curves were not sigmoidal and some

technical replicates failed); 6) miR-548f-2 was never detected.

We next examined the expression of the miRNAs that were detected in the

cell line screening (i.e., miR-218/218*, miR-342-3p/5p, miR-483-3p/5p and miR-

1266 ) in a collection of thirty-six formalin-fixed paraffin-embedded (FFPE) tumour

samples provided by the European Institute of Oncology, Milan, Italy. The samples

consisted of sixteen G1 and twenty G3 tumours. To reduce the risk of stromal

contamination we used a needle to extract cylinders of tumour tissue instead of

slicing sections of the samples. Two cylinders were collected from each sample, and

RNA was extracted from these cylinders for the successive RT-PCR analysis using a

specific kit for total RNA extraction from paraffin embedded tissues (see Sec. 2.3.).

1An asterisk, as in the case of miR-218*, indicates the strand opposite to the predominant one.
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Figure 3.14: RT-PCR analysis of the expression of selected miRNAs in breast cell
lines. Top: raw CT values of the selected miRNAs (target miRNA) and of the
corresponding housekeeping RNA (U6 snRNA). A CT value = 40 indicates no am-
plification. Bottom: absolute value of the ∆CT of the selected miRNAs with respect
to the housekeeping RNA. The higher the ∆CT value, the lower the expression of
the miRNA. The multiple points on each column refer to the different experimental
replicates.
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miRNA ID p-value
miR-1266 0.0028
miR-218 0.058

miR-218* 0.1
miR-342-3p 9.1× 10−06

miR-342-5p 0.0019
miR-483-3p 0.0019
miR-483-5p 0.0022

Table 3.32: Results of the Mann-Whitney test on the ∆CT s with respect to the
tumour grade.

MiRNAs were then selectively retro-transcribed into cDNA. We obtained a good

yield from this procedure (∼ 2µg of RNA on average).

We observed that miR-342-3p and miR-342-5p were strongly expressed in breast

tumours, particularly in the G1 tumours (Fig. 3.15). In contrast miR-218, miR-218*

and miR-1266 were not expressed in any of the samples (Fig. 3.15). For miR-483-3p

we detected a moderate level of expression in a fraction of G1 tumours, while its

expression was lower in G3 tumours (Fig. 3.15). Finally, we discarded the results of

miR-1245 due to the unreliability of the assay, as evidenced in the cell line screening.

For miR-218 and miR-342-5p, influential values (outliers) can clearly be seen

from the boxplots (Fig. 3.15, top panel). Thus, we applied a non-parametric sta-

tistical tests, the Mann-Whitney test on each miRNA to compare the ∆CT values

of G3 vs. G1 tumours Table 3.32. We observed that the expression of the selected

miRNAs, excluding miR-218 and miR-218*, significantly separated G1 from G3

patients, confirming the results from the breast cancer data sets analysis. Down-

regulation of these miRNAs in high grade breast cancers indicates a possible role in

tumour progression, and suggests they might act as tumour suppressors, a possibility

that we are currently investigating.

We then performed a hierarchical clustering of the ∆CT values of the thirty-six

samples with respect to the seven selected miRNAs to assess their discriminating

power. As before, the higher the ∆CT value, the less expressed the miRNA. The

resulting dendrogram separated G1 and G3 tumours, although the separation did

not appear robust (Fig. 3.16). Next we considered only miR-342-3p/5p and miR-
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Figure 3.15: RT-PCR analysis of the expression of indicated miRNAs in breast
cancer specimens stratified by tumour grade. Top: Boxplots of the raw CT values
of the selected miRNAs in G1 and G3 tumours. Bottom: Boxplots of the ∆CT

values of the selected miRNAs with respect to the housekeeping RNA, U5A snRNA.
The RT-PCR of each tumour specimen was performed in duplicate.
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Figure 3.16: Hierarchical clustering of the ∆CT values of thirty-six tumour samples
(blue: G1, red: G3) with respect to all the seven selected miRNAs. The higher
the ∆CT value, the less expressed the miRNA. Expression values of each miRNA
have been standardized by subtracting the mean and dividing by the standard devi-
ation. The color key refers to the standardized ∆CT values. Dissimilarity measure:
euclidean distance. Linkage method: average linkage.

483-3p/5p and repeated the clustering procedure, and the resulting dendrogram

showed a more robust separation of the G1 and G3 tumours. (Fig. 3.17).

We then examined the regulation of the selected miRNAs with respect to ER

status (Fig. 3.18). We observed a marked downregulation miR-342-3p and miR-

342-5p in ER+ compared with ER-, while little of no difference in expression was

observed for the other miRNAs.

The downregulation of miR-342-3p/5p was statistically significant, as was the

small downregulation of miR-1266, although much less so (Table 3.33).

3.4.6 Reclassification of G2 tumours

Finally we investigated whether the probe sets mapping the miR-342 and miR-483

host genes, EVL and INS-IGF2 could divide G2 tumours,in the breast cancer data

sets, for prognosis. Classification of G2 tumours was achieved by hierarchical clus-

tering. We excluded the Sotiriou data set because of the relatively small number (26)
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Figure 3.17: Hierarchical clustering of the ∆CT values of the same samples, but
restricted to miR-342-3p/5p and miR-483-3p/5p. As in Fig. 3.16, The higher the
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been standardized by subtracting the mean and dividing by the standard deviation.
The color key refers to the standardized ∆CT values.
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Figure 3.18: Regulation of the selected miRNAs with respect to ER status.
Boxplots of the ∆CT values between ER+ and ER- in miR-342-3p/5p, miR-483-
3p/5p, miR-218/218* and miR-1266.
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miRNA ID p-value
miR-1266 0.0089
miR-218 0.21
miR-218* 0.32
miR-342-3p 6.63× 10−06

miR-342-5p 2.19× 10−05

miR-483-3p 0.14
miR-483-5p 0.64

Table 3.33: Results of the Mann-Whitney test on the ∆CT values with respect to
ER status.

of G2 patients. We also excluded the TRANSBIG data set because of an anomaly

in the relationship between tumour grade and recurrence-free survival. In fact, a

survival analysis on patients in the TRANSBIG data set after stratifying by tumour

grade, revealed that G3 patients had a longer survival compared with G2 patients

(Fig. 3.19). This result contrasts the literature (see for example Soerjomataram

et al. (2008)) and with our results from the other data sets.

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (years)

S
ur

vi
va

l

G1
G2
G3

Figure 3.19: Kaplan Meier curves for the G1 (in blue), G2 (in orange) and G3 (in
red) patients in TRANSBIG data set.

We, therefore considered only the Ivshina and the Pawitan data sets, which in-
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3.4 The breast cancer data sets

cluded, after the quality control procedure, 121 and 54 G2 samples respectively.

We performed a hierarchical clustering with respect to the expression levels of four

probe sets, three associated with INS-IGF2 and one with EVL (Fig. 3.20, top pan-

els). Patients were clearly separated into two groups in both data sets (Fig. 3.20,

top panels). We then plotted Kaplan-Meier survival curves for the two data sets

to compare recurrence-free survival in such groups, and performed a log-rank test

to assess whether the observed differences were statistically significant (Fig. 3.20,

lower panels). The p-values were significant for the Pawitan, but not for the Ivshina

data set. We then repeated the same steps after removing the single probe set that

mapped to the miR-342 host gene, EVL. Again G2 patients were separated into two

groups in both data sets, but this time we observed a statistically significant differ-

ence in survival in both the Pawitan and the Ivshina data sets. Thus the miR-483

host gene, INS-IGF2, appears to discriminate high risk from low risk G2 patients.

Since we observed a high correlation between the expression of INS-IGF2 and miR-

483, it is plausible that the latter might serve as a useful tool for the prognosis of

breast cancer.

3.4.7 Over-expression of miR-342-3p and miR-342-5p

While validating the expression of miR-342-3p and miR-342-5p in a panel of com-

mercial breast cancer cell lines, we observed that these mature miRNAs were ex-

pressed at low levels in the highly metastatic MDA-MB231 cell line (Fig. 3.14). We

thus decided to investigate the biological effects of miR-342-3p and miR-342-5p by

over-expressing them in MDA-MB231 cells. Over-expression was obtained by trans-

fecting MDA-MB231 cells with synthetic miRNAs (see Methods). As a control, we

transfected cells with a scrambled synthetic miRNA (CTR in Fig. 3.22). The con-

centration of miR-342-3p and miR-342-5p were increased by 860 and 12,000 fold

respectively upon transfection with the synthetic miRNAs. We compared the effects

on apoptosis of these transfections by means of fluorescence-activated cell sorting

(FACS). We observed a marked increase in apoptosis in the cells transfected with

miR-342-5p while we did not score any effect on the cells transfected with miR-
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(a) Hierarchical clustering on the Ivshina data.
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(b) Hierarchical clustering on the Pawitan data.
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(c) Kaplan Meier curves for the Ivshina data.
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(d) Kaplan Meier curves for the Pawitan data.

Figure 3.20: Hierarchical clustering and Kaplan-Meier curves for the
Ivshina and the Pawitan data after clustering with respect to miR-342
and miR-483. Top: G2 samples were clustered with respect to the expression lev-
els of the probe sets matching the miR-342-3p/5p and miR-483-3p/5p host genes,
EVL and INS-IGF2. The colour key refers to the standardized log expression levels
as measured by Affymetrix. Here, the higher the value, the higher the log expres-
sion level. Hierarchical clustering identified two groups, indicated in red and blue.
Bottom: survival curves of two groups identified by hierarchical clustering. The
plots report also the hazard ratio (HR) and the log-rank test p-value. Results were
significant for the Pawitan but not the Ivshina data set. The colour key refers to
the standardized log fold changes measured by Affymetrix.
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(b) Hierarchical clustering on the Pawitan data.
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(c) Kaplan Meier curves for the Ivshina data.
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(d) Kaplan Meier curves for the Pawitan data.

Figure 3.21: Hierarchical clustering and Kaplan-Meier curves for the
Ivshina and the Pawitan data after clustering with respect to miR-483
only. Same as Fig. 3.20, only restricted to the three probe sets mapping to the
miR-483 host gene, INS-IGF2. The coulour key refers to the standardized log ex-
pression values as measured by Affymetrix. The higher the value, the higher the log
expression value.
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Control miR-342-3p miR-342-5p
26.1 24.1 48.8

Table 3.34: Percentage of apoptotic cells in the control experiment and in the cells
transfected with miR-342-3p and miR-342-5p.

342-3p (Fig. 3.23 and Table 3.34). This result suggests a role for miR-342-5p in

cell viability. In line with these preliminary observations, Grady and co-workers

have reported that over-expression of miR-342 in the HT29 colon carcinoma cell

line induces apoptosis (Grady et al., 2008).
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(d) ∆CT values of miR-342-5p.

Figure 3.22: Overexpression of miR-342-3p and miR-342-5p. Raw CT values
and ∆CT values for miR-324-3p (top) and miR-342-5p (bottom) in cells where miR-
342-3p/5p were over-expressed, and in cells transfected with a scrambled miRNA
(CTR).
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a b

Figure 3.23: FACS analysis of MDA-MB231 cells transfected with miR-
342-3p/5p. a: TUNEL assay analysis. Y-axis, percentage of apoptotic cells rela-
tive to parental cells. X-axis, cells transfected with a negative control (CTR), cells
transfected with miR-342-3p and with miR-342-5p. b: propidium iodide (PI) analy-
sis of cell cycle distribution. Y-axis, percentage of cells in Sub-G1 phase (apoptotic)
relative to parental cells. X-axis, cells transfected with a negative control (CTR),
cells transfected with miR-342-3p and with miR-342-5p.
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4

Discussion

4.1 The E1A and the SV-40 experiments

Intronic miRNAs represent a large fraction of the total number of miRNAs in mam-

mals. As new miRNAs are discovered, the relevance of intragenic miRNAs is becom-

ing more apparent. In miRBase 13.0, for example, the fraction of human intronic

miRNAs was 58%; this proportion rose to 60% in release 14.0 and to 65% in release

15.0 (April 2010). MiRNA genes are frequently located in fragile regions of the

genome as illustrated in Fig. 4.1 (Calin et al., 2004; Croce, 2009), and some intra-

genic miRNAs have been found to be associated with cancer, such as the mir-17-92

and mir-15b/16-2 miRNA clusters, often through complex pathways and feedback

loops (see Sec. 1.2). However, despite the large number of publications describing

the involvement of intragenic miRNAs in tumorigenesis and cancer progression, it

is likely that as yet unidentified miRNAs exist that may play an influential role in

cancer. This project represents, to the best of our knowledge, the first attempt to

identify novel intronic onco-miRNAs implicated in breast cancer, by examining the

expression patterns of miRNA host genes in a large collection of publicly available

breast cancer microarray data sets.

We based our search for novel intragenic onco-miRNAs on the assumption that

the regulation of intronic miRNAs closely resembles that of their host genes. To

test whether this assumption was reasonable, we compared the expression of mature
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Figure 4.1: MiRNA genes are frequently located in chromosome regions that are
involved in rearrangements in human cancers. Here the 24 human chromosomes are
shown, with stars indicating the locations of miRNA genes found to be implicated
in cancer. Adapted from (Croce, 2009).
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4.1 The E1A and the SV-40 experiments

miRNAs and of their host genes in two model systems that have been extensively

studied in our group: i) the re-entry of terminally differentiated murine myotubes

into the cell cycle, upon infection with the adenoviral E1A protein (Sec. 3.2); ii)

the MCF10A breast cell line transformed with SV40 (Sec 3.3). For both models, we

performed a microarray screening to profile the expression of mRNA genes and a

high-throughput PCR screening to profile the expression of mature miRNAs.

We used two different statistical measures to quantify the agreement between the

two technologies: the Spearman correlation coefficient, and the fraction of agreeing

Affymetrix probe set/TaqMan probe pairs. We opted for the non-parametric ver-

sion of the correlation coefficient because of its greater robustness to the presence

of outliers (Sprent and Smeeton, 2007). In the E1A experiment, we found that the

Spearman correlation between the Affymetrix and the TaqMan probes was positive,

at both the early and late time points (rs = 0.70 and rs = 0.62 respectively) and

significantly different from zero (p = 6 × 10−9 and p = 2 × 10−6 respectively). We

observed a fraction of agreement equal to 0.74 at the early time point, and to 0.87

at the late time point. In the SV40 experiment the Spearman correlation coeffi-

cient was rs = 0.44, with p = 0.008, and the fraction of agreement was 0.72. The

mean correlation coefficient in our experiments was r̄ = 0.59. These results are in

good agreement with those obtained by Baskerville and co-workers (Baskerville and

Bartel, 2005). These authors used miRNA microarrays to measure the expression

levels of 175 human miRNAs across twenty-four different organs and compared the

profiles of the intronic miRNAs to the expression patterns of the respective host

genes, measured by an Affymetrix screening (Baskerville and Bartel, 2005). In most

cases they found that the correlation between the miRNA and the host gene expres-

sion was highly positive (mean correlation coefficient r̄ = 0.55), and concluded that

most intronic miRNAs are processed from the same primary transcripts as their host

genes. These authors also observed a negative correlation between miR-26-a and its

host gene, CTDSPL, and explained this anti-correlation by the fact that the mature

hsa-miR-26a miRNA is produced by two distinct precursors, hsa-mir-26a-1 and hsa-

mir-26a-2, the latter being located in the CTDSP2 gene. They noticed that the two
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Probe set miRNA ID Gene symbol Affy log FC PCR log FC Ct SV40 Ct control
201904 s at hsa-mir-26a-1 CTDSPL -0.47 0.21 21.84 21.64
201905 s at hsa-mir-26a-1 CTDSPL -0.66 0.21 21.84 21.64
201906 s at hsa-mir-26a-1 CTDSPL -0.52 0.21 21.84 21.64
208735 s at hsa-mir-26a-2 CTDSP2 0.46 0.21 21.84 21.64

Table 4.1: Probe set and miRNA IDs, miRNA host gene symbol, Affymetrix and
TaqMan logarithmic fold changes and CT values of the two precursors of the hsa-
miR-26a mature miRNA.

host genes are often anti-correlated, CTDSP2 being expressed at much higher levels

than CTDSPL. We compared the regulation of the two genes with the regulation of

the mature hsa-miR-26a miRNA in the SV40 experiment which, like Baskerville’s

experiment, was based on human cell lines. We observed that hsa-miR-26a had an

opposite direction of regulation compared with the expression of CTDSPL, while it

showed the same direction of regulation as CTDSP2, thus confirming Baskerville’s

findings (Table 4.1).

In contrast with our results, a recent study by Sikand et al. reported little cor-

relation between the expression of intronic miRNAs and their host genes (Sikand

et al., 2009). The authors compared the expression patterns of the members of the

miR-17-92, miR-106b-25 and miR-23b-24 miRNA clusters with the regulation of

their host genes, C13orf25, MCM7 and C9orf3, in androgen-sensitive and androgen-

refractory prostate cancer cell lines (Sikand et al., 2009). In the first two cases no

statistically significant correlation was found between the expression levels of the

mature miRNAs and the respective host genes. The expression of C9orf3, on the

other hand, was positively correlated with the expression of miR-23b and miR-27b,

but no correlation was observed with miR-24.

To compare our results with the observations reported by Sikand and co-workers,

we analyzed the expression of the members of the miR-25-93-106b and the miR-

23b-24-27b clusters, and of their host genes, MCM7 and C9orf3, respectively. We

could not examine the regulation of C13Orf25, the gene containing the miR-17-92

cluster, because no probe set mapped to it on the Affymetrix HG-U133A2 platform.

In contrast with Sikand et al., we observed a good agreement between the expression

of all the members of the clusters and their host gene (Table 4.2).
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Probe set miRNA ID Gene symbol Affy log FC PCR log FC Ct SV40 Ct control
208795 s at hsa-miR-106b MCM7 0.86 1.27 21.68 22.95
210983 s at hsa-miR-106b MCM7 0.69 1.27 21.68 22.95
208795 s at hsa-miR-25 MCM7 0.86 1.34 22.52 23.87
210983 s at hsa-miR-25 MCM7 0.69 1.34 22.52 23.87
208795 s at hsa-miR-93 MCM7 0.86 0.92 20.57 21.50
210983 s at hsa-miR-93 MCM7 0.69 0.92 20.57 21.50

212848 s at hsa-miR-23b C9orf3 -0.16 -0.48 27.43 26.95
212848 s at hsa-miR-24 C9orf3 -0.16 -0.82 19.84 19.02
212848 s at hsa-miR-27b C9orf3 -0.16 -0.48 24.59 24.06

Table 4.2: Probe set and miRNA IDs, miRNA host gene symbol, Affymetrix and
TaqMan logarithmic fold changes and CT values of the miRNAs analyzed by Sikand
et al.

One possible explanation for these contrasting findings, is that the three clus-

ters considered by Sikand have upstream motifs compatible with promoter function

(Monteys et al., 2010). It is therefore probable that the three clusters can be tran-

scribed independently of their host gene. thus making a positive correlation between

the expression of mature miRNAs and their host genes a possibility, but not a ne-

cessity.

4.2 The breast cancer microarray data set analysis

To the best of our knowledge, this analysis represents the first large scale screening

of intronic miRNAs in a collection of breast cancer data sets. Our analysis differs

from previous studies on the role of miRNAs in breast cancer (see Sec. 1.2.3) in

two main respects. First, almost all such studies compared normal with tumour

samples, while our research was restricted to tumour samples only. Second, we

focused specifically on the intronic miRNAs, and their association with their host

gene. The latter point meant that we could take advantage of thousands of breast

cancer microarray samples stored in publicly accessible databases, allowing us to

achieve a sample size that would have otherwise been impossible.

We analyzed five breast cancer microarray data sets, to identify miRNA host

genes that were differentially regulated with respect to the available clinical param-

eters. In all the data sets we analyzed, we found that the G3 vs. G1 and ER+
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vs. ER- comparisons were the most enriched in significantly regulated probe sets.

Moreover, the lists of significantly regulated probe sets in the tumour grade and

ER status analyses were largely overlapping. This finding reflects the strong as-

sociation between tumour grade and ER status in the three data sets where both

parameters were available, i.e., the Ivshina, Sotiriou and TRANSBIG data sets. We

performed a Fisher test to assess the significance of this association, and found that

it was highly significant in the Ivshina and TRANSBIG data set (p = 1.7 × 10−7

and p = 2.8 × 10−9) respectively. In contrast, in the Sotiriou data set the associa-

tion was less significant (p = 0.058) due to the very small number of ER- patients

(Table. 4.3).

Ivshina Sotiriou TRANSBIG
ER status G1 G2 G3 G1 G2 G3 G1 G2 G3
ER- 2 11 21 1 5 4 1 15 45
ER+ 61 109 34 34 21 16 26 65 35

Table 4.3: Distribution of tumour grade stratified by ER status in the Ivshina,
Sotiriou and the TRANSBIG data set.

The association between tumour grade and ER status was likely to introduce a

strong confounding effect. We, therefore, considered the ER+ and ER- data sets

separately, and observed that more than 90% (93% in the Ivshina and Sotiriou data

sets, and 92% in the TRANSBIG data set) of the significantly regulated probe sets in

the G3 vs. G1 comparison, restricted to the ER+ tumours subset, were also included

in the corresponding list in the whole data set. This suggested that tumour grade

was the dominant cause of regulation of the significantly modulated probe sets.

We then assessed whether the large number of significantly regulated probe sets

were specific for miRNA host genes or if it was a general effect due to the profound

genetic differences characterizing G1 vs. G3 and ER+ vs. ER- tumours. The sim-

ulation described in Section 3.4.3 showed that miRNA host genes were enriched in

the significantly regulated probe sets compared with non-host genes in the tumour

grade comparison. This observation suggests that the molecular differences between

high and low grade tumours (e.g., in terms of cell differentiation and proliferation)
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might affect miRNAs on a more global scale, than non-host genes,thus indicating a

possible role for intronic miRNAs in cancer progression.

4.3 Identification of candidate novel onco-miRNAs

Our microarray breast cancer screening led to the identification of 27 probe sets,

associated with 23 miRNAs (Table A.17). Each of these probe sets was regulated

between G3 and G1 tumours in a statistically significant manner, and with the same

direction of regulation, in all four data sets containing the tumour grade information.

From this list of probe sets, we selected those having an average regulation of at least

1.5 fold in either direction. This resulted in a list of 11 probe sets corresponding

to an equal number of intronic miRNAs (Tab. A.19). Of these 11 probe sets, five

were upregulated while six were downregulated in G3 tumours. The upregulated

probe sets mapped the MCM7 and SMC4 genes, which host the hsa-miR-25-93-

106b and hsa-miR-15b/16-2 miRNA clusters respectively. the MCM7 gene is a well

known marker of proliferation and, in agreement with our findings, has been found

upregulated in several types of cancer (Fujioka et al., 2009; Giaginis et al., 2010;

Li et al., 2005; Nishihara et al., 2008). The hsa-miR-25-9-106b miRNA cluster is

a paralog of the miR-17-92 cluster, which has also been found overexpressed in a

number of human malignancies, as described in Section 3.4.4.

The SMC4 gene is essential for chromosome assembly and segregation (Losada

and Hirano, 2005), but we are not aware of any study describing the role of SMC4 in

breast cancer or any other type of human malignancy. The mir-15b/16-2 cluster is

the paralog of the miR-15a/16-1 cluster, known to behave as a tumour suppressor

in a number of malignancies (see Sec. 3.4.4). However, the mir-15b/16-2 cluster

has been found to be upregulated in melanoma cell lines and in melanoma tissue

samples compared to melanocytes and melanocytic nevi respectively (Satzger et al.,

2010). In the WM1205 melanoma cell line, characterized by high miR-15b expres-

sion, downregulation of miR-15b resulted in decreased tumour cell proliferation and

increased apoptosis (Satzger et al., 2010). Therefore, despite the large homology of
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Gene symbol miRNA ID
SLIT2 miR-218-1
EVL miR-342

INS-IGF2 miR-483
ErbB4 miR-548f-2

COL3A1 miR-1245
MYO5C miR-1266

Table 4.4: Gene symbol and miRNA ID of the miRNAs selected for further validation

the two clusters, miR-15b exhibits oncogenic features that have not been reported

in miR-15a.

We focused our attention on the six miRNA host genes that were found consis-

tently downregulated in high grade tumours, since little was known about the hosted

miRNAs and their implication in breast cancer. Table 4.4 shows such genes and the

miRNAs they host. The SLIT2 gene, host to hsa-miR-218-1, is frequently inacti-

vated in breast and lung cancer (Dallol et al., 2002). Contrary to our findings, high

levels of the EVL gene, host to hsa-mir-342, have been observed in breast cancer

(Hu et al., 2008). However, epigenetic silencing of both EVL and miR-342 has been

observed in colorectal cancer (Grady et al., 2008). The mir-483 host gene, INS-

IGF2 1, belongs to the insulin-like growth factor (IGF) family of growth-regulating

hormones that are relevant not only in the growth of normal mammary glands, but

also in the development and progression of breast cancer (Espelund et al., 2008; Mu

et al., 2009; Yu and Rohan, 2000). The mir-548f-2 host gene, ErbB4, belongs to

the EGFR subfamily of receptor tyrosine kinases. ErbB receptors regulate multiple

cellular responses, including cell proliferation, survival, migration and differentiation

(Hynes and Lane, 2005). In breast cancer, increased expression of ErbB4 has been

associated with low tumour grade and reduced cancer cell proliferation indices, in

agreement with our findings (Bièche et al., 2003; Pawlowski et al., 2000). To our

knowledge, no studies concerning the miR-1245 host gene, COL3A1, and its con-

nection to breast or any other type of cancer have been published. Finally we could

1More precisely, miR-483 is located in a locus that includes two alternatively spliced read-
through transcript variants which align to the INS gene in the 5’ region and to the IGF2 gene in
the 3’ region.
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not find any publication describing either hsa-mir-1266, or its host gene, MYO5C.

4.4 The validation of our findings

We screened the expression of the selected miRNAs in a panel of commercial breast

cell lines and breast tumour samples. We found that:

1. Mir-342-3p and miR-342-5p were both strongly expressed in the breast cell

lines as well as in the tumour samples, and significantly downregulated in G3

compared to G1 tumours (p = 9.1 × 10−6 for miR-342-3p and p = 0.0019 for

miR-342-5p).

2. MiR-483-3p and miR-483-5p were expressed at low levels in the cell lines.

These miRNAs were detectable at moderate levels in G1 tumours, and at low

levels in G3 tumours, the difference being statistically significant (p = 0.0019

for miR-483-3p and p = 0.0022 for miR-483-5p).

3. Mir-218, miR-218* and miR-1266 were expressed at very low levels in either

the cell lines and the breast tumour samples.

4. Mir-1245 was discarded because of technical problems with the corresponding

PCR probe.

Interestingly, we could not detect miR-548f-2 in either the commercial breast

cell lines, or the tissue samples derived from breast cancer patients. This finding is

in striking contrast with the strong average signal of the hsa-mir-548f-2 host gene,

ErbB4, we measured in the microarray experiment. A possible explanation for this

discrepancy is the fact that miRNAs can be under the transcriptional control of a

promoter which is different from that of the host gene, as observed by Monteys et al.

(Monteys et al., 2010). In this study the authors examined the regions surrounding

253 intronic miRNAs, searching for DNA features commonly found in promoters as

CpG islands, transcription start sites (TSS), conserved transcription factor binding

sites (TFBS), poly(A) signals, and EST data (Fujita and Iba, 2008; Saini et al.,

2007). They observed that approximately 34% of intronic miRNAs have upstream
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regulatory regions consistent with promoter function. Moreover, for a number of

intronic miRNAs, including hsa-miR-548f-2, the authors cloned the regions encom-

passing the miRNAs and and their upstream Pol II or Pol III sequences into a

promoter-less plasmid, and confirmed that miRNA expression occurred indepen-

dently of host gene transcription. The authors also ranked these 253 miRNAs by

the number of DNA features compatible with the presence of host-gene independent

promoters. We noted that other miRNAs, among those we had chosen for validation,

were included in the list of miRNAs possessing promoter-compatible DNA features:

hsa-miR-483 and hsa-miR-218-1 possess a TSS as well as TFBS, but none of them

have been experimentally tested. On the contrary, no promoter-compatible DNA

feature was identified in the region surrounding hsa-miR-342. Finally, hsa-miR-1266

was not in Montey’s list.

4.5 Re-classification of G2 tumours

We found that miR-342-3p/5p and miR-483-3p/5p were significantly regulated be-

tween high and low grade tumours. This observation suggests a possible use of such

miRNAs for grade classification purposes. Tumour grade is a semi-quantitative mea-

sure that summarizes three distinct morphological features: percentage of tubule for-

mation, degree of nuclear pleomorphism, and mitotic count. Concordance between

institutions on tumour grade evaluation is less than 80% (Robbins et al., 1995).

Moreover, 30-60% of tumours are classifed as G2, which is uninformative for clinical

decision making because it is associated with an intermediate risk of recurrence.

Sotiriou and collaborators have performed a primary tumour gene expression

profiling on sixty-four breast cancers to investigate the molecular basis of histologic

grade (Sotiriou et al., 2006). All the tumours were ER+ and none was classified

as G2. The authors identified a set of 97 genes that were significantly regulated

between G1 and G3 tumours, and used this gene signature to develop a score called

the gene expression grade index (GGI). The GGI was then used to re-classify an

independent set of G2 tumours. They found that a high GGI value was more
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significantly associated with a higher risk of recurrence than a low gene expression

grade index.

We considered the four probe sets mapping to the miR-342-3p/5p and miR-483-

3p/5p host genes, EVL and INS-IGF2 and performed an unsupervised hierarchical

clustering to assess whether these miRNAs could divide G2 tumours into survival-

related subgroups. We applied this procedure to the Ivshina and Pawitan data

set, and we found that we could indeed identify two subgroups, and that these

were significantly associated with survival in the Pawitan data set, but that such

association was not significant in the Ivshina data set (Fig. 3.20). If, however,

we considered only the three probe sets mapping to INS-IGF2, the patients were

separated into two groups displaying a significant association with survival both

in the Ivshina and the Pawitan data set (Fig. 3.21). Therefore, the miR-342 and

miR-483 host genes appear to be associated to tumour grade in different ways.

The former is more significantly regulated between G3 and G1, but displays little

association with survival, whereas the latter discriminates a high-risk and a low-risk

groups within G2 patients. Our validation on G1 and G3 breast cancer samples

confirmed that INS-IGF2 and miR-483-3p/5p have highly correlated patterns of

regulation. We therefore expect to observe a similar separation of G2 tumours also

at a miRNA level.

4.6 Ongoing work and future plans

To determine the biological relevance of the identified intronic miRNAs in breast

cancer, we recently started a series of experiments based on the overexpression

of synthetic miRNAs. We thus overexpressed miR-342-3p and miR-342-5p in the

metastatic breast cancer cell line MDA-MB231, by transfecting it with the relative

synthetic miRNAs. We chose the MDA-MB231 cell line because we found miR-342-

3p/5p expressed at low levels in these cells compared to other commercial breast

cell lines (Fig. 3.14). We found that the overexpression of miR-342-5p, but not that

of miR-342-3p, induces apoptosis in MDA-MB231, therefore suggesting a role for
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miR-342 in regulating cell viability (Fig. 3.23). In line with this preliminary obser-

vation, Grady et al. (Grady et al., 2008) observed that overexpression of miR-342

in HT29 colon carcinoma cell line induces apoptosis. Further experiments will be

needed to characterize better the role of miR-342 and of miR-483 in breast cancer

progression. In addition, we are collecting G2 tumour samples provided by the Eu-

ropean Institute of Oncology, to investigate the capacity of miR-483-3p/5p and of

miR-342-3p/5p to discriminate patients with high and low risk of recurrence, thus

confirming what we observed in silico (Sec. 3.4.6).
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ID logFC adj.P.Val mirna id gene symbol
201664 at 0.95 1e-14 hsa-mir-16-2 SMC4
201664 at 0.95 1e-14 hsa-mir-15b SMC4
210365 at -0.81 1.5e-12 hsa-mir-802 RUNX1
214053 at -1.48 6.6e-12 hsa-mir-548f-2 ERBB4
200710 at -0.59 9.6e-12 hsa-mir-324 ACADVL
217838 s at -1.29 9.6e-12 hsa-mir-342 EVL
203130 s at -1.62 2.1e-11 hsa-mir-1978 KIF5C
202409 at -1.32 2.3e-11 hsa-mir-483 IGF2
219396 s at -0.48 2.3e-11 hsa-mir-631 NEIL1
208795 s at 0.58 5.4e-11 hsa-mir-93 MCM7
208795 s at 0.58 5.4e-11 hsa-mir-25 MCM7
208795 s at 0.58 5.4e-11 hsa-mir-106b MCM7
207783 x at -0.16 6.5e-11 hsa-let-7f-2 HUWE1
207783 x at -0.16 6.5e-11 hsa-mir-98 HUWE1
201839 s at 0.80 9e-11 hsa-mir-559 TACSTD1
200875 s at 0.53 1.1e-10 hsa-mir-1292 NOL5A
201663 s at 0.78 1.6e-10 hsa-mir-16-2 SMC4
201663 s at 0.78 1.6e-10 hsa-mir-15b SMC4
217844 at -0.29 2e-10 hsa-mir-26b CTDSP1
210983 s at 0.65 2.5e-10 hsa-mir-25 MCM7
210983 s at 0.65 2.5e-10 hsa-mir-93 MCM7
210983 s at 0.65 2.5e-10 hsa-mir-106b MCM7
217892 s at -0.55 2.4e-09 hsa-mir-1293 LIMA1
221580 s at 0.51 4.6e-09 hsa-mir-1304 TAF1D
218966 at -0.69 4.6e-09 hsa-mir-1266 MYO5C
209897 s at -0.57 4.8e-09 hsa-mir-218-1 SLIT2
218782 s at 0.88 4.8e-09 hsa-mir-548d-1 ATAD2
202754 at 0.34 4.9e-09 hsa-mir-128-1 R3HDM1
204134 at -0.47 2.2e-08 hsa-mir-139 PDE2A
202410 x at -0.65 5.5e-08 hsa-mir-483 IGF2
216515 x at 0.24 7.5e-08 hsa-mir-1244 PTMA
210881 s at -0.51 1e-07 hsa-mir-483 IGF2
209219 at 0.30 1.3e-07 hsa-mir-1236 RDBP
218131 s at 0.36 1.3e-07 hsa-mir-640 GATAD2A
217094 s at 0.27 2.1e-07 hsa-mir-644 ITCH
201904 s at -0.41 2.3e-07 hsa-mir-26a-1 CTDSPL
201906 s at -0.44 3.5e-07 hsa-mir-26a-1 CTDSPL
203594 at 0.50 4.1e-07 hsa-mir-553 RTCD1
212156 at -0.19 4.7e-07 hsa-mir-627 VPS39
209744 x at 0.25 4.7e-07 hsa-mir-644 ITCH
216384 x at 0.31 5.2e-07 hsa-mir-1244 PTMA
203812 at -0.30 5.5e-07 hsa-mir-585 SLIT3
203812 at -0.30 5.5e-07 hsa-mir-218-2 SLIT3
221221 s at -0.31 5.5e-07 hsa-mir-874 KLHL3
211921 x at 0.34 5.5e-07 hsa-mir-1244 PTMA
202561 at -0.51 6e-07 hsa-mir-597 TNKS
200772 x at 0.32 6.3e-07 hsa-mir-1244 PTMA
209360 s at -0.43 9.7e-07 hsa-mir-802 RUNX1
212770 at -0.33 1.3e-06 hsa-mir-629 TLE3
200785 s at -0.43 1.9e-06 hsa-mir-1228 LRP1

Table A.1: Affymetrix ID, log fold change, adjusted p-value, pre-miRNA ID, and
host gene symbol for the 50 most regulated probe sets in the G3 vs. G1 comparison
in the Ivshina data set.
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212209 at 0.55 1.7e-09 hsa-mir-620 MED13L
208795 s at -0.55 5.7e-09 hsa-mir-25 MCM7
208795 s at -0.55 5.7e-09 hsa-mir-93 MCM7
208795 s at -0.55 5.7e-09 hsa-mir-106b MCM7
218966 at 0.73 5.7e-09 hsa-mir-1266 MYO5C
217838 s at 1.17 5.7e-09 hsa-mir-342 EVL
218131 s at -0.40 1.1e-08 hsa-mir-640 GATAD2A
214053 at 1.30 1.1e-08 hsa-mir-548f-2 ERBB4
212770 at 0.40 1.7e-08 hsa-mir-629 TLE3
203988 s at 0.66 3.8e-08 hsa-mir-625 FUT8
202409 at 1.10 2.5e-07 hsa-mir-483 IGF2
217892 s at 0.50 3.7e-07 hsa-mir-1293 LIMA1
212256 at 0.67 1e-06 hsa-mir-1294 GALNT10
210983 s at -0.54 1.1e-06 hsa-mir-106b MCM7
210983 s at -0.54 1.1e-06 hsa-mir-25 MCM7
210983 s at -0.54 1.1e-06 hsa-mir-93 MCM7
221580 s at -0.45 1.3e-06 hsa-mir-1304 TAF1D
212208 at 0.47 3e-06 hsa-mir-620 MED13L
209360 s at 0.44 3.8e-06 hsa-mir-802 RUNX1
202756 s at 0.46 5.2e-06 hsa-mir-149 GPC1
202754 at -0.28 5.2e-06 hsa-mir-128-1 R3HDM1
35666 at 0.43 6.1e-06 hsa-mir-566 SEMA3F
221934 s at 0.36 1.3e-05 hsa-mir-425 DALRD3
221934 s at 0.36 1.3e-05 hsa-mir-191 DALRD3
204398 s at 0.39 1.8e-05 hsa-mir-330 EML2
212207 at 0.36 1.8e-05 hsa-mir-620 MED13L
217844 at 0.21 2.5e-05 hsa-mir-26b CTDSP1
212156 at 0.17 3.4e-05 hsa-mir-627 VPS39
203130 s at 1.07 4.3e-05 hsa-mir-1978 KIF5C
200875 s at -0.37 5.6e-05 hsa-mir-1292 NOL5A
216515 x at -0.19 6.2e-05 hsa-mir-1244 PTMA
209730 at 0.28 7.7e-05 hsa-mir-566 SEMA3F
200710 at 0.38 0.0001 hsa-mir-324 ACADVL
219155 at -0.32 0.00012 hsa-mir-548d-2 PITPNC1
221958 s at 0.58 0.00014 hsa-mir-1262 GPR177
201839 s at -0.52 0.00014 hsa-mir-559 TACSTD1
200773 x at -0.17 0.00014 hsa-mir-1244 PTMA
210365 at 0.47 0.00015 hsa-mir-802 RUNX1
201664 at -0.51 0.00022 hsa-mir-15b SMC4
201664 at -0.51 0.00022 hsa-mir-16-2 SMC4
210881 s at 0.38 0.00028 hsa-mir-483 IGF2
201663 s at -0.49 0.00032 hsa-mir-16-2 SMC4
201663 s at -0.49 0.00032 hsa-mir-15b SMC4
218457 s at -0.26 0.00033 hsa-mir-1301 DNMT3A
203266 s at 0.44 0.0004 hsa-mir-744 MAP2K4
217988 at -0.31 0.0004 hsa-mir-1201 CCNB1IP1
202308 at 0.52 0.00043 hsa-mir-33b SREBF1
217726 at 0.24 0.00043 hsa-mir-148b COPZ1
202410 x at 0.46 0.00043 hsa-mir-483 IGF2
208963 x at -0.38 0.00043 hsa-mir-1908 FADS1

Table A.2: Affymetrix ID, log fold change, adjusted p-value, pre-miRNA ID, and
host gene symbol for the 50 most regulated probe sets in the ER positive vs. ER
negative comparison in the Ivshina data set.
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ID logFC adj.P.Val mirna id gene symbol
202754 at 0.31 6.2e-11 hsa-mir-128-1 R3HDM1
218966 at -0.65 6.2e-11 hsa-mir-1266 MYO5C
202409 at -1.05 3.8e-10 hsa-mir-483 IGF2
214053 at -1.14 4.8e-10 hsa-mir-548f-2 ERBB4
216515 x at 0.22 1.6e-09 hsa-mir-1244 PTMA
203130 s at -1.23 1.6e-09 hsa-mir-1978 KIF5C
201664 at 0.63 1.6e-09 hsa-mir-16-2 SMC4
201664 at 0.63 1.6e-09 hsa-mir-15b SMC4
200710 at -0.44 2.1e-09 hsa-mir-324 ACADVL
201663 s at 0.61 2.6e-09 hsa-mir-16-2 SMC4
201663 s at 0.61 2.6e-09 hsa-mir-15b SMC4
218131 s at 0.33 6.2e-09 hsa-mir-640 GATAD2A
217838 s at -0.92 9.2e-09 hsa-mir-342 EVL
217844 at -0.22 1.4e-08 hsa-mir-26b CTDSP1
208795 s at 0.43 1.4e-08 hsa-mir-93 MCM7
208795 s at 0.43 1.4e-08 hsa-mir-106b MCM7
208795 s at 0.43 1.4e-08 hsa-mir-25 MCM7
207783 x at -0.12 1.5e-08 hsa-let-7f-2 HUWE1
207783 x at -0.12 1.5e-08 hsa-mir-98 HUWE1
203594 at 0.45 6.1e-08 hsa-mir-553 RTCD1
210983 s at 0.47 6.1e-08 hsa-mir-106b MCM7
210983 s at 0.47 6.1e-08 hsa-mir-93 MCM7
210983 s at 0.47 6.1e-08 hsa-mir-25 MCM7
219396 s at -0.32 1.2e-07 hsa-mir-631 NEIL1
221580 s at 0.39 1.3e-07 hsa-mir-1304 TAF1D
217892 s at -0.40 3.1e-07 hsa-mir-1293 LIMA1
209360 s at -0.37 6.1e-07 hsa-mir-802 RUNX1
209897 s at -0.42 6.2e-07 hsa-mir-218-1 SLIT2
218213 s at 0.28 8.8e-07 hsa-mir-611 C11orf10
209744 x at 0.20 1.1e-06 hsa-mir-644 ITCH
212209 at -0.35 1.2e-06 hsa-mir-620 MED13L
200773 x at 0.17 1.4e-06 hsa-mir-1244 PTMA
210881 s at -0.39 1.9e-06 hsa-mir-483 IGF2
221221 s at -0.25 2.2e-06 hsa-mir-874 KLHL3
202410 x at -0.48 2.4e-06 hsa-mir-483 IGF2
218782 s at 0.60 2.6e-06 hsa-mir-548d-1 ATAD2
201881 s at 0.21 3.1e-06 hsa-mir-630 ARIH1
203265 s at -0.38 3.1e-06 hsa-mir-744 MAP2K4
200772 x at 0.25 3.2e-06 hsa-mir-1244 PTMA
210365 at -0.45 3.6e-06 hsa-mir-802 RUNX1
200045 at 0.19 4.1e-06 hsa-mir-877 ABCF1
203266 s at -0.44 4.5e-06 hsa-mir-744 MAP2K4
211921 x at 0.26 6.1e-06 hsa-mir-1244 PTMA
212256 at -0.48 1e-05 hsa-mir-1294 GALNT10
216384 x at 0.23 1.1e-05 hsa-mir-1244 PTMA
220296 at -0.35 1.3e-05 hsa-mir-1294 GALNT10
204398 s at -0.31 1.3e-05 hsa-mir-330 EML2
221511 x at -0.29 1.3e-05 hsa-mir-628 CCPG1
214151 s at -0.22 1.7e-05 hsa-mir-628 CCPG1
201116 s at -0.50 1.7e-05 hsa-mir-1979 CPE

Table A.3: Affymetrix ID, log fold change, adjusted p-value, pre-miRNA ID, and
host gene symbol for the 50 most regulated probe sets in the mutated vs. wild type
p53 comparison in the Ivshina data set.
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208795 s at 0.71 1.5e-06 hsa-mir-93 MCM7
208795 s at 0.71 1.5e-06 hsa-mir-106b MCM7
208795 s at 0.71 1.5e-06 hsa-mir-25 MCM7
210983 s at 0.75 2.4e-05 hsa-mir-106b MCM7
210983 s at 0.75 2.4e-05 hsa-mir-25 MCM7
210983 s at 0.75 2.4e-05 hsa-mir-93 MCM7
214053 at -1.28 6.5e-05 hsa-mir-548f-2 ERBB4
221511 x at -0.41 6.5e-05 hsa-mir-628 CCPG1
201663 s at 0.68 6.5e-05 hsa-mir-16-2 SMC4
201663 s at 0.68 6.5e-05 hsa-mir-15b SMC4
212770 at -0.42 8.4e-05 hsa-mir-629 TLE3
209360 s at -0.55 0.00021 hsa-mir-802 RUNX1
217838 s at -0.91 0.00025 hsa-mir-342 EVL
217844 at -0.26 0.00027 hsa-mir-26b CTDSP1
203130 s at -1.18 0.00027 hsa-mir-1978 KIF5C
201664 at 0.65 0.00053 hsa-mir-15b SMC4
201664 at 0.65 0.00053 hsa-mir-16-2 SMC4
217892 s at -0.44 0.00056 hsa-mir-1293 LIMA1
203594 at 0.54 0.00065 hsa-mir-553 RTCD1
212256 at -0.68 0.0007 hsa-mir-1294 GALNT10
209485 s at -0.81 0.00075 hsa-mir-320c-2 OSBPL1A
201935 s at -0.48 0.00086 hsa-mir-1256 EIF4G3
218213 s at 0.31 0.0012 hsa-mir-611 C11orf10
208158 s at -0.46 0.0013 hsa-mir-320c-2 OSBPL1A
207357 s at -0.46 0.0013 hsa-mir-1294 GALNT10
209897 s at -0.59 0.0013 hsa-mir-218-1 SLIT2
201906 s at -0.42 0.0019 hsa-mir-26a-1 CTDSPL
204906 at -0.26 0.0019 hsa-mir-1913 RPS6KA2
201622 at 0.22 0.0024 hsa-mir-593 SND1
214151 s at -0.30 0.0033 hsa-mir-628 CCPG1
209219 at 0.28 0.0037 hsa-mir-1236 RDBP
202754 at 0.27 0.0041 hsa-mir-128-1 R3HDM1
212912 at -0.46 0.0065 hsa-mir-1913 RPS6KA2
202561 at -0.45 0.0065 hsa-mir-597 TNKS
212556 at 0.41 0.0071 hsa-mir-937 SCRIB
212785 s at -0.24 0.0071 hsa-mir-302c LARP7
212785 s at -0.24 0.0071 hsa-mir-367 LARP7
212785 s at -0.24 0.0071 hsa-mir-302d LARP7
212785 s at -0.24 0.0071 hsa-mir-302b LARP7
212785 s at -0.24 0.0071 hsa-mir-302a LARP7
200785 s at -0.29 0.0071 hsa-mir-1228 LRP1
218966 at -0.45 0.0071 hsa-mir-1266 MYO5C
215076 s at -0.52 0.0079 hsa-mir-1245 COL3A1
221958 s at -0.64 0.0081 hsa-mir-1262 GPR177
211161 s at -0.55 0.0083 hsa-mir-1245 COL3A1
200875 s at 0.35 0.011 hsa-mir-1292 NOL5A
201852 x at -0.61 0.013 hsa-mir-1245 COL3A1
202777 at -0.30 0.013 hsa-mir-548e SHOC2
200045 at 0.18 0.013 hsa-mir-877 ABCF1
33132 at 0.32 0.013 hsa-mir-939 CPSF1

Table A.4: Affymetrix ID, log fold change, adjusted p-value, pre-miRNA ID, and
host gene symbol for the 50 most regulated probe sets in the G3 vs. G1 comparison
in the Pawitan data set.

109



A. APPENDIX

ID logFC adj.P.Val mirna id gene symbol
201906 s at -0.36 0.0054 hsa-mir-26a-1 CTDSPL
218290 at 0.19 0.0054 hsa-mir-1227 PLEKHJ1
212674 s at 0.21 0.0054 hsa-mir-1226 DHX30
210235 s at 0.42 0.0054 hsa-mir-548k PPFIA1
209485 s at -0.61 0.0054 hsa-mir-320c-2 OSBPL1A
208310 s at 0.35 0.0054 hsa-mir-198 FSTL1
221763 at -0.40 0.0054 hsa-mir-1296 JMJD1C
221763 at -0.40 0.0054 hsa-mir-1296 RP11-10C13.2
212912 at -0.44 0.0054 hsa-mir-1913 RPS6KA2
202409 at -0.79 0.0073 hsa-mir-483 IGF2
204235 s at -0.53 0.008 hsa-mir-561 GULP1
208158 s at -0.34 0.0081 hsa-mir-320c-2 OSBPL1A
202561 at -0.37 0.0099 hsa-mir-597 TNKS
203812 at -0.21 0.0099 hsa-mir-585 SLIT3
203812 at -0.21 0.0099 hsa-mir-218-2 SLIT3
214053 at -0.74 0.0099 hsa-mir-548f-2 ERBB4
201879 at -0.31 0.0099 hsa-mir-630 ARIH1
217844 at -0.17 0.011 hsa-mir-26b CTDSP1
221958 s at -0.54 0.011 hsa-mir-1262 GPR177
201935 s at -0.32 0.012 hsa-mir-1256 EIF4G3
204355 at 0.21 0.012 hsa-mir-1226 DHX30
202374 s at 0.22 0.012 hsa-mir-664 RAB3GAP2
209897 s at -0.43 0.012 hsa-mir-218-1 SLIT2
202410 x at -0.48 0.012 hsa-mir-483 IGF2
209863 s at -0.50 0.012 hsa-mir-944 TP63
206621 s at 0.14 0.013 hsa-mir-590 WBSCR1
201663 s at 0.38 0.013 hsa-mir-16-2 SMC4
201663 s at 0.38 0.013 hsa-mir-15b SMC4
202565 s at -0.35 0.013 hsa-mir-604 SVIL
202565 s at -0.35 0.013 hsa-mir-938 SVIL
210983 s at 0.40 0.013 hsa-mir-106b MCM7
210983 s at 0.40 0.013 hsa-mir-93 MCM7
210983 s at 0.40 0.013 hsa-mir-25 MCM7
212208 at -0.33 0.013 hsa-mir-620 MED13L
209177 at 0.25 0.013 hsa-mir-191 C3orf60
200753 x at 0.25 0.013 hsa-mir-636 SFRS2
215116 s at -0.34 0.013 hsa-mir-199b DNM1
221221 s at -0.15 0.014 hsa-mir-874 KLHL3
202328 s at -0.17 0.015 hsa-mir-1225 PKD1
203594 at 0.33 0.016 hsa-mir-553 RTCD1
209744 x at 0.17 0.017 hsa-mir-644 ITCH
220189 s at 0.21 0.018 hsa-mir-1229 MGAT4B
203130 s at -0.65 0.018 hsa-mir-1978 KIF5C
201117 s at -0.54 0.018 hsa-mir-1979 CPE
201117 s at -0.54 0.018 hsa-mir-578 CPE
203445 s at -0.17 0.02 hsa-mir-26a-2 CTDSP2
200912 s at -0.20 0.021 hsa-mir-1248 EIF4A2
212701 at -0.12 0.023 hsa-mir-190 TLN2
219411 at 0.32 0.023 hsa-mir-328 ELMO3
212414 s at -0.35 0.023 hsa-mir-766 SEPT6

Table A.5: Affymetrix ID, log fold change, adjusted p-value, pre-miRNA ID, and
host gene symbol for the 50 most regulated probe sets in the relapse vs. no relapse
comparison in the Pawitan data set.

ID logFC adj.P.Val mirna id gene symbol
210235 s at 0.44 0.016 hsa-mir-548k PPFIA1
209897 s at -0.50 0.016 hsa-mir-218-1 SLIT2
214053 at -0.80 0.016 hsa-mir-548f-2 ERBB4
218290 at 0.18 0.016 hsa-mir-1227 PLEKHJ1
219411 at 0.40 0.016 hsa-mir-328 ELMO3
217838 s at -0.61 0.023 hsa-mir-342 EVL
217844 at -0.17 0.023 hsa-mir-26b CTDSP1
204235 s at -0.50 0.027 hsa-mir-561 GULP1
209485 s at -0.54 0.027 hsa-mir-320c-2 OSBPL1A
212701 at -0.13 0.031 hsa-mir-190 TLN2
212414 s at -0.39 0.034 hsa-mir-766 SEPT6
202066 at 0.38 0.034 hsa-mir-548k PPFIA1
201663 s at 0.38 0.034 hsa-mir-15b SMC4
201663 s at 0.38 0.034 hsa-mir-16-2 SMC4
221221 s at -0.15 0.036 hsa-mir-874 KLHL3
209863 s at -0.48 0.036 hsa-mir-944 TP63
212912 at -0.37 0.036 hsa-mir-1913 RPS6KA2
212703 at -0.15 0.037 hsa-mir-190 TLN2
201664 at 0.38 0.047 hsa-mir-16-2 SMC4
201664 at 0.38 0.047 hsa-mir-15b SMC4
220189 s at 0.20 0.049 hsa-mir-1229 MGAT4B
203594 at 0.32 0.049 hsa-mir-553 RTCD1

Table A.6: Affymetrix ID, log fold change, adjusted p-value, pre-miRNA ID, and
host gene symbol for all the 20 regulated probe sets in the comparison between
patients who died from any cause and those who did not in the Pawitan data set.
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ID logFC adj.P.Val mirna id gene symbol
210235 s at 0.53 0.0035 hsa-mir-548k PPFIA1
201906 s at -0.41 0.0046 hsa-mir-26a-1 CTDSPL
202561 at -0.48 0.0058 hsa-mir-597 TNKS
209485 s at -0.70 0.0058 hsa-mir-320c-2 OSBPL1A
218290 at 0.21 0.0058 hsa-mir-1227 PLEKHJ1
214053 at -0.89 0.0086 hsa-mir-548f-2 ERBB4
203594 at 0.45 0.0086 hsa-mir-553 RTCD1
202409 at -0.89 0.0086 hsa-mir-483 IGF2
212701 at -0.16 0.0086 hsa-mir-190 TLN2
219411 at 0.44 0.0086 hsa-mir-328 ELMO3
202410 x at -0.58 0.0086 hsa-mir-483 IGF2
221221 s at -0.19 0.0086 hsa-mir-874 KLHL3
209897 s at -0.52 0.0086 hsa-mir-218-1 SLIT2
217756 x at 0.22 0.0086 hsa-mir-1282 SERF2
208158 s at -0.37 0.0094 hsa-mir-320c-2 OSBPL1A
221763 at -0.42 0.01 hsa-mir-1296 RP11-10C13.2
221763 at -0.42 0.01 hsa-mir-1296 JMJD1C
210881 s at -0.49 0.011 hsa-mir-483 IGF2
202066 at 0.44 0.012 hsa-mir-548k PPFIA1
209744 x at 0.21 0.016 hsa-mir-644 ITCH
217844 at -0.18 0.016 hsa-mir-26b CTDSP1
208310 s at 0.33 0.016 hsa-mir-198 FSTL1
220189 s at 0.25 0.016 hsa-mir-1229 MGAT4B
203812 at -0.22 0.016 hsa-mir-218-2 SLIT3
203812 at -0.22 0.016 hsa-mir-585 SLIT3
201663 s at 0.42 0.016 hsa-mir-16-2 SMC4
201663 s at 0.42 0.016 hsa-mir-15b SMC4
202374 s at 0.23 0.018 hsa-mir-664 RAB3GAP2
212208 at -0.36 0.02 hsa-mir-620 MED13L
204513 s at -0.27 0.025 hsa-mir-1200 ELMO1
215116 s at -0.37 0.027 hsa-mir-199b DNM1
212912 at -0.39 0.032 hsa-mir-1913 RPS6KA2
202328 s at -0.18 0.032 hsa-mir-1225 PKD1
212414 s at -0.39 0.034 hsa-mir-766 SEPT6
206621 s at 0.14 0.035 hsa-mir-590 WBSCR1
217908 s at 0.31 0.036 hsa-mir-1255b-2 IQWD1
209863 s at -0.48 0.04 hsa-mir-944 TP63
202065 s at 0.22 0.04 hsa-mir-548k PPFIA1
203130 s at -0.68 0.041 hsa-mir-1978 KIF5C
209219 at 0.20 0.041 hsa-mir-1236 RDBP
209177 at 0.25 0.043 hsa-mir-191 C3orf60
210983 s at 0.39 0.043 hsa-mir-25 MCM7
210983 s at 0.39 0.043 hsa-mir-106b MCM7
210983 s at 0.39 0.043 hsa-mir-93 MCM7
217838 s at -0.53 0.043 hsa-mir-342 EVL
201664 at 0.39 0.044 hsa-mir-15b SMC4
201664 at 0.39 0.044 hsa-mir-16-2 SMC4
205756 s at -0.26 0.048 hsa-mir-1184 F8
200753 x at 0.24 0.048 hsa-mir-636 SFRS2

Table A.7: Affymetrix ID, log fold change, adjusted p-value, pre-miRNA ID, and
host gene symbol for all the 43 regulated probe sets in the comparison between
patients who died from breast cancer and those who did not in the Pawitan data
set.

111



A. APPENDIX

ID logFC adj.P.Val mirna id gene symbol
203130 s at -1.82 1.5e-06 hsa-mir-1978 KIF5C
201664 at 0.93 1.5e-06 hsa-mir-15b SMC4
201664 at 0.93 1.5e-06 hsa-mir-16-2 SMC4
202409 at -1.41 4.7e-06 hsa-mir-483 IGF2
214053 at -1.41 6.2e-06 hsa-mir-548f-2 ERBB4
202754 at 0.44 7.3e-06 hsa-mir-128-1 R3HDM1
210365 at -0.92 9.8e-06 hsa-mir-802 RUNX1
201839 s at 0.86 1.5e-05 hsa-mir-559 TACSTD1
209897 s at -0.65 1.7e-05 hsa-mir-218-1 SLIT2
200785 s at -0.63 2.4e-05 hsa-mir-1228 LRP1
217844 at -0.31 6.7e-05 hsa-mir-26b CTDSP1
209360 s at -0.60 7.3e-05 hsa-mir-802 RUNX1
201116 s at -0.75 0.00012 hsa-mir-1979 CPE
201116 s at -0.75 0.00012 hsa-mir-578 CPE
200875 s at 0.59 0.00017 hsa-mir-1292 NOL5A
217838 s at -1.17 0.00017 hsa-mir-342 EVL
202410 x at -0.73 0.00017 hsa-mir-483 IGF2
218966 at -0.70 0.00017 hsa-mir-1266 MYO5C
219396 s at -0.48 0.00017 hsa-mir-631 NEIL1
210881 s at -0.58 0.00032 hsa-mir-483 IGF2
209219 at 0.34 0.00032 hsa-mir-1236 RDBP
217094 s at 0.32 0.00032 hsa-mir-644 ITCH
221580 s at 0.56 0.00041 hsa-mir-1304 TAF1D
201906 s at -0.50 0.00047 hsa-mir-26a-1 CTDSPL
200784 s at -0.35 0.00052 hsa-mir-1228 LRP1
208795 s at 0.59 0.00052 hsa-mir-93 MCM7
208795 s at 0.59 0.00052 hsa-mir-106b MCM7
208795 s at 0.59 0.00052 hsa-mir-25 MCM7
212733 at 0.34 0.00054 hsa-mir-922 KIAA0226
221511 x at -0.43 0.00056 hsa-mir-628 CCPG1
218782 s at 0.84 0.00063 hsa-mir-548d-1 ATAD2
201852 x at -0.77 0.00063 hsa-mir-1245 COL3A1
208782 at -0.63 0.00078 hsa-mir-198 FSTL1
203812 at -0.30 0.00088 hsa-mir-218-2 SLIT3
203812 at -0.30 0.00088 hsa-mir-585 SLIT3
210983 s at 0.61 0.00088 hsa-mir-106b MCM7
210983 s at 0.61 0.00088 hsa-mir-93 MCM7
210983 s at 0.61 0.00088 hsa-mir-25 MCM7
217892 s at -0.54 0.0009 hsa-mir-1293 LIMA1
218825 at -0.31 0.00097 hsa-mir-126 EGFL7
207783 x at -0.15 0.00097 hsa-let-7f-2 HUWE1
207783 x at -0.15 0.00097 hsa-mir-98 HUWE1
202561 at -0.50 0.0011 hsa-mir-597 TNKS
213090 s at 0.45 0.0011 hsa-mir-1257 TAF4
221221 s at -0.29 0.0012 hsa-mir-874 KLHL3
200772 x at 0.38 0.0015 hsa-mir-1244 PTMA
212701 at -0.24 0.0015 hsa-mir-190 TLN2
201663 s at 0.64 0.0015 hsa-mir-16-2 SMC4
201663 s at 0.64 0.0015 hsa-mir-15b SMC4
210794 s at -0.42 0.0016 hsa-mir-770 MEG3

Table A.8: Affymetrix ID, log fold change, adjusted p-value, pre-miRNA ID, and
host gene symbol for the 50 most regulated probe sets in the G3 vs. G1 comparison
in the Sotiriou data set.
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ID logFC adj.P.Val mirna id gene symbol
208795 s at -0.99 6.7e-06 hsa-mir-93 MCM7
208795 s at -0.99 6.7e-06 hsa-mir-25 MCM7
208795 s at -0.99 6.7e-06 hsa-mir-106b MCM7
218131 s at -0.67 4.7e-05 hsa-mir-640 GATAD2A
210983 s at -0.91 0.00036 hsa-mir-93 MCM7
210983 s at -0.91 0.00036 hsa-mir-25 MCM7
210983 s at -0.91 0.00036 hsa-mir-106b MCM7
203988 s at 0.81 0.00092 hsa-mir-625 FUT8
218966 at 0.84 0.001 hsa-mir-1266 MYO5C
200875 s at -0.70 0.0016 hsa-mir-1292 NOL5A
214053 at 1.32 0.0016 hsa-mir-548f-2 ERBB4
221580 s at -0.65 0.0059 hsa-mir-1304 TAF1D
202754 at -0.39 0.006 hsa-mir-128-1 R3HDM1
217844 at 0.29 0.008 hsa-mir-26b CTDSP1
214151 s at 0.41 0.0083 hsa-mir-628 CCPG1
217988 at -0.45 0.0097 hsa-mir-1201 CCNB1IP1
217726 at 0.40 0.012 hsa-mir-148b COPZ1
217892 s at 0.62 0.012 hsa-mir-1293 LIMA1
221511 x at 0.47 0.012 hsa-mir-628 CCPG1
52005 at -0.39 0.012 hsa-mir-1470 WIZ
201117 s at 0.79 0.015 hsa-mir-1979 CPE
201117 s at 0.79 0.015 hsa-mir-578 CPE
203827 at 0.64 0.016 hsa-mir-635 WIPI1
201856 s at -0.44 0.016 hsa-mir-579 ZFR
221934 s at 0.41 0.016 hsa-mir-425 DALRD3
221934 s at 0.41 0.016 hsa-mir-191 DALRD3
35666 at 0.45 0.016 hsa-mir-566 SEMA3F
214152 at 0.35 0.017 hsa-mir-628 CCPG1
202409 at 1.12 0.017 hsa-mir-483 IGF2
212256 at 0.77 0.017 hsa-mir-1294 GALNT10
201622 at -0.26 0.017 hsa-mir-593 SND1
211921 x at -0.44 0.017 hsa-mir-1244 PTMA
208003 s at -0.65 0.02 hsa-mir-1538 NFAT5
217838 s at 0.98 0.02 hsa-mir-342 EVL
200785 s at 0.51 0.02 hsa-mir-1228 LRP1
200773 x at -0.25 0.022 hsa-mir-1244 PTMA
200772 x at -0.38 0.023 hsa-mir-1244 PTMA
202756 s at 0.50 0.027 hsa-mir-149 GPC1
201852 x at 0.74 0.029 hsa-mir-1245 COL3A1
201116 s at 0.64 0.029 hsa-mir-1979 CPE
201116 s at 0.64 0.029 hsa-mir-578 CPE
221783 at -0.28 0.03 hsa-mir-1470 WIZ
218457 s at -0.40 0.034 hsa-mir-1301 DNMT3A
219396 s at 0.37 0.035 hsa-mir-631 NEIL1
218750 at -0.45 0.04 hsa-mir-1304 TAF1D
203130 s at 1.16 0.047 hsa-mir-1978 KIF5C
213249 at 0.41 0.047 hsa-mir-887 FBXL7
209744 x at -0.25 0.049 hsa-mir-644 ITCH
216384 x at -0.33 0.049 hsa-mir-1244 PTMA

Table A.9: Affymetrix ID, log fold change, adjusted p-value, pre-miRNA ID, and
host gene symbol for the 50 most regulated probe sets in the ER positive vs. ER
negative comparison in the Sotiriou data set.
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ID logFC adj.P.Val mirna id gene symbol
203130 s at -1.52 5e-05 hsa-mir-1978 KIF5C
217844 at -0.34 8.2e-05 hsa-mir-26b CTDSP1
201906 s at -0.58 8.2e-05 hsa-mir-26a-1 CTDSPL
202409 at -1.21 8.2e-05 hsa-mir-483 IGF2
200045 at 0.37 8.2e-05 hsa-mir-877 ABCF1
208795 s at 0.54 8.2e-05 hsa-mir-93 MCM7
208795 s at 0.54 8.2e-05 hsa-mir-106b MCM7
208795 s at 0.54 8.2e-05 hsa-mir-25 MCM7
217838 s at -0.96 8.2e-05 hsa-mir-342 EVL
221934 s at -0.65 0.00012 hsa-mir-425 DALRD3
221934 s at -0.65 0.00012 hsa-mir-191 DALRD3
201663 s at 0.91 0.00018 hsa-mir-15b SMC4
201663 s at 0.91 0.00018 hsa-mir-16-2 SMC4
210983 s at 0.65 0.00023 hsa-mir-25 MCM7
210983 s at 0.65 0.00023 hsa-mir-93 MCM7
210983 s at 0.65 0.00023 hsa-mir-106b MCM7
217726 at -0.41 0.00031 hsa-mir-148b COPZ1
214053 at -1.25 0.00036 hsa-mir-548f-2 ERBB4
219561 at -0.55 0.00036 hsa-mir-152 COPZ2
201116 s at -0.95 0.00044 hsa-mir-1979 CPE
201116 s at -0.95 0.00044 hsa-mir-578 CPE
201664 at 0.80 0.00054 hsa-mir-16-2 SMC4
201664 at 0.80 0.00054 hsa-mir-15b SMC4
203988 s at -0.54 0.0013 hsa-mir-625 FUT8
217892 s at -0.46 0.0018 hsa-mir-1293 LIMA1
212256 at -0.69 0.0019 hsa-mir-1294 GALNT10
201904 s at -0.41 0.0023 hsa-mir-26a-1 CTDSPL
202308 at -0.60 0.0024 hsa-mir-33b SREBF1
200710 at -0.39 0.0025 hsa-mir-324 ACADVL
203266 s at -0.47 0.0028 hsa-mir-744 MAP2K4
209897 s at -0.65 0.0028 hsa-mir-218-1 SLIT2
218131 s at 0.33 0.0029 hsa-mir-640 GATAD2A
214882 s at 0.29 0.0038 hsa-mir-636 SFRS2
218966 at -0.63 0.0043 hsa-mir-1266 MYO5C
203445 s at -0.26 0.0045 hsa-mir-26a-2 CTDSP2
35666 at -0.45 0.0081 hsa-mir-566 SEMA3F
212209 at -0.38 0.01 hsa-mir-620 MED13L
201852 x at -0.64 0.017 hsa-mir-1245 COL3A1
221580 s at 0.42 0.024 hsa-mir-1304 TAF1D
211161 s at -0.56 0.024 hsa-mir-1245 COL3A1
200875 s at 0.26 0.027 hsa-mir-1292 NOL5A
200754 x at 0.21 0.027 hsa-mir-636 SFRS2
215076 s at -0.48 0.028 hsa-mir-1245 COL3A1
200829 x at 0.13 0.034 hsa-mir-632 ZNF207
209360 s at -0.34 0.039 hsa-mir-802 RUNX1
208782 at -0.41 0.039 hsa-mir-198 FSTL1
211921 x at 0.22 0.048 hsa-mir-1244 PTMA

Table A.10: Affymetrix ID, log fold change, adjusted p-value, pre-miRNA ID, and
host gene symbol for the 39 regulated probe sets in the G3 vs. G1 comparison in
the TRANSBIG data set.
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ID logFC adj.P.Val mirna id gene symbol
217838 s at 1.28 7.6e-17 hsa-mir-342 EVL
214053 at 1.80 2.8e-16 hsa-mir-548f-2 ERBB4
203988 s at 0.75 3.6e-13 hsa-mir-625 FUT8
208795 s at -0.63 8.5e-13 hsa-mir-93 MCM7
208795 s at -0.63 8.5e-13 hsa-mir-106b MCM7
208795 s at -0.63 8.5e-13 hsa-mir-25 MCM7
210983 s at -0.73 2.7e-10 hsa-mir-93 MCM7
210983 s at -0.73 2.7e-10 hsa-mir-106b MCM7
210983 s at -0.73 2.7e-10 hsa-mir-25 MCM7
212209 at 0.58 6e-10 hsa-mir-620 MED13L
203130 s at 1.32 5.3e-09 hsa-mir-1978 KIF5C
217726 at 0.42 8.3e-09 hsa-mir-148b COPZ1
35666 at 0.61 1.2e-08 hsa-mir-566 SEMA3F
212208 at 0.62 8.9e-08 hsa-mir-620 MED13L
218966 at 0.77 9.3e-08 hsa-mir-1266 MYO5C
212256 at 0.75 1.6e-07 hsa-mir-1294 GALNT10
209177 at 0.41 2.6e-07 hsa-mir-191 C3orf60
202409 at 1.04 3.1e-07 hsa-mir-483 IGF2
221934 s at 0.55 4.8e-07 hsa-mir-191 DALRD3
221934 s at 0.55 4.8e-07 hsa-mir-425 DALRD3
217844 at 0.27 7.3e-07 hsa-mir-26b CTDSP1
202308 at 0.61 1.6e-06 hsa-mir-33b SREBF1
221580 s at -0.55 2.6e-06 hsa-mir-1304 TAF1D
217892 s at 0.44 3.8e-06 hsa-mir-1293 LIMA1
200045 at -0.28 5.1e-06 hsa-mir-877 ABCF1
208336 s at 0.38 5.1e-06 hsa-mir-639 GPSN2
201906 s at 0.42 7.9e-06 hsa-mir-26a-1 CTDSPL
201663 s at -0.68 2.9e-05 hsa-mir-16-2 SMC4
201663 s at -0.68 2.9e-05 hsa-mir-15b SMC4
203445 s at 0.25 6.5e-05 hsa-mir-26a-2 CTDSP2
200710 at 0.33 0.00017 hsa-mir-324 ACADVL
203266 s at 0.38 0.00022 hsa-mir-744 MAP2K4
219561 at 0.38 0.00037 hsa-mir-152 COPZ2
217756 x at 0.22 0.0004 hsa-mir-1282 SERF2
217865 at -0.23 0.00089 hsa-mir-340 RNF130
201664 at -0.52 0.0009 hsa-mir-16-2 SMC4
201664 at -0.52 0.0009 hsa-mir-15b SMC4
201116 s at 0.61 0.0009 hsa-mir-1979 CPE
201116 s at 0.61 0.0009 hsa-mir-578 CPE
201857 at -0.20 0.0017 hsa-mir-579 ZFR
218680 x at 0.29 0.0024 hsa-mir-1282 HYPK
218680 x at 0.29 0.0024 hsa-mir-1282 SERF2
200912 s at 0.20 0.0029 hsa-mir-1248 EIF4A2
200775 s at 0.11 0.0029 hsa-mir-7-1 HNRNPK
209360 s at 0.32 0.0033 hsa-mir-802 RUNX1
200097 s at 0.12 0.0037 hsa-mir-7-1 HNRNPK
203594 at -0.30 0.0037 hsa-mir-553 RTCD1
217118 s at 0.20 0.0048 hsa-mir-1249 C22orf9
209120 at 0.40 0.0052 hsa-mir-1469 NR2F2
201839 s at -0.46 0.0055 hsa-mir-559 TACSTD1

Table A.11: Affymetrix ID, log fold change, adjusted p-value, pre-miRNA ID, and
host gene symbol for the 50 most regulated probe sets in the ER positive vs. ER
negative comparison in TRANSBIG data set.
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ID logFC adj.P.Val mirna id gene symbol
214053 at 1.80 8.9e-24 hsa-mir-548f-2 ERBB4
215729 s at -3.66 1.2e-21 hsa-mir-934 VGLL1
217838 s at 1.33 6.9e-19 hsa-mir-342 EVL
218966 at 0.78 8.9e-19 hsa-mir-1266 MYO5C
221934 s at 0.75 8.9e-19 hsa-mir-191 DALRD3
221934 s at 0.75 8.9e-19 hsa-mir-425 DALRD3
203130 s at 1.22 1.9e-15 hsa-mir-1978 KIF5C
35666 at 0.70 1.9e-14 hsa-mir-566 SEMA3F
205487 s at -1.72 2.9e-13 hsa-mir-934 VGLL1
213249 at 0.82 2.9e-12 hsa-mir-887 FBXL7
212207 at 0.71 8.5e-12 hsa-mir-620 MED13L
212209 at 0.63 1.1e-11 hsa-mir-620 MED13L
203999 at 1.19 4.8e-11 hsa-mir-1252 SYT1
200045 at -0.35 1.8e-10 hsa-mir-877 ABCF1
212256 at 0.63 2.9e-10 hsa-mir-1294 GALNT10
204537 s at -0.94 3.1e-10 hsa-mir-452 GABRE
204537 s at -0.94 3.1e-10 hsa-mir-224 GABRE
218131 s at -0.52 1.6e-09 hsa-mir-640 GATAD2A
206794 at 0.78 3.5e-09 hsa-mir-548f-2 ERBB4
203988 s at 0.65 4.5e-09 hsa-mir-625 FUT8
212715 s at -1.05 8.1e-09 hsa-mir-648 MICAL3
208795 s at -0.46 4.3e-08 hsa-mir-93 MCM7
208795 s at -0.46 4.3e-08 hsa-mir-25 MCM7
208795 s at -0.46 4.3e-08 hsa-mir-106b MCM7
219474 at 0.90 4.8e-08 hsa-mir-567 C3orf52
214151 s at 0.46 5e-08 hsa-mir-628 CCPG1
203998 s at 1.63 5.6e-08 hsa-mir-1252 SYT1
201906 s at 0.45 7e-08 hsa-mir-26a-1 CTDSPL
217892 s at 0.46 8.6e-08 hsa-mir-1293 LIMA1
212208 at 0.48 2.2e-07 hsa-mir-620 MED13L
204496 at 0.46 2.7e-07 hsa-mir-624 STRN3
201663 s at -0.57 3.6e-07 hsa-mir-16-2 SMC4
201663 s at -0.57 3.6e-07 hsa-mir-15b SMC4
220296 at 0.78 3.6e-07 hsa-mir-1294 GALNT10
212770 at 0.53 7.1e-07 hsa-mir-629 TLE3
219411 at 0.46 1.5e-06 hsa-mir-328 ELMO3
212349 at 0.37 2.2e-06 hsa-mir-1825 POFUT1
222156 x at 0.46 3.4e-06 hsa-mir-628 CCPG1
216109 at 1.06 8.3e-06 hsa-mir-620 MED13L
221580 s at -0.39 1.2e-05 hsa-mir-1304 TAF1D
218433 at 0.34 1.5e-05 hsa-mir-103-1 PANK3
218433 at 0.34 1.5e-05 hsa-mir-103-1-as PANK3
212785 s at 0.27 1.8e-05 hsa-mir-302b LARP7
212785 s at 0.27 1.8e-05 hsa-mir-367 LARP7
212785 s at 0.27 1.8e-05 hsa-mir-302c LARP7
212785 s at 0.27 1.8e-05 hsa-mir-302d LARP7
212785 s at 0.27 1.8e-05 hsa-mir-302a LARP7
204398 s at 0.35 2e-05 hsa-mir-330 EML2
203775 at -0.36 2.5e-05 hsa-mir-591 SLC25A13
209744 x at -0.25 2.5e-05 hsa-mir-644 ITCH

Table A.12: Affymetrix ID, log fold change, adjusted p-value, pre-miRNA ID, and
host gene symbol for the 50 most regulated probe sets in the ER positive vs. ER
negative comparison in the Wang data set.

ID logFC adj.P.Val mirna id gene symbol
201664 at 0.30 0.0068 hsa-mir-16-2 SMC4
201664 at 0.30 0.0068 hsa-mir-15b SMC4
211251 x at -0.25 0.016 hsa-mir-30c-1 NFYC
211251 x at -0.25 0.016 hsa-mir-30e NFYC
212474 at 0.20 0.023 hsa-mir-550-2 AVL9
202216 x at -0.24 0.024 hsa-mir-30c-1 NFYC
202216 x at -0.24 0.024 hsa-mir-30e NFYC
202066 at 0.31 0.047 hsa-mir-548k PPFIA1
209219 at 0.20 0.049 hsa-mir-1236 RDBP

Table A.13: Affymetrix ID, log fold change, adjusted p-value, pre-miRNA ID, and
host gene symbol for the 6 regulated probe sets in the Relapse vs. No relapse com-
parison in the Wang data set.
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ID logFC adj.P.Val mirna id gene symbol
204022 at 0.99 0.00039 hsa-mir-140 WWP2
209905 at 2.18 0.017 hsa-mir-196b HOXA9
214651 s at 1.47 0.024 hsa-mir-196b HOXA9
201857 at 0.46 0.024 hsa-mir-579 ZFR
208795 s at 0.68 0.024 hsa-mir-25 MCM7
208795 s at 0.68 0.024 hsa-mir-93 MCM7
208795 s at 0.68 0.024 hsa-mir-106b MCM7
201664 at 0.66 0.027 hsa-mir-16-2 SMC4
201664 at 0.66 0.027 hsa-mir-15b SMC4
206832 s at -1.34 0.04 hsa-mir-566 SEMA3F

Table A.14: Affymetrix ID, log fold change, adjusted p-value, pre-miRNA ID, and
host gene symbol for the 7 regulated probe sets in the Brain relapse vs. No relapse
comparison in the Wang data set.
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A. APPENDIX

Ivshina Pawitan Sotiriou Transbig
hsa-mir-106b 1 1 1 1
hsa-mir-1245 -1 -1 -1 -1
hsa-mir-1266 -1 -1 -1 -1
hsa-mir-1292 1 1 1 1
hsa-mir-1293 -1 -1 -1 -1
hsa-mir-1294 -1 -1 -1 -1
hsa-mir-1304 1 1 1 1
hsa-mir-152 -1 -1 -1 -1
hsa-mir-15b 1 1 1 1
hsa-mir-16-2 1 1 1 1
hsa-mir-1978 -1 -1 -1 -1
hsa-mir-198 1 -1 -1 -1

hsa-mir-218-1 -1 -1 -1 -1
hsa-mir-25 1 1 1 1

hsa-mir-26a-1 -1 -1 -1 -1
hsa-mir-26a-2 -1 -1 -1 -1

hsa-mir-26b -1 -1 -1 -1
hsa-mir-33b -1 -1 -1 -1
hsa-mir-342 -1 -1 -1 -1
hsa-mir-483 -1 -1 -1 -1

hsa-mir-548f-2 -1 -1 -1 -1
hsa-mir-636 1 1 1 1
hsa-mir-640 1 1 1 1
hsa-mir-802 -1 -1 -1 -1
hsa-mir-93 1 1 1 1

Table A.15: List of the miRNAs found to be regulated betwen G3 and G1 in all the
data sets where the information was available. The numbers indicate the direction
of regulation: 1 stands for upregulated in G3 with respect to G1 and -1 means the
opposite.
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Ivshina Pawitan Sotiriou Transbig
hsa-mir-106b -1 -1 -1 -1
hsa-mir-1244 -1 -1 -1 -1
hsa-mir-1266 1 1 1 1
hsa-mir-1293 1 1 1 1
hsa-mir-1294 1 1 1 1
hsa-mir-1304 -1 -1 -1 -1
hsa-mir-148b 1 1 1 1
hsa-mir-191 1 1 1 1

hsa-mir-1978 1 1 1 1
hsa-mir-1979 1 1 1 1

hsa-mir-25 -1 -1 -1 -1
hsa-mir-26b 1 1 1 1
hsa-mir-342 1 1 1 1
hsa-mir-425 1 1 1 1
hsa-mir-483 1 1 1 1

hsa-mir-548f-2 1 1 1 1
hsa-mir-566 1 1 1 1
hsa-mir-578 1 1 1 1
hsa-mir-593 -1 -1 -1 -1
hsa-mir-625 1 1 1 1
hsa-mir-93 -1 -1 -1 -1

Table A.16: List of the miRNAs found to be regulated betwen ER positive and
ER negative in all the data sets where the information was available. The numbers
indicate the direction of regulation: 1 stands for upregulated in ER positive with
respect to ER negative and -1 means the opposite.
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