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Abstract

G-protein–coupled receptors (GPCRs) are generally thought to signal to second messengers like cyclic AMP (cAMP) from the
cell surface and to become internalized upon repeated or prolonged stimulation. Once internalized, they are supposed to
stop signaling to second messengers but may trigger nonclassical signals such as mitogen-activated protein kinase (MAPK)
activation. Here, we show that a GPCR continues to stimulate cAMP production in a sustained manner after internalization.
We generated transgenic mice with ubiquitous expression of a fluorescent sensor for cAMP and studied cAMP responses to
thyroid-stimulating hormone (TSH) in native, 3-D thyroid follicles isolated from these mice. TSH stimulation caused
internalization of the TSH receptors into a pre-Golgi compartment in close association with G-protein as-subunits and
adenylyl cyclase III. Receptors internalized together with TSH and produced downstream cellular responses that were
distinct from those triggered by cell surface receptors. These data suggest that classical paradigms of GPCR signaling may
need revision, as they indicate that cAMP signaling by GPCRs may occur both at the cell surface and from intracellular sites,
but with different consequences for the cell.
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Introduction

G-protein–coupled receptor (GPCR) signaling is thought to

involve a series of steps occurring at the cell surface: coupling of

receptors to G-proteins, activation of G-proteins, and ultimately,

triggering of G-protein-regulated effectors (i.e., adenylyl cyclase,

phospholipase C, calcium channels, GIRK channels, etc.) [1].

Soon after activation, many GPCRs desensitize in a process that

involves phosphorylation by G-protein–coupled receptor kinases

(GRKs) and binding of b-arrestins [1]. Subsequently, most GPCRs

are internalized via clathrin-coated pits or other less characterized

pathways, and are either dephosphorylated and recycled back to

the cell surface or targeted to lysosomes for degradation [1].

Although receptor internalization was originally considered to

contribute to desensitization by reducing the number of receptors

present on the cell plasma membrane, endocytosis has been

subsequently and unexpectedly found to promote or even be

required for receptor resensitization [1,2]. Furthermore, novel

data suggest that receptor internalization does not always lead to

signal termination. This possibility has been clearly demonstrated

for tyrosine kinase receptors, such as the epidermal growth factor

receptor (EGFR), that were shown to continue signaling after

being internalized [3–6]. In the case of GPCRs, instead,

internalized receptors are thought capable of switching to a

‘‘nonconventional’’ signaling pathway, i.e., a b-arrestin-mediated

activation of the mitogen-activated protein kinase (MAPK)

cascade [7]. A very recent study has revealed yet another type

of intracellular GPCR signaling in yeast: Gpa1, the yeast homolog

of Ga can be activated by pheromone receptors on endosomes,

where it stimulates phosphatidylinositol 3-phosphate production

[8]. Despite such recent data, there is a current consensus that

activation of canonical G-protein effectors, such as adenylyl

cyclase, by GPCRs occurs exclusively at the cell surface.

Describing the spatiotemporal dynamics of signaling cascades is

a major goal of cell biology. In the case of GPCR signaling, this

would imply answering fundamental questions such as: Where in

the cell and for how long are GPCRs active after interacting with

their ligands? Are there subcellular microdomains specialized for

different types of GPCR-mediated signals? What are the

functional consequences of GPCR internalization on signaling?

Does signaling to cyclic AMP (cAMP) or other second messengers

occur only at the plasma membrane, or are there additional sites of

GPCR activity inside the cell? Most of these questions are still

awaiting answers. The major reason for this relies on the fact that

biochemical techniques, until recently the only ones available for

such analyses, require cell disruption and therefore have limited
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temporal and, generally, no spatial resolution. To tackle those

limitations, we and others have developed a series of genetically

encoded fluorescent reporters that allow the direct visualization of

key steps of GPCR [9–11] and cyclic nucleotide signaling [12–19],

by means of microscopy techniques based on fluorescence

resonance energy transfer (FRET). The introduction of these

techniques has led to new insights into the mechanisms of GPCR

activation and the biology of cAMP.

Despite the important advance represented by the introduction

of FRET-based techniques, most studies required transfection of

genetically encoded fluorescent reporters into primary cells or cell

lines—thus, quite far from the physiological context. This is a

fundamental issue, as the type, location, and concentration of each

component, as well as the size and shape of cells, are expected to

greatly influence the spatiotemporal features of signaling networks

[20–22]. To be able to study GPCR-cAMP signaling in a highly

physiological context, here we generated reporter mice with

ubiquitous expression of an inert fluorescent sensor for cAMP.

These mice were utilized to study the dynamics of a GPCR-cAMP

signaling cascade, i.e., that activated by thyroid-stimulating

hormone (TSH), within the intact multicellular functional unit

that constitutes thyroid tissue.

Results

Generation of Transgenic Mice with Ubiquitous
Expression of a cAMP Sensor

To monitor cAMP levels in living cells and tissues, we generated

transgenic mice (CAG-Epac1-camps) with ubiquitous expression

of our previously described cAMP sensor (Epac1-camps) [14]. We

followed the same strategy used to create green fluorescent protein

(GFP) mice [23]. Instead of GFP, we cloned the Epac1-camps

sequence (encompassing the yellow fluorescent protein [YFP], the

cAMP binding domain of Epac1, and the cyan fluorescent protein

[CFP]) under the control of the hybrid CMV enhancer/chicken b-

actin (CAG) promoter (Figure 1A), and performed pronuclear

injections of one-cell–stage mouse embryos with this construct.

After several rounds of injections, we obtained ten PCR-positive

pups, three of which showed a high level of body fluorescence and

gave rise to transgenic offspring according to the Mendelian ratio.

Careful analysis of isolated cells and tissues from these three lines

demonstrated that two of them had a heterogeneous expression of

the sensor, which was present in only 60%–80% of the cells. By

contrast, the third line expressed Epac1-camps in virtually all cells

and was therefore chosen for subsequent experiments. Figure 1

reproduces fluorescent images of the head and a series of organs

isolated from the transgenic mice. Compared to wild-type

littermates, these mice had high levels of sensor expression in

almost all tissues and cells, excluding erythrocytes and hair. For

example, we found high fluorescence in the eye and the skin

(Figure 1B), as well as in the brain, heart, kidney, and ileum

(Figure 1C). Interestingly, transgenic mice did not show any

abnormalities and had a normal life expectancy, demonstrating

that the presence of the sensor in most cells of the organism did not

interfere with its proper development and physiological functions.

Real-Time cAMP Measurements
Next, we isolated several types of embryonic and adult primary

cells from CAG-Epac1-camps mice to measure cAMP levels in real

time. cAMP levels were monitored by FRET microscopy on live

cells as previously described [14]. From E14.5 embryos, we

obtained murine embryonic fibroblasts (MEFs) and cortical

neurons, which showed high fluorescence. Stimulation of MEFs

with the b-adrenergic agonist isoproterenol resulted in a robust

decrease of the YFP/CFP ratio (Figure 2A), indicative of an increase

of cAMP levels [14]. As already reported in other cell types [24,25],

this response was transient, due to the protein kinase A (PKA)-

dependent activation of phosphodiesterase 4 (PDE4), which could

be counteracted by addition of a specific inhibitor (rolipram). In

cortical neurons, isoproterenol induced a similar type of reaction,

though of smaller amplitude. Like in MEFs, the response was

transient and could be enhanced by addition of rolipram (Figure 2B).

From adult mice, we isolated cardiac myocytes and peritoneal

macrophages. In line with our previous observations [26], b-

adrenergic stimulation of cardiac cells led to an increase of cAMP

levels, which was further enhanced by rolipram (Figure 2C). The

cAMP response to isoproterenol in macrophages was more

sustained and only minimally affected by rolipram (Figure 2D).

Finally, the b-adrenergic antagonist propranolol completely inhib-

ited the effect of isoproterenol on cAMP production in cardiomy-

ocytes (Figure 2E) and macrophages (Figure 2F), thus showing that

the observed FRET variations were specific.

Establishment of a 3-D Culture of Thyroid Follicles
Then, we utilized CAG-Epac1-camps mice to monitor GPCR-

cAMP signaling in an intact physiological system. We chose thyroid

cells for several reasons. First, these cells are strictly dependent for all

their functions, e.g., thyroid hormone production and growth, on

the activation of a GPCR, the TSH receptor, which is expressed on

their basolateral membrane and the effects of which are largely

mediated by cAMP [27,28]. Second, thyroid cells form supracel-

lular structures, known as thyroid follicles, which constitute both the

anatomical and the functional units of thyroid tissue. Importantly, it

Author Summary

Cells respond to many environmental cues through the
activity of cell surface receptor proteins, which sense these
cues and convey that information to signaling molecules
inside the cell. G-protein–coupled receptors (GPCRs) form
the largest eukaryotic family of plasma membrane
receptors. They convert the information provided by
extracellular stimuli into intracellular second messengers,
like cyclic AMP (cAMP). After prolonged stimulation, they
are internalized inside cells, an event that to date has been
thought to terminate the production of second messen-
gers. Though many of the key steps of GPCR signaling are
known in detail, precisely how signaling and termination
actually occur in time and space (i.e., in subcellular
compartments or microdomains) is still largely unexplored.
To observe GPCR signaling in living cells, we generated
mice expressing a fluorescent sensor that allows monitor-
ing the intracellular levels of cAMP with a microscope. We
utilized this system to study, directly in native thyroid
follicles, the signal sent by the receptor for thyroid-
stimulating hormone (TSH). Our findings indicate that TSH
receptors are internalized rapidly after activation but
continue to stimulate cAMP production inside cells and
that this sustained, cAMP production is apparently
required for localized activation of downstream compo-
nents. These data challenge the current model of the
GPCR-cAMP pathway by suggesting the existence of
previously unrecognized intracellular site(s) for cAMP
generation and of differential signaling outcomes as a
result of intracellular GPCR signaling. Such intracellular
site(s) may provide specialized signaling platforms, thus
contributing to the spatiotemporal regulation of cAMP
production and to signaling specificity within the GPCR
family.

TSH Receptor-cAMP Intracellular Signaling
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is possible to isolate and culture thyroid follicles so to maintain their

original 3-D structure and polarization, which is reflected by a high

spatial organization of the TSH receptor-cAMP signaling cascade

[27,29,30] (Figure 3A). Thus, they represent a unique model to

study the spatiotemporal dynamics of GPCR-cAMP signaling. For

this purpose, we established a method that allowed us to isolate,

maintain, visualize, and manipulate mouse thyroid follicles under

the microscope. Among various protocols, the best results were

obtained by enzymatic dissociation followed by deposition on a thin

layer of collagen gel (Figure 3B). This protocol preserved good 3-D

morphology for at least 24–48 h of culture, without hampering

microscopic observation or manipulation (Figure 3B and Video S1).

Real-Time Monitoring of cAMP Levels in Intact Thyroid
Follicles

Next, we utilized thyroid follicles isolated from CAG-Epac1-camps

mice to monitor in real time the cAMP response to TSH stimulation.

Saturating concentrations of TSH resulted in a fast and robust

decrease of the YFP/CFP ratio (Figure 4A and 4B and Video S2),

Figure 1. Generation and characterization of CAG-Epac1-camps transgenic mice. (A) Expression cassette used to generate the transgenic
mice. The cAMP sensor (Epac1-camps) contains a cAMP binding domain derived from Epac1, flanked on either side by YFP and CFP. The Epac1-camps
sensor is under the control of the ubiquitous CAG promoter. (B) Fluorescent image of the head of a transgenic (TG) mouse compared to that of a
wild-type (WT) littermate. (C) Fluorescent images of different organs isolated from adult TG and WT mice.
doi:10.1371/journal.pbio.1000172.g001

TSH Receptor-cAMP Intracellular Signaling
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indicative of an increase of cAMP levels [14]. Nevertheless, the

Epac1-camps sensor was not saturated, as shown by the further

decrease of FRET values obtained by fully activating adenylyl cyclase

with forskolin. In contrast to what was observed in other cell types,

like for example, embryonic fibroblasts and cortical neurons (for

comparison see Figure 2A and 2B), no reduction of cAMP levels was

seen after prolonged exposure to various concentrations of TSH (up

to 30 min), consistent with limited or no PDE activation under our

experimental conditions (Figure 4C). This type of sustained cAMP

response further drove our attention to TSH receptor signaling in

thyroid cells.

To rule out the possibility that the presence of the Epac1-camps

sensor might interfere with cAMP signaling, we compared the

cAMP-response to TSH stimulation in thyroid cells isolated from

wild-type and CAG-Epac1-camps mice. The intracellular levels of

cAMP, measured by an immunoenzymatic assay, were indistin-

guishable between wild-type and transgenic cells (Figure S1).

Temporal Dynamics of cAMP Signaling in Thyroid
Follicles

Importantly, the lack of appreciable desensitization of the TSH

receptor-cAMP signal allowed us to evaluate the kinetics of the return

Figure 2. Real-time monitoring of cAMP levels in different types of primary cells isolated from the cAMP reporter mice. Cells were
visualized by time-lapse fluorescence microscopy. The graphs show normalized YFP/CFP ratio values calculated from CFP and YFP images. A
reduction of the YFP/CFP ratio is indicative of an increase of cAMP levels. (A) Murine embryonic fibroblasts (MEFs) were stimulated with the b-
adrenergic agonist isoproterenol. The cAMP response to isoproterenol was robust but transient due to the activation of PDE4, as indicated by the
strong effect of the PDE4-selective inhibitor rolipram. (B) Cortical neurons reacted to isoproterenol and rolipram in a similar way. (C) The response to
b-adrenergic stimulation of cardiac cells was further enhanced by rolipram. (D) Peritoneal macrophages showed a more sustained increase in cAMP
levels after isoproterenol stimulation and a minor effect of rolipram. (E and F) The isoproterenol effect on cardiac myocytes (E) and macrophages (F)
was completely blocked by the b-adrenergic antagonist propranolol. Traces in (A–F) are representative of three to ten experiments per condition.
doi:10.1371/journal.pbio.1000172.g002

TSH Receptor-cAMP Intracellular Signaling
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of cAMP to baseline after transient stimulation with TSH. To ensure

controlled and fast stimulation, thyroid follicles were kept under

laminar-flow perfusion with an apparatus that allowed the rapid

exchange between different extracellular solutions. First, we applied

very short (10 s) and repeated stimuli with TSH (30 U/l), which were

followed by a complete return of cAMP to basal values (Figure 5A).

Then, we stimulated thyroid follicles with saturating (30 U/l) or supra-

saturating (300 U/l) concentrations of TSH for 30 s (Figure 5B),

2 min (Figure 5C), or 10 min (Figure 5D). Note that 300 U/l were

required to reach maximum activation within 30 s, whereas 30 U/l

were sufficient for 2-min and 10-min applications. Stimulation with

these fully activating concentrations of TSH produced comparable

changes of cAMP levels, independently of the duration of the

application (Figure 5E). Unexpectedly, stimuli of duration equal or

longer than 30 s were associated with an incomplete return of cAMP

to basal levels even after extensive washout (Figure 5B–5D).

Interestingly, the extent of signal irreversibility increased with the

duration of the TSH application, but was not dependent on the

cumulative dose of TSH (for example, compare the effect of 300 U/l

for 30 s to that of 30 U/l for 2 min), occurred already after 30 s, and

was nearly maximal after 10-min stimulation (Figure 5F and 5G). In

contrast to TSH receptor activation, stimuli of comparable intensity

and duration with a forskolin analog, which directly activates adenylyl

cyclase, yielded completely reversible cAMP signals (Figure S2).

In theory, the incomplete restoration of cAMP levels observed

after prolonged TSH stimulation might have been due to an

inactivation of PDEs. To investigate this possibility, we added a

nonselective PDE inhibitor (IBMX) at the end of the washout phase.

In contrast to control follicles that were not previously stimulated

with TSH, on which IBMX had only a marginal effect, IBMX

treatment caused a robust increase in cAMP levels when applied

after TSH stimulation for 10 min and subsequent washout (Figure 6).

These results demonstrated that, after extensive washout from a

prolonged TSH stimulus, PDEs were still highly functional. Thus, it

is unlikely that an inactivation of PDEs was the cause of the

incomplete recovery of cAMP levels. On the contrary, the fast and

robust increase of cAMP levels after IBMX addition suggested that

the receptor-adenylyl cyclase system was indeed continuing to signal.

TSH Receptor Internalization
The extent and kinetics of endogenous TSH receptor internal-

ization in primary thyroid cells have been difficult to evaluate due to

its very low expression levels. However, the available information

suggests that the TSH receptor is internalized and recycled back to

the plasma membrane, without being targeted to lysosomes [31,32].

To monitor the internalization of the endogenous TSH receptor, we

utilized the well-established method of following the endocytosis of a

fluorescent ligand [3]. For this purpose, we labeled bovine TSH

Figure 3. The thyroid follicle model. (A) Thyroid follicles constitute the anatomical and functional units of thyroid tissue. They are composed of a
monolayer of epithelial cells that defines an inner cavity where thyroid hormones are stored in the form of an iodinated protein (thyroglobulin). Upon
binding of TSH to its receptor located on the basolateral membrane, cAMP is produced with consequent activation of PKA and phosphorylation of a
series of targets, located in different cellular compartments (e.g., cytosol, nucleus, Golgi complex, apical membrane). These events lead to a fast
induction of thyroglobulin reuptake with release of free thyroid hormones into the blood stream and a slow up-regulation of thyroglobulin synthesis
and iodination. Thyroid cells are highly polarized, as the basolateral and apical membranes have completely different compositions and extremely
specialized functions. (B) Method used to culture thyroid follicles. Isolated mouse thyroid follicles were placed in a glass-bottom Petri dish, coated
with a thin layer of collagen gel. Shown are representative images of a single follicle isolated from CAG-Epac1-camps mice after 12 h of culture. Top
right, bright field image. Bottom left, maximum projection of YFP fluorescence (corresponding to the Epac1-camps sensor) calculated from individual
image slices on the z-axis, captured with a laser-scanning confocal microscope. Bottom right, single confocal image of YFP fluorescence.
doi:10.1371/journal.pbio.1000172.g003

TSH Receptor-cAMP Intracellular Signaling
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with a fluorescent dye (Alexafluor594), which resulted in no major

alterations of its biological activity (Figure S3A); in addition, TSH-

Alexa594 bound specifically to HEK293 cells transfected with TSH

receptor cDNA (Figure S3B).

Initially, to simultaneously monitor TSH and TSH receptor

internalization, we cotransfected HEK293 cells with a YFP-tagged

TSH receptor construct and b-arrestin 2, which in this context is

required for efficient TSH receptor internalization [33], and

stimulated them with TSH-Alexa594 for different periods of time.

Both ligand and receptor were found to cointernalize rapidly,

reaching a maximum after approximately 20 min (unpublished

data). Interestingly, 40 min after stimulation, the ligand and the

receptor still appeared to be present in the same intracellular

compartments, suggesting that they were not sorted apart during

this period of time (Figure 7).

Then, we utilized the fluorescent ligand to follow TSH receptor

internalization in primary thyroid cells. When we attempted to

visualize whole thyroid follicles loaded with TSH-Alexa594, we

found them to have a relatively high autofluorescence in the whole

visible spectrum. Thus, visualization of TSH-Alexa594 was largely

hampered, and possible only to a limited extent through spectral

unmixing. The resulting images, though of poor quality, were

suggestive of TSH-Alexa594 being efficiently internalized in

thyroid follicles (Figure S4). To better evaluate this phenomenon,

we analyzed the binding and internalization of TSH-Alexa594 in

single primary mouse thyroid cells, which showed much lower

autofluorescence. Interestingly, we found that TSH internalized

quickly, with TSH-Alexa594–positive vesicles being detectable

5 min after TSH stimulation and maximal internalization reached

approximately after 20 min (Figure 8). Importantly, at this point, a

major fraction of labeled TSH was found inside the cells, in

vesicles prevalently concentrated around the nucleus. To further

investigate the structure and the dynamics of TSH-containing

vesicles, we performed a series of time-lapse experiments on cells

stimulated with TSH-Alexa594 that were visualized with a total

internal reflection fluorescence (TIRF) microscope set to have a

high penetration depth. This approach allows us to visualize

cytoplasmic structures close to the plasma membrane with a high

signal/background ratio [34] and appeared particularly suited for

thyroid cells that assume a very thin shape in culture, having a

maximal thickness of approximately 1–2 mm only (unpublished

data). Interestingly, we found that TSH-Alexa594 was contained

in tubulovesicular organelles, forming a highly dynamic and

interconnected network (Figure 9 and Video S3), the structure of

which could be appreciated only partially by confocal microscopy.

Subcellular Localization of G-Proteins and Adenylyl
Cyclases

So far, our results suggested that the TSH receptor internalized

quickly without evidence of cAMP desensitization and that, after

Figure 4. Real-time monitoring of cAMP levels in thyroid follicles. Thyroid follicles isolated from CAG-Epac1-camps mice were visualized by
time-lapse fluorescence microscopy. (A) CFP, corrected YFP and YFP/CFP ratio images from a representative sequence, where a thyroid follicle was
stimulated with TSH followed by forskolin. (B) Normalized YFP/CFP ratio values obtained from the sequence in (A). (C) Effect of prolonged stimulation
with different concentrations of TSH on intracellular cAMP levels. Results in (A–C) are representative of five to ten experiments per condition.
doi:10.1371/journal.pbio.1000172.g004

TSH Receptor-cAMP Intracellular Signaling
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prolonged stimulation, a significant proportion of the TSH

receptor-cAMP signal became irreversible. Of note, both phe-

nomena, i.e., receptor internalization and signal irreversibility, had

roughly similar kinetics. We therefore hypothesized that, over

time, a fraction of the receptors was brought to a state or a

compartment where they could no longer be freed of their ligands,

but were still able to signal. Trimeric G-proteins are frequently

found at non-plasma membrane compartments, such as endo-

somes, the endoplasmic reticulum, and the Golgi, where they are

thought to play roles in vesicle trafficking [8,35,36]. Similarly,

adenylyl cyclase activity and immunoreactivity have been found

on intracellular membranes, though such studies were frequently

limited by the very low expression of adenylyl cyclases and the

relatively low affinity of the available antibodies [37,38].

Therefore, it appeared possible that the other components

required for TSH receptor signaling might also be present inside

the cell. Based on these considerations, we attempted to localize

Gas as well as adenylyl cyclase III, V, and VI, the major isoforms

expressed in thyroid cells [39], by immunofluorescence. Our

results indicated that Gas was present on intracellular vesicles and

tubulovesicular structures that were typically concentrated around

the nucleus (Figures S5, 10, and 11A and 11B). Adenylyl cyclase

staining was of much lower intensity. Nonetheless, adenylyl cyclase

immunoreactivity was found occasionally on the plasma mem-

brane and largely on intracellular vesicles (Figures S5 and 11C).

TSH stimulation did not cause apparent modifications of Gas or

Figure 5. Effect of transient TSH stimulation on cAMP levels. Thyroid follicles isolated from CAG-Epac1-camps mice were visualized by time-
lapse fluorescence microscopy. (A) Effect of repeated short stimuli (10 s each) with TSH. (B–D) Effect of longer TSH applications. Reported are data
from representative experiments in which thyroid follicles were stimulated for 30 s (B), 2 min (C), or 10 min (D). (E) Mean FRET changes induced by
stimuli as in (B–D). Values were compared by one-way ANOVA. (F) Comparison of signal recovery after stimuli as in (B–D). Signal reversibility was
calculated from the YFP/CFP ratio data of the washout phase, by setting the value at the end of TSH stimulation equal to zero and the value before
TSH stimulation equal to 100%. The values obtained from different replicates were globally fitted to a first-order exponential function. Fits were
compared with F test, having a null hypothesis that Ymax values were the same for all datasets. (G) Comparison of Ymax values obtained from fitting
each dataset in (F) to a first-order exponential equation. Values were compared by one-way ANOVA, followed by Bonferroni post hoc test. Data in (E–
G) were obtained from six to eight independent experiments per condition.
doi:10.1371/journal.pbio.1000172.g005

Figure 6. Role of PDEs on cAMP signal irreversibility. (A) Thyroid
follicles isolated from CAG-Epac1-camps mice were stimulated with TSH
for 10 min followed by extensive washout. Thereafter, a nonselective
PDE inhibitor (IBMX) was added to probe the PDE activity. (B) For
comparison, the effect of IBMX was evaluated on thyroid follicles that
were not previously stimulated with TSH. Shown are representative
traces from four to six experiments per condition.
doi:10.1371/journal.pbio.1000172.g006

TSH Receptor-cAMP Intracellular Signaling
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adenylyl cyclase subcellular localization (unpublished data). The

specificity of Gas, adenylyl cyclase III, and adenylyl cyclase V/VI

staining was checked by competition with the peptides used to

raise the primary antibodies (Figure S6). In addition, the specificity

of Gas immunofluorescence was evaluated by comparing its

subcellular pattern to the localization of YFP-tagged Gas

transfected in HEK293 cells (unpublished data).

To identify the structures that were positive for Gas, we

performed a series of colocalization experiments with markers of

intracellular compartments. First, we used a fluorescent transferrin

conjugate to label early endosomes and the recycling endosomal

compartment. This is a frequently used method that takes

advantage of the endocytosis and recycling of transferrin together

with its receptor [40]. To this end, primary mouse thyroid cells

were stimulated with fluorescent transferrin for various periods of

time (2–60 min), followed by fixation and immunofluorescent

staining of Gas. Early time points (2–5 min) were used to visualize

early endosomes, whereas later time points were employed to

identify recycling endosomes. Gas and transferrin were not found

simultaneously on early endosomes (unpublished data). However,

at later time points (20–60 min) transferrin appeared to be

contained in vesicles, presumably a recycling compartment,

associated with the perinuclear tubulovesicular structure positive

for Gas (Figure 10A). Of note, some of these vesicles were also

positive for Gas. In addition, primary mouse thyroid cells were

simultaneously treated with fluorescent transferrin and TSH to

evaluate whether they followed similar or distinct endocytic

pathways (Figure 10B and unpublished data). A partial colocaliza-

tion between internalized TSH and transferrin was observed at all

time points considered (2–60 min)—notice that in Figure 10B,

several TSH-positive vesicles contain also transferrin—suggesting

that they followed to some extent the same trafficking pathway. An

antibody against Rab7 was used to label late endosomes. No

colocalization was observed between Gas and Rab7 (Figure 10C).

Finally, an antibody against a Golgi-resident protein, Golgi 58K,

was used to mark the Golgi compartment [41]. A high degree of

colocalization was present between Gas and Golgi 58K

(Figure 10D), suggesting that a relevant fraction of Gas was

located on membranes of the Golgi complex.

Next, we treated primary thyroid cells with TSH-Alexa594, as a

marker of TSH receptor, and looked at its colocalization with Gas

and adenylyl cyclases. Interestingly, internalized TSH and Gas

were frequently found in close association, with TSH being

present on vesicles adjacent to the Gas-positive tubulovesicular

structure (Figure 11A and 11B and Video S4). As observed in the

case of transferrin, some of these vesicles were also positive for

Gas. TSH and adenylyl cyclase III were found to colocalize

occasionally on the plasma membrane and more frequently on

intracellular vesicles or tubulovesicular structures (Figure 11C and

Video S5). Little colocalization was observed between internalized

TSH and adenylyl cyclase V/VI (unpublished data).

To further investigate the subcellular localization of adenylyl

cyclases, we labeled them with BODIPY-forskolin, a fluorescent

forskolin analog [42]. The specificity of BODIPY-forskolin

staining was initially evaluated in HEK293 cells transfected with

adenylyl cyclase VI cDNA, which showed a stronger labeling

compared to control mock-transfected cells (Figure 12A). Then, we

utilized BODIPY-forskolin to stain primary thyroid cells that were

visualized with a TIRF microscope as described above. BODIPY-

forskolin staining was largely present on intracellular vesicles and

tubulovesicular structures (Figure 12B). Utilizing this approach, we

could also visualize simultaneously the internalized TSH-Alexa594

and BODIPY-forskolin in cells that were stimulated with the

fluorescent ligand. A consistent colocalization was observed at the

level of several intracellular vesicles and tubulovesicular structures,

in agreement with the previous immunofluorescence data

(Figure 12C). The dynamic nature of these intracellular structures

can be appreciated in Video S6. Finally, we utilized the fluorescent

forskolin analog to perform triple stainings in which we attempted

to simultaneously visualize the internalized TSH-Alexa594, Gas

Figure 7. Cointernalization of TSH and its receptor in HEK293 cells. HEK293 cells transfected with YFP-tagged TSH receptor and b-arrestin 2
were stimulated with 3 mg/ml TSH-Alexa594 for 40 min, fixed, and then visualized by confocal microscopy. ‘‘Basal’’ refers to control cells that were not
stimulated with TSH-Alexa594. Images are representative of three independent experiments.
doi:10.1371/journal.pbio.1000172.g007
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(by immunofluorescence), and adenylyl cyclases. The resulting

images were indicative of the three components being simulta-

neously present on vesicles that were often adjacent to the

perinuclear tubulovesicular structure positive for Gas (Figure 12D).

Of note, the latter structure was also labeled by BODIPY-forskolin

(Figure 12D).

Finally, we utilized immunogold electron microscopy to

evaluate the subcellular localization of the internalized TSH,

Gas, and adenylyl cyclase III at the ultrastructural level. None of

the available antibodies against Gas worked in immunogold

stainings. To visualize the internalized TSH, we labeled it with

Alexafluor488, which was recognized by a specific antibody.

Similarly to TSH-Alexa594, TSH-Alexa488 had a conserved

biological activity (unpublished data). Consistent with the previous

immunofluorescence results, both TSH-Alexa488 and adenylyl

cyclase III were found to be present in endosomes (Figure S7).

Effect of Receptor Internalization on cAMP Signaling
Although our data were so far compatible with TSH receptor

signaling from intracellular sites, direct functional evidence was

still missing. We therefore reasoned that if our hypothesis was

correct, treatments capable of inhibiting TSH receptor endocytosis

should hamper TSH receptor sequestration and, as a result,

increase the reversibility of cAMP signals after TSH washout. We

first tried several treatments that have been reported to inhibit

GPCR internalization, such as concanavalin A, phenylarsine oxide

and hypertonic sucrose [7]. Concanavalin A and phenylarsine

oxide were found to partially inhibit forskolin-dependent cAMP

production and, therefore, were not further evaluated (unpub-

lished data). By contrast, pretreatment with 0.43 M sucrose for

10 min did not hamper TSH-dependent cAMP accumulation

(Figure 13A), whereas it almost completely inhibited TSH-

Alexa594 internalization (Figure 13B, Video S7 and Video S8).

Importantly, pretreatment of thyroid follicles with hypertonic

sucrose was associated with a complete reversibility of the cAMP

signal produced by TSH stimulation for 2 min (Figure 13C). The

mechanism of action of hypertonic sucrose is not completely

understood, though this treatment is known to alter the

polymerization of clathrin, thus hampering the formation of

coated pits at a very initial phase [7]. Another frequently used

Figure 8. Time-course analysis of TSH receptor internalization. Primary thyroid cells obtained from CAG-Epac1-camps mice were stimulated
with 3 mg/ml TSH-Alexa594 for the indicated period of time, fixed, and then visualized by confocal microscopy. YFP images of Epac1-camps were
used as a cytosolic counterstain. Images are representative of 25–30 cells per condition analyzed in four independent experiments.
doi:10.1371/journal.pbio.1000172.g008
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method to inhibit GPCR internalization is to interfere with

dynamin function. Dynamin is in fact required for later phases of

clathrin-dependent endocytosis, such as pinching and release of

completed coated pits from the plasma membrane. Recently,

Macia et al. developed a membrane permeable dynamin inhibitor,

dynasore [43], which could be applied directly to intact thyroid

follicles. We therefore repeated the same experiments in the

presence of dynasore, which had a consistent inhibitory effect on

TSH internalization (Figure 13D and Video S9). Analogously to

what was observed with hypertonic sucrose, pretreatment for

20 min with 80 mM dynasore, a concentration that produced a

maximal effect on TSH internalization, resulted in a major

increase of cAMP signal reversibility after TSH washout

(Figure 13E). Taken together, these results strongly suggested that

TSH receptor internalization was responsible for the observed

irreversibility of cAMP signaling.

Effect of pH on TSH Receptor-cAMP Signaling
A possible concern when considering the occurrence of TSH

receptor signaling on endocytic membranes is the effect of acidic

pH on TSH–TSH receptor interactions. In fact, the low pH of

early (pH 5.9–6.2) and late endosomes (pH.5.0–6.0) [44] is known

to promote the dissociation of several receptor–ligand complexes.

To evaluate the effect of acidic pH on TSH receptor signaling, we

incubated primary thyroid follicles at different pH levels and

evaluated the cAMP response to TSH stimulation by FRET

microscopy. In agreement with previous observations [45], our

results suggested that efficient TSH binding and activation of the

TSH receptor was still possible at pH 5.0 (Figure S8).

Cell Fractionation Experiments
To further verify the hypothesis that the TSH receptor may

continue to signal to Gas/adenylyl cyclase after internalization, we

conducted a series of experiments based on cell fractionation.

Since in initial tests we found that these studies required a higher

amount of starting material than could be obtained from primary

thyroid cells, these experiments were performed on the FRTL5

thyroid cell line. FRTL5 cells are a widely used model of well-

differentiated thyroid cells, which, among other features of normal

thyrocytes, express thyroid-specific genes, conserve a functional

TSH receptor-cAMP signaling pathway and retain the capability

to synthesize thyroid hormones [28,46].

First, we established a method to separate the intracellular

content from the plasma membrane. In order to allow a better

characterization of the supposed intracellular TSH receptor

signaling compartment, we looked for a method that was fast, as

gentle as possible, and produced with high yield an intracellular

fraction with the lowest possible contamination from the plasma

membrane. The best results were obtained utilizing a protocol

based on the separation of the plasma membrane with magnetic

beads coated with concanavalin A, which binds selectively to the

glycoproteins present on the cell surface [47]. Figure 14A shows

the results of a typical fractionation experiment. Please notice the

virtual absence of the Na+/K+ ATPase, used as a plasma

membrane marker, in the intracellular fraction after the second

round of purification (lane 5).

Next, we evaluated by Western blot analysis the presence of Gas

and adenlyl cyclase III in the different subcellular fractions

(Figure 14B). As expected, bands corresponding to Gas and

adenylyl cyclase III were present in the total homogenate as well as

in the plasma membrane fraction. In addition, the same bands

were also present in the intracellular fraction, thus confirming the

evidence based on the results of the immunofluorescence

Figure 9. Dynamic visualization of internalized TSH-Alexa594.
Primary mouse thyroid cells were stimulated with 3 mg/ml TSH-
Alexa594 for 20 min. Thereafter, the TSH-Alexa594 fluorescence was
visualized with a TIRF microscope set to have a high penetration depth.
Shown are three representative frames, acquired at the indicated time
points. The arrowhead indicates a tubule that extended during the
observation. The merged image was produced by overlaying the
images of the three individual frames, after coloring them in red (0 s),
green (+38 s) and blue (+49 s). White indicates regions of the image
that did not change during this period of time. Data are representative
of 20 sequences from four independent experiments.
doi:10.1371/journal.pbio.1000172.g009
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Figure 10. Colocalization between Gas and subcellular markers. (A) Colocalization between Gas and Alexafluor488-conjugated transferrin
(transferrin-Alexa488), used to visualize early and recycling endosomes. Primary mouse thyroid cells were stimulated for various periods of time (2–
60 min) with transferrin-Alexa488, followed by immunofluorescence analysis for Gas. No colocalization was observed at early time points (2–5 min)
(unpublished data). At later time points (20–60 min), transferrin appeared to be contained in vesicles associated with the perinuclear tubulovesicular
structure positive for Gas. Some of these vesicles were also positive for Gas. Reported is a representative image of a cell treated with transferrin-
Alexa488 for 20 min. (B) Colocalization between TSH-Alexa594 and transferrin-Alexa488, in a cell that was simultaneously treated with both
fluorescent ligands for 20 min. A partial colocalization between TSH-Alexa594 and transferrin-Alexa488 was observed. (C) Colocalization between Gas

and Rab7, used as a marker of late endosomes. Cells were analyzed by double-immunofluorescence with antibodies against Gas and Rab7. No
colocalization was observed. (D) Colocalization between Gas and Golgi 58K, used as a marker for the Golgi complex. Cells were analyzed by double-
immunofluorescence with antibodies against Gas and Golgi 58K. A high degree of colocalization was observed. Images in (A–D) are representative of
more than 20 cells per condition analyzed in at least three independent experiments.
doi:10.1371/journal.pbio.1000172.g010
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Figure 11. Subcellular localization of Gas, adenylyl cyclase III, and internalized TSH in primary thyroid cells. Primary mouse thyroid
cells were stimulated with 3 mg/ml TSH-Alexa594 for 10 min, followed by immunofluorescence analysis with antibodies against Gas (A and B) or
adenylyl cyclase III (C). Image stacks on the z-axis were acquired with a laser-scanning confocal microscope. Shown are representative frames. The
‘‘3D’’ in the panels refer to 3-D reconstructions of the areas indicated by the white boxes, calculated from the z-stacks. Here, the reconstructions are
observed from the top. To view a complete rotation on the x-axis of the 3D reconstructions, see Videos S4 and S5. (B) Side-view of the z-stack in (A),
cut along the white line, showing a Gas-positive tubule ending in a vesicle positive for both Gas and TSH-Alexa594. Throughout the figure, yellow in
the merged images is indicative of colocalization. Images in (A–C) are representative of 25–30 cells per condition analyzed in at least three
independent experiments.
doi:10.1371/journal.pbio.1000172.g011
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experiments that both Gas and adenylyl cyclase III were present in

significant amounts also in the intracellular compartment.

Once the fractionation method was established, we attempted to

directly measure the activity of adenylyl cyclase in the plasma

membrane and in the intracellular fraction of cells that were

previously stimulated with TSH. The prediction was that if the

TSH receptor continued to signal to Gas/adenylyl cyclase after

internalization, this should result in an increase of the adenylyl

cyclase activity in the intracellular fraction. This appeared to be

indeed the case, as we found that pretreatment of FRTL5 cells for

30 min with TSH was associated with an increased adenylyl

cyclase activity in the intracellular fraction (Figure 14C). By

Figure 12. BODIPY-forskolin labeling of adenylyl cyclases. (A) Test experiment in HEK293 cells. HEK293 cells were either transfected with
canine adenylyl cyclase VI cDNA (AC VI) or mock transfected (M.T.). Forty-eight hours after the transfection, they were stained with BODIPY-forskolin
and directly visualized with a fluorescent microscope. Note the higher staining in cells overexpressing adenylyl cyclase VI. (B) BODIPY-forskolin
labeling of primary thyroid cells. Mouse primary thyroid cells were stained with BODIPY-forskolin and visualized with a TIRF microscope set to have a
high penetration depth. (C) Live-cell imaging of adenylyl cyclases and internalized TSH in primary thyroid cells. Primary mouse thyroid cells were
stimulated with 3 mg/ml TSH-Alexa594 for 20 min, followed by 10 min staining with BODIPY-forskolin. TSH-Alexa594 and BODIPY-forskolin were
visualized with a TIRF microscope as above. A frequent colocalization between TSH-Alexa594 and BODIPY-forskolin on intracellular vesicles and small
tubulovesicular structures was observed. (D) Triple staining for adenylyl cyclases, Gas, and TSH. Mouse primary thyroid cells were stimulated with
3 mg/ml TSH-Alexa594 for 20 min, fixed, and then processed for Gas immunofluorescence. Immediately before imaging, the coverslips were mounted
in an experimental chamber, stained with BODIPY-forskolin, and directly visualized with a confocal microscope. White is indicative of triple
colocalization. Images in (A) are representative of three independent experiments. Images in (B–D) are representative of more than 20 cells per
condition analyzed in at least three independent experiments.
doi:10.1371/journal.pbio.1000172.g012
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contrast, pretreatment with TSH was not associated with any

modifications of the adenylyl cyclase activity in the plasma

membrane fraction. This is not surprising, as TSH is expected to

dissociate from the TSH receptors present on the plasma

membrane during the time required for the cell fractionation.

Nevertheless, a certain amount of functional receptors was left on

the plasma membrane, as adenylyl cyclase activity in this fraction

could be increased by adding TSH in the reaction mixture

(Figure 14C).

Altogether, these results further supported the hypothesis that

the TSH receptor continued to signal to Gas/adenylyl cyclase

after internalization.

Simulations
To better understand the possible consequences of intracellular

GPCR signaling, we generated a mathematical model of the

GPCR-cAMP pathway. Our model is based on the recent work

done by Neves et al. on b2-adrenergic receptor signaling [21]. In

this model, the receptor, G-proteins and adenylyl cyclase are

placed on the plasma membrane, whereas ATP, cAMP, PDE4,

and PKA are cytosolic (Figure 15A). In addition, to mimic an

intracellular signaling compartment (ICSC), we placed G-proteins

and adenylyl cyclase also on an intracellular membrane and

simulated the internalization of both GPCR and ligand to this

compartment (Figure 15B). Simulations were performed with the

Virtual Cell software [48–50]. Initial non-spatially resolved

simulations, aimed at validating the model and assessing the

effects of different geometries and parameters as well as of receptor

recycling, are described in Text S1 and Figures S9, S10, S11.

Subsequently, a system of partial differential equations was used to

obtain a spatiotemporal description of the GPCR-cAMP pathway.

The results of the simulations performed with this model were in

good agreement with our experimental data. In Figure 15C are

reported the results of a spatial simulation in which a cell was given

a transient stimulus, by mimicking a perfusion system that

provided and subsequently removed the ligand from the

extracellular space. Notice that in the absence of the ICSC, the

cAMP response is fully reversible. On the contrary, in the presence

of the ICSC, the signal is no longer reversible, in agreement with

the results of the FRET experiments. Interestingly, the different

types of cAMP gradients generated in the presence or absence of

the ICSC are also reflected by different degrees and spatial

patterns of PKA activation. Thus, our mathematical model

predicted that GPCR signaling to cAMP from an ICSC should

have important consequences also on the spatiotemporal dynamics

of downstream signaling events.

Functional Consequences of cAMP Signaling from
Internalized Receptors

Based on the results of the mathematical simulations, we

investigated whether the inhibition of TSH receptor internaliza-

tion had some effects on the signaling events downstream of cAMP

Figure 13. Effect of endocytosis inhibition on cAMP signaling. Cells were prestimulated with 0.43 M sucrose for 10 min, 80 mM dynasore for
20 min, or normal medium as control. (A) Comparison of FRET changes induced by stimulating thyroid follicles obtained from CAG-Epac1-camps mice
with TSH (30 U/l for 2 min, as in Figure 5C) in the presence or absence (control) of endocytosis inhibitors (n = 6–8 per each condition). Error bars
indicate SEM. (B) Confocal image of a primary mouse thyroid cell stimulated with TSH-Alexa594 (3 mg/ml for 20 min) in the presence of 0.43 M
sucrose. Note the binding of TSH-Alexa594 to the plasma membrane (arrowheads) and the almost complete inhibition of TSH-Alexa594
internalization (no intracellular vesicles). For comparison, see Figure 8 (20 min). (C) Comparison of cAMP signal reversibility after TSH stimulation
(30 U/l for 2 min) in the presence or absence (control) of 0.43 M sucrose (n = 6, each). (D) Confocal image of a primary mouse thyroid cell stimulated
with TSH-Alexa594 (3 mg/ml for 20 min) in the presence of 80 mM dynasore, showing consistent inhibition of TSH-Alexa594 internalization.
Arrowheads, TSH-Alexa594 bound to the plasma membrane. (E) Comparison of cAMP signal reversibility after TSH stimulation (30 U/l for 2 min) in the
presence or absence (control) of 80 mM dynasore (n = 6, control; n = 8, dynasore). Signal reversibility in (C) and (E) is calculated as in Figure 5F. Fits
were compared with F test, having a null hypothesis that Ymax values were the same for all datasets. Images in (B) and (D) are representative of more
than 20 cells per condition analyzed in three independent experiments.
doi:10.1371/journal.pbio.1000172.g013
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production. One of the earliest effects of TSH in thyroid cells is the

reorganization of the actin cytoskeleton. This is a well-known

phenomenon, mainly consisting in the depolymerization of stress

fibers, that is implicated in the reuptake of thyroglobulin and in the

induction of thyroid-specific genes [51–53]. Therefore, we

evaluated whether blocking receptor internalization might affect

the depolymerization of actin in response to TSH (Figure 16A and

16B). Primary mouse thyroid cells were stimulated with TSH in

the presence or absence of endocytosis inhibitors, as described

above, then fixed and stained for actin with fluorescent phalloidin.

Hypertonic sucrose itself was found to induce a modification of

actin architecture, and was not further evaluated (unpublished

data). Instead, dynasore treatment did not cause any appreciable

modifications of cellular shape or actin polymerization

(Figure 16A). As expected, TSH alone caused a generalized

depolymerization of actin, which was observed both in the central

cellular compartment (Figure 16A) and in lamellipodia

(Figure 16B). By contrast, in the presence of dynasore, TSH

induced only a partial depolymerization in the central cellular

compartment (Figure 16A) and failed to induce depolymerization

in lamellipodia, which showed an even thicker actin mesh

compared to that of control cells (Figure 16B).

The PKA-substrate vasodilator-stimulated phosphoprotein

(VASP) is a key effector of cAMP in the reorganization of actin

cytoskeleton [54,55]. VASP is concentrated at actin hot spots

(lamellipodia, filopodia, cell–substrate, and cell–cell contacts) where

it regulates the polymerization and branching of actin filaments.

Importantly, its function is regulated by PKA via phosphorylation at

Ser 157 [54,55]. We therefore investigated whether VASP was

phosphorylated in response to TSH stimulation in thyroid cells and

the possible consequences of TSH receptor internalization on this

pathway. VASP phosphorylation was evaluated by Western blot

analysis, both by monitoring the intensity of the slower migrating

band detected by a VASP antibody and by utilizing an antibody

specific for VASP phosphorylated at Ser 157. In the absence of

endocytosis inhibitors, TSH caused a 2-fold induction of VASP

phosphorylation. However, pretreatment with endocytosis inhibi-

tors caused a substantial reduction of VASP phosphorylation in

response to TSH (Figures 16C and S12).

To confirm the possible involvement of VASP in the control of

actin polymerization in thyroid cells, we examined its subcellular

localization by immunofluorescence. As observed in other cells in

which VASP regulates actin polymerization, VASP was concen-

trated at the ends of actin filaments (Figure 16D).

Finally, we evaluated whether blocking TSH receptor internal-

ization also altered the spatial pattern of VASP phosphorylation by

PKA. To this end, we stimulated thyroid cells with TSH alone or

in the presence of dynasore, and visualized VASP phosphorylated

at Ser 157 by immunofluorescence (Figure 16E). In the absence of

dynasore, TSH caused a robust increase of VASP phosphorylation

throughout the cell. In particular, phosphorylated VASP coloca-

lized with spots of depolymerized actin in the central cellular

compartment. By contrast, only a minor induction of VASP

phosphorylation and no spots of phosphorylated VASP in the

central cellular compartment were observed in the presence of

dynasore (Figure 16E). As a control, the generalized depolymer-

ization of actin and the pattern of VASP phosphorylation induced

by forskolin were not modified by dynasore (Figure 16F).

Taken together, these results suggest that TSH receptor

internalization not only modifies the temporal dynamics of cAMP

signaling by leading to persistent cAMP production, but may also

affect the intensity and the spatial patterning of downstream signals.

Discussion

The conventional model of GPCR signaling is based on the

central concept that signaling to second messengers such as cAMP

is taking place only at the cell plasma membrane [1]. The role

assigned to receptor internalization is essentially to reduce the

number of GPCRs present on the cell surface, thus contributing to

signal desensitization, or to bring the receptors to an intracellular

site for dephosphorylation and resensitization [1,2,56]. Whatever

the fate of the internalized GPCRs, they are thought to stop

Figure 14. Cell fractionation experiments. The plasma membrane
and the intracellular fractions of FRTL5 cells were obtained by
separation with concanavalin A-coated magnetic beads. (A) Western
blot analysis of subcellular markers in the obtained fractions. The
following markers were used: Na+/K+ATPase for the plasma membrane,
the early endosome antigen 1 (EEA1) for early endosomes, and Golgi
58K for the Golgi complex. 1, total homogenate. 2, first eluate from the
magnetic beads, corresponding to the plasma membrane fraction. 3,
postnuclear supernatant. 4, second eluate from the magnetic beads. 5,
intracellular fraction. (B) Western blot for Gas and adenylyl cyclase III (AC
III) in the same fractions as in (A). (C) Effect of TSH stimulation on
adenylyl cyclase activity in the subcellular fractions. FRTL5 cells were
starved for 24 h in medium without TSH and either stimulated with
30 U/l TSH for 30 min or mock stimulated (control), followed by cell
fractionation with concanavalin A-coated magnetic beads. The adenylyl
cyclase activity in the plasma membrane and intracellular fractions was
then determined in the absence of stimuli (2) or in the presence of
either 30 U/l TSH (+TSH) or 10 mM forskolin. The results were
normalized for the maximal adenylyl cyclase activity measured in the
presence of forskolin. Shown are the data from three independent
experiments. Error bars indicate SEM.
doi:10.1371/journal.pbio.1000172.g014
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Figure 15. Mathematical model of the GPCR-cAMP signaling pathway. A model of spatial partial differential equations was generated to
simulate the temporal and spatial dynamics of GPCR signaling. (A) Schematic illustration of the basic model. The receptor, G-proteins, and adenylyl
cyclase are placed on the plasma membrane, whereas ATP, cAMP, and PDE4 are freely diffusing in the cytosol. PKA is cytosolic, but nondiffusing. (B)
Model with the addition of an intracellular signaling compartment (ICSC). To simulate GPCR-cAMP signaling from an ICSC, we placed G-proteins and
adenylyl cyclase also on an intracellular membrane and simulated the internalization of both GPCR and ligand to this compartment. (C) Results of
simulations. A cell was transiently stimulated by application and removal of the ligand from the extracellular compartment. In a first simulation in
which signaling from the ICSC was not implemented (no ICSC), the cAMP response was completely reversible. On the contrary, inclusion of the ICSC
in the model lead to sustained cAMP production. Also note the different levels and spatial patterns of PKA activation predicted in the presence or
absence of the ICSC.
doi:10.1371/journal.pbio.1000172.g015
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signaling to second messengers once inside the cell. Here, we

provide evidence that a GPCR continues to stimulate cAMP

production after internalization. cAMP signaling by internalized

receptors appears to be different from that occurring at the plasma

membrane, as it is of a sustained nature and leads to a different

pattern of downstream signals.

Although the biochemical steps involved in GPCR signaling are

known in detail, their location in space and time in living cells is

Figure 16. Effect of endocytosis inhibition on downstream signaling. (A and B) Actin depolymerization in response to TSH. Mouse primary
thyroid cells were preincubated with normal medium or medium plus 80 mM dynasore for 20 min and stimulated with 30 U/l TSH for an additional
20 min in the presence or absence of dynasore as indicated. Cells were then fixed, and actin was stained with fluorescent phalloidin. Note that
dynasore largely prevented the depolymerization of actin in response to TSH. (B) High-magnification images of actin rearrangement in lamellipodia,
where the effect of dynasore was more pronounced. (C) VASP phosphorylation. Primary mouse thyroid cells were preincubated with normal medium
or medium plus 80 mM dynasore for 20 min. Cells were then stimulated with 1 U/l TSH for 30 min, in the presence or absence of dynasore as
indicated. Levels of P-VASP (Ser 157) and total VASP were evaluated by Western blot analysis. Shown are the mean P-VASP levels of three
independent experiments. Error bars indicate SEM. (D) Subcellular localization of VASP. Mouse primary thyroid cells were labeled by
immunofluorescence with an antibody against total VASP (red) together with fluorescent phalloidin to stain actin (green). Shown is a merged
fluorescent image. VASP is typically located at the ends of actin filaments. (E) Pattern of VASP phosphorylation in response to TSH. Mouse primary
thyroid cells were preincubated and stimulated with TSH in the presence or absence of dynasore as explained above. Cells were then labeled by
immunofluorescence with an antibody against VASP phosphorylated at Ser 157 (red) together with fluorescent phalloidin to stain actin (green). Note
the appearance of spots containing phosphorylated VASP and actin in the central cellular compartment only in the absence of dynasore. (F) Actin
depolymerization and pattern of VASP phosphorylation in response to forskolin. Cells were treated as in (E), with the exception that instead of TSH,
they were stimulated with 10 mM forskolin. Note a similar degree of actin depolymerization and a similar pattern of VASP phosphorylation both in the
presence and in the absence of dynasore. Images in (A and B) and (D–F) are representative of at least three independent experiments.
doi:10.1371/journal.pbio.1000172.g016
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poorly understood. This represents a major drawback, as there is

emerging evidence that signaling cascades are highly organized in

space and time, and intrinsically dynamic [20]. On such a basis,

there is an urgent need to develop new tools and techniques to

monitor signaling events with submicrometer resolution and fast

temporal dynamics. Recently, the application of FRET to color

variants of Aequorea victoria GFP has allowed the development of a

toolbox of genetically encoded sensors to observe intracellular

signaling events in real time. Several sensors have been described

that exhibit FRET changes on exposure to cAMP [57]. A sensor

based on the dissociation of the PKA subunits was first described

by Adams et al. (using rhodamine and fluorescein as fluorophores)

[58] and later modified by Zaccolo and colleagues to be genetically

encoded by substituting rhodamine and fluorescein with GFP

variants [12,13]. This sensor has led to major insights into the

biology of cAMP [13,25,59–61]. We have recently described

another type of sensors, including Epac1-camps, that are based on

a single cAMP-binding domain derived from cAMP-binding

proteins [14,26]. These sensors, being based on a cAMP-binding

domain alone and not on the entire protein, are devoid of any

signaling activity. Therefore, they are extremely well tolerated and

are expected not to alter the functions of the cell [57]. This is

probably why the CAG-Epac1-camps mice are viable and healthy,

whereas attempts to create genetically modified organisms with

ubiquitous expression of PKA-based sensors have so far been

unsuccessful [62,63].

The newly generated cAMP reporter mice were used to monitor

GPCR signaling in living cells. A major strength of our study was

the use of a highly physiological system, i.e., 3-D thyroid follicles.

Thyroid follicles represent a unique model to study the

spatiotemporal dynamics of cAMP signaling because they

maintain the supracellular organization, size, and polarization

possessed by thyroid cells in vivo, and constitute a rare example of

cells that are under the strict control of a GPCR (the TSH

receptor) and of cAMP for virtually all their functions (e.g., thyroid

hormone production, cell proliferation) [27,28]. The conservation

of the original cellular architecture of thyroid tissue is reflected by

the high degree of spatial organization of the TSH receptor-cAMP

signaling cascade: the TSH receptor is expressed on the

basolateral membrane; upon binding of TSH, cAMP produced

at the basolateral membrane diffuses through the cytosol to

activate cytosolic PKA I and PKA II, mainly located in the Golgi

complex; PKAs in turn phosphorylate targets localized in different

cellular compartments (e.g., cytosol, nucleus, as well as apical and

basolateral membranes) [27,28,64–66]. The maintenance of the

original cellular size and shape is of fundamental importance, as

modifications of these parameters are expected to alter the

properties of signaling cascades, including the shape of the

gradients of cAMP and other soluble messengers [20–22]. Another

advantage of thyroid follicles is that they already express all the

required signaling machinery at endogenous levels. Here, we

describe a method to directly visualize cAMP signaling in thyroid

follicles, thus allowing, for the first time to our knowledge, a

precise monitoring of the kinetics of a GPCR-cAMP signaling

cascade, at endogenous levels of expression and in its native

multicellular functional unit. We believe that this represents a

major step towards depicting signaling pathways in their natural

context.

By monitoring cAMP signaling and receptor internalization, we

obtained a series of unexpected findings. First, the TSH receptor

internalizes rapidly and consistently into a pre-Golgi compartment

in close association with Gas and adenylyl cyclase III. Second, the

robust internalization of the TSH receptor is not associated with

any appreciable desensitization of the cAMP signal. Third,

prolonged TSH receptor stimulation leads to a sustained

production of cAMP; by contrast, short stimuli are completely

reversible. Fourth, blocking receptor internalization can prevent

the irreversibility of cAMP signals. Fifth, TSH receptor internal-

ization is required to ensure a normal pattern of actin

rearrangement and VASP phosphorylation downstream of cAMP.

On the basis of these findings, we suggest that the TSH receptor

continues to signal to adenylyl cyclase after internalization, and

that the location of TSH receptor-cAMP signaling affects the

spatial patterns of the downstream signals.

The consequences of GPCR signaling from inside the cell

appear to be multiple, as anticipated by Miaczynska et al. [4].

First, sustained cAMP production from internalized receptors may

provide a memory mechanism, allowing thyroid cells to maintain

constant thyroid hormone production in the presence of

fluctuations in plasma TSH concentration. Indeed, TSH release

from the pituitary follows a circadian rhythm, with a zenith in the

first hours of the morning, but those fluctuations are not associated

with a change in the production of thyroid hormones [67].

Additionally, intracellular membranes may provide specialized

platforms for signal compartmentalization. This is the case of

MAPK activation by GPCRs, which appears to happen selectively

on endosomes [7], and of tyrosine kinase receptors that activate a

distinct subset of substrates once inside the cell [3–6]. In the case of

cAMP signaling, internalized receptors appear to be more

efficiently coupled to PKA, as suggested by the effect of

endocytosis inhibitors on VASP phosphorylation. This could be

explained if the receptors need to be brought close to an

intracellular pool of PKA for efficient kinase activation and/or

VASP phosphorylation.

The existence of spatial microdomains of cAMP signaling inside

the cell has been debated for years. Unlike Ca++, whose apparent

diffusion is limited by the high buffering capacity of cytosolic

proteins [68,69], measurement of cAMP diffusion gave values in

the range of 270–780 mm2/s, i.e., as fast as would be expected in a

simple electrolyte solution [70,71]. For this reason, cAMP has

been traditionally considered a far-reaching messenger, capable of

crossing the whole cell to convey the information generated at the

plasma membrane. Although this might be the case in certain

circumstances, as for example, in the case of long-term facilitation

in Aplysia sensory neurons [72], it is difficult to reconcile the free

diffusion of cAMP with the high spatial organization of the cAMP

signaling cascade (adenylyl cyclases, PKAs, AKAPs, PDEs, etc.)

[11,57,59,72–78]. This paradox has been partially resolved by

recent reports of restricted cAMP diffusion. A striated pattern of

cAMP signaling has been observed in cardiomyocytes with a

genetically encoded PKA-based sensor [13]. In addition, a study

by our group has revealed that in these cells, b1-adrenergic

receptors produce generalized cAMP responses, whereas b2-

adrenergic receptors generate locally confined signals [26].

Furthermore, the existence of cAMP microdomains is supported

by a body of indirect evidence [15,59,75,79–86], and the

formation of cAMP gradients is predicted on the basis of the

spatial segregation of adenylyl cyclases on the membrane and

PDEs in the cytosol [20,22,87]. Recent calculations suggest that

such gradients may have a length of 2.5–4 mm [22]. If this is

indeed the case, signals originating near the plasma membrane

could hardly reach deep inside the cell. In this perspective, GPCR-

cAMP signaling from intracellular sites might provide a new basis

to explain the activation of distant targets and the specific effects

observed with different types of activation.

In an attempt to identify the intracellular compartment(s) where

sustained TSH receptor-cAMP signaling was occurring, we

analyzed the subcellular localization of the internalized TSH,
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Gas, and adenylyl cyclases by a combination of experimental

approaches. In agreement with previous observations [31], our

results indicate that TSH and its receptor are internalized rapidly

in endosomes. Later on, at least part of the internalized TSH is

found together with transferrin in perinuclear vesicles that

probably represent a recycling endosomal compartment. Interest-

ingly, some of these vesicles appear to contain also Gas and

adenylyl cyclases. Although we cannot exclude the possibility that

subdetectable levels of Gas may be present together with adenylyl

cyclases in early endosomes and that TSH receptor-cAMP

signaling might be taking place also in this compartment, those

perinuclear vesicles that simultaneously contain TSH, Gas, and

adenylyl cyclases are the most likely candidates to be the

intracellular sites of TSH receptor-cAMP signaling. An interesting

aspect that emerges from our experiments and that should be

taken into consideration is the highly dynamic nature of the

intracellular structures where the internalized TSH, adenylyl

cyclases, and Gas are present. These compartments appear in fact

highly complex, sometimes having specialized subdomains that

prevalently contain one component and rapidly exchange their

contents by fusing to each other or through budding of new

vesicles. Additional studies, probably requiring the generation of

better antibodies and new tools to simultaneously monitor the

localization of the receptor, Gas and adenylyl cyclases in real time,

are needed to further investigate the microscopic anatomy and the

dynamic nature of the intracellular cAMP signaling compart-

ment(s).

In summary, our data show that GPCR signaling in a

physiological setting may be more complex than current

knowledge, based mostly on studies with transfected cells, suggests.

In particular, the subcellular localization of GPCRs, either on the

plasma membrane or intracellular, appears to be an important

parameter affecting the duration and the spatial pattern of

downstream signals. These findings may lead to reconsidering

the current model of GPCR signaling and suggest new and

intriguing scenarios on the function of GPCRs inside the cell.

Materials and Methods

Ethics Statement
All animal work was done according to the regulations and with

the permission of the government of Lower Franconia.

Materials and Reagents
Cell culture media and reagents were from Pan Biotech. Glass-

bottom Petri dishes were from World Precision Instruments.

Collagen and dispase were from Roche Diagnostics. Bovine TSH

(bTSH), dynasore, the mouse monoclonal antibody against Golgi

58K protein, the cAMP enzyme immunoassay kit (CA200), and

alumina WN-6 columns were from Sigma-Aldrich; 7-deacetyl-7-

[O-(N-methylpiperazino)-c-butyryl)]-forskolin (DMPB-forskolin)

was from Merck. Rabbit polyclonal antibodies against Gas,

adenylyl cyclase III, and adenylyl cyclase V/VI were from Santa

Cruz Biotechnology. Antibodies against Rab7 (mouse monoclo-

nal), Na+/K+ ATPase (mouse monoclonal), and EEA1 (rabbit

polyclonal) were from Abcam. Antibodies against VASP (rabbit

monoclonal) and P-VASP (Ser 157, rabbit polyclonal) were from

Cell Signaling Technology. Cy2-conjugated anti-rabbit and anti-

mouse polyclonal antibodies were from Jackson ImmunoResearch.

Collagenase I and II, Alexafluor488 and Alexafluor594 succini-

midyl esters, the Alexafluor594-conjugated goat anti-rabbit

polyclonal antibody, Alexafluor488-conjugated transferrin, Alexa-

fluor488-conjugated phalloidin, the rabbit anti-Alexafluor488

antibody, and Dynabeads Biotin Binder magnetic beads were

from Invitrogen. The goat anti-rabbit and anti-mouse antibodies

conjugated with horseradish peroxidase were from Amersham

Pharmacia Biotech and Millipore. The ECL detection kit was

from Amersham Pharmacia Biotech. Effectene transfection

reagent was from Qiagen. Biotinylated concanavalin A was from

Vector Laboratories. [a-32P]ATP was from PerkinElmer Life

Sciences. All other reagents were from Sigma-Aldrich.

Generation and Characterization of Transgenic Mice
To generate transgenic cAMP-sensor mice, we followed the

strategy used for GFP mice [23]. FVB one-cell embryos were

injected by standard procedures with a genetic construct in which

the sensor sequence was inserted between the CAG promoter and

the rabbit b-globin polyadenylation signal (See Figure 1A). The

original pCAGGS expression vector has been described and

provided by J. Miyazaki [88]. The screening of pups for transgene

insertion was performed by PCR analysis as previously described

[26]. Three transgenic lines were obtained that showed different

levels of fluorescence. The line with the highest expression was

used for further experiments. Mice and freshly isolated organs

were imaged with a Leica macroFluo (Z6APO-A) microscope,

using the YFP emission filter.

Cell Culture
Mouse thyroid follicles were isolated according to a previously

published protocol [30], with minor modifications. Thyroid lobes

were dissected from 1–2 mo-old mice. The lobes were collected in

a 1.5-ml microcentrifuge tube, containing 1 ml of digestion

medium, which consisted of 100 U/ml collagenase I, 100 U/ml

collagenase II, and 1 U/ml dispase, dissolved in Dulbecco’s

modified Eagle’s medium (DMEM)/F-12. Enzymatic digestion

was carried out for 1 h in a 37uC water bath, with manual shaking

every 15 min. After digestion, isolated individual follicles were

washed three times with culture medium and plated on glass-

bottom 35-mm Petri dishes, coated with a thin layer of collagen

gel. The collagen gel was prepared by spreading 8 ml of a collagen

solution (3 mg/ml in 0.2% acetic acid) onto the glass surface,

followed by addition of a neutralizing solution (0.4 M NaHCO3,

0.2 M HEPES [pH 7.4]). For the culture of individual thyroid

cells, follicles isolated from two to three mice were seeded in a 100-

mm culture dish and grown to confluence in a monolayer for 3–

4 d. They were then completely dissociated to single cells with

trypsin (0.25%)-EDTA (0.02%) and plated on 24-mm glass

coverslips. Follicles and isolated thyroid cells were maintained in

DMEM/F-12+20% FCS (37uC, 5% CO2).

FRTL5 cells were cultured in Coon’s modified Ham’s F12

medium supplemented with 5% FCS, 1% penicillin, 1%

streptomycin, and a mixture of five hormones, and bTSH (6H)

as previously described [89]. Twenty-four hours before the cell

fractionation and adenylyl cyclase assay experiments, FRTL5 cells

were switched to complete medium without bTSH (5H).

Primary mouse embryonic fibroblasts (MEFs) and cortical

neurons were isolated from embryonic day (E) 14.5 transgenic

embryos as previously described [14,90]. Cortices were dissociated

with trypsin and cells were plated onto poly-D-lysine-coated glass

coverslips in the serum-free Neurobasal-A medium containing B-

27 supplement, 0.5 mM L-glutamine, antibiotics, and 25 mM

glutamate. Twenty-four hours later, the medium was changed to

glutamate-free. Experiments were performed 2 d after plating.

MEF isolation was performed using standard trypsin digestion of

the embryos with subsequent plating on glass coverslips in DMEM

medium containing 10% FCS, 2 mM L-glutamine, and antibiotics.

Imaging experiments were performed 24 h after the isolation.

Adult cardiac myocytes were isolated and measured 2–5 h after
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isolation as described [26]. Peritoneal macrophages were isolated

as described [14] and maintained for 24 h in DMEM medium

containing 10% FCS, 2 mM L-glutamine, and antibiotics.

Experiments were performed 24–48 h after the isolation. Cos-7

and HEK293 cells were cultured in DMEM+10% FCS.

TSH Labeling
TSH labeling was performed with Alexafluor488 or Alexa-

fluor594 succinimidyl esters, following the manufacturer’s proto-

col. Briefly, 5 mg of bTSH were dissolved in 0.5 ml of 0.1 M

NaHCO3 buffer (pH 8.3). Then, 0.5 mg of either reactive dye

dissolved in DMSO was added to the tube while vortexing, and

the reaction was incubated for 1 h at room temperature with

continuous stirring. The protein conjugates were separated from

the unreacted dyes by gel filtration on Sephadex G25 columns.

The concentration of TSH-Alexafluor488 and TSH-Alexa-

fluor594 in the collected fractions was about 1 mg/ml. The

degree of labeling was typically of one to two fluorescent moieties

per molecule of TSH. After labeling, the TSH preparations were

immediately aliquoted and stored at 220uC.

Determination of cAMP Levels
Cos-7 cells were transfected with human TSH receptor cDNA

or control empty vector by the diethylaminoethy-dextran method

followed by a dimethylsulfoxide shock. Two days after transfec-

tion, the cells were used for cAMP determinations and flow

immunocytofluorimetry to evaluate the transfection efficiency. For

cAMP determinations, culture medium was replaced with Krebs-

Ringer-HEPES buffer (KRH) for 30 min. Thereafter, the cells

were incubated for 60 min in fresh KRH supplemented with

25 mM rolipram and various concentrations of labeled or

unlabeled bTSH. At the end of the 1-h incubation, the medium

was discarded and samples were extracted with 0.1 M HCl. The

cell extracts were dried in a vacuum concentrator, resuspended in

water, and diluted appropriately for cAMP evaluation by

radioimmunoassay, utilizing standard procedures. cAMP levels

in primary thyroid cells were measured with a commercial ELISA

(CA200; Sigma-Aldrich), following the manufacturer’s protocol.

Evaluation of TSH-Alexa594 Specific Binding
HEK293 cells were plated on 24-mm round glass coverslips and

transfected with human TSH receptor cDNA or control empty

vector by Effectene, following the manufacturer’s protocol. After

48 h, the medium was replaced with a buffer containing 144 mM

NaCl, 5.4 mM KCl, 2 mM CaCl2, 1 mM MgCl2, 20 mM

HEPES, 1% BSA (pH 7.3) and treated with 3 mg/ml TSH-

Alexa594. In addition, the specific binding of TSH-Alexa594 was

confirmed in primary mouse thyroid cells by competition with a

100-fold molar excess of unlabeled TSH (unpublished data). TSH-

Alexa594 bound to cells was visualized by TIRF microscopy.

FRET Measurements and Cell Imaging
For fluorescent microscopy, glass-bottom Petri dishes or glass

coverslips mounted in an experimental chamber were placed on a

Zeiss Axiovert 200 inverted microscope equipped with an oil-

immersion 636 objective, a polychrome IV light source (Till

Photonics), a 505 DCXR beam splitter, and a CoolSNAP-HQ

CCD-camera (Visitron Systems). FRET was monitored using

MetaFluor 5.0 software (Molecular Devices) as the ratio between

emission at 535620 nm (YFP) and emission at 480615 nm (CFP),

upon excitation at 436610 nm. The imaging data were analyzed

utilizing MetaMorph 5.0 (Molecular Devices) and Prism (GraphPad

Software) software, by correcting for spillover of CFP into the 535-

nm channel and direct YFP-excitation, to give corrected YFP/CFP

ratio data. Images were acquired every 5 s, with 5-ms illumination

time, which resulted in negligible photobleaching for over 30-min

observation. To study agonist-induced changes in FRET, cells and

thyroid follicles were continuously superfused with phenol red–free

medium containing 1% BSA or the same plus agonists and/or

endocytosis inhibitors, with a custom apparatus. All experiments

were performed at 37uC. Confocal images were acquired with a

Leica SP5 confocal microscope (Leica). To visualize TSH-

Alexa594, fixed cells were excited with a 594-nm laser line, and

images were acquired with a high-sensitivity APD detector. TIRF

images were acquired with a Leica AM TIRF microscope, equipped

with 488- and 561-nm laser lines and a fast high-sensitivity EM-

CCD camera (Cascade 512B). Confocal and TIRF images were

analyzed with ImageJ (U. S. National Institutes of Health, http://

rsb.info.nih.gov/ij/, 1997–2007). AVI Videos were compressed

with the Cinepak codec (Radius).

Immunofluorescence and BODIPY-Forskolin Labeling
Cells were plated on 24-mm glass coverslips, washed with PBS

and fixed with 4% paraformaldehyde for 15 min at room

temperature. Cells were then permeabilized with PBS+0.1%

Triton X-100 for 3 min at room temperature, blocked with

PBS+5% goat serum for 1 h at room temperature, incubated with

the indicated primary antibodies overnight at 4uC and incubated

with the appropriate secondary antibodies for 2 h at room

temperature. Antibodies against Gas, adenylyl cyclase III, adenylyl

cyclase V/VI, Golgi 58K, VASP, and P-VASP were used at 1:50

dilution. The Rab7 antibody was used at 1:200 dilution. All

antibody solutions were prepared in PBS+5% goat serum.

Secondary antibodies were used at 1:400 (Cy2-conjugated goat

anti-rabbit and anti-mouse polyclonal antibodies) or 1:2,000

(Alexafluor594-conjugated goat anti-rabbit polyclonal antibody)

dilutions. The specificity of the immunofluorescent stainings was

evaluated by omitting the primary antibodies and by competition

with the peptides used to raise the primary antibodies (for Gas,

adenylyl cyclase III, and adenylyl cyclase V/VI). In addition, the

specificity of Gas immunofluorescence was evaluated by compar-

ing the localization of transfected Gas-YFP and Gas immuno-

staining in HEK293 cells (unpublished data). BODIPY-forskolin

labeling was performed by incubating the cells for 10 min at room

temperature with 100 nM BODIPY-forskolin dissolved in

PBS+1% BSA. Then, the cells were washed twice with PBS and

imaged immediately.

Actin Staining
Cells were plated on 24-mm glass coverslips, washed with PBS,

and then fixed with 4% paraformaldehyde for 10 min at room

temperature. Cells were then permeabilized with PBS+0.1%

Triton X-100 for 3 min at room temperature, blocked with

PBS+1% BSA for 1 h at room temperature, and incubated with

1 U of Alexafluor488-conjugated phalloidin for 20 min at room

temperature.

Electron Microscopy
Primary mouse thyroid cells were fixed with 2% paraformal-

dehyde and 0.2% glutaraldehyde in PBS for 1 h, embedded in

12% gelatin, and infiltrated with 2.3 M sucrose. Ultrathin

cryosections were obtained with a Reichert-Jung Ultracut E with

a FC4E cryoattachment and collected on copper-formvar-carbon-

coated grids. Immunogold labeling on ultrathin cryosections was

performed as previously described [91]. Briefly, the sections were

incubated with the rabbit anti-adenylyl cyclase III antibody or the

rabbit anti-Alexafluor488 antibody, followed by incubation with
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15-nm protein A-gold. Control sections were incubated with an

unrelated antibody or without primary antibodies. Very low levels

of labeling were detected in all control sections (unpublished data).

All samples were examined with a Philips CM10 or a Fei TECNAI

G12 electron microscope.

Preparation of Concanavalin A Magnetic Beads
Streptavidin magnetic beads (Dynabeads Biotin Binder) were

washed using a modification of the manufacturer’s protocol. Briefly,

600 ml of magnetic beads were placed in a 1.5-ml Eppendorf test

tube and were separated from the solution by placing the vial in

contact with a magnet. The supernatant was discarded by pipetting,

and the beads were washed with 1 ml of TBS buffer (150 mM

NaCl, 50 mM Tris-HCl [pH 7.4]) supplemented with 2 mM

EDTA and 1 mg/ml BSA, and resuspended in 600 ml of the same

buffer. Then, 60 ml of biotinylated concanavalin A (5 mg/ml) were

added, and the suspension was mixed in a rotor for 60 min at room

temperature to allow binding of biotinylated concanavalin A to

streptavidin. Finally, the beads were washed thrice with TBS buffer

supplemented with 2 mM EDTA and 1 mg/ml BSA, and

resuspended in 600 ml of homogenization buffer (HB: 250 mM

sucrose, 25 mM KCl, 2.5 mM Mg(OAc)2, 25 mM Hepes/KOH

[pH 7.4]) and stored at 4uC until use.

Cell Fractionation
The protocol for plasma membrane separation with concanav-

alin A immobilized on magnetic beads was based on the method

described by Lee et al. [47]. FRTL5 cells (20 100-mm Petri dishes

per condition) were stimulated with 30 U/l bTSH for 30 min at

37uC where indicated, and harvested by trypsinization. The

subsequent steps were performed at 4uC. First, FRTL5 cells were

washed once with 5H medium and twice with TBS, and

resuspended in HB. Then, the equivalent of 100 ml of concanav-

alin A beads for each Petri dish was added to the cell suspension,

and the samples were incubated for 30 min at 37uC under

continuous rotation. At the end of the first incubation, the cells

were lysed by gently passing them eight times through a 1-ml

syringe with a 26G needle, and the plasma membrane fraction

bound to the beads was separated with the help of a magnet.

Thereafter, the nuclei were sedimented by centrifuging the

samples at 8006g for 10 min at 4uC. The remaining postnuclear

supernatant was further purified by adding 100 ml of concanavalin

A beads for each Petri dish and repeating the incubation and the

magnetic separation procedure to give rise to a second bead-

bound fraction and to the final intracellular fraction. The beads

with the attached fractions were washed twice with HB

supplemented with 1 mg/ml BSA and twice with HB. For

Western blot experiments, the proteins bound to the magnetic

beads were eluted by resuspending the beads in SDS sample buffer

(2% SDS, 10% glycerol, 50 mM dithiothreitol, 0.01% bromophe-

nol blue, 62.5 mM Tris/HCl [pH 6.8]), incubating them at 60uC
for 10 min and removing the beads with the help of a magnet. For

adenylyl cyclase activity determinations, the beads with the

attached membrane fraction were resuspended in HB buffer and

used directly in the adenylyl cyclase assay.

Adenylyl Cyclase Assay
The determination of adenylyl cyclase activity was based on the

method originally described by Jakobs et al. [92,93]. Briefly,

300 mg of proteins were added to an incubation medium in a total

volume of 100 ml with final concentrations of 50 mM Tris/HCl

(pH 7.4), 300 mM sucrose, 100 mM cAMP, 10 mM GTP, 100 mM

ATP, 1.25 mM Mg(Ac)2, 100 mM IBMX, 0.2% BSA, 15 mM

creatine phosphate, and 0.4 mg/ml creatine kinase. Samples were

incubated with about 300,000 cpm of [a-32P]-ATP for 60 min in

the incubation medium. The reaction was stopped by addition of

400 ml of a 125 mM ZnAc solution and 500 ml of a 144 mM

Na2CO3 solution. Samples were centrifuged for 5 min at

14,000 rpm in a laboratory microcentrifuge. Finally, 800 ml of

the resulting supernatant were applied to alumina WN-6 columns

that were eluted twice with 2 ml of 100 mM Tris/HCl (pH 7.4).

The eluates were counted in a b-counter.

Analysis of VASP Phosphorylation
Primary mouse thyroid cells were seeded in six-well plates and

starved in serum-free medium for 4 h. Thereafter, the cells were

preincubated in serum-free medium plus/minus endocytosis

inhibitors and incubated at 37uC in the presence of 1 U/l bTSH

for 30 min. This concentration of TSH was chosen because it

elicited a robust phosphorylation of VASP, without causing the

VASP signal to be completely saturated. At the end of the

incubation, the cells were washed with PBS, lysed with SDS

sample buffer, and immediately heated for 5 min at 95uC. The

levels of VASP phosphorylation were evaluated by Western blot

analysis. Afterwards, the membranes were stripped and reprobed

with an antibody against total VASP.

Western Blot Analysis
Protein concentration was determined by BCA assay. Protein

extracts were electrophoresed on a 10% SDS polyacrylamide gel

and electro-transferred to a nitrocellulose membrane. Membranes

were blocked with TBS-T+3% milk, probed with the indicated

primary antibody overnight at 4uC, and incubated with the

appropriate horseradish peroxidase-conjugated secondary anti-

body for 1 h at room temperature. The following dilutions of

primary antibodies were used: anti-Na+/K+ ATPase 1:10,000,

anti-EEA1 1:400, anti-Golgi 58K 1:5,000, anti-Gas 1:10,000, and

anti-adenylyl cyclase III 1:10,000. Detection was performed

utilizing the ECL detection kit.

Simulations
Simulations were performed in the Virtual Cell modeling

environment [48–50]. The receptor was placed on the plasma

membrane. G-proteins and adenylyl cyclase were both on the

plasma membrane and on the membrane of the ICSC. ATP,

cAMP, PDE4, and PKA were cytosolic. In some instances, we

simulated the internalization of the receptor and its ligand to the

ICSC. We used the initial concentrations and diffusion coefficients

utilized by Neves et al. [21], which are mostly based on

experimentally determined values. Initial concentrations, dis-

played in units of molecules/mm2 for membrane components

and mM for cytosolic components, are provided in Table S1. For

those components not shown, the initial concentration was set at

zero. Reactions and kinetic parameters are shown in Table S2.

Spatial simulations were run using the regular grid, finite volume

solver. The geometric parameters used in the simulations are

provided in Table S3. The mean steady-state concentration of

cAMP, obtained by running the model in the absence of ligand

until all the components reached steady state, was used as the

initial concentration for subsequent simulations. A detailed

description of the mathematical model and the results of additional

simulations can be found in Text S1. The entire model,

parameters and geometries are available at http://vcell.org/.

Statistical Analysis
Values are expressed as mean6standard error of the mean

(SEM). Data normality was checked with the Kolmogorov-Smirnov
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test. Differences between means were assessed by two-tailed t-test

(for two groups) or one-way ANOVA followed by Bonferroni post

hoc test (for three or more groups). For analysis of signal

normalization after TSH washout, signal reversibility was calculated

from YFP/CFP ratio values by setting the minimum value equal to

zero and the value before TSH stimulation equal to 100%. The

values obtained from different replicates were globally fitted to a

first-order exponential function. Fits were compared by using F test,

having a null hypothesis that Ymax values were the same for all

datasets. Alternatively, data from each replicate were individually fit

to a first-order exponential function, and the obtained Ymax values

were compared by one-way ANOVA.

Supporting Information

Figure S1 Comparison of cAMP levels in thyroid cells
isolated from wild-type and transgenic mice. Primary

thyroid cells isolated from either wild-type or CAG-Epac1-camps

mice were starved overnight in medium without serum and

stimulated for 60 min with different concentrations of bTSH in

the presence of 750 mM IBMX. cAMP levels were determined

with an immunoenzymatic assay. Three biological replicates per

condition were used. Error bars indicate SEM.

Found at: doi:10.1371/journal.pbio.1000172.s001 (0.03 MB TIF)

Figure S2 cAMP reversibility after stimulation with a
forskolin analog. Primary mouse thyroid follicles were treated

with 7-deacetyl-7-[O-(N-methylpiperazino)-c-butyryl)]-forskolin

(DMPB-forskolin), a forskolin analog with improved water

solubility. Reported is a representative trace from a thyroid follicle

that was initially stimulated for 3 min and later on for 10 min.

Note that DMPB-forskolin produced cAMP increases comparable

to those obtained with TSH (for comparison, see Figure 5B–5D).

In contrast to what was observed with TSH, the signals produced

by DMPB-forskolin were completely reversible upon washout.

Data are representative of ten independent experiments.

Found at: doi:10.1371/journal.pbio.1000172.s002 (0.04 MB TIF)

Figure S3 Evaluation of the biological activity of TSH-
Alexa594. (A) Cos-7 cells were transfected with TSH receptor

cDNA and stimulated 48 h later with various concentrations of

either unlabeled TSH or TSH labeled with Alexafluor594. The

graph shows the levels of intracellular cAMP, measured by a

radioimmunoassay. Eight replicates for each point were used.

Error bars indicate SEM. (B) Binding of TSH-Alexa594 to

HEK293 cells expressing the TSH receptor. HEK293 cells were

transfected with either human TSH receptor cDNA or the empty

expression vector (control). Forty-eight hours after transfection, the

cells were stimulated with 3 mg/ml TSH-Alexa594 and visualized

by TIRF microscopy. The images were acquired 10 min after

addition of the fluorescent ligand. They are representative of 18–

20 cells per condition analyzed in three independent experiments.

Found at: doi:10.1371/journal.pbio.1000172.s003 (0.54 MB TIF)

Figure S4 Fluorescent TSH internalization in whole
thyroid follicles. Primary thyroid follicles obtained from

CAG-Epac1-camps mice were stimulated with 3 mg/ml TSH-

Alexa594 for 60 min, fixed, and then visualized by confocal

microscopy. To isolate the Alexa594 signal, the background

autofluorescence was subtracted from the image by spectral

unmixing. To this end, an additional reference image was

acquired at 405-nm excitation and 425–450-nm emission. This

reference image was multiplied by a correction factor (calculated

from the relative intensities of Alexa594 and of reference images of

unlabeled thyroid follicles) and subtracted from the Alexa594

image. Shown is the corrected Alexa594 image. Images are

representative of 15 follicles visualized in three independent

experiments.

Found at: doi:10.1371/journal.pbio.1000172.s004 (0.64 MB TIF)

Figure S5 Subcellular localization of Gas and adenylyl
cyclases in primary mouse thyroid cells. Cells were fixed

with 4% paraformaldehyde and stained with primary antibodies

against Gas, adenylyl cyclase III, or adenylyl cyclase V/VI. Shown

are low-magnification images acquired with a laser-scanning

confocal microscope. Images are representative of five indepen-

dent experiments.

Found at: doi:10.1371/journal.pbio.1000172.s005 (2.65 MB TIF)

Figure S6 Specificity of immunofluorescence for Gas

and adenylyl cyclases. The specificity of Gas, adenylyl cyclase

III, and adenylyl cyclase V/VI immunofluorescent stainings was

evaluated by preincubating the primary antibodies with a 5-fold

(by weight) excess of blocking peptides, followed by the standard

immunofluorescence procedure. Images are representative of three

independent experiments.

Found at: doi:10.1371/journal.pbio.1000172.s006 (2.90 MB TIF)

Figure S7 Immunogold labeling of internalized TSH (A–
C) and adenylyl cyclase III (D and E). Primary mouse thyroid

cells were stimulated with normal medium (A and D) or

medium+3 mg/ml TSH-Alexa488 (B, C, and E) for 30 min.

Representative images of the intracellular localization of TSH-

Alexa488 and adenylyl cyclase III are shown. (A–C) Immunogold

labeling with an antibody against Alexa488. No staining was

observed in cells that were not stimulated with TSH-Alexa488 (A).

By contrast, in cells that were stimulated with TSH-Alexa488 for

30 min, a positive immunogold staining was present in early and late

endosomes (B), as well as in denser vesicles probably representing a

degradative compartment (C). (D and E) Immunogold labeling with

an antibody against adenylyl cyclase III. Adenylyl cyclase III was

found occasionally on the plasma membrane and on small

subplasmalemmal vesicles (unpublished data), in the Golgi area (D)

and on endosomal membranes (E). Stimulation with TSH-Alexa488

appeared to just slightly modify the distribution of adenylyl cyclase

III, with a tendency towards a reduction in the Golgi area and an

increase in the endosomal compartment. Images are representative

of three independent experiments. Bars indicate (A) 0.16 mm, (B)

0.48 mm, (C) 0.17 mm, (D) 0.25 mm, and (E) 0.23 mm.

Found at: doi:10.1371/journal.pbio.1000172.s007 (2.26 MB TIF)

Figure S8 Effect of pH on TSH receptor-cAMP signal-
ing. Primary mouse thyroid follicles isolated from CAG-Epac1-

camps mice were preincubated for 20 min in medium adjusted to

the indicated pH values and then visualized by time-lapse

fluorescence microscopy. The cAMP response to TSH stimulation

was monitored as described above. Traces are representative of six

to eight independent experiments per condition.

Found at: doi:10.1371/journal.pbio.1000172.s008 (0.08 MB TIF)

Figure S9 Effect of varying the adenylyl cyclase density
on the ICSC membrane.

Found at: doi:10.1371/journal.pbio.1000172.s009 (0.09 MB TIF)

Figure S10 Effect of different ICSC geometries.

Found at: doi:10.1371/journal.pbio.1000172.s010 (0.27 MB TIF)

Figure S11 Effect of GPCR recycling.

Found at: doi:10.1371/journal.pbio.1000172.s011 (0.38 MB TIF)

Figure S12 Western blot analysis of VASP phosphoryla-
tion. Primary mouse thyroid cells were preincubated with normal

medium (c), medium plus 0.43 M sucrose (s) for 10 min, or

medium plus 80 mM dynasore (d) for 20 min. Cells were then
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stimulated with 1 U/l TSH for 30 min, in the presence or absence

of endocytosis inhibitors as indicated. Levels of P-VASP (Ser 157)

and total VASP were evaluated by Western blot analysis. The

experiment was performed three times with similar results. Shown

are the results of a representative experiment.

Found at: doi:10.1371/journal.pbio.1000172.s012 (0.10 MB TIF)

Table S1 Initial concentrations of components used in
the model.
Found at: doi:10.1371/journal.pbio.1000172.s013 (0.07 MB PDF)

Table S2 Reactions and kinetic parameters used in the
model.
Found at: doi:10.1371/journal.pbio.1000172.s014 (0.07 MB PDF)

Table S3 Geometric parameters used in the model.
Found at: doi:10.1371/journal.pbio.1000172.s015 (0.71 MB PDF)

Text S1 Detailed description of the mathematical
model.
Found at: doi:10.1371/journal.pbio.1000172.s016 (0.13 MB PDF)

Video S1 3-D reconstruction of a primary mouse
thyroid follicle isolated form CAG-Epac1-camps mice.
A stack of YFP images on the z-axis was acquired with a laser-

scanning confocal microscope. The 3-D reconstruction was

performed with ImageJ software. The video shows a 360u rotation

on the y-axis.

Found at: doi:10.1371/journal.pbio.1000172.s017 (1.07 MB AVI)

Video S2 Sequence of YFP/CFP ratio images of a
thyroid follicle stimulated with 100 U/l TSH and
10 mM forskolin. The video shows the entire sequence from

which the frames reported in Figure 4A were derived. Time

between frames was 5 s. Playback is accelerated (ten frames/

second).

Found at: doi:10.1371/journal.pbio.1000172.s018 (3.71 MB AVI)

Video S3 Dynamic visualization of internalized TSH-
Alexa594. Primary mouse thyroid cells were stimulated with

3 mg/ml TSH-Alexa594 for 20 min. After a rapid wash with fresh

medium, TSH-Alexa594 fluorescence was visualized with a TIRF

microscope set to have a high penetration depth. The video shows

the entire sequence from which the frames reported in Figure 9

were derived. Time between frames was 1 s. Playback is

accelerated (ten frames/second).

Found at: doi:10.1371/journal.pbio.1000172.s019 (5.81 MB AVI)

Video S4 A 360u rotation on the x-axis of the 3-D
reconstruction in Figure 11A.
Found at: doi:10.1371/journal.pbio.1000172.s020 (0.35 MB AVI)

Video S5 A 360u rotation on the x-axis of the 3-D
reconstruction in Figure 11C.
Found at: doi:10.1371/journal.pbio.1000172.s021 (0.26 MB AVI)

Video S6 Dynamic visualization of internalized TSH-
Alexa594 and adenylyl cyclases. Primary mouse thyroid cells

were stimulated with 3 mg/ml TSH-Alexa594 for 20 min,

followed by staining with BODIPY-forskolin. TSH-Alexa594

fluorescence was visualized with a TIRF microscope set to have

a high penetration depth. Data are representative of 20 cells

analyzed in three independent experiments. Time between frames

was 10 s. Playback is accelerated (four frames/second).

Found at: doi:10.1371/journal.pbio.1000172.s022 (0.16 MB AVI)

Video S7 Effect of hypertonic sucrose on TSH-Alexa594
internalization. Primary mouse thyroid cells were preincubated

with 0.43 M sucrose for 10 min and stimulated with 3 mg/ml

TSH-Alexa 594 for 20 min in the presence of 0.43 M sucrose.

After a rapid wash with fresh medium, TSH-Alexa594 fluores-

cence was visualized with a TIRF microscope set to have a high

penetration depth. Data are representative of 18 cells analyzed in

three independent experiments. Time between frames was 10 s.

Playback is accelerated (one frame/second).

Found at: doi:10.1371/journal.pbio.1000172.s023 (0.85 MB AVI)

Video S8 Control for Videos S7 and S9. Primary mouse

thyroid cells were stimulated with 3 mg/ml TSH-Alexa594 in the

absence of endocytosis inhibitors. After a rapid wash with fresh

medium, TSH-Alexa594 fluorescence was visualized with a TIRF

microscope set to have a high penetration depth. Data are

representative of 21 cells analyzed in three independent experi-

ments. Time between frames was 10 s. Playback is accelerated

(one frame/second).

Found at: doi:10.1371/journal.pbio.1000172.s024 (1.38 MB AVI)

Video S9 Effect of dynasore on TSH-Alexa594 internal-
ization. Primary mouse thyroid cells were preincubated with

80 mM dynasore for 20 min and stimulated with 3 mg/ml TSH-

Alexa594 for 20 min, in the presence of 80 mM dynasore. After a

rapid wash with fresh medium, TSH-Alexa594 fluorescence was

visualized with a TIRF microscope set to have a high penetration

depth. Data are representative of 25 cells analyzed in three

independent experiments. Time between frames was 10 s.

Playback is accelerated (one frame/second).

Found at: doi:10.1371/journal.pbio.1000172.s025 (0.51 MB AVI)
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