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Introduction

The study of elliptic curves dates back to ancient Greece. As mathematics
evolved through the centuries, so did the study of such curves, which now pro-
vides one of the best examples where different branches of mathematics coexist,
in particular geometry and number theory.
From the number theoretical point of view, an elliptic curve (E, e) is a genus
one curve E defined over an arbitrary field k, where a rational point e has been
chosen. Thanks to the presence of this point, one can find an isomorphism with
a cubic curve in P2

k, which will be called the Weierstrass model of E. The set
E(k) of k-rational points, which is actually a group, is called the Mordell–Weil
group of E. In the case k = C(t) is the function field of P1

C, we can give to an
elliptic curve a more geometrical description, and in general when k = C(B) is
the function field of a smooth curve.
An elliptic surface is a surface X with a morphism π : X −→ B onto a smooth
curve and with a section: its generic fibre is then an elliptic curve over C(B),
providing then the link I told about in the previous paragraph. A study of this
class of surfaces can be found in [Kod63], where one of the most important re-
sults in the theory of elliptic surfaces, and elliptic fibrations in general, is proved:
Kodaira’s theorem classifying all the possible singular fibres. This theorem is
important for two reasons: first of all because it gives a full answer on the prob-
lem of classification, and second because joint with Tate’s algorithm [Tat75] it
gives a practical tool to distinguish between the different singular fibres in the
list.
Another important result in this area is the Shioda–Tate formula [Shi90, Cor.
5.3] for computing the rank of the Mordell–Weil group of an elliptic surface.
In fact, it’s possible to define an analogue of the Mordell–Weil group of elliptic
curves, which is isomorphic to the Mordell–Weil group of the generic fibre of
the fibration, in terms of the fibration π and its sections. The formula relates
then the geometric properties of the fibration, and in particular of its singular
fibres, to this arithmetical object.
The case of elliptic threefolds, i.e. of morphisms π : X −→ B where now X has
dimension 3, shares many aspects with the elliptic surfaces, but is however very
different. Many of the definitions one gives for the surfaces still work for the
threefolds, but the precise results stated before may fail to have an analogue in
this higher dimensional case.
This is not the case for the Shioda–Tate formula, which holds in great general-
ity thanks to a generalization due to Wazir ([Waz04]). On the contrary, up to
now there is no analogue of Kodaira’s theorem and Tate’s algorithm for elliptic
threefolds which predicts the type of a singular fibre over any point of the base.
I want to be precise, and justify this last statement: both in the cases of sur-
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faces and threefolds, the locus in the base where we have singular fibres (the so
called discriminant locus) has codimension one, and so it’s possible to use the
machinery for surfaces to find the type of singular fibres one has over the generic
point of the irreducible components of the discriminant. In the case of surfaces,
the base is a curve and so the discriminant is a finite number of distinct points,
hence we have a precise description of each singular fibres; but in the threefold
case the discriminant locus has dimension 1 and so it’s possible that over some
points the singular fibres change, becoming even of non-Kodaira type. Up to
now (and to my knowledge) there is no way to determine a priori the type of
these possible new fibres, nor a complete classification: this is the reason why
the study of non-Kodaira fibres captures the interest of many people (see e.g.
[Mir83], [EY], [EFY] and [GM12]).
The main problem sits in the theory of resolutions of singularities, which is well
understood in the case of surfaces, but still incomplete in higher dimension. In
the thesis I will show that not every genus 1 curve can be a fibre in an elliptic
threefold: using the theory of threefold rational Gorenstein singularities I will
prove that the possible non-Kodaira fibres of an elliptic threefold are contrac-
tion of Kodaira fibres.
Physics, and in particular string theory, gives another motivation for study-
ing elliptic fibrations (in particular elliptic threefolds and fourfolds). In [Vaf96],
[MV96a] and [MV96b] the study of F -theory (i.e. elliptically fibered varieties)
was proposed as a part of string theory where Calabi–Yau elliptic fibrations
play a crucial role. To give a physically consistent phenomenology, they showed
that the fibrations must have further properties, one of them is that the total
space is a Calabi–Yau manifold. For this reason the study of elliptically fibered
Calabi–Yau manifolds grew, especially when these varieties are embedded as
anticanonical hypersurfaces in some toric Gorenstein Fano ambient space. The
reason for this last requirement is that toric varieties are a particularly large
but relatively simple class of varieties, which can be studied by means of com-
binatorics in a very efficient way, especially when they are Fano.

For these reasons (and for personal interest), in the following I will study
Calabi–Yau elliptic threefolds, stressing the points where the theory for three-
folds differs from the one for surfaces. In particular, the elliptic fibrations I will
describe are anticanonical hypersurfaces in a projective bundle over a surface B
of the form P(La ⊗ Lb ⊗ OB) for L an ample line bundle on B. Observe that
even in the case where the base B is toric, e.g. B = P2 which is a case I will
analyse in great detail, the ambient bundle is typically not Fano, but also in
this case it’s possible to study these hypersurfaces by exploiting toric geometry.

In Chapter 1 I will give the basic definitions of elliptic fibration with section,
of its Weierstrass model and Mordell–Weil group. I will also explain some of
their properties, which I will use in the sequel, but since all of this material is
well known, proofs will be omitted and are replaced with suitable references. I
will also describe Tate’s algorithm and illustrate with some examples that the
presence of non-Kodaira fibres is quite common in the case of threefolds. All
the examples and the varieties involved in this chapter and in all the other are
defined over the complex numbers.
In Chapter 2 I will give a brief description of the singularities of the Weierstrass
model of an elliptic fibration. In the case of threefolds I will use the work of Reid
on canonical singularities ([Rei80], [Rei83] and [Rei87]) to show a necessary con-
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dition that must be satisfied by the discriminant locus of an elliptic fibration on
a smooth threefold. This is important since one of the most common ways to
produce new examples of elliptic fibrations is to start with a singular fibration
defined by a simple equation (e.g. a singular Weierstrass fibration) and then try
to resolve it in a way that is compatible with the fibration. In particular, in
Theorem 2.7 I will prove that the non-Kodaira fibres of elliptic threefolds are
contraction of Kodaira fibres.
Chapter 3 is devoted to a survey of Calabi–Yau manifolds and the properties I
will use in the sequel.
In Chapter 4, I will introduce the anticanonical subvarieties of the P2-bundle
Z = P(La⊗Lb⊗OB) over a surface B. The generic such hypersurface is a fibra-
tion in curves of genus 1 over B, but there are two important things to keep in
mind. The first is that it’s not a priori clear if these varieties are smooth or not,
and the second is that we have to find at least one section for them. Requiring
the smoothness of the generic anticanonical subvariety has as effect to reduce
the possible values for the pair (a, b) (the exponents in the definition of the
P2-bundle Z) to only a finite number of cases. I will then determine these pairs
in the cases where B is a del Pezzo surface and L a multiple of its anticanonical
bundle, and where B = P2 and L = OP2(1).
In Chapter 5 I will give a description of the families found in the previous chap-
ter over P2. It will turn out that not all of them admit a section, for the others
I will describe the cubic intersection form, give equations for the Weierstrass
model, study the Mordell–Weil group by finding suitable Q-generators and de-
termine the precise number of sections. Not all the families found here are new,
some of them were already known in the literature, but with other descriptions.
In Chapter 6 I will show how the “classical” E7 families are a part of this frame-
work.
Since Calabi–Yau elliptic fibrations appear in the world of physics, in Chapter
7 I will deal with the problem of finding all the possible elliptic fibrations over
a surface satisfying a relation which is assumed to hold in string theory, known
as tadpole cancellation relation.
Finally, in Appendix A I will give a description of the algorithm I used to com-
pute the Hodge diamonds of the elliptic fibrations which appeared in Chapter
5 and 6.
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Chapter 1

Elliptic fibrations

In this chapter I will introduce the basic definitions and properties concerning
elliptic fibrations over a variety. In particular, I will show that it’s possible to
associate to each elliptic fibration with section another fibration birationally
equivalent to the first, known as its Weierstrass model. By Tate’s algorithm, the
Weierstrass model of an elliptic fibration determines the configuration and the
type of the singular fibres of the original fibration, at least generically. I will also
define a more arithmetical object linked to elliptic fibrations: the Mordell–Weil
group of rational sections.
The definitions given here have no bounds on the dimension of the total space
of the fibration, but in many examples I will focus on the case of threefolds,
being this case of special interest.
I recall that all the varieties in this thesis are always defined over C.

Definition We say that π : X −→ B is a smooth elliptic fibration over B with
section if

1. X and B are smooth projective varieties of dimension n and n− 1 respec-
tively;

2. π is a surjective holomorphic morphism;

3. the fibres of π are connected curves, and the generic fibre of π is a smooth
connected curve of genus 1;

4. a section σ : B −→ X of π is given.

When π : X −→ B satisfies only the first three requirements above, we say that
it’s a genus one fibration.

Elliptic fibrations are then an example of varieties over a given base B. A mor-
phism between two elliptic fibrations π : X −→ B and π′ : X ′ −→ B is then a
morphism of varieties over B, i.e. a map f : X −→ X ′ such that

X
f //

π
  @

@@
@@

@@
@ X ′

π′
~~}}

}}
}}

}}

B

commutes.
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Definition An elliptic fibration π : X −→ B is minimal if for any morphism
f : X −→ X ′ of varieties over B such that f contracts at least one divisor, then
π′ : X ′ −→ B is not an elliptic fibration.

Remark 1.0.1 We use this definition to capture previous definitions of mini-
mality. In the case dimX = 2, a minimal elliptic surface is an elliptic surface
having no (−1)-curves in its fibres. In the case dimX = 3, a minimal elliptic
threefold is an elliptic threefold which contains no contractible surface whose
contractible fibres are contained in the fibres of π (compare to [Mir83, Sect. 0,
(0.3)]).

I will denote the fibre over the point b ∈ B with Xb. Of course, not every fibre
of π needs to be smooth, and we define the discriminant locus of the fibration
as the subset of B over which we have singular fibres:

∆ = {b ∈ B|Xb is singular} ⊆ B.

The following is an easy but important property of elliptic fibrations with sec-
tion: a section can’t pass through singular points in the fibres.

Proposition 1.1 Let π : X −→ B be a smooth elliptic fibration with section σ.
Let b ∈ ∆ and q ∈ Xb be a singular point for the fibre. Then σ(b) 6= q.

Proof Assume by contradiction that σ(b) = q. The differential

dπq : TqX −→ TbB

gives us a decomposition

TqX = ker dπq ⊕ im dσb ' ker dπq ⊕ TbB

because q lies on the section. Since ker dπq is generated by the tangent vectors
in q to Xb, and dimTqXb ≥ 2 because q is singular for Xb, we deduce that

dimTqX ≥ 2 + (n− 1) = n+ 1

hence that q is a singular point of X. �

There is obviously a relation between elliptic fibrations and elliptic curves. In
fact, the presence of a section tells us that (Xb, σ(b)) is an elliptic curve for any
b ∈ Br∆. At a deeper level, the whole fibration can be seen as an elliptic curve
since its generic fibre Xη is an elliptic curve over the function field C(B) of the
base B:

Xη
t //

π′

��

X

π

��
SpecC(B) // B

where the distinguished point is given by the restriction of the section. Since
any elliptic curve (E, e) defined over a field k has a Weierstrass model (see e.g.
[Sil09, Prop. 3.1]) and a Mordell–Weil group E(k) of k-rational points, we can
then define the Weierstrass model of the fibration and its Mordell–Weil group.
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1.1 The Mordell–Weil group

Definition Let (E, e) be an elliptic curve over a field k. Then the Mordell–Weil
group of E is the group E(k) of its k-rational points.

As for any elliptic curve over a field, the generic fibre of an elliptic fibration
has its Mordell–Weil group, but in this case we also have a more geometric
description. Let π : X −→ B be an elliptic fibration. A rational section of π is
a rational map s : B 99K X such that π ◦ s = id over the domain of s. Then the
Mordell–Weil group of our fibration is

MW(X) = {s : B 99K X|s is a rational section},

where the group law is given by addition fibrewise, i.e. given two rational sections
s and s′, we define s + s′ requiring that (s + s′)(b) = s(b) + s′(b) for any
b ∈ dom s ∩ dom s′.
The correspondence between rational sections of π and C(B)-rational points of
Xη is set up in this way: given a rational section s we have a C(B)-rational
point on Xη by taking the restriction of s to the generic fibre, while given a
C(B)-rational point sη : SpecC(B) −→ Xη we have a rational section s on an

open dense subset U of B requiring that s(U) = t(sη(SpecC(B))).
We can then identify MW (X) ' Xη(C(B)).

Remark 1.1.1 Given a rational section s : B 99K X, with a slight abuse of
language I will also call rational section the subvariety of X defined by s(dom s).
In the same spirit, I will call section the image s(B) of a section s : B −→ X.

1.1.1 Estimating rkMW (X)

Let E be an elliptic curve over any field, with zero e. Then we have a group law
on E which allows us to calculate a +G b = c. Since a and b are points on E,
each of them also defines a divisor and so we can add them as divisors, finding
a+D b. By the very definition of the group law we have that

a+G b = c⇐⇒ a+D b ≡ c+D e (1.1)

where ≡ denotes linear equivalence of divisors. This relation is easy to general-
ize1:

G∑
nPP = Q⇐⇒

D∑
nPP ≡ Q+

(∑
nP − 1

)
e.

To see that this is true we write
∑G

nPP as
∑G

Pi where the Pi’s need not
be different, and proceed by induction on the number n of summands. Then we
know that the first step, corresponding to n = 2, is true. Suppose that the result
is true for n−1 summands and consider

∑G
1≤i≤n Pi. Then let R =

∑G
1≤i≤n−1 Pi:

by induction we have

D∑
1≤i≤n−1

Pi ≡ R+D (n− 2)e,

1I use
∑G and

∑D to denote the sum using the group law or the sum of divisors respec-
tively.
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while by (1.1)
R+D Pn ≡ (R+G Pn) + e.

This implies that

D∑
1≤i≤n

Pi − (n− 2)e ≡

 G∑
1≤i≤n

Pi

+D e

from which the result follows.
I now want to use this remark to give bounds on the rank of the Mordell–Weil
group MW(X) of an elliptically fibred variety. The fibration X is assumed to
have a section S = σ(B), which we use to induce a group law on each fibre.
Let S ∈ PicX be the section, and call Sη its restriction to Xη. As element in
DivXη and in PicXη, we have that Sη is not zero. But observe that since S is a
section we have also Sη ∈ MW(X), and in this group Sη is the neutral element.
In fact, using the notation of the previous paragraph we have as elliptic curve
(E, e) = (Xη, Sη). An element P ∈ MW(X) is a rational point of Xη, and the
map

MW(X) −→ PicXη

P −→ P − Sη

(1.2)

is a group homomorphism, in fact it follows from (1.1) that

(P +G P ′)− Sη ≡ (P − Sη) + (P ′ − Sη).

Remark 1.1.2 This homomorphism is injective. In fact, if P − Sη ≡ 0, then
P = Sη as points of Xη by [Sil09, Lemma 3.3].

So we can see MW(X) as a subgroup of PicXη, and observing that the image
of MW(X) is contained in the subgroup of degree 0 divisors of Xη, we have

MW(X) � � //
� s

%%KKKKKKKKK
PicXη

Pic0Xη

, �

::ttttttttt

It’s possible to find the image of this map. In fact it follows from [Sil09, Rmk.
3.5.1] that Xη(C(B)) is isomorphic (via this map) to the subgroup of Pic0Xη

of divisors of degree zero defined over C(B).
This gives us the first estimate

rkMW(X) ≤ rkPic0Xη ≤ rkPicXη.

Since the exact sequence defining Pic0Xη

0 −→ Pic0Xη −→ PicXη
deg−−→ Z −→ 0 (1.3)

is split by

Z −→ PicXη

n −→ nSη

,
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we have that
Pic0Xη ⊕ Z −→ PicXη

(
∑
nPP, n) −→

∑
nPP + nSη

(1.4)

is a group isomorphism, so rkPic0Xη = rkPicXη − 1 and we have the estimate

rkMW(X) ≤ rkPicXη − 1.

Let V be the subgroup of PicX generated by the classes of the vertical divisors,
i.e. those divisors whose support is contained in π∗D for D a divisor on the base
B. Then ([Mir89, Lemma VII.1.4]) we have the exact sequence

0 −→ V −→ PicX
res−−→ PicXη −→ 0, (1.5)

implying that
rkMW(X) ≤ rkPicX − rkV − 1. (1.6)

Remark 1.1.3 Since π has connected fibres, by Zariski’s main theorem we have
that π∗OX ' OB . Using the projection formula we can then show (see [Mir89,
Lemma VII.1.1]) that π∗ : PicB −→ PicX is injective. In fact let L be any line
bundle on B, then

π∗π
∗L ' L⊗ π∗OX ' L.

Of course π∗ PicB is a subgroup of V , so that

rkMW(X) ≤ rkPicX − rkPicB − 1,

but V 6= π∗ PicB in general. For example, this happens if the fibration has
reducible fibres over a codimension 1 locus in the base, and we will see examples
of this fact in Sections 5.3.3 and 6.2.2.

1.1.2 The Shioda–Tate–Wazir formula

In the previous section we saw some estimates on rkMW(X), but in fact there
are formulae to compute this number. In the case of elliptic surfaces, i.e. elliptic
fibrations π : X −→ B where X is a surface, it’s possible to compute the rank of
V in terms of the singular fibres of the fibration. This leads to the Shioda–Tate
formula for computing the rank of the Mordell–Weil group ([Shi90, Cor. 5.3]):

Theorem 1.2 (Shioda–Tate formula) Let π : X → B be a smooth elliptic
surface with section. Then

rkMW(X) = rkNS(X)− 2−
∑
b∈∆

((# irreducible components of Xb)− 1).

Observe that this theorem says that our estimate (1.6) is indeed an equality.
This formula has been generalized in the setting of scheme theory by Wazir
([Waz04, Cor. 3.2]) for elliptic fibrations of any dimension:

Theorem 1.3 (Shioda–Tate–Wazir formula) Let π : X −→ B be an ellip-
tic fibration with section over a field k. Then

rkNS(X) = 1 + rkMW(X) + rkNS(B) + rkF

where F is the vector space generated by the irreducible components of π∗∆
which don’t intersect the section.
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Roughly speaking, this theorem says that our estimates are quite sharp. In fact
the rank of MW(X) depends on:

1. the geometry of the fibration, encoded in NS(X);

2. the geometry of the base, encoded in NS(B);

3. the presence of the section, which is given by the 1 in the formula;

4. the singular fibres, encoded by F , since if we have reducible fibres over
some component of the discriminant locus, say ∆red, then π

−1(∆red) splits
into different irreducible components, giving the so called fibral divisors.

1.2 Weierstrass fibrations and Weierstrass mod-
els

In this section I want to define the notion of Weierstrass fibration and to show
how we can associate to each elliptic fibration with section a Weierstrass fi-
bration, which we call the Weierstrass model of the elliptic fibration. In the
following definitions I will also set up the notation I will use in the sequel.

Definition We say that p :W −→ B is a Weierstrass fibration if

1. W and B are projective varieties, with B smooth (W not necessarily);

2. p is a surjective morphism whose fibres are smooth curves of genus 1, or
rational curves with either a node or a cusp;

3. the generic fibre of p is smooth;

4. there is a section s of p such that s(B) does not pass through the nodes or
the cusps in the fibres.

Definition Let p :W −→ B be a Weierstrass fibration over B, with section s.
If Σ = s(B) and i : Σ ↪→ W is the inclusion, then the fundamental line bundle
of p is the line bundle L on B defined by

L = (p∗i∗NΣ|W )−1

where NΣ|X is the normal bundle of Σ in W .

Observe that since Σ has codimension 1 in W , then NΣ|W is a line bundle on
Σ and so L is a line bundle on B because p|Σ is an isomorphism. Despite the
fact that this definition depends on the section, the fundamental line bundle L
is intrinsic to W since it’s known that ([Mir89, Chap. II.3])

L−1 ' R1p∗OW .

The following results are essential and explain the importance of the fundamen-
tal line bundle of a Weierstrass fibration. Proofs can be found in [Mir89, Sect.
II.4 and III.1] in the case where W is a surface and B is a curve, but they still
work in any dimension.
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Proposition 1.4 With the same notations as before, we have for any n ≥ 2 a
decomposition

p∗OW (nΣ) = OB ⊕ L−2 ⊕ L−3 ⊕ . . .⊕ L−n.

The role of the section in a Weierstrass fibration is essentially the same as that of
the distinguished point on an elliptic curve: we can use it to embed the fibration
in a P2-bundle over the base B.
Given any vector bundle E over B, I will denote with Ph(E) the projective space
bundle of the hyperplanes in E as usual in algebraic geometry, while with P(E)
I will denote the projective space of lines in E as it’s customary in physics. Of
course the two notions are equivalent, since they are linked by a duality relation

Ph(E) ' P(E∗).

Theorem 1.5 The line bundle OW (3Σ) defines a closed immersion

W ↪→ Ph(p∗OW (3Σ))

in such a way that the diagram

W
� � //

p
��@

@@
@@

@@
@ Ph(p∗OW (3Σ))

Π
xxqqqqqqqqqqq

B

commutes, where the morphism Π is the structure morphism of the projective
space bundle.

For sake of simplicity I will call EW the bundle p∗OW (3Σ) ' OB ⊕L−2 ⊕L−3.
Once we realize W as a hypersurface in a projective space bundle, we can ask
for its equation. This is the usual equation of an elliptic curve in Weierstrass
form, namely

y2z = x3 + a4xz
2 + a6z

3, (1.7)

where
x ∈ H0(Ph(EW ),OPh(EW )(1)⊗Π∗L2),

y ∈ H0(Ph(EW ),OPh(EW )(1)⊗Π∗L3),

z ∈ H0(Ph(EW ),OPh(EW )(1))

(1.8)

give coordinates in the fibres, and

a4 ∈ H0(Ph(EW ),Π∗L4) ' H0(B,L4),

a6 ∈ H0(Ph(EW ),Π∗L6) ' H0(B,L6)
(1.9)

are coefficients. We can then give an equation for the discriminant locus:

∆ : 4a34 + 27a26 = 0 (1.10)

and so we see that ∆ ∈ H0(B,L12).
Given a smooth elliptic fibration π : X −→ B with section σ, we have already
observed that (Xb, σ(b)) is an elliptic curve for any b ∈ Br∆: as such it can be
put in Weierstrass form. This pointwise fact globalizes to the whole fibration,
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so that we can speak of the Weierstrass model p : W −→ B of the fibration.
To be more precise, we can put the generic fibre Xη of X in its Weierstrass
form Wη, finding an equation whose coefficients are rational functions on B.
After a birational change of variables we can then find an equation for Wη with
coefficients defined everywhere on B, i.e. we find an equation for W in Ph(EW ).

Proposition 1.6 Any smooth elliptic fibration with section π : X −→ B admits
a unique (up to isomorphism) Weierstrass model in such a way that

X
f //

π
  @

@@
@@

@@
@ W

p
~~}}

}}
}}

}}

B

commutes and f is a birational morphism. Moreover, all the fibres of f have
dimension at most 1.

Proof For the existence, see [Nak88]. For the last part of the statement, just
observe that every fibre of p and π is 1-dimensional, and so f−1(w) can be at
most a curve. �

Geometrically, we can describe the morphism to the Weierstrass model as the
contraction in the reducible fibres of all the irreducible components which don’t
intersect σ(B). This implies that a smooth minimal elliptic fibration and its
Weierstrass model have the same discriminant locus.

Example 1.2.1 In this example I want to show that the assumption of having
a section is quite restrictive. In fact, let’s consider the variety X defined in
P3 × P2 with coordinates ((x0 : x1 : x2 : x3), (y0 : y1 : y2)) by the equations

X :

{
x30 + x31 + x32 + x33 = 0

y30x0 + y31x1 + y32x2 = 0.

Then X is smooth and can be viewed naturally as a fibration in elliptic curves
in two different ways by restricting to X the projections onto the two factors.

1. In the first case X is a fibration over the Fermat cubic surface in P3. We
observe that over the point (0 : 0 : 1 : −1) we have a multiple fibre,
with equation y32 = 0, so any of its points is singular for the fibre. By
Proposition 1.1 we can conclude that this fibre can’t meet any section,
hence that there is no section at all.

2. In the second case we have a fibration over P2, but even in this case we
have no sections. In fact, if σ were a section then σ(P2) would be contained
in the Fermat cubic. But there is no non constant morphism from P2 to
this surface.

Example 1.2.2 Let’s consider the projective plane bundle P(OP2(2)⊕OP2(3)⊕
OP2) over P2. Denote with (x : y : z) coordinates in the fibres and with (t0 : t1 :
t2) coordinates in the plane, then the Weierstrass equation

y2z = x3 + (t60 + t61 + t62)z
3
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defines a smooth elliptic threefold π : X −→ P2. The discriminant locus of this
fibration is then

∆ : 27(t60 + t61 + t62)
2 = 0,

which is a Fermat sextic with multiplicity two, and over each point of the dis-
criminant we have cuspidal cubics.

1.2.1 Adjunction in Ph(EW )

In this section I want to calculate the class of a smooth Weierstrass fibration
p :W −→ B in the Chow group of codimension 1 subvarieties of Ph(EW ). Using
the adjunction formula we will be able to compute the class of a canonical divisor
of W .
In this section I will use the projective space of lines, writing

ZW = P(E∗
W ) = P(OB ⊕ L2 ⊕ L3)

for the ambient space, and

L = c1(L), ξW = c1(OZW
(1)).

We have the following diagram

W
� � i //

p
  A

AA
AA

AA
A ZW

Π}}||
||

||
||

B

and the class [W ] of W is quite easy to compute: W is defined by the equation
(1.7), which is a homogeneous cubic in the variables x, y and z with coefficients
a4 and a6, and so by (1.8) and (1.9) this means that

[W ] = 6Π∗L+ 3ξW .

To compute the canonical class KZW
we first use the exact sequence defining

the relative tangent bundle

0 −→ TZW |B −→ TZW
−→ Π∗TB −→ 0

to find the relation
c(ZW ) = c(TZW |B)Π

∗c(B)

between the Chern polynomials, and then the exact sequence ([Ful98, App.
B.5.8])

0 −→ OZW
−→ (Π∗EW )⊗OZW

(1) −→ TZW |B −→ 0

to compute c(TZW |B). What we find is that the first Chern class of ZW is then
the piece of degree one in the polynomial

c(ZW ) = (1 + ξW )(1 + 2Π∗L+ ξW )(1 + 3Π∗L+ ξW )(1 + Π∗c1(B) + Π∗c2(B)),

hence that
KZW = −c1(ZW ) = Π∗KB − 5Π∗L− 3ξW .
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We can now compute the canonical class of W by means of the adjunction
formula: since

KZW
+ [W ] = Π∗KB − 5Π∗L− 3ξW + 6Π∗L+ 3ξW = Π∗(KB + L), (1.11)

we have that

KW = (KZW
+ [W ])|W = i∗Π∗(KB + L) = p∗(KB + L). (1.12)

Observe that KW the pull-back of a divisor in the base, hence KW is vertical.
In Proposition 2.5 we will see that (1.12) generalizes to singular Weierstrass
models.

Example 1.2.3 Let X be the fibration of Example 1.2.2: its ambient bundle
is of the form ZW , with L = OP2(1). Then we have that L is the class of a line
in the base P2, and since KP2 = −3L we can now justify our previous claim on
the canonical bundle of X, in fact

KX = p∗(KP2) + p∗L = p∗(−2L).

Remark 1.2.4 The technique used here to compute c1(ZW ) and the Chern
polynomial c(ZW ) is quite general: if E is any rank 3 vector bundle on B and
Z = P(E), it can be used to compute c(Z).
The general result is that

c(Z) = c(TZ|B)Π
∗c(B)

with
c(TZ|B) = 1 + Π∗c1(E) + 3ξ +Π∗c2(E) + 2Π∗c1(E)ξ + 3ξ2.

In particular
c1(Z) = Π∗c1(B) + Π∗c1(E) + 3ξ. (1.13)

1.3 Singular fibres and Tate’s algorithm

Let π : X −→ B be a smooth elliptic fibration with section. We defined the
discriminant locus of the fibration as the locus ∆ ⊆ B over which we have
singular fibres. Our interest is now on the type of these singular fibres.
In the case of surfaces, the situation is clear and well understood: the possible
singular fibres were listed by Kodaira ([Kod63, Thm. 6.2]), who also named
them.
In the following, I will refer to the singular fibres in the list as Kodaira fibres.

Theorem 1.7 (Kodaira’s classification of singular fibres) Given a smooth
minimal elliptic surface with section π : X −→ B, the only possible singular fi-
bres of π are the ones listed in Table 1.1.
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Table 1.1: List of Kodaira singular fibres

Name Description

I1 Nodal rational curve

I2 Two smooth rational curves meeting transver-
sally at two points

In with n ≥ 3 n smooth rational curves meeting with dual
graph Ãn

I∗n with n ≥ 0 n+ 5 smooth rational curves meeting with dual
graph D̃n+4

II Cuspidal rational curve

III Two smooth rational curves meeting at a point
of order two

IV Three smooth rational curves all meeting at a
point

IV ∗ 7 smooth rational curves meeting with dual
graph Ẽ6

III∗ 8 smooth rational curves meeting with dual
graph Ẽ7

II∗ 9 smooth rational curves meeting with dual
graph Ẽ8

Moreover, in the case of elliptic surfaces, there is an algorithm which allows one
to determine the type of the singular fibre over a point b of the discriminant
locus: first of all we put X in Weierstrass form, finding an equation of the form

W : y2z = x3 + a4xz
2 + a6z

3,

and then we compute the multiplicities multb a4, multb a6 and multb ∆. The
type of the singular fibre over b is then given by the following table ([Tat75, P.
46])

Name multb a4 multb a6 multb ∆

I1 0 0 1

In 0 0 n

I∗0

2

≥ 3

2

3

3

≥ 4

6

6

6

I∗n 2 3 n+ 6

II ≥ 1 1 2

III 1 ≥ 2 3

IV ≥ 2 2 4

IV ∗ ≥ 3 4 8

III∗ 3 ≥ 5 9

II∗ ≥ 4 5 10
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This procedure to determine the type of a singular fibre is known as Tate’s
algorithm.
For minimal elliptic fibrations we can still run it: we put the fibration with
section in Weierstrass form, and then we consider the irreducible components
∆i’s of ∆. Since the local rings OX,∆i are discrete valuation rings, it makes
sense to compute the multiplicities mult∆i a4, mult∆i a6 and mult∆i ∆. From
the previous table we can then deduce the type of the singular fibre over the
generic point of ∆i.
Observe that in the case of surfaces we have a precise description of any singular
fibre, while in the case of higher dimensional elliptic fibrations what happens in
codimension 2 (and greater) on the base is not yet well understood.

1.3.1 Examples of non-Kodaira fibres

As observed in the previous paragraph over codimension two loci in the base we
can have singular fibres of non-Kodaira type. I want now to give some examples
of non-Kodaira fibres in the case where π : X −→ B is a local fibration of
dimension 3, i.e. a fibration where B is a small disk in C2 centred in 0, and over
the origin we will have the non-Kodaira fibre.
As a first example, in the paper [Mir83] the explicit desingularization of local
Weierstrass fibrations satisfying some further assumption is given. In this work
it’s clear that when singular fibres of Kodaira type collide, the result can be of
non-Kodaira type.
The second example I want to give is inspired by [EY]. Let f(s, t) be a function
which does not vanishes at the origin, and consider the Weierstrass fibration in
P2 ×B

y2z = x3 − 1

48
s4xz2 +

(
1

864
s6 + f(s, t)t5

)
z3,

having

A = − 1
48s

4,

B = 1
864s

6 + ft5,

∆ = 1
16 t

5f(s6 + 432ft5).

Over t = 0 we have nodal cubics, and the node of each is singular for the whole
variety. We proceed by blowing-up this curve of singularities, and we obtain a
fibration with I3 fibres over t = 0: one edge of the triangle is the transform
of the original nodal cubic, the other two edges have been introduced by the
blow-up. Their intersection is singular again, hence we have to blow-up the
curve of singular points again. Doing so, we find fibres of Kodaira type I5 over
t = 0, but in the fibre over the origin there is still a unique singular point of
the whole variety. It’s possible to resolve this isolated singularity by mean of a
small blow-up, i.e. a blow-up which doesn’t introduce exceptional divisors, and
the resulting threefold is a smooth elliptic fibration with a non-Kodaira fibre
over the origin. This fibre is made up of five irreducible components, each of
which is a line. Three of them meet at a point, and have multiplicity 2, 3 and
4 respectively. The component of multiplicity 4 intersects one of the remaining
components (which has multiplicity 2) and the component with multiplicity 2
meets the last component (which has multiplicity 1), which is the component
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intersecting the section. There is another way of describing this fibre: consider
a Kodaira fibre of type II∗, and contract the four consecutive components of
multiplicities 3, 4, 5 and 6 respectively.

Remark 1.3.1 If we consider a generic line through the origin, we have a local
elliptic surface, and Tate’s algorithm says that over that point we should have
a fibre II∗. What we found in the threefold is a contraction of this fibre, and as
we will see later (Proposition 2.7) this fact generalizes.

Remark 1.3.2 It’s not necessary to start with a Weierstrass model if we want
fibrations with I5 fibres. For example (if we are looking for global models), we
can start from three homogeneous cubic polynomials α, β, γ and consider the
following singular fibrations, having a smooth resolution with I5 fibres, as one
can verify directly blowing-up the singular locus:

1. the fibration defined in P(O ⊕O(3)⊕O) by

y2z = α2x3 +
1

4
β2x2z + αγz3.

2. the fibration defined in P(O(3)⊕O(6)⊕O) by

y2z = αx3 +
1

4
β2x2z + α3γz3;

These two fibrations have the same Weierstrass model in P(O(6)⊕O(9)⊕O),
given by

y2z = x3 − 1

48
β2xz2 +

(
1

486
β6 + α5γ

)
z3,

and in fact they are birationally equivalent:

(x : y : z) 7−→ (αx : αy : z)

gives a birational map from the first to the second. The (smooth) fibrations in
these bundles will be studied in detail in Chapter 6, in particular the fibration
in P(O(3)⊕O(6)⊕O) is of E0

7 type.

I want to give here a last example of non-Kodaira fibre. Consider in P2×B the
fibration

y2z = x3 + tx2z + s4z3,

if we write a Weierstrass model (1.7) we find that the coefficients are

a4 = −1
3 t

2

a6 = s4 + 2
27 t

3

∆ = s4(27s4 + 4t3)

and so by Tate’s algorithm we expect to have I4 fibres over the line s = 0. The
curve s = x = y = 0 is singular for the threefold, hence we blow it up. The effect
is that over s = 0 instead of nodal cubics now we have triangles, but one of its
vertices is still singular for the whole variety. After a second blow-up of this
curve of singular points we have a smooth threefold with I4 fibres over s = 0. If



CHAPTER 1. ELLIPTIC FIBRATIONS 21

we restrict the fibration to a generic line through the origin, by Tate’s algorithm
on this elliptic surface we should have over the origin a fibre of Kodaira type I∗1 :
what we see is not the whole fibre but a contraction of it (Proposition 2.7). To be
precise, a I∗1 fibre has 6 irreducible components meeting with intersection graph
D̃5, the two central components have multiplicity 2 while the other four have
multiplicity 1, and one of these intersects the section. Our non-Kodaira fibre is
obtained by a I∗1 fibre as follows: let C denote the multiplicity one component
which meets the section, then contract the multiplicity 2 component which does
not intersect C, and the multiplicity 1 component intersecting the multiplicity
2 component which meets also C.

Remark 1.3.3 This last example is interesting for the following reason: let’s
call X the smooth threefold, and Xλ its restriction to the line t = λs. As
observed before, Xλ is singular over s = 0, since we does not have a Kodaira
fibre, and so there are singular points whose coordinates depend on λ. In fact
there are always two singular points: one of them is on the multiplicity two
component of the non-Kodaira fibre and its coordinates depend on λ, while
the second is at the point of the fibre where the multiplicity 2 component of
the I∗1 fibre was blown down. This last has coordinates independent of λ, but
nevertheless the threefold is smooth at this point.



Chapter 2

Singularities

Even though we are mainly interested in smooth varieties, as we saw when
discussing the Weierstrass model of an elliptic fibration, we also have to deal
with some kinds of singular varieties. In this section I recall the definition of
rational Gorenstein singularities and their main properties, focussing in the case
of threefolds. The main references for this chapter are [Rei80], [Rei83], [Rei87]
and [KM98].
The canonical sheaf of a (smooth) variety X is Ωn

X =
∧n

Ω1
X , the n-th exterior

power of its cotangent sheaf, but to deal with singular varieties we need a new
definition which generalizes the usual one.

Definition Let X be a normal variety, with regular locus Xreg = X r SingX.
Then we define

ωX = j∗ (Ω
n
Xreg)

where j : Xreg ↪→ X is the inclusion.

In this way ωX is a torsion-free sheaf, extending the usual canonical sheaf on
Xreg. We also have a link between ωX and Ωn

X , in fact the first is the double dual
of the second: ωX ' (Ωn

X)∗∗. There is also the possibility of defining a canonical
Weil divisor, let KXreg be a canonical divisor in Xreg, then KX = KXreg is its
closure in X. Observe that KX may not be Cartier, and that

ωX = OX(KX), ωX(U) =
{
f ∈ C(X)|(f)|U +KXU

≥ 0
}
,

is generated by the differential forms regular in codimension 1.

Definition A normal variety X will be called Gorenstein if it’s Cohen–Macau-
lay and its canonical sheaf ωX is locally free of rank 1 (compare to [Rei80, P.
286]).

The Cohen–Macaulay condition is local and algebraic in nature, and means
that for any point x ∈ X the local ring OX,x have the property that there is a
sequence of elements f1, . . . , fr ∈ OX,x such that

1. all the fi’s lie in the maximal ideal of OX,x;

2. f1 is not a zero-divisor in OX,x and for all i = 2, . . . , r the element fi ∈
OX,x/(f1, . . . , fi−1) is not a zero-divisor;

22
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3. f1, . . . , fr has maximal length with respect to the previous properties;

4. r = dimOX,x.

Example 2.0.4 Let X be a projective smooth variety, and Y ⊆ X a (locally)
complete intersection with codimSing Y ≥ 2. Then Y is regular in codimension
1 and so by [Har77, Prop. II.8.23] Y is also normal. Hence Y is Gorenstein by
[Eis95, Cor. 21.19].

Definition Let X be a Gorenstein variety, and x ∈ X. Then x ∈ X is a
rational Gorenstein singularity (compare to [Rei80, Def. 2.4]) if there exists a
resolution of singularities (see p. 24 for the definition) f : Y −→ X of x such
that

f∗ωY = ωX .

In the case of threefolds, there is also a classification of rational Gorenstein
singularities which can be found in [Rei80, Cor. 2.10]. The simplest are the so
called compound Du Val singularities, which are an analogue for threefolds of
the Du Val singularities for surfaces.
Let S be a normal surface, and s ∈ S a singular point: s is a Du Val singularity
if one of the following equivalent condition holds:

1. there exists a resolution of singularities f : S̃ −→ S such that KS̃ = f∗KS ;

2. in a neighbourhood of s we have that S is analytically isomorphic to one
of the hypersurface singularities of A3 in the following list

Name Equation

An x2 + y2 + zn+1

Dn x2 + y2z + zn−1

E6 x2 + y3 + z4

E7 x2 + y3 + yz3

E8 x2 + y3 + z5

Observe that in this second point we also have a classification of Du Val singular-
ities. The name refers to the Dynkin diagrams, in fact in the minimal resolution
of a Du Val singularity, the exceptional divisors have the corresponding Dynkin
diagram as incidence graph. The minimal resolution of a Du Val singularity is
obtained by a sequence of blow-ups in the singular points, which ends as soon
as the blown-up surface becomes smooth, and it’s minimal in the sense that any
other resolution factors through this.

Definition A point x in a threefold X is a compound Du Val singularity, or
cDV for short, if there is a hypersurface H ⊆ X through x such that x ∈ H is a
Du Val singularity.

Remark 2.0.5 We can then see X as a deformation of a Du Val singularity,
since the definition is equivalent to ask that around x the variety X is locally
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analytically isomorphic to the hypersurface singularity in A4 given by

f(x, y, z) + t g(x, y, z, t) = 0,

where f(x, y, z) = 0 defines a Du Val singularity. Observe also that while Du
Val singularities are isolated, cDV singularities can be isolated or not.

2.1 Resolution of the singularities

Even if I already mentioned the resolution of singularities, I want to give here
a precise definition.

Definition We say that f : Y −→ X is a resolution of the singularities of X if

1. Y is smooth;

2. f is birational, and is an isomorphism between f−1(Xreg) and Xreg.

We will be interested in resolutions having other particular features.

Definition Let f : Y −→ X be a resolution of the singularities. We say that f
is small if for any point x ∈ X the fibre f−1(x) contains no divisors. If X is a
threefold, this means that each fibre has dimension at most 1, i.e. it’s a point or
a curve.

Example 2.1.1 Let π : X −→ B be an elliptic fibration with section over a
base B with dimB ≥ 2, and p : W −→ B its Weierstrass model. Then we have
the birational morphism f : X −→ W from Proposition 1.6, which is a small
resolution of the singularities of W .

When we have a resolution of the singularities f : Y −→ X, we can compare a
canonical divisor KY on Y with f∗KX : we have

KY ≡ f∗KX +
∑
i

aiDi

with Di effective divisors which are contracted by f , satisfying codim f(Di) ≥ 2.
A divisor Di for which ai = 0 is called a crepant divisor, the other are called
discrepant. The resolutions for which ai = 0 for all i are hence particularly
interesting.

Definition Let f : Y −→ X be a resolution of the singularities. We say that f
is crepant if KY = f∗KX .

This definition makes sense since the exceptional divisors introduced by a reso-
lution tends to become the zero locus for the pull-back of the differential forms
on X. This happens for example if we want to desingularize a variety blowing-up
its singular locus.

Remark 2.1.2 If f : Y −→ X is a small resolution of an isolated singularity,
then f is obviously crepant since it does not introduce exceptional divisors. It’s
a more difficult problem to understand when a small resolution of non-isolated
singularities is crepant or not.
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In the case of threefolds, there is a link between small and crepant resolutions,
investigated by Reid in [Rei83]. In particular we are interested in the following
two facts ([Rei83, Cor. 1.12] and [Rei83, Thm. 1.14]).

Proposition 2.1 Let X be a singular Gorenstein threefold with a small resolu-
tion f : Y −→ X. Then the singularities of X are of cDV type.

Proof It’s not difficult to see that since f is small, then f∗ωY = ωX and so
X has rational Gorenstein singularities. Let P ∈ X be a singular point, then
([KM98, Thm 5.35]) the following are equivalent:

1. the general hypersurface section P ∈ H ⊆ X is an elliptic singularity;

2. if g : X ′ −→ X is any resolution of singularities then there is a crepant
divisor E ⊆ g−1(P ).

Since f is small, there is no divisor in f−1(P ) and so the general hypersurface
section through P is not an elliptic singularity. Then, by [KM98, Lemma 5.30]
or [Rei80, Thm. (2.6)(I)], we have that the general hypersurface section through
P must have a rational (i.e. Du Val) singularity, which proves that P is cDV .�

For threefolds with cDV singularities, we fully understand the link between small
and crepant resolutions. Observe that the statement of Theorem 2.2 is more
general, since it concerns partial resolutions, i.e. proper birational morphisms
Y −→ X where Y is assumed to be normal (not necessarily smooth).

Theorem 2.2 Let X be a threefold with cDV singularities (not necessarily iso-
lated), and let f : Y −→ X be a partial resolution. Then the following are
equivalent:

1. f is crepant;

2. f is small, and crepant above the general point of any 1-dimensional com-
ponent of SingX;

3. for every x in X and hypersurface H through x for which x ∈ H is a Du
Val singularity, H ′ = f−1(H) is normal and f|H′ : H ′ −→ H is crepant.
Thus the minimal resolution of x ∈ H factors through H ′.

Proof See [Rei83, Thm. 1.14]. �

2.2 The singularities of Weierstrass fibrations

In this section I want to make some remarks on the singularities of Weierstrass
fibrations over surfaces. Since all what I will say in this section is local in nature,
here B will denote an open disc in C2 with coordinates (s, t). Hence a Weierstrass
fibration is the variety defined in P2 ×B by an equation of the form

y2z = x3 + a4(s, t)xz
2 + a6(s, t)z

3.

It’s an easy computation with the Jacobian matrix to prove the following theo-
rem

Theorem 2.3 If W is a Weierstrass fibration over B with discriminant locus
∆, then
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1. the point (0 : 1 : 0) is never singular;

2. if W is singular at ((x : y : z), (s, t)), then y = 0;

3. W is singular at ((0 : 0 : 1), (s, t)) if and only if a4(s, t) = a6(s, t) = 0 and
a6 is singular in (s, t);

4. W is singular at ((x : 0 : 1), (s, t)) with x 6= 0 if and only if a4(s, t) 6= 0,
a6(s, t) 6= 0, ∆(s, t) = 0 and ∆ is singular in (s, t). Moreover in this case

x = −3a6(s,t)
2a4(s,t)

.

Proof See [Mir83, Prop. 2.1]. �

This means that the singular locus of W consists at most of curves, hence
codimSingW ≥ 2.

Remark 2.2.1 Consider the Weierstrass model p : W −→ B of an elliptic
fibration π : X −→ B with dimX = 3. By Theorem 1.5, W is a hypersurface in
a projective bundle over B, and we have just seen that its singular locus consists
of isolated points or curves. So W is Gorenstein by Example 2.0.4.

Let π : X −→ B be a smooth minimal elliptic threefold with Weierstrass model
W , and call f : X −→W the morphism to the Weierstrass model. The following
proposition summarizes the properties of f .

Proposition 2.4 Let π : X −→ B be a smooth minimal elliptic threefold, with
Weierstrass model p :W −→ B. Then W is Gorenstein, has all singular points
of cDV type and the morphism f : X −→W on the Weierstrass model is a small
and crepant resolution.

Proof We know that that W is Gorenstein by Remark 2.2.1 and that the mor-
phism f on the Weierstrass model is a small resolution by Proposition 1.6. By
Proposition 2.1 this means thatW has cDV singularities. Finally, by minimality
of π : X −→ B, we have that the resolution f : X −→ W (outside a finite
number of points in SingW ) coincides with the minimal resolution of a Du
Val singularity (compare to [Rei83, §2]), which is crepant. By Theorem 2.2 this
means that f : X −→W is crepant. �

As a consequence, we have a way to compute a canonical divisor of the total
space of the elliptic fibration.

Proposition 2.5 Let π : X −→ B be a smooth minimal elliptic threefold with
section S. Then

KX = π∗KB + π∗L

where L is the first Chern class of the line bundle L = (π∗i∗NS|X)−1.

Proof Let p : W −→ B be the Weierstrass model of X, with section Σ, and
embed W in Z = Ph(p∗OW (3Σ)) as in Theorem 1.5. In (1.11) we computed
that

ωZ ⊗OZ(W ) = Π∗(ωB ⊗ L)
where L is the fundamental line bundle of W , i.e. L = (p∗ι∗NΣ|W )−1. Let
j :W reg ↪→W and t :W ↪→ Z be the inclusions, then

ωW reg = j∗t∗(ωZ ⊗OZ(W )) = j∗t∗Π∗(ωB ⊗ L)
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and so, since codimSingW ≥ 2,

ωW = j∗ωW reg = j∗j
∗t∗Π∗(ωB ⊗ L) = p∗(ωB ⊗ L).

Observe that the morphism to the Weierstrass model f : X −→ W induces
an isomorphism between open neighbourhoods of S and Σ respectively, so L =
(p∗ι∗NΣ|W )−1 = (π∗i∗NS|X)−1. Since f is a crepant resolution we finally have

ωX = f∗ωW = π∗(ωB ⊗ L). �

The results on singularities exposed up to now, in particular the third condition
in Theorem 2.2, make the proof of the following propositions straightforward.
Observe that Theorem 2.7 gives a partial answer to the problem of classifying
the non-Kodaira fibres.

Theorem 2.6 Let π : X −→ B be a smooth minimal elliptic threefold with
section, with Weierstrass model W defined by the equation y2z = x3 + a4xz

2 +
a6z

3. Then there is no point b ∈ B such that multb a4 ≥ 4 and multb a6 ≥ 6.

Proof Assume that b ∈ B is a point such that multb a4 ≥ 4 and multb a6 ≥ 6.
From [Rei80, Cor. 2.10] we see that the singular point (x : y : z) = (0 : 0 : 1)
in the fibre over b is a rational Gorenstein singularity which is not cDV . So W
can’t have small resolutions, and in particular it can’t be the Weierstrass model
of a smooth minimal elliptic fibration π : X −→ B. �

Theorem 2.7 Let π : X −→ B be a smooth minimal elliptic threefold with
section. If b ∈ B is a point such that the fibre Xb is of non-Kodaira type, then
Xb is a contraction of the Kodaira fibre over b of the elliptic surface obtained
restricting X to a generic smooth curve through b.

Proof Thanks to the Theorem 2.6 we must have multb a4 ≤ 3 or multb a6 ≤ 5.
By [Mir89, Prop. III.3.2], the restriction of W to the generic smooth curve C
through b is then an elliptic surface WC with only Du Val singularities and
finally, by Theorem 2.2, the fibre Xb is a contraction of the fibre predicted by
the smooth minimal elliptic surface corresponding to WC . �

Examples of Theorem 2.7 are given in Section 1.3.1 and Section 6.2.3.

Remark 2.2.2 In a discussion, Prof. A. Grassi gave me an alternative proof of
Theorem 2.6: in [Mir83] it’s described how to desingularize a Weierstrass fibra-
tion, under further assumptions on the discriminant locus (e.g. its irreducible
components must intersect transversally). If b ∈ B is a point with multb a4 ≥ 4
and multb a6 ≥ 6, then following this procedure one has to blow-up the base sur-
face at b, pull-back the fibration, and if necessary blow-up and pull-back again
to reach Miranda’s hypothesis. In this way we can desingularize the threefold,
but this resolution is incompatible with the blow-ups performed on the base,
and so it can’t be blown-down to give a resolution of the original threefold.
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Calabi–Yau varieties

Calabi–Yau manifolds are the higher dimensional analogues of K3 surfaces.
They are a class of varieties which are particularly simple, but having a great
amount of interesting properties. Even if they are a subject of interest in its
own, their study has been recently encouraged by physics, and in particular
string theory: the mathematical models of F -theory are in fact all examples of
Calabi–Yau varieties.

Definition A Calabi–Yau manifold is a projective smooth manifold X with

1. trivial canonical bundle ωX ' OX ,

2. h0,q = 0 for q = 1, . . .dimX − 1, where hp,q = dimHq(X,Ωp
X).

Observe that ifX is a Calabi–Yau manifold of dimension at least 3, then PicX '
NS(X) ' H2(X,Z). This is a well known fact, arising from the long exact
sequence induced in cohomology by the exponential sequence

0 −→ Z −→ OX −→ O∗
X −→ 0

on X. In fact we have

0 = H1(X,OX) −→ H1(X,O∗
X) ' PicX −→ H2(X,Z) −→ H2(X,OX) = 0.

Example 3.0.3 IfX is a Calabi–Yau variety of dimension 1, thenX is a smooth
Riemann surface of genus 1. In fact, since degKX = 2g(X)−2 we have g(X) = 1,
and viceversa any genus 1 Riemann surface has trivial canonical bundle. Observe
that in this case, for dimensional reasons, the second condition in the definition
above is empty.
In the case of dimension 2, X is Calabi–Yau if and only if it’s a K3: this is due
to the classification of surfaces.
In dimension 3, the Fermat quintic in P4, and in fact any smooth quintic, is a
classical example of Calabi–Yau variety (see for instance [GHJ03] and [CK99]).
Other Calabi–Yau threefolds which are complete intersections in projective
spaces are the complete intersection of two hypersurfaces of degree 3 in P5,
of a hyperquadric and a hypersurface of degree 4 in P5, of two hyperquadric and
a hypercubic in P6 or the complete intersection of four hyperquadrics in P7. For
other examples of Calabi–Yau manifolds, see e.g. [Hüb92].

28
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Example 3.0.4 Let X be the variety in P3 × P2 defined in Example 1.2.1, it’s
a smooth complete intersection defined by two equations of bidegree (3, 0) and
(1, 3). We denote Y the variety of bidegree (3, 0), so by adjunction we have

KY = (KP3×P2 + Y )|Y = ((−4,−3) + (3, 0))|Y = (−1,−3)|Y .

Using adjunction again we can then compute the class of a canonical divisor
on X. This last is defined as the restriction to Y of a variety of bidegree (1, 3)
and so its class in the Chow group of codimension 1 cycles in Y is (1, 3)|Y . This
means that X is an anticanonical variety in Y , but then

KX = (KY +X)|X = 0|X = 0,

and so X is Calabi–Yau.

There are some extremely useful intersection theoretic properties of Calabi–
Yau manifolds, which I want to point out here. The first is that the adjunction
formula becomes very easy: in fact if i : Y ↪→ X is a smooth hypersurface, then

KY = i∗(KX + Y ) = i∗Y (3.1)

and so using the projection formula we have that the class of the codimension
2 cycle i∗KY in X is

i∗KY = i∗i
∗Y = Y · Y. (3.2)

This implies that

Y 3 = Y 2 · Y = i∗KY · Y = i∗(i
∗Y ·KY ) = i∗(K

2
Y ). (3.3)

Also the Riemann–Roch formula becomes easier. In fact, if D is any divisor in
a Calabi–Yau threefold X, then

χ(OX(D)) =
1

6
D3 +

1

12
D · c2(X),

where c2(X) denotes the second Chern class of the tangent bundle of X.
The third fact is a result by Friedman ([Fri91, Lemma 4.4]), stating that for any
smooth surface V in a Calabi–Yau threefold X the relation

V · c2(X) = χtop(V )−K2
V (3.4)

holds. In particular this is true for a section S, where the right side of the
equation is then χtop(B)−K2

B .

3.1 Singular Calabi–Yau varieties

For many purposes it’s convenient not to restrict only to the case of smooth
varieties, but to admit also some class of singularities. In this section I want to
give a definition of Calabi–Yau variety which generalizes the one of Calabi–Yau
manifold I gave before. The point in the definition of Calabi–Yau manifold is
that the canonical line bundle is trivial, and what may fail when we are dealing
with singular varieties is that the canonical sheaf is not a line bundle. From
Chapter 2, we can bypass this problem requiring the variety to be Gorenstein.
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Definition A Calabi–Yau variety is a normal projective variety X such that

1. X is Gorenstein;

2. ωX ' OX ;

3. h0,q = 0 for q = 1, . . . ,dimX − 1.

An important class of examples of such singular Calabi–Yau varieties is provided
by the Weierstrass models p : W −→ B of the elliptic fibrations π : X −→ B
for which X is a Calabi–Yau manifold.

3.2 Calabi–Yau elliptic threefold

We now want to focus on the elliptic fibrations π : X −→ B for which the total
space X is a smooth Calabi–Yau threefold. In this case we can compute the
fundamental line bundle of the Weierstrass model of our fibration in an easy
way, and we will find that

L = OB(−KB).

Let π : X −→ B be an elliptic threefold, with X and B smooth. Suppose also
that X is a Calabi–Yau threefold, and that a section σ for π is given. We denote
S = σ(B) and so we have

S
i // X

π
~~~~

~~
~~

~

B

σ

>>~~~~~~~σ′

__???????

We use the section S to put our fibration in Weierstrass form, finding a possibly
singular elliptic threefold p :W −→ B and a birational morphism f : X −→W
such that p ◦ f = π, so the diagram

X
f //

π
  @

@@
@@

@@
@ W

p
~~}}

}}
}}

}}

B

commutes. Recall from Section 2.2 that this construction has two features:

1. the dimension of the singular locus of W is at most 1;

2. we have that f|f−1(W reg)
: f−1(W reg) −→W reg is an isomorphism.

Moreover, W comes with a section Σ = s(B) so that

S
i //

f|S
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X

π
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commutes, and we observe that f is an isomorphism between open neighbour-
hoods of S and Σ.
Using this diagram and this last observation, we have that p∗ι∗NΣ|W ' π∗i∗NS|X ,
and I want to show that

π∗i∗NS|X ' ωB .

This follows from the adjunction and projection formulae and the fact that X
is Calabi–Yau: since i∗c1(NX|X) = S2, using (3.2) we deduce that

i∗c1(NS|W ) = i∗KS ,

and so we finally have

π∗i∗c1(NS|X) = π∗i∗KS = π∗i∗σ
′
∗KB = π∗σ∗KB = KB .

The fundamental line bundle L of p : W −→ B, which by definition is the
inverse of p∗ι∗NΣ|W , is then

L = OB(−KB).

This implies that we can map W isomorphically into the projective bundle

P(OB(−2KB)⊕OB(−3KB)⊕O) −→ B

as a hypersurface. By Section 1.2.1, the class of W in this bundle is [W ] =
−6Π∗KB + 3ξW = −KZ , and so ωW ' OW .

Remark 3.2.1 The Calabi–Yau condition can be used to check the results
obtained in Section 2.2. In fact, f : X −→ W is a small resolution of the
singularities of W , and so by Zariski’s main theorem [Har77, Thm. 11.4] f has
connected fibres and then

f∗ωX = f∗OX = OW = ωW

meaning that W has rational Gorenstein singularities. We can also check that
f is crepant, in fact

f∗ωW = f∗OW = OX = ωX .
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A finiteness result

Let B be a smooth projective surface, and L an ample line bundle on B. Having
clear in mind that Weierstrass fibrations naturally embed into a projective plane
bundle over B, I want now to study the smooth Calabi–Yau hypersurfaces in
the bundle of projective planes Z = P(La ⊕ Lb ⊕OB), where a and b are fixed
integers. More in detail, I want to study the generic element in the anticanonical
system | −KZ | of Z and to prove the following proposition

Proposition 4.1 Let B be a smooth projective surface, and L an ample line
bundle on B. Then only for a finite number of pairs (a, b) the generic anticanon-
ical hypersurface in P(La ⊕ Lb ⊕OB) is a smooth Calabi–Yau elliptic fibration
over B.

I want to recall some facts from the theory of surfaces which I will use in the
following. We denote by L the first Chern class of L. By Nakai–Moishezon
criterion we have that L2 > 0, so as a consequence of the Hodge index theorem
we have that for any divisor D on B the inequality

(LD)2 ≥ L2D2

holds, and moreover we have equality if and only if rL = sD for some integer r
and s.

4.1 The ambient bundle

Let’s denote E = La ⊕ Lb ⊕ O and consider the bundle Z = P(E), so it’s not
restrictive to assume that a ≥ b ≥ 0. It’s easy to see that c1(E) = (a+ b)L, and
so by (1.13)

c1(Z) = Π∗c1(B) + (a+ b)Π∗L+ 3ξ

where ξ = c1(OZ(1)) and Π is the bundle projection.
Since we want our variety to have class −KZ = c1(Z), we see that it must be
defined by a cubic equation in the variables x, y and z on the fibres because of
the term 3ξ, say

F =
∑

i+j+k=3

αijkx
iyjzk,

32
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and so we see that these varieties are also genus 1 fibrations over B. In this
equation the coefficient of each monomial is a section of a line bundle on B
according to Table 4.1.

Table 4.1: Weight of the coefficients

Monomial Coefficient Weight

x3 α300 c1(B)− (2a− b)L
x2y α210 c1(B)− aL
xy2 α120 c1(B)− bL
y3 α030 c1(B) + (a− 2b)L

x2z α201 c1(B)− (a− b)L
xyz α111 c1(B)

y2z α021 c1(B) + (a− b)L
xz2 α102 c1(B) + bL

yz2 α012 c1(B) + aL

z3 α003 c1(B) + (a+ b)L

4.2 Proof of the proposition

I will divide the proof of Proposition 4.1 in several steps. In the first step I will
show that only for a finite number of pairs (a, b) it’s not clear if the genus 1
fibrations in P(La ⊕ Lb ⊕ OB) are elliptic fibrations, i.e. if they admit a sec-
tion. The second step will reduce the problem of the smoothness of the generic
anticanonical hypersurface to a problem concerning only the intersection form
on the base. This step will split in two subcases, which will be analysed in the
third and fourth step.

4.2.1 Step 1

Since L is an ample divisor, there exists a suitable integer n0 such that nL+KB

is ample for any n ≥ n0. Taking into account the limitation a ≥ b ≥ 0, there is
only a finite number of pairs (a, b) such that 2a− b < n0: in these cases we have
a genus 1 fibration, but since the equation F defining the variety is general, it’s
difficult to see if there are sections or not.
The other cases satisfy 2a− b ≥ n0: in this case (2a− b)L+KB is ample, hence

H0(B, (b− 2a)L−KB) = H0(B,−((2a− b)L+KB)) = 0,

and so the coefficient of x3 is identically 0. So the equation for our variety looks
like

F = α210x
2y + α201x

2z + . . .

and then we have a section, given by

b 7−→ (1 : 0 : 0) ∈ Xb.
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4.2.2 Step 2

We now focus on the infinitely many cases where 2a − b ≥ n0, so that we can
exploit the presence of a section.
Let ∂ be any (local) derivation on B, and observe that

(∂F )|(b,(1:0:0)) = 0.

Since in a smooth fibration with a section the singularities in the fibres can’t lie
on the section (Proposition 1.1), the following system must have no solutions

∂F
∂x |(b,(1:0:0))

= 0

∂F
∂y |(b,(1:0:0))

= α210(b) = 0

∂F
∂x |(b,(1:0:0))

= α201(b) = 0.

.

This is equivalent to require that the curves defined by α210 = 0 and α201 = 0
have no common points, i.e. that

(c1(B)− aL)(c1(B)− (a− b)L) = 0.

Observe that now we have a problem concerning only the base and its intersec-
tion theoretic properties. Computing the quantity on the left, we find the degree
2 polynomial in (a, b)

a(a− b)L2 + (b− 2a)c1(B)L+ c1(B)2.

Thinking to (a, b) ∈ R2, the equation

a(a− b)L2 + (b− 2a)c1(B)L+ c1(B)2 = 0 (4.1)

defines a plane conic, which is reducible if and only if

L2 = 0 or (c1(B)L)2 = L2c1(B)2.

The first case is impossible since we are assuming that L is ample.
Our next step is then to study the conic defined in (4.1) when it is irreducible
and when it is reducible, and to show that in each of these two cases we have
only a finite number of integral points (a, b) in the octant a ≥ b ≥ 0.

4.2.3 Step 3

Let’s concentrate first on the case when the conic (4.1) is irreducible: it is a
hyperbola, with asymptotes

a =
c1(B)L

L2
and b = a− c1(B)L

L2
.

The change of variables {
a = a′ + 2b′

b = b′

is represented by a matrix in SL(2,Z), hence preserves the integral lattice in
R2 and the integral points on the hyperbola we are studying. In these new
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coordinates the equation of hyperbola satisfies the hypothesis of [Zel], so we
have both that the number of integral points on the conic is finite and a way to
compute them. Using the previous transformation and the (simple) algorithm in
[Zel], we have that the integral points of the conic (4.1) are among the following:

ai =
±2L2(c1(B)L)2∓2(L2)2c1(B)2+dic1(B)L

diL2 ,

bi = ± 4(L2)2(c1(B)L)2−4(L2)3c1(B)2−d2
i

2di(L2)2 ,

where di runs through the (positive) divisors of 4(L2)2((c1(B)L)2 − c1(B)2L2).

4.2.4 Step 4

We concentrate now in the case where the conic (4.1) is reducible, i.e. the case
where (c1(B)L)2 = L2c1(B)2. The equation for the conic (4.1) is

(L2a− c1(B)L)(L2a− L2b− c1(B)L) = 0.

As we said before, in this case (and only in this case) we have rL = sc1(B) for

suitable integer r and s, and so sc1(B)L = rL2, which is the same as c1(B)L
L2 = r

s :
we have then two further subcases according to whether r

s is a positive integer
or not.
If r

s /∈ N, the two lines

a =
c1(B)L

L2
and b = a− c1(B)L

L2

have no integral points at all. This means that we have no new smooth Calabi–
Yau fibrations.
If instead r

s ∈ N, then in the range a ≥ b ≥ 0 we have a finite number of pairs

(a, b) on the line a = c1(B)L
L2 , namely c1(B)L

L2 +1 = r
s +1, and an infinite number

of (a, b)’s on the line b = a− c1(B)L
L2 . To give a limitation on the number of these

last, we look at the coefficient of the first monomials in the equation F = 0.
They are

Monomial Weight of the coefficient

x3 −(b+ r
s )L

x2y −bL
xy2 ( rs − b)L
y3 (2 r

s − b)L

and so if b− 2 r
s > 0, i.e. b > 2 r

s , we have that (b− 2 r
s )L is ample, hence

H0
(
B,
(
2
r

s
− b
)
L
)
= H0

(
B,−

(
b− 2

r

s

)
L
)
= 0.

The same argument applies to the other three in the list since

b− 2
r

s
< b− r

s
< b < b+

r

s
.
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Hence the coefficients of x3, x2y, xy2 and y3 are necessarily identically zero, and
so the equation F for the variety factors as F (x, y, z) = z ·f(x, y, z). Then F = 0
can’t define a smooth variety, and observe that z = 0 defines a divisor whose
class is ξ, while f(x, y, z) = 0 defines a divisor of class Π∗c1(B)+(a+b)Π∗L+2ξ,
which is neither a Calabi–Yau variety nor an elliptic fibration.
In particular, we have only a finite number of pairs (a, b) on the line b = a −
c1(B)L

L2 = a− r
s such that the generic anticanonical hypersurface in P(La⊕Lb⊕

OB) could define a Calabi–Yau elliptic fibration over B, and a limitation is

r

s
≤ a ≤ 3

r

s
, 0 ≤ b ≤ 2

r

s
. (4.2)

If r
s ∈ N we have then at most

3
r

s
+ 1 =

(r
s
+ 1
)

︸ ︷︷ ︸
Pairs on the line

a = c1(B)L
L2

+
(
2
r

s
+ 1
)

︸ ︷︷ ︸
Pairs on the line

b = a− c1(B)L
L2

− 1︸︷︷︸
The common case

(a, b) =
(

c1(B)L
L2 , 0

)
such pairs (a, b).

4.2.5 Conclusion

Only for a finite number of pairs (a, b) the generic anticanonical hypersurface
in P(La ⊕ Lb ⊕ O) is a smooth Calabi–Yau elliptic fibration, which completes
the proof of Proposition 4.1.
We can summarize the results obtained in the following table.

(2a−b)L+KB is
not ample

(2a− b)L+KB is ample

(c1(B)L)2 6=
c1(B)2L2

(c1(B)L)2 = c1(B)2L2

r
s /∈ N r

s ∈ N
Finite number
of cases. These
are a priori
only genus one
fibrations. It’s
not clear if they
have at least a
section or not.

The conic (4.1)
is irreducible,
and we have a
finite number of
cases.

No pairs. Finite number of
cases, at most
3 r
s + 1.

4.3 Examples and remarks

I want now to run this program in some cases of interest: the case where the
base B is a del Pezzo surface and L is a multiple of an anticanonical divisor,
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and the case where B = P2 and L is general.

4.3.1 The case of del Pezzo surfaces

Let B denote a del Pezzo surface and L a multiple of the anticanonical bundle
(this is the most natural setting), say L = ω−m

B , and observe that L is ample for

any m ≥ 1. We can assume that m = 1, since La ⊕Lb ⊕OB = ω−ma
B ⊕ ω−mb

B ⊕
OB = ω−α

B ⊕ ω−β
B ⊕OB with α = ma, β = mb.

The divisor nL + KB = −(n − 1)KB is ample if n − 1 ≥ 1, or equivalently if
n ≥ 2. With the notation of Section 4.2.1 we have n0 = 2, and then the pairs
(a, b) for which we can’t ensure the presence of a section, satisfying 2a− b < n0,
are

(a, b) = (0, 0), (1, 1).

For all the other pairs, we are in the case described in Section 4.2.4, so we
observe that

rL = −sKB ⇐⇒
r

s
= 1.

The conic (4.1) has then this expression

(a− 1)(a− b− 1) = 0

and so we see only two points in the first octant on the line a = 1, namely
(a, b) = (1, 0), (1, 1), while on the line b = a − 1 we have to take care of the
limitation (4.2) b ≤ 2 and so we see two other pairs, i.e. (a, b) = (2, 1) and
(a, b) = (3, 2). This means that we have at most 5 possibilities for (a, b):

(0, 0), (1, 1), (1, 0), (2, 1), (3, 2).

4.3.2 The case of B = P2

Observe that if B is a smooth surface with PicB ' Z, then we are necessarily
in the case described in Section 4.2.4. Take for example B = P2, and L = dl
for d ∈ N and l a line in P2. Now we compute the least integer n0 such that
n0L+KP2 is ample: we find

n0 =


4 if d = 1

2 if d = 2, 3

1 if d ≥ 4,

so the cases where we can’t apply the Kodaira vanishing theorem (Section 4.2.1),
satisfying 2a− b < n0, are

(0, 0), (1, 0), (1, 1), (2, 1), (2, 2), (3, 3) if d = 1

(0, 0), (1, 1) if d = 2, 3

(0, 0) if d ≥ 4

.

Since c1(P2) = 3l, we have

rdl = 3sl⇐⇒ rd = 3s⇐⇒ r

s
=

3

d
.
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This means that we have only two cases in which the ratio r
s is an integer, and

correspond to
d = 1 and d = 3,

i.e. when L = l and L = −KP2 . For all the other cases, the only possible pair is
then (a, b) = (0, 0), with the exception of L = 2l, which has also (a, b) = (1, 1).
For d = 3, there are five possibilities: P2 is a del Pezzo surface and d = 3
corresponds to L = −KP2 , and so we can use the results of the previous section.

d Possible (a, b)’s

2 (0, 0), (1, 1)

3 (0, 0), (1, 0), (1, 1), (2, 1), (2, 3)

≥ 4 (0, 0)

The only case left is d = 1 in the situation of Section (4.2.4). We have only to
count the integral points on the conic

(a− 3)(a− b− 3) = 0

which are in the first octant and having b ≤ 6 (estimate (4.2)): on the first line
we have the points (3, 2), (3, 1) and (3, 0), while on the second the points (4, 1),
(5, 2), (6, 3), (7, 4), (8, 5) and (9, 6).
Then the pairs (a, b) such that the generic anticanonical hypersurface in P(OP2(a)⊕
OP2(b)⊕OP2) could be a smooth elliptic fibration are the following 15:

(0, 0), (1, 0), (1, 1), (2, 1), (2, 2), (3, 3),

(3, 2), (3, 1), (3, 0),

(4, 1), (5, 2), (6, 3), (7, 4), (8, 5), (9, 6).

4.3.3 Remarks

I want to stress the fact that we proved that the number of genus 1 fibrations
whose total space is smooth lie in a finite number of P(La ⊕ Lb ⊕OB), but we
don’t know if all of them are elliptic fibrations. In the finite number of cases
detected in Section 4.2.1 it’s not clear if there is at least a section; we will see
this fact in Chapter 5, where we will analyse more in detail the 15 families over
P2.

4.4 Chern classes

We want to compute the Chern classes of X ∈ | − KZ |. We have i : X ↪→ Z,
and the normal bundle sequence

0 −→ TX −→ i∗TZ −→ NX|Z −→ 0,

which gives the following relation between the Chern polynomials

i∗c(Z) = c(X)c(NX|Z) = c(X)i∗(1−KZ).
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The Chern polynomial of Z was computed in Remark 1.2.4 (p. 17), and (1−KZ)
has as formal inverse

(1−KZ)
−1 = 1 +KZ +K2

Z +K3
Z +K4

Z .

Then

c(X) = i∗
(
c(TZ|B)

1−KZ
Π∗c(B)

)
, (4.3)

and an explicit computation shows that

1. the first Chern class of X vanishes, as expected since X is Calabi–Yau;

2. the second Chern class of X is the restriction to X of

3ξ2 + (2Π∗c1(E) + 3Π∗c1(B))ξ +Π∗(c1(E)c1(B) + c2(E) + c2(B));

3. the third Chern class of X is the restriction to X of

−9Π∗c1(B)ξ2 −Π∗(2c1(E)2 + 6c1(E)c1(B) + 3c1(B)2 − 6c2(E))ξ,

which is a codimension 3 cycle on X whose degree is

−6c1(E)2 − 18c1(B)2 + 18c2(E). (4.4)

In our case, with E = La⊕Lb⊕OB , the Chern classes of the vector bundle are
then

c1(E) = (a+ b)L,

c2(E) = abL2,

c3(E) = 0,

so we have the following formulae for the Chern classes of X:

c1(X) = 0,

c2(X) = 3ξ2|X + π∗(2(a+ b)L+ 3c1(B))ξ|X+

+π∗((a+ b)Lc1(B) + abL2 + c2(B)),

c3(X) = χtop(X) = −6(a2 − ab+ b2)L2 − 18c1(B)2.

(4.5)



Chapter 5

Classification over P2

In this chapter I want to use the results in Chapter 4 and Appendix A to
give a detailed description of the elliptic threefolds X which are anticanonical
hypersurfaces in the projective bundle Z = P(OP2(a)⊕OP2(b)⊕OP2) over P2.1

We have coordinates in the fibres of this bundles, which we call x, y and z; in
particular (compare with (1.8))

x ∈ H0(Z,OZ(1)⊗Π∗O(a)),
y ∈ H0(Z,OZ(1)⊗Π∗O(b)),
z ∈ H0(Z,OZ(1)).

(5.1)

We let ξ = c1(OZ(1)), and since z is a section in H0(Z,OZ(1)) then the class
of the divisor z = 0 is ξ. We will use this fact to compute the Chern classes
of anticanonical subvarieties, as shown in formula (4.5), and refer to ξ as an
hyperplane section of Z.
In Section 4.3.2 we saw that a generic cubic equation

F =
∑

i+j+k=3

αijkx
iyjzk

defines a smooth Calabi–Yau elliptic threefold X in Z only if the pair (a, b) is
one of the following 15

(0, 0), (1, 0), (1, 1), (2, 1), (2, 2), (3, 3),

(3, 2), (3, 1), (3, 0),

(4, 1), (5, 2), (6, 3),

(7, 4), (8, 5), (9, 6).

The coefficients αijk appearing in F are homogeneous polynomials of suitable
degree, according to Table 4.1, p. 33. In the first 6 cases the polynomial F
is general, so there is a priori no obvious section, while for the other cases
b 7−→ (1 : 0 : 0) ∈ Xb defines a section, since α300 vanishes identically. In the
Table 5.1 there are the degrees of the coefficients, computed using Table 4.1, and
an empty cell means that the corresponding coefficient is necessarily identically
0.

1In the rest of this chapter I will omit the subscript P2.

40
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Table 5.1: Degrees of the coefficients

(a, b) α300 α210 α120 α030 α201 α111 α021 α102 α012 α003

(0, 0) 3 3 3 3 3 3 3 3 3 3

(1, 0) 1 2 3 4 2 3 4 3 4 4

(1, 1) 2 2 2 2 3 3 3 4 4 5

(2, 1) 0 1 2 3 2 3 4 4 5 6

(2, 2) 1 1 1 1 3 3 3 5 5 7

(3, 3) 0 0 0 0 3 3 3 6 6 9

(3, 2) 0 1 2 2 3 4 5 6 8

(3, 1) 0 2 4 1 3 5 4 6 7

(3, 0) 0 3 6 0 3 6 3 6 6

(4, 1) 2 5 0 3 6 4 7 8

(5, 2) 1 4 0 3 6 5 8 10

(6, 3) 0 3 0 3 6 6 9 12

(7, 4) 2 0 3 6 7 10 14

(8, 5) 1 0 3 6 8 11 16

(9, 6) 0 0 3 6 9 12 18

Using the algorithm described in Appendix A, we can compute the Hodge num-
bers of the anticanonical subvarieties of Z: since these are Calabi–Yau threefolds,
the only interesting Hodge numbers are h1,1 and h2,1. In Table 5.2 I will list the
following results:

1. h1,1(X), which equals rkPicX as observed in Chapter 3;

2. h2,1(X), which by Bogomolov–Tian–Todorov theorem is the dimension of
the space of deformations of X;

3. the Euler–Poincaré characteristic of X, χtop(X) = 2(h1,1(X) − h2,1(X)).
Observe that these results agrees with formula (4.5);

4. the rank of the Mordell–Weil group of X in the generic case, an empty
cell means that X has no section.

Table 5.2: Hodge numbers

(a, b) h1,1(X) h2,1(X) χtop(X) rkMW(X) Chapter

(0, 0) 2 83 −162 5.2

(1, 0) 2 86 −168 5.2

(1, 1) 2 86 −168 5.2

(2, 1) 2 92 −180 5.2

(2, 2) 2 95 −186 5.2
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(3, 3) 4 112 −216 2 5.3

(3, 2) 3 105 −204 1 5.4

(3, 1) 3 105 −204 1 5.4

(3, 0) 3 111 −216 1 5.4, 6.1, 6.5

(4, 1) 3 123 −240 1 5.5

(5, 2) 3 141 −276 1 5.5

(6, 3) 3 165 −324 1 5.5, 6.3, 6.4

(7, 4) 3 195 −384 0 5.6

(8, 5) 3 231 −456 0 5.6

(9, 6) 2 272 −540 0 5.7

This chapter is devoted to a case by case analysis of these 15 families. In partic-
ular, I will give the Weierstrass equation of each family with at least a section,
compute the intersection form on the Picard group and describe (rational) sec-
tions which are Mordell–Weil generators. I will also check that all the deforma-
tions of our X’s come from deformations of the defining polynomial F , and in
some case I will give also canonical equations.
The sections of a fibration (if any) will be denoted by S or by S0, S1, . . ., in this
last case the Weierstrass equation will be computed with respect to S0. The
pull-back to X of a line l in P2 will be denoted by L, then L2 is the class of a
fibre.
Observe from Table 5.2 that h1,1(X) ≥ 2 for all the families we are considering.
This is not a case since rkPicZ = 2 and I will now show that the restriction
map i∗ : PicZ −→ PicX is injective.

Proposition 5.1 Let X be a smooth elliptic threefold which is an anticanonical
divisor in Z = P(O(a) ⊕ O(b) ⊕ O), and denote by i : X ↪→ Z the inclusion.
Then the restriction map

i∗ : PicZ −→ PicX

is injective.

Proof The Picard group of Z has rank 2 and is generated by Π∗l and ξ (compare
to Appendix A.1.2). The first of these divisors restricts to L, which is a non-
trivial vertical divisor with L3 = 0. It’s then enough to show i∗ξ3 6= 0 to prove
the linear independence of L and i∗ξ. The degree of i∗ξ3 is the same as the
degree of i∗i

∗ξ3 = ξ3X, and this cycle in Z is

ξ3X = ξ3((3 + a+ b)L+ 3ξ) = (2a2 + ab+ 2b2 − 3a− 3b)L2ξ2,

where X = (3 + a+ b)L+ 3ξ was computed in (1.13), and we used the relation
ξ3 + (a + b)Lξ2 + abL2ξ = 0, which holds by the very definition of the Chern
classes of Z. It’s then straightforward to check that

i∗ξ3 = 2a2 + ab+ 2b2 − 3a− 3b

does not vanish when the pair (a, b) is one of the 15 we are dealing with. �
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Remark 5.0.1 Actually, in the case (a, b) = (0, 0) we find i∗ξ3 = 0. To see
that L and i∗ξ are independent also in this case, we can use [Mir89, Lemma
VII.1.4] and the fact that i∗ξ is a divisor which intersects the generic fibre in
three points to deduce that i∗ξ is not linearly equivalent to a vertical divisor.
This implies that L and ξ|X are linearly independent.

This result is interesting and also non-trivial, since we can’t apply Lefschetz
hyperplane theorem [Laz04, Thm. 3.1.17]: in fact our X’s are not ample, since
Z is typically not Fano.
Observe also that rkMW(X) = h1,1(X) − 2 except for the cases (a, b) =
(7, 4), (8, 5). According to the Shioda–Tate–Wazir formula (Theorem 1.3), this
means that the generic fibration in each family has no vertical divisors, except
in these two cases where we expect to have a vertical divisor.

5.1 The number of parameters

In this section I want to prove the following result, concerning the number of
moduli of the 15 families of Calabi–Yau elliptic fibrations I’m going to study.
Roughly speaking, I want to show that all the deformations of a fibration X ⊆
P(O(a) ⊕ O(b) ⊕ O) can be realized by deformations of the defining equation
F = 0 for X. I will also give a practical algorithm to compute h2,1(X), which by
Bogomolov–Tian–Todorov theorem is the dimension of the space of deformations
of X.

Proposition 5.2 Let X be an anticanonical hypersurface in Z = P(O(a) ⊕
O(b) ⊕ O). Then all the deformations of X comes from deformations of X
inside Z. More precisely,

h2,1(X) = n(−KZ)− 8− nZ|P2 ,

where n(−KZ) = h0(Z,−KZ) − 1 is the number of parameters for the generic
equation of a threefold in the family, and nZ|P2 is the dimension of the group
AutP2(Z) of the automorphisms of Z over P2, i.e. those automorphisms Z −→ Z
such that

Z //

Π   @
@@

@@
@@

Z

Π~~~~
~~

~~
~

P2

commutes.

In fact, from Remark A.3.1 we have the exact sequence

0 −→ H0(Z, TZ) −→ H0(X,NX|Z) −→ H1(X, TX) −→ 0,

which implies that

h1(X, TX) = h0(X,NX|Z)− h0(Z, TZ).

Since sections in H1(X, TX) and in H0(X,NX|Z) correspond to first order de-
formations of X and to first order deformations of X inside Z respectively, the
first part of the proposition follows from the surjectivity of the last map in the
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sequence.
By (A.1) we have h1(X, TX) = h2,1(X) (which is the number of moduli of X),
and if F is an equation for X ⊆ Z, then F depends on h0(Z,−KZ) linear pa-
rameters. Finally, by [BC94, Rmk. 12.6] h0(Z, TZ) is the dimension of the group
AutZ of automorphisms of Z. In Appendix A, I also compute h0(X,NX|Z) and
h0(Z, TZ), finding that

h0(X,NX|Z) = h0(Z,−KZ)− 1,

h0(Z, TZ) =
∑6

i=1 h
0(Z,Dj)− 2,

where D1, . . . , D6 are the torus-invariant divisors of Z.
We can obviously write

h0(Z, TZ) =
6∑

i=1

h0(Z,Dj)− 2 =

(
3∑

i=1

h0(Z,Dj)− 1

)
+

(
6∑

i=4

h0(Z,Dj)− 1

)
,

and since from Appendix A.1.2 the divisors D1, D2 and D3 have class Π∗l, then∑3
i=1 h

0(Z,Dj)− 1 is the contribution of the automorphism group of the base
P2, i.e. PGL(3,C). In fact (see Appendix A.2.4)

3∑
i=1

h0(Z,Dj)− 1 = 3 + 3 + 3− 1 = 8.

It’s also possible to see that
∑6

i=4 h
0(Z,Dj)−1 is the dimension of the group of

automorphisms of Z acting fibrewise. We conclude that we can compute h2,1(X)
as follows:

1. compute the number n(−KZ) of parameters of the generic anticanonical
hypersurface in Z = P(O(a)⊕O(b)⊕O);

2. compute the dimension nZ|P2 of the group AutP2(Z);

3. then h2,1(X) = n(−KZ)− 8− nZ|P2 .

I will give an example on how this algorithm works in Section 6.1.1.

5.2 The families (0, 0), (1, 0), (1, 1), (2, 1), (2, 2)

5.2.1 The cubic form

As it’s clear from Table 5.2, all these families have rkPicX = 2 and so, by
Proposition 5.1, L = π∗l and R = ξ|X are a Q-basis for PicX ⊗Z Q.2

Let’s begin with a more precise description of R. By its definition it is given by

R :

{
F = 0

z = 0
−→

{
α300x

3 + α210x
2y + α120xy

2 + α030y
3 = 0

z = 0,

and in general the polynomial equation α300x
3 +α210x

2y+α120xy
2 +α030y

3 =
0 has three distinct solutions. This number decreases when its discriminant

2By abuse of language, I will simply say that a set of divisors is a Q-basis for PicX.
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vanishes, i.e. over the curve

C : α2
210α

2
120 − 4α300α

3
120 − 4α3

210α030 + 18α300α210α120α030 − 27α2
300α

2
030 = 0,

(5.2)
Then R = X ∩ {z = 0} defines a 3 : 1 covering of P2 branched along this curve,
which is in general singular since it’s the discriminant of a cubic polynomial.
Now we begin the calculation of the intersection numbers. Since R is a 3 : 1
covering of the base, then L2R = 3. So we have the intersection numbers

L R

L2 0 3

LR 3 ?

and since det

(
0 3

3 ?

)
= −9 6= 0, we have a confirmation that {L,R} is a

Q-basis for PicX.
Now we want to calculate the intersection numbers LR2 and R3. Let i : X ↪→ Z
be the inclusion, and Π : Z −→ P2 the bundle projection; then the fibration is
π = Π ◦ i, and so letting Λ = Π∗l then L = i∗Λ and R = i∗ξ.
This implies that

LR2 = i∗(Λξ2)

R3 = i∗ξ3

and so using the projection formula and (1.13)

i∗(LR
2) = Λξ2X = 3− 2a− 2b

i3R = ξ3X = 2a2 + ab+ 2b2 − 3a− 3b

The whole intersection table is then

L R

L2 0 3

LR 3 3− 2a− 2b

R2 3− 2a− 2b 2a2 + ab+ 2b2 − 3a− 3b

and we conclude that the cubic form is given by

(a, b) (αL+ βR)3

(0, 0) 9αβ(α+ β)

(1, 0) β(9α2 + 3αβ − β2)

(1, 1) β(9α2 − 3αβ − β2)
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(2, 1) 3β(3α2 − 3αβ + β2)

(2, 2) β(9α2 − 15αβ + 8β2)

5.2.2 Sections

As pointed out before, the presence of all the coefficients in F make it difficult
to decide whether or not we have sections. We can use the results on the inter-
section form to solve this problem. In fact, any section S satisfies the following
intersection theoretic requirements:

1. L2S = 1, since L2 is the class of the generic fibre;

2. c2(X)S = −6 by Friedman’s result (3.4);

3. S3 = 9, since S3 = K2
P2 by (3.3).

Let αL+ βR be the class of a section, with α, β ∈ Q. Then we have

1 = L2(αL+ βR) = βL2R = 3β,

which implies that β = 1
3 . The second condition gives a linear relation among

α and β, since the pairing with c2(X) defines a linear form on PicX. Using
(4.5) we can compute c2(X), and thanks to the intersection table above we can
compute c2(X)(αL+ βR). The results are:

(a, b) c2(X)(αL+ βR)

(0, 0) −18α− 18β

(1, 0) −18α− 10β

(1, 1) −18α− 4β

(2, 1) −18α+ 6β

(2, 2) −18α+ 14β

Since β = 1
3 , we can compute α using the second condition. Then computing

(αL+ βR)3 we can check if the result is 9 or not. We have

(a, b) (α, β) (αL+ βR)3

(0, 0)
(
0, 13

)
0

(1, 0)
(

4
27 ,

1
3

)
19
243

(1, 1)
(

7
27 ,

1
3

)
19
243

(2, 1)
(
4
9 ,

1
3

)
7
27

(2, 2)
(
16
27 ,

1
3

)
88
243
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We proved that the generic family in all of these cases has no sections.

5.3 The family (3, 3) and the E6 family

The polynomial defining a generic fibration of type (3, 3), i.e. an anticanonical
hypersurface in P(O(3)⊕O(3)⊕O), is of the form

F = α300x
3 + α210x

2y + α120xy
2 + α030y

3 + z(. . .),

with α300, α210, α120, α030 ∈ C, so intersecting X with the hypersurface of Z
given by z = 0 we fall into one and only one of the following possibilities:

1. the equation α300x
3 + α210x

2y + α120xy
2 + α030y

3 = 0 has one solution,
i.e. z = 0 defines a section in X,

2. the equation α300x
3 + α210x

2y + α120xy
2 + α030y

3 = 0 has two solutions,
i.e. z = 0 defines two sections in X,

3. the equation α300x
3+α210x

2y+α120xy
2+α030y

3 = 0 has three solutions,
i.e. z = 0 defines three sections in X.

It’s easy to see that the first two cases lead to singular X’s, so we discard them
and concentrate only on the third: such family is known in the literature as E6

family (see e.g. [AE10]).
The fact that we have three distinct sections allows us to find a simple canonical
form. The sections are given by{

F = 0

z = 0
−→

{
α300x

3 + α210x
2y + α120xy

2 + α030y
3 = 0

z = 0,

and we call the three solution of the first equation (x0 : y0), (x1 : y1) and
(x2 : y2). Then the homography

x = x1(y0x2 − x0y2)x′ + x0(x2y1 − x1y2)y′

y = y1(y0x2 − x0y2)x′ + y0(x2y1 − x1y2)y′

z = z′

puts these sections in a standard position, i.e. sends

P2 × {(x0 : y0 : 0)} 7−→ S0 = P2 × {(0 : 1 : 0)}
P2 × {(x1 : y1 : 0)} 7−→ S1 = P2 × {(1 : 0 : 0)}
P2 × {(x2 : y2 : 0)} 7−→ S2 = P2 × {(1 : −1 : 0)}

and so allows us to assume that the equation of the family X looks like (using
not-primed letters)

x2y + xy2 + α201x
2z + α111xyz + α021y

2z + α102xz
2 + α012yz

2 + α003z
3.
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Applying finally the homography
x = x′ − α021z

′

y = y′ + α201z
′

z = z′

we obtain the canonical form of an E6 family (I use not-primed variables again):

x2y + xy2 + α111xyz + α102xz
2 + α012yz

2 + α003z
3 = 0. (5.3)

Observe that this canonical form is not the same as that of the E6 fibrations
described in [AE10, Sect. 1.7], but it’s equivalent to this last: the difference is
in the choice of the “standard position” for the three sections.

5.3.1 The cubic form of the E6 family

To compute the cubic form, we can assume that X is in canonical form (5.3)

X : F = x2y + xy2 + α111xyz + α102xz
2 + α012yz

2 + α003z
3 = 0.

In this case, the intersection of X and the divisor z = 0 in Z gives three distinct
sections, namely

{
F = 0

z = 0
−→

S0 = P2 × {(0 : 1 : 0)}
S1 = P2 × {(1 : 0 : 0)}
S2 = P2 × {(1 : −1 : 0)}

I will now show that L and the three sections S0, S1 and S2 give a Q-basis for
PicX. Since each Si is a section, isomorphic to P2, we have that L2Si = 1 and
S3
i = 9 by (3.3). Observe also that LSi = L|Si

is the class of a line in the section

Si: this means that3

LS2
i = LSi · Si = (L|Si

)(S|Si
) = −3,

because S|Si
is the class of a canonical divisor in S by (3.2). Finally, if i 6= j

then Si is disjoint from Sj , hence SiSj = 0. We have then the intersection table
of our variety:

L S0 S1 S2

L2 0 1 1 1

LS0 1 −3 0 0

LS1 1 0 −3 0

LS2 1 0 0 −3
S2
0 −3 9 0 0

S0S1 0 0 0 0

3Observe the abuse of notation: to be precise, by the projection formula for the inclusion
map ji : Si ↪→ X we have LS2

i = LSi · Si = ji∗((L|Si
)(S|Si

)) = ji∗(−3L2
|Si

), whose degree is

then degLS2
i = −3.
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S0S2 0 0 0 0

S2
1 −3 0 9 0

S1S2 0 0 0 0

S2
2 −3 0 0 9

Observe that the matrix obtained considering the first 4 rows of the previous
table has non vanishing determinant:

det


0 1 1 1

1 −3 0 0

1 0 −3 0

1 0 0 −3

 = −27 6= 0,

this means that L, S0, S1 and S2 are Q-linearly independent, hence by Table
5.2 that they are a Q-basis.
The cubic form is then

(αL+ β0S0 + β1S1 + β2S2)
3 =

= 3α2(β0 + β1 + β2)− 9α(β2
0 + β2

1 + β2
2) + 9(β3

0 + β3
1 + β3

2).

Observe that after the change of coordinates
α = A

β0 = B0 +
1
3A

β1 = B1 +
1
3A

β2 = B2 +
1
3A

the expression of the cubic form becomes basically a Fermat cubic:

(AL+B0S0 +B1S1 +B2S2)
3 = A3 + 9B3

0 + 9B3
1 + 9B3

2 .

5.3.2 The number of sections of the E6 family

Thanks to the intersection table computed in the previous section, we can now
show that the three sections S0, S1 and S2 are the only sections of this type of
fibrations.
Let αL+β0S0+β1S1+β2S2 be the class of a section. In Section 5.2.2 we discussed
three intersection theoretic properties of a section, which give the system

L2(αL+ β0S0 + β1S1 + β2S2) = 1

(αL+ β0S0 + β1S1 + β2S2)
3 = 9

c2(X) · (αL+ β0S0 + β1S1 + β2S2) = −6.

Using (4.5), we can compute that

c2(X) = 3(S2
0 + S2

1 + S2
2) + 21L(S0 + S1 + S2) + 30L2;
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and so the previous system reduces to
β0 + β1 + β2 = 1

3α2(β0 + β1 + β2)− 9α(β2
0 + β2

1 + β2
2) + 9(β3

0 + β3
1 + β3

2) = 9

36α− 6β0 − 6β1 − 6β2 = −6.

This last has as solution
α = 0

β0 = 1− β1 − β2
(β1 − 1)(β2 − 1)(β1 + β2) = 0

and so the class of a section can be only one of the following three:

Type 0 S0 + βS1 − βS2

Type 1 βS0 + S1 − βS2

Type 2 βS0 − βS1 + S2

I now want to show that if we consider a class of type 0 which is the class of a
section, then β = 0, so that we obtain the class of S0. The same argument for
the other two types then shows that S0, S1 and S2 are the only classes to which
a section can belong. First of all observe that

(S0 + βS1 − βS2)
2 = S2

0 + β2S2
1 + β2S2

2 ,

and so

KP2 = π∗((S0 + βS1 − βS2)
2) = π∗(S

2
0 + β2S2

1 + β2S2
2) = (1 + 2β2)KP2 .

Since PicP2 = Z we can deduce that β = 0. The last thing to do is to show
that in each linear system |Si| there is only one element: assume that Di is an
effective divisor linearly equivalent to Si, but different from Si, then

0 ≤ DiSiL = S2
i L = −3,

which is absurd.

5.3.3 The Mordell–Weil group of the E6 family

Thanks to the presence of at least one section, we can calculate the Weierstrass
form of a Calabi–Yau elliptic fibration X of the (3, 3) family. After we put
X in canonical form (5.3), we choose S0 as 0-section, and using the methods
described in [Cas91, Chap. 8] we find that the Weierstrass model has equation
y2z = x3 +Axz2 +Bz3 with

A = −1
3α

4
111 +

8
3α

2
111α102 +

8
3α

2
111α012 − 16

3 α
2
102+

+ 16
3 α102α012 − 16

3 α
2
012 + 8α111α003;

B = 2
27α

6
111 − 8

9α
4
111α102 − 8

9α
4
111α012 +

32
9 α

2
111α

2
102 +

16
9 α

2
111α102α012+

+ 32
9 α

2
111α

2
012 +

8
3α

3
111α003 − 128

27 α
3
102 +

64
9 α

2
102α012 +

64
9 α102α102α

2
012+

− 128
27 α

3
012 − 32

3 α111α102α003 − 32
3 α111α012α003 + 16α2

003.
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It’s then possible to compute the discriminant locus ∆ = 4A3 + 27B2, which is
an irreducible curve over which we have nodal fibres.
Using the description of PicX given in the previous section and the exact se-
quences (1.3) and (1.5), we have that the two sections S1 and S2 give a set of
Q-generators4 for MW(X), which then has rank 2.
Observe that this is the rank of the Mordell–Weil group of the generic E6 fi-
bration, in fact we can specialize the equation to find subfamilies of type E6

with rank of the Mordell–Weil group 1 or 0. The tangent line to the fibre Xb

in (0 : 1 : 0) is x = 0, this line intersects the fibre in another point, having
coordinates (0 : −α003(b) : α012(b)). For the generic choice of the coefficients
α012 and α003, this point is different from (0 : 1 : 0), but if we consider the
subfamily with α012 = 0 identically, then S0 cuts each fibre in a flex point. The
equation of the generic member of this subfamily is

x2y + xy2 + α111xyz + α102xz
2 + α003z

3 = 0

and its discriminant is

∆ = α2
003(α

4
111α102−8α2

111α
2
102−α3

111α003+16α3
102+36α111α102α003−27α2

003).

Over the curve α003 = 0, of degree 9, we now have fibres of type I2, to be more
precise over this curve the fibres have equation

x(xy + y2 + α111yz + α102z
2).

The main difference with the generic family is the presence of two new vertical
divisors: the divisor T defined by the line x = 0 over the curve α003 = 0 and
the divisor Q defined by the conic xy+ y2 +α111yz+α102z

2 = 0 over the same
curve.
In PicX we have T = αL+ β0S0 + β1S1 + β2S2, and now I want to determine
the coefficients. To do that I need the following informations:

1. TL2 = 0 since T is vertical;

2. T · LS1 = T · LS2 = 0 since T is disjoint from S1 and S2;

3. T · LS0 = 9 since T · LS0 = (T|S0
)(L|S0

) and T|S0
is a curve of degree 9,

isomorphic to α003 = 0.

Using the intersection table we computed previously, we can write a system in
α, β0, β1 and β2 whose solution gives

T = 3L− 2S0 + S1 + S2,

and since T +Q = 9L we also have

Q = 6L+ 2S0 − S1 − S2.

The Picard group of the generic fibration in this subfamily has then a Q-basis
given by L, S0, T and S2. Using this basis, the exact sequence (1.5) tells us that
this subfamily has rkMW(X) = 1, and that a generator is given by S2.

4By a set of Q-generators for MW(X), I mean a set of generators for MW(X)⊗Z Q.
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In the same way it’s possible to show that the fibrations in the subfamily with
α012 = α102 = 0 identically, defined by

x2y + xy2 + α111xyz + α003z
3 = 0,

where each of the three sections cuts the fibres in flex points, has rkMW(X) = 0.
In this case in fact the discriminant locus is

∆ : 256α3
003(α

3
111 + 27α003) = 0,

and so over the curve α003 = 0 the fibres are of type I3, with equation

xy(x+ y + α111z) = 0.

The divisor π∗α003 = 0 splits in three irreducible components, giving three extra
vertical divisors, and so by the Shioda–Tate–Wazir formula (Theorem 1.3) the
rank of the Mordell–Weil group of the generic fibration in this subfamily is 0.

5.4 The families (3, 2), (3, 1), (3, 0)

As we can see from Table 5.1, in the equation F defining such families the term
x3 is missing, so we have an obvious section

S : b 7−→ (1 : 0 : 0) ∈ Xb.

The tangent line to the curve Xb at the point (1 : 0 : 0) is α210y + α201z = 0,
so by Proposition 1.1 we must have α210 6= 0 in order to have a smooth X. We
can then make the following change of coordinates

x = x′ − α120

2α2
210
y′ + (α120α201

α2
210

− α111

2α210
)z′

y = 1
α210

y′ − α201

α210
z′

z = z′

which allows us to assume that the equation F has the following simpler form
(I drop the primes)

x2y + α030y
3 + α021y

2z + α102xz
2 + α012yz

2 + α003z
3 = 0. (5.4)

The hyperplane section ξ of Z when restricted to X then gives{
F = 0

z = 0
−→ y(x2 + α030y

2) = 0,

the vanishing of the first factor gives the section, the second defines a double
cover R of the base and the ramification locus for the covering map ρ = π|R is
the curve α030 = 0.

5.4.1 The cubic form

From Table 5.2, these families have all rkPicX = 3 and so we search for three
generators. We try with L, the section S and the double cover R.
First of all, since R and S are disjoint we have

SRL = S2R = SR2 = 0.
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Assuming that α030 defines a smooth curve, a canonical divisor on R is given
by ([BHPVdV04, Sect. I.17])

KR = ρ∗KP2 +
m

2
ρ∗l = (

m

2
− 3)ρ∗l,

where m is the degree of α030. Then, thanks to (3.2) and (3.3), we have

LR2 = (L|R)(R|R) = ρ∗l ·
(m
2
− 3
)
ρ∗l = m− 6, R3 = K2

R = 2
(m
2
− 3
)2
.

So the intersection table is

L S R

L2 0 1 2

S2 −3 9 0

R2 m− 6 0 2
(
m
2 − 3

)2
LS 1 −3 0

LR 2 0 m− 6

SR 0 0 0

and since

det

 0 1 2

1 −3 0

2 0 m− 6

 = 18−m

is non-zero (in our cases) we deduce that {L, S,R} is a Q-basis for PicX. More-
over the cubic form is

(a, b) (αL+ βS + γR)3

(3, 2) 3α2β − 9αβ2 + 9β3 + 6α2γ − 12αγ2 + 8γ3

(3, 1) 3α2β − 9αβ2 + 9β3 + 6α2γ − 6αγ2 + 2γ3

(3, 0) 3(α2β − 3αβ2 + 3β3 + 2α2γ)

5.4.2 The number of sections

I want to determine the number of sections for the generic fibration of these three
families. Let αL+βS+ γR be the class of a section. The first two requirements
discussed in Section 5.2.2, give the relations between α, β and γ{

1 = L2(αL+ βS + γR) = β + 2γ

−6 = c2(X)(αL+ βS + γR),
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and using (4.5) to compute c2(X) we obtain the three systems{
β + 2γ = 1

36α− 6β − 4γ = −6
,

{
β + 2γ = 1

36α− 6β + 8γ = −6
,{

β + 2γ = 1

36α− 6β + 24γ = −6.

We can solve them expressing α and β in function of γ, finding

(α, β) =

(
1− 2γ,−2

9
γ

)
,

(
1− 2γ,−5

9
γ

)
, (1− 2γ,−γ)

for the cases (a, b) = (3, 2), (3, 1), (3, 0) respectively. The last condition I use to
detect a section is that S3 = K2

P2 = 9 by (3.3), so since we know the cubic
self-intersection form for the three cases, we can solve for γ the three equations:
the results are

− 4
27γ(360γ

2 − 676γ + 351) = 0

− 7
27γ(180γ

2 − 343γ + 189) = 0

−3γ(12γ2 − 25γ + 15) = 0

which have only γ = 0 as rational solution. Hence in all of these three cases we
have only one section.

5.4.3 Weierstrass form and Mordell–Weil group

Putting the equation (5.4)

x2y + α030y
3 + α021y

2z + α102xz
2 + α012yz

2 + α003z
3 = 0

in Weierstrass form with respect to the section S gives the equation y2z =
x3 +Axz2 +Bz3 with

A = 81α030α
2
102 − 27α2

012 + 81α021α003,

B = 729
4 α2

021α
2
102 − 486α030α

2
102α012 − 54α3

012+

+243α021α012α003 − 729α030α
2
003.

We can then see that the generic fibre over the discriminant locus is a nodal
rational curve.
Thanks to the exact sequence (1.5) we have that PicXη is generated by the
restriction of the classes of S and R, and so by (1.4) Pic0Xη has as generator
Rη − 2Sη (observe in fact that Rη is a degree 2 divisor on Xη). Rη − 2Sη is in
the image of the map (1.2) and so Rη − Sη is a Q-generator for the Mordell–
Weil group of Xη. I now want to find a divisor R′ in X such that R′

η is linearly
equivalent to Rη −Sη in DivXη: such R

′ is a better choice for a Q-generator of
MW(X) since, as we will see in a moment, it is defined by a rational section of
the fibration.
The tangent line to Xb in the point (1 : 0 : 0) is y = 0; this line intersects Xb

in z2(α102x+ α003z) = 0, defining the divisor 2S + R′ where R′ is the rational
section defined by

R′ : b 7−→ (α003(b) : 0 : −α102(b)) ∈ Xb.
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Then R′ is the blow-up of P2 in (degα003)(degα102) points. The following table
lists the number of the blown-up points, the self-intersection of a canonical
divisor and the Euler–Poincaré characteristic of R′: I will use them to determine
the class of R′ in PicX.

(a, b) Number of points K2
R′ χtop(R

′)

(3, 2) 40 −31 43

(3, 1) 28 −19 31

(3, 0) 18 −9 21

Observe now that LSR′ = degα102 since the generic line in the base P2 does not
pass through the points where we blow-up. To find the class R′ = αL+βR+γR
we have to solve the system

L2R′ = 1

LSR′ = degα102

c2(X)R′ = χtop(R
′)−K2

R′

where the third equation follows from Friedman’s result (3.4). The solution of
this system is

(a, b) R′ = αL+ βS + γR

(3, 2) R′ = 2L− S +R

(3, 1) R′ = L− S +R

(3, 0) R′ = −S +R

The result is that in any case we can use L, S,R′ as a Q-basis for PicX, and R′

as a Q-generator for MW(X). Observe also that in PicXη we have R′
η = Rη−Sη.

5.4.4 The family (3, 0)

I will give a more detailed description of this type of family in Section 6.1 and
Section 6.2.

5.5 The families (4, 1), (5, 2), (6, 3)

All the fibrations of these families have a section given by

S : b 7−→ (1 : 0 : 0) ∈ Xb

since α300 = 0 identically, and from Table 5.1 we see that the same is true for
α210.
In each projective plane Zb, the tangent line to Xb in (1 : 0 : 0) has equation
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α201z = 0: our smoothness assumption on X forces the constant α201 to be
non-zero, hence 

x = x′ − α111

2α201
y′ − α102

2α2
201
z′

y = y′

z = 1
α201

z′

is a well defined homography, putting the equation in the simpler form (I drop
the primes)

α120xy
2 + α030y

3 + x2z + α021y
2z + α012yz

2 + α003z
3 = 0. (5.5)

The hyperplane section ξ in Z described by z = 0 cuts X in the image of the
section S (with multiplicity 2) and in another divisor R, given by the rational
section

b 7−→ (α030(b) : −α120(b) : 0) ∈ Xb,

which is the blow-up of the base P2 in {α120 = 0} ∩ {α030 = 0}.

Remark 5.5.1 In the case (a, b) = (6, 3) we have degα120 = 0, i.e. α120 ∈ C.
This means that generically (i.e. for α120 6= 0) this type of fibration has two
disjoint sections.

5.5.1 The cubic form

All these fibrations have rkPicX = 3 (compare with Table 5.2), and we have
the following three obvious divisors:

1. the divisor L, coming from the base;

2. the section S = P2 × {(1 : 0 : 0)};

3. the rational section R.

Observe that ξ|X = 2S + R since z = 0 cuts on X both S and R. We know all
about S, to study R we begin with the diagram

R
� � j //

ρ
  @

@@
@@

@@
X

π
~~}}

}}
}}

}

P2

where now ρ is the blow-up of P2 along {α120 = 0} ∩ {α030 = 0}: let m =
degα120, then this locus consists of m(m+ 3) points. We thus have

KR = ρ∗KP2 + E1 + . . .+ Em(m+3)

where the Ei’s are the exceptional divisors introduced by ρ: then

R3 = K2
R = 9−m(m+ 3),

and since S ∩R is a curve of degree m in S we get

SR2 = (R|S )(R|S ) = m2.

So the intersections are given in this table
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L S R

L2 0 1 1

S2 −3 9 −3m
R2 −3 m2 9−m(m+ 3)

LS 1 −3 m

LR 1 m −3
SR m −3m m2

and in particular

det

 0 1 1

−3 9 −3m
−3 m2 9−m(m+ 3)

 = −6(m− 3)(m+ 3),

which has no zeros in our cases (m = 0, 1, 2). We conclude that {L, S,R} is a
Q-basis for PicX, and that the cubic form is

(a, b) (αL+ βS + γR)3

(4, 1) 3α2β − 9αβ2 + 9β3 + 3α2γ + 12αβγ − 18β2γ − 9αγ2 − γ3 + 12βγ2

(5, 2) 3α2β − 9αβ2 + 9β3 + 3α2γ + 6αβγ − 9β2γ − 9αγ2 + 5γ3 + 3βγ2

(6, 3) 3(α2β − 3αβ2 + 3β3 + α2γ − 3αγ2 + 3γ3)

5.5.2 The number of sections

Let αL+ βS + γR be the class of a section. Then we have two linear relations
between the coefficients, given by L2(αL+βS+ γR) = 1 and c2(X)(αL+βS+
γR) = −6 as discussed in Section 5.2.2. Explicitly we have{

β + γ = 1

36α− 6β + 14γ = −6
,

{
β + γ = 1

36α− 6β + 2γ = −6
,{

β + γ = 1

36α− 6β − 6γ = −6
,

and so we can express α and β as functions of γ, finding

(α, β) =

(
−5

9
, 1− γ

)
,

(
−2

9
, 1− γ

)
, (0, 1− γ)

for the three cases respectively. Using the expression of the cubic self-intersection
we can solve for γ since we know that (αL+ βS + γR)3 = 9 by (3.3). The only
rational solution to this equation is γ = 0 for the first two cases, while we have
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two solutions, γ = 0 and γ = 1, for the case (a, b) = (6, 3). So S is the only
section, apart in the case where there is also another obvious section, which is
given by R.

5.5.3 Weierstrass form and Mordell–Weil group

Putting the equation (5.5)

α120xy
2 + α030y

3 + x2z + α021y
2z + α012yz

2 + α003z
3 = 0

in Weierstrass form with respect to the section S, we find the equation y2z =
x3 +Axz2 +Bz3 with

A = α2
120α003 − 1

3α
2
021 + α030α012,

B = 1
4α

2
120α

2
012 − 2

3α
2
120α021α003 − 2

27α
3
021 +

1
3α030α021α012 − α2

030α003.

By Tate’s algorithm the generic fibre over the discriminant locus is a nodal
rational curve.
Using {L, S,R} as Q-basis for PicX is then easy to see that R ∈ MW(X) gives
a Q-generator.

5.5.4 The (6, 3) family

The family of elliptic Calabi–Yau threefolds in P(O(6) ⊕ O(3) ⊕ O) will be
studied in detail in Chapter 6. In fact I will show there that the generic element
of this family is a classical E7 fibration ([AE10]), and that there are also some
interesting fibrations of non-generic type. In fact for the generic equation

F = α120xy
2+α030y

3+α201x
2z+α111xyz+α021y

2z+α102xz
2+α012yz

2+α003z
3

we have two possibilities (we have α201 6= 0 in both cases):

1. if α120 6= 0 then the change
x = − 2

α120
x′ − α030

α120
y′ + (

α120α
2
111

32α2
201
− α2

030

8α120
− α2

120α102

8α2
201

)z′

y = y′ + (α030

4 −
α120α111

8α201
)z′

z =
α2

120

4α201
z′

lead us to the canonical form of the E7 fibrations (compare to Section 6.3)

−2xy2 + x2z + α021y
2z + α012yz

2 + α003z
3 = 0;

2. if α120 = 0 we apply the change
x = x′ − α111

2α201
y′ − α102

2α2
201
z′

y = y′

z = 1
α201

z′

and have the form (with non-primed variables)

α030y
3 + x2z + α021y

2z + α012yz
2 + α030z

3 = 0.

I will study this subfamily more in detail in Section 6.4.
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5.6 The families (7, 4), (8, 5)

As in the other cases, we have the section

S : b 7−→ (1 : 0 : 0) ∈ Xb,

and it must be α201 6= 0 for otherwise we will find singular families. Then we
can use the homography

x = x′ − α111

2α201
y′ − α102

2α2
201
z′

y = y′

z = 1
α201

z′

to put the general equation in the easier form (using not-primed variables)

α030y
3 + x2z + α021y

2z + α012yz
2 + α003z

3 = 0. (5.6)

The restriction to X of the divisor ξ : z = 0 gives{
F = 0

z = 0
−→ α030y

3 = 0.

So we are cutting on X the section S (with multiplicity 3) and a vertical divisor
T , defined by

T = {(x : y : 0) ∈ Xb |α030(b) = 0}
i.e. T is a P1-bundle over the curve α030 = 0, whose fibres are the lines in the
reducible I2 fibres z(x2 + . . .) = 0 we have over that curve.

5.6.1 The cubic form

I now want to determine Q-generators for PicX. From Table 5.2 we look for
three divisors, and I want to show that L, S and T is a good choice. Let m =
degα030, then LT is given by the lines in the m fibres over {α030 = 0}∩ l, so we
conclude that LTS = m. ST is a curve of degree m in S, and so

ST 2 = (T|S )(T|S ) = m2.

Observe that T|L is the disjoint union of m lines in the reducible fibres of the
elliptic surface L; since each of these is a −2-curve ([Mir89, Chap. I.6]) we then
have

LT 2 = (T|L)(T|L) = (T|L)
2 = −2m.

Since T is a P1-bundle over the curve α030 = 0 we have ([Bea96, Prop. III.21])

T 3 = (KT )
2 = 8

(
1− (m− 1)(m− 2)

2

)
= 4m(3−m).

Another important fact is that the generic fibre does not intersect T , so that
TL2 = 0, and finally that

S2T = (S|S )(T|S ) = KS(T|S ) = −3m.

So we have the intersection table
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L S T

L2 0 1 0

S2 −3 9 −3m
T 2 −2m m2 4m(3−m)

LS 1 −3 m

LT 0 m −2m
ST m −3m m2

The following result

det

 0 1 0

−3 9 −3m
−2m m2 4m(3−m)

 = 6m(6−m)

tells us that if we want {L, S, T} to be a Q-basis for PicX it’s necessary that
degα030 6= 0, 6, which doesn’t occur in our cases. Hence the cubic form is given
by

(a, b) (αL+ βS + γT )3

(7, 4) 3α2β − 9αβ2 + 9β3 + 12αβγ − 18β2γ − 12αγ2 + 12βγ2 + 8γ3

(8, 5) 3α2β − 9αβ2 + 9β3 + 6αβγ − 9β2γ − 6αγ2 + 3βγ2 + 8γ3

5.6.2 The number of sections

I want to show now that S is the only section for that type of families. In fact,
let denote by αL + βS + γT the class of a section. Then we have three linear
relations among the coefficients, discussed in Section 5.2.2, which allow us to
determine α, β and γ:

L2(αL+ βS + γT ) = 1

LT (αL+ βS + γT ) = degα030

c2(X)(αL+ βS + γT ) = 36α− 6β − 4γ = −6.

From (4.5) we can compute c2(X), and the solution of the system is given by
(α, β, γ) = (0, 1, 0).

5.6.3 Weierstrass form and Mordell–Weil group

If we put the equation (5.6)

α030y
3 + x2z + α021y

2z + α012yz
2 + α003z

3 = 0
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in Weierstrass form with respect to the section S, we will find the equation
y2z = x3 +Axz2 +Bz3 with

A = 9α030α012 − 3α2
021,

B = 9α030α021α012 − 2α3
021 − 27α2

030α003.

Then the discriminant locus has equation

α2
030(−α2

021α
2
012 + 4α030α

3
012 + 4α3

021α003 − 18α030α021α012α003 + 27α2
030α

2
003),

hence we have naturally the presence of nodal rational curves and I2 fibres.
These last are over the component α030 = 0 of ∆ and have equation

z(x2 + α021y
2 + α012yz + α003z

2) = 0.

Observe that in this case PicX is generated by two vertical divisors and the
section, hence none of them gives something in the Mordell–Weil group, which
has then rank 0.

5.7 The (9, 6) family

As in the previous section, we must have α201 6= 0. We observe moreover that if
α030 = 0, then the equation splits, giving us a singular variety. So we also have
α030 6= 0 and the homography

x = x′ − a2α111

2α201
y′ + (

α3
111

24α030α3
201
− α111α021

6α030α2
201

+ α102

2α2
201

)z′

y = a2y
′ + ( α021

3α030α201
− α2

111

12α030α2
201

)z′

z = − 1
α201

z′

where a2 satisfies a32α030 = 1, puts the equation into the well known Weierstrass
form

x2z = y3 + α012yz
2 + α003z

3.

5.7.1 The cubic form

Looking at Table 5.2 we see that PicX has rank 2, and by Proposition 5.1, a
Q-basis is given by L and the section

S : b 7−→ (1 : 0 : 0) ∈ Xb.

The intersection table is particularly simple, and is given by

L S

L2 0 1

S2 −3 9

LS 1 −3
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Thus the cubic form is

(αL+ βS)3 = 3β(α2 − 3αβ + 3β2).

Also in this case S is the only section: denoting with αL+ βS the class of any
section, we have {

L2(αL+ βS) = 1

c2(X)(αL+ βS) = 36α− 6β = −6

whose solution is (α, β) = (0, 1).



Chapter 6

New and old families

In this chapter I want to present a detailed description of the Calabi–Yau elliptic
fibrations we can find in the two bundles P(O(3)⊕O⊕O) and P(O(6)⊕O(3)⊕O)
over P2.
Elliptic Calabi–Yau threefolds in P(O(3)⊕O⊕O) are interesting because we can
find subfamilies having in a natural way Kodaira singular fibres degenerating
to non-Kodaira fibres. Moreover, in Chapter 7 we will see that these fibrations
enjoy another interesting property.
In the bundle P(O(6)⊕O(3)⊕O), the generic anticanonical hypersurface turns
out to be a classical elliptic fibration, named E7. I will give a brief description of
E7 families, and then focus on the non-generic elliptic fibrations in this bundle,
which can be viewed as E7 fibrations where we try to collapse its two sections
into one. I will call these non-generic fibrations of type E0

7 .

6.1 Families in P(O(3)⊕O ⊕O)
I want to describe the anticanonical varieties X in the projective bundle Z =
P(O(3)⊕O ⊕O) over P2.
I will show that the generic Calabi–Yau elliptic fibration X in this bundle is
smooth, compute the cubic intersection form in terms of two different Q-basis for
PicX and study the group of automorphisms of X. I will also give a description
of the Weierstrass model and the singular fibres of the generic fibration.
Finally, I will focus on a particular subfamily to show two interesting facts:

1. even if the generic member of the family of Calabi-Yau elliptic threefolds
in P(O(3)⊕O⊕O) has Mordell–Weil group of rank 1, it’s possible to find
subfamilies for which the rank drops to 0;

2. it’s possible to find elliptic fibrations with non-Kodaira fibres which are
defined by a cubic homogeneous polynomial in P2.

6.1.1 The number of parameters and the canonical form

I will compute the number of effective parameters of the family using the for-
mula in Proposition 5.2. The most general equation defining an anticanonical

63
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hypersurface X in P(O(3)⊕O ⊕O) is

F = α210x
2y + α120xy

2 + α030y
3 + α201x

2z + α111xyz+

+α021y
2z + α102xy

2 + α012yz
2α003z

3 = 0,

where the degree of the coefficients is as in Table 5.1 (p. 41). We can count
the total number of parameters involved, finding that our equation depends on
2+3·10+4·28 = 144 parameters. Since F is defined only up to a scalar multiple,
the equation actually depends on 144−1 = 143 parameters. To have the number
of effective parameters, we have to take in account the action of automorphisms.
In particular, the group automorphism of the base is PGL(3,C), and so we loose
8 parameters. Then there are the automorphisms on the fibres of the form

x′ = c11x+ c12y + c13z

y′ = c22y + c23z

z′ = c32y + c33z

with
c11, c22, c23, c32, c33,∈ C,
c12, c13 ∈ H0(P2,O(3))

.

These automorphisms lower the number of effective parameters by 24 (the coeffi-
cients depend on 25 parameters, but we loose one since x, y and z are projective
coordinates). Then we reach 143−8−25 = 111 parameters, which coincides with
h2,1(X) as shown in Table 5.2 (p. 41). It’s known that h2,1(X) is the dimension
of the space of deformations of X (Bogomolov–Tian–Todorov theorem), the fact
that an equation for X depends on exactly h2,1(X) parameters then means that
any deformation of X comes from a deformation of the defining polynomial.
There is an obvious section for these varieties: it’s defined by

S : b 7−→ (1 : 0 : 0) ∈ Xb.

Given a point b ∈ P2, the tangent line to the curve Xb in (1 : 0 : 0) is defined
by α210y + α201z = 0 and so we see that (α210, α201) 6= (0, 0) for otherwise our
section will pass through singular points for the fibres and this is possible only
if X is singular by Proposition 1.1. So at least one among α210 and α201 must
be non-zero. Since the bundle automorphism

x′ = x

y′ = z

z′ = y

has the effect of exchanging

α210 with α201, α120 with α102, α030 with α003, α021 with α012,

we can always assume that the non vanishing parameter is α210. We can then
define a canonical form for this kind of families, sending the tangent line α210y+
α201z = 0 to the line y = 0: we can achieve this with the change of coordinates

x′ = x

y′ = α210y + α201z

z′ = z

←→


x = x′

y = 1
α210

y′ − α201

α210
z′

z = z′
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and then assume that our family is defined by the equation (using x, y, z instead
of x′, y′, z′)

F = x2y+α120xy
2+α111xyz+α102xz

2+α030y
3+α021y

2z+α012yz
2+α003z

3 = 0.

We can also use the change of coordinates
x′ = x− α120

2 y − α111

2 z

y′ = y

z′ = z

to make the equation simpler: it allows us to assume that the defining equation
is (using x, y, z as before)

F = x2y + α102xz
2 + α030y

3 + α021y
2z + α012yz

2 + α003z
3 = 0. (6.1)

Observe that this equation depends on 122 parameters, and that we can’t lower
this number any more. In fact the only automorphisms we are left are given by
PGL(3,C) and by those of the form

x′ = 1√
α
x

y′ = αy

z′ = βz,

(6.2)

depending on 8 + 2 = 10 parameters. The homogeneity of the equation lowers
the number of parameters by 1, so we loose 10+1 = 11 parameters, which is the
number we need to reach 111. Observe also that the families with α030 = 0 or
α003 = 0 identically are necessarily singular: they have another obvious section,
which is {(0 : 1 : 0)} × P2 in the first case and {(0 : 0 : 1)} × P2 in the second,
but these meet some singular point in the fibres, to be more explicit, the point
(0 : 1 : 0) is singular for the fibres over the sextic curve α021 = 0 in the first
case while (0 : 0 : 1) is singular over α012 = 0 in the second. As we will see S is
the unique section for these families.
We want now to know when the point (1 : 0 : 0) is a flex point. The tangent
line in (1 : 0 : 0) is y = 0, and the system{

F = 0

y = 0

has two solutions: one is obviously (1 : 0 : 0) with multiplicity two, the other is

(α003 : 0 : −α102).

So we see that (1 : 0 : 0) is a flex point if and only if α102 ≡ 0.
An interesting divisor in X is the one cut by z = 0: from the system{

F = 0

z = 0
−→

{
z = 0

y(x2 + α030y
2) = 0

we find the section S, corresponding to y = 0, and a double cover of P2 defined
by

R : x2 + α030y
2 = 0.
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Observe that since the branch locus for this covering is the sextic curve α030 = 0,
if it is smooth then R is a K3 surface, so by (3.2) we have

R2 = i∗KR = 0.

As a by-product, letting H = ξ|X denote the hyperplane section of X, then

H = S +R.

6.1.2 Weierstrass model and singular fibres

Using the methods described in [Cas91, Chap. 8], it’s possible to put our families
in Weierstrass form. Let

X : F = x2y + α102xz
2 + α030y

3 + α021y
2z + α012yz

2 + α003z
3 = 0

be a generic family in the bundle Z as in (6.1). Then the Weierstrass model W
of X with respect to the section S is the elliptic fibration in P(O(6)⊕O(9)⊕O)
with coordinates (s : t : u) defined by

t2u = s3 +
(
16α030α

2
102 − 16

3 α
2
012 + 16α021α003

)
su2+

+
(
16α2

021α
2
102 − 128

3 α030α
2
102α012 − 128

27 α
3
012 +

64
3 α021α012α003 − 64α030α

2
003

)
u3.

We computed the equation of the discriminant locus, and observed that it is
an irreducible curve with multiplicity one, over the generic point of which we
have a rational nodal curve by Tate’s algorithm. It’s also possible to write the
birational morphism from X to W , which is given by

s = −4α102xz − 4
3α012yz − 4α003z

2

t = 8α102x
2 + 8α030α102y

2 + 8α003xz + 4α021α102yz

u = yz.

The situation changes if we consider the subfamily with α102 = 0 identically. In
fact in this case, the section S cuts each fibre in a flex point. The discriminant
locus in this case splits in two curves:

∆ : α2
003(4α030α

3
012−α2

021α
2
012 +4α3

021α003− 18α030α021α012α003 +27α2
030α

2
003)

and over the curve α003 = 0 the fibre is generically of type I2. In the intersection
of these two components of the discriminant the fibre changes, more precisely

1. over α003 = α012 = 0 the fibre is of type III;

2. over α003 = 4α030α012 − α2
021 = 0 the fibre is of type I3.

I will study the subfamily with α102 ≡ 0 more in detail in Section 6.2. Observe
that this is a description of the singular fibres we find for a generic choice of the
coefficients. As we will see in Section 6.2.3 it’s possible to find smooth fibrations
of this type with different singular fibres, also of non-Kodaira type.
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6.1.3 Is the general family smooth?

Here we want to show that the generic member of family defined by the equation
(6.1)

F = x2y + α102xz
2 + α030y

3 + α021y
2z + α012yz

2 + α003z
3 = 0

in P(O(3) ⊕ O ⊕ O) is smooth. The singular points (q, b) with q = (x : y : z)
and b = (t0 : t1 : t2) satisfy

2xy + α102z
2 = 0

x2 + 3α030y
2 + 2α021yz + α012z

2 = 0

2α102xz + α021y
2 + 2α012yz + 3α003z

2 = 0

(∂nα102)xz
2 + (∂nα030)y

3 + (∂nα021)y
2z + (∂nα012)yz

2 + (∂nα003)z
3 = 0

(6.3)
where we write ∂n = ∂

∂tn
for n = 0, 1, 2. So we want the set

Vα102,α030,α021,α012,α003 =

{
(q, b) ∈ P2 × P2| the system (6.3)

has (q, b) as solution

}

to be empty for the generic choice of the coefficients. To show that this is true
we consider the subvariety

V = {(q, b, α102, α030, α021, α012, α003)|(q, b) ∈ Vα102,α030,α021,α012,α003}

of P2 × P2 × H0(P2,O(3)) × H0(P2,O(6))4, and the projection over the last
5 factors. This map is projective and has Vα102,α030,α021,α012,α003 as fibre over
(α102, α030, α021, α012, α003), so it suffices to show that for a particular choice
we have Vα102,α030,α021,α012,α003 = ∅, i.e. that there exists a smooth X of this
kind, to deduce that the same holds for the general choice of parameters. For
example we can take

α102 = 0, α012 = 0, α021 = α003 = t60+t
6
1+t

6
2, α030 = t60+2t61+4t62.

6.1.4 The cubic form

We computed the intersection matrix for this type of fibrations in Section 5.4.1,
explicitly it is

L S R

L2 0 1 2

LS 1 −3 0

LR 2 0 0

S2 −3 9 0

SR 0 0 0

R2 0 0 0
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and so the cubic form has expression

(αL+ βS + γR)3 = 3α2β − 9αβ2 + 9β3 + 6α2γ. (6.4)

Observe that in the projective plane with coordinates (α : β : γ) this equation
defines a cuspidal cubic, with the cusp in (0 : 0 : 1) and tangent α = 0. Moreover
this cubic has one flex point in (18 : 6 : −1).

Remark 6.1.1 Apart the cases (a, b) = (9, 6), (3, 3), all the other families of
elliptic Calabi–Yau threefolds we have over P2 have rkPicX = 3. Among these,
the family in P(O(3)⊕O ⊕O) is the only one for which the cubic intersection
form of its generic member defines a singular cubic curve in P2. In the case
(a, b) = (9, 6) we have three distinct points, while in the case (a, b) = (3, 3) we
have a smooth cubic surface in P3, isomorphic to a Fermat cubic.

A rational section

We call R′ the divisor defined by the rational section

b 7−→ (α003(b) : 0 : −α102(b)) ∈ Xb.

We know that if we cut X with z = 0 what we see is the section S and the
double covering R. So we have that the hyperplane section H of X is simply

H = S +R.

Cutting now with y = 0 we see the section S with multiplicity two, and the
rational section R′. But then we can express R′ in terms of the Q-generators of
PicX:

2S +R′ = H = S +R −→ R′ = −S +R.

So we can use {L, S,R′} as a Q-basis of PicX, and it may be useful to know
the intersection table in terms of this basis. This is

L S R′

L2 0 1 1

LS 1 −3 3

LR′ 1 3 −3
S2 −3 9 −9
SR′ 3 −9 9

R′2 −3 9 −9

So we can rewrite the cubic form (6.4) as

(αL+βS+γR′)3 = 3(α2β−3αβ2+3β3+α2γ+6αβγ−9β2γ−3αγ2+9βγ2−3γ3).

As we will see in Section 6.2.2 the Q-basis {L, S,R′} of PicX is more convenient
for the study of the Mordell–Weil group.
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6.1.5 The automorphism group

We know from Section 5.4.2 that the generic Calabi–Yau variety defined by
equation (6.1) have only one section. This fact has an interesting consequence on
the group AutB X of automorphisms of X over B, i.e. isomorphisms preserving
the projection on the base or equivalently such that

X //

  A
AA

AA
AA

X

~~}}
}}

}}
}

P2

commutes. I will prove the following proposition, which gives a description of
AutB X.

Proposition 6.1 Let π : X −→ P2 be an elliptic fibration, which is an an-
ticanonical hypersurface in P(O(3) ⊕ O ⊕ O) defined by equation (6.1). Then
AutB X has at most two elements, id and − id, where − id(P ) = −P is the
inverse of P in the group law we have on the fibres of π. Moreover

AutB X = {id,− id} ⇐⇒ α102 ≡ 0.

Proof Since an automorphism X −→ X sends sections to sections and we have
only one of them in our case, any automorphism of X over B fixes the section
and then induces a group homomorphism on each fibre. Generically these have
only two automorphisms, the identity and the inversion with respect to the
group law, so we can conclude that the same is true for the whole X, i.e.

AutB X ≤ {id,− id}.

To complete the proof I have to show that AutB X = {id,− id} if and only if
α102 ≡ 0.
Observe that any ϕ ∈ AutB X induces an automorphism

ϕ∗ : PicX −→ PicX

which is the identity map. In fact ϕ∗L = L because ϕ acts fibrewise, and
ϕ∗S = S because S is the only section. From [OVdV95, Prop. 5], we have that
ϕ∗(R) = R, since ϕ∗ induces an automorphism on the cubic curve defined by
the cubic self-intersection form, which leaves fixed the singular point (0 : 0 : 1)
corresponding to R since it’s the only singular point for the cubic. Moreover,
from equation (6.2), we have that ϕ maps R to R.
Let assume that − id is an automorphism on X, then − id restricted to R must
be an automorphism of R. Remember that R is defined by

z = 0

x2 + α030y
2 = 0

(y 6= 0)

and then a point (x : y : 0) ∈ R has image
X = α3

102x
2 + (α2

102α012 − α2
003)xy + α102α021α003y

2

Y = y(α3
102x+ (α2

102α012 + α2
003)y)

Z = α102y(2α003x− α102α021y).
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This point still lies on R if and only if Z = X2 + α030Y
2 = 0, and in particular

Z = 0 can happen only in the following three cases:

1. when α102 ≡ 0. We have that − id|R is the covering automorphism;

2. when α003 ≡ 0 and α102 ≡ 0, but in this case the polynomial F defining
the family is reducible and the family is singular;

3. when α003 ≡ 0 and α021 ≡ 0. In this case the equation for X is

X : x2y + α102xz
2 + α030y

3 + α012yz
2 = 0,

and we see that we have another section, given by (0 : 0 : 1). But this
section passes through singular points in the fibres over α102 = α012 = 0,
so that these families are always singular.

Viceversa, let assume that α102 ≡ 0. Then a direct computation shows that

− id : X −→ X

(x : y : z) 7−→ (−x : y : z),

which is an automorphism of X over B. �

Remark 6.1.2 Another way to show this result is to write explicitly the equa-
tions for − id, and observe that its indetermination locus is empty if and only
if α102 vanishes identically.

6.2 The subfamily with two automorphisms

In this section I want to study the subfamily we get when in the generic equation
(6.1) we set α102 ≡ 0, i.e

X : F = x2y + α030y
3 + α021y

2z + α012yz
2 + α003z

3 = 0. (6.5)

From the previous sections we know that

1. the point (1 : 0 : 0) is a flex point, with tangent line given by y = 0;

2. the discriminant locus splits in two curves, over one of them we have I1
fibres and over the other I2 fibres;

3. the group of automorphisms of X over B has order two.

The generic member of this subfamily is a smooth elliptic fibration: by the same
argument used to prove the analogous statement for the general family in Section
6.1.3, we have only to find a smooth element in the subfamily to conclude that
the generic element of the subfamily is smooth. We can use the example given
in Section 6.1.3, which has α102 ≡ 0 and so defines an elliptic fibration in the
subfamilies we are studying now.
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6.2.1 The cubic form

The subfamily defined by equation (6.5) is special in the sense that the section S
passes through flex point in each fibre. Over the curve α003 = 0 we see reducible
fibres of Kodaira type I2, whose equation is

y(x2 + α030y
2 + α021yz + α012z

2) = 0.

This means that the divisor π∗α003 = 0 splits in two irreducible components: one
gives the divisor T defined by the lines y = 0 in the fibres over this curve, and
the other gives the divisor Q defined by the conics. Since α003 is a polynomial
of degree 6 we can claim that

T +Q = 6L.

If we intersect T with the curves in X, defined by

L2, LS, LR, S2, SR, R2,

we find

1. L2T = 0 since L2 is a generic fibre of our fibration;

2. LST = 6 since ST is the curve defined by α003 in S;

3. LRT = 0 since T does not meet R, in fact points in T have y = 0 while
points in R have z = 0 and (1 : 0 : 0) is not a point of R;

4. S2T = −18 since S2 = −3LS;

5. SRT = 0 since RT = 0 as we have just observed;

6. R2T = 0 since R2 = 0.

Let now write T = αL + βS + γR, with α, β, γ ∈ Q. Since we know the inter-
section table in X, we find by the first three conditions above that

0 = L2T = αL3 + βL2S + γL2R = β + 2γ

6 = LST = αL2S + βLS2 + γLSR = α− 3β

0 = LRT = αL2R+ βLSR+ γLR2 = 2α

−→


α = 0

β = −2
γ = 1,

so that
T = −2S +R, Q = 6L+ 2S −R.

Another (and simpler) way to have this result is to consider the hyperplane
section H of this kind of families: the general equation (6.5) is

F = x2y + α030y
3 + α021y

2z + α012yz
2 + α003z

3 = 0,

so we see that cutting with y = 0 we find H = 3S+T , while cutting with z = 0
we have H = S +R. Equating the two expressions give us T = R− 2S.
We can then compute all the intersection numbers involving T by mean of the
expression T = R − 2S, but it’s not so difficult to find them directly. In fact
RT = 0 as we observed, and ST 2 = (T|S )(T|S ) = 36 since (T|S ) is the curve
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defined by α003 = 0 in S. Moreover we have that T 3 = K2
T = −72 since T is a

geometrically ruled surface over α003 = 0, and so ([Bea96, Prop. III.21])

K2
T = 8(1− 10) = −72,

and finally that T 2L = −12 since T 2L = (T|L)(T|L) and T|L consists of the 6
lines in the reducible I2 of the fibration X|L , since each of them is a (−2)-curve
we have (T|L)

2 = −12.
The complete intersection table is then

L S R T

L2 0 1 2 0

LS 1 −3 0 6

LR 2 0 0 0

S2 −3 9 0 −18
SR 0 0 0 0

R2 0 0 0 0

LT 0 6 0 −12
ST 6 −18 0 36

RT 0 0 0 0

T 2 −12 36 0 −72

Observe that the rank of this matrix is 3, as we expected. We make also an-
other remark: the linear transformation sending L, S,R to L, S, T respectively
is represented by the matrix  1 0 0

0 1 −2
0 0 1

 ,

whose determinant is 1. So L, S, T is a Q-basis for PicX, and with respect to
this basis we have the cubic intersection form

(αL+βS+γT )3 = 3α2β−9αβ2+9β3+36αβγ−54β2γ−36αγ2+108βγ2−72γ3.

6.2.2 The Mordell–Weil group

In Section 5.4.3 we saw that the generic fibration defined by equation (6.1) has
Mordell–Weil group of rank 1, with a generator given by the class of R.
I now want to concentrate on MW(X) when X is a member of the subfamily
with α102 = 0 identically, and show that in this case the Mordell–Weil group
has rank 0. I use the Q-basis of PicX given by L, S, T , in terms of which we
showed that

T = −2S +R meaning that R = T + 2S.

So R = 0 in MW(X) since T is vertical, implying that rkMW(X) = 0 as
claimed.
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6.2.3 A smooth family with non-Kodaira fibres

Let’s consider the subfamily defined by

x2y + α030y
3 + α021(y

2z + z3) = 0,

where α030 and α021 are smooth sextics, intersecting transversally. With these
requirements the threefold X is smooth. Thanks to our previous work, we can
see that the Weierstrass model y2z = x3 + Axz2 + Bz3 of such fibrations has
coefficients

A = 16α2
021, B = −64α2

021α030,

and so the discriminant locus of the fibration has equation

∆ : α4
021(27α

2
030 + 4α2

021) = α4
021(2α021 + 3

√
−3α030)(2α021 − 3

√
−3α030) = 0.

Over each component, by Tate’s algorithm, we can compute the type of singular
fibre:

1. over the curve α021 = 0 we have IV fibres;

2. over each of the curves 2α021 ± 3
√
−3α030 we have I1 fibres.

The three curves intersect in the 36 distinct points given by α021 = α030 = 0,
and over these points the equation of the fibre is x2y = 0, which is not of Kodaira
type.

Remark 6.2.1 A cubic curve in the plane can be of nine types, and we ask if
we can find all of them as fibres of a smooth elliptic threefold with section. Of
course we can find smooth cubics, so we concentrate only on the singular ones.
The presence of the section tells us that one case is impossible to find, it’s the
case of a triple line (but observe that if we do not require the presence of the
section we can have it). Among the remaining 7, we can find 6 in Kodaira’s list:
they are I1, I2, I3, II, III and IV . Only one case is left, the one with a double
line intersecting another line, which is the case I have just described.

I want now to perform a local analysis around the points over which we have
non-Kodaira fibres: in particular I want to show that the restriction of the
fibration to a generic smooth curve through one of these points is a singular
elliptic surface, whose desingularization has fibres of type I∗0 . The non-Kodaira
fibres of the threefolds are contraction of the I∗0 fibres, according to Proposition
2.7. Let (s, t) be local coordinates centred in these points and such that the
curves α030 and α021 are given respectively by t = 0 and s = 0. So the local
equation for the fibration is

x2y + ty3 + sy2z + sz3 = 0,

and I want to take the restriction of this family to the generic line through the
origin, of equation t = λs. So we are interested in the elliptic surface

x2y + λsy3 + sy2z + sz3 = 0.

Over s = 0 there must be singular points for the surface, as the corresponding
fibre is of non-Kodaira type. By Tate’s algorithm we expect to have a fibre I∗0 ,
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the fibre we actually have is obtained from a I∗0 fibre after a contraction of the
three multiplicity 1 components which don’t intersect the section. The points to
which these components are contracted are the singular points for the surface.
In fact we can find them in the following way: for the generic choice of λ, the
equation λy3 + y2z + z3 = 0 has three distinct solutions, and so if we let (ȳ : z̄)
be one of them, we see that (0 : ȳ : z̄) defines a (local) section of the fibration.
This section intersects the fibre over s = 0 in a point of the line x = 0, which is
a multiple component (of multiplicity 2) for the fibre, so by Proposition 1.1 the
intersection point must be singular.

Remark 6.2.2 Observe that if X is an elliptic threefold over the surface B,
and x ∈ Xb is a singular point for X, then the restriction of X to any smooth
curve through b is an elliptic surface singular in x. In our case, since the singular
points for the elliptic surface vary when we vary the base curve, we have points
which are singular for the fibre and for the surface, but not for the threefold.
There are also examples where every restriction has the same singular point,
but this is not a singular point for the threefold, see e.g. Example 1.3.1 and
Remark 1.3.3.

6.3 E7 families in P(OB(−2KB)⊕OB(−KB)⊕OB)
We want to study in detail the Calabi–Yau elliptic threefolds of type E7 over a
base B, focusing in particular in the case B = P2.
An E7 family ([AE10, Sect. 1.7]) is a smooth hypersurface in a bundle of
weighted projective planes P(1,1,2)(OB ⊕OB(−KB)⊕OB(−2KB)) with coordi-
nates (z : x : y), given by the vanishing of a homogeneous equation of (weighted)
degree 4

a0y
2 + a1x

2y + a2x
4 + b0xyz + b1x

3z + c0x
2z2 + c1yz

2 + dxz3 + ez = 0,

where ai ∈ C, bi ∈ H0(B,−KB), ci ∈ H0(B,−2KB), d ∈ H0(B,−3KB) and
finally e ∈ H0(B,−4KB). Observe that if we cut this hypersurface with the
hyperplane z = 0 we will find one or two (constant) sections according to the
case where a0y

2 + a1x
2y + a2x

4 = 0 has one or two solutions. However, in the
first of these cases it’s easy to see that the section passes through some singular
point of the fibres hence that these families are all singular.
We can then assume that a0y

2+a1x
2y+a2x

4 = z = 0 has two distinct solutions,
and putting them in standard position (x : y : z) = (1 : 1 : 0) and (1 : −1 : 0),
the equation defining the E7 families is

x4 − y2 + b0xyz + b1x
3z + c0x

2z2 + c1yz
2 + dxz3 + ez = 0.

The following transformation
x = x′ − 1

4b1z
′

y = y′ + 1
2b0x

′z′ + 1
2

(
c1 − 1

4b0b1
)
z′

2

z = z′

allows us to simplify the equation further (using non-primed variables):

y2 = x4 + c0x
2z2 + dxz3 + ez4.
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Since the weighted projective plane P1,1,2 can be embedded in P3, an E7 family
can as well be defined as the intersection in the bundle of (non-weighted) projec-
tive spaces P(OB⊕OB(−KB)⊕OB(−2K)⊕OB(−2K)) of the two hypersurfaces
defined by

1. X0X2−X2
1 = 0, which is the image of P(1,1,2) under the standard embed-

ding
(z : x : y) 7−→ (X0 : X1 : X2 : X3) = (z2 : zx : x2 : y);

2. a quadric in P3, defined by the vanishing of the degree two polynomial
corresponding to the weighted polynomial of degree four:

X2
3 = X2

2 + c0X
2
1 + dX0X1 + eX2

0

with c0 ∈ H0(B,−2KB), d ∈ H0(B,−3KB) and e ∈ H0(B,−4KB).

6.3.1 Plane form

I want to describe a procedure which puts our family in a planar form, i.e. I
want to define an isomorphism between the variety X defined in the bundle
P(OB ⊕OB(−KB)⊕OB(−2K)⊕OB(−2K)) by{

x0x2 = x21
x23 = x22 + c0x

2
1 + dx0x1 + ex21

and a hypersurface X̄ in a suitable bundle over B with P2-fibres. To obtain this
I follow the method described in [Cas91, Chap. 8].
We have two obvious sections for our family E7, defined by

σ+ : b 7−→ (0 : 0 : 1 : 1) ∈ Xb

σ− : b 7−→ (0 : 0 : 1 : −1) ∈ Xb

and the first step is to make a transformation which maps S+ = σ+(B) to
S′
+ = B × {(0 : 0 : 0 : 1)}:

z0 = x0

z1 = x1

z2 = x2 − x3
z3 = x3

←→


x0 = z0

x1 = z1

x2 = z2 + z3

x3 = z3.

So our family is defined by{
z3z0 + z0z2 − z21 = 0

2z3z2 + z22 + ez21 + fz0z1 + gz20 = 0

and the two sections are

S′
+ = B × {(0 : 0 : 0 : 1)} and S′

− = B × {(0 : 0 : 2 : −1)}.

The hypersurface described by z3 = 0 gives us the P2-bundle Z = P(OB ⊕
OB(−KB) ⊕OB(−2KB)), and we project X from the constant section (0 : 0 :
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0 : 1) on z3 = 0. The image of this projection in the coordinates (X0 : X1 : X2)
of P2 is given by the equation

eX3
0 + dX2

0X1 + c0X0X
2
1 + 2X2

1X2 −X0X
2
2 = 0.

This equation defines X̄, and we have the projection

ψ : X −→ X̄

(x0 : x1 : x2 : x3) 7−→


X0 = x0

X1 = x1

X2 = x2 − x3.

The image of S+ is the section S1 = B × {(0 : 1 : 0)}, while S− has image
S2 = B × {(0 : 0 : 1)}.
The inverse of the previous morphism is

ψ−1 : X̄ −→ X

(X0 : X1 : X2) 7−→


x0 = X2

0

x1 = X0X1

x2 = X2
1

x3 = X2
1 −X0X2.

Remark 6.3.1 In the case B = P2, what we found is (up to a sign) the equation
of the generic smooth elliptic fibration in the bundle P(O(6)⊕O(3)⊕O) obtained
in Section 5.5.4. So if B = P2 then the E7 family is the (6, 3) family of Section
5.5.4.

6.3.2 Weierstrass model and singular fibres

Let’s consider an E7 family X defined over P2 and embedded in P(O(6)⊕O(3)⊕
O) with coordinates (x : y : z). Then X has equation

X : −2xy2 + x2z + α021y
2z + α012yz

2 + α003z
3 = 0,

and I want to describe the Weierstrass model with respect to the section S =
σ(P2) with

σ : b 7−→ (1 : 0 : 0) ∈ Xb.

This is given by y2z = x3 +Axz2 +Bz3 with

A = 4α003 − 1
3α

2
021

B = α2
012 − 2

27α
3
021 − 8

3α021α003

and discriminant locus

−4α3
021α

2
012 +16α4

021α003 +27α4
012− 144α021α

2
012α003 +128α2

021α
2
003 +256α3

003.

The generic fibre over the discriminant locus is a rational nodal cubic, of Kodaira
type I1, and these specialize to I2 fibres over α012 = α2

021+4α003 = 0 and to II
fibres over 27α2

012− 8α2
021 = α2

021− 12α003 = 0. If for some point α021 = α012 =
α003 = 0, over that point we have fibres III: to see with an example that this
is possible, consider a fibration having α012 ≡ 0 and α021, α003 defining smooth
curve intersecting transversally.
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6.3.3 The number of sections

We know that intersecting X with the hyperplane section z = 0 gives two
distinct sections, namely S and S1. I want now to show that over P2 these two
are the only sections of such fibrations. Using (4.5) we can compute the second
Chern class of X, and we also know the expression of the cubic form (see Section
5.5.1). What we have to do is to solve the following system. Let αL+ βS + γS1

be the class of a section, then

1. it intersects the class of a fibre only in a point;

2. its intersection with c2(X) is χtop(P2) −K2
P2 = −6 by Friedman’s result

(3.4);

3. the value of the cubic self-intersection is K2
P2 = 9 by (3.3).

So we have to solve the system
L2(αL+ βS + γS1) = 1

c2(X)(αL+ βS + γS1) = −6
(αL+ βS + γS1)

3 = 9,

which has only two solution, i.e. (α, β, γ) = (0, 1, 0), (0, 0, 1).

6.4 Limits of E7 families over P2

In Section 5.5.4 we saw that the anticanonical hypersurfaces in P(O(9)⊕O(3)⊕
O) can be of two different types. The equation defining such varieties is

F = α120xy
2+α030y

3+α201x
2z+α111xyz+α021y

2z+α102xz
2+α012yz

2+α003z
3,

and the generic one, having α120 6= 0, belongs to the E7 family. I now want
to study in detail the subfamily of the family of elliptic Calabi–Yau threefolds
in P(O(6) ⊕ O(3) ⊕ O) having α120 = 0 (for this reason I propose to call E0

7

this subfamily). In Section 5.5.4 we showed that a canonical equation for these
varieties is

F = x2z + α030y
3 + α021y

2z + α012yz
2 + α003z

3 = 0,

where each coefficient is as in Table 5.1 (p. 41). To see that we have a smooth
example, consider the following choice for the coefficients: α012 = 0 identically,
and α030, α021, α003 define smooth curves with no point common to the three.
The first thing we observe is that we can easily calculate the class of the hyper-
plane section H = ξ|X of X:{

z = 0

F = 0
−→

{
z = 0

α030y
3 = 0.

So we have H = 3S+T , where S is the section (1 : 0 : 0) and T is the irreducible
component of π∗α030 = 0 containing the line z = 0 in the reducible fibres over
the curve α030 = 0 (the equation of such fibres is z(x2 + α021y

2 + α012yz +
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α003z
2) = 0).

So we have three divisors arising in a natural way,

L, S, T :

we know that rkPicX = 3 and we will soon see that {L, S, T} is a Q-basis for
PicX.

6.4.1 Weierstrass model and singular fibres

It’s easy to see that the Weierstrass model of these families with respect to the
section S is given by

t2u = s3+

(
α030α012 −

1

3
α2
021

)
su2+

(
1

3
α030α021α012 − α2

030α003 −
2

27
α3
021

)
u3

and the discriminant locus has equation

α2
030(4α030α

3
012 − α2

021α
2
012 + 4α3

021α003 − 18α030α021α012α003 + 27α2
030α

2
003).

This means that the generic fibration of type E0
7 has a curve in B over which

we have I2 fibres: the cubic α030 = 0. Over this curve the equation of the fibre
is

z(x2 + α021y
2 + α012yz + α003z) = 0.

6.4.2 The cubic form

We want to write the intersection table for this kind of families. We observe
that

• L2T = 0 since the generic fibre is not over α030 = 0;

• LST = L|ST|S = 3 since it’s the intersection of a line with a cubic;

• LT 2 = T|LT|L = −6 since T|L is given by three (−2)-curves in a reducible
fibre of the elliptic surface X|L ;

• S2T = S|ST|S = −9 since it’s the intersection of the canonical class of P2

with a cubic;

• ST 2 = T|ST|S = 9 since it’s the intersection of two cubics in S ' P2;

• T 3 = K2
T = 0 since T is a ruled surface over a cubic curve in B = P2.

Then the complete table is

L S T

L2 0 1 0

LS 1 −3 3

LT 0 3 −6
S2 −3 9 −9
ST 3 −9 9

T 2 −6 9 0
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Since the matrix obtained considering the first three rows has non-zero deter-
minant, we conclude that the three divisors L, S, T are linearly independent,
so that they form a Q-basis for PicX.
The cubic form thus has this expression:

(αL+ βS + γT )3 = −9αβ2 − 18αγ2 + 3α2β + 18αβγ + 9β3 + 27βγ2 − 27β2γ.

Observe that in the projective plane P2 with coordinates (α : β : γ) the above
expression defines a smooth cubic curve.

6.4.3 The number of sections

I want to show that these families have only one section. Since I will use Fried-
man’s result (3.4), I need to compute c2(X): by (4.5) we have that

c2(X) = 48L2 + 81LS + 27LT + 27S2 + 18ST + 3T 2.

Then we can use Friedman’s result (3.4) as first step in searching for sections:
if αL+ βS + γT is the class of a section, then

c2(X)(αL+ βS + γT ) = χtop(P2)−K2
P2 =⇒ 36α− 6β = −6.

Another thing characterizing sections is the fact that they intersect the fibres
in one point, i.e.

β = L2(αL+ βS + γT ) = 1.

So we deduce that β = 1, α = 0 which means that a section has class S + γT .
Finally, I exploit the fact (3.3) that

9− 27γ + 27γ2 = (S + γT )3 = K2
P2 = 9

to deduce γ = 0 or γ = 1. In the first case, we have the class S, in the second
the class S + T .
I want to show that S + T can’t be the class of a section. In fact, a section
intersects the I2 fibres over the cubic α030 = 0 either in a point of the line or in
a point of the conic: in the first case the intersection of the section with LT is
3, in the second it’s 0. Since

LT (S + T ) = −3,

we deduce that no section can have class S+T , hence that S is the only possible
class for a section.
I now want to study the linear system |S| to show that |S| = {S} so that S is
the only section of the fibration. Let D be an effective divisor linearly equivalent
to S but different, then we would have

0 ≤ LSD = LS2 = −3,

which is absurd. There is another way to see this: from the long exact sequence
of

0 −→ OX(−S) −→ OX −→ OP2 −→ 0

we have H3(X,O(−S)) = C, then by Serre duality with KX = 0 we have the
result.
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6.5 Elliptic fibrations with 2 rational sections

In the recent paper [MP, App. B] the authors deal with the problem of describing
the elliptic fibrations over P2 with two rational sections. To be more precise, they
show that it’s possible to embed an elliptic curve defined over a field K and
having two rational points in the weighted projective space P1,1,2

K as a quartic,
with a particularly simple equation. When K = C(s, t) is the function field of
P2 we are then dealing with the elliptic fibrations with two rational sections. In
particular, the E7 fibrations naturally situate in this framework, and in [MP,
App. C] we also have a description of the E0

7 families.
The more natural ambient space for fibrations with two rational sections is then
a P1,1,2-bundle over P2, but this have the disadvantage of being singular. We
can then desingularize this, finding a fibration in the Hirzebruch surface F2.
The fact that P2, P1,1,2 and F2 are toric varieties allows us to use the powerful
machinery of toric geometry, and hopefully to describe all the possible cases
where we have smooth elliptic fibrations with two rational sections.
This is still a work in progress, we hope to obtain results in the near future.



Chapter 7

An application to physics

One of the main reasons for studying Calabi– Yau elliptic fibrations comes
from physics. In the context of string theory, F -theory was first formulated by
Vafa ([Vaf96]), and provides a sort of dictionary which allows one to deduce
the physical phenomenology arising from an elliptic fibration. Since the results
must be compatible with the ones observed in the “real” world, it’s natural
to restrict the attention only to particular subclasses of Calabi–Yau elliptic
fibrations, satisfying some more requirements.
From a physical perspective, the generation of fluxes is a consequence of the self-
interactions of particles or fields (the Feynman diagram of such a self-interaction
is called a tadpole). By Gauss’s theorem these fluxes must vanishes, so there
are only two possibilities: one is to introduce extra-fluxes as compensation, the
other is to allow only configurations for which these fluxes naturally vanish. This
second possibility is known as tadpole cancellation.
In mathematical terms, we can say that a Calabi–Yau elliptic threefold π :
X −→ B embedded in Z = P(La⊕Lb⊕OB) satisfies the tadpole cancellation if
it’s possible to find a suitable section h ∈ H0(B,L2) and curvesDi for i = 0, . . . r
in the double cover ρ : Y −→ B branched along h = 0 such that

1. each Di has class miρ
∗L, i.e. Di comes from B;

2. mi > 0 and
∑r

i=1mi = 12, because in this way D1 + . . . + Dr has class
12ρ∗L which is the same as the class of ρ∗∆. So we can think of the Di as
the pull-back of components of the discriminant locus of π : X −→ B;

3. the tadpole relation

π∗c(X) =
1

2

r∑
i=1

ρ∗ji∗c(Di) (7.1)

holds, where ji : Di ↪→ Y is the inclusion.

This definition is inspired from results showing how to connect the physical
aspects of tadpole cancellation to the geometric properties of the Calabi–Yau
threefold (or fourfold) representing the theory. These relations involve the topo-
logical Euler–Poincaré characteristic of divisors in the base that are interpreted
as components of a “limit discriminant locus” for the fibration. See e.g. [AE10,
Sect. 1.6 and 4.1] for a more precise description of tadpole cancellation and
[Sen98] for the limit process.

81
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7.1 The left hand side of the tadpole relation

Even if in physics it’s customary to focus on the case of elliptic fourfolds, through
these sections I will assume the total space of the fibration to be a threefold. In
particular, I will concentrate on the situation of Chapter 4, where the threefold
X sits inside the projective bundle Z = P(E), and E = La ⊕ Lb ⊕ OB with L
an ample line bundle on B.
Recall formula (4.3)

c(X) = i∗
(
c(TZ|B)

1−KZ
Π∗c(B)

)
,

so we can see that π∗c(X) is a multiple of c(B):

π∗c(X) = Π∗

(
c(TZ|B)

1−KZ
X

)
c(B).

In the case of threefolds, we can work this out as follows:

c(TZ|B)

1−KZ
X = 3ξ +Π∗c1(E) + Π∗c1(B)+

−3Π∗c1(B)ξ −Π∗c1(E)Π∗c1(B)−Π∗c1(B)2+

12Π∗c1(B)ξ2 + 2Π∗(c1(E)2 + 4c1(E)c1(B) + 3c1(B)2 − 3c2(E))ξ+

+6(3c2(E)− 5c1(B)2 − c1(E)2)ξ2

and so, using the projection formula and keeping in mind that

Π∗1Z = Π∗ξ = 0, Π∗ξ
2 = 1B ,

we finally obtain

π∗c(X) = (12c1(B) + 18c2(E)− 30c1(B)2 − 6c1(E)2)c(B). (7.2)

Remark 7.1.1 Observe that this result is consistent with the one we found in
Section 4.4. In fact, since c(B) = 1 + c1(B) + c2(B), we have

π∗c(X) = 12c1(B) + 18c2(E)− 18c1(B)2 − 6c1(E)2

whose degree coincides with the Euler–Poincaré characteristic of the threefold
computed in (4.4).

Specializing the previous formula in the case with E = La ⊕ Lb ⊕OB , we get

π∗c(X) = (12c1(B) + 6(ab− a2 − b2)L2 − 30c1(B)2)c(B), (7.3)

which means

π∗c(X) = 12c1(B) + 6(ab− a2 − b2)L2 − 18c1(B)2. (7.4)

Thus we know the left hand side of the tadpole relation (7.1), and we can focus
on the right one.
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7.2 The right hand side of the tadpole relation

Let ρ : Y −→ B be the double covering of X branched along the zero locus of
h ∈ H0(B,L2), and let D be a curve in Y of class mρ∗L. Then we have

D
� � j //

ρ̃   @
@@

@@
@@

Y

ρ
~~~~

~~
~~

~

B

and we want to compute ρ̃∗c(D).
Using the normal bundle sequence for D in Y we have

c(D) = j∗
(

c(Y )

1 +mρ∗L

)
,

and so using the projection formula

ρ̃∗c(D) =
mL

1 +mL
ρ∗c(Y ).

Using the same technique for the inclusion i : Y ↪→ L we have

c(Y ) = i∗
(

c(TL)

1 + 2p∗L

)
where p : L −→ B is the bundle projection. So our previous formula becomes

ρ̃∗c(D) =
mL

1 +mL

2L

1 + 2L
p∗c(TL),

and using the inclusion of B as the 0-section of L we finally obtain

ρ̃∗c(D) =
mL

1 +mL

2L

1 + 2L

1 + L

L
c(B) = 2

mL

1 +mL

1 + L

1 + 2L
c(B).

Letting now D1, . . . , Dr be curves of class m1ρ
∗L, . . . ,mrρ

∗L respectively, we
can then compute the right hand side of the tadpole relation (7.1):

1

2

r∑
i=1

ρ∗ji∗c(Di) =

(
r∑

i=1

miL

1 +miL

)
1 + L

1 + 2L
c(B).

This equation holds in every dimension, in the case where B is a surface we can
then make an explicit computation, which gives us

1

2

r∑
i=1

ρ∗ji∗c(Di) =

(
12L−

(
12−

r∑
i=1

m2
i

)
L2

)
c(B), (7.5)

using the assumption that
∑r

i=1mi = 12.
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7.3 Tadpole cancellation for threefolds

As we computed before, the tadpole cancellation (7.1) for elliptic Calabi–Yau
threefolds can be written as

(12c1(B)+6(ab−a2−b2)L2−30c1(B)2)c(B) =

(
12L−

(
12−

r∑
i=1

m2
i

)
L2

)
c(B).

(7.6)
The simplest way we can satisfy this equation is to require that

12c1(B) + 6(ab− a2 − b2)L2 − 30c1(B)2 = 12L−

(
12−

r∑
i=1

m2
i

)
L2, (7.7)

in fact in this way we have tadpole cancellation over any base surface. For
this reason we say that (7.7) gives the universal tadpole cancellation relation.
Observe that this last condition is purely numerical.
I will say that π : X −→ B satisfies the tadpole relation (or the universal tadpole
relation) if X sits in P(La ⊕ Lb ⊕OB) and equation (7.6) (or (7.7)) is satisfied
for suitable integers mi.
As observed before, the difference between tadpole cancellation and universal
tadpole cancellation is that the second is only a numerical relation while in the
first there is also a contribution of the base B. Nevertheless in the case we are
studying the two concepts are equivalent.

Proposition 7.1 Let π : X −→ B be an elliptic threefold, with X ⊆ P(La⊕Lb⊕
OB) for L an ample line bundle on B. Then X satisfies the tadpole cancellation
if and only if it satisfies the universal tadpole relation.

Proof Let assume that the non-universal relation holds. We have to prove that
the universal relation (7.7) is satisfied. Writing explicitly c(B) = 1 + c1(B) +
c2(B) we see that (7.6) reduces to

12c1(B) + 6(ab− a2 − b2)L2 − 18c1(B)2 =

= 12L−

(
12 +

r∑
i=1

m2
i

)
L2 + 12c1(B)L,

and so the left side of the universal tadpole relation (7.7) equals

12L−

(
12 +

r∑
i=1

m2
i

)
L2 + 12c1(B)L− 12c1(B)2.

Since we are assuming that the tadpole relation holds, we have 12c1(B) = 12L,
it follows that 12c1(B)2 = 12Lc1(B), i.e. that universal tadpole cancellation
holds.
The other part of the proposition is obvious. �

In the case of elliptic threefolds we have then reduced the problem of tadpole
cancellation to a numerical problem. Our next goal is to solve this problem,
finding all the possible bundles and curves configurations.
The next proposition will help us.
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Proposition 7.2 Let π : X −→ B be an elliptic threefold with tadpole cancella-
tion in X ⊆ P(La ⊕Lb ⊕OB) for L an ample line bundle on B. Then L = ω−1

B

and so B is a del Pezzo surface.

Proof From the universal tadpole relation we have that 12L = 12c1(B), which
means that c1(B) = L+T with T a torsion divisor satisfying 12T = 0. Since L is
ample, we then deduce that c1(B) is also ample. So B is a del Pezzo surface, and
since these surfaces have torsion-free Picard group we have that c1(B) = L. �

In Section 4.3.1 we computed that if B is a del Pezzo surface, then only for

(a, b) = (0, 0), (1, 1), (1, 0), (2, 1), (3, 2),

the generic anticanonical hypersurface in P(ω−a
B ⊕ω

−b
B ⊕OB) is a smooth elliptic

fibration. This means that with a case by case analysis of the partitions of 12
we solve the problem of finding all the cases with tadpole cancellation. This is
the result.

Proposition 7.3 Let B be a del Pezzo surface, and X ⊆ P(ω−a
B ⊕ ω−b

B ⊕OB)
a generic anticanonical hypersurface. Then X satisfies the tadpole cancellation
only in the cases listed in the following table:

(a, b) (m1, . . . ,mr)

(0, 0) (2, 2, 2, 1, 1, 1, 1, 1, 1)

(1, 0) (4, 1, 1, 1, 1, 1, 1, 1, 1)

(1, 0) (3, 3, 1, 1, 1, 1, 1, 1)

(1, 0) (3, 2, 2, 2, 1, 1, 1)

(1, 0) (2, 2, 2, 2, 2, 2)

(1, 1) (4, 1, 1, 1, 1, 1, 1, 1, 1)

(1, 1) (3, 3, 1, 1, 1, 1, 1, 1)

(1, 1) (3, 2, 2, 2, 1, 1, 1)

(1, 1) (2, 2, 2, 2, 2, 2)

(2, 1) (5, 2, 2, 1, 1, 1)

(2, 1) (4, 4, 1, 1, 1, 1)

(2, 1) (4, 3, 3, 1, 1)

(2, 1) (3, 3, 3, 3)

(3, 2) (7, 3, 1, 1)

From the above table we can see that any of the five admissible cases for (a, b) has
at least a configuration determining tadpole cancellation. However, to construct
explicitly an example for each of them it’s a quite arduous problem. In fact
many constructions which are possible locally on the base, fail to globalize; see
e.g. [KMSNS11].
It’s my personal opinion that in order to find an example it’s necessary the
presence of at least a 1 in the sequence (m1, . . . ,mr), even if I do not have a
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proof for that.

7.3.1 The case of fourfolds

It’s possible to perform analogous computations assuming that X is an ellip-
tically fibered Calabi–Yau fourfold over a threefold B, as it’s usual in physics.
In particular, the analogous table of possible cases for the universal tadpole
cancellation reduces to the following:

(a, b) (m1, . . . ,mr)

(1, 0) (2, 2, 2, 2, 2, 2)

(1, 1) (3, 3, 1, 1, 1, 1, 1, 1)

(2, 1) (4, 4, 1, 1, 1, 1)

In this higher dimensional setting, the equivalence between tadpole cancellation
and universal tadpole cancellation breaks, so the table above is not a list of
all the configurations giving tadpole cancellation. It’s possible to find examples
of elliptic Calabi–Yau fourfolds of type (1, 1) and (1, 2) in the original paper
[AE10]. In [CCvG11], we give a detailed proof of the fact that these three are
the only possible configurations for Calabi–Yau elliptic fibrations X with uni-
versal tadpole cancellation and dimX ≥ 3. The family of fibrations of type
(1, 0) is the higher-dimensional analogous of the family of elliptic threefolds
in P(OP2(3) ⊕ OP2 ⊕ OP2) studied in Chapter 6.1, but, as observed above, we
couldn’t find a geometric example with a configuration realizing the universal
tadpole cancellation relation.



Appendix A

Computing Hodge numbers

In this appendix I will give a brief description of the algorithm introduced in
[BJRR10], [RR10] and [BJRR12], and the computation made to determine the
Hodge numbers in Chapter 5. There is also an independent proof of the same
algorithm, which can be found in [Jow11].
Since all the line bundles OP2(n) are over the projective plane, I will write O(n)
to simplify the notation.
Observe that if π : X −→ B is an elliptic Calabi–Yau fibration, then ([Ogu93,
Main Theorem]) B is a rational surface. So the methods used in this appendix
can be used to compute, for example, the Hodge diamonds of the Calabi–Yau
elliptic fibrations in P(La ⊕ Lb ⊕ OB) where L is an ample line bundle on a
rational toric surface B. The main class of such surfaces is given by the Hirze-
bruch surfaces Fr.
Observe that there is another (and well known) algorithm to compute the Hodge
numbers of anticanonical hypersurfaces in toric varieties, described in [CK99].
The reason why I will use the algorithm in [BJRR12] is that the one in [CK99]
only works for anticanonical hypersurfaces in Gorenstein Fano toric varieties,
and our P2-bundles are Gorenstein and toric, but typically not Fano.

A.1 Toric description of P(O(a)⊕O(b)⊕O)
The P2-bundle over P2

Z = P(O(a)⊕O(b)⊕O)

is a toric variety, so we can find many information on it. Since I will use results
from [Ful93] and [CLS11], I’ll use mainly Ph, but every result for Ph(O(α) ⊕
O(β) ⊕O) is also a result for P(O(a) ⊕O(b) ⊕O) provided we replace α with
−a and β with −b.

A.1.1 The fan

I want to determine the fan for the projective space bundle Ph(O(α)⊕O(β)⊕O).
The fibration is locally trivial, hence we begin with the cone of vertices

v0 = (1, 0, 0, 0) w1 = (0, 0, 1, 0)

v1 = (0, 1, 0, 0) w2 = (0, 0, 0, 1)

87
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defining C4. To be more precise, associating coordinates to each ray in the
following way

v0  x1 w1  y1

v1  x2 w2  y2

we have C4 = SpecC[x1, x2, y1, y2]. Defining w3 = (0, 0,−1,−1), we have that
the toric variety defined by the fan with maximal cones

cone(v0, v1, w0, w1), cone(v0, v1, w0, w2), cone(v0, v1, w1, w2)

is C2 × P2, where the variable xi’s are coordinates in the base C2 and the yj ’s
are coordinates in P2. Coming back to the first cone, we consider the map

C4 −→ C4

(x1, x2, y1, y2) 7−→ (x1x
−1
2 , x−1

2 , xα2 y1, x
β
2y2)

where the first two components are the glueing for the base P2, and the last
two are the transition functions of P(O(α)⊕O(β)⊕O). The target C4 is then

the toric variety SpecC[x1x−1
2 , x−1

2 , xα2 y1, x
β
2y2], which is given by the cone with

generators

(1, 0, 0, 0), (−1,−1, α, β), (0, 0, 1, 0), (0, 0, 0, 1).

Defining v2 = (−1,−1, α, β), we have just showed that cone(v0, v2, w1, w2) is in
the fan for P(O(α)⊕O(β)⊕O).
With the same argument as before, it’s possible to find all the cones in the fan:
its set of edges Σ(1) has as elements the rays generated by the six vectors of R4

v0 = (1, 0, 0, 0) w1 = (0, 0, 1, 0)

v1 = (0, 1, 0, 0) w2 = (0, 0, 0, 1)

v2 = (−1,−1, α, β) w3 = (0, 0,−1,−1)

and its nine maximal cones have as generators two rays vi and two rays wj .

A.1.2 Invariant divisors

To each ray in Σ(1) is associated a torus-invariant divisor. What we said before
allows us to conclude that Dv0 , Dv1 and Dv2 are given by p∗li, being li the line
in P2 associated to vi, but then

O(Dv0) = O(Dv1) = O(Dv2) = p∗OP2(1).

We can verify this since ([Ful93, P. 61])

(χu) =
∑
i

< u, vi > Di :

using this relation on the four rational functions x1, x2, y1 and y2 we can
conclude that

(x1) = Dv0 −Dv2 (x2) = Dv1 −Dv2

(y1) = αDv2 +Dw1 −Dw3 (y2) = βDv2 +Dw2 −Dw3
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In particular Dv0 , Dv1 and Dv2 are linearly equivalent divisors, and we denote
by L their class. Let ξ be the class of Dw3 , then

Dw1
≡ Dw3

− αDv2
= ξ − αL, Dw2

≡ Dw3
− βDv2 = ξ − βL

and so L and ξ are generators for PicZ: L is the class of the pull-back of a line
in P2 and ξ is the hyperplane section of Z.

A.2 Cohomology of OZ(−KZ)

We want to use the algorithm described in [BJRR12] to calculate the dimension
of the cohomology groupsHi(Z,−KZ): then we can describe the Hodge diamond
of X ∈ | −KZ |.
Let Z be the projective bundle over P2 defined by

Z = Ph(O(α)⊕O(β)⊕O),

which we analysed in the previous section. The Stanley–Reisner ideal of Z is
the ideal of Q[u1, . . . , u6] generated by the square-free monomials ui1 . . . uit for
which the corresponding edges generate a cone which is not in the fan for Z, so
it’s given by1

SR(Z) = 〈u1u2u3, u4u5u6〉.

A.2.1 A brief description of the algorithm

Let Z be a toric variety, with homogeneous coordinates u1, . . . , un and Stanley–
Reisner ideal SR(Z) = 〈S1, . . . , St〉. Let D be a divisor on Z: the following
algorithm ([BJRR12, Sect. 2.1]) will compute the dimension of the cohomology
spaces Hi(Z,OZ(D)). First of all we define:

1. for any subset A = {a1, . . . , ak} ⊆ {1, . . . , t} of k elements, the set

Sk
A = {Sa1 , . . . , Sak

};

2. Q(Sk
A), the square-free monomial obtained multiplying all the variables

appearing in the monomials in Sk
A;

3. the “degree” of Q(Sk
A)

M(Sk
A) = (degree of Q(Sk

A))− k.

For any monomial Q it’s possible to define a chain complex C•(Q) such that

dim Ci(Q) = #{Sk
A|Q(Sk

A) = Q, M(Sk
A) = i},

1The coordinates ui correspond to the rays in Σ(1) in the following way:

u1  v0 u4  w1

u2  v1 u5  w2

u3  v2 u6  w3
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and the first step in the algorithm is to compute the multiplicity factors

hi(Q) = dimHi(C•(Q)),

which are then quantities depending only on Z and not on D.
Given any monomial Q, we consider the rationomials (rational monomials) as-
sociated to Q, i.e. rational functions in the homogeneous variables on Z of the
form

RQ(u1, . . . , un) =
T

Q ·W
where

1. T is a monomial which does not depend on the variables appearing in Q;

2. W is a monomial which depends only on the variables appearing in Q.

We then define
ND(Q) = dim{RQ|degRQ = D},

and compute ([Jow11, Cor. 1.2] and [BJRR12, Sect. 2.1])

dimHi(Z,OZ(D)) =
∑
Q

hi(Q)ND(Q).

A.2.2 Computing the multiplicity factors

Since in our case SR(Z) has only two generators, S1 = u1u2u3 and S2 = u4u5u6,
we have the following four sets:

S0
∅ = {0}
S1
{1} = {u1u2u3}
S1
{2} = {u4u5u6}
S2
{1,2} = {u1u2u3, u4u5u6},

to which we associate the monomials

Q(S0
∅) = 1

Q(S1
{1}) = u1u2u3

Q(S1
{2}) = u4u5u6

Q(S2
{1,2}) = u1u2u3u4u5u6.

To each of them is associated the number

M(S0
∅) = 0− 0 = 0

M(S1
{1}) = 3− 1 = 2

M(S1
{2}) = 3− 1 = 2

M(S2
{1,2}) = 6− 2 = 4,

and these numbers are needed to calculate the dimensions of the vector spaces
in the chain complexes associated to each of the four monomials. In our case
these complexes are extremely easy, and we can compute the dimension of the



APPENDIX A. COMPUTING HODGE NUMBERS 91

i-th homology vector space of each complex, which gives us a multiplicity factor
hi:

hi(1) =

{
1 if i = 0

0 otherwise
hi(u1u2u3) =

{
1 if i = 2

0 otherwise

hi(u4u5u6) =

{
1 if i = 2

0 otherwise
hi(u1u2u3u4u5u6) =

{
1 if i = 4

0 otherwise.

The algorithm then implies that for any divisor D we have

h0(D) = ND(1),

h1(D) = 0,

h2(D) = ND(u1u2u3) +ND(u4u5u6),

h3(D) = 0,

h4(D) = ND(u1u2u3u4u5u6).

A.2.3 Computing the number of rationomials

The next step is to calculate the number of rationomials associated to a given
divisor D. The rationomials we are interested in are:

R1(u1, . . . , u6) = T (u1, . . . , u6)

Ru1u2u3(u1, . . . , u6) =
T (u4,u5,u6)

u1u2u3W (u1,u2,u3)

Ru4u5u6(u1, . . . , u6) =
T (u1,u2,u3)

u4u5u6W (u4,u5,u6)

Ru1u2u3u4u5u6(u1, . . . , u6) =
1

u1u2u3u4u5u6W (u1,...,u6)
.

The number ND(Q) we want to determine is the number of all possible rationo-
mials RQ whose associated divisor is D. Denoting by ei the exponent of ui in T
and W , then

1. to R1 we associate the divisor

(e1 + e2 + e3 − αe4 − βe5)L+ (e4 + e5 + e6)ξ;

2. to Ru1u2u3 we associate

(−3− e1 − e2 − e3 − αe4 − βe5)L+ (e4 + e5 + e6)ξ;

3. to Ru4u5u6 we associate

(e1 + e2 + e3 + α+ β + αe4 + βe5)L+ (−3− e4 − e5 − e6)ξ;

4. to Ru1u2u3u4u5u6 we associate

(−3 + α+ β − e1 − e2 − e3 + αe4 + βe5)L+ (−3− e4 − e5 − e6)ξ.
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A.2.4 Cohomology of invariant divisors

The choice D = L gives

NL(1) = 3 NL(u1u2u3) = 0

NL(u4u5u6) = 0 NL(u1u2u3u4u5u6) = 0

and then for k = 1, 2, 3 we have

dimHi(Z,OZ(Dk)) =

{
3 i = 0

0 otherwise.

For D = ξ we have2

Nξ(1) =
(
α+2
2

)
+
(
β+2
2

)
+ 1 Nξ(u1u2u3) =

(−1−α
2

)
+
(−1−β

2

)
Nξ(u4u5u6) = 0 Nξ(u1u2u3u4u5u6) = 0

hence

dimHi(Z,OZ(D6)) =


(
α+2
2

)
+
(
β+2
2

)
+ 1 i = 0(−1−α

2

)
+
(−1−β

2

)
i = 2

0 otherwise.

Since D4 = ξ − αL we have

ND4
(1) =

(−α+2
2

)
+
(
β−α+2

2

)
+ 1 ND4

(u1u2u3) =
(
α−1
2

)
+
(
α−β−1

2

)
ND4(u4u5u6) = 0 ND4(u1u2u3u4u5u6) = 0

and so

dimHi(Z,OZ(D4)) =


(−α+2

2

)
+
(
β−α+2

2

)
+ 1 i = 0(

α−1
2

)
+
(
α−β−1

2

)
i = 2

0 otherwise.

In the same way

dimHi(Z,OZ(D5)) =


(−β+2

2

)
+
(
α−β+2

2

)
+ 1 i = 0(

β−1
2

)
+
(
β−α−1

2

)
i = 2

0 otherwise.

A.2.5 Cohomology of −KZ

Remembering that
−KZ ≡ (3− α− β)L+ 3ξ,

we have
N−KZ

(u4u5u6) = 0, N−KZ
(u1u2u3u4u5u6) = 0

and then

dimHi(Z,−KZ) =


N−KZ (1) i = 0

N−KZ
(u1u2u3) i = 2

0 otherwise

2Form here the binomial
(n
m

)
is zero if n < m (in particular this holds for n < 0).
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and each of them is the sum of 10 =
(
3+2
2

)
binomial terms. An explicit compu-

tation then shows that

h0(Z,−KZ) =
(
2α−β+5

2

)
+
(
α+5
2

)
+
(
β+5
2

)
+
(−α+2β+5

2

)
+
(
α−β+5

2

)
+

+
(
5
2

)
+
(−α+β+5

2

)
+
(−β+5

2

)
+
(−α+5

2

)
+
(
α−β+5

2

)
;

h2(Z,−KZ) =
(−2α+β−4

2

)
+
(−α−4

2

)
+
(−β−4

2

)
+
(
α−2β−4

2

)
+
(−α+β−4

2

)
+

+
(−4

2

)
+
(
α−β−4

2

)
+
(
β−4
2

)
+
(
α−4
2

)
+
(
α+β−4

2

)
.

A.3 Hodge numbers of X ∈ | −KZ |
Let X ∈ | −KZ | be a smooth hypersurface. Our aim is to describe the Hodge
diamond of X using what we know up to now. Since X is a Calabi–Yau variety,
the only interesting numbers are h1,1(X) and h1,2(X). By Serre duality with
ωX ' OX we have

H1,q(X) = Hq(X,Ω1
X) = Hq(X,Ω1

X ⊗ ωX) = H3−q(X, TX), (A.1)

where TX is the tangent bundle of X. Our aim is then to compute Hp(X, TX),
and I will do it in several steps.

1. Tensoring the exact sequence defining X in Z

0 −→ OZ(KZ) −→ OZ −→ OX −→ 0

with OZ(−KZ) we get

0 −→ OZ −→ OZ(X) −→ OX(X) −→ 0,

which allows us to compute the cohomology of the normal bundle NX|Z :
Hp(X,NX|Z) = Hp(X,OX(X)). In particular, the result is

h0(X,NX|Z) = h0(Z,−KZ)− 1,

h1(X,NX|Z) = 0,

h2(X,NX|Z) = h2(Z,−KZ),

h3(X,NX|Z) = 0,

and we computed hp(Z,−KZ) before.

2. Thanks to the algorithm we know the cohomologyHp(Z,Dj) for any torus
invariant divisor Dj , and by Serre duality we know also Hp(Z,KZ −Dj).
So we can compute hp(Dj , ωZ |Dj

) = hp(Dj ,ODj (KZ)) from the exact
sequence

0 −→ OZ(KZ −Dj) −→ OZ(KZ) −→ ODj (KZ) −→ 0,

finding

h0(Dj ,ODj (KZ)) = 0,

h1(Dj ,ODj (KZ)) = h2(Z,Dj),

h2(Dj ,ODj (KZ)) = 0,

h3(Dj ,ODj (KZ)) = h0(Z,Dj)− 1,

h4(Dj ,ODj (KZ)) = 0.
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3. Tensor the sequence [Ful93, P. 87]

0 −→ Ω1
Z −→ Z4 ⊗OZ −→

6⊕
j=1

ODj −→ 0

by ωZ to find

0 −→ Ω1
Z ⊗ ωZ −→ Z4 ⊗ ωZ −→

6⊕
j=1

ODj (KZ) −→ 0,

and then compute Hp(Z,Ω1
Z ⊗ ωZ). The result is

h0(Z, TZ) =
∑6

j=1 h
0(Z,Dj)− 2,

h1(Z, TZ) = 0,

h2(Z, TZ) =
∑6

j=1 h
2(Z,Dj),

h3(Z, TZ) = 0,

h4(Z, TZ) = 0,

where by Serre duality Hp(Z, TZ) = H4−p(Z,Ω1
Z ⊗ ωZ).

4. Exploiting the fact that

Hp(Z, TZ(−X)) = Hp(Z, TZ ⊗ ωZ) = H4−p(Z,Ω1
Z)

we can compute the cohomology Hp(X, TZ |X ) from the exact sequence

0 −→ TZ(−X) −→ TZ −→ TZ |X −→ 0.

In particular,

h0(X, TZ |X ) =
∑6

j=1 h
0(Z,Dj)− 2,

h1(X, TZ |X ) = 0,

h2(X, TZ |X ) =
∑6

j=1 h
2(Z,Dj) + 2,

h3(X, TZ |X ) = 0.

5. Finally, from the normal bundle sequence

0 −→ TX −→ TZ |X −→ NX|Z −→ 0

we can compute Hp(X, TX):

h0(X, TX) = 0,

h1(X, TX) = h0(Z,−KZ) + 1−
∑6

j=1 h
0(Z,Dj),

h2(X, TX) =
∑6

j=1 h
2(Z,Dj) + 2− h2(Z,−KZ),

h3(X, TX) = 0.

In this way we can compute h1,1(X) and h1,2(X): the results are in Table 5.2.
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Remark A.3.1 The long exact sequence of

0 −→ TX −→ TZ |X −→ NX|Z −→ 0

begins with

0→ H0(X, TX)→ H0(X, TZ |X )→ H0(X,NX|Z)→ H1(X, TX)→ H1(X, TZ |X ).

From the previous steps we know that H0(X, TX) = 0, H0(X, TZ |X ) = 0 and
also that there is an isomorphism

H0(X, TZ |X ) ' H0(Z, TZ).

We can then deduce that the short sequence

0 −→ H0(Z, TZ) −→ H0(X,NX|Z) −→ H1(X, TX) −→ 0

is exact.
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