
UNIVERSITÀ DEGLI STUDI DI MILANO

SCUOLA DI DOTTORATO

FISICA, ASTROFISICA E FISICA APPLICATA

DIPARTIMENTO

FISICA

CORSO DI DOTTORATO DI RICERCA IN

FISICA, ASTROFISICA E FISICA APPLICATA

CICLO XXIII

Quantum Estimation and Discrimination

in Continuous Variable
and Fermionic Systems

Settore Scientifico Disciplinare FIS/03

Tesi di Dottorato di:

Carmen Invernizzi

Supervisore:

Prof. Matteo G. A. Paris

Coordinatore:

Prof. Marco BERSANELLI

Anno Accademico 2010 - 2011



Contents

Introduction i

List of publications iii

1 Estimation and discrimination of quantum states 1

1.1 Basics of quantum mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 The postulates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Generalized measurement . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.3 Completely positive map . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Distinguishability measures for quantum states . . . . . . . . . . . . . . . . 6

1.2.1 Trace distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.2 Fidelity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.3 Bures distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.4 Quantum relative entropy . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Quantum state estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.1 Cramer-Rao bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.2 Local quantum estimation theory . . . . . . . . . . . . . . . . . . . . 16

1.3.3 Example: unitary families and pure states . . . . . . . . . . . . . . . 20

1.3.4 Geometry of quantum estimation . . . . . . . . . . . . . . . . . . . . 21

1.4 Quantum state discrimination . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.4.1 Unambiguous state discrimination . . . . . . . . . . . . . . . . . . . 23

1.4.2 Bayes strategy: the quantum Chernoff bound . . . . . . . . . . . . . 25

1.4.3 Neyman-Pearson strategy: the quantum relative entropy . . . . . . . 34

2 Estimation and discrimination in continuous variable systems 37

2.1 Continuous variable systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

i



ii Contents

2.1.1 Symplectic transformations . . . . . . . . . . . . . . . . . . . . . . . 39

2.1.2 Linear and bilinear interactions of modes . . . . . . . . . . . . . . . 40

2.1.3 Characteristic function and Wigner function . . . . . . . . . . . . . . 45

2.2 Continuous variable Gaussian states . . . . . . . . . . . . . . . . . . . . . . 46

2.2.1 Definition and some properties . . . . . . . . . . . . . . . . . . . . . 46

2.2.2 Single-mode Gaussian states . . . . . . . . . . . . . . . . . . . . . . 47

2.2.3 Two-mode Gaussian states . . . . . . . . . . . . . . . . . . . . . . . 48

2.3 Some measures of correlations in Gaussian states . . . . . . . . . . . . . . . 51

2.4 Gaussian quantum channels . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.5 Estimation of parameters in quantum optics . . . . . . . . . . . . . . . . . . 59

2.5.1 Estimation of displacement . . . . . . . . . . . . . . . . . . . . . . . 60

2.5.2 Estimation of squeezing . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.6 Quantum discrimination of lossy channels . . . . . . . . . . . . . . . . . . . 65

2.6.1 Quantum Chernoff bound for Gaussian states . . . . . . . . . . . . . 66

2.6.2 Quantum Chernoff bound and correlations . . . . . . . . . . . . . . . 76

2.7 Quantum discrimination of Gaussian noisy channels . . . . . . . . . . . . . 80

2.8 Conclusions and Outlooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3 Estimation and discrimination in fermionic systems 91

3.1 The XY model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.2 Geometry of quantum phase transitions . . . . . . . . . . . . . . . . . . . . 99

3.3 Estimation of parameters in the quantum Ising model . . . . . . . . . . . . 104

3.3.1 Criticality as a resource . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.3.2 Quantum estimation at zero temperature . . . . . . . . . . . . . . . 106

3.3.3 Quantum estimation at finite temperature . . . . . . . . . . . . . . . 108

3.3.4 Practical implementations . . . . . . . . . . . . . . . . . . . . . . . . 111

3.4 The discrimination problem for the quantum Ising model . . . . . . . . . . 115

3.4.1 Quantum discrimination of ground states . . . . . . . . . . . . . . . 116

3.4.2 Quantum discrimination of thermal states . . . . . . . . . . . . . . . 120

3.5 Conclusions and Outlooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125



Introduction

In quantum information and quantum computing the information of a quantum system is

encoded in its state [1]. The knowledge of the state is equivalent to know the results of

the measurements performed on the system. In particular, the state of a quantum system

encodes the values of some quantities that are not directly accessible either in principle or

due to experimental impediments. This is the case of relevant quantities like the entan-

glement and purity that cannot correspond to any observable [2] or the coupling constant

of a many-body Hamiltonian [3] and the noise parameter in open quantum systems [4].

In all these cases, one has to resort to indirect measurement and infer the value of the

quantity of interest from its influence on a given probe. Indeed, when estimating an un-

known parameter in a quantum system, we typically prepare a probe, let it interact with

the system, and then measure the probe. If the physical mechanism which governs the

system dynamics is known, we can deduce the value of the parameter by comparing the

input and output states of the probe [5]. This process is known as quantum parameter

estimation and it can be properly addressed in the framework of the quantum estima-

tion theory (QET) or quantum discrimination theory (QDT) according to the parameter

belongs to a continuous or to a discrete set of values.

The powerful theoretical framework of quantum information can be applied to very

different physical systems, to discrete and continuous variable systems as for example

simple qubits or light modes, as well as to many-body systems either bosonic or fermionic.

The aim of this thesis is to characterize quantum states and parameters of systems

that are of particular interest for quantum technologies. In the first part of the thesis,

we will consider infinite-dimensional systems, the so-called continuous variable systems,

and in particular Gaussian states that are a very significant class of quantum states for

two reasons. First, they have a very simple mathematical characterization that allows for

the derivation of otherwise highly nontrivial results and second, they describe accurately

states of light that are realized with current technology. In this framework, we address the
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ii Introduction

estimation of quantities characterizing single-mode Gaussian states as the displacement

and squeezing parameter and we study the improvement in the parameter estimation by

introducing a Kerr nonlinearity. Moreover, we address the discrimination of noisy channels

by means of Gaussian states as probe states and consider two problems: the detection of

a lossy channel against the alternative hypothesis of an ideal lossless channel and the

discrimination of two Gaussian noisy channels.

In the last part of the thesis, we consider a paradigmatic example of a many-body sys-

tem which undergoes a second order quantum phase transition: the quantum Ising model

in a transverse magnetic field. We will exploit the recent results about the geometric

approach to quantum phase transitions to derive the optimal estimator of the coupling

constant of the model at zero temperature in both cases of few spins and in the thermo-

dynamic limit. We also analyze the effects of temperature and the scaling properties of

the estimator of the coupling constant. Finally, we consider the discrimination problem

for two ground states or two thermal states of the model.

The thesis is organized in three chapters. In the first chapter we introduce the basic

notions that we need to proceed with the quantum state estimation and discrimination.

The second and third chapters are devoted to continuous variable systems and to fermionic

systems respectively. In both we address the estimation of some quantities of interest for

those systems and the discrimination between quantum states.
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1

Estimation and discrimination of

quantum states

In this chapter we introduce the basic concepts and notations used throughout the thesis.

We start in section 1.1, by reviewing the fundamental postulates of quantum mechanics

given in terms of density matrices, positive operator valued measures and completely pos-

itive maps. We then consider some distinguishability measures for quantum states that

are widely used in quantum information. In section 1.3 we introduce the fundamental

notions about local quantum estimation theory, in particular we review the classical and

quantum Cramer-Rao bound along with the definition of the classical and quantum Fisher

information. Estimability of a parameter will be then defined in terms of the quantum

signal-to-noise ratio and the number of measurements needed to achieve a given relative

error. We also discuss the relation existing between quantum estimation and the geometric

properties of the Hilbert space, by showing the connections between the quantum Fisher

information and the Bures distance. Finally, in section 1.4, we present the main concepts

of quantum state discrimination theory and we concentrate on the Bayes minimum error

probability strategy by defining the error probability. We review the classical and quan-

tum Chernoff bound and then consider the connections between the quantum Chernoff

bound and some distance measures as the fidelity and the trace distance. We also address

the Naiman-Pearson strategy as an alternative approach of quantum state discrimination

which basically consists into maximizing the detection probability at fixed false alarm.

1



2 1. Estimation and discrimination of quantum states

1.1 Basics of quantum mechanics

Quantum theory is a mathematical model of the physical world. It does provide a math-

ematical and conceptual framework for the development of the laws to which a physical

system must obey through some postulates [1, 6, 7]. They, for example, assign an opera-

tional meaning to the concept of quantum system that is a useful abstraction, but it does

not really exist in nature [8]. In general a quantum system is defined by an equivalence

class of preparations. For example, there are many equivalent macroscopic procedures for

producing what we call a photon, or a free hydrogen atom, etc. The equivalence of differ-

ent preparations procedures should be verifiable by suitable tests. Quantum states can be

given a clear operational definition, based on the notion of test. A state is characterized

by the probabilities of the various outcomes of every conceivable test.

1.1.1 The postulates

The following postulates give a connection between the physical world and the mathemat-

ical formalism of quantum mechanics.

1. Each quantum mechanical system is associated to a Hilbert space H.

A Hilbert space is a complex vector space whose vectors are denoted with |ψ〉. It

has an inner product 〈ψ|φ〉 that maps a pair of vectors to C with the following

properties:

- Positivity: 〈ψ|ψ〉 > 0 for |ψ〉 = 0

- Linearity: |φ〉(a|ψ1〉 + b|ψ2〉) = a〈φ|ψ1〉 + b〈φ|ψ2〉
- Skew symmetry:〈φ|ψ〉 = 〈ψ|φ〉∗

Moreover, it is complete in the norm ‖ψ‖ = 〈ψ|ψ〉1/2.

2. The physical states of a quantum mechanical system are described by statistical

operators acting on the Hilbert space.

3. An observable is a property of the physical system that in principle can be measured.

It is described by a self-adjoint operator acting on the Hilbert space.

A self-adjoint operator A on a Hilbert space H is a linear operator H → H which

satisfies

〈Ax|y〉 = 〈x|Ay〉 (1.1)
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for x, y ∈ H. Self-adjoint operators on a finite dimensional Hilbert space C
n

are n × n self-adjoint matrices. A self-adjoint matrix admits a spectral de-

composition A =
∑

i λi|xi〉〈xi|, where λi are the different eigenvalues of A and

Ei = |xi〉〈xi| the orthogonal projection onto the subspace spanned by the eigen-

vectors corresponding to the eigenvalue λi. The Ei’s satisfy

EiEj =δijEi

E†
i =Ei (1.2)

Any density matrix ̺ can be written in the form

̺ =
∑

i

λi|xi〉〈xi| (1.3)

by means of unit vectors |xi〉 and coefficients λi ≥ 0,
∑

i λi = 1.

Quantum mechanics is not deterministic. If we prepare two identical systems in

the same state and we measure the same observable on each, then the result of the

measurement may not be the same. This indeterminism or stochastic feature is

fundamental.

4. In quantum mechanics, the numerical outcome of a measurement of the observable

A is an eigenvalue of A; right after the measurement, the quantum state is an

eigenstate of A with the measured eigenvalue. If the quantum state just prior to the

measurement is |ψ〉, then the outcome λi is obtained with probability

p(λi) = 〈ψ|Ei|ψ〉 (1.4)

and the state after the measurement becomes

|ψi〉 =
Ei|ψ〉
√

p(λi)
(1.5)

5. The time evolution Ut of a quantum state is unitary; it acts on a quantum state |ψ〉
as:

|φ(t)〉 = Ut|ψ〉

and it is generated by a self-adjoint operator H called the Hamiltonian of the system

Ut = exp{−iHt}. The evolution of the state is given by the Schrodinger equation

d

dt
|ψ(t)〉 = −iH|ψ(t)〉. (1.6)

These axioms provide a perfectly acceptable formulation of the quantum theory when we

consider a close quantum system. Most of the time the quantum system is not close but it

interacts with an environment and then the measurements are not orthogonal projections

and the evolution is not unitary.
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The density operator

The formalism of the density operator provides convenient means for describing quantum

systems whose state is not completely known. Suppose a quantum system is in one of a

number of states {|ψi〉}, where i is an index, with respective probabilities pi. We shall call

{pi, |ψi〉} an ensemble of pure states. The density operator for the system is defined by

the equation (1.3) as ̺ =
∑

i pi|ψi〉〈ψi| and it has the following properties

- ̺ is self-adjoint

- ̺ is positive

- Tr[̺] = 1.

If the system is in a pure state |ψ〉, then ̺ = |ψ〉〈ψ| and we have that ̺2 = ̺. If the state

of the system is not pure (mixed state), then ̺ describes an ensemble of pure states and

̺2 6= ̺.

1.1.2 Generalized measurement

Let us examine the properties of a generalized measurement that can be realized on the

system A by performing orthogonal measurements on a larger system that contains A.

Consider that the system A is extended to a tensor product HA⊗HB and that the system

A and B are described by the density operators ̺A and σB respectively. Suppose that

the two states are coupled with the unitary evolution U and that after the interaction a

measurement on the system B is performed by the operator IA ⊗ E. The probability for

the outcome i of such a measurement in given by

pi =TrAB[U(̺A ⊗ σB)U †
IA ⊗ Ei]

=TrAB[(̺A ⊗ σB)U †
IA ⊗ EiU ]

=TrA[̺AΠi] (1.7)

where we have introduced the operator Πi

Πi = TrB[IA ⊗ σBU
†
IA ⊗ EkU ] (1.8)

which is an operator that acts on the Hilbert space of the system A only, allowing us to

obtain the statistic of a measure without considering the whole quantum system. Here

TrA and TrB denote the partial traces over the two subsystems. The operators Πi are

positive operators, i.e. Hermitian operators with nonnegative eigenvalues

Πi ≥ 0, (1.9)
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because they are obtained from the partial trace of two positive operators. Moreover they

satisfy the relation

∑

i

Πi = I. (1.10)

These two properties are the defining properties of a POVM (Positive Operator-Valued

Measure). Note that as opposed to the case of a projective measurement (1.2), the set of

operators satisfying (1.9) and (1.10) do not need to commute with each other.

There exists a theorem which assures that any POVM can be realized by considering

orthogonal measurements in a space larger that HA.

Theorem 1 Naimark [9]: For any given POVM
∑

x Πx = I, Πx ≥ 0 on a Hilbert space

HA, there exists a Hilbert space HB, a state ̺B = |ωB〉〈ωB |, a unitary operaration U in

HA ⊗HB and a projective measurement Px, PxPx′ = δxx′Px on HB such that

Πx = TrB[I ⊗ ̺BU
†
I ⊗ PxU ] (1.11)

The meaning of the theorem is the following: in measuring a quantity of interest on a

physical system, one generally deals with a larger system that involves additional degrees

of freedom besides those of the system itself. These additional physical objects are usually

referred to as the apparatus or the ancilla. The measured quantity may be always described

by a standard observable on a larger Hilbert space describing both the system and the

apparatus. When we trace out the degrees of freedom of the apparatus, we are generally

left with a POVM rather than a projective measurement. Conversely, any POVM, i.e.

a set of positive operators providing a resolution of the identity, describes a generalized

measurement which may be always implemented as a standard measurement in a larger

Hilbert space.

1.1.3 Completely positive map

Completely positive maps arise naturally in quantum information theory and in other

situations in which one wishes to restrict attention to a quantum system that should

properly be considered a subsystem of a larger system with which it interacts. In such

situations, the system of interest is described by a Hilbert space HA and the larger system

by HA ⊗HB. The state of the system is described by ̺⊗ |φ〉〈φ| and it evolves by means

of a unitary evolution U . We are interested in the system A alone, therefore after the
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interaction, the density matrix of system A will be

̺′A =TrB [U̺⊗ |φ〉〈φ|U †]

=
∑

s

〈s|U̺⊗ |φ〉〈φ|U †|s〉

=
∑

s

〈s|U |φ〉̺A〈φ|U †|s〉

=
∑

s

Ms̺AM
†
s

=E(̺) (1.12)

where {|s〉} is an orthonormal basis for HB and Ms = 〈s|U |φ〉 is an operator acting on

HA. From the unitarity of U it follows that

∑

s

M †
sMs = I. (1.13)

Eq. (1.12) defines a linear map that takes linear operators to linear operators and it is

called a quantum operation. Then we define a quantum operation a map E : ̺ → E(̺)

which satisfies the following properties:

- E is linear

- E is trace preserving: Tr[E(̺)] = Tr
[
∑

sMs̺M
†
s

]

= Tr[̺
∑

sM
†
sMs] = Tr[̺]

- E preserves the hermiticity: if ̺ is self-adjoint then E(̺) is self-adjoint

- E is completely positive: considering any possible extension of HA to a tensor product

HB, then E is completely positive on HA if E ⊗ IB is positive for all such extensions.

Such maps are called the Kraus operator [10, 11] and they are important because they

provide a formalism to discuss the theory of decoherence, the evolution of pure states into

mixed states. Unitary evolution of ̺A is the special case in which there is only one term

in the operator sum (1.12) and this is the only case where the operator E is invertible.

1.2 Distinguishability measures for quantum states

In this section we briefly review the notion of distance between quantum states or sta-

tistical distance [12], i.e. a distance measure that consider in its definition the statistical

fluctuations associated with a sample of measurement. Because of this statistical error,

one cannot distinguish between quantum preparations that have a difference in the prob-

abilities smaller than the statistical fluctuations. Wootters first introduced this idea of
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distinguishability in [13]: ”If a finite ensemble of identically prepared quantum systems

is analyzed by some fixed measuring device, the observed frequencies of occurrence of the

various outcomes typically differ somewhat from the actual probabilities”.

Classical theory gives us several ways to distinguish between two probability distribu-

tions and the idea of determining a quantum distinguishability measure is to start with

the one specified by the classical theory. The probabilities are assumed to be the result of

a measurement on the system described by the quantum states we want to distinguish and

then quantum distinguishability is defined by varying over all the possible measurement

on the system in order to find the one that makes the classical distinguishability the best

it can be. This is the most natural way to discriminate between quantum states and it

leads to the definition of the distance measures reviewed in what follows.

The distance D(̺1, ̺2) between two arbitrary elements ̺1 and ̺2 of an Hilbert space

has to satisfy the following properties:

• positive semi-definiteness

D(̺1, ̺2) ≥ 0 ∀̺1, ̺2 (1.14)

D(̺1, ̺2) = 0 ̺1 = ̺2 (1.15)

• symmetry

D(̺1, ̺2) = D(̺2, ̺1) (1.16)

• triangular inequality

D(̺1, ̺2) ≤ D(̺1, ̺) + D(̺, ̺2) (1.17)

These three properties are always satisfied by an arbitrary norm ‖A‖ and defining a

distance as

D(̺1, ̺2) = K‖(̺1 − ̺2)‖

where K is a multiplying constant.

Here we review the definitions and the properties of some distance measures that are

widely used in quantum information: the trace distance, the fidelity, the Bures distance

and the quantum relative entropy that is not a proper distance but it is widely used in the

literature for its relevant properties.
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1.2.1 Trace distance

The trace distance (also called the Kolmogorov distance) [1] is one of the most natural

distance measures. It is intimately related to the problem of distinguishing two states

in the following way: the value 1
2 + 1

2DTr(̺0, ̺1) is the average success probability when

distinguishing with a measurement two states ̺1 and ̺2 with equal a priori probability.

The trace distance is defined by

DTr(̺0, ̺1) =
1

2

∥
∥
∥(̺0 − ̺1)

∥
∥
∥

=
1

2
Tr|(̺0 − ̺1)| (1.18)

where ‖A‖ is the trace norm defined as as

‖A‖ = Tr|A| = Tr[
√
A†A] (1.19)

The trace distance besides satisfying the three properties of a norm, has these additional

properties

- 0 ≤ DTr(̺1, ̺2) ≤ 1

- subadditivity under tensor product, i.e.

DTr(̺1 ⊗ σ1, ̺2 ⊗ σ2) ≤ DTr(̺1, ̺2) + DTr(σ1, σ2)

As we will see in the following, the connection between the definition (1.18) and the

problem of distinguishing between two quantum states is provided by Helstrom [14] who

solved a more general problem known as the binary decision problem in the theory of

quantum hypothesis testing.

1.2.2 Fidelity

The quantum fidelity (or Uhlmann fidelity) between two arbitrary mixed quantum states

̺1 and ̺2 is defined in [16, 17] as

F(̺1, ̺2) =

(

Tr

[√√
̺1̺2

√
̺1

])2

. (1.20)

It is a symmetric, non-negative, continuous, concave function of both states ̺1, ̺2 and also

unitarily invariant. For pure states ̺1 = |ψ1〉〈ψ1| and ̺2 = |ψ2〉〈ψ2|, the fidelity reduces to

their overlap

F(|ψ1〉, |ψ2〉) =
(

Tr
[√

|ψ1〉〈ψ1||ψ2〉〈ψ2||ψ1〉〈ψ1|
])2

=|〈ψ1|ψ2〉|2Tr
[√

|ψ1〉〈ψ1|
]2

=|〈ψ1|ψ2〉|2, (1.21)
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so it coincides with the standard distance given by the angle between rays in the Hilbert

space, i.e. the so called Fubini-Study distance [18, 19]

DFS(|ψ1〉, |ψ2〉) = cos−1
√

|〈ψ1|ψ2〉|2. (1.22)

Another function of the fidelity is the Bures angle or the Bures length [20] defined as

DA(̺1, ̺2) = cos−1
√

F(̺1, ̺2). (1.23)

For pure states Eq. (1.23) reduces to the (1.22) one. In the following the Bures distance

and the Quantum Chernoff Bound are considered which are strictly related to the fidelity.

Moreover, as it will be explained in the next chapters, they are also endowed with a deep

physical meaning and thanks to some theorems they will provide the means for the best

estimation of physical parameters.

1.2.3 Bures distance

The Bures distance has been defined by Uhlmann as a natural extension of the Fubiny-

Study metric to impure density matrices. Here we give an account of Uhlmann’s results

following [17] in a way that does not involve the theory of C∗-algebras as in [20].

Let be ̺ any mixed state in the Hilbert space H1. A purification of ̺ is any pure state

|φ〉 in any extended Hilbert space H1 ⊗ H2 with the property that ̺ = Tr2[|φ〉〈φ|], i.e. a

purification is any pure state having ̺ as the reduced density matrix for the subsystem.

Theorem 2 F(̺1, ̺2) = max |〈φ1||φ2〉|2 where the maximum is taken over all the purifi-

cations |φ1〉 and |φ2〉 of ̺1 and ̺2 respectively.

Theorem 2 provides a kind of physical interpretation of Eq. (1.20) if we adopt the de-

coherence point of view, in which any mixed state is really describing the reduced state

of a subsystem S entangled with an environment E, the total system S + E being in a

pure state. Then the fidelity that is also called transition probability provides a measure

of distinguishability of the two mixed states in the case that we have no further informa-

tion about the entanglement with E. By looking for the minimal distance between the

purifications of ̺1 and ̺2 and solving the parallelity condition (that is a condition on the

relative phase between the two states, see [20, 21] for details) one obtains [20, 22] the

Bures distance [23] given in terms of the fidelity by

DB(̺1, ̺2) =

√

2

(

1 − Tr

[√√
̺1̺2

√
̺1

])

=

√

2
(

1 −
√

F(̺1, ̺2)
)

(1.24)
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while the infinitesimal Riemaniann metric resulting from this distance is given by ds2B

where

ds2B = D2
B(̺, ̺+ d̺) = TrG2̺ =

1

2
TrGd̺ (1.25)

where

d̺ = G̺+ ̺G (1.26)

and G is related to the solution Ẇ = GW to the extremization of W (λ)) where λ is an

affine parameter and ˙ = d/dλ.

The Bures metric

The Bures distance between two infinitesimally close density matrices of size N is com-

puted in [24].

Let us set ̺1 = ̺ and ̺2 = ̺+ d̺; then

√

̺
1/2
1 ̺2̺

1/2
1 = ̺+X + Y (1.27)

where the matrix X is of order 1 in d̺ and Y of order 2. Squaring the precedent equation

we obtain

̺2 + ̺1/2d̺̺1/2 = ̺2 +X2 + Y 2 + ̺X +X̺+ ̺Y + Y ̺+XY + Y X (1.28)

The terms Y 2, XY and Y X are equal to zero because they are of order 3 and 4 in d̺ and

we obtain to first and second order

̺1/2d̺̺1/2 = X̺+ ̺X −X2 = Y ̺+ ̺Y (1.29)

and in the basis ̺ =
∑

n pn|n〉〈n| it becomes

Xn,m = d̺n,m
p
1/2
n p

1/2
m

pn + pm
Yn,m = −(X2)n,m

1

pn + pm
(1.30)

where On,m = 〈m|O|n〉. Since Tr[̺] = 1, hence Tr[d̺] = 0 and Tr[X] = Tr[d̺/2] = 0,

while

TrY = −
∑

n,m

1

2pn
|Xn,m|2 = −

∑

n,m

1

4

|d̺n,m|2
pn + pm

(1.31)

and then we arrive to the Bures metric that is given by the square of Eq. (1.24), [24]

ds2B = (DB(̺, ̺+ d̺))2 =
1

2

∑

n,m

|d̺n,m|2
pn + pm

=
1

2

∑

m,n

|〈n|d̺|m〉|2
pm + pn

. (1.32)
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Eq.(3.96) can be cast in a form suitable for future elaborations by differentiating the

density matrix: d̺ =
∑

n(dpn|n〉〈n| + pn|dn〉〈n| + pn|n〉〈dn|). Since 〈n|m〉 = δn,m, we

have d〈n|m〉 = 〈dn|m〉 + 〈n|dm〉 = 0 and therefore 〈dn|m〉 = −〈n|dm〉. Using the above

identities we have that 〈n|d̺|m〉 = δn,mdpn + (pm − pn)〈n|dm〉 and Eq. (3.96) becomes

ds2B =
1

4

∑

n

dp2
n

pn
+

1

2

∑

n 6=m

(pm − pn)2

pn + pm
|〈n|dm〉|2. (1.33)

This relation is interesting because it tells apart the classical and the quantum correla-

tions. The first term in Eq. (1.33) is the Fisher-Rao distance between the probability

distributions {pn}n and {pn + dpn}n, whereas the second term takes into account the

generic noncommutativity of ̺ and ̺′ = ̺+ d̺. Then we will refer to these two term as

the classical and nonclassical one, respectively. When [̺, ̺′] = 0, the problem becomes

effectively classical and the Bures metric collapses to the Fisher-Rao one being this latter

in general just a lower bound [13, 24]. Relevant papers about the relation of the Bures

metric with the quantum information theory are due to Braunstein and Caves [25], Vedral

and Plenio [26] and more recently a lot of work has been devoted to clarify the role of

the Bures metric to characterize quantum phase transitions and to estimate Hamiltonian

parameters. In the next chapters we will be more exhaustive about this subject.

1.2.4 Quantum relative entropy

Given two quantum states ̺1 and ̺2, the quantum relative entropy (QRE) is defined as

S(̺1‖̺2) = Tr[̺1(log ̺1 − log ̺2)] (1.34)

As for its classical counterpart, the Kullback-Leibler divergence, it can be demonstrated

that 0 < S(̺1‖̺2) < ∞ if the support of the first state is contained in that of the second

one supp ̺1 ≤ supp̺2 [6]. In particular, S(̺1‖̺2) = 0 iff ̺1 = ̺2. The quantum relative

entropy is not a symmetric function of the two arguments.

In the following we will provide some motivation to study this quantity through the

quantum Stein lemma which basically affirms that considering two states ̺1 and ̺2, the

probability of confusing the two states after N measurements performed on ̺1 is given by

PN (̺1 → ̺2) ∼ exp{−NS(̺1‖̺2)}. (1.35)



12 1. Estimation and discrimination of quantum states

1.3 Quantum state estimation

A state estimation technique is a method that provides the complete description of a

system, i.e. it achieves the maximum possible knowledge of the state, thus allowing one

to make the best predictions on the results of any measurement that may be performed

on the system. Linearity of quantum mechanics [27] and the Heisemberg uncertainty

principle [28] forbid one to devise a procedure consisting of multiple measurements that

fully recovers the state of the system. Therefore it is not possible, even in principle, to

determine the quantum state of a single system without having some prior knowledge about

it [29]. This is consistent with the very definition of a quantum state which prescribes

how to gain information of the state: many identical preparations taken from the same

statistical ensemble are needed and different measurements should be performed on each

of the copies. In the last decade an increasing interest has been devoted to the problem

of inferring the state of a quantum system from measurements due to new developments

in experimental techniques and to the progresses in quantum information technologies.

Since the results of the measurements are subjected to fluctuations, one would like to

eliminate or at least to minimize the corresponding errors. However, the precision of

any measurement procedure is bounded by fundamental law of statistics and quantum

mechanics, and in order to optimally estimate the value of some parameter, one has to

exploit the tools provided by quantum estimation theory (QET) [6, 14, 30].

As a matter of fact, many quantities of interest do not correspond to quantum observ-

ables. Relevant examples are given by the entanglement or the purity of a quantum state

[2] or the coupling constant of an interacting Hamiltonian. In these situations one needs

to infer the value of the parameter through indirect measurements. There are two main

paradigms in QET: global QET looks for the POVM minimizing a suitable cost functional,

averaged over all possible values of the parameter to be estimated. The result of a global

optimization is thus a single POVM, independent on the value of the parameter. On

the other end, local QET looks for the POVM maximizing the Fisher information, thus

minimizing the variance of the estimator, at a fixed value of the parameter [25, 31, 32].

Roughly speaking, one may expect local QET to provide better performances since the

optimization concerns a specific value of the parameter, with some adaptive or feedback

mechanism assuring the achievability of the ultimate bound.

Local QET has been successfully exploited to the estimation of quantum phase [33]

and to estimation problems with open quantum systems: to optimally estimate the noise

parameter of depolarizing [34] and for continuous variable systems to estimate the loss

parameter of a quantum channel [35, 36, 37] as well as the position of a single photon [31].
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Recently, the geometric structure induced by the Fisher information itself has been ex-

ploited to give a quantitative operational interpretation for multipartite entanglement [38]

and to assess quantum criticality as a resource for quantum estimation [39]. In estimating

the value of a parameter, one is led to define the Fisher information which represents an

infinitesimal distance among probability distributions, and gives the ultimate precision

attainable by an estimator via the Cramer-Rao theorem. Its quantum counterpart, the

quantum Fisher information (QFI), is related to the degree of statistical distinguishability

of a quantum state from its neighbours, and it turns out to be proportional to the Bures

metric between quantum states [13, 17, 20, 23, 25, 40].

In the next section 1.3.1 we review the Cramer-Rao bound and in 1.3.2 the local QET.

In particular we introduce classical and quantum Fisher information. We are interested

in the ultimate bound on precision i.e. the smallest value of the parameter that can be

discriminated, and to determine the optimal measurement achieving those bounds. Es-

timability of a parameter will be then defined in terms of the quantum signal-to-noise ratio

and the number of measurements needed to achieve a given relative error. General formu-

las for the symmetric logarithmic derivative and the quantum Fisher information will be

derived. In section 1.3.3 we present explicit formulas for sets of pure states and the generic

unitary family. Finally in 1.3.4 we will consider the connections between estimability of

a set of parameters, the optmization procedure and the geometry of quantum statistical

models and review the general ideas advocated in [39], i.e. to exploit the geometrical

theory of quantum estimation to derive the ultimate quantum bounds to the precision of

any estimation procedure thus assessing quantum criticality as a resource for quantum

estimation.

1.3.1 Cramer-Rao bound

Suppose one wants to know the value λ of a quantity Λ that characterize a physical system

S, and also suppose that this quantity cannot be accessed directly by experiments, either

in principle (as it happens for any field) or due to some technical impedements. In this case

one should resort to indirect measurement, i.e an estimation procedure, which consists in

measuring a differect quantity X somehow connected to the quantity of interest and infer

the value λ by a suitable processing of the experimental sample χ = {x1, ..., xM}. The

solution of an estimation problem thus amounts to seek for a suitable quantity to measure

and to choose an estimator, i.e a mapping λ̂ = λ̂(χ) from the set of measurement outcomes

to the space of parameters. The same situation occurs when one wants to characterize a

device Γ, whose action depends on the value of an unknown quantity. In this case one

prepares the system in a given known state S0 and aims to estimate λ upon measuring
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Figure 1.1: Schematic diagram of a generic estimation problem.

the system after the action with the device (see Fig. 1.1). Classically, optimal estimators

are those saturating the Cramer-Rao inequality [41]

Var(λ) ≥ 1

MF (λ)
, (1.36)

which establishes a lower bound on the variance Var(λ) = E[λ̂2] − E[λ̂]2 of any unbiased

estimator of the parameter λ, i.e. such that
∫
dxλ̂(x)p(x|λ = λ. In the above inequality

M is the number of independent measurements and F (λ) the Fisher Information (FI) i.e.

F (λ) =

∫

dx p(x|λ)

(
∂ ln p(x|λ)

∂λ

)2

, (1.37)

p(x|λ) being the conditional probability of obtaining the value x when the parameter has

the value λ. The proof of the Cramer-Rao bound is obtained by observing that given two

functions f1(x) and f2(x), the average

〈f1, f2〉 =

∫

dx p(x|λ)f1(x)f2(x) (1.38)

defines a scalar product. Upon choosing f1(x) = λ̂− λ and f2(x) = ∂λ ln p(x|λ), we have

‖f1‖2 = Var(λ)

‖f2‖2 = F (λ)

〈f1, f2〉 = 1 (1.39)

where we have used that
∫
dx ∂λp(x|λ) = 0 and

∫
dx λ̂(x)p(x|λ) = 1 assuming that

derivative and integrals may be exchanged. The Cramer-Rao bound for a single mea-

surement thus corresponds to the Cauchy-Schwartz inequality and the general relation

from the additivity of Fisher information, i.e. from the fact that being the random vari-

ables x1, x2, . . . , xM independent, we have p(x1, x2, . . . , xM |λ) =
∏M
k=1 log p(xk|λ) and, in

turn,

FM (λ) =

∫

dx1 . . . dxM p(x1, x2, . . . , xM |λ)[∂λ ln p(x1, x2, . . . , xM |λ)]2

=M

∫

dx p(x|λ)[∂λ ln p(x|λ)]2 = MF (λ). (1.40)
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According to the Cramer-Rao bound the optimal measurement to estimate the quantity

Λ is the one with conditional distribution p(x|λ) that maximizes the Fisher information.

On the other hand, for any fixed measurement an efficient estimator is an estimator that

saturares the Cramer-Rao inequality. The optimal estimation of a quantity Λ thus consists

in choosing a measurement maximizing the Fisher information and then process the data

by an efficient estimator. A question arises on whether such an estimator exists for any

measurement. The answer is positive, at least when the sample data is large enough, as an

efficient asymptotic (M ≫ 1) estimator is provided by the maximum-likelihood principle,

which will be briefly described in the following.

Maximum likelihood estimator

Let p(x|λ) the probability density of a random variable x, conditioned to the value of the

parameter λ. The form of p is known , but the true value of the parameter λ is unknown,

and it will be estimated from the result of a measurement of x. Let {x1, x2, . . . , xM} be

a random sample of size M . The joint probability density of the independent random

variable x1, x2, . . . , xM (i.e. the global probability of the sample) is given by

L(x1, x2, . . . , xM |λ) =

M∏

k=1

p(xk|λ), (1.41)

and is called the likelihood function of the given data sample. The maximum-likelihood

estimator (MLE) of the parameter λ is defined as the quantity λml ≡ λml({xk}) that

minimizes L(λ) for variations of λ, is given by the solution of the equations

∂L(λ)

∂λ
= 0;

∂2L(λ)

∂λ2
< 0. (1.42)

The meaning of the maximum-likelihood principle is that the observed data have been

observed because the overall probability of the sample (the likelihood function) was larger

than that for other samples. Thus the value of the parameter that most likely has generated

the sample is that one maximizing this function. Since the likelihood is positive, the first

equation is equivalent to ∂L/∂λ = 0 where L(λ) = logL(λ) =
∑

k=M log p(xk|λ) is the

so-called log-likelihood function. In order to obtain a measure for the confidence interval

in the determination of λml we consider the variance

Var(λml) =

∫
[
∏

k

dxkp(xk|λ)

]

[λml({xk}) − λ]2, (1.43)

which, in the limit of large M , saturates the Cramer-Rao bound.
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1.3.2 Local quantum estimation theory

We now illustrate the fundamental ingredients of local QET following [42]. Any estimation

problem that involves quantum systems may be stated by considering a family of quantum

states ̺λ which are defined on a given Hilbert space H and labeled by a parameter λ living

on a d-dimensional manifold M, with the mapping λ→ ̺λ providing a coordinate system.

This is sometimes referred to as a quantum statistical model. The parameter λ does not, in

general, correspond to a quantum observable and our aim is to estimate its value through

the measurement of some observable on ̺λ. In turn, a quantum estimator Oλ for λ is a

selfadjoint operator, which describe a quantum measurement followed by any classical data

processing performed on the outcomes. The indirect procedure of parameter estimation

implies an additional uncertainty for the measured value, that cannot be avoided even in

optimal conditions. The aim of quantum estimation theory is to optimize the inference

procedure by minimizing this additional uncertainty. In quantum mechanics, according

to the Born rule we have p(x|λ) = Tr[Πx̺λ] where {Πx},
∫
dxΠx = I, are the elements of

a positive operator-valued measure (POVM) and ̺λ is the density operator parametrized

by the quantity we want to estimate. Introducing the Symmetric Logarithmic Derivative

(SLD) Lλ as the selfadjoint operator satistying the equation

Lλ̺λ + ̺λLλ
2

=
∂̺λ
∂λ

(1.44)

we have that ∂λp(x|λ) = Tr[∂λ̺λΠx] = ReTr[̺λΠxLλ]. The Fisher Information (1.37) is

then rewritten as

F (λ) =

∫

dx
Re(Tr[̺λΠxLλ])2

Tr[̺λΠx]
. (1.45)

For a given quantum measurement, i.e. a POVM {Πx}, Eqs. (1.36) and (1.45) establish

the classical bound on precision, which may be achieved by a proper data processing, i.e.

by maximum likelihood, which is known to provide an asymptotically efficient estimator.

On the other hand, in order to evaluate the ultimate bounds to precision we have now to

maximize the Fisher information over the quantum measurements. We will find a bound

and then prove it is achievable:

F (λ) ≤
∫

dx

∣
∣
∣
∣
∣

Tr[̺λΠxLλ]
√

Tr[̺λΠx]

∣
∣
∣
∣
∣

2

(1.46)

=

∫

dx

∣
∣
∣
∣
∣
Tr

[ √
̺λ

√
Πx

√

Tr[̺λΠx]

√

ΠxLλ
√
̺λ

]∣
∣
∣
∣
∣

2

≤
∫

dxTr[ΠxLλ̺λLλ] (1.47)

=Tr[Lλ̺λLλ] = Tr[̺λL
2
λ] (1.48)
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The above chain of inequalities prove that the Fisher information F (λ) of any quantum

measurement is bounded by the so-called Quantum Fisher Information (QFI)

F (λ) ≤ G(λ) ≡ Tr[̺λL
2
λ] = Tr[∂λ̺λLλ] (1.49)

that leads to a more general bound on the variance of the estimator of a quantum param-

eter, the quantum Cramer-Rao bound

Var(λ) ≥ 1

MG(λ)
. (1.50)

The quantum version of the Cramer-Rao theorem provides an ultimate bound: it does

depend on the geometrical structure of the quantum statistical model and does not de-

pend on the measurement. Optimal quantum measurements for the estimation of λ thus

correspond to POVM with a Fisher information equal to the quantum Fisher information,

i.e those saturating both inequalities (1.46) and (1.47). The first one is saturated when

Tr[̺λΠxLλ] is a real number ∀λ. The Ineq. (1.47) is based on the Schwartz inequality

|Tr[A†B]|2 ≤ Tr[A†A]Tr[B†B] applied to A† =
√
̺λ

√
Πx/

√

Tr[̺λΠx] and B =
√

ΠxLλ
√
̺λ

and it is saturated when
√

Πx
√
̺λ

√

Tr[̺λΠx]
=

√
ΠxLλ

√
̺λ

√

Tr[̺λΠxLλ]
∀λ. (1.51)

This last equation is satisfied iff the POVM operators {Πx} correspond to projectors over

the eigenstates of Lλ, which thus represents itself the optimal POVM to estimate the

parameter λ. Notice, however, that Lλ itself may not represent the optimal observable to

be measured. In fact, Eq. (1.51) determines the POVM and not the estimator i.e. the

function of the eigenvalues of Lλ. As we have already mentioned above, this corresponds

to a classical post-processing of data aimed to saturate the Cramer-Rao inequality (1.36)

and may be pursued by maximum likelihood, which is known to provide an asymptotically

efficient estimator. Using the fact that Tr[̺λLλ] = 0, an explicit form for the optimal

quantum estimator is given by

Oλ = λI +
Lλ
G(λ)

(1.52)

for which indeed we have

Tr[̺λOλ] = λ, Tr[̺λO
2
λ] = λ2 +

Tr[̺λL
2
λ]

G2(λ)
, (1.53)

and thus

〈∆O2
λ〉 =

1

G(λ)
.
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The general solution for the SLD Lλ is

Lλ = 2

∫ ∞

0
dt exp{−̺λt}∂λ̺λ exp{−̺λt} (1.54)

which, upon writing ̺λ in its diagonal basis ̺λ =
∑

n ̺n|ψn〉〈ψn|, leads to

Lλ = 2
∑

nm

〈ψm|∂λ̺λ|ψn〉
̺n + ̺m

|ψm〉〈ψn| (1.55)

where the sums include only terms with ̺m + ̺n 6= 0. The quantum Fisher information is

thus given by

G(λ) = 2
∑

nm

|〈ψm|∂λ̺λ|ψn〉|2
̺n + ̺m

, (1.56)

or, in a basis independent form,

G(λ) = 2

∫ ∞

0
dtTr[∂λ̺λ exp{−̺λt}∂λ̺λ exp{−̺λt}]. (1.57)

Notice that both the eigenvalues ̺n and the eigenvectors |ψn〉 may depend on the pa-

rameter. In order to separate the two contributions to the QFI, we explicitly evaluate

∂λ̺λ

∂λ̺λ =
∑

p

∂λ̺p|ψp〉〈ψp| + ̺p|∂λψp〉〈ψp| + ̺p|ψp〉〈∂λψp| (1.58)

The symbol |∂λψp〉 denotes the ket |∂λψp〉 =
∑

k ∂λψnk|k〉, where ψnk are obtained ex-

panding |ψn〉 in arbitrary basis {|k〉} independent on λ. Since 〈ψn|ψm〉 = δnm, we have

that ∂λ〈ψn|ψm〉 ≡ 〈∂λψn|ψm〉 + 〈ψn|∂λψm〉 = 0 and therefore

Re〈∂λψn|ψm〉 = 0 〈∂λψn|ψm〉 = −〈ψn|∂λψm〉 = 0. (1.59)

Using Eq. (1.58) and the above identities we have

Lλ =
∑

p

∂λ̺p
̺p

|ψp〉〈ψp| + 2
∑

n 6=m

̺n − ̺m
̺n + ̺m

〈ψn|∂λψm〉|ψm〉〈ψn| (1.60)

and in turn

G(λ) =
∑

p

(∂λ̺p)
2

̺p
+ 2

∑

n 6=m
σnm|〈ψm|∂λψn〉|2 (1.61)

where

σnm =
(̺n − ̺m)2

̺n + ̺m
+ any antisymmetric term, (1.62)
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as for example,

σnm = 2̺n
̺n − ̺m
̺n + ̺m

or σnm = 2̺n

(
̺n − ̺m
̺n + ̺m

)2

(1.63)

The first term in Eq. (1.61) represents the classical Fisher information of the distribution

{̺p} whereas the second term contains the truly quantum contribution. When the eigen-

vectors of ̺λ do not depend on the parameter λ, the second term vanishes. In this case

[̺λ, ∂λ̺λ] = 0 and Eq. (1.54) reduces to Lλ = ∂λ log ̺λ. Finally, upon substituting the

above Eqs. in (1.52), we obtain the optimal quantum estimator

Oλ =
∑

p

(

λ+
∂λ̺p
̺p

)

|ψp〉〈ψp| +
2

G(λ)

∑

n 6=m

̺n − ̺m
̺n + ̺m

〈ψm|∂λψn〉|ψm〉〈ψn|. (1.64)

Estimability of a parameter

A large signal is easily estimated whereas a quantity with a vanishing value may be inferred

only if the corresponding estimator is very precise i.e characterized by a small variance.

This intuitive statement indicates that in assessing the performances of an estimator and,

in turn, the overall estimability of a parameter the relevant figure of merit is the scaling

of the variance with the mean value rather than its absolute value. This feature may be

quantified by means of the signal-to-noise ratio (for a single measurement)

Rλ =
λ2

Var(λ)
(1.65)

which is larger for better estimators. Using the quantum Cramer-Rao bound, one easily

derives that the signal-to-noise ratio of any estimator is bounded by the quantity

Rλ ≤ Qλ ≡ λ2G(λ) (1.66)

which we refer to as the quantum signal-to-noise ratio. We say that a given parameter λ

is effectively estimable quantum-mechanically when the corresponding Qλ is large. Upon

taking into account repeated measurements we have that the number of measurements

leading to a 99.9% (3σ) confidence interval corresponds to a relative error

δ2 =
9Var(λ)

Mλ2
=

9

M

1

Qλ
. (1.67)

Therefore, the number of measurements needed to achieve a 99.9% confidence interval

with a relative error δ scales as

Mδ =
9

δ2
1

Qλ
(1.68)

In other words, a vanishing Qλ implies a diverging number of measurements to achieve a

given relative error, whereas a finite value allows estimation with arbitrary precision at

finite number of measurements.
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1.3.3 Example: unitary families and pure states

Let us consider the case where the parameter of interest is the amplitude of a unitary per-

turbation imposed to a given initial state ̺0. The family of quantum states we are dealing

with may be expressed as ̺λ = Uλ̺0U
†
λ where Uλ = exp{−iλA} is a unitary operator and

A is the corresponding Hermitian generator. Upon expanding the unperturbed state in

its eigenbasis ̺0 =
∑

n ̺n|φn〉〈φn| we have ̺λ =
∑

n ̺n|ψn〉〈ψn| where |ψn〉 = Uλ|φn〉. As

a consequence we have

∂λ̺λ = iUλ[A, ̺0]U †
λ (1.69)

and the SLD may be written as Lλ = UλL0U
†
λ where L0 is given by

L0 =2i
∑

nm

〈φm|[A, ̺0]|φn〉
̺n + ̺m

|φn〉〈φm|

=2i
∑

n 6=m
〈φm|A|φn〉

̺n − ̺m
̺n + ̺m

|φn〉〈φm|. (1.70)

The corresponding quantum Fisher information is independent on the value of the param-

eter and may be written as

G = Tr[̺0L
2
0] = Tr[̺0[L0, A]] = Tr[L0[A, ̺0]] = Tr[A[̺0, L0]] (1.71)

or, more explicitly as

G = 2
∑

n 6=m
σnmA

2
nm (1.72)

where the σnm’s are given in Eq. (1.62) and Anm = 〈φn|A|φm〉 = 〈ψn|A|ψm〉 denotes the

matrix element of the generator A in either the eigenbasis of ̺0 or ̺λ.

For a generic family of pure states, we have ̺λ = |ψλ〉〈ψλ|. Since ̺2
λ = ̺λ, we have

that ∂λ̺λ = ∂λ̺λ̺λ + ̺λ∂λ̺λ and thus Lλ = 2∂λ̺λ = |∂λψλ〉〈ψλ|+ |ψλ〉〈∂λψλ|. Finally we

have

G(λ) = 4[〈∂λψλ|∂λψλ〉 + (〈∂λψλ|ψλ〉)2]. (1.73)

For a unitary family of pure states |ψλ〉 = Uλ|ψ0〉, we have

|∂λψλ〉 = − iAUλ|ψ0〉 = −iA|ψλ〉
〈∂λψλ|∂λψλ〉 =〈ψ0|A2|ψ0〉

〈∂λψλ|ψλ〉 = − i〈ψ0|A|ψ0〉. (1.74)
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The quantum Fisher information thus reduces to the form

G = 4〈ψ0|∆A2|ψ0〉 (1.75)

which is independent on λ and proportional to the fluctuations of the generator on the

unperturbed state 〈ψ0|∆A2|ψ0〉 = 〈ψ0|A2|ψ0〉 − (〈ψ0|A|ψ0〉)2. The quantum Cramer-Rao

bound can be rewritten in the form

Var(λ)〈∆A2〉 ≥ 1

4M
, (1.76)

which represents a parameter based uncertainty relation which applies also when the shift

parameter in the unitary Uλ = e−iλA does not correspond to the observable canonically

conjugate to A.

1.3.4 Geometry of quantum estimation

The estimability of a set of parameters labelling the family of quantum states {̺λ} is

naturally related to the distinguishability of the states within the quantum statistical

model i.e. with the notions of distance. On the manifold of quantum states, however,

different distances may be defined and a question arises on which of them captures the

notion of estimation measure. As it can be easily proved it turns out that the Bures

distance [17, 20, 23, 43, 44, 45, 46] is the proper quantity to be taken into account. This

may be seen as follows: the Bures metric tensor gµν is obtained upon considering the

distance between two infinitesimally close states which differ for slightly different values

of the parameter

ds2B = D2
B(̺λ, ̺λ+dλ) =

∑

µν

gµνdλµdλν (1.77)

where ds2B is the Bures metric which has been explicitly calculated in Eq. (1.33). Then

by comparing Eqs. (1.33) and (1.61), one arrives at

gµν =
1

4
Gµν , (1.78)

that is the Bures tensor metric is simply proportional to the quantum Fisher information,

which itself is symmetric, real and positive semidefinite, i.e. represents a metric for the

manifold underlying the quantum statistical model. Indeed, a large value of the QFI for a

given λ implies that the quantum states ̺λ and ̺λ+dλ should be statistically distinguishable

more effectively than the analogue states for a value of λ corresponding to a smaller QFI.

In other words, optimal estimability (that corresponds to a diverging QFI) corresponds to

quantum states that are sent far apart upon infinitesimal variations of the parameters.
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1.4 Quantum state discrimination

Consider that we have a quantum system prepared in a state chosen from a discrete

set, rather than from the whole set of quantum states as in the quantum estimation

case. We want to discriminate the state starting from the results of certain measurements

performed on the system. To the extent that the quantum states are nonorthogonal,

the problem is highly nontrivial and of practical importance. Moreover, a fundamental

theorem of quantum theory tells us that it is not possible to distinguish perfectly between

non-orthogonal quantum states. Then the relevant figure of merit is the error rate in

discriminating between quantum states and the task of quantum state discrimination is

to develop some techniques that keep the error as low as possible.

In this framework, two main strategies have been suggested: the unambiguous quantum

discrimination and the (ambiguous) minimum error discrimination. In the first approach,

whenever a definite answer is returned after a measurement on the state, the result should

be unambiguous, at the expense of allowing inconclusive outcomes to occur. In the second

case, one considers that the errors are unavoidable when the states are non-orthogonal.

Then, based on the outcome of the measurement on the state in each single case, a guess

has to be made as to what the state of the quantum system was. This procedure is

known as quantum hypothesis testing. The problem consists into finding the optimum

measurement strategy that minimizes the probability of errors. The classical version

of this problem was solved about fifty years ago by Herman Chernoff, who proved his

famous bound which characterizes the asymptotic behavior of the minimal probability of

errors when discriminating two hypothesis given a large number of observations [47]. Its

quantum analog, the quantum Chernoff bound (QCB), was recently proven in [48, 49]. The

use of QCB in quantum state discrimination is fundamental in several areas of quantum

information and it has been exploited as a distinguishability measure between qubits and

single-mode Gaussian states [48, 50, 51], to evaluate the degree of nonclassicality for one

mode Gaussian states [52] or the polarization of a two-mode state [53]. It has also been

applied in the theory of quantum phase transitions to distinguish between different phases

of the XY model at finite temperature [54], and to the discrimination of two ground states

or two thermal states of the quantum Ising model [55].

In the following we first review the unambiguous state discrimination according to

[56], then, in 1.4.2, we address the strategy of quantum hypothesis testing in which we

are mostly interested and study both the classical and the quantum Chernoff bounds. We

start with the classical hypothesis testing upon defining the error probability and then by

reviewing the classical Chernoff bound. We discuss the quantum hypothesis testing both
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in the single copy case and in the case when many copies of the two states are given. We

consider the connections between the quantum Chernoff bound and some distinguishabil-

ity measures for quantum states as the fidelity. Moreover we address the discrimination

problem for two infinitesimally close quantum states by calculating the quantum Chernoff

metric. Finally we consider a different strategy of discrimination between two quantum

states, namely the Nayman-Pearson strategy, giving an important result for optimal dis-

crimination in the case of N measurements performed on one of the two states.

1.4.1 Unambiguous state discrimination

In this section we review schemes for unambiguous discrimination following [56]. We

mention that the two main discrimination strategies evolved rather differently from the

very beginning. On the one hand, unambiguous discrimination started with pure states

and only very recently turned its attention to discriminating among mixed quantum states.

On the other hand, minimum-error discrimination addressed the problem of discriminating

among two mixed quantum states from the very beginning and the results for two pure

states followed as special cases.

Each strategy has its own advantages and drawbacks. While unambiguous discrimination

is relatively straightforward to generalize for more than two states, it is difficult to treat

mixed states. The error-minimizing approach instead, initially developed for two mixed

states, is hard to generalize for more than two states.

Unambiguous discrimination started with the work of Ivanovic [57] who studied the

following problem. A collection of quantum systems is prepared so that each single system

is equally likely to be prepared in one of two known states, |ψ1〉 or |ψ2〉. Furthermore, the

states are not orthogonal, 〈ψ1|ψ2〉 6= 0. The preparer then hands the systems over to an

observer one by one whose task is to determine which one of the two states has actually

been prepared in each case. All the observer can do is to perform a single measurement

or perhaps a series of measurements on the individual system. Ivanovic came to the

conclusion that if one allows inconclusive detection results to occur then in the remaining

cases the observer can conclusively determine the state of the individual system. A simple

von Neumann measurement can accomplish this task. Let us introduce the projector P1

for |ψ1〉 and P 1 for the orthogonal subspace such that P1 + P 1 = I. Then we know that

the state |ψ2〉 was prepared if a click in the P 1 detector occurs. A similar conclusion can

be reached for |ψ1〉 by inverting the roles of |ψ1〉 and |ψ2〉. When a click along P1 (or P2)

occurs, we can say nothing about the state of the system thus corresponding to inconclusive

results. The probability of the inconclusive outcome, or failure, is RIDP = |〈ψ1|ψ2〉| and
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the probability of success is then given by the so called Ivanovich-Dieks-Peres (IDP) limit

PIDP = 1 −RIDP = 1 − |〈ψ1|ψ2〉|. (1.79)

This result can be generalized for the case when the a priori probabilities of the states,

η1 and η2 are different, i.e. η1 6= η2. The result of Eq. (1.79) corresponds to the case

η1 = η2 = 1/2.

The von Neumann projective measurement described above has two outcomes. It can

correctly identify one of the two states at the expense of missing the other completely and

occasionally missing the identifiable one, as well. If we want to do the best prediction we

would like to have a measurement with three outcomes: |ψ1〉, |ψ2〉 and the failure. We

introduce the operators Π1,Π2 and Π0 such that: 〈ψ1|Π1|ψ1〉 = p1 is the probability of

successfully identifying |ψ1〉, 〈ψ2|Π2|ψ2〉 = p2 is the probability of successfully identifying

|ψ2〉, 〈ψ1|Π0|ψ1〉 = q1 is the probability of failing to identify |ψ1〉 (and similarly for |ψ2〉).
For unambiguous discrimination we require that 〈ψ1|Π2|ψ1〉 = 〈ψ2|Π1|ψ2〉 = 0. The

operators {Πi} form a POVM

Π1 + Π2 + Π0 = I (1.80)

These operators can be determined explicitly upon introducing |ψ⊥
i 〉 that is the vector

orthogonal to |ψj〉 (i 6= j) and the final expression is

Π1 =
p1

sin2 θ
|ψ⊥

1 〉〈ψ⊥
1 |,

Π2 =
p2

sin2 θ
|ψ⊥

2 〉〈ψ⊥
2 |, (1.81)

where sin θ = |〈ψ1|ψ⊥
1 〉| and cos θ = |〈ψ1|ψ2〉|. The positivity of the inconclusive operator

Π0 = I − Π1 − Π2 (1.82)

leads to the additional condition

q1q2 ≥ |〈ψ1|ψ2〉|2, (1.83)

where q1 = 1− p1 and q2 = 1− p2 are the failure probabilities for the corresponding input

states. The last inequality represents the constraint imposed by the positivity requirement

on the optimum detection operators. Let

R = η1q1 + η2q2 (1.84)

denotes the average failure probability for unambiguous discrimination. Due to the relation

P = η1p1 + η2p2 = 1 − R, the minimization of R, subject to the constraint (1.84), gives
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the maximum probability of success. We express q2 = cos2 θ/q1 and then insert this

expression in (1.84). Optimization of R with respect to q1 gives qPOVM1 =
√

η2/η1 cos θ

and qPOVM2 =
√

η1/η2 cos θ and

RPOVM = 2
√
η1η2 cos θ. (1.85)

For η1 = η2 = 1/2 it reproduces the result of Eq. (1.79). Let us next see how this

result compares to the average failure probabilities of the two possible unambiguously

discriminating von Neumann measurements that were described at the beginning of this

section. The average failure probability for the first von Neumann measurement, with its

failure direction along |ψ1〉 can be written by simple inspection as

R1 = η1 + η2|〈ψ1|ψ2〉|2 (1.86)

and he average failure probability for the second von Neumann measurement, with its

failure direction along |ψ2〉 is given by

R2 = η1|〈ψ1|ψ2〉|2 + η2. (1.87)

The optimum failure probability given by the POVM does perform better than R1 and

R2 when it exists. Indeed, it is subject to the condition for the existence of the POVM

solution given by qPOVM1 ≤ 1 and qPOVM2 ≤ 1 which corresponds to cos2 θ/(1 + cos2 θ) ≤
η1 ≤ 1/(1 + cos2 θ). If η1 < cos2 θ/(1 + cos2 θ) then the optimum failure probability is

given by R1 and if η1 > 1/(1 + cos2 θ) the optimum failure probability is R2.

1.4.2 Bayes strategy: the quantum Chernoff bound

One of the most basic tasks in information theory is the discrimination of two differ-

ent probability distributions: given a source that outputs variables according one of the

two probability distributions, determine which one it is with the minimal possible error.

Here we state the problem of classical hypothesis testing by defining the error probability

according to the Bayes approach and give the solution found by Chernoff [47].

The probability of error

A way of defining a notion of statistical distinguishability concerns the following scenario.

Consider an observer that has to choose between two hypotheses H0 and H1 with proba-

bility π0 and π1 and his decision is based on a set of data collected from the measurement

outcomes b = 1, . . . , n he performs on the system. These measurements have probabil-

ity distributions p0(b) and p1(b) depending upon the hypothesis that he tests. A notion
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of distinguishability should give to the observer some method to distinguishing between

the two distributions, for example, a Bayesian-like approach consists in minimizing the

two error probabilities i.e. the probability of guessing 1 when the true hypothesis is H0

and the probability of say 0 when the hypothesis is H1. This latter approach which is

known as hypothesis testing gives rise to a measure of distinguishability associated with

the exponential decreasing of the error probability that is the Chernoff Bound.

A decision function is any function

δ : {1, . . . , n} → {0, 1} (1.88)

representing the method of guess the observer might use in the problem. The probability

that such a guess will be in error is

Pe(δ) = π0P (δ = 1|0) + π1P (δ = 0|1), (1.89)

where π0 and π1 denote the a priori probabilities assigned to the occurrence of each

hypothesis, P (δ = 1|0) denotes the probability that the guess is p1(b) when, in fact the

distribution is really p0(b). Similarly P (δ = 0|1) denotes the probability that the guess

is p0(b) when the distribution is p1(b). A natural decision function is the Bayes’ decision

function δB that chooses 0 or 1 according to which has the highest posterior probability

given the outcome b. The posterior probability according the Bayes rule is

p(i|b) =
πipi(b)

π0p0(b) + π1p1(b)
, (1.90)

where i = 0, 1 and p(b) = π0p0(b) + π1p1(b) is the total probability for the outcome b.

Then the Bayes’ decision function gives

δB(b) =







0 if π0p0(b) > π1p1(b)

1 if π1p1(b) > π0p0(b)

anything if π0p0(b) = π1p1(b)

(1.91)

In the following we demonstrate that this decision function is optimal as far as the error

probability is concerned [58]. Note that for any decision procedure δ, the error probability

of Eq. (1.89) can be written as

Pe(δ) = π0

∑

b

δ(b)p0(b) + π1

∑

b

[1 − δ(b)]p1(b), (1.92)

because
∑

b δ(b)p0(b) is the total probability of guessing 1 when the answer is 0 and
∑

b[1 − δ(b)]p1(b) is the total probability of guessing 0 when the answer is 1. Then it

follows that

Pe(δ) − Pe(δB) =
∑

b

(δ(b) − δB(b)) (π0p0(b) − π1p1(b)) . (1.93)
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Suppose that δ 6= δB . Then the nonzero terms in the sum occur when δ(b) 6= δB(b) and

π0 p0(b) 6= π1 p1(b). When δ(b) = 0 and δB(b) = 1, π0 p0(b) − π1 p1(b) < 0 and the term in

the sum is positive; when δ(b) = 1 and δB(b) = 0, π0 p0(b) − π1 p1(b) > 0 and again the

term in the sum is positive. Then it follows that

Pe(δ) > Pe(δB), (1.94)

for any decision function and therefore the Bayes’ decision function is optimal. For the

outcome b is measured with prior probability p(b), the probability of a correct decision

is just the max{p(0|b), p(1|b)}. Therefore the error probability associated to the Bayes

decision function can be expressed as follows

Pe =
∑

b

p(b) (1 − max{p(0|b), p(1|b)})

=
∑

b

p(b) min{p(0|b), p(1|b)} (1.95)

=

n∑

b=1

min{π0 p0(b), π1 p1(b)} (1.96)

where Eq. (1.95) follows from the relation p(0|b) + p(1|b) = 1. Notice that Eq. (1.96)

depends on the prior state of knowledge through π0 and π1 and is not only a function of

the probability distributions that have to be distinguished. This depends on the defini-

tion of Bayesian probabilities that are always defined with respect to someone’s state of

knowledge. The latter Eq. gives a simple operational definition of Pe as we can see in the

following example due to Cover [59].

Consider the following four different probability distributions over two outcomes: p0 =

{.96, .04}, p1 = {.04, .96}, q0 = {.90, .10} and q1 = {0, 1}. Let us compare the distin-

guishability of p0 and p1 via Eq. (1.96) to that of q0 and q1 by assuming equal a priori

probabilities

Pe(p0, p1) =
1

2
min{.96, .04} +

1

2
min{.04, .96} = .04 (1.97)

Pe(q0, q1) =
1

2
min{0.9, 0} +

1

2
min{.1, 1} = .05 (1.98)

Therefore

Pe(p0, p1) < Pe(q0, q1) (1.99)

and so the distributions p0 and p1 are more distinguishable form each other that the

distributions q0 and q1. Now consider that two samples of outcomes are taken before a
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guess and therefore we have four possible outcomes. Then the error probability will be

Pe(p
2
0, p

2
1) =

1

2
min{.96 × .96, .04 × .04} +

1

2
min{.96 × .04, .04 × .96}

+
1

2
min{.04 × .04, .96 × .96} +

1

2
min{.04 × .96, .96 × .04} = .04 (1.100)

Pe(q
2
0 , q

2
1) =

1

2
min{.9 × .9, 0 × 0} +

1

2
min{.9 × .1, 0 × 1}

+
1

2
min{.1 × .1, 1 × 1} +

1

2
min{.1 × .9, 1 × 0} = .005 (1.101)

Therefore

Pe(q
2
0 , q

2
1) < Pe(p

2
0, p

2
1) (1.102)

the distributions q0 and q1 are more distinguishable from each other than p0 and p1 when

one samples two sets of outcomes in the decision problem. This example suggests that the

probability of error, though it is a good measure of distinguishability for the problem of

making a decision after one sampling, does not adapt to further data acquisition. Therefore

we need a measure that it is not explicitly tied with the number N of samplings.

The Chernoff bound

The optimal probability of error in the decision problem must decrease to zero when

the number of samplings increases. It turns out that it decreases asymptotically as an

exponential in the number of samplings N [47]. This exponential is called the Chernoff

bound and the formal statement is given in the following [59]

Theorem 3 Let Pe(N) be the probability of error for Bayes’ decision rule after sampling

N times one of the two distributions p0(b) or p1(b). Then

Pe(N) ≤ 1

2
min
s∈[0,1]

(
n∑

b=1

p0(b)sp1(b)1−s
)N

(1.103)

Moreover the bound is approached asymptotically in the large N limit.

The quantum Chernoff bound

In the quantum hypothesis testing problem, one has to decide between two states of a

system. The decision is performed by a two-valued measurement. A single copy of the

quantum system is not enough for a good decision and one should make independent

measurements on several identical copies. Let us address the quantum scenario. Suppose

that a quantum system is prepared in two possible states (pure or mixed) ̺0 and ̺1. The

states are known, as well as the a priori probabilities π0 and π1 = 1−π0 but we don’t know
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which state has been actually sent to the observer. We are given n copies of the state ̺ with

the promise that it has been prepared either by the source 0 (with prior probability π0)

or 1 (with prior probability π1) which generate ̺0 and ̺1 respectively. We formulate two

hypotheses H0 and H1 about the identity of the source (0 or 1 respectively) and we have

to define the minimal error probability to determine which hypothesis better explains the

nature of the n copies. The protocol develops in two stages. First, to obtain information

about the states we must necessarily make a quantum measurement. Second, one has to

provide a classical algorithm which processes the measurement outcomes and produces

the best answer (H0 or H1). Quantum mechanics allows for a convenient description

of this two-step process by assigning to each answer H0 and H1 an element E0 and E1

respectively, of a two-outcomes POVM {E0, E1} on the system, where E0 + E1 = I and

Ek ≥ 0 ∀k. After observing the outcome j the observer infers that the state of the system

is ρj . The probability of giving the answer Hb conditioned by the state ̺ = ̺i is thus

given by pi(b) = Tr
[
̺⊗ni Eb

]
and the problem reduces to find the optimal POVM {Eb}1

b=0

for the discrimination problem that is the one minimizing the overall probability of a

misidentification given in Eq. (1.96) i.e.

Pe = π0 p0(1) + π1 p1(0). (1.104)

In the simplest case of a single copy n = 1 and two equiprobable hypotheses π0 = π1 =

1/2, we have

Pe =
1

2
(Tr[̺0E1] + Tr[̺1E0]) (1.105)

that is to say that the error probability is just the probability that ̺0 is the true state

times the conditional probability that the guess is wrong summed to the similar term for

̺1. The minimization of the error probability in the single copy case is due to Helstrom

[14]. Since E0 = I − E0, we can introduce the Helstrom matrix Υ ≡ ̺1 − ̺0 and write

Pe =
1

2
(1 − Tr [E1Υ]) (1.106)

which only needs to be optimized with respect to E1. Since TrΥ = 0, the matrix Υ has

some negative eigenvalues. This necessarily implies that the minimum error probability

is attained if E1 is the projector over the subspace of positive eigenvalues of Υ that we

denote with Υ+. Assuming this optimal operator we have Tr[E1Υ] = TrΥ+ = 1
2Tr|Υ|

where |A| is the trace norm defined in (2.133) and

A+ = (|A| +A)/2. (1.107)



30 1. Estimation and discrimination of quantum states

We arrive at the final result [14]

Pe =
1

2

(

1 − 1

2
Tr |̺1 − ̺0|

)

. (1.108)

Let us now suppose that N copies of both ̺0 and ̺1 are available for the discrimination.

The problem may be addressed using the above formulas upon replacing ̺ with ̺⊗N [48].

We thus need to analyze the quantity

Pe(N) =
1

2

(

1 − 1

2
Tr|̺⊗N1 − ̺⊗N0 |

)

. (1.109)

The computation of the trace norm of the Helstrom matrix is rather difficult. Moreover it

provides a little information about the large n behavior of the error probability, which is

what the Chernoff bound is about. The quantum Chernoff bound Q gives an upper bound

to the probability of error Pe [48, 50]

Pe ≤
Q

2
(1.110)

where

Q = min
0≤s≤1

Tr
[
̺s0̺

1−s
1

]
. (1.111)

Q is a very efficient quantity to be computed and it holds for arbitrary density matrices.

In the case of N copies ,

Pe(N) ≤ QN

2
=

1

2
exp{−N(− min

s∈[0,1]
log Tr[̺s0̺

1−s
1 ])}. (1.112)

In the limit N → ∞, the probability of error behaves as

Pe(N) ∼ exp{−NξQCB} (1.113)

where we called ξQCB the quantum Chernoff information

ξQCB = − lim
N→∞

1

N
Pe(N) = − min

s∈[0,1]
log Tr[̺s0̺

1−s
1 ]. (1.114)

This equality holds because of the asymptotical attainability of bound (1.112) as follows

from the results in [49].

The bound (1.111) can be inferred by the following

Theorem 4 Let A and B two positive operators, then for all 0 ≤ s ≤ 1,

Tr[AsB1−s] ≥ 1

2
Tr[A+B − |A−B|]. (1.115)
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The proof of this theorem is given in Ref. [48]. Because Tr[A ⊗ B] = Tr[A]Tr[B], the

upper bound in the case of N copies immediately follows from Eq.(1.110).

Several comments about Eq. (1.110) are in order.

• If the two matrices ̺0 and ̺1 commute, the bound reduces to the classical Chernoff

bound (1.103) where the two probability distributions are given by the spectrum of

the two density matrices.

• The function Qs = Tr[̺sσ1−s] (whose minimum gives the best bound) is a convex

function of s in [0, 1] which means that a stationary point will automatically be a

global minimum. Indeed the function s 7→ xsy1−s is convex for positive scalars x and

y as one confirms by calculating the second derivative xsy1−s(log x− log y)2, which is

non-negative. Consider then a basis in which ̺ is diagonal ̺ = diag(λ1, λ2, . . .). Let

the eigenvalue decomposition of σ in that basis given by σ = Udiag(µ1, µ2, . . .)U
†,

where U is a unitary matrix. Then Tr[̺sσ1−s] =
∑

ij λ
s
iµ

1−s
j |Uij |2. As this is a sum

with positive weights of convex terms λsiµ
1−s
j , the sum itself is convex.

• Q is jointly concave in (̺1, ̺2), unitarily invariant, and non-decreasing under trace

preserving quantum operations.

Relation to the trace distance

One may think that, though its difficult computation, the trace distance (1.18) to which is

related the definition of the error probability Pe, has a more natural operational meaning

that the QCB. In spite of this, it does not adapt to the case of many copies; indeed, one

can find examples of states ρ, σ, ρ′, σ′ such that Tr[ρ−σ] < Tr[ρ′−σ′] but Tr[ρ′N −σ′N ] <

Tr[ρN − σN ]. By contrast, the QCB does resolve this problem since Q(ρ, σ) < Q(ρ′, σ′)

implies Q(ρN , σN ) < Q(ρ′N , σ′N ). Because of this property, the minimization of the QCB

over single-copy states (ρ and σ) implies the minimization over multi-copy states (ρN ,

σN ). However, the following upper and lower bounds on Q in terms of the trace norm

distance DTr have been demonstrated in [12].

Theorem 5 Let ̺0 and ̺1 be density matrices. Then the following relation holds:

√

1 −Q ≤ DTr[̺0, ̺1] ≤
√

1 −Q2. (1.116)

The first inequality is proved by defining a POVM E∗
Q that optimizes Q and E∗

D likewise

1 −Q(̺0, ̺1) =1 −Q(p0(E∗
Q), p1(E∗

Q)) (1.117)

≤DTr[p0(E∗
Q), p1(E∗

Q)] (1.118)

≤DTr[p0(E∗
D), p1(E∗

D)] = DTr[̺0, ̺1] (1.119)
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The second inequality follows from

DTr[̺0, ̺1] =DTr[p0(E∗
D), p1(E∗

D)] (1.120)

≤
√

1 − 1 −Q(p0(E∗
D), p1(E∗

D))2 (1.121)

≤
√

1 − 1 −Q(p0(E∗
Q), p1(E∗

Q))2 (1.122)

=
√

1 −Q(̺0, ̺1)2. (1.123)

Relation to fidelity

The fidelity is always an upper bound to Q

Pe ≤
Q

2
≤ Tr[̺

1/2
0 ̺

1/2
1 ]

2
≤ Tr|̺1/2

0 ̺
1/2
1 |

2
=

√

F(̺0, ̺1)

2
(1.124)

where F(̺0, ̺1) =

(

Tr[

√

̺
1/2
0 ̺1̺

1/2
0 ]

)2

=
(

Tr|̺1/2
0 ̺

1/2
1 |
)2

and it also provides a lower

bound to Pe [12]

1 −
√

1 −F(̺0, ̺1)

2
≤ Pe (1.125)

These inequalities translate in the following bounds to the quantum Chernoff information

−1

2
logF(̺0, ̺1) ≤ ξQCB(̺0, ̺1) ≤ − logF(̺0, ̺1). (1.126)

When one of the states is pure, the minimum of the Tr[̺s0̺
1−s
1 ] is attained for s = 0 and

we have

Q(̺0, ̺1) =F(̺0, ̺1) (1.127)

ξQCB(̺0, ̺1) = − logF(̺0, ̺1). (1.128)

Relation to the relative entropy

The connection between the QCB and the relative entropy can be seen as follows. By

differentiating the quantity Tr[̺sσ1−s] with respect to s, one observes that the minimum,

which is unique due to convexity, is obtained when

Tr[̺sσ1−s log ̺] = Tr[̺sσ1−s log σ]. (1.129)

One easily verifies that this is equivalent to the condition that

S(τs‖̺) = S(τs‖σ) (1.130)
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with S(A‖B) the quantum relative entropy as defined in (1.34) and

τs =
̺sσ1−s

Tr[̺sσ1−s]
. (1.131)

Notice that τs is not a state because it is not even self-adjoint (except in the commuting

case). Nevertheless, it has positive spectrum and the its entropy and the relative entropies

used in (1.130) are well-defined.

Discriminating infinitesimally close states

Let us call ds2 the distance between two infinitesimally close density matrices ̺ and ̺+d̺.

In this case the distinguishability measure defined in Eq. (1.111) defines a metric on the

manifold of density operators, i.e. a symmetric nonnegative function that satisfies the

triangle inequality, and it has been computed in [50]. It can be demonstrated that, when

the difference between the two states is d̺ ≃ 0, the s that minimizes ds2QCB is given by

s∗ = 1/2 and the distance becomes (see for example [50] )

ds2QCB =
1

2

∑

n,m

|〈ψn|d̺|ψm〉|2
(
√
pm +

√
pn)2

. (1.132)

that can also be written as

ds2QCB =
1

8

∑

n

(dpn)2

pn
+

1

2

∑

n 6=m

|〈ψn|dψm〉|2(pn − pm)2

(
√
pn +

√
pm)2

. (1.133)

The choice of Eq. (1.132) as a definition of a distinguishability measure between two in-

finitesimally close states is then motivated by the underlying description of the measure

process as provided by the QCB given in terms of the upper bound to the error probability.

The same argument is valid for the choice of the Bures metric in the theory of parameter

estimation. A remarkable example of this relation is given in a seminal paper of Braun-

stein and Caves [25] when they first use the theory of quantum parameter estimation for

distinguishing neighboring quantum states. Although the definitions of the QCB in Eq.

(1.111) and the Bures distance D(̺0, ̺1) given in Eq. (1.24) look quite different, their

infinitesimal versions given by the metrics are strictly related. Indeed for neighboring

matrices, by expanding the density matrix ̺ =
∑

n pn|ψn〉〈ψn|, we can put in evidence the

relation existing between the Bures metric and the metric induced by the Chernoff bound.

In fact recalling the Eq. (3.96) and using the inequalities (
√
pm +

√
pn)2 ≥ (pm + pn) and

2(pm + pn) ≥ (
√
pm +

√
pn)2, one sees that

ds2B
2

≤ ds2QCB ≤ ds2B (1.134)

For pure states we have that pj =
√
pj = 1 and therefore ds2B = ds2QCB.
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1.4.3 Neyman-Pearson strategy: the quantum relative entropy

Hypothesis testing refers to a general set of tools in statistics and probability theory

for making decisions based on experimental data from random variables. In a typical

scenario, an experimentalist is faced with two possible hypotheses and must decide based

on experimental observation which one was actually realized. There are two types of

errors in this process, corresponding to mistakenly identifying one of the two options

when the other should have been detected. A central task in hypothesis testing is the

development of optimal strategies for minimizing such errors and the determination of

compact formulae for the minimum error probabilities. Here we consider a null hypothesis

H0 and an alternative hypothesis H1. The alternative hypothesis is the one of interest

and states that ”something significant is happening” as for example some case of flu is

the avian one, or an e-mail attachment is a computer virus [60]. In contrast, the null

hypothesis corresponds to this not being the case: the flu can be treated with an aspirin,

and the attachment is just a nice picture. Neyman and Pearson introduced the idea of

making a distinction between type I and type II errors. The type I error, or false positive,

denoted by α, is the error of accepting the alternative hypothesis when in reality the null

hypothesis holds and the results can be attributed merely to chance. The type II error

or false negative, denoted by β, is the error of accepting the null hypothesis when the

alternative hypothesis is the true state of nature. The cost associated to the the two

types of error can be widely different, or even incommensurate. In the previous section

we considered a symmetric hypothesis testing, where no essential distinction is made

between the two kinds of errors. To wit, in symmetric hypothesis testing, one considers

the average, or Bayesian, error probability Pe, defined as the average of α and β weighted

by the prior probabilities of the null and the alternative hypothesis, respectively. Here, we

consider the asymmetric hypothesis approach which consists in minimizing the probability

of mistakenly identifying ̺0 instead of ̺1 i.e. the type II error probability, while requiring

that the false-alarm probability, that is the probability that ̺1 is identified instead of ̺0,

is bounded by a small number.

Suppose that N ≫ 1 copies of a quantum system are prepared identically in the state

̺1. In order to learn the identity of the state the observer measures a two outcome POVM

{Π1, I − Π1} is measured on each of these. If he obtains the outcome associated to Π1

(I − Π1), then he concludes that the state was ̺1 (̺0). The state ̺0 is seen as the null

hypothesis, while ̺1 is the alternative hypothesis. There are two types of errors:

• Type I: the observer finds that the state was ̺1 when in reality it was ̺0. This
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happens with probability

α = Tr[̺⊗N0 Π1] (1.135)

• Type II: the the observer finds that the state was ̺0 when in reality it was ̺1. This

happens with probability

β = Tr[̺⊗N1 (I − Π1)]. (1.136)

The Neyman-Pearson approach consists into prescribing a bound ǫ for the probability of

type I error while the probability of type II error is minimized, i.e. the detection probability

is maximized. The relevant error quantity in this case can be written as

β(ǫ) = min
0≤Π1≤I

{β(I − Π1) : α(Π1) ≤ ǫ} (1.137)

and the quantum Stein’s lemma [61, 62] states that for every 0 < ǫ < 1

lim
N→∞

− log β(ǫ)

N
= S(̺0‖̺1) (1.138)

where S(̺0||̺1) is the quantum relative entropy (QRE) between the two states ̺0 with

and ̺1 defined in Eq. (1.34). This fundamental result gives a rigorous operational in-

terpretation for the quantum relative entropy and was proved by Hiai and Petz [61] and

Ogawa and Nagaoka [62]. The relative entropy is also the asymptotic optimal exponent

for the decay of β when we require that α→ 0 for N → ∞ [63]. Then, the probability of

type II errors in discriminating the states ̺0 and ̺1 after performing N measurements on

̺1 is for N → ∞ is

βN (̺1 → ̺0) = exp{−NS(̺0||̺1)} (1.139)

It tells us how difficult it is to distinguish the state ̺0 from the state ̺1, in particular we

have that S(̺0||̺1) = 0 iff ̺0 = ̺1. For a review of the important properties of the QRE

we refer the reader to [64].

Neyman-Pearson strategy: discriminating infinitesimally close parameters

In the limit of S(̺θ+ǫ||̺θ), i.e. for two infinitesimally close density matrices, the quan-

tum relative entropy can characterize the so-called Kubo-Mori-Bogoljubov (KMB) Fisher

information G̃(θ) according to the following relation [65]

G̃(θ) = lim
ǫ→0

2

ǫ
S(̺θ+ǫ||̺θ) (1.140)
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where the KMB Fisher information G̃(θ) is defined as [66]

G̃(θ) = Tr[̺θL̃
2
θ] (1.141)

with

L̃θ =
d log ̺θ
dθ

. (1.142)

The KMB Fisher information provides an upper bound to the quantum Fisher information

[65]

G̃(θ) ≥ G(θ). (1.143)



2
Estimation and discrimination in

continuous variable systems

In this chapter we consider continuous variable systems and address the quantum esti-

mation of parameters by the class of some probe Gaussian states. We also address the

discrimination of noisy channels using Gaussian states as probing signals and in particular

consider two problems: the detection of a lossy channel against the alternative hypothesis

of an ideal lossless channel and the discrimination of Gaussian noisy channels. The chapter

is structured as follows. In section 2.1 we briefly introduce the basic concepts and notation

about continuous variable (CV) systems. In particular, Cartesian decomposition of mode

operators in the phase space, as well as basic properties of displacement and squeezing

operators [67]. Moreover we introduce characteristic functions and Wigner functions along

with their basic properties [68]. In section 2.2 we introduce Gaussian states and their main

properties. In particular the normal forms of the single-mode and two-mode covariance

matrices are given. In 2.3 we describe some criteria to detect entanglement and both quan-

tum and classical correlations whereas section 2.4 gives the evolution of a Gaussian state

in a noisy channel and an example of evolution in a lossy channel of the covariance ma-

trix of a single-mode and a two-mode Gaussian state. In section 2.5 we address quantum

estimation of displacement and squeezing parameters by the class of probes made of Gaus-

sian states undergoing Kerr interaction. In section 2.6 we evaluate the quantum Chernoff

bound to discriminate lossy channels by means of single-mode and two mode Gaussian

states. Finally, in 2.7 we address discrimination of Gaussian noise channels using both

minimum error probality (Bayes) and maximum detection probability (Neyman-Pearson)

strategies. We also consider the discrimination of channels with infinitesimally close values

of the noise parameter and evaluate the metrics associated with the two distinguishability

37
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notions.

2.1 Continuous variable systems

Let us consider a system of n bosons described by the mode operators ak, k = 1, . . . n,

satisfying the commutation relations [ak, a
†
j] = δkjI, where δkj is the kronecker delta and

I is the identity operator over the Hilbert space H = ⊗n
k=1Hk. The free Hamiltonian of

the system is H =
∑n

k=1(aka
†
k + 1

2I) where from now on we set ~ωk = 1 and follow the

notation of [67]. The position and momentum operators are defined through the Cartesian

decomposition of the mode operators ak = 1√
2
(qk + ipk):

qk =
1√
2

(ak + a†k), pk =
1

i
√

2
(ak − a†k)

and the corresponding commutation relations are [qj, pk] = iδjkI. Introducing the vector

R = (q1, p1, . . . , qn, pn)T , where (. . .)T denotes the transposition operation, the commuta-

tion relations become

[Rk, Rj ] = iΩkjI (2.1)

where Ωkj are the elements of the symplectic matrix

Ω =
n⊕

k=1

ω, ω =

(

0 1

−1 0

)

. (2.2)

For a quantum state ̺ of a system of n bosons, the covariance matrix σ = σ[̺] of elements

σkj is defined as follows

σkj =
1

2
〈{Rk, Rj}〉 − 〈Rk〉〈Rj〉 (2.3)

where {A,B} = AB +BA denotes the anticommutator and 〈O〉 = Tr[̺O] is the expecta-

tion value of the operator O. The uncertainty relations among canonical operators impose

a constraint to the covariance matrix

σ +
i

2
Ω ≥ 0, (2.4)

thus expressing the positivity of the density matrix ̺. The vacuum state of n bosons is

a pure separable state |0〉 characterized by the covariance matrix σ = 1
2 I2n, where I2n is

the 2n × 2n identity matrix. A state at thermal equilibrium is described by the density

operator ν = ⊗n
k=1νk where

νk =
e−βa

†
k
ak

Tr[e−βa
†
k
ak ]

=
1

nkT + 1

∑

m

(
nkT

nkT + 1

)m

|m〉kk〈m|. (2.5)
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nkT = (eβ−1)−1 is the average number of thermal quanta at equilibrium in the k-th mode

and {|m〉k}m∈N are the eigenstates of the number operator a†kak which form a basis of

each Hilbert space Hk.

The covariance matrix of a thermal state ν is given by

σ[ν] = Diag

(

n1T +
1

2
, . . . , nnT +

1

2

)

(2.6)

where Diag(x1, . . . , xn) denotes the diagonal matrix with elements xk, k = 1, . . . n.

2.1.1 Symplectic transformations

Let us first consider a classical system of n particles described by the canonical coordinates

(q1, . . . , qn) and conjugated momenta (p1, . . . , pn). If H is the Hamiltonian of the system,

the equations of motion are given by

q̇k =
∂H

∂pk
, ṗk = −∂H

∂qk
(2.7)

where ẋ denotes the time derivative. For a system of n particles, the Equations (2.7) can

be summarized as

Ṙk = Ωks
∂H

∂Rs
(2.8)

where Ωks are the elements of the symplectic matrix (2.2) and R the vector of coordinates

given in the section 2.1. The linear transformation of coordinates R
′ = F R is described

by Fks =
∂R′

k

∂Rs
and leads to

∂R′
k

∂t
= FksΩspFlp

∂H

∂R′
l

. (2.9)

Therefore the Hamilton equations remain unchanged if and only if F satisfies

FksΩspFlp = Ωkl or FΩF
T = Ω (2.10)

which characterize symplectic transformations and describe the canonical transformations

of coordinates. Let us now consider a quantum state of n bosons. A mode transformation

R
′ = F R leaves the kinematics invariant if it preserves the canonical commutation rela-

tions (2.1) that means the 2n×2n matrix F should satisfy the symplectic condition (2.10).

Since ΩT = Ω−1 = −Ω, from (2.10) one obtains that Det[F]2 = 1 and therefore F−1 exists.

Moreover, it can be also showed that if F,F1 and F2 are symplectic, then also F−1, FT and

F1F2 are symplectic, with F−1 = ΩFTΩ−1. Therefore the set of real matrices satisfying

(2.10) form the symplectic group Sp(2n,R) with dimension n(2n + 1). Together with the

phase-space translation R′ = R + Λ it forms the affine (inhomogeneous) symplectic group

ISp(2n,R).
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2.1.2 Linear and bilinear interactions of modes

The physical transformation which generates the whole group of symplectic transforma-

tions may be written in the most general form with an Hamiltonian of this type:

H =

n∑

k=1

g
(1)
k a†k +

n∑

k>l=1

g
(2)
kl a

†
kal +

n∑

k,l=1

g
(3)
kl a

†
ka

†
l + h.c., (2.11)

which is at most bilinear in the field modes. Transformations induced by the Hamiltonian

(2.11) correspond to unitary representations of the affine symplectic group ISp(2n,R).

The first term of the Hamiltonian (2.11) is linear in the field modes ∝ g(1)a† +h.c. and the

corresponding unitary transformations are the set of displacement operators. The second

block contains terms of the form ∝ g(2)a†b+h.c. and describes linear mixing of the modes.

The third kind of interaction is represented by Hamiltonians of the form ∝ g(3)a†
2

+ h.c.

and g(3)a†b† which describe single-mode and two-mode squeezing.

Displacement operator

The displacement operator for n bosons is defined as

D(λ) =

n⊗

k=1

Dk(λk) (2.12)

where λ is the column vector λ = (λ1, . . . , λn)T , λk ∈ C, k = 1, . . . , n and

Dk(λk) = exp{λka†k − λ∗kak}

are single-mode displacement operators. Displacement operator takes its name after the

action on the mode operators

D†(λ)akD(λ) = ak + λk (k = 1, . . . , n). (2.13)

For the single-mode displacement operator the following properties are immediate conse-

quence of the definition

D†(λ) = D(−λ), (2.14)

Tr[D(λ)] = πδ(2)(λ), (2.15)

D(λ1)D(λ2) = D(λ1 + λ2) exp{1

2
(λ1λ

∗
2 − λ∗1λ2)}. (2.16)

The two-dimensional complex δ-function is defined as

δ(2)(z) =

∫

C

d2λ

π2
exp{λ∗z − z∗λ} =

∫

C

d2λ

π2
exp{i(λ∗z + z∗λ)} (2.17)
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Matrix elements in the Fock (number) basis are given by

〈n + d|D(α)|n〉 =

√

n!

(n+ d)!
e−

1
2
|α|2αdLdn(|α|2) (2.18)

〈n|D(α)|n + d〉 =

√

n!

(n+ d)!
e−

1

2
|α|2(−α∗)dLdn(|α|2) (2.19)

〈n|D(α)|n〉 = e−
1

2
|α|2Ln(|α|2), (2.20)

Ldn(x) being the Laguerre polynomials. The displacement operator is strictly related to

coherent states. The coherent state |α〉 is defined as the eigenstate of the mode operator

a, i.e.

a|α〉 = α|α〉 (2.21)

where α ∈ C is a complex number. The expansion in terms of the Fock spaces reads

|α〉 = e−
1

2
|α|2

∞∑

k=0

αk√
k!
|k〉. (2.22)

Then, using (2.13) it can be shown that coherent states are generated by unitary evolution

of the vacuum through the displacement operator, i.e. |α〉 = D(α)|0〉. Properties of

coherent states, i.e. overcompleteness and nonorthogonality, thus follow from that of

displacement operator. The expansion (2.22) in the number state is recovered from the

definition |α〉 = D(α)|0〉 by the normal ordering of the displacement

D(α) = eαa
†

e−
1
2
|α|2e−α

∗a (2.23)

and by explicit calculations. Coherent states are minimum uncertainty states, i.e. they ful-

fill (2.4) with equality sign and, in addition, with uncertainties that are equal for position-

and momentum-like operators. In other words the covariance matrix of a coherent state

coincides with that of the vacuum state σ = 1
2I. Note that coherent states are not orthog-

onal and their overlap results

〈β|α〉 = e−
1
2
(|α|2+|β|2−2β∗α). (2.24)

However they satisfy the completeness relation

∫

C

d2α

π
|α〉〈α| = I. (2.25)
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Two-mode mixing

The linear mixing described by the Hamiltonian H ∝ a†b + b†a is the simplest example

of two-mode interaction. For two modes of the radiation field it corresponds to a beam

splitter, i.e. to the interaction taking place in a linear optical medium such as a dielectric

plate. The evolution operator can be recast in the form

U(ζ) = exp{ζa†b− ζ∗ab†} (2.26)

where ζ = φeiθ ∈ C is proportional to the interaction time and to the linear susceptibility

of the medium. We can use the two-mode boson representation of SU(2) algebra to

disentangle the evolution operator by identifying: J+ = a†b, J− = (J+)† = ab† and

J3 = 1
2 [J+, J−] = 1

2(a†a− b†b) thus obtaining

U(ζ) = exp{ζJ+ − ζ∗J−} (2.27)

= exp{eiθ tanφa†b}(cos2 φ)b
†b−a†a exp{−e−iθ tan φab†} (2.28)

= exp{−e−iθ tan φab†}(cos2 φ)a
†a−b†b exp{eiθ tan φa†b}. (2.29)

Eq. (2.27) are often written introducing the quantity τ = cos2 φ which is referred as the

transmissivity of the beam splitter. The total number of quanta of the two modes a†a+b†b

is a constant of motion; this is usually summarized by saying that the beam splitter is a

passive device. It also implies that U(ζ)|0〉 = |0〉 where |0〉 = |0〉 ⊗ |0〉. The Heisemberg

evolution of the modes a and b is obtained with the following Baker-Haussdorf formula

eλABe−λA = B + λ[A,B] +
λ2

2!
[A, [A,B]] + . . .+

λn

n!
[A, [A, . . . [A,B]]] (2.30)

giving

(
a′

b′

)

= U †(ζ)

(
a

b

)

U(ζ) = Sζ

(
a

b

)

(2.31)

where

Sζ =

(

cosφ eiθ sinφ

−e−iθ sinφ cosφ

)

. (2.32)

From (2.31) we obtain the symplectic matrix Fζ , given by

Fζ =

(

Re[Sζ ] −Im[Sζ ]

Im[Sζ ]i Re[Sζ ]

)

. (2.33)



2.1. Continuous variable systems 43

Single-mode squeezing

Squeezing transformations correspond to Hamiltonians of the form H ∝ (a†)2 + a2, the

corresponding unitary evolution operator is the single-mode squeezing operator

S(ξ) = exp{1

2
ξ(a†)2 − 1

2
ξ∗a2} (2.34)

corresponding to mode evolution given by

S†(ξ)aS(ξ) = µa+ νa†, S†(ξ)a†S(ξ) = µa† + ν∗a (2.35)

where µ ∈ R, ν ∈ C, µ = cosh r, ν = eiψ sinh r, ξ = reiψ. Using the two-boson representa-

tion of the SU(1, 1) algebra K+ = 1
2a

†2, K− = (K+)†, K3 = −1
2 [k+,K−] = 1

2 (a†a+ 1
2), it

is possible to disentangle S(ξ), achieving the normal orderings of mode operators

S(ξ) = exp{ξK+ − ξ∗K−}

= exp

{

− ν

2µ
a2

}

µ(a†a+ 1

2
) exp

{
ν∗

2µ
a†2
}

, (2.36)

from which one obtains the action of the squeezing operator on the vacuum state |ξ〉 =

S(ξ)|0〉. The state |ξ〉 is known as the squeezed vacuum state which expanded over the

number basis reads

|ξ〉 =
1√
µ

∞∑

k=0

(
ν

2µ

)k
√

(2k)!

k!
|2k〉 (2.37)

Despite its name, the squeezed vacuum is not empty and the mean photon number is

given by 〈ξ|a†a|ξ〉 = |ν|2 = sinh2 r, which represents the squeezing energy. In general, if

̺′ = S(ξ)̺S†(ξ) is the state after the squeezer, the mean number of photons is given by

〈a†a〉̺′ = sinh2 r + (2 sinh r + 1)〈a†a〉̺ + sinh(2r)〈a2e−iψ + a†2eiψ〉̺. (2.38)

The symplectic matrix obtained from (2.35) is

Σξ =

(

µ+ Re[ν] Im[ν]

Im[ν] µ− Re[ν]

)

(2.39)

which, in the case of real squeezing ψ = 0, reduces to Σξ = Diag(er, e−r).

Two-mode squeezing

Two-mode squeezing operations correspond to Hamiltonian of the form H ∝ a†b† + h.c..

The evolution operator is written as

S2(ξ) = exp
{

ξa†b† − ξ∗ab
}

(2.40)
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where ξ = reiψ. The corresponding evolution of the modes is given by

S†
2(ξ)

(

a

b†

)

S2(ξ) = S

(

a

b†

)

(2.41)

where

S =

(

µ ν

ν∗ µ

)

. (2.42)

As for single squeezing we have µ = cosh r, ν = eiψ sinh r. We can disentangle the operator

considering a different realization of the SU(1, 1) algebra, namely K+ = a†b†, K− = (K+)†,

K3 = −1
2 [K+,K−] = 1

2(a†a+ b†b+ 1
2) thus obtaining

S2(ξ) = exp

{
ν∗

µ
a†b†

}

µ−(a†a+b†b) exp

{

−ν
µ
ab

}

(2.43)

The symplectic matrix associated to the squeezing operator is

Σ2ξ =

(

µI2 Rξ

Rξ µI2

)

, (2.44)

with

Rξ =

(

Re[ν] Im[ν]

Im[ν] −Re[ν]

)

. (2.45)

The action of S2(ξ) on the vacuum |0〉 = |0〉 ⊗ |0〉 can be evaluated starting from (2.40).

The resulting state is given by

S2(ξ)|0〉 = |ξ〉〉 =
1√
µ

∞∑

k=0

(
ν

µ

)k

|k〉 ⊗ |k〉 (2.46)

and it is known as two-mode squeezed vacuum or twin-beam state (TWB). The second

denomination refers to the fact that TWB shows perfect correlation in the photon number,

i.e. it is an eigenstate of the photon number difference a†a− b†b with eigenvalue zero:

(a†a− b†b)|ξ〉〉 = 0.

The mean photon number of each mode is given by

〈a†a〉 = 〈b†b〉 = sinh2 r. (2.47)
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2.1.3 Characteristic function and Wigner function

The set of displacement operators D(λ) with λ ∈ C is complete in the sense that any

operator O that acts on a Hilbert space H can be written as

O =

∫

Cn

d2n
λ

πn
χ[O](λ)D†(λ) (2.48)

where χ[O](λ) is the characteristic function of an operator O

χ[O](λ) = Tr[OD(λ)]. (2.49)

The Eq. (2.48) is known as Glauber formula [69]. Using Eq. (2.48) and (2.15), it can be

shown that for any pair of generic operators acting on the Hilbert space on n modes we

have

Tr[O1O2] =
1

πn

∫

Cn

d2n
λχ[O1](λ)χ[O2](−λ) (2.50)

which allows to evaluate a quantum trace as a phase-space integral in terms of the charac-

teristic function. Other properties of the characteristic function follow from the definition

∫

Cn

d2n
λ

π2n
χ[O](λ) = Tr[OΠ], (2.51)

∫

Cn

d2n
λ

π2n
|χ[O](λ)|2 = Tr[O2], (2.52)

where we introduced the n-mode parity operator Π = ⊗n
k=1(−)a

†
k
ak = (−)

Pn
k=1 a

†
k
ak .

The so-called Wigner function of the operator O is defined as the Fourier transform of

the characteristic function as follows [70]

W [O](α) =

∫

Cn

d2n
λ

π2n
exp

{

λ
∗
α + α

†
λ

}

χ[O](λ). (2.53)

The Wigner function of a density matrix ̺ is a quasiprobability distribution for the quan-

tum state. Using Eq. (2.52), we have that χ[̺](λ) is a square integrable function for any

quantum state.
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2.2 Continuous variable Gaussian states

2.2.1 Definition and some properties

A state ̺ of a continuous variable system with n degrees of freedom is Gaussian if its

Wigner function, or equivalently its characteristic function, is Gaussian, i.e.

W [̺](X) =
exp{−1

2 (X− X)Tσ
−1(X − X)}

(2π)n
√

Det[σ]
(2.54)

χ[̺](Λ) = exp

{
1

2
ΛT

σΛ + X
T
Λ

}

(2.55)

where X is the vector of the quadratures’ average values and σ is the covariance matrix.

The definitions (2.54) and (2.55) express that Gaussian states are completely characterized

by the vector of first moments X and the covariance matrix σ. Pure Gaussian states are

easily characterized with the purity µ = Tr[̺2] in terms of the overlap of the Wigner

function:

µ(σ) =
1

2n
√

Det[σ]
(2.56)

and a Gaussian state is pure if and only if

Det[σ] = 2−2n.

Gaussian states are particularly important from an applicative point of view because they

can be generated using only the linear and bilinear interactions introduced in Section

2.1.2. Moreover the following theorem ensures us that every covariance matrix can be

diagonalized through a symplectic transformation.

Theorem 6 (Williamson) [71]: Given σ, σ
T = σ and σ > 0, there exists S ∈ Sp(2n,R)

and d1, . . . , dn ∈ R such that

σ = STWS (2.57)

with W = ⊕n
k=1dkI2. The elements dk are called the symplectic eigenvalues of σ, while

we say that S performs a symplectic diagonalization of σ. The physical statement implied

by the theorem is that every Gaussian state ̺ can be obtained from a thermal state (with

covariance matrix given by W) by performing the unitary transformation US associated to

the symplectic matrix S, which in turn can be generated by linear and bilinear interactions.

In formula,

̺ = USνU
†
S
, US = e−iH (2.58)
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where H is an Hamiltonian of the type in Eq. (2.11) and the number of thermal photons

nkT is given by nkT = dk − 1
2 . The Williamson theorem allows to recast the uncertainty

principle (2.4), which is invariant under symplectic transformations, into

STWS +
i

2
Ω ≥ 0 ⇒ W +

i

2
(ST )−1ΩS−1 ≥ 0. (2.59)

Since if S is symplectic, then (ST )−1 and S−1 are also symplectic, hence (ST )−1ΩS−1 = Ω

and

W +
i

2
Ω ≥ 0 ⇐⇒ dk ≥

1

2
. (2.60)

Pure Gaussian states are obtained only if ν is pure, i.e. the vacuum state νk = |0〉〈0| ∀k,

with ν = ⊗n
k=1νk and covariance matrix σ = 1

2S
TS. Furthermore from (2.60) we have

that, pure Gaussian states, for which we have dk = 1
2 , ∀k are minimum uncertainty states.

2.2.2 Single-mode Gaussian states

The simplest class of Gaussian states involves a single mode. Decomposition (2.58) for

single-mode Gaussian states reads as follows [72]

̺ = D(α)S(ξ)νS†(ξ)D†(α) (2.61)

that is a displaced squeezed thermal state (DSTS) with α = 1
2(x + iy), ξ = reiφ and ν a

thermal state with average photon number nT . A convenient parametrization of Gaussian

states can be given expressing their covariance matrix σ as a function of nT , r, φ. Indeed, by

using the phase-space representation of the squeezing operator, we have that the covariance

matrix for the state ̺ is σ = ΣT
ξ σνΣξ, where σν is the covariance matrix of the thermal

state and Σξ is given in (2.39). Explicitly, we have

σ =

(

a c

c b

)

(2.62)

where

a = (nT +
1

2
) [cosh(2r) − sinh(2r) cos φ]

b = (nT +
1

2
) [cosh(2r) + sinh(2r) cos φ]

c = (nT +
1

2
) sinh(2r) sin φ . (2.63)

Examples of the most important families of single-mode Gaussian states are obtained from

the definition (2.61). For α = r = φ = 0, we obtain thermal states. For r = nT = φ = 0

we obtain coherent states and squeezed vacuum for α = nT = 0. If also φ = 0, we
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have squeezed real vacuum with covariance matrix σ = 1
2Diag(e−2r, e2r) and mean photon

number given by

nS = sinh2 r. (2.64)

The average mean photon number of a DSTS is given by

Tr[̺a†a] = N =

(

nT +
1

2

)

cosh(2r) − 1

2
+ |α|2. (2.65)

For a STS (α = 0) the last equation becomes

N =(nT +
1

2
) cosh(2r) − 1

2

=(nT +
1

2
)(1 + 2 sinh2 r) − 1

2

=nT + nS + 2nTnS. (2.66)

From Eq. (2.56), it follows that

µ =
1

(2nT + 1)

which means that the purity of a generic Gaussian state depends only on the average num-

ber of thermal photons and that since displacement and squeezing are unitary operators,

hence they do not affect the trace involved in the definition of purity. The same is true

when one considers the von Neumann entropy SV of a generic single-mode Gaussian state

SV = − Tr[̺ log ̺]

=h(
√

det[σ[̺]]) (2.67)

=(1 + nT ) log(1 + nT ) − nT log nT (2.68)

=
1 − µ

2µ
log

(
1 + µ

1 − µ

)

− log

(
2µ

1 + µ

)

(2.69)

where

h(x) = (x+
1

2
) log(x+

1

2
) − (x− 1

2
) log(x− 1

2
). (2.70)

2.2.3 Two-mode Gaussian states

In the following we study bipartite 1+1 Gaussian systems. The main concept to be intro-

duced is that of local equivalence which allows us to introduce normal forms to represent

them and in general it holds for n+m modes Gaussian states. Two states ̺1 and ̺2 of a

bipartite system HA⊗HB are locally equivalent if there exist two unitary transformations

UA and UB acting on HA and HB respectively such that ̺2 = UA ⊗ UB̺1U
†
A ⊗ U †

B . The

extension to multipartite systems is straightforward. Let us consider the case of bipartite
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1 + 1 modes system, then the covariance matrix σ of any quantum state ̺ can be written

in the so called standard form σsf by means of solely local operations can be recast, upon

the action of local symplectic operations, in the standard form [73]

σ =
1

2










a 0 c1 0

0 a 0 c2

c1 0 b 0

0 c2 0 b










(2.71)

where a, b, c1 and c2 are determined by the four local symplectic invariants I1 = a2, I2 = b2,

I3 = c1c2. I4 = det[σ] = (ab − c21)(ab − c22). The normal form (2.71) allows us to rewrite

the uncertainty principle

I1 + I2 + 2I3 ≤ 4I4 +
1

4
. (2.72)

Let us consider an arbitrary two-mode Gaussian state ̺. Then it can be shown that the

corresponding covariance matrix σ can be written as

σ = ATνd±A (2.73)

where νd± = νd− ⊕ νd+ is the covariance matrix of a tensor product of thermal states

with average photon numbers nT± = d± − 1/2 in the two modes

νd± = diag(d−, d−, d+, d+) (2.74)

and

A = ΣL(r1, r2)R(φ1)ΣL(r,−r)R(φ2)Sloc. (2.75)

Sloc is a local operation which brings σ in its standard form (2.71), ΣL(r1, r2) is the local

two mode squeezing operator given by the direct product of two single-mode squeezing

operators with null phase

ΣL(r1, r2) = Σr1 ⊕Σr2 ,

and R(φ) is the non-local two-mode mixing with a real parameter φ. The symplectic

eigenvalues can be evaluated from the local invariants

d± =

√

∆(σ) ±
√

∆(σ)2 − 4I4
2

, (2.76)

where ∆(σ) = I1 + I2 + 2I3. The uncertainty relation then reads

d− ≥ 1/2. (2.77)
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Eq. (2.76) allows us to express the von Neumann entropy (2.67) in a very simple form

SV = h(d−) + h(d+) (2.78)

where the function h(x) has been defined in (2.70). A relevant subclass of two-mode Gaus-

sian states is constituted by two-mode squeezed thermal states ̺ = S2(r)νn1
⊗ νn2

S†
2(r)

with a real squeezing parameter r ∈ R, which corresponds to a covariance matrix

σ =
1

2

(

aI2 cσz

cσz bI2

)

(2.79)

with parameters

a = cosh(2r) + 2nT1
cosh2 r + 2nT2

sinh2 r (2.80)

b = cosh(2r) + 2nT1
sinh2 r + 2nT2

cosh2 r (2.81)

c = (1 + nT1
+ nT2

) sinh 2r . (2.82)

The mean total number of photons for this class of states in terms of the covariance matrix

is given by [67]

N =
1

2
(a+ b) − 1

=
1

2
[1 + 2 sinh2 r + 2nT1

(1 + sinh2 r) + 2nT2
sinh2 r]

+
1

2
[1 + 2 sinh2 r + 2nT2

(1 + sinh2 r) + 2nT1
sinh2 r] − 1

=nT1
+ nT2

+ 2nS(1 + nT1
+ nT2

) (2.83)

where we used that nS = sinh2 r. The TWB state (2.46) is recovered when the thermal

states are vacuum states, i.e. n1 = n2 = 0, leading to a = b = cosh(2r), c = sinh(2r).
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2.3 Some measures of correlations in Gaussian states

Entanglement

Quantum correlations have been the subject of intensive studies in the past two decades,

mainly because they are believed to be the fundamental resource in quantum processing

tasks. There have been many attempts to address the classification of quantum correlations

and in particular, starting from [74], the concept of quantum entanglement has been put

on a firm basis. A state of a bipartite quantum system is called entangled if it cannot be

written as a separable state as follows

̺ =
∑

k

pk̺Ak ⊗ ̺Bk (2.84)

where pk ≥ 0,
∑

k pk = 1 and ̺Ak, ̺Bk are generic density matrices describing the states

of the two subsystems. The physical meaning of such a definition is that a separable state

can be prepared by means of operations acting on the two subsystems separately (i.e. local

operations) and classical communication. In the following we will restrict ourselves to the

characterization of the entanglement and of some other measures of quantum correlations

for two-mode Gaussian states.

The necessary and sufficient separability criterion for such states is the positivity of

the partially transposed state σ̃ (PPT) criterion [75]. In this last paper, Simon observed

that the action of partial transposition amounts, in the phase space, to a mirror reflection

of one of the four canonical variables. In terms of the symplectic invariants, this results

in flipping the sign of I3. Then we have that the symplectic invariants of the covariance

matrix σ̃ of the partially transposed state are

Ĩ1 = I1, Ĩ2 = I2, Ĩ3 = −I3, Ĩ4 = I4 (2.85)

where Ij are the local invariants of σ. Together with (2.72), a separable Gaussian two-

mode state must obey to

I1 + I2 + 2|I3| ≤ 4I4 +
1

4
(2.86)

and the PPT criterion can be written in terms of d̃− the smallest symplectic eigenvalue of

σ̃ as

d̃− ≥ 1/2 (2.87)

where

d̃2
− =

1

2
[∆̃ −

√

∆̃2 − 4I4] (2.88)
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and ∆̃ = I1 + I2 − 2I3. As regards the quantification of the entanglement, a measure that

can be computed for arbitrary two-mode Gaussian states is provided by the negativity N ,

introduced by Vidal end Werner for continuous variable systems [76]. The negativity of a

quantum state ̺ is defined as

̺ =
‖ ˜̺‖ − 1

2
(2.89)

where ˜̺ is the partially transposed state and ||ô|| = Tr
√
ô†ô is the trace norm of an operator

ô. The quantity N (̺) is equal to the modulus of the sum of the negative eigenvalues of ˜̺

and it quantifies to which ˜̺ fails to be positive. Strictly related to N is the logarithmic

negativity EN defined as EN = log ‖ ˜̺‖. It can be shown that, for two-mode Gaussian

states, it is a simple function of d̃−, namely

E = max{0,− log 2d̃−} (2.90)

that is an entanglement monotone, more precisely it is a monotonic decreasing function

of d̃−, quantifying the amount by which Eq. (2.87) is violated.

Quantum discord

The quantum discord is defined as the mismatch between two quantum analogues of clas-

sically equivalent expressions of the mutual information. For pure quantum states, the

quantum discord coincides with the entropy of entanglement. However, the quantum dis-

cord can be different from zero also for some separable (mixed) states. In other words,

classical communication can give rise to quantum correlations. This can be understood by

considering that the states ̺Ak and ̺Bk of a bipartite system may be physically nondis-

tinguishable, i.e. nonorthogonal, and thus not all the information about them can be

locally retrieved. This phenomenon has no classical counterpart, thus accounting for the

quantumness of the correlations in a separable state with quantum discord.

Let us consider two classical random variables A and B with joint probability pAB(a, b);

the total correlations between the two variables are measured by the mutual information.

The latter can be defined by two equivalent expressions: I(A;B) = H(A)+H(B)−H(A,B)

and I(A;B) = H(A)−H(A|B) ≡ H(B)−H(B|A), where H(X) = −∑x pX(x) log pX(x)

is the Shannon entropy of the corresponding probability distribution and the condi-

tional entropy is defined in terms of the conditional probability pA|B(a|b) as H(A|B) =

−∑ab pAB(a, b) log pA|B(a|b). The idea of quantum discord grows up of the fact that the

quantum version of the mutual information of a bipartite state ̺AB may be defined in two

nonequivalent ways. The first is obtained by the straightforward quantization of I(A;B),

i.e. I(̺AB) = S(̺A) + S(̺B) − S(̺AB) where S(̺) is the von Neumann entropy of the
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state ̺ as defined in (2.67) and ̺A(B) = TrB(A)[̺AB ] are the partial traces over the two

subsystems. The second is obtained with the quantization of the conditional entropy which

involves the conditional state of a subsystem after a measurement performed on the other

one, and this fact has the consequence that: i) the symmetry between the two subsystems

is broken; ii) the quantity depends on the choice of the measurement; iii) the resulting ex-

pression is generally different from I(̺AB). Let us denote by ̺Ak = 1/pb(k)TrB [̺ABI⊗Πk],

with pB(k) = TrAB[̺ABI⊗Πk], the conditional state of the system A after having observed

the outcome k from a measurement performed on the system B. In turn, {Πk},
∑

k Πk = I

denotes a POVM describing a generalized measurement. The quantum analogue of the

mutual information defined via the conditional entropy is defined as the upper bound

JA = sup{Πk} S(̺A) −∑k pB(k)S(̺Ak) taken over all the possible measurements. Finally

the quantum A discord is defined in terms of the mismatch D(̺AB) = I(̺AB)− JA(̺AB).

Analogously one is led to define the quantum B discord through the entropy of conditional

states of system B.

For a bipartite squeezed thermal state (STS) with covariance matrix as in Eq. (2.71)

the quantum discord may be written as [77]

D = h(
√

I2) − h(d−) − h(d+) + h(

√
I1 + 2

√
I1I2 + 2I3

1 + 2
√
I2

) (2.91)

where h(x) = (x+ 1
2) log(x+ 1

2) − (x− 1
2) log(x− 1

2).

Quantum mutual information

The quantum mutual information, which quantifies the amount of total, classical plus

quantum, correlations, is given by I = S(ρA) + S(ρB) − S(ρAB), where S(ρ) is the von

Neumann entropy of the state ρ defined in Eq. (2.67). For a Gaussian bipartite state in

the canonical form (2.71) the quantum mutual information reduces to

I =
1

2

[

h(
√

I1) + h(
√

I2) − h(d+) − h(d−)
]

(2.92)

where the symplectic eigenvalues d± are given in Eq. (2.76).
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2.4 Gaussian quantum channels

We address the evolution of a Gaussian state in an open quantum system usually called

quantum channel that is a completely positive trace-preserving map ̺ → E(̺) as defined

in (1.12) that takes states ̺ into states. We will restrict ourselves to Gaussian quantum

channels that are defined as those that map Gaussian states into Gaussian states [78].

In section 2.1 we described all the unitary Gaussian channels, that correspond in the

phase space to matrices S such that SΩST = Ω and comprise the displacement operator,

the beam splitter evolutions and the single- and two-mode squeezing operations. The

covariance matrix of a quantum state undergone this kind of unitary operations transforms

as

σ → STσS. (2.93)

It can be shown that the action of the most general Gaussian channel E in the Schrödinger

picture ̺→ E(̺) corresponds to a transformation of the covariance matrix

σ → XT
σX + Y. (2.94)

X serves the purpose of amplification or attenuation and rotation in the phase space,

whereas the Y contribution is a noise term which may consists of quantum as well as

classical noise. Two important cases of Gaussian channels are:

• the classical noise channel, i.e. X = I, Y ≥ 0, that can be represented by a random

displacement,

• the lossy channel, i.e. X = G
1/2, Y = (I−G)(1/2 +N)I where G =

⊕n
h=1 e

−Γt
I2, Γ

is the damping rate and N the mean number of photons in the bath.

The evolution of a Gaussian state in both these channels is described in the following. Let

us consider the evolution of a Gaussian state in a dissipative channel EΓ characterized by

a damping rate Γ, which may result from the interaction of the system with an external

environment, as for example a bath of oscillators, or from an absorption process. The

propagation of a mode of radiation (the system) described by the Hamiltonian HS in

a lossy channel corresponds to the coupling of the mode a with a finite temperature T

reservoir (bath) described by HR made of large number of external modes. The reservoir

may be for example the modes of the free electromagnetic field or phonon modes in a solid.

There is a weak interaction between the system and the reservoir given by the Hamiltonian

V . Thus we have that the total Hamiltonian is

H = HS +HR + V (2.95)
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The derivation of the Master equation is not dependent on the specific reservoir model.

In the particular case of a damped harmonic oscillator we have

HS = a†a+
1

2
, (2.96)

HR =
∑

j

(b†jbj +
1

2
), (2.97)

V = a†B(t)eiω0t + aB†(t)e−iω0t, with B(t) =
∑

j

gjbje
−iωjt (2.98)

where [a†, a] = I, [b†j , bk] = δjkI, ω0 the frequency of the system and V is written in the

interaction picture. By writing the evolution equation of the whole system and tracing

out the bath we obtain the reduced density matrix of the system that is described by

a Gaussian state. By assuming a Markovian reservoir i.e. 〈b†(ωj)b(ωk)〉 = Nδ(ωj − ωk)

and weak coupling between the system and the reservoir the dynamics of the system is

described by the Lindblad Master equation [79]

˙̺ =
Γ

2

{

(N + 1)L[a] +NL[a†]
}

̺ (2.99)

where L[a]̺ = 2a̺a† − a†a̺− ̺a†a.

Lossy channels

The propagation of a mode of radiation in a lossy channel corresponds to the coupling of

the mode a with a zero temperature reservoir made of large number of external modes.

Then the Lindblad Master equation becomes

˙̺ =
Γ

2
L[a]̺ (2.100)

The general solution of Eq. (2.100) may be expressed with the operator-sum representation

of the associated CP-map i.e., upon writing η = e−Γt

̺(η) =
∑

m

Vm ̺ V †
m

where

Vm =

√

(1 − η)m

m!
am η

1

2
(a†a−m) ,

and ̺ is the initial state. Let us now start with single-mode states. Eq. (2.99) can be

recast into a Fokker-Planck equation for the Wigner function in terms of the quadrature

variables q and p,

Ẇ =
Γ

2

[
∂T

X
X + ∂T

X
σ∞∂TX

]
W (2.101)
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where X = (q, p)T , ∂X = (∂q, ∂p)
T and we introduced the diffusion matrix σ∞ =

diag(1/2 + N, 1/2 + N). Solving the equation for the Wigner function of a single-mode

Gaussian states one can obtain the evolution equation for σ

σ̇ = −Γ(σ − σ∞) (2.102)

which yields to

σ(t) = e−Γt
σ0 + (1 − e−Γt)σ∞ (2.103)

which describes the evolution of an initial Gaussian state with CM σ0 towards the sta-

tionary state given by the Gaussian state of the environment with covariance matrix given

by σ∞. In terms of the matrices introduced in Eq. (2.94) we have

X = e−Γt/2
I2, Y = (1 − e−Γt)(

1

2
+N)I2. (2.104)

For Γ = 0 we have a classical noise channel which corresponds to X = I and Y = 0, whereas

Γ 6= 0 is the case of a lossy channel. We consider as input state a squeezed thermal state

with an average number of thermal photons given by nT and a real squeezing parameter

r. The covariance matrix is given in Eq. (2.62) with φ = 0 and the evolved CM of the

single mode case, Eq. (2.103) reads

σ
′ = e−Γ

σ + (1 − e−Γ) σ∞ =

(

aΓ 0

0 bΓ

)

, (2.105)

where from now on we omit the index of σ0, replace σ(t) = σ
′ and, since the loss parameter

always appears as Γt, consider that the time t has been absorbed in Γ. The number of

thermal photons nΓ and the squeezing parameter rΓ after the evolution in the lossy channel

is obtained upon rewriting σ
′ in the standard form,

nΓ =
√

det[σ′] − 1/2

rΓ = 1/4 log

[
e−Γa+ (1 − e−Γ)/2

e−Γb+ (1 − e−Γ)/2

]

(2.106)

with

aΓ =
1

2
(1 + 2nΓ) e2rΓ

bΓ =
1

2
(1 + 2nΓ) e−2rΓ . (2.107)

We now consider the evolution of a two-mode Gaussian state in two noisy channels

characterized by the damping Γ1 and Γ2 respectively and described by the map EΓ1
⊗EΓ2

.
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At the level of the covariance matrix it corresponds to the following transformation

σΓ =
(

e−Γ1/2I2 ⊕ e−Γ2/2I2

)

σ

(

e−Γ1/2I2 ⊕ e−Γ2/2I2

)

+ (I4 − e−Γ1I2 ⊕ e−Γ2/2I2)σ∞ (2.108)

where we have used the same notation introduced for the single-mode case. If the input

state is a two-mode squeezed thermal state of the form ̺2 = S2(r)ν1 ⊗ ν2S2(r)† and

covariance matrix given in Eq. (2.71), then also the output state belongs to the same

class, with the replacements r → rΓ, nT1 → nΓ1, nT2 → nΓ2. The covariance matrix in

Eq. (2.79) may be recast in the standard form as

σΓ =
1

2

(

aΓI2 bΓσz

cΓσz bΓI2

)

(2.109)

and the explicit form of the parameters of the evolved state may be obtained from the very

definition of the symplectic invariants. For two-mode squeezed thermal states we have

aΓ − bΓ = n1Γ − n2Γ,
√

det σΓ =
1

4
(2n1Γ + 1) (2n2Γ + 1) ,

cΓ = (n1Γ + n2Γ + 1) sinh 2rΓ. (2.110)

Gaussian Noise

We address the problem of discriminating between two single-mode Gaussian states ̺∆1

and ̺∆2
obtained by the evolution in channels characterized by two different additive

Gaussian noises. We consider an initial state that evolves into a state ̺∆ through the

mapping described by the so called Gaussian noise map G∆, [80, 81, 82]

G∆(̺0) = ̺∆ =

∫

C

d2γ
e−|γ|2/∆

π∆
D(γ)̺0D

†(γ) (2.111)

∆ being the thermal mean number of added photons and ̺0 = D(α0)S(r0)ν(n0)S†(r0)D†(α0)

a displaced squeezed thermal state (DSTS) with covariance matrix given by Eq. (2.62)

with parameters n0, r0 and φ0. The state ̺∆i
is already a DSTS

̺∆i
= D(αi)S(ri)ν(ni)S

†(ri)D
†(αi) (2.112)

The only modification to the covariance matrix

σ∆ =

(

a′ c′

c′ b′

)

. (2.113)
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of the evolved state given by the mapping (2.111) is an addition of ∆ to the diagonal

elements of σ0: a′ → a + ∆ and b′ → b + ∆ whereas c′ = c. In terms of the matrices

introduced in Eq. (2.94) we have

X = I2, Y = ∆I2. (2.114)

Notice that for ∆ = 0, Y = I2 i.e. the additive Gaussian noise channel converges to the

identity channel. The amplitude αi = α0 because Tr[̺∆i
a] = 〈a〉̺0 , ri is a rather involved

function of r0, n0 and ∆i and ni =
√

det[σ∆i
] − 1/2. The entries a′, b′ and c′ of σ∆ in Eq.

(2.113) can be written in the standard form by solving the following

φi = φ0

(ni + 1/2) sinh(2ri) = (n0 + 1/2) sinh(2r0)

(ni + 1/2) cosh(2ri) = (n0 + 1/2) cosh(2r0) + ∆i. (2.115)



2.5. Estimation of parameters in quantum optics 59

2.5 Estimation of parameters in quantum optics

In this section we address quantum estimation of displacement and squeezing parameters

by using two classes of probe states. We first consider displaced squeezed vacuum states

and then squeezed vacuum states undergoing Kerr interaction. This last class of non-

classical states of light represents a resource for high precision measurements. They are

generally produced in active optical media, which couple one or more modes of the field

through the nonlinear susceptibility of the matter. In particular, parametric processes

in second order χ(2) media correspond to Gaussian operations and are used to generate

squeezing, hereafter Gaussian squeezing, and entanglement. Gaussian squeezing is the ba-

sic ingredient of quantum enhanced interferometry [83, 84, 85, 86, 87, 88, 89, 90] and found

several applications in quantum metrology and communication [91, 92, 93, 94, 95, 96]. In

addition, Gaussian squeezing is the key resource to achieve precise estimation of unitary

[33, 97] and non unitary parameters [35]. In turn, squeezed vacuum state has been ad-

dressed as a universal optimal probe [98, 35, 97] within the class of Gaussian states.

On the other hand, the Kerr effect taking place in third-order nonlinear χ(3) media leads

to a non Gaussian operation, and has been suggested to realize quantum nondemolition

measurements [99, 100], and to generate quantum superpositions [101, 102] as well as

squeezing [103] and entanglement [104]. A well known example of Kerr media are optical

fibers where, however, nonlinearities are very small and accompanied by other unwanted

effects. Larger Kerr nonlinearities have been observed with electro- magnetically induced

transparency [105] and with Bose Einstein condensates [106] and cold atoms [107]. Notice

that the dynamics in a Kerr medium may be accuraterly described in terms of the Wigner

function in the phase-space [108].

In the following we first consider the estimation of the displacement and squeezing pa-

rameters by evaluating the quantum Fisher information of a displaced squeezed vacuum

state. Then we consider a displaced squeezed vacuum state undergoing self-Kerr inter-

action and investigate their use in estimation of displacement and squeezing parameters.

Indeed, displacement and squeezing are basic Gaussian operations in continuous variable

systems and represent building blocks to manipulate Gaussian states for quantum informa-

tion processing. Besides, they represent the ultimate description of interferometric interac-

tion. As a consequence, their characterization, i.e the optimal estimation of displacement

and squeezing parameters has been widely investigated [32, 109, 110, 111, 112, 97] by using

different tools from quantum estimation theory (QET) [113, 14, 30, 31, 114, 66, 25, 42].

Upon maximizing the quantum Fisher information we find that single-mode squeezed vac-

uum represents an optimal class of probe states.
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Our main goal is to assess Kerr interaction and the resulting nonGaussianity as a

resource for parameter estimation, and to this aim we consider two different situations

with different physical constraints. On the one hand we study schemes where we fix

the overall energy available to the probe, without posing any constraint on the available

Gaussian squeezing; this will be referred to as the fixed energy case. On the other hand,

we will analyze the more realistic case where the amount of Gaussian squeezing is fixed,

or even absent, and refer to this case as the fixed squeezing case. As we will see, at fixed

energy Gaussian squeezing still represents the optimal resource for parameter estimation.

On the other hand, when the amount of Gaussian squeezing is fixed then Kerr interaction

turns out to be useful to improve estimation, especially when the probe states have a large

number of non squeezing photons, i.e large amplitude. In this case precision obtained by

Gaussian states is achieved or enhanced.

The section is structured as follows: we first analyze the use of Kerr interaction to

improve estimation of the displacement by considering different Gaussian probes and then

we address the estimation of squeezing. The results reviewed in this section are reported

in [115].

2.5.1 Estimation of displacement

Let us first consider the estimation of displacement, i.e. of the real parameter λ ∈ R
imposed by the unitary Uλ = exp{−iλAd}, Ad = a†+a being the corresponding generator.

Given a generic pure Gaussian probe, i.e. a displaced squeezed state of the form

|α, r〉 = D(α)S(r)|0〉

(with α = |α|eiφ and r > 0) whereD(α) = exp{αa†−ᾱa)} and S(r) = exp{ r2(a†2−a2)}, the

quantum Fisher information of λ for the state |α, r〉, that corresponds to the fluctuations

of the generator, may be evaluated from Eq. (1.75)

G(d) =4
(
〈α, r|A2

d|α, r〉 − 〈α, r|Ad|α, r〉2
)

=4
(

〈α, r|(a2 + a†2 + 2a†a+ 1)|α, r〉 − 〈α, r|(a + a†)|α, r〉2
)

(2.116)

By normal ordering for creation and annihilation operators [116, 117] we have

〈α, r|A2
d|α, r〉 = 4|α|2 cos2 φ+ cosh(2r) + sinh(2r) (2.117)

〈α, r|Ad|α, r〉 = 2|α| cos φ (2.118)

Then one obtains

G(d) = 4 + 8Nβ + 8
√

Nβ(1 +Nβ), (2.119)
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where N = sinh2 r + |α|2 is the number of photons of the probe state and where β =

sinh2 r/N is the corresponding squeezing fraction (0 ≤ β ≤ 1 ). As expected for a unitary

family the QFI does not depend on the value of the parameter. Besides, the QFI depends

only on the squeezing energy Nsq = βN , and thus increasing the amplitude energy Nα =

|α|2, does not lead to any enhancement of precision. Therefore, at fixed energy, the

maximum QFI

G
(d)
S = 4 + 8N + 8

√

N(1 +N) (2.120)

is achieved for β = 1, i.e. for squeezed vacuum. In the opposite limit (β = 0), i.e. for

coherent states, the QFI is constant:

G
(d)
C = 4 (2.121)

therefore it does not depend on the energy N and also on the phase.

Let us consider now a generic Gaussian state that undergoes Kerr interaction

|α, r, γ〉 = UγD(α)S(r)|0〉

where Uγ = exp(−iγ(a†a)2). The QFI for this class of states can be evaluated numerically

upon varying the parameters γ, |α|, φ, and r. We found that at fixed energy, the optimal

probe state is still the squeezed vacuum state. The optimal QFI is a monotonous decreasing

function of γ and the Kerr dynamics does not improve estimation precision. In other

words, at fixed energy, squeezed vacuum state is the best probe not only among the

class of Gaussian states, but also maximizing the QFI over the wider class of states Kerr

perturbed Gaussian states.

Let us now address estimation of displacement in the more realistic configuration,

where the amount of Gaussian squeezing is fixed or absent. For Kerr modified coherent

states |α, γ〉, QFI can be evaluated analytically at fixed energy N = |α|2 and γ, arriving

at

G(d)
γ = 4 + 8Ne−4N sin2 γ

{

e4N sin2 γ − 1 + cos[2(γ − φ+N sin 2γ)]

− e−4N cos 2γ sin2 γ cos[4γ − 2φ+N sin 4γ]
}

(2.122)

and then optimized numerically over the coherent phase φ. The results are reported in Fig.

2.1 (left panel) as a function of the number of photons |α|2 and for different values of γ. The

QFI increases with Nα = |α|2 and γ and the precision achievable with current technology

squeezing, say Nsq . 2, may be attained and surpassed for realistic values of the Kerr

coupling γ and large enough signal amplitude, say γ|α|2 . 1. Better performances may be
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obtained by considering Kerr modified squeezed states |α, r, γ〉 with fixed squeezing r and

large amplitude |α| ≫ 1. The QFI for this case, as evaluated numerically and optimized

over the amplitude phase φ is reported in Fig. 2.1 (right plot). We observe that, after a

regime where QFI oscillates around the value obtained for vanishing γ, then it increases

monotonically with |α|2 and exceed the corresponding Gaussian QFI for large enough

values of |α|2 and/or γ. Due to numerical limitations, we have considered |α|2 ≤ 100, and

thus we have seen enhancement of precision only for the largest values of γ. We expect

analogue performances by considering smaller values of γ and larger numbers of photons.
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Figure 2.1: (Color online) Left: QFI G
(d)
γ for displacement estimation by Kerr modified

coherent states (solid lines) as a function of the number of photons Nα and for different

values of γ. From top to bottom: (red) γ = 10−2; (green) γ = 10−4 ; (blue) γ = 10−6.

Dashed lines refer to QFI G
(d)
S of squeezed vacuum states for different values of squeezing

photons. From bottom to top: Nsq = 1, 2, 3. Right: QFI G
(d)
γ for Kerr modified displaced

squeezed states, Nsq = 2, for different values of γ: (red) γ = 0.01; (green) γ = 0.008; (blue)

γ = 0.005. Dashed lines denote QFI G
(d)
S of squeezed vacuum states for different values of

squeezing photons. From bottom to top: Nsq = 1, 2, 3.

2.5.2 Estimation of squeezing

Let us now consider estimation of squeezing, that is the estimation of the real parameter

z ∈ R imposed by the unitary evolution Uz = exp{−izAs} with generator As = 1
2 (a†2+a2).

Given a generic single-mode Gaussian state |α, r〉 = D(α)S(r)|0〉, the QFI for squeezing

estimation has been evaluated by using the normal ordering for creation and annihilation

operators [116]. As in the previous case of displacement estimation with pure states, the

quantum Fisher information is equal to the fluctuations of the generator As, Eq. (1.75)
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which are given by

〈α, r|A2
s |α, r〉 =〈a†4 + 2a†2a2 + a4 + 4a†a+ 2〉

=
1

2
[1 + 4α4(1 + cos(4φ)) + 3 cosh(4r) + 8α2(cosh(2r)

+ 2 cos(2φ) sinh(2r))] (2.123)

〈α, r|As|α, r〉2 =〈a†2 + a2〉 = (2α2 cos(2φ) + sinh(2r))2 (2.124)

The quantum Fisher information becomes

G(s) = 1 + cosh(4r) + 4α2(cosh(2r) + cos(2φ) sinh(2r)). (2.125)

Introducing the total energy N and the fraction of squeezing β, the Eq. (2.125) becomes

G(s) = 1 − 4N(β − 1)(1 + 2Nβ + 2
√

nβ(1 +Nβ) cos(2φ)) + 1 + 8Nβ(1 +Nβ) (2.126)

The maximum is obtained for β = 1 (squeezed vacuum) and we have

G
(s)
S = 8N2 + 8N + 2 (2.127)

and is again achieved using squeezed vacuum probe [97]. In order to investigate the effect

of Kerr interaction we consider Kerr modified Gaussian states |α, r, γ〉. At fixed energy

QFI has been evaluated and optimized numerically against the squeezing fraction β and

phase φ. In this case, the optimal squeezing fraction decreases monotonically with both

γ and the total number of photons N and the maximized QFI is a decreasing function of

γ, that is Kerr interaction does not improve, actually degrades, the estimation precision

achievable with squeezed vacuum probe.
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Figure 2.2: (Color online) Left: QFI G
(s)
γ for squeezing estimation by Kerr modified coherent

probes (solid lines) as a function of the number of photons Nα and for different values of γ.

From top to bottom: (red) γ = 10−2; (green) γ = 10−4; (blue) γ = 10−6. Dashed lines

refer to the QFI G
(s)
S for displaced squeezed probes and different values of squeezing photons.

From bottom to top: Nsq = 1, 2, 3. Right: QFI G
(s)
γ for Kerr modified displaced squeezed

states (solid lines) with Nsq = 2 squeezing photons, as a function of field amplitude photons

Nα = |α|2 and for different values of γ: (red) γ = 0.01; (green) γ = 0.005; (blue) γ = 0.001.

Dashed lines refer to the QFI G
(s)
S for displaced squeezed vacuum states and different values

of squeezing photons. From bottom to top: Nsq = 1, 2, 3.

Let us now consider situations where squeezing is not available, or its amount is fixed,

and where the field amplitude may be increased at will. The QFI for probe states of the

form |α, γ〉 = UγD(α)|0〉 can be evaluated analytically as

G(s)
γ = 2 + 2N

{

2 +N −Ne−4N sin2 γ(1 + cos[2(4γ − 2φ+N sin 42γ)])

+Ne−N(1−cos 8γ) cos[16γ − 4φ+N sin 8γ]
}

, (2.128)

and then maximized numerically over the amplitude phase φ. In Fig. 2.2 we report the

optimized QFI together with the QFI of displaced squeezed vacuum states with Nsq ≤ 3

and the same value of |α|2. Results indicate that upon using coherent states with large

amplitude we may achieve and improve the precision of squeezed vacuum states already for

small, realistic, values of the Kerr coupling γ. When the amount of Gaussian squeezing

is nonzero but fixed we can combine the effects of squeezing and Kerr interaction by

considering Kerr modified displaced squeezed states with a large number of amplitude

photons (|α|2 ≫ 1). As it is apparent from Fig. 2.2 the QFI increases with |α|2 and

overtake quite rapidly the values of QFI of the corresponding Gaussian state.
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2.6 Quantum discrimination of lossy channels

In this section we address the discrimination of lossy channels for continuous variable

systems using Gaussian states as probing signals, and focus to the case when one of the

values for the loss parameter is zero, i.e. we address the detection of a possible loss

against the alternative hypothesis of an ideal lossless channel. Indeed, one of the main

obstacles to the development of quantum technologies is the decoherence associated to

losses and absorption processes occurring during the propagation of a quantum signal.

The description of the dynamics of systems subject to noisy environments [118], as well

the detection, quantification and estimation of losses and, more generally, the characteri-

zation of lossy channels at the quantum level, received much attention in the recent years

[118, 119, 120, 121]. An efficient characterization of decoherence is relevant for quantum

repeaters [122], quantum memories [123], cavity QED systems [124], or superconducting

quantum circuits [125]. Here, we consider a situation where the loss (damping) rate of a

channel may assume only two possible values and we want to discriminate between them

by probing the channel with a given class of signals. In particular, we use Gaussian states

as probing signals, and focus attention to the case when one of the values for the loss

parameter is zero, i.e. we address the detection of a possible loss against the alternative

hypothesis of an ideal lossless channel.

This is a problem of quantum state discrimination and basically consists in looking for

the minimum error probability in identifying one of two possible output states from the

channel. Upon assuming that repeated probing is possible, i.e. that N identical copies of

the output states are given [14, 56, 126, 127], the quantity which gives the minimal error

probability when discriminating two states is the quantum Chernoff bound (QCB).

For continuous variables systems the quantum discrimination of Gaussian states is a

central point in view of their experimental accessibility and their relatively simple mathe-

matical description [67, 128]. Upper bounds for the error probability of discrimination of

Gaussian states of n bosonic modes have been investigated [51] and closed formula for the

QCB of Gaussian states have been derived [48, 50, 51].

In the following, we deal with the detection of loss in continuous variable systems. In

particular, our results apply to quantum optical implementations, where single- and two-

mode Gaussian states may be reliably realized in a controlled way with current technology

[129]. We address the problem of detecting lossy channels, i.e. we consider that the

damping constant of a bosonic channel may be zero or assume a nonzero value, and we

want to determine which one on the basis of repeated measurements on the signal exiting

the channel. Besides, in order to stay close to schemes feasible with current technology, we
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analyze in details the effect of the mixedness of probe states. An analogue problem, namely

the estimation of the damping constant of a bosonic channel among a continuous set of

possible values that it can assume, has already been addressed in literature [35, 130, 131],

and recently [132] it was proved that two-mode squeezed vacuum probe states are optimal,

i.e. they give the best estimate with respect to coherent, thermal or single-mode squeezed

states. Moreover, recent analysis of transmission process in Gaussian continuous variable

channels [133] has revealed the importance of assessing the deviation from ideal conditions,

i.e the identity channel, in implementing large-scale quantum communication.

The results we report here aim basically at characterizing the kind of states that give

the optimal discrimination and whether the improvements obtained in the discrimination

using two-mode probes may be ascribed to the correlations between the two modes. We

thus focus on single- and two-mode squeezed thermal states, which are feasible signals

allowing a fair comparison between single- and two-mode probes at fixed energy. In order

to quantify correlations, besides entanglement and mutual information, we exploit the

recent results [64, 77, 134, 135, 136, 137] about quantum discord, which has been defined

with the aim of capturing quantum correlations in mixed separable states that are not

quantified by entanglement.

In 2.6.1 we specialize the calculation of the QCB to single- and two-mode Gaussian

states, and we introduce the discrimination scheme for single-mode and two-mode Gaus-

sian states and calculate the QCB in presence of a lossy channel or an absorber. Section

2.6.1 reports the main results about the QCB of the single and two-mode states as a

function of the total energy for squeezed vacuum probe states or squeezed thermal states.

Finally, in Section 2.6.2 we analyze the role of correlations in the enhancement of the

discrimination by two-mode states.

2.6.1 Quantum Chernoff bound for Gaussian states

In the following we will focus on single mode and two-mode squeezed thermal states (STS),

namely

̺1 = S(r)νS(r)†

̺2 = S2(r)ν1 ⊗ ν2 S2(r)†

As we will see, single- and two-mode STS evolving in a lossy channel lead to a state

in the same class and thus the problem of channel discrimination may be reduced to

the evaluation of the Chernoff bound for this classes of states. In order to perform this

calculation one has to compute the positive power ̺s. For single mode it can be written
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as a Gaussian state with a rescaled mean photon number f(n, s), i.e. [51]

̺s1 = S(r)νsS(r)† = N(n,s)S(r)ν(n,s)S(r)† (2.129)

where

νs =

(
1

n+ 1

)s ∞∑

m=0

(
n

n+ 1

)ms

|m〉〈m|

= N(n,s)
1

f(n, s) + 1

∞∑

m=0

(
f(n, s)

f(n, s) + 1

)m

|m〉〈m|

= N(n,s) ν(n,s), (2.130)

and

N (n, s) = Tr[νs] =
1

(n+ 1)s − ns

f(n, s) =
ns

(n+ 1)s − ns
. (2.131)

The two mode case follows straightforwardly

̺s2 =S2(r) νs1 ⊗ νs2 S2(r)†

=N(n1,s)N(n2,s)S2(r) ν(n1,s) ⊗ ν(n2,s) S2(r)†. (2.132)

We then recall that for any given two squeezed thermal Gaussian states ̺ and ̺′, the

overlap Tr[̺ ̺′] may be written in terms of their covariance matrices

Tr[̺̺′] = [det(σ + σ
′)]−1/2 (2.133)

where σ, σ′ are the covariance matrices of the two states. Overall, we may write the QCB

(1.111) in the single mode case Q1 = minQ1s, where

Q1s = Tr
[

̺s̺′(1−s)
]

= N(n,s)N(n′,1−s)Tr
[

S(r)ν(n,s)S(r)†S(r′)ν ′(n′,1−s)S(r′)†
]

=
N(n,s) N(n′,1−s)

√

det(σ(n,s) + σ′
(n′,1−s))

. (2.134)

For the two-mode case we have Q2 = minQ2s, where

Q2s =Tr
[

̺s̺′(1−s)
]

=
N(n1,s) N(n2,s) N(n′

1,1−s) N(n′
2,1−s)

√

det(σ(n1,n2,s) + σ′
(n′

1,n
′
2,1−s)

)
. (2.135)
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Figure 2.3: Single- and two-mode schemes for the discrimination of lossy channels. Top:

a single mode Gaussian state enters in a lossy channel with damping rate Γ and then a

measurement apparatus detect the output signal ρ′. Bottom: the lossy channel acts on a mode

of a bipartite two-mode squeezed thermal state ρ and then the final state ρ′ is measured.

Gaussian states in a lossy channel

In what follows, we study the evolution of a Gaussian state in a dissipative channel EΓ

characterized by a damping rate Γ, which may result from the interaction of the system

with an external environment, as for example a bath of oscillators, or from an absorption

process. We address the problem of detecting whether or not the dissipation dynamics

occurred, i.e. the problem of discriminating between an input state ̺ and the final state

̺′ = EΓ(̺). We focus to Gaussian states in view of their experimental accessibility and

their relatively simple mathematical description. Besides, lossy channels are Gaussian

channels, i.e. transform Gaussian states into Gaussian states as we already seen in section

2.4.

We assume to have many copies at disposal and thus use the quantum Chernoff bound

Q defined in Eq. (1.111) as a distinguishability measure. A schematic diagram of the

measurement schemes we have in mind is shown in Fig.2.3: we have either a single mode

STS evolving in a lossy channel with parameter Γ followed by a measurement at the

output, or a two-mode STS with the damping process occurring on one of the two modes,

followed by a measurement on both of the modes.

The propagation of a mode of radiation in a lossy channel corresponds to the coupling of

the mode a with a zero temperature reservoir made of large number of external modes. By

assuming a Markovian reservoir and weak coupling between the system and the reservoir

the dynamics of the system is described by the Lindblad Master equation given in (2.99)

by setting N = 0,

˙̺ =
Γ

2
L[a]̺ (2.136)

where L[a]̺ = 2a̺a† − a†a̺− ̺a†a.
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Single-mode case

Let us now start with single-mode states. The solution of Eq. (2.136) is given by (2.103)

which describes the evolution of an initial Gaussian state with CM σ0 towards the sta-

tionary state given by the Gaussian state of the environment with covariance matrix σ∞.

The input state we considered in the scheme of Fig. 2.3 is a squeezed thermal state with

an average number of thermal photons given by nT and, without loss of generality, a real

squeezing parameter r. The covariance matrix is described in Eq. (2.62). The evolved

covariance matrix of the single mode case, Eq. (2.103) is given in Eq. (2.105) where from

now on we omit the index of σ0, replace σ(t) = σ
′ and, since the loss parameter always

appears as Γt, consider that the time t has been absorbed in Γ. At the output the number

of thermal photons nΓ and the squeezing parameter rΓ are those given in Eq. (2.106).

The quantum Chernoff bound is then obtained from Eq. (2.134) with the substitutions

n→ nT and n′ → nΓ.

Two-mode case

According to the scheme of Fig. 2.3, the map describing the evolution of a two-mode state

is EΓ⊗I2. At the level of the CM it corresponds to the transformation of Eq. (2.108) where

we have used the same notation introduced for the single-mode case. If the input state

is a two-mode squeezed thermal state of the form ̺2 = S2(r)ν1 ⊗ ν2S2(r)† and covariance

matrix given in Eq. (2.71), then also the output state belongs to the same class, with the

replacements r → rΓ, nT1 → nΓ1, nT2 → nΓ2. The covariance matrix in Eq. (2.108) may

be recast in the standard form as

σΓ =
1

2

(

AΓI2 CΓσz

CΓσz BΓI2

)

(2.137)

where

AΓ = cosh(2rΓ) + 2nΓ1
cosh2 rΓ + 2nΓ2

sinh2 rΓ

BΓ = cosh(2rΓ) + 2nΓ1
sinh2 rΓ + 2nΓ2

cosh2 rΓ

CΓ = (1 + nΓ1
+ nΓ2

) sinh 2rΓ , (2.138)

and the explicit form of the parameters of the evolved state may be obtained from the very

definition of the symplectic invariants. For two-mode squeezed thermal states we have

A′ −B′ = nΓ1
− nΓ2

√
det σ′ =

1

4
(2nΓ1

+ 1) (2nΓ2
+ 1)

C ′ = (nΓ1
+ nΓ2

+ 1) sinh 2rΓ (2.139)
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The QCB is then obtained using Eq. (2.135) and the replacements n1 → nT1
, n2 → nT2

,

n′1 → nΓ1
, n′2 → nΓ2

.

Detection of lossy channels

In this section we address the discrimination of lossy channels probed by single- and

two-mode STS and evaluate the QCB as a function of the most important parameter

of the input state i.e. its total energy and squeezing. In particular, we optimize the

discrimination of lossless (Γ = 0) from a lossy (Γ > 0) channel by maximizing over

thermal probes, i.e. single- and two-modes squeezed thermal states. In our first analysis,

we show that for fixed total energy, single- and two-mode squeezed vacuum states are

optimal. In particular, we show the conditions where the two-mode state outperforms the

single-mode counterpart. Then, by fixing both the total energy and squeezing, we will

find the optimal STS. We recall that the minimization of the QCB over single-copy states

implies the minimization over multy-copy states. This implies that finding the optimal

input state ̺ automatically assures that ̺⊗ ̺⊗ . . . is the optimal multi-copy state to be

used as input when we consider a multiple access to the unknown channel.

In order to perform our investigation we introduce a suitable parametrization of the

input energy. Let us denote by N1 and N2 the total energy (average total number of

photons) of a single- and two-mode state respectively. They are given by Eqs. (2.66) and

(2.83)

N1 = nT + nS + 2nSnT , (2.140)

N2 = nT1
+ nT2

+ 2nS + 2nS(nT1
+ nT2

) , (2.141)

where nT accounts for the mean number of thermal photons for the single mode, nT1

and nT2
the corresponding quantity for the two-mode state, and nS = sinh2 r denote the

energy due to squeezing, i.e. the energy of a single-mode squeezed vacuum. In order to

analyze the effect of squeezing and to compare the performances of single- and two-mode

states we introduce a different parametrization of the states, based on the total energy

and the squeezing fraction β, which is defined as the fraction of total energy employed in

squeezing. Using Eq. (2.143) we have, for single-mode states

nS = β1N1 (2.142)

nT =
(1 − β1)N1

1 + 2β1N1
. (2.143)

Thus the single-mode STS can be parametrized as ̺ = ̺(N1, β1). Note that for β1 = 0 the

state is completely thermal with energy N1 = nT , while for β1 = 1 the state is a squeezed
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vacuum with energy N1 = nS. We denote Q1(N1, β1) the output QCB which is computed

by using the output state ̺(N1, β1).

For two-mode states we also introduce an asymmetry parameter γ ∈ [0, 1], denoting the

fraction of the total thermal energy used for the first mode, thus arriving at

nS =
β2

2
N2 (2.144)

nT1
= γ

(1 − β2)N2

1 + β2N2
(2.145)

nT2
= (1 − γ)

(1 − β2)N2

1 + β2N2
. (2.146)

Thus the two-mode squeezed thermal state can be parametrized as ̺ = ̺(N2, β2, γ).

Note that for β2 = 0 we have two thermal states with thermal energy nT1
= γ N2 and

nT2
= (1 − γ)N2. For β2 = 1 we have instead a squeezed vacuum state with total energy

N2 = 2nS . We denote by Q2(N2, β2, γ) the output QCB which is computed by using the

input state ̺(N2, β2, γ).

In order to make a fair comparison between the performances of single- and two-mode

probes in discriminating the channels, we fix the mean number of photons in the input

state. In other words we set

N1 = N2 = N (2.147)

and minimize the output QCB among single-mode and two-mode squeezed thermal states.

As a first step we compute the optimal quantities

Q1(N) = inf
β1

Q1(N,β1) (2.148)

Q2(N) = inf
β2,γ

Q2(N,β2, γ). (2.149)

Then we compare Q1(N) with Q2(N). According to our findings, in the Eqs. (2.148)

and (2.149), the infima are achieved for β1 = β2 = 1. This is numerically shown in Fig. 2.4

for the single-mode case and in Fig. 2.5 for the two-mode case. Thus, we have found that,

at fixed input energy N , the optimal thermal probes are given by single- and two-mode

squeezed vacuum states. In this case, the input state is pure and the QCB corresponds

to the fidelity (which is the case when the s-overlap in Eq. (1.111) is minimized for s

approching the border). Let us adopt the transmissivity η = e−Γ to quantify the damping

of the channel, so that Γ = 0 (ideal channel) corresponds to η = 1, and Γ > 0 (lossy

channel) corresponds to 0 ≤ η < 1. Then, for single-mode we can write

Q1(N) =
1

√

1 +N(1 − η2)
, (2.150)
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Figure 2.4: Output QCB Q1(N,β1) optimized over input single-mode squeezed thermal states

ρ = ρ(N,β1). From left to right we consider different values of the transmissivity: η = 0.1 (left

panel), η = 0.5 (middle panel) and η = 0.9 (right panel). In each panel, we plot Q1(N,β1)

as function of the energy N for different values of β1. From top to bottom: β1 = 0.1 (dashed

line), β1 = 0.5 (dotted line) and β1 = 1 (solid line). The minimum curve is always achieved

for β1 = 1, i.e., for an input single-mode squeezed vacuum state.
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Figure 2.5: Output QCB Q2(N,β2, γ) optimized over input two-mode squeezed thermal states

ρ = ρ(N,β2, γ). From left to right we consider different values of the transmissivity: η = 0.1,

0.5 and 0.9. From top to bottom, we consider different values of the asymmetry parameter

γ = 0, 0.5 and 1. In each panel, we then plot Q2 as function of the energy N for different

values of β2. From top to bottom: β2 = 0.1 (dashed line), β2 = 0.5 (dotted line) and β2 = 1

(solid line). The minimum curve is always achieved for β2 = 1 corresponding to an input

two-mode squeezed vacuum state.
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and for two-modes we derive

Q2(N) =
4

[
2 +N(1 −√

η)
]2 . (2.151)

In Fig. 2.6, we show the behaviors of the single-mode QCB Q1(N) and two-mode QCB

Q2(N) as function of the input energy N for several values of transmissivity η (or, equiv-

alently, the damping rate Γ). As expected the discrimination improves by increasing the

input energy N and decreasing the transmissivity η.
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Figure 2.6: (Color online). Single-mode QCB Q1(N) (solid lines) and two-mode QCB Q2(N)

(dashed lines) as a function of the input energy N for different damping rates. From top to

bottom Γ = 0.1, 0.3, 1 (red, green and blue, respectively). By comparing curves with the same

color (fixed damping Γ), we can see that Q2(N) outperforms Q1(N) only after a certain value

of the input energy N .

As we can see from Fig. 2.6, for a given value of the transmissivity η, the two-mode

QCB Q2(N) outperforms the single-mode QCB Q1(N) only after a threshold energy. In

fact, for any value of the transmissivity η larger than a critical value ηc there is a threshold

energy Nth = Nth(η) that makes the two-mode squeezed vacuum state more convenient

than the single-mode counterpart. This threshold energy decreases for decreasing values

of η. In particular, for transmissivities less than the critical value ηc, the threshold energy

becomes zero, i.e., the two-mode state is always better than single-mode state. We have

numerically evaluated the critical value ηc ≃ 0.296 (corresponding to Γc ≃ 1.22). This
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phenomenon is fully illustrated in Fig. 2.7, where we have plotted the threshold energy

as function of the transmissivity Nth = Nth(η). For N > Nth (dark area), the optimal

state is the two-mode squeezed vacuum state, while for N < Nth (white area) it is the

single-mode squeezed vacuum state. In particular, note that Nth = 0 at η = ηc. Close to

the critical transmissivity we have Nth ≃ −ηc + sinh2(2.14η) 1.
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Figure 2.7: Threshold energy as a function of the transmissivity Nth = Nth(η). The dark area

indicates the values of the energy N for which the two-mode squeezed vacuum state is optimal.

The other region indicates where the single-mode squeezed vacuum state is optimal. The

dashed line denotes the behavior of the threshold energy Nth close to the critical transmissivity

ηc.

It should be said that, in realistic conditions, it is unlikely to have pure squeezing. For

this reason, it is important to investigate the performances of the squeezed thermal states

by fixing this physical parameter together with the total energy. Thus, in this section, we

fix both the input energy and squeezing, i.e., we set

N1 = N2 = N,

β1 = β2 = β (0 ≤ β ≤ 1) . (2.152)

1Clearly we can invert the curve and introduce a threshold transmissivity as function of the energy ηth =

ηth(N). For values η < ηth the two-mode state is better than the single-mode state, while the opposite happens

for η > ηth. In this case, we have ηth ≃ ηc + 0.18 N0.7 for small N and ηth ≃ 1 − 2/N for large N .
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Then, we compare the single-mode squeezed thermal state ̺ = ̺(N,β) with the two-mode

squeezed thermal states ̺ = ̺(N,β, γ) for various values of γ. In other words, we compare

Q1(N,β) and Q2(N,β, γ).

For fixed N and β, we find that the minimum of Q2(N,β, γ) is achieved for γ = 1 (easy

to check numerically). This means that two-mode discrimination is easier when all the

thermal photons are sent through the lossy channel. In this case we find numerically that

Q2(N,β, 1) < Q1(N,β) for every values of the input parameters N and β, and every value

of damping rate Γ in the channel. In other words, at fixed energy and squeezing, there is

a two-mode squeezed thermal state (the asymmetric one with γ = 1) able to outperform

the single-mode squeezed thermal state in the detection of any loss. In order to quantify

the improvement we introduce the QCB reduction

∆Q = Q1(N,β) −Q2(N,β, 1). (2.153)

The more positive this quantity is, the more convenient is the use of the two-mode state

instead of the single-mode one. In Fig. 2.8 we show the behavior of ∆Q as function of the

input energy and squeezing for two different values of the damping. As one can see from

the plot, the QCB reduction is always positive. Its value increases with the energy while

reaching a maximum for intermediate values of the squeezing. By comparing the two insets

of Fig. 2.8, we can also note that the QCB reduction increases for increasing damping

Γ (i.e., decreasing transmissivity). Thus, we have just shown that, for fixed values of N
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Figure 2.8: (Color online) Density plot of the QCB reduction ∆Q as function of the input

energy N and the squeezing β. The left plot is for Γ = 0.1 and the right one for Γ = 0.9.

and β, the asymmetric two-mode squeezed thermal state (γ = 1) is the optimal thermal
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probe in the detection of any loss Γ. Here we also show that this is approximately true

for γ . 1. In other words, we show that the inequality Q2(N,β, γ) < Q1(N,β) is robust

against fluctuations of γ below the optimal value γ = 1. This property is clearly important

for practical implementations. To study this situation, let us consider the γ-dependent

QCB reduction

∆Qγ = Q1(N,β) −Q2(N,β, γ) . (2.154)

In Fig. 2.9 we have specified this quantity for different values of the asymmetry parameter

γ (each inset refers to a different value of γ). Then, for every chosen γ, we have computed

∆Qγ over a sample of 103 random values of N , β, and Γ (in each inset). As one can see

from the figure, the quantity ∆Qγ is approximately positive also when γ is quite different

from the unity.
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Figure 2.9: (Color online) QCB reduction ∆Qγ for different values of γ (top left γ = 0.99, top

right γ = 0.9, bottom left γ = 0.8, bottom right γ = 0.7). In each inset, ∆Qγ is computed

over a sample of 103 random values of N , β, and Γ.

2.6.2 Quantum Chernoff bound and correlations

Since two-mode probes are always convenient for β 6= 1 and γ = 1, a natural question

arises on whether this improvement should be ascribed to some kind of correlations, either

classical or quantum, as, for example, those quantified by entanglement, quantum discord

or quantum mutual information.
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In order to quantify the degree of entanglement of a two-mode Gaussian state, it is

suitable to use the logarithmic negativity given in Eq. (2.90) E = max{0,− log 2d̃−}
where d̃− is the smallest symplectic eigenvalue of the partially transposed state (2.87),

d̃2
− = 1

2 [∆̃−
√

∆̃2 − 4I4] where ∆̃ = I1 +I2−2I3. The quantum discord for a bipartite STS

with CM as in Eq. (2.71) is given in (2.91) D = h(
√
I2)−h(d−)−h(d+)+h(

√
I1+2

√
I1I2+2I3

1+2
√
I2

)

where h(x) = (x + 1
2 ) log(x + 1

2 ) − (x − 1
2 ) log(x − 1

2 ). Finally, the quantum mutual

information, for a Gaussian bipartite state in the canonical form (2.71) reads (2.92) I =
1
2

[
h(
√
I1) + h(

√
I2) − h(d+) − h(d−)

]
where the symplectic eigenvalues d± are given in

Eq. (2.76). A bipartite Gaussian state is entangled iff d̃− < 1/2, so that the logarithmic

negativity gives positive values for all the entangled states and 0 otherwise. For what

concerns the discord, we have that for 0 ≤ D ≤ 1 the state may be either entangled or

separable, whereas all the states with D > 1 are entangled. For pure states the previous

three measures are equivalent, whereas for mixed states, as in the case under investigation

in this section, they generally quantify different kind of correlations.

Here we consider the QCB reduction ∆Qγ̄ = Q1(N,β)−Q2(N,β, γ̄) between a single-

mode squeezed thermal state ρ = ρ(N,β) and a two-mode squeezed thermal state ρ =

ρ(N,β, γ̄) with γ̄ = 0.999. By fixing the input squeezing β and varying the input energy

N , we study the behaviour of ∆Qγ̄ as function of the three correlation quantifiers, i.e.,

quantum mutual information, quantum discord and entanglement (computed over the

input two-mode state). As shown in the upper panels of Fig. 2.10, the QCB reduction ∆Qγ̄

is an increasing function of all the three correlation quantifiers for fixed input squeezing

(β = 0.1 for the left panel and β = 0.9 for the right one). Note that, in each panel

and for each quantifier, we plot three different curves corresponding to different values

of the damping Γ = 0.9, 0.5 and 0.1. The monotonicity of the QCB reduction in all

the correlation quantifiers suggests that the presence of correlations should definitely be

considered as a resource for loss detection, whether these correlations are classical or

genuinely quantum, i.e., those quantified by entanglement. In other words, employing the

input squeezing in the form of correlations is always beneficial for loss detection when

we consider squeezed thermal states as input sources. The importance of correlations is

confirmed by the plots in the middle panels. Here we consider again the QCB reduction

∆Qγ̄ = Q1(N,β) − Q2(N,β, γ̄) for γ̄ = 0.999. Then, by varying input squeezing β and

energy N , we study ∆Qγ̄ as function of both discord and entanglement (damping is Γ = 0.2

in the left panel, and Γ = 0.8 in the right one). These plots show how the QCB reduction

is approximately an increasing function of both discord and entanglement. Finally, in the

lower panels of Fig. 2.10, we also show how entanglement (left) and discord (right) are

increasing functions of the quantum mutual information with good approximation (these
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Figure 2.10: (Color online) Upper panels. QCB reduction ∆Qγ̄ (with γ̄ = 0.999) as a function

of the three correlation quantifiers X=I,D,E where I is the quantum mutual information (dotted

red), D is the quantum discord (dashed blue) and E is the entanglement (solid black). The

plots are for fixed squeezing: β = 0.1 for the left panel and β = 0.9 for the right one. For

each quantifier we plot three different curves corresponding to different values of the damping

(from top to bottom Γ = 0.9, 0.5 and 0.1). Each curve is generated by varying the input

energy N between 0 and 5 photons. Middle panels. Density plots of the QCB reduction ∆Qγ̄

as a function of the input discord and entanglement. The plots are for fixed damping: Γ = 0.2

in the left panel and Γ = 0.8 in the right one. In each panel, the density plot is generated by

varying the squeezing 0 ≤ β ≤ 1 and the energy 0 ≤ N ≤ 5. Lower panels. Entanglement

(left) and discord (right) as a function of the quantum mutual information. Plots are generated

by taking a random sample of 104 two-mode squeezed thermal states, i.e., random values of

N and β with γ = γ̄.
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plots are generated by choosing a random sample of 104 two-mode squeezed thermal

states).
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2.7 Quantum discrimination of Gaussian noisy channels

In this section we address discrimination of Gaussian noise channels using both minimum

error probality (Bayes) and maximum detection probability (Neyman-Pearson) strategies.

We focus on the asymptotic regime of many measurements and evaluate the quantum

Chernoff bound and the quantum relative entropy, which provide the decreasing rate of the

probabilities of discrimination errors and type-II errors in the two strategies respectively.

We also consider the discrimination of channels with infinitesimally close values of the

noise parameter and evaluate the metrics associated with the two different notions of

distinguishability.

Quantum Chernoff bound for Gaussian noise channels

The input states that we consider are single-mode DSTS’s as given in Eq. (2.61). The

Gaussian noise map described in Eq. (2.111), acts on a single-mode DSTS by adding ∆

thermal photons to the initial n0 photons of the input state. In terms of the covariance

matrix we have that the initial state is described by σ0 of Eq. (2.62) and the output state

after the evolution in the channel is given by σ∆ of Eq. (2.113). In order to calculate the

Chernoff bound for this class of states it is sufficient to realize that the powers ̺s1, ̺
1−s
2

are also Gaussian states with a rescaled mean photon number N1, N2, i.e.

̺s1 =D(α1)S(r1)ν(n1)sS†(r1)D†(α1)

=g(n1, s)D(α1)S(r1)ν(N1)S†(r1)D†(α1) (2.155)

̺1−s
2 =g(n2, 1 − s)D(α2)S(r2)ν(N2)S†(r2)D†(α2) (2.156)

where

ν(n1)s = g(n1, s)ν(N1) (2.157)

ν(n2)1−s = g(n2, 1 − s)ν(N2) (2.158)

and Ni =
nx

i

(ni+1)x−nx
i
, g(ni, x) = 1

(ni+1)x−nx
i

with i = 1, 2 and x = s, 1 − s. Then the QCB

of Eq. (2.134) becomes

Qs(̺1, ̺2) =g(n1, s)g(n2, 1 − s)Tr[S(r1)ν(N1)S†(r1)S(r2)ν(N2)S†(r2)] (2.159)

where we used that α1 = α2 = α0 to simplify displacement operators and omitted the

index 1 in the notation of Qs. Note that Qs does not depend on displacement. We

recall that the inner product Tr(̺1̺2) is given by (2.133) and using this last equation, the

quantum Chernoff bound (1.111) becomes Q = minQs

Qs =g(n1, s)g(n2, 1 − s)[det(σ′1 + σ′2]−1/2 (2.160)
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where σ′i, i = 1, 2 are the covariance matrices of the states ̺s1 and ̺1−s
2 as given in Eq.

(2.62) with mean number of thermal photons Ni, squeezing ri and phase φi.

The fidelity defined in Eq. (1.20) for two single-mode STS’s is given by [51, 138, 139]

F =
1√

Σ + δ −
√
δ

(2.161)

where Σ = det[σ1 + σ2] and δ = 4(det[σ1] − 1/4)(det[σ2] − 1/4).

Since the initial amplitude is not changed by Gaussian noise, it is useless to employ

displaced states as probe signals. From now on we consider α0 = 0 and introduce a

parametrization based on the total energy Ei and the fraction of squeezing βi (that is the

fraction of the total energy employed in squeezing) by defining the number of thermal and

squeezed photons nT and nS as in Eqs. (2.142) and (2.143). We have

nT,i =
(1 − βi)Ei
1 + 2βiEi

(2.162)

nS,i = sinh2 ri = βiEi (2.163)

where 0 ≤ βi ≤ 1, i = 1, 2 is a rather involved function of E0, β0 and ∆i and

Ei = nT,i + nS,i + 2nS,inT,i

= E0 + ∆i (2.164)

Thus the single-mode squeezed thermal state can be parametrized as ̺i = ̺i(E0, β0,∆i),

i = 1, 2. In our problem of discrimination between two Gaussian noises ∆1 and ∆2 we

denote Q(E0, β0,∆1,∆2) the QCB which is calculated by using the states ̺1(E0, β0,∆1)

and ̺2(E0, β0,∆2). We note that det[σ1 +σ2]−1/2 is independent on φi, therefore the QCB

does not depend on the squeeze angle. From numerics we have that Q(E0, β0,∆1,∆2) =

Q(E0, β0,∆2,∆1), i.e. the QCB is symmetric for change of the parameters. More-

over, denoting with s∗ the optimal value of s which minimizes the QCB, we have that

Q(E0, β0,∆1,∆2) is minimized by s∗, and that Q(E0, β0,∆2,∆1) by 1 − s∗. The mini-

mum value of Q corresponds to the optimal condition of discriminability and it is given

by β0 = 1 i.e. for initial squeezed vacuum states.

In the following we consider two different cases, first we address the discrimination

between an initial single-mode STS ̺0 and the evolved state ̺∆ = G∆(̺0) i.e. we address

the discrimination of the identity channel (∆1 = 0) from a channel with Gaussian noise

(∆1 = ∆ > 0) by evaluating the QCB Q(E0, β0,∆1,∆2) = Q(E0, β0, 0,∆). Then we will

consider the discrimination between two different STS’s ̺∆1
and ̺∆2

evolved in different

channels from the same initial probe state through the maps G∆1
(̺0) and G∆2

(̺0) i.e. we

address the discrimination between two channels with different gaussian noises (∆1 and

∆2) by evaluating the QCB Q(E0, β0,∆1,∆2).
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Figure 2.11: (Color online) QCB ratio R for a sample of STS with random values of ∆1 and

∆2 and left: β = 1, E0 = 1, 10, 1000 (black,red and blue points); right: E = 1000 and

β = 0.1, 0.5, 0.99 (black, red and blue points).

In the first case (∆1 = 0 and ∆2 = ∆), the QCB Q(E0, β0, 0,∆) is a monotonic

decreasing function of β0, E0 and ∆ and therefore the optimal Q is obtained for β0 = 1

and E0,∆ ≫ 1. In the latter case, ∆1 6= 0, the minimum Q is obtained for β0 = 1 and high

energies E0 ≫. The QCB has a maximum for ∆1 = ∆2 in Q = 1 and then it decreases

with β0, E0 and ∆i. At high energies E0 ≫ 1, we have the scaling:

Q(E0, β0,∆1,∆2) =Q

(

E0, β0,
∆1

∆2
, 1

)

=Q

(

E0, β0, 1,
∆2

∆1

)

. (2.165)

The closer is β ≃ 1, the more accurate is the scaling. We study the behavior of the QCB

in the regime of E0 ≫ 1, where the scaling holds, by analyzing the ratio

R =
Q(E0, β0,∆1/∆2, 1)

Q(E0, β0,∆1,∆2)
.

In Fig. 2.11 left, we report R for 103 random values of ∆1 and ∆2 and fixed β0 = 1

at different energies: E0 = 1, 10, 1000 (black, red and blue points respectively). As it is

apparent from the plot, the scaling is valid, i.e. the ratio R = 1 for E0 = 103 (blue points),

whereas in the case of small E0 this is no more valid. The right hand of Fig. 2.11 shows

that for fixed energy E = 1000 and different values of β0 = 0.1, 0.5, 1 (black, red and blue

points respectively) the scaling is almost valid, due to the fact that for high energy values

the QCB has a low dependence on β0. Note also that almost all the points of both the

figures are included in the small range (0.96− 1.05) and therefore for practical scopes one

could consider this scaling valid for all the β0’s.

In Fig. 2.12, we plot the QCB for ∆1 = 0, ∆2 = ∆ and ∆1 = 1, ∆2 = ∆ as a

function of ∆ at different E0 and β0. Both the panels show that the case ∆1 = 0 (dashed
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Figure 2.12: (Color online) Left: Plot of the QCB Q(E0, 1, 0,∆) (dashed line) and

Q(E0, 1, 1,∆) (solid line) at different energies E0 = 1, 10 (red and blue respectively).

Right: plot of Q(E0, 0, 0,∆) (dashed line) and Q(E0, 0, 1,∆) (solid line) at different energies

E0 = 1, 10 (red and blue respectively).

lines) corresponds to the condition of optimal discriminability i.e. it gives the minimum

value of the QCB. In particular, the left panel shows that for β0 = 1, i.e. for an initial

squeezed vacuum probe state, the increasing of the energy makes the discrimination easier

in the case ∆ = 0, whereas in the case ∆ = 1 it gets worse. The right panel depicts the

QCB of an initial thermal state with β0 = 0 in the two cases ∆1 = 0 and ∆1 = 1. The

discrimination is worse than the case β1 = 1 but it improves by decreasing the energy.

Since we are discriminating Gaussian states, it is of interest to compare the QCB with

two bounds that are easy to compute because they depend only on the symplectic spectra.

These bounds are called the Young bound Y and the Minkowski bound M and are derived

in [51] for n-mode STS’s. Here we report their expression specialized to the single-mode

case. Let us introduce the two functions

Φ±
p (x) =(x+ 1/2)p ± (x− 1/2)p (2.166)

Γp(x) =2[(2x + 1)2p − (2x− 1)2p]−1/2 (2.167)

The so called Minkowski bound is then M = infsMs, where

Ms = 2
[
Φ+
s (d1)Φ−

1−s(d2) + Φ+
1−s(d2)Φ−

s (d1)
]−1

(2.168)

and dj = nT, j + 1/2, j = 1, 2 is the symplectic spectrum of ̺j. The Young bound is

defined as Y = infs Ys where

Ys = Γs(d1)Γ1−s(d2). (2.169)
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Figure 2.13: (Color online) Plot of Q (red), F− (black), F+ (gray), M (green) and Y (blue)

for ∆1 = 0 and ∆2 = ∆ = 5 as a function of the energy E0 and β0 = 0.999 (left), β0 = 0

(right).

In Figs. 2.13 and 2.14 we plot the bounds to Q given by F , F+, Y and M , reported

in Eqs. (2.161), (2.168), (2.169) and signed with X in the figure. In the left panel of Fig.

2.13 we illustrate the case of an initial nearly pure squeezed vacuum with β = 0.999 that

evolves into a state ̺∆ with ∆ = 5. Note that for a pure squeezed vacuum β = 1, Q = F
whereas just for a slightly different value of β = 0.999 the quantum fidelity becomes a

lower bound. M (green line) is a tighter bound to Q than Y (blue) and F+ (gray). For

β0 = 0, i.e. an initial thermal state without squeezing, we have that Q = M =
√
F , ∀E0

and that the Young bound becomes a lower bound to Q: Y < F ≤ Q.

The discrimination between two STS ̺∆1
and ̺∆2

evolved in different channels from

̺0 is analyzed in Fig. 2.14. We have that for β0 = 1, M,F+ ≥ Q and M = F+ = Q at

β0 = 0, whereas F < Q ∀E0 and ∀β0.

Quantum Chernoff metric

Let us consider two infinitesimally close STS’s ̺∆ and ̺∆ + d̺∆ which result from the

interaction with a channel characterized by a Gaussian noise ∆ and ∆ + d∆ respectively.

For STS’s, the quantum Chernoff metric ds2QCB of Eq. (1.132) is given by [50]

ds2QCB = gQCB(∆)d∆2 =
(β′∆)2

32 sinh2 β
2

+
(r′∆)2

2
, (2.170)

where x′∆ = d
d∆x∆, β∆ = log

(
nT +1
nT

)

, being nT = (1−β)E
1+2βE the number of thermal photons

as given in Eq. (2.162) and r∆ = sinh−1 √βE, with E = E0 + ∆ the total energy and

0 ≤ β ≤ 1.
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Figure 2.14: (Color online) Plot of Q (red), F− (black), F+ (gray), M (green) and Y (blue)

for ∆1 = 1 and ∆2 = ∆ = 10 as a function of the energy E0 and β0 = 1 (left), β0 = 0.01

(right).

For two thermal states ν∆ and ν∆ + dν∆ with mean number of photons given by

nT = E0 + ∆, where E0 is the mean energy before the interaction with the Gaussian noisy

channel, the quantum Chernoff metric reads

ds2QCB =
1

8(E0 + ∆)(1 + E0 + ∆)
d∆2 (2.171)

Since for thermal states ds2B/2 = ds2QCB and, from (1.78), g∆ = 1
4G∆, we obtain the

expression of the quantum Fisher information

G∆ =
1

nT (1 + nT )
. (2.172)

For a pure squeezed vacuum state ̺0, with β = 1, the quantum Chernoff metric diverges

for ∆ = 0 and its behavior is

gQCB(∆) ≃ 1

4∆

(
1

2
+ E0

)

+ O(∆0) (2.173)

where we expanded around ∆ = 0. From Eq. (2.173) we see that the statistical distance

between a pure state (∆ = 0) and a neighboring impure state (∆ > 0) diverges as ∆ → 0.

This feature has been found in a similar calculation of the Bures metric by Twamley [22].

For β = 1, ∆ 6= 0 and E0 = 0 we have a thermal state again as in (2.171) gQCB(∆) =
1

8∆(∆+1) . Moreover, the metric tensor gQCB for β = 1 and ∆ 6= 0 scales at high energies

as

gQCB(∆) =
1

16∆2
+ O(1/E). (2.174)
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Quantum relative entropy

As we have already seen in section 1.4.3, an alternative approach to the binary decision

problem is provided by the Neyman-Pearson strategy. In this context, the quantum rela-

tive entropy (1.34) between two states ̺0 and ̺1 gives the asymptotic optimal exponent

for the decay of the probability of errors in discriminating ̺0 and ̺1 after performing n

measurements on ̺1, when n→ ∞. The QRE for two STS’s ̺1 and ̺2 is [140]

S(̺1||̺2) = − [(nT,2 + 1) log(nT,2 + 1) − nT,2 log(nT,2)] +
1

2
log[nT,1(nT,1 + 1)]

+
2

2nT,1 + 1

{

(Ã1 + 1/2)(Ã2 + 1/2) −ℜ[B̃1B̃
∗
2 ]
}

log

(
nT,1 + 1

nT,1

)

(2.175)

where Ãi = (nT,i + 1
2) cosh(2ri) − 1/2, B̃i = −(nT,i + 1/2) sinh(2ri), i = 1, 2 are the

coefficients of the characteristic functions corresponding to ̺i. As in the case of the

quantum Chernoff bound, the condition of maximal discriminability is achieved for β0 = 1,

i.e. the optimal probes states are squeezed vacua, and ∆1 = 0. We set E0 = 0 and

consider that the total energy of the two states is given by E1 = ∆1 and E2 = ∆2. Then

the quantum relative entropy is given by

S =∆2 log

(
∆1 + 1

∆1

)

+ log(∆1 + 1) + ∆2 log ∆2 − (1 + ∆2) log(1 + ∆2), (2.176)

and, around ∆1 = 0 it diverges as

S =∆2(log ∆2 − log ∆1) − (1 + ∆2) log(1 + ∆2) + (1 + ∆2)∆1 + O(∆2
1) (2.177)

where we expanded up to first order in ∆1.

Let us consider the problem of discriminating two thermal states ̺1 = ν1 with mean

number of photons nT,1 = E0 + ∆1 (β0 = 0) and ̺2 = ν2 with nT,2 = E0 + ∆2. The

behavior of the QRE is given by

S(ν1||ν2) = log(1 + nT,1) + nT,2 log

(

nT,2(1 +
1

nT,1
)

)

− (1 + nT,2) log(1 + nT,2). (2.178)

Kubo-Mori-Bogoljubov metric

We now consider a thermal state ν∆ with mean photon number given by nT = E0 +∆. By

expressing ν∆ = e−β∆a
†a/Z, Z∆ = Tr[e−β∆a

†a], the logarithmic derivative of Eq. (1.142)

is

L̃∆ = −Z
′
∆

Z∆
− β′∆a

†a (2.179)
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where x′ = d
d∆x. Then the KMB Fisher information is given by

G̃(∆) =

(
Z ′

∆

Z∆

)2

+ (β′∆)2Tr[ν∆(a†a)2] + 2
Z ′

∆β
′
∆

Z∆
Tr[ν∆(a†a)2] =

1

nT (nT + 1)
(2.180)

where Tr[ν∆(a†a)2] = 2nT (nT + 1) and Tr[ν∆a
†a] = nT . According to the definition

(1.140), by expanding the r.h.s. of Eq. (2.178) to the second order in ǫ with ∆1 = ∆ + ǫ

and ∆2 = ∆ we obtain the same result. By comparing Eq. (2.180) with (2.172), we

conclude that for thermal states the KMB Fisher information is equal to the quantum

Fisher information thus saturating the bound (1.143).
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2.8 Conclusions and Outlooks

In this chapter we considered the estimation of parameters and the discrimination problem

for Gaussian states. We have addressed the use of Kerr interaction to improve estimation

of displacement and squeezing parameters and analyzed in details the behaviour of the

quantum Fisher information as a function of probe and interaction parameters. We found

that at fixed energy, with no constraint on the available Gaussian squeezing, Kerr dynamics

is not useful and performances of Gaussian states are superior. On the other hand, in the

more realistic case where the amount of Gaussian squeezing is fixed, or absent, then Kerr

interaction improves estimation, especially for probe states with large amplitude. It should

be noticed that Gaussian squeezing in χ(2) media is obtained by parametric processes and

the amount of squeezing linearly increases with the pump intensity. On the other hand,

in χ(3) media, the energy needed to obtain significant nonlinear effects is provided by the

signal itsels. Overall, our results indicate that precision achievable with current technology

Gaussian squeezing may be attained and surpassed for realistic values of the Kerr coupling

and large enough signal amplitude.

For what concerns the discrimination problem, we have focused to the case when one

of the two channels is the identity, i.e., the problem of discriminating the presence of

a damping process from its absence (loss detection). For this kind of discriminination

we have considered thermal probes as input, i.e., single- and two-mode squeezed thermal

states. The performance of the channel discrimination has been quantified using the

QCB, computed over the two possible states at the output of the unknown channel for

a given input state. Finding the optimal input state ρ which minimizes this bound gives

automatically the optimal multi-copy state ρ⊗ ρ⊗· · · when we consider many accesses to

the unknown channel. In this scenario, we have fixed the mean total energy of the input

state and optimized the discrimination (detection of loss) over the class of single- and two-

mode squeezed thermal states. We have found numerically that the optimal states are

pure, thus corresponding to single- and two-mode squeezed vacuum states. Furthermore,

we have determined the conditions where the two-mode state outperforms the single-mode

counterpart. This happens when the input energy exceeds a certain threshold, which

becomes zero for suitably low values of the transmissivity (i.e., high values of damping).

In our investigation we have then considered the problem of loss detection in more

realistic conditions, where it is unlikely to have pure squeezing. In this case, we have

studied the optimal state for fixed total energy and squeezing, i.e., by fixing all the relevant

resources needed to create the input state. Under these constraints, we have shown that a

two-mode squeezed thermal state which conveys all the thermal photons in the dissipative
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channel is the optimal thermal probe. In addition, this result is robust against fluctuations,

i.e., it holds approximately also when the thermal photons are distributed in a more

balanced way between the probe mode (sent through the dissipative channel) and the

reference mode (bypassing the channel).

Finally we have closely investigated the role of correlations in our problem of loss

detection. We have found that, for fixed input squeezing, the reduction of the QCB is an

increasing function of several correlation quantifiers, such as the quantum entanglement,

the quantum discord and the quantum mutual information. We then verify that employing

the input squeezing in the form of correlations (quantum or classical) is always beneficial

for the detection of loss by means of thermal probes.

We finally addressed the problem of discriminating Gaussian noise channels using

both minimum error probability and maximum detection probability strategy. For what

concerns discriminability with the quantum Chernoff bound, we studied two cases: the

discrimination between an initial single-mode STS and the evolved state through the

Gaussian noise map and the discrimination between two different STS’s evolved with in

two different channels. We have found that the condition of maximal discriminability is

obtained for initial squeezed vacuum states in both the situations and that in the second

case the quantum Chernoff bound has a scaling behavior at high energies. We also found

that discrimination in the first case is better than in the second one. We have considered

the discrimination of channels with infinitesimally close values of the noise parameter and

evaluated the metrics associated to the two distinguishability notions. We found that the

quantum Chernoff metric diverges for ∆ = 0 and analyzed the scaling behavior for pure

squeezed states and for thermal states. Moreover, for what concerns the KMB metric,

we found that in the case of thermal states the KMB Fisher information is equal to the

quantum Fisher information thus saturating the upper bound
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3
Estimation and discrimination in

fermionic systems

This chapter is devoted to the problem of estimating the parameters of many-body Hamil-

tonians which undergo a second-order quantum phase transition and discriminating be-

tween two ground states or two thermal states of those systems. In particular, we will

consider the Ising model in a transverse magnetic field as a paradigmatic example of such

a system both at zero and finite temperature. In Section 3.1, we introduce the XY model

that reduces to the Ising model for a particular value of the anisotropy coefficient, explain

the phase diagram and the properties of magnetization. We then introduce in Sec. ??

the basic concepts of the geometric approach to quantum phase transitions and provide

the Bures metric tensor for the quantum Ising model. By exploiting the results about

the relation between quantum Fisher information and Bures metric tensor, in Section 3.3

we derive the optimal estimator of the coupling constant of the quantum Ising model at

zero temperature both for the case of few spins and in the thermodynamical limit and

also analyze the effects of temperature and derive the scaling properties of the QFI. We

also address the measurement of total magnetization as an estimator of the Hamiltonian

parameter and show its optimality. Finally, in Section 3.4, we study the distinguishability

of two quantum states of the quantum Ising model at zero and finite temperature.

3.1 The XY model

We consider the XY model describing a one-dimensional chain of spins with nearest-

neighbor coupling, in a constant and uniform magnetic field. The XY model is a class

of Hamiltonians distinguished by a different value of the anisotropy coefficient γ, which

91
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introduces a different coupling between the x and y components of the spins. In particular,

the case γ = 1 is known as Ising model, the case γ = 0 is the so called XX model. The

Hamiltonian is

H = −
L∑

i=1

[

J
(1 + γ

2

)

σ̂xi σ̂
x
i+1 + J

(1 − γ

2

)

σ̂yi σ̂
y
i+1 + hσ̂zi

]

(3.1)

where σ̂xi , σ̂yi and σ̂zi may be represented by the usual Pauli spin matrices

σx =

(

0 1

1 0

)

σy =

(

0 −i
i 0

)

σz =

(

1 0

0 −1

)

(3.2)

acting on spin i, with

[σµi , σ
ν
j ] = 2iδij

∑

τ=x,y,z

ǫµντσ
τ
i . (3.3)

In the following we treat the ends of the chain as a cyclic chain, in which case 1 ≤ i ≤ L

and σµL+1 = σµ1 , µ = x, y, z (periodic boundary conditions). To solve the model, we first

introduce the raising and lowering operators

σ+
i =

σ̂xi + iσ̂yi
2

, (3.4)

σ−i =
σ̂xi − iσ̂yi

2
(3.5)

which satisfy the commutation rules for i 6= j

[σzi , σ
±
j ] = ±2δijσ

±
i [σ+

i , σ
−
j ] = δijσ

z
i , (3.6)

and anticomutation rules on the same site

{σ+
i , σ

−
i } = 1 (σ+

i )2 = σ2
i = 0. (3.7)

In terms of which the Pauli spin operators they are

σ̂xi = σ+
i + σ−i , σ̂yi = (σ+

i − σ−i )/i, σ̂zi = σ+
i σ

−
i − 1/2 (3.8)

and substituting into (3.1) we obtain

H = −
L∑

i=1

[J(γσ+
i σ

+
i+1 + σ+

i σ
−
i+1 + h.c.) + hσ̂zi ]. (3.9)

Note that

J = γx + γy, γJ = γx − γy (3.10)
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where γx = J
(

1+γ
2

)

, γy = J
(

1−γ
2

)

. In the thermodynamic limit, the diagonalization of

the XY model is achieved by means of three transformations: the Jordan-Wigner (JW),

Fourier and Bogoliubov (BGV) transformations. The JW transformation is based on the

observation that there exists a unitary mapping between the Hilbert space of a system

of N spins and the fermion Fock space of spinless fermions on L sites. By virtue of this

identification, we can consider the canonical annihilation JW fermion operators ci [141]

σ+
i =c†ie

iπ
Pi−1

j=1
c†jcj , (3.11)

σ−i =e−iπ
Pi−1

j=1
c†jcjci, (3.12)

σ̂zi =2c†i ci − I. (3.13)

Observe that the JW operators satisfy anticommutation relations ∀i, j

{ci, c†j} = δij , c2i = (c†i )
2 = 0, (3.14)

whereas the σ±i anticommute only on a site. Note also that the boundary term depends

on the number of spin of the chain,

σ+
j σ

−
j = c†jcj , ∀j (3.15)

σ+
i σ

+
i+1 = c†ic

†
i+1 for i = 1, . . . L− 1, σ+

Lσ
+
1 = −c†Lc

†
1e
iπN , (3.16)

σ+
i σ

−
i+1 = c†ici+1 for i = 1, . . . L− 1, σ+

Lσ
−
1 = −c†Lc1eiπN . (3.17)

where N =
∑L

i=1 c
†
i ci =

∑L
i=1(σzi +1/2). We have also that eiπnjcj = cj and eiπnjc†j = −c†j.

The Hamiltonian H becomes

H = −J
L−1∑

i=1

[(γc†i c
†
i+1 + c†i ci+1) + h.c.] + JeiπN [(γc†Lc

†
1 + c†Lc1) + h.c.] − 2h

L∑

i=1

c†i ci + Lh.

(3.18)

The Hamiltonian (3.1) with L spins and periodic boundary conditions can be mapped into

a fermionic model with

• anti-periodic boundary conditions (ABC) on the fermionic operators ci, in the sector

with an even number of fermions: eiπN = 1,

• periodic boundary conditions (PBC) for the ci in the sector with an odd number of

fermions: eiπN = −1.

Note that the number of fermionic operators is not invariant

[N ,H] 6= 0, (3.19)
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while the parity operator P = eiπN satisfies

[eiπN ,H] = 0. (3.20)

The operator P can be written as

P = P+ − P− (3.21)

where P+ and P− are the projection operators associated to the eigenvalues ±1 of P and

satisfy the following properties:

P+ + P− = 1

P+P− = 0. (3.22)

Then the Hamiltonian (3.1) preserves the parity sectors and can be decomposed as

H = P+HP+ + P−HP− = H(+) +H(−). (3.23)

One can study separately the two parity sectors where P acts as a c-number. In the

thermodynamic limit the boundary terms ∝ cLc1, c
†
Lc1 + h.c. can be neglected since they

introduce corrections of order 1/L which go to zero for L → ∞. For the diagonalization

of the model with the boundary term see [142]. The problem is then reduced to the

diagonalization of the so-called c-cyclic Hamiltonian [143] and can be achieved by means

of a discrete Fourier transform. We set in the parity sector P z = eiπN = 1 which implies

anti-periodic conditions for the ci and define the Fourier transform

cj =
1√
L

L−1∑

k=0

eiφkjck. (3.24)

In this case (ABC) we have that φk = (2k+1)π
L with k = 0, . . . L− 1, whereas for PBC the

parameter φk is φk = 2kπ
L with k = 0, . . . L− 1. Notice that

L∑

i=1

(c†i c
†
i+1 + h.c.) =

∑

k

(eiφkc†kc
†
−k + h.c.),

∑

k

(eiφkc†kc
†
−k) =

(
∑

k+

+
∑

k−

)

(cos(φk) + i sin(φk))c†kc
†
−k

=
∑

k

(i sin(φk))c
†
kc

†
−k. (3.25)

The index k = 0, . . . L − 1 labels the sites of the chain in the momentum space. Then,

due to the translational symmetry of the system, one can choose k = −M, . . . ,M and

L = 2M + 1. Then we have

H =
M∑

k=−M

[

(−J cos(φk) − h)(c†kck + c†−kc−k) − iJγ sin(φk)(c†kc
†
−k + ckc−k) + h

]

, (3.26)
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and we can write

H =

M∑

k=1

H̃k =

M∑

k=1

(

H̃
(+)
k + H̃

(−)
k

)

, (3.27)

where

H̃
(±)
k =

{

αk(c
†
kck + c†−kc−k) + iδk(c†kc

†
−k + ckc−k) + 2h

}

αk = 2(−J cosφ
(±)
k − h), δk = −2Jγ sinφ

(±)
k

φ
(+)
k =

(2k + 1)π

L
, φ

(−)
k =

2kπ

L
(3.28)

where we cancelled the boundary terms whose contribution is of order O(1/L). By ex-

ploiting the following relation

∑

k

(

c†k c−k
)
(

ǫk Wk

W ∗
k ǫ−k

)(

ck

c†−k

)

=
∑

k

[
(ǫk + ǫ−k)c

†
kck +Wkc

†
kc−k +W ∗

k c−kck − ǫk
]
,

(3.29)

and setting

ǫk = −(J cosφk + h), Wk = −iJγ sinφk, (3.30)

we obtain the following quasi-particle spectrum

Λ̃k =
√

ǫ2k + |Wk|2 =
√

J2γ2 + h2 + J2(1 − γ2) cos2 φk + 2Jh cos φk. (3.31)

A final unitary matrix Uk such that

Uk

(

ǫk Wk

W ∗
k ǫ−k

)

U †
k =

(

Λ̃k 0

0 −Λ̃k

)

,

(

ηk

η†−k

)

= Uk

(

ck

c†−k

)

(3.32)

is needed to cast the Hamiltonian (3.26) into a free particle theory. This is the so-called

Bogoliubov transformation that maps the ck’s into a new set of fermionic operators whose

number is conserved. We then obtain

H =
∑

k

Λ̃k

(

η†kηk − η−kη
†
−k

)

=
∑

k

Λk(η†kηk −
1

2
), Λ̃k = 2Λk. (3.33)

The Uk which diagonalized the XY Hamiltonian has the following form

Uk =

(

uk vk

−v∗k u∗k

)

, (3.34)

and the new fermionic operators become

ηk = ukck + vkc
†
−k. (3.35)
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One possible choice for uk and vk may be

uk = cos(θk/2), vk = i sin(θk/2) (3.36)

where θk = tan−1 ǫk/Wk. The equation (3.33) holds in the sector with an even number of

fermions. In this case periodic boundary conditions on the spins induce antiperiodic BC

on the fermions and the momenta satisfy φk = (2n+1)π
L . In the sector with an odd number

of particles, instead, one has φk = 2nπ
L and the Hamiltonian becomes

H = (−2J − 2h)c†0c0 + (2J − 2h)c†πcπ + 2h+
∑

k 6=0,π

Λk(η
†
kηk −

1

2
) (3.37)

therefore one must carefully treat the excitations at φk = 0 and φk = π.

In any case, we are interested into the ground state of the system that belongs to

the even sector so that, at zero temperature, we can use Eq. (3.33) for any finite L. At

positive temperature, we are primarily interested in large system sizes and therefore we

can neglect boundary terms in the Hamiltonian and use Eq. (3.33) in the whole Fock

space. The ground state energy is then (in the sector with even N )

E = −
∑

k

Λ̃k =
√

J2γ2 + h2 + J2(1 − γ2) cos2(k) + 2Jh cos φk

=
√

(γx − γy)2 + h2 + 4γxγy cos2 φk + 2(γx + γy)h cos φk. (3.38)

With this expression the correlators 〈σ̂xi σ̂xi+1〉 and 〈σ̂yi σ̂
y
i+1〉 can be obtained by differenti-

ating with respect to γx and γy, i.e

〈σαi σαi+1〉 = − 1

L

∂E

∂γα
, α = x, y; 〈σ̂zi 〉 = − 1

L

∂E

∂h
(3.39)

and we obtain

〈σ̂xi σ̂xi+1〉 =
1

L

∑

k

Jγ + J(1 − γ) cos2 φk + h cosφk

Λ̃k
(3.40)

〈σ̂yi σ̂
y
i+1〉 =

1

L

∑

k

−Jγ + J(1 + γ) cos2 φk + h cosφk

Λ̃k
(3.41)

〈σ̂zi 〉 =
1

L

∑

k

h+ J cosφk

Λ̃k
(3.42)

Phase diagram of the quantum Ising model

Let us consider the case γ = 1, that is the so-called Ising model. As the temperature

and the field are varied, one may identify different physical regions. At zero temperature,

the system undergoes a QPT for h = J . For h < J the system is in a magnetically
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Figure 3.1: Phase diagram of the Ising model with J = 1 in a transverse field taking into

account both critical points at h = ±1 and the purely classical Ising line h = 0. The arrows

define the direction along which the fidelity decreases most rapidly: the latter represents the

direction of highest distinguishability between two nearby Gibb’s states (see the next section

3.2 for details).

ordered phase i.e. the spins are either all up or down (in eigenstates of σ̂x), instead

for h > 1 the magnetic field dominates, and excitations are given by spin flip over a

paramagnetic ground state. A signature of the ground state quantum phase diagram

remains also at finite temperature [144] where for T ≪ ∆ = |J − h| the system behaves

quasi-classically whereas for T ≫ ∆ quantum critical effects dominate. In each of the

above described regions of the (h, T ) plane the system displays very different dynamical as

well thermodynamical properties. For example, in the quantum critical region the specific

heat approaches zero linearly with temperature, whereas in the quasi-classical regions

the approach is exponentially fast. We report in Fig. 3.1 an interesting phase diagram

of the Ising model in transverse field in the (h, T ) plane taken from [145]. The coupling

constant is fixed to J = 1 and there has been taken into account both the quantum critical

points h = ±1. The arrows define the direction along which the fidelity decreases most

rapidly, that represents the points of maximal distinguishability between two states, i.e.

the overlap decreases when the distance between two quantum states increases.

It is possible to show [146] that the transverse magnetization mz = 〈σ̂zi 〉 in (3.42),

obtained differentiating the energy with respect to the parameter h, for J = 1 has the

following expression near the transition point h = 1

mz ≃ 2

π
− h− 1

π
(ln |h− 1| + 1 + ln 8). (3.43)

As expected, mz is a continuous function at the transition point whereas the next h-

derivative exhibits a logarithmic divergence, as it is related to the specific heat in the
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Figure 3.2: The transverse magnetization 〈σ̂zi 〉, is plotted for different sizes L ranging from 20

to 100 in steps of 10. The black thick line corresponds to the thermodynamic limit and the

arrows indicate the direction of increasing L. The inset shows the derivative with respect to h

which has a cusp at the pseudo quantum critical point h = 1.

corresponding 2D classical model. In the critical regime L≪ ξ, where ξ is the correlation

length given by the formula sinh(1/2ξ) = |1 − h| |h|−1/2/2 which can be obtained from

the dispersion relation [146], the finite-size expression for the transverse magnetization is

[146]

mz
h(L) ≃ 2

π
+

ln(L) + ln(8/π) + γC − 1

π
(h− 1) +

π

12

1

L2
(3.44)

where γC = 0.5772 . . . is the Euler-Mascheroni constant. In Fig. 3.2 [146], we report the

plot of mz for different sizes L of the Ising model. The inset shows the susceptibility which

is given by ∂〈σ̂zi 〉/∂h plotted for different sizes of L. The black thick line corresponds to

the thermodynamic limit and the function has a cusp at h = 1. The finite-size expression

of the susceptibility at h = 1 is then obtained from (3.44)

∂〈σ̂zi 〉
∂h

∣
∣
J=h=1

=
−1 + γC + ln(8/π)

π
+

1

π
lnL+ O(L−1). (3.45)
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3.2 Geometry of quantum phase transitions

In this Section we consider the so-called metric (or fidelity) approach to critical phenomena

which basically consists into approaching quantum phase transitions from a geometrical

point of view through the definition of distance functions between infinitesimally close

quantum states. In the following we provide the general theoretical framework of this

strategy according to [147] and then provide an example of characterization of the quantum

phase transitions in terms of the metric tensor by considering the example of the quantum

Ising model.

The analysis of quantum phase transitions has benefited from tools of quantum in-

formation theory. The von Neumann entropy and fidelity applied to many-body systems

can identify phase transitions and reveal different scaling behaviors at different regions

of the phase diagram [148, 149, 150, 151, 152]. More recently, it has been shown that

quantum fidelity between quantum states, i.e. the overlap between ground state wave

functions, can identify the quantum phase transition by comparing two ground states cor-

responding to slightly different values of the coupling constants {λ} [39, 153, 154, 155,

156, 147, 145, 157, 158]. The intuition behind this is simple: the quantum critical points

mark the separation between regions of the parameter space which correspond to ground

states having deeply different structural properties, i.e. order parameters. This difference

is then quantified by the simplest Hilbert-space geometrical quantity that is the overlap

between the corresponding ground states. This new approach provides an alternative to

the study of quantum phase transitions using order parameters and symmetry breaking

patterns, which depends on a priori knowledge of the physics of the problem [159]. On

the other hand, some systems fail to fall into this conceptual framework. This can be due

to the difficulty of identifying the proper order parameter for systems whose symmetry

breaking pattern is unknown or to the absence of a local order parameter , i.e. in the case

of quantum phase transitions involving some kind of topological order [160]. Moreover,

the fidelity approach to QPTs differently from bipartite entanglement measure approach

[148, 149], considers the system as a whole, without resorting to bipartitions.

Let us consider a family of Hamiltonians {H(λ)}, λ ∈ M (where M is the parameter

manifold) in the Hilbert space H of the system. If |Ψ0(λ)〉 ∈ H denotes the ground

state (unique for simplicity) of H(λ), one has defined the map Ψ0 → M → |Ψ0(λ)〉
associating to each set of parameters the ground state of the corresponding Hamiltonian.

This map can be seen also as a map between M and the projective space PH (the manifold

of rays of H). This space is a metric space equipped with the Fubini-Study distance

DFS(|ψ〉, |φ〉) = arccos
√

|〈ψ|φ〉|2 as defined in Eq. (1.22). In Ref. [13], Wootters showed



100 3. Estimation and discrimination in fermionic systems

that this metric has a deep operational meaning: it quantifies the maximum amount of

statistical distinguishability between the pure quantum states |ψ〉 and |φ〉. More precisely,

DFS(|ψ〉, |φ〉) is the maximum over all the possible projective measurements of the Fisher-

Rao statistical distance between the probability distributions obtained from |ψ〉 and |φ〉.
Moreover the result extends to mixed states by replacing the pure state fidelity (1.21) with

the Uhlmann fidelity (1.20) and the projective measurements with generalized ones [25],

thus defining the Bures distance (1.23):

DA(̺, σ) = cos−1
√

F(̺, σ). (3.46)

where ̺ and σ are two mixed quantum states. There results allow the identification of

Hilbert-space geometry with a geometry in the information space: the bigger the Hilbert

space distance between ̺ and σ, the higher the degree of statistical distinguishability of

these two states. From this perspective we have that a single real number, i.e. the distance,

virtually encodes information about all the observables one may think to measure. This

remark contains the main intuition of the metric approach to quantum phase transitions:

at the critical points, a small difference between the control parameters results in a greatly

enhanced distinguishability in the corresponding ground states, which should be revealed

by the behavior of their distance.

The projective manifold PH, besides the structure of metric space, has the structure

of a Riemannian manifold, i.e. it is equipped with a metric tensor. An elementary way

of getting the form of the Riemannian metric over PH is by means of Eq. (1.22). For F
very close to unity we have D2

FS(ψ,ψ + dψ) ≃ 2(1 − 〈ψ|ψ + dψ〉). Since 〈ψ|ψ + dψ〉 ≃
|1 + 〈ψ|dψ〉 + 1/2〈ψ|d2ψ〉|2, using this expression and the normalization of |ψ〉 one finds

ds2 = D2
FS(ψ,ψ + dψ) = 〈dψ|dψ〉 − |〈ψ|dψ〉|2. (3.47)

By considering the ground state mapping Ψ0 introduced above, we have d|Ψ0(λ)〉 =
∑

µ |∂µΨ0〉dλµ, with ∂µ = ∂/∂λµ, µ = 1, . . . ,dimM. Using Eq. (3.47), one obtains

ds2 =
∑

µν

gµνdλ
µdλν (3.48)

where

gµν = Re
[
〈∂µΨ0|∂νΨ0〉 − (〈∂µΨ0|Ψ0〉)2

]
. (3.49)

The same derivation of the metric tensor for the case of two mixed states ̺ and σ = ̺+d̺
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leads to the Bures metric of Eq. (3.96):

ds2B =DB(̺, ̺+ d̺))2 =
1

2

∑

m,n

|〈ψn|d̺|ψm〉|2
̺m + ̺n

=
1

4

∑

n

dp2
n

pn
+

1

2

∑

n 6=m

(pm − pn)2

pn + pm
|〈ψn|dψm〉|2 (3.50)

where ̺ =
∑

n pn|ψn〉〈ψn|.
We now provide a simple perturbative argument for which one should expect a diver-

gent behavior of the metric tensor (3.49) at quantum phase transitions. By using the first

order perturbative expansion

|Ψ0(λ+ dλ)〉 ∼ |Ψ0(λ)〉 +
∑

n 6=0

(E0 − En)−1|Ψn(λ)〉〈Ψn(λ)|dH|Ψ0(λ)〉, (3.51)

where dH = H(λ+dλ)−H(λ), one obtains for the entries of (3.49) the following expression

gµν = Re
∑

n 6=0

(〈Ψ0(λ)|∂µH|Ψn(λ)〉)2
[En(λ) −E0(λ)]2

. (3.52)

Continuous QPTs are known to occur when, for some specific values of the parameters

and in the thermodynamical limit, the energy gap above the GS closes. This amounts to a

vanishing denominator in Eq. (3.52) which may break down the analyticity of the metric

tensor entries.

In order to show explicitly the divergences in gµν , we consider the example of the XY

model and in particular the quantum Ising model reviewing the derivation of the Bures

metric given in [145]. We start by considering the Bures metric for a quantum statistical

model defined by the set of thermal states ̺λ = e−βH(λ)/Z, Z = Tr[e−βH(λ)] associated to a

family of Hamiltonians {H(λ)} depending on a set of parameters λ living in some manifold

M. First notice that ̺λ = Z−1
∑

n e
−βEn |ψn〉〈ψn| whereEn and |n〉 are the eigenvalues and

eigenvectors of the Hamiltonian H. By differentiating the Hamiltonian eigenvalue equation

one has 〈ψi|dψj〉 = 〈ψi|dH|ψj〉(Ei − Ej). Moreover, dpi = d(e−βEi/Z) = −Zpi[dEi −
(
∑

i dEipi)], therefore the first term in Eq. (3.96) can be written as β2/4
∑

i pi(dE
2
i −

〈dE〉2) where 〈dE〉β =
∑

j dEjpj . This means that the first term of (3.96), i.e. the Fisher

Rao distance is expressed as the variance of the diagonal observable 〈dHd〉 =
∑

j dEj |j〉〈j|.
Summarizing we have

ds2B =
β2

4
(〈dH2

d 〉β − 〈dHd〉2β) +
1

2

∑

n 6=m

∣
∣
∣
∣

〈ψn|dH|ψm〉
En − Em

∣
∣
∣
∣

2 (e−βEn − e−βEm)2

Z(e−βEn+e−βEm )
. (3.53)

We recall that the quasifree Hamiltonian we consider is given in (3.33) byH =
∑

k Λk(η
†
kηk−

1/2). One has that k is a suitable quasiparticle label, that for translationally invariant



102 3. Estimation and discrimination in fermionic systems

systems amounts to a linear momentum. The ground state is the vacuum of ηk operators

i.e. ηk|GS〉 = 0, ∀k. The dependence on the parameters h and J is both through Λk and

the ηk’s. To derive the Bures metric, we first observe that the first and second terms in

Eq. (3.96) depend on β, h and J . For simplicity, we will consider only a single parameter

in the derivation of gµν, in particular µ = ν = h. The Bures metric then can be expressed

in terms of the classical and non classical part

ghh = gchh(β, J, h) + gnchh(β, J, h) (3.54)

such that ds2B = ghhdh
2. The Hamiltonian eigenvalues are given by Ej =

∑

k nkΛk,

where the nk’s are fermion occupation numbers, i.e. nk = 0, 1. Then we have that

dEj =
∑

k nkdΛk and 〈Ej〉β =
∑

k〈nk〉βdΛk. Furthermore, 〈nµnν〉β − 〈nµ〉β〈nν〉β =

δµν〈nν〉β(1−〈nν〉β) where 〈nν〉β = [exp (βΛν)+1]−1. The final result for the classical part

is [145]

1

4

∑

k

(dpn)2

pn
=
β2

16

∑

k

(∂JΛk)2

cosh(βΛk/2)
dh2 (3.55)

In order to compute the nonclassical part of Eq. (3.96), one has to explicitly con-

sider the eigenvectors of Eq. (3.33). Following the notation of Ref. [161] one has

|m = {αk, α−k}k>0〉 = ⊗k>0|αk, α−k〉, where,

|0k0k〉 = cos(θk/2)|00〉k,−k − sin(θk/2)|11〉k−k ,
|0k1−k〉 =|01〉k,−k, |1k0−k〉 = |10〉k,−k,
|1k1k〉 = cos(θk/2)|11〉k,−k + sin(θk/2)|00〉k,−k. (3.56)

We assume that the parameter dependence is only in the angles θk’s which is true for

all the translationally invariant systems and we find that the nonvanishing matrix el-

ements 〈ψn|dψm〉 are given by 〈0k0−k|d|1k1−k〉 = dθk/2 and that the thermal factor

(pn−pm)2/(pn+pm) has the form sinh2(βΛk)/{[cosh(βΛk)+1][cosh(βΛk)]} = [cosh(βΛk)−
1]/ cosh(βΛk). Putting all together

1

2

∑

n 6=m

(pm − pn)2

pn + pm
|〈ψn|dψm〉|2 =

1

4

∑

k>0

cosh(βΛk) − 1

cosh(βΛk)
(dθk)

2dh2. (3.57)

The two elements (3.55) and (3.57) define the metric element (3.54). This result can be

applied to any quasifree fermionic model H ∝ ∑

k Λkη
†
kηk. The analysis of the behavior

of the metric tensor g for the Ising model allows one to conclude that, for the specific

model studied, the quantum critical and quasiclassical regions can be clearly identified in

terms of the markedly different temperature behavior of the geometric tensor g. Indeed
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one has that for fixed J = 1, in the quantum-critical region β∆ ≃ 0, ∆ = |J − h| the low

temperature expansion

gchh =
π

96h2
T + O(T 2) (3.58)

gnchh =
1

π2

[ C
π2
T−1 − 1

16
+ O(T )

]

(3.59)

where C is the Catalan constant. Note that the in the limit T → 0, the nonclassical part

of the metric tensor matches the behavior of the metric tensor (3.49) in the ground state.

We reported this result of [145], to give an example of the metric (or fidelity) approach

to quantum phase transitions whose main result is that the set of critical parameters can

be identified and analyzed in terms of the scaling and finite-size scaling behavior of the

metric. More precisely the metric has the following properties:

• In the thermodynamical limit and in neighborhood of the critical values λc, the zero

temperature metric has the scaling behavior

ds2B ∼ Ld|λ− λc|−ν∆g , (3.60)

where L is the system size, d the spatial dimensionality, ν is the correlation length

exponent ξ = |λ− λc|−ν and ∆g = 2ζ + d− 2∆V . Here ζ is the dynamical exponent

and ∆V the scaling dimension of the operator coupled to λ.

• At the critical points, or more generally in the critical region defined by L≪ ξ, the

finite-size scaling is

ds2B ∼ Ld+∆g . (3.61)

The main point is that for a wide class of QPTs, ∆g can be greater than zero

thus giving a superextensive behavior of the metric in the critical region whereas at

regular points the scaling is always extensive:

ds2B ∼ Ld. (3.62)

The superextensive behavior gives rise for L → ∞ to a peak of the metric (or a

drop of the fidelity) that allows one to identify the boundaries between the different

phases.

• Moreover, when the temperature is turned on, one can still see signatures of the

criticality. This is true when the temperature is low but bigger than the system’s

energy gap and one has

ds2B ∼ T−β (3.63)

with β > 0.
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3.3 Estimation of parameters in the quantum Ising model

It is a general fact that the coupling constant of a many-body Hamiltonian does not corre-

spond to any observable and one has to infer its value through indirect measurements. For

many-body quantum systems, changing the coupling constant drives the system into dif-

ferent phases. In particular, close to critical points, quantum states belonging to different

phases should be distinguished more effectively than states belonging to the same phase

[145, 147, 153, 154, 155, 156, 162]. Distinguishability is usually quantified by fidelity.

In estimating the value of a parameter, one is led to define the Fisher information

which represents an infinitesimal distance among probability distributions, and gives the

ultimate precision attainable by an estimator via the Cramer-Rao theorem. Its quantum

counterpart, the quantum Fisher information (QFI), is related to the degree of statis-

tical distinguishability of a quantum state from its neighbours, and it turns out to be

proportional to Bures metric between quantum states [13, 20, 25, 163, 164, 165, 166].

As noticed in [39] one can exploit the geometrical theory of quantum estimation to

derive the ultimate quantum bounds to the precision of any estimation procedure, and

the fidelity approach to QPTs to find working regimes achieving those bounds. Indeed,

precision may be largely enhanced at the critical points in comparison to the regular

ones. In this Section we show that the general idea advocated in [39] can be successfully

implemented in systems of interest for quantum information processing. To this aim we

address a paradigmatic example of a many-body system exhibiting a (zero temperature)

QPT: the one-dimensional Ising model with a transverse magnetic field.

In most physical situations, some parameters of the Hamiltonian, e.g. the coupling

constant, are unaccessible, whereas others may be tuned with reasonable control by the ex-

perimenter (e.g. external field). Therefore, the idea is to tune the controllable parameters

in order to maximize the QFI and thus the distinguishability and the estimation precision.

In doing this we consider the system both at zero and finite temperature, and fully exploit

QET to derive the optimal quantum measurement for the unobservable coupling constant

in terms of the symmetric logarithmic derivative. In the thermodynamic limit we find

that optimal estimation is achieved tuning the field at the critical value, in accordance

with [39], whereas at finite size L, the request of maximum QFI defines a pseudo-critical

point which scales to the proper critical point as L goes to infinity. In turn, a precision

improvement of order L may be achieved with respect to the non critical case.

The optimal measurement arising from the present QET approach may be not achiev-

able with current technology. Therefore, having in mind a practical implementation, we

consider estimators based on feasible detection schemes, and show, for systems of few
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spins, that the measurement of the total magnetization allows for estimation of the cou-

pling constant with precision at the ultimate quantum level.

The section is structured as follows: we first derive the ultimate quantum limits to the

precision of coupling constant estimation at zero temperature, both for the case of few

spins and then in the thermodynamical limit. In subsection 3.4.2 we analyze the effects of

temperature and derive the scaling properties of QFI. Finally we address the measurement

of total magnetization in 3.3.4 as estimator of the Hamiltonian parameter and show its

optimality. The results reviewed in this section are reported in [3].

3.3.1 Criticality as a resource

To the aims of the following work, it is crucial to notice that the quantum Fisher informa-

tion (QFI) is proportional to the Bures metric. Indeed, by evaluating the trace defining

the QFI in the eigenbasis of ̺λ one readily finds [25]

gµν =
1

4
Gµν (3.64)

as we have already seen in (1.78). This remark, along with the results of the metric

approach to criticality summarized in the previous section, lead to the following conclusion:

the estimation of a physical quantity driving a quantum phase transition is dramatically

enhanced at the quantum critical point.

In order to accurately asses the improvement in the estimation accuracy, we focus

on the single parameter case and in particular we consider the coupling constant of the

quantum Ising model which is defined by the Hamiltonian

H = −J
L∑

i=1

σxi σ
x
i+1 − h

L∑

i=1

σzi . (3.65)

The quantum statistical model is then defined by ̺λ = Z−1e−βH(λ) and the particular case

we will consider is λ = J , i.e. we are going to calculate the quantum Fisher information of

the coupling constant J of the Ising model in order to estimate J with the best precision.

The QFI for the parameter J may be evaluated starting from Eq. (3.50)

GJ =
∑

n

(∂Jpn)2

pn
+ 2

∑

n 6=m
|〈ψn|∂Jψm〉|2

(pn − pm)2

pn + pm
, (3.66)

from the Bures metric tensor

gλ =
1

2

∑

nm

|〈ψm|∂λ̺λ|ψn〉|2
pn + pm

. (3.67)



106 3. Estimation and discrimination in fermionic systems

Then one has that the QFI at finite temperature (remind that we only need differentiation

with respect to J) is given by [145]

GJ(J, h, β) =
β2

4

∑

k

(∂JΛk)
2

cosh2 (βΛk/2)
+
∑

k

cosh (βΛk) − 1

cosh (βΛk)
(∂Jθk)

2 . (3.68)

where θk = tan−1 ǫk
∆k

.

3.3.2 Quantum estimation at zero temperature

We begin to test the idea of estimating the coupling constant J of the Ising model by

finding the maximum of QFI at zero temperature where the system is in the ground state.

At first we consider few spins and then we turn to address the thermodynamic limit.

Small L

We start with the case of L = 2, 3 and 4 in Eq.(3.65). In the following we review in detail

the calculations carried out for L = 2. The cases L = 3, 4 follow straightforwardly. The

QFI is obtained from Eq. (3.66) by explicit diagonalization of the Ising Hamiltonian where

pn = e−βEn/Z, En and |ψn〉 are the eigenvalues and eigenvectors of H. For example, for

L = 2 we have En = ±2J,±
√
J2 + h2 and Z = 2 cosh(2βJ)+2 cosh(2β

√
J2 + h2). Taking

the T → 0 limit of the QFI, one gets

GJ(J, h, 0) =
h2

(h2 + J2)2
, L = 2 (3.69)

GJ(J, h, 0) =
3h2

4(h2 − hJ + J2)2
, L = 3 (3.70)

GJ(J, h, 0) =
h2(h4 + 4h2J2 + J4)

(h4 + J4)2
, L = 4 . (3.71)

Maxima of the QFI GJ are obtained for h∗ = J for L = 2, 3, 4. Actually, this is true for

any L (see also the next section), and the pseudocritical point h∗, which maximizes HJ ,

turns out to be independent of L and equal to the true critical point. i.e. hc = J, ∀L. At

its maximum GJ goes like 1/J2, as also required by dimensional analysis, and the ultimate

lower bound to precision (variance) of any quantum estimator of J scales as J2.

Large L

In the following we discuss the QFI for a system of size L. We analyze the behavior of

GJ near the critical region at T = 0. Taking the limit T → 0 in Eq. (3.68), the classical

elements of the Bures metric, which depends only on thermal fluctuations, vanishes due
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to the factor of (cosh(βΛk/2))−2. Therefore, at zero temperature, only the nonclassical

part of Eq. (3.68) survives and one obtains

GJ =
∑

k

(∂Jθk)
2, (3.72)

where ∂Jθk = 1
1+(∆k/ǫk)2 (∂J

∆k

ǫk
) = −h sin k

Λ2
k

. Since we are in the ground state, the allowed

quasi-momenta are k = (2n+1)π
L with n = 0, . . . , L/2 − 1. Explicitly we have

GJ =
∑

k

h2 sin(k)2

Λ4
k

. (3.73)

We are interested in the behavior of the QFI in the quasi-critical region ξ ≫ L where the

correlation length ξ scales as ξ ∼ |h−J |−ν . In the Ising model ν = 1 so the critical region

is described by small values of the scaling variable z ≡ L(h − J) ≃ L/ξ, that is z ≈ 0.

Conversely the off-critical region is given by z → ∞. We substitute h = J + z/L in Eq.

(3.73) and expand around z = 0 to obtain the scaling of GJ in the quasi-critical regime

GJ =
∑

kn

(J + z
L)2 sin2(kn)

[ z
2

L2 + 4J(J + z
L) sin2(kn/2)]2

≡
∑

kn

fkn
(z) . (3.74)

Since ∂zf(0) = 0, the maximum of GJ is always at z = 0 for all values of L, in turn, the

pseudo-critical point is h∗L = J = hc ∀L. As already noticed previously, the statement

h∗L = hc is peculiar to this particular situation. For instance, introducing an anysotropy

γ so as to turn the Ising model into the anysotropic XY model, the pseudo-critical point

gets shifted and one recovers the general situation h∗L = hc + O
(
L−δ). The exponent δ

is universal, .i.e. independent on the anisotropy (and given by δ = 2 in this case), while

the prefactor explicitly depends on γ, vanishing for γ = 0 [39]. Going to second order one

obtains

∑

k

(∂Jθk)
2 =

∑

kn

1

4J2
cot2(kn/2)

(

1 − z2

2J2L2

1

sin2(kn/2)

)

+O
(
z3
)
. (3.75)

Using Euler-Maclaurin formula one can show that

L/2−1
∑

n=0

cot2
(

(2n+ 1)
π

2L

)

=
L2

2
− L

2
+O(L0)

L/2−1
∑

n=0

cos2
(
(2n + 1) π

2L

)

sin4
(
(2n + 1) π

2L

) =
L4

48
− L2

12
+O(L0) (3.76)

and we get

GJ = L2

(
1

8J2
− z2

384J4

)

− L

8J2
+O(L0). (3.77)
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This shows explicitely that at h = J the Fisher information has a maximum and there it

behaves as

GJ(L, T = 0, h∗ = J) ≃ L2

8J2
+O(L). (3.78)

We observe that superextensive behavior of the QFI in the quasi-critical region around the

QPT, GJ ∼ L2, implies that the estimation accuracy scales like L−2 at the critical points,

while it goes like L−1 at regular points. Notice that, in assessing the estimability of a

parameter λ, the quantity to be considered is the quantum signal-to-noise ratio (QSNR)

given by Q(λ) ≡ λ2G(λ) which takes into account of the scaling of the variance and the

mean value of a parameter rather than its absolute value. We say that a parameter λ is

effectively estimable when the corresponding Q(λ) is large and that to a diverging QFI

corresponds the optimal estimability. In both cases of few and many spins, at the critical

point the QFI goes like 1/J2, this means that it is independent on Q(J) and one can

estimate small values of parameters without loss of precision.

3.3.3 Quantum estimation at finite temperature

We now consider the problem of estimating the coupling constant J of the Ising Hamil-

tonian at finite temperature. We first discuss in some detail the small size case where

L = 2, 3, 4 and then we treat the case where L≫ 1.

Small L

As a warm-up let us first focus on the simplest, L = 2 case. A first step in the computation

of the symmetric logarithmic derivative (SLD) from Eq. (1.54) for two qubit is to find

the SLD in the single qubit case. Consider a system with ”Hamiltonian” H = 1
2(I + a ·σ)

where σ = (σx, σy, σz)T is the vector of the Pauli matrices and a = (a1, a2, a3)T , in the

state ̺ = e−HZ−1 = 1
2(I − â · σ tanh(a)) where Z = Tre−H = 2 cosh(a), and the three-

component vector a depends on parameter J . The SLD relative to this state turns out to

be

Λ = − tanh (a) (∂J â · σ)

−
[

1 + tanh (a) − 2 tanh (a)2
]

(∂Ja) (â · σ) . (3.79)

where a is the modulus of a and â = a/a. Now note that the Hamiltonian (3.65) for L = 2

(with PBC), has the following block-diagonal form in the basis {| + +〉, | − −〉, | + −〉, | − +〉}:

H = −2β

(

Jσx + hσz 0

0 Jσx

)

. (3.80)
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We can then apply formula (3.79) in each subspace to obtain the full SLD. After some

algebra one realizes that the SLD has the following form

Λ = c1σ
x ⊗ σx + c2σ

y ⊗ σy + c3 (σz ⊗ 1I + 1I ⊗ σz) , (3.81)

where c1,2,3 are constants which depend on β, J , and h. When the temperature is sent to

zero the above expression becomes

ΛT=0 =
h

2 (J2 + h2)3/2

[

h (σx ⊗ σx − σy ⊗ σy)

− J (σz ⊗ 1I + 1I ⊗ σz)
]

. (3.82)

We see that, already in the simple two-qubit case, the SLD is a complicated operator both

at positive and at zero temperature. More involved expressions are obtained L = 3, 4 and

larger.

We do not report here the analytic expression of the corresponding QFIs GJ for

L = 2, 3, 4 since they are a bit involved. Rather, in order to assess estimation pre-

cision at finite temperature compared to that at T = 0, we consider the ratio γJ =

GJ (β, J, h)/GJ (∞, J, h), for some fixed values of J and illustrate its behavior in Fig. 3.3.

As it is apparent from Fig. 3.3 for small h the ratio is less than 1, i.e. estimation of J

is more precise at zero temperature, whereas, for increasing h, a finite temperature may

be preferable. In turn, for any value of J and β, there is a field value that makes finite

temperature convenient: this is true also for low temperature as proved by the presence

of a global maximum for small h, besides the local maximum at h = J . For β → ∞ the

maxima at small h disappear and we recover the zero temperature results. Notice that, in

view of Eqs. (3.69), the ratio γJ is proportional to the QSNR. Besides, since maxima of γJ

vary with β as described above, we conclude that the optimal field h∗, which maximizes

GJ (β), varies with temperature. For high temperature the maxima are located at a field

value close to zero, whereas for decreasing temperature they switch towards values close

to the critical one h∗ = J . This may be explicitly seen for L = 2 by expanding the Fisher

information at high and low temperatures respectively,

GJ (J, h, β) ≃β2[4 − (h2 + 3J2)β2] + O(β6), (3.83)

GJ (J, h, β) ≃GJ(J, h,∞)(1 − e−β∆) + 2e−β∆β2

(

1 − h√
h2 + J2

)

×
[

2 + e−β∆

(

1 + coth
β∆

2

)]

(3.84)

with ∆ = ∆(J, h) = 2(
√
J2 + h2 − J). Upon looking for extremal points we have that

h∗ ≃ 0 for high temperature and h∗ = J + O(e−β∆(J,J)) for low temperature.
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Figure 3.3: The ratio γJ as a function of the externall field h for L = 2 [(a),(b)], , 3 [(c), (d)],

4 [(e), (f)] and J = 5 [(a), (c), (e)], J = 0.5 [(b), (d), (f)]. The curves refer to different

values of β = 1 (black dashed), β = 10 (gray dashed), β = 100 (solid gray) and β = 1000

(solid black).
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Large L

At positive temperature and L large, the sums in equation (3.68) are replaced by L
∫
dk.

The quantity G̃J ≡ GJ/L is always convergent, the convergent rate being exponentialy

fast in L in the (renormalized classical) region T ≪ ∆ whereas is effectively only algebraic

when T ≫ ∆ (the quantum-critical region). Thus, up to contribution vanishing with L,

G̃J = G̃1
J + G̃2

J is a bounded function of its arguments as long as T > 0, given by

G̃1
J =

β2

8π

∫ π

0

dk

cosh2 (βΛk/2)

(J + h cos (k))2

Λ2
k

(3.85)

G̃2
J =

1

2π

∫ π

0
dk

cosh (βΛk) − 1

cosh (βΛk)

h2 sin (k)2

Λ4
k

. (3.86)

For any T > 0 the function G̃J has a cusp in h = J where it achievs its maximum value.

Changing variable from momentum to energy, the integrals above can be approximatly

evaluated in the quantum critical region β |J − h| ≪ 1 (actually we also require low

temperature, i.e. β |J + h| ≫ 1). The result is

G̃1
J =

9ζ (3)

8π

T

J2 |J + h| +O
(
T 0
)

(3.87)

G̃2
J =

C
π2

|J + h|
TJ2

− 1

8J2
+O (T ) , (3.88)

where C is Catalan’s constant C = 0.915 and the Riemann Zeta-function gives ζ(3) = 1.202.

Summarizing, for large sizes and at positive temperature, the maximum of the QFI as a

function of h is always located at h = J for all values of J, T . At the maximum, the QFI

is approximately given by

GJ ≃ 2C
π2

L

TJ
. (3.89)

As a consequence, the QSNR scales as QJ ∼ JL/T , in other words, at finite temperature,

the estimation of small values of the coupling constant is unavoidably less precise than

the estimation of large values. As expected, large L and/or low temperature improve the

precision of estimation.

3.3.4 Practical implementations

The SLD represents an optimal measurement, i.e. the corresponding Fisher information is

equal to the QFI. However, as we have seen (see e.g. Eq. 3.82), generally the SLD does not

correspond to an observable whose measurement can be easily implemented in practice.

Therefore, in this section, we consider the total magnetization Mz = 1
L

∑

i σ
z
i , as a feasible

and natural measurement to be performed on the system in order to estimate the coupling

J . We assume that the system is at thermal equilibrium, ρ = Z−1e−βH , and consider
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Figure 3.4: The ratio FJ (β, J, h̃)/GJ (β, J, h∗) as a function of J for L = 2 (solid lines),

L = 3 (dotted lines) and L = 4 (dashed lines). The bottom group of lines (gray) is for β = 3,

whereas the top group (black) is for β = 10.

short chains L = 2, 3, 4. We illustrate the procedure in detail for the simplest L = 2 case.

Upon measuring Mz, the possible outcomes are m = {1, 0,−1} with eigenprojectors Pm

given by

P1 = |00〉〈00| P−1 = |11〉〈11|
P0 = |10〉〈10| + |01〉〈01| , (3.90)

and corresponding probabilities p(m|J) = Tr(ρPm),

p(±1|J) =
cosh(2β

√
J2 + h2)

2
[

cosh(2βJ) + cosh(2β
√
J2 + h2)

]× (3.91)

(

1 ± h(J2 + h2)−1/2 tanh(2β
√

J2 + h2)
)

p(0|J) =
cosh(2βJ)

cosh(2βJ) + cosh(2β
√
J2 + h2)

. (3.92)

The FI is then obtained by substituting p(m|J) into Eq. (1.37). The resulting expression

provides a bound for the variance of any estimator of J based on M measurements of

magnetization: Var(J) ≥ 1/MFJ . The Braunstein-Caves inequality says that the FI of

any measurement FJ is upper bounded by the quantum Fisher information GJ . For the

magnetization this is illustrated in Fig. 3.4 where we plot the ratio FJ(β, J, h̃)/GJ (β, J, h∗)

for L = 2, 3, 4, h̃ being the field maximizing the FI. Notice that for increasing J the FI of

the magnetization saturates to the QFI, i.e. magnetization measurements become optimal.

The saturation is faster for lower temperatures (we report the ratio for β = 3 and β = 10).
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Figure 3.5: The ratio FJ (β, J, h̃)/GJ (β, J, h∗) as a function of J for L = 2 (solid lines),

L = 3 (dotted lines) and L = 4 (dashed lines). The bottom group of lines (gray) is for β = 3,

whereas the top group (black) is for β = 10.

Notice also that for low temperature the dependence of the ratio on the size L almost

disappears. In summary, for any temperature, there is a threshold value for J , above

which the measurement of the magnetization in optimal for the estimation of J itself.

This threshold value decreases with temperature, and for zero temperature magnetization

is optimal for any J . Indeed, after explicit calculation of the Fisher information of Eq.

(1.37) for L = 2, 3, 4, we found that in the limit T → 0, FJ(h, T = 0) = GJ (h, T = 0),

i.e. the FI of the magnetization is equal to the QFI. In other words, estimation based

on magnetization measurements may achieve the ultimate bound to precision imposed

by quantum mechanics. Besides, at finite temperature, despite the fact that the equality

does not hold exactly, FJ is only slightly greater than GJ almost in the whole parameter

range (J, T ). This may be also seen in the behavior of FJ versus temperature: the ratio

δJ = FJ(β, J, h)/FJ (∞, J, h) at fixed J may be greater than 1 for some values of the

magnetic field, namely, magnetization measurements may be more precise at finite T , as

it happens for the optimal measurement with precision bounded by the QFI. Of course,

for T → 0, δJ → 1.

Overall, we conclude that the magnetization Mz is a good candidate for nearly optimal

estimation. Of course we still need an efficient estimator, that is an estimator actually

saturating the(classical) Cramer-Rao bound. To this aim we employ a Bayesian analysis,

since Bayes estimators are known to be asymptotically efficient [167], i.e. Var(J) =

1/MFJ for M ≫ 1. According to the Bayes rule, given a set of outcomes {m} from
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M independent measurements of the magnetization, the a-posteriori distribution of the

parameter J is given by

p(J |{m}) =
1

N

∏

m

p(m|J)nm , (3.93)

where N is a normalization constant and nm is the number of measurements with out-

come m. Bayes estimator is the mean JB =
∫
dJp(J |{m})of the a posteriori distribution

and precision is quantified by the corresponding variance. In the asymptotic limit of

many measurements M ≫ 1, nm → Mp({m}|J∗), where J∗ is the true value of the pa-

rameter to be estimated and the a posteriori distribution is rewritten as pa(J |{m}) =

1/N
∑

m exp[Mp(m|J∗) ln p(m|J)].

In order to check the actual meaning of ”asymptotic” we have performed a set of

Monte Carlo simulated experiments of the whole measurement process. In Fig. 3.5, we

report the result of Monte Carlo simulated experiments of magnetization measurements

for J = 3 and β = 1. The black dots represent the mean variance of the estimator in Eq.

(3.93) averaged on 20 sets each of 500 measurements. The blue line is the plot of the mean

variance of the Bayes estimator JB averaged on 20 sets of 500 measurements. The dotted

line is the corresponding variance evaluated using the asymptotic a posteriori distribution,

whereas the solid gray line is the Cramer-Rao bound (MFJ )−1. The plot shows that the

Bayes estimator is indeed asymptotically efficient and that already with a few hundreds of

measurements one may achieve the ultimate precision. Overall, putting this result togheter

with the fact that FJ ≃ GJ (see Fig. 3.4) we conclude that the measurement of the total

magnetization of the system provides a nearly optimal and feasible measurement (at any

β) to estimate the coupling of the small size one-dimensional quantum Ising model.
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3.4 The discrimination problem for the quantum Ising model

In this section we study the discrimination problem for two ground states or two thermal

states of the Ising model in a transverse magnetic field. We consider the system both at

zero and finite temperature, and address discrimination of states corresponding to different

values of the coupling parameter. In particular, we evaluate the error probability for single-

copy discrimination, the Chernoff bound for n-copy discrimination in the asymptotic limit,

and the Chernoff metric for the discrimination of infinitesimally close states. We are

interested in the scaling properties of the above quantities with the coupling itself, the

temperature and the size of the system. Moreover, we look for the optimal value of the field

that minimizes the probability of error and maximizes both the Chernoff bound and the

corresponding metric. It turns out that criticality is a resource for quantum discrimination

of states. Indeed, at zero temperature the critical point signs a minimum in the probability

of error and a divergence in the QCB metric. Remarkably, despite the fact that Chernoff

metric is associated to quantum discrimination and the Bures metric is related to quantum

estimation [39, 3], these different measures show the same critical behavior and carry the

same information about the QPT of the system [54].

We first illustrate the notion of quantum Chernoff metric for the Ising model, then,

in 3.4.1 we study the distinguishability of states at zero temperature, both for the case of

few spins and then in the thermodynamic limit. Finally, in 3.4.2, we consider the effects of

temperature and the scaling properties of the metric. The results reviewed in the section

are reported in [168].

Upon considering two nearby states ̺ and ̺ + d̺, the QCB induces the following

distance given in Eq. (3.95) over the manifold of quantum states

ds2QCB := 1 − exp(−ξQCB) =
1

2

∑

m,n

|〈ψn|d̺|ψm〉|2
(
√
pm +

√
pn)2

(3.94)

where the |ψn〉’s are the eigenvectors of ̺ =
∑

n pn|ψn〉〈ψn|. In the following we will

consider infinitesimally close states obtained upon varying a Hamiltonian parameter λ,

and d̺ will correspond to d̺ = ∂̺/∂λ dλ. The above definition means that the bigger

is the QCB distance, the smaller is the asymptotic error probability of discriminating a

given state from its close neighbor.

In the following we will consider discrimination for ground and thermal states. In this

case the eigenstates of ̺ are those of the Hamiltonian and the distance may be written as
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the sum of two contributions

ds2QCB =
1

8

∑

n

(dpn)2

pn
︸ ︷︷ ︸

+
1

2

∑

n 6=m

|〈ψn|dψm〉|2(pn − pm)

(
√
pn +

√
pm)2

︸ ︷︷ ︸

(3.95)

ds2c ds2nc

where ds2c refers to the classical part since it only depends on the Boltzmann weights of

the eigenstates in the density operator, whereas ds2nc to the nonclassical one because it

explicitly depends on the dependence of the eigenstates from the parameter of interest.

If we consider the Ising model of (3.65) and address discrimination of states labeled by

different values of the coupling J , the QCB distance can be expressed by the metric gJ ,

ds2QCB = gJdJ
2. We have [54]

gJ =
β2

32

∑

k

(∂JΛk)
2

cosh2 (βΛk/2)
︸ ︷︷ ︸

+
1

4

∑

k

tanh2(βΛk/2) (∂Jθk)
2

︸ ︷︷ ︸

(3.96)

gcJ gncJ

Recent results about the Chernoff bound metric ds2QCB [54, 169] have shown that it may

be used to investigate the phase diagram the Ising model, i.e. to identify, in terms of

different scaling with temperature, quasiclassical and quantum-critical regions. These

results extend recent ones obtained using the Bures metric ds2B (or the fidelity) [145, 162,

170] i.e

ds2B =
1

2

∑

nm

|〈ψm|d̺|ψn〉|2
pn + pm

. (3.97)

We recall the relation (??) 1
2ds

2
B ≤ ds2QCB ≤ ds2B which shows that the Bures and the

QCB metric have the same divergent behavior i.e. one metric diverges iff the other does.

Then one can exploit the results on the scaling behavior of the Bures metric derived in

[145] to discriminate quantum states. Moreover, in the following we will see that when

the system is in its ground state, ds2QCB = ds2B whereas at increasing temperature T ,

ds2QCB → 1
2ds

2
B .

3.4.1 Quantum discrimination of ground states

At zero temperature the system is in the ground state and the problem is that of discrim-

inating two pure states corresponding to two different values J1 and J2 of the coupling J .

The probability of error is given in terms of the overlap |〈ψ1|ψ2〉|2, whereas the minimum

of Tr
[
̺s1 ̺

1−s
2

]
reduces to the overlap itself since for pure states ̺s = ̺ ∀s. Thus the

probability of error for the discrimination with n copies scales as Pe,n ∼ |〈ψ1|ψ2〉|2n and
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the quantum Chernoff information may be expressed as ξQCB = − log [4Pe(1 − Pe)]. In

this section we address the discrimination problem at zero temperature by evaluating the

probability of error and the QCB metric, pointing out scaling properties, and minimizing

(maximizing) them as a function of the external field. We first consider systems made of

few spins and then address the thermodynamic limit.

Short Ising chains, L = 2, 3, 4

The probability of making a misidentification Pe may be minimized by varying the value of

the external field. For the case L = 2, 3, and 4, Pe is obtained by explicit diagonalization

of the Ising Hamiltonian. Minima of Pe correspond to the field value h̃ =
√
J1J2, i.e

the geometrical mean of the two (pseudo) critical values, and follows the scaling behavior

Pe,min(J1, J2,
√
J1J2) = Pe,min(1, J2/J1,

√

J2/J1). More generally the probability of error

is such that

Pe(kJ1, kJ2, kh) = Pe(J1, J2, h) ∀k > 0 . (3.98)

Upon exploiting this scaling and fixing J1 = 1 we can study Pe at h̃ as a function of

J2 ≡ J . The behavior of the QCB Q(J) ≡ Pe,min(1, J,
√
J) is illustrated in the left panel

of Fig. 3.6. The function has a cusp in J = 1, whereas the tails of the curve for J → 0

and J → ∞ go to zero faster with increasing size. This means that as the number of spins

increases, the overlap between two different ground states approaches to zero. According

to the scaling in Eq. (3.98) the relevant parameter is the ratio between the two couplings

and not the absolute difference. In turn, this means that Q(J) is symmetric around J = 1

in a log-linear plot. Expanding Q(J) around J = 1 and J = 0 we obtain the following

behavior

Q(J)
J≃1
=

1

2
− αL |J − 1| +O |J − 1|2 (3.99)

Q(J)
J→0
=

1

2
−AL + βL

√
J + γLJ +O(J3/2)

where αL ∈ (0, 1/2) is an increasing function of L. According to the scaling (3.98) the

behavior of Q(J) for large J is obtained by the replacement J → 1/J in the second

line of Eq. (3.99). The parameters AL, αL, βL, and γL are reported in Table 3.4.1 for

L = 2, 3, 4. The corresponding Chernoff information ξJ = − log [4Q(J)(1 −Q(J))] does

not carry additional information about the discrimination problem, but exhibits a simpler

behavior

ξJ
J≃1
=

δL
16

|J − 1|2 +O |J − 1|3 (3.100)

ξJ
J→0
= L log 2 − L

√
J +

L

2
J +O(J3/2) ,
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Figure 3.6: (Left):Log-linear plot of the zero temperature rescaled minimum probability of

error Q(J) ≡ Pe,min(1, J,
√
J) as a function of J for L = 2, 3, 4 (green, blue and red lines,

respectively). The function has a cusp in J = 1 and the two tails go to zero faster with

increasing size. According to the scaling in Eq. (3.98) the relevant parameter is the ratio

between the two couplings and not the absolute difference. In the log-linear plot, this means

that Q(J) is symmetric around J = 1. (Right): The Chernoff information in the same

conditions.

where δL = L!/4L for L = 3, 4 and half of this value for L = 2. The behavior of ξJ for

large J is again obtained by replacing J → 1/J in the second line of Eq. (3.100). In the

right panel of Fig. 3.6 we show ξJ as a function of J for L = 2, 3, 4.

Table 3.1: Parameters AL, αL, βL, and γL appearing in Eq. (3.99), i.e the expansion of the

rescaled probability of error Q(J) around J = 0 and J = 1.

L α β γ A

2 α2 = 1/8 = 0.125 β2 = 1/2
√

2 ≃ 0.354 γ2 = 1/4
√

2 ≃ 0.177 A2 = 1/2
√

2 ≃ 0.354

3 α3 =
√

3/8 ≃ 0.217 β3 =
√

3/8 ≃ 0.217 γ3 = 5
√

3/32 ≃ 0.271 A3 =
√

3/4 ≃ 0.433

4 α4 ≃ 0.306 β4 = 1/2
√

14 ≃ 0.134 γ4 = 23/28
√

14 ≃ 0.220 A4 =
√

14/8 ≃ 0.468

As mentioned previously, when we compare ground states of Hamiltonians with in-

finitesimally close values of the coupling J , the proper measure to be considered is the

QCB metric, with the point of maximal discriminability of two states corresponding max-

ima of the QCB metric tensor. At zero temperature ds2QCB = ds2B and thus [3] one recovers



3.4. The discrimination problem for the quantum Ising model 119

the result of (3.69):

gJ =
h2

4(h2 + J2)2
, L = 2

gJ =
3h2

16(h2 − hJ + J2)2
, L = 3

gJ =
h2(h4 + 4h2J2 + J4)

4(h4 + J4)2
, L = 4

Notice the simple scaling gJ (kJ, kh) = gJ(J, h), which is valid ∀L. Maxima of gJ are thus

obtained for h∗ = J for L = 2, 3, 4, and actually this is true for any L (see also the next

Section). The pseudo-critical point h∗ which maximizes the QCB metric, turns out to

be independent of L and equal to the true critical point, hc = J, ∀L. At its maximum

gJ goes like 1/J2 which means that it is easier to discriminate two infinitesimally close

ground states for small J rather than for large ones.

Large L

For large L, the overlap (fidelity F) between two different ground states |ψk〉 ≡ |ψ0(Jk)〉,
k = 1, 2 is given by

F = 〈ψ1|ψ2〉 =
∏

k

cos
θ1k − θ2k

2
(3.101)

where k = (2n + 1)π/L and n runs from 1 to L/2. Obviously, F = 1 if J1 = J2.

Otherwise, one has cos[(θ1k − θ2k)/2] < 1 and the fidelity F quickly decays as the ratio

of the couplings is different from one. Solving ∂h cos[(θ1k − θ2k)/2] = 0 one finds that the

overlap has a cusp in h̃ = ±√
J1J2, where it achieves the minimum value, corresponding

to the minimum of the probability of error Pe. In the thermodynamic limit L → ∞,

the overlap between two different ground states goes to zero no matter how small is the

difference in the parameters J1 and J2. In other words, the different ground states become

mutually orthogonal, a behavior known as orthogonality catastrophe [153]. In the critical

region, corresponding to the vanishing of one of the single particle energies ǫ2k + ∆2
k = 0

with k = 2π/L, this behavior is enhanced, occurs for smaller L, and corresponds to a drop

in the fidelity even for small values of |J2 − J1|.
For what concerns the QCB metric, upon taking the limit T → 0 in Eq. (3.96), we

have that the classical part ds2c , which depends only on thermal fluctuations, vanishes due

to the factor of (cosh(βΛk/2))−2. Therefore, at zero temperature, only the nonclassical

part of Eq. (3.96) survives and one obtains gJ = 1
4

∑

k(∂Jθk)
2, where

∂Jθk =
1

1 + (∆k/ǫk)2
(∂J

∆k

ǫk
) =

−h sin k

Λ2
k

.
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Since we are in the ground state, the allowed quasi-momenta are k = (2n+1)π
L with n =

0, . . . , L/2 − 1. Explicitly we have

gJ =
1

4

∑

k

h2 sin(k)2

Λ4
k

. (3.102)

Then the scaling of gJ is given by

gJ =
L2

4

(
1

8J2
− z2

384J4

)

− L

8J2
+O(L0) ,

as we have already seen in (3.77). From Eq. (3.78) one concludes that the 1/J2 scaling of

the metric may be compensated by using long chains, which thus appears as the natural

setting to address the discrimination problem for large J .

3.4.2 Quantum discrimination of thermal states

We address the problem of discriminating two states at finite temperature, i.e. we consider

two thermal states of the form ̺J = Z−1e−βH(J), Z = Tr[e−βH(J)], and analyze the

behavior of the error probability, the Chernoff information and the Chernoff metric as a

function of the temperature and the external field. We discuss short chains L = 2, 3, 4 and

then the case of large L.

Short Ising chains L = 2, 3, 4

For short chains we have evaluated the probability of error by explicit diagonalization of

̺2 − ̺1, with ̺k ≡ ̺Jk
. The probability of error follows the scaling

Pe(kJ1, kJ2, kh, β/k) = Pe(J1, J2, h, β) , (3.103)

which may be exploited to analyze its behavior upon fixing J1 = 1. The main difference

with the zero temperature case is that the error probability does depend on the absolute

difference between the two couplings, and not only on the ratio between them. The optimal

field h̃, minimizing Qβ(J) = Pe(1, J, h̃, β) is zero for small J , then we have a transient

behavior and finally, for large J , h̃ =
√
J . The range of J for which h̃ ≃ 0 increases

with temperature (small β). In the left panel of Fig. 3.7 we compare Qβ(J) for L = 2

and different values of β to the analogous zero temperature quantity Q∞(J). As it is

apparent from the plot the main effect of temperature is the loss of symmetry around

J = 1. Analogous behavior may be observed for larger L. Notice that discrimination at

finite temperature is not necessarily degraded.

Upon diagonalization of the Hamiltonian we have also evaluated the quantum Chernoff

bound by numerical minimization of mins Tr
[
̺s1 ̺

1−s
2

]
and obtained for ξQCB the same
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Figure 3.7: (Left): Log-linear plot of the rescaled minimum probability of error Qβ(J) ≡
Pe,min(1, J,

√
J, β) for L = 2 as a function of J . Green triangles correspond to β = 0.05, blue

circles to β = 0.1 and red squares to β = 1. The black solid curve is the probability of error

in the zero temperature case. The main effect of temperature is the loss of symmetry around

J = 1. (Right): Log-Linear plot of the quantum Chernoff information ξQCB for L = 2. Green

triangles correspond to β = 0.05, blue circles to β = 0.1 and red squares to β = 1. We also

report the zero temperature QCB for comparison (solid black curve).

scaling properties (3.103) observed for the error probability. In the right panel of Fig.

3.7 we compare the quantum Chernoff information for L = 2 and different values of β

to the analogous zero temperature quantity. Again the main effect of temperature is the

loss of symmetry around J = 1. Analogous behavior may be observed for larger L. For

vanishing J the Chernoff information ξQCB(1, J → 0,
√
J, β) ≡ ξ0 saturates to a limiting

value scaling with β as

ξ0 ≃ β2/2 β → 0 (3.104)

ξ0 ≃
√

2

π
arctan(β/2) β → ∞ . (3.105)

On the other hand, for diverging J ξQCB(1, J → ∞,
√
J, β) ≡ ξ∞ shows the non monotone

behaviour illustrated in the right panel Fig. 3.8. In the left panel we report ξ0 as a function

of β together with the approximating functions of Eqs. (3.104) and (3.105). Overall, we

notice that both for the single-copy and many-copy case, increasing the temperature may

also results in an improvement of discrimination, at least in the region of large couplings

and intermediate temperatures.
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Figure 3.8: (Left): Log-log plot of the Chernoff information for vanishing J , ξ0 ≡ ξQCB(1, J →
0,
√
J, β), as a function of inverse temperature β (blue points) together with the approximating

functions of Eq. (3.104) (green line) and (3.105) (red line). (Right): Log-linear plot of the

Chernoff information for diverging J , ξ∞ ≡ ξQCB(1, J → ∞,
√
J, β), as a function of inverse

temperature β

Finally, we have evaluated the QCB metric and found that it follows the scaling

gJ(J, h, β) = β2ΦL(βJ, βh) (3.106)

where the form of the function ΦL depends on the size only. The same scaling is also true

for the Bures metric with different functions ΦL. Indeed, this behavior follows directly

from the common structure of the two metrics and by the fact that gJ is obtained from the

square of the derivative with respect to J . The scaling is actually true for any size L. The

optimal value h∗ of the external field, which maximizes the QCB metric at fixed J and

β may be found numerically. Upon exploiting the scaling properties we consider β = 1

and found that h∗ is zero for small J , then we have a transient behavior and finally, for

large J , h∗ = J . According to the scaling above, the range of J for which h∗ ≃ 0 increases

with temperature (small β) and viceversa. In turn, for β → ∞ we recover the results of

the previous Section, i.e. the critical point is always the optimal one for discrimination.

This behavior is illustrated in the left panel Fig. 3.9, where we report the optimal field

h∗ as a function of J for β = 1. The inset shows the small J region. As we have noticed

in the previous section the two metrics are equal in the zero temperature limit. For finite

temperature this is no longer true and a question arises on whether the whole range of

values allowed by the inequality
ds2

B

2 ≤ ds2QCB ≤ ds2B is actually spanned by the QCB

metric. This is indeed the case, as it may be seen by analyzing the behavior of the ratio
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Figure 3.9: (Left): linear plot of the optimal field h∗ maximizing the QCB metric as a function

of J for β = 1. The inset shows the region of small J . (Right): log-linear plot of the ratio

γ between the (maximized) QCB and Bures metrics as a function of J for L = 2, 3, 4 (green,

blue and red lines respectively) and β = 1.

γ = ds2QCB/d
2
Bs at the (pseudo) critical point h∗ (we take the maximum of both the

metrics, which generally occurs at different values of the field). In the right panel of Fig.

3.9 we report γ as a function of J for β = 1 and L = 2, 3, 4. As it is apparent from the

plot, for small J we have ds2QCB ≃ 1
2ds

2
B, whereas for large J the two quantities become

equal ds2QCB ≃ ds2B . The ratio is not monotone and the dependence on the size is weak.

Upon exploiting the scaling in Eq. (3.106) we may easily see that the range of J for which

the two metrics are almost equal increases with β. For vanishing temperature (β → ∞)

ds2QCB ≃ ds2B everywhere and we recover the results of the previous Section. Conversely,

for high temperature we have ds2QCB ≃ 1
2ds

2
B also for very large J . Also the transient

region is shrinking for increasing temperature.

Large L

In the limit of large size L the behavior of the Chernoff metric follows the same scaling

of Eq. (3.106) found for short chains. The optimal value of the field which maximizes

the QCB metric is h∗ = J for any finite temperature, where the metric element has a

cusp. We have studied the QCB metric in the quantum-critical region β|J − h| ≪ 1

and for low temperature T → 0. The classical elements of the metric vanish due to the

factor 1/ cosh2(βΛk/2) and we are left to analyze the nonclassical part gncJ as a function

of T . Bounding the metric by functions that have the same scaling behavior in β [54],

will ensure that the metric itself scales with the same exponent. The dispersion relation
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is linear around k = 0 and we approximate Λk ∼ Jk at the critical point J = h. Upon

defining

f(β, k) =

{

β2k2/4 0 ≤ k ≤ 2/β

1 2/β ≤ k ≤ π
,

we have, for all β and k, 1
2f(β, k) < tanh2(βJk/2) < f(β, k). For large L, the sum on the

classical part of the QCB metric may be replaced by the integral L
∫
dk, thus leading to

gncJ ≃ L

2π

∫ 2/β

0
dk tanh2 (βJk/2)

1

J2k2
+

L

2π

∫ π

2/β
dk tanh2 (βΛk/2)

J2 sin2(k)

Λ4
k

. (3.107)

This is a good approximation in the limit β → ∞ because the upper integration limit 2/β

becomes arbitrarily close to 0. The first integral is bounded by L
2π

∫ 2/β
0 dk f(β,k)

2
1

J2k2 ≤
L
2π

∫ 2/β
0 dk tanh2 (βJk/2) 1

J2k2 ≤ L
2π

∫ 2/β
0 dkf(β, k) 1

J2k2 . The bounding integrals scale as

Lβ and the first integral must scale in the same way for β → ∞. The second term is up-

per bounded by L
2π

∫ π
2/β dk tanh2 (βΛk/2)J

2 sin2(k)
Λ4

k

≤ L
2π

∫ π
2/β dk

1
J2k2 ∼ Lβ. Therefore, since

the bounding integral scales as βL, gncJ must scale as βL to the highest order. Observe that

in the quantum-critical region gJ ∼ L is extensive, whereas at the critical point it has a

superextensive behavior gJ ∼ L2. The nonclassical element scales algebraically with tem-

perature and in the zero temperature limit it diverges, matching the ground state behavior

that we described in the previous section. These results remark that criticality provide a

resource for quantum state discrimination, and that the discrimination of quantum states

is indeed improved upon approaching the QCP.
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3.5 Conclusions and Outlooks

In this chapter we have studied the quantum Ising model in a transverse magnetic field as

a paradigmatic example of a system which undergoes a quantum phase transition.

We first exploited the equivalence between the quantum Fisher metric and the (ground or

thermal) Bures metric and all the results recently obtained for the latter to estimate the

coupling constant of the Hamiltonian. Specifically at zero temperature, the Bures metric

scales with the system size L at regular points whereas it can increases as L2 at or in the

vicinity of quantum critical point. A similar enhancement takes place when temperature is

considered. In turn it is possible to exploit this enhancement to dramatically improve the

precision in a quantum estimation problem. Let us imagine that an experimenter would

like to infer the value of a coupling constant of a physical system over which he has little

or no control. Reasonably the experimenter has good control over the external fields he

can apply to the system. The idea is then to tune the external field to a value close to

the quantum critical point. At this value of the couplings, an improvement of order of L

can be achieved in the precision of the estimation of the unknown coupling. To test these

ideas in practice, we have worked out in detail a specific example, the 1D quantum Ising

model. This model provides us with all the ingredients we need, a coupling constant J ,

an external field h, and a quantum critical point at h = J . The main accomplishments of

our analysis are: i) At zero temperature we evaluated the precision in the estimation of

the coupling, exactly for short chains of L = 2, 3, 4 sites and asymptotically for large L.

We found that the optimal estimation is possible at values of the field exactly equal to the

critical point, independently of L. For large L we indeed observe a 1/L enhancement of

precision, and a quantum signal-to-noise ratio independent of the coupling. ii) At positive

temperature the optimal value of the field is again given by the critical value when the

system size is large or the temperature is low. In the other working regimes the optimal

field maximizing the quantum Fisher information, defines a set of pseudo-critical points.

In this case the optimal precision scales as TJ/L. iii) We obtained the optimal observable

for estimation in terms of the symmetric logarithmic derivative and showed that already

in the case L = 2 it does not correspond to an easily implementable measurement. iv)

We have shown that measurements of the total magnetization allow to achieve ultimate

precision. Using Monte Carlo simulated experiments and Bayesian analysis we proved

that this is possible already after a limited number of measurements of the order of few

hundreds.

Overall, we found that criticality is a resource for precise chracterization of interacting

quantum systems (e.g. a quantum register), and may represent a relevant tool for the
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development of integrated quantum networks.

We then addressed the problem of discriminating between two ground states or two

thermal states of the quantum Ising model and found that at zero temperature both the

error probability for single-copy discrimination, and the Chernoff information for n-copy

discrimination in the asymptotic limit, are optimized by choosing the external field as the

geometric mean of the two (pseudo) critical points. In this regime, the relevant parameter

governing both quantities is the ratio between the two values of the coupling constant.

On the other hand, the Chernoff metric is equal to the Bures metric and is maximized at

the (pseudo) critical point. For finite temperature we have analyzed in some details the

scaling properties of all the above quantities and have derived the optimal external field.

We found that the effect of finite temperature is twofold. On the one hand, critical values

of the field are optimal only for large values of the coupling constants. On the other hand,

the ratio between the couplings is no longer the only relevant parameter for both the error

probability and the Chernoff information, which also depends on the absolute difference.

The ratio between the Chernoff metric and the Bures metric decreases continuously, but

not monotonically, for increasing temperature and approaches 1/2 in the limit of high-

temperature.

In conclusion, upon considering the one-dimensional Ising model as a paradigmatic

example we have quantitatively shown how and to which extent criticality may represent

a resource for state discrimination in many-body systems.
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A. Acin, and F. Verstraete. Discriminating states: The quantum chernoff bound.

Phys. Rev. Lett., 98(16):160501, Apr 2007.

[49] Michael Nussbaum and Arleta Szkola. The chernoff lower bound for symmetric

quantum hypothesis testing. Ann. Stat., 37(2):pp. 1040–1057, 2009.
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