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Abstract

Viruses have exerted a constant and potent selective pressure on human genes throughout evolution. We utilized the marks
left by selection on allele frequency to identify viral infection-associated allelic variants. Virus diversity (the number of
different viruses in a geographic region) was used to measure virus-driven selective pressure. Results showed an excess of
variants correlated with virus diversity in genes involved in immune response and in the biosynthesis of glycan structures
functioning as viral receptors; a significantly higher than expected number of variants was also seen in genes encoding
proteins that directly interact with viral components. Genome-wide analyses identified 441 variants significantly associated
with virus-diversity; these are more frequently located within gene regions than expected, and they map to 139 human
genes. Analysis of functional relationships among genes subjected to virus-driven selective pressure identified a complex
network enriched in viral products-interacting proteins. The novel approach to the study of infectious disease epidemiology
presented herein may represent an alternative to classic genome-wide association studies and provides a large set of
candidate susceptibility variants for viral infections.
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Introduction

Infectious diseases represent one of the major threats to human

populations, are still the first cause of death in developing countries

[1], and are therefore a powerful selective force. In particular,

viruses have affected humans before they emerged as a species, as

testified by the fact that roughly 8% of the human genome is

represented by recognizable endogenous retroviruses [2] which

represent the fossil remnants of past infections. Also, viruses have

probably acted as a formidable challenge to our immune system

due to their fast evolutionary rates [3]. Indeed, higher eukaryotes

have evolved mechanisms to sense and oppose viral infections; the

recent identification of the antiviral activity of particular proteins

such as APOBEC, tetherin, and TRIM5 has shed light on some of

these mechanisms. Genes involved in anti-viral response have

therefore been presumably subjected to an enormous, continuous

selective pressure.

Despite the relevance of viral infection for human health, only

few genome-wide association studies (GWAS) have been per-

formed in the attempt to identify variants associated with increased

susceptibility to infection or faster disease progression [4–5]. These

studies have shown the presence of a small number of variants,

mostly located in the HLA region. This possibly reflects the low

power of GWAS to identify variants with a small effect. An

alternative approach to discover variants that modulate suscepti-

bility to viral infection is based on the identification of SNPs

subjected to virus-driven selective pressure. Indeed, even a small

fitness advantage can, on an evolutionary timescale, leave a

signature on the allele frequency spectrum and allow identification

of candidate polymorphisms. To this aim we exploited the

availability of more than 660,000 SNPs genotyped in 52 human

populations distributed world-wide (HGDP-CEPH panel) [6] and

of epidemiological data stored in the Gideon database.

Results

Virus diversity is a reliable estimator of virus-driven
selective pressure

Previous studies [7–9] have suggested that the number of the

different pathogen species transmitted in a given geographic

location is a good estimate of pathogen-driven selection for

populations living in that area. Indeed, pathogen diversity is

largely dependent on climatic factors [10] and might more closely

reflect historical pressures than other estimates such as the

prevalence of specific infections. We therefore reasoned that virus

diversity can be used as a measure of the selective pressure exerted

by virus-borne diseases on human populations and, as a

consequence, that SNPs showing an unusually strong correlation
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with virus diversity can be considered genetic modulators of

infection susceptibility or progression. To explore this possibility

we used a large set of SNPs that have been genotyped in the

HGDP-CEPH panel, a collection of DNAs from almost 950

individuals sampled throughout the world (Table 1). Virus

diversity estimates were derived from the Global Infectious

Disease and Epidemiology Network database: for each country

where HGDP-CEPH populations are located we counted the

number of different virus species (or genera/family as described in

materials and methods) that are naturally transmitted (Table 1).

One simple prediction of our hypothesis whereby virus diversity

is a reliable estimator of virus-driven selective pressure is that genes

known to be involved in immune response are enriched in SNPs

significantly associated with virus richness. In order to verify

whether this is the case we analysed the InnateDB gene list which

contains 2,915 genes involved in immune response and showing

the presence of at least one SNP in the HGDP-CEPH panel.

Correlations with virus richness were calculated using Kendall’s

partial rank correlation; since allele frequency spectra in human

populations are known to be affected by demographic factors in

addition to selective forces [11–12], each SNP was assigned a

percentile rank in the distribution of t values calculated for all

SNPs having a minor allele frequency (MAF) similar (in the 1%

range) to that of the SNP being analysed. A SNP was considered to

be significantly associated with virus diversity if it displayed a

significant correlation (after Bonferroni correction with a= 0.01)

and a rank higher than 0.99. As shown in Table 2, 104 SNPs in

InnateDB genes showed a significant association with virus

diversity. All SNPs in InnateDB genes that correlated with virus

diversity are listed in Table S1. By performing 10,000 re-samplings

of 2,915 randomly selected human genes (see materials and

methods for details) we verified that the empirical probability of

obtaining 104 significantly associated SNPs amounts to 0.010,

indicating that genes in the InnateDB list display more virus-

associated SNPs than expected.

It is worth mentioning that amongst these genes, UNG (MIM

191525), encoding uracil DNA glycosylase, functions downstream

of APOBEC3G (MIM 607113) to mediate the degradation of

nascent HIV-1 DNA [13]. SERPING1 (MIM 606860), a regulator

of the complement cascade, is also involved in HIV-1 infection

(MIM 609423) as its expression is dysregulated in immature

dendritic cells by Tat [14]; moreover, the protein product of

SERPING1 is cleaved by HCV and HIV-1 proteases [15–16].

Genes involved in the biosynthesis of glycan structures have also

been considered as possible modulators of infection susceptibility.

Indeed, since Haldane’s prediction in 1949 [17] that antigens

constituted of protein-carbohydrates molecules modulate the

resistance/susceptibility to pathogen infection, protein glycolsyla-

tion has been shown to play a pivotal role in viral recognition of

host targets [18], as well as in antigen uptake and processing and

in immune modulation [19–20]. We therefore computed a list of

genes involved in glycan biosynthesis from KEGG pathways and

Gene Ontology annotations. Again these genes displayed signif-

icantly more virus-associated SNPs than expected if randomness

alone were responsible (empirical p = 0.0138) (Table 2 and Table

S2). Several virus-associated SNPs were located in genes coding for

sialyltransferases (ST6GAL1 (MIM 109675), ST3GAL3 (MIM

606494), ST6GALNAC3 (MIM 610133), ST8SIA1 (MIM 601123),

ST3GAL1 (MIM 607187) and ST8SIA6 (MIM 610139)). Notably,

sialic acids represent the most prevalent terminal monosaccharides

on the surface of human cells and determine the host range of

different viruses including influenza A [21–22], polyomaviruses (i.e

JCV and BKV in humans) [23], and rotaviruses (the leading cause

of childhood diarrhea) [24].

Sialyltransferases also play central roles in B and T cell

communication and function. In particular, the generation of

influenza-specific humoral responses is impaired in mice lacking

ST6GAL1 [25], while ST3GAL1 regulates apoptosis of CD8+ T

cells [20]. Interestingly, ST8SIA6 is expressed in NK cells, possibly

playing a role in the regulation of Siglec-7 lectin inhibitory

function in these cells [26]. Four other genes (XYLT1 (MIM

608124), HS3ST3A1 (MIM 604057), UST (MIM 610752) and

CHSY3 (MIM 609963)) carrying SNPs associated with virus

diversity are involved in the biosynthesis of either heparan

sulphate or chondroitin sulphate. The former is an ubiquitously

expressed glycosaminoglycan serving as the cell entry route for

herpesviruses [27], HTLV-1 [28] and papillomaviruses [29].

Chondroitin sulphate is similarly expressed on a wide array of cell

types and functions as an auxiliary receptor for binding of herpes

simplex virus [30] as well as a facilitator of HIV-1 entry into brain

microvascular endothelial cells [31]. Finally, we identified LARGE

(MIM 603590) among the genes subjected to virus-driven selective

pressure (Table 2). Recent studies have demonstrated that the

post-translational modification of a-dystroglycan by LARGE is

critical for the binding of arenaviruses of different phylogenetic

origin including Lassa fever virus and lymphocytic-choriomenin-

gitis virus [32–33]. Therefore our data support the previously

proposed hypothesis whereby viruses represent the selective

pressure underlying the strong signal of positive selection at the

LARGE locus [34].

Since genes involved in immune response and in the

biosynthesis of glycan structures are likely to be subjected to

selective pressures exerted by pathogens other than viruses, we

verified whether a set of genes directly involved in interaction with

viral proteins also displays more SNPs significantly correlated with

virus diversity. To this aim we retrieved a list of 1,916 genes known

to interact with at least one viral product and displaying at least

one genotyped SNP in the HGDP-CEPH panel (see materials and

methods). In order to perform a non-redundant analysis, genes

included in the InnateDB list and involved in glycan biosynthesis

were removed; the remaining 987 genes displayed 80 SNPs

correlated with virus diversity, corresponding to an empirical

Author Summary

Viruses have represented a constant threat to human
communities throughout their history, therefore, human
genes involved in anti-viral response can be thought of as
targets of virus-driven selective pressure. Here we utilized
the marks left by selection to identify viral infection-
associated allelic variants. We analyzed more than 660,000
single nucleotide polymorphisms (SNPs) genotyped in 52
human populations, and we used virus diversity (the
number of different viruses in a geographic region) to
measure virus-driven selective pressure. Results showed
that genes involved in immune response and in the
biosynthesis of glycan structures functioning as viral
receptors display more variants associated with virus
diversity than expected by chance. The same holds true
for genes encoding proteins that directly interact with viral
components. Genome-wide analysis identified 441 vari-
ants, mapping to 139 human genes, significantly associ-
ated with virus-diversity. We analyzed the functional
relationships among genes subjected to virus-driven
selective pressure and identified a complex interaction
network enriched in viral products-interacting proteins.
Therefore, we describe a novel approach for the identifi-
cation of gene variants that may be involved in the
susceptibility to viral infections.

Virus-Driven Selection on Human Genes
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p value of 0.017 (Table 2 and Table S3). Notably, when this same

analysis was performed using the diversity of pathogens other than

viruses (bacteria, protozoa and helminths), no significant excess of

correlated SNPs was found (all empirical p values.0.05).

Genome-wide identification of variants subjected to
virus-driven selective pressure

Given these results, we wished to identify SNPs significantly

associated with virus richness on a genome-wide base. We

therefore calculated Kendall’s rank correlations between allele

frequency and virus diversity for all the SNPs (n = 660,832) typed

in the HGDP-CEPH panel. We next searched for instances which

withstood Bonferroni correction (with a= 0.05) and displayed a t
percentile rank higher than the 99th among MAF-matched SNPs.

A total of 441 SNPs mapping to 139 distinct genes satisfied both

requirements. Table 3 shows the 30 top SNPs (or SNP clusters)

located within genic regions and associated with virus diversity,

while the full list of SNPs subjected to virus-driven selective

pressure is available on Table S4. It is worth noting that the SNP

dataset we used contains less than 200 variants mapping to HLA

genes (both class I and II), therefore covering a minor fraction of

genetic variability at these loci; as a consequence HLA genes

cannot be expected to be identified as targets of virus-driven

selective pressure using the approach we describe herein.

We next verified whether the correlations detected between the

SNPs we identified and virus diversity could be secondary to

climatic variables. Hence, for all countries where HGDP-CEPH

populations are located we obtained (see materials and methods)

the following parameters: average annual minimum and maxi-

mum temperature, and short wave (UV) radiation flux. Results

showed that none of the SNPs associated with virus diversity

significantly correlated with any of these variables (Table S5).

Previous works have reported an enrichment of selection

signatures within or in close proximity to human genes [12,35].

In line with these data we verified that virus-associated SNPs are

more frequently located within gene regions compared to a control

set of MAF-matched variants (x2 test, p = 0.026).

Functional characterization of genes subjected to
virus-driven selective pressure

We investigated the role and functional relationship among

genes subjected to virus-driven selective pressure using the

Ingenuity Pathway Analysis (IPA, Ingenuity Systems) and the

PANTHER classification system [36–37]. Unsupervised IPA

analysis retrieved two networks with significant scores (p = 10217

and p = 10212) which were merged into a single interaction

network (Figure 1). The network contains 23 genes showing a

significant correlation with virus diversity and, among these, 10

encode proteins interacting with viral products (Figure 1). Based

on the number of observed human-virus interactions, this finding

Table 1. Populations in the HGDP-CEPH panel and virus
diversity estimates.

Population Country
Sampled
individuals

Virus
diversity

Bantu North East Kenya 11 49

Bantu South East South Africa 8 46

Biaka Pygmies Central African Republic 23 54

Mandenka Senegal 22 51

Mbuti Pygmies Democratic Republic of Congo 13 50

San Namibia 5 42

Yoruba Nigeria 21 54

Colombians Colombia 7 49

Karitiana Brazil 14 55

Maya Mexico 21 49

Pima Mexico 14 49

Surui Brazil 8 55

Balochi Pakistan 24 45

Brahui Pakistan 25 45

Burusho Pakistan 25 45

Hazara Pakistan 22 45

Kalash Pakistan 23 45

Makrani Pakistan 25 45

Pathan Pakistan 23 45

Sindhi Pakistan 24 45

Uygur China 10 47

Cambodians Cambodia 10 42

Dai China 10 47

Daur China 9 47

Han China 44 47

Hezhen China 9 47

Japanese Japan 29 41

Lahu China 8 47

Miaozu China 10 47

Mongola China 10 47

Naxi China 8 47

Oroqen China 9 47

She China 10 47

Tu China 10 47

Tujia China 10 47

Xibo China 9 47

Yakut Russia 25 48

Yizu China 10 47

Adygei Russia 17 48

French France 28 42

French Basque France 24 42

North Italian Italy 13 43

Orcadian Orkney Islands (Scotland) 15 39

Russian Russia 25 48

Sardinian Italy 28 43

Tuscan Italy 8 43

Bedouin Israel 46 41

Druze Israel 42 41

Population Country
Sampled
individuals

Virus
diversity

Mozabite Algeria 29 39

Palestinian Israel 46 41

NAN Melanesian Papua New Guinea 11 45

Papuan Papua New Guinea 17 45

doi:10.1371/journal.pgen.1000849.t001

Table 1. Cont.
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is unlikely to occur by chance (x2 test, p = 0.0013) as 2.88 human-

virus interactions would be expected for 23 genes. Analysis of the

whole network indicated that a 31 of 66 genes encode proteins

interacting with viral products (Figure 1): again this number is

higher than expected (expected interactions = 8.27; x2 test,

p = 2.8610210). Thus, the interaction network we have identified

is enriched in genes subjected to virus-driven selective pressure

and in genes coding for proteins interacting with viral products. It

is worth mentioning that, in agreement with previous findings

[38], many viral-interacting proteins represent hubs in the

network. Conversely, most of the genes we found to be subjected

to virus-driven selective pressure, irrespective of their ability to

interact with viral proteins, tend to display very low connectivity

(low-degree nodes). This observation might be consistent with

previous indications [39–41] that in eukaryotes hub genes are

more selectively constrained compared to low-degree nodes, these

latter being more likely to evolve in response to environmental

pressures.

In addition to proteins directly interacting with viral products,

several network genes showing correlation with virus diversity

might play central roles during viral infection. DNMT1 (MIM

126375) and MGMT (MIM 156569) are involved in DNA

methylation and repair, respectively, two processes that are often

dysregulated during viral infection. In particular, altered expres-

sion of DNMT1 is induced by diverse viruses including HIV-1

[42], EBV [43], BKV and adenovirsuses [44]; also, DNMT1 plays

a pivotal role in the expansion of effector CD8+ T cell following

viral infection [45]. A relevant role in HIV-1 infection is also

played by HSPG2 (MIM 142461), the gene coding for perlecan, a

cell surface heparan sulfate proteoglycan which mediates the

internalization of Tat protein [46].

We next investigated the over-representation of PANTHER

classification categories among genes subjected to virus-driven

selective pressure. Table 4 shows the significantly over-represent-

ed PANTHER molecular functions and biological processes

with the contributing genes. In line with the results we reported

above, genes involved in immune response, as well as genes

coding for proteins involved in cell adhesion and extracellular

matrix components, resulted to be over-represented; these latter

genes might mediate viral-cellular interaction and facilitate

viral entry.

Discussion

The identification of non-neutrally evolving loci with a role in

immunity can be regarded as a strategy complementary to classic

clinical and epidemiological studies in providing insight into

the mechanisms of host defense [47]. Here we propose that

susceptibility genes for viral infections can be identified by

searching for SNPs that display a strong correlation with the

diversity of virus species/genera transmitted in different geo-

graphic areas. Similar approaches have previously been applied to

study the adaptation to climate for genes involved in metabolism

and sodium handling [48–50]. These analyses, including the one

we describe herein, rely on similar assumptions and imply some

caveats. First, we implicitly considered virus diversity, as we

measure it nowadays, a good proxy for long-term selective

pressure. This clearly represents an oversimplification, as new

viral pathogens have recently emerged and the virulence of

different viral species or genera might have changed over time.

Still, previous studies have indicated that the geographic

distribution of virus diversity is strongly influenced by climatic

variables such as temperature and precipitation rates [10],

suggesting that, despite significant changes in prevalence and

virulence, virus diversity might have remained relatively constant

across different geographic areas, possibly representing the best

possible estimate of long-standing pressure. In line with these

considerations, we calculated virus diversity as the number of all

viral species (or genera/families) that can cause a disease in

humans, irrespective of virulence or pathogenicity (Table S6).

The second issue relevant to the data we present herein is that

environmental variables tend to co-vary across geographic regions:

the distribution of different pathogens (e.g. parasitic worms and

viruses/bacteria/protozoa) is correlated across HGDP-CEPH

populations [9] and, as reported above, virus diversity is influenced

by climatic factors. Therefore, our genome-wide search was

preceded by analyses aimed at verifying whether virus diversity is a

reliable and specific estimator of virus-driven selective pressure. In

particular, we verified that genes involved in immune response and

in the biosynthesis of glycans display significantly more variants

associated with virus diversity than randomly selected human

genes; this finding supports the idea that pathogens rather than

climate or demography has driven the genetic variability at these

Table 2. Enrichment of SNPs significantly associated with virus diversity in different gene lists.

Gene list Genes SNPs Corr. SNPsa p valueb Contributing genesc

InnateDB 2915 59783 104 0.0105 TNFRSF1B, HSPG2, KIAA0319L, PSMB2, NEGR1, CHIA, ARHGEF11, FCRLA, DDR2, HMCN1,
IL19, LAMB3, TGFB2PRKCE, CLEC4F, POLR1A, LRP1B, LRP2, HDAC4, CNTN4, CLDN18, LPP,
MAEA, C1QTNF7, PPP3CA, DCHS2, SEMA5A, PDZD2, SQSTM1, GMDS, GPLD1, CCND3,
LAMA4, MMD2, CNTNAP2, TNFRSF10C, FREM1, COL5A1, NELL1, SERPING1, CTNND1,
FCHSD2, CCND2, SCNN1A, ST8SIA1, PPFIBP1, PKP2, LIN7A, UNG, GALNTL1, BDKRB2, AQP9,
IL16, CDH13, CBFA2T3, CDH15, SLFN5, DCC, FXYD5, CLDN14, DSCAM, ADARB1, TOM1,
PARVG, CLDN2

Glycan biosynthesis 200 5343 50 0.0138 ST3GAL3, ST6GALNAC3, GALNT14, GALNT13, ST6GAL1, GALNT10, UST, WBSCR17,
GALNTL5, ST3GAL1, UGCG, GALNTL4, B4GALNT3, ST8SIA1, GALNT6, GALNTL1, XYLT1,
CHST6, HS3ST3A1, FUT6, LARGE, ST8SIA6, CHSY3, MGAT5B, TUSC3

Host-virus interaction 1916 14746 80 0.0172 ENO1, CAPZB, SFRS4, SFPQ, PDE4B, MSH2, PCAF, TMEM110, GTF2E1, ADCY5, PLS1, NUP43,
AKAP12, RPA3, PDE1C, ABP1, MTDH, EIF3S3, SNTB1, PCSK5, GSN, VAV2, POLR3A, PDE2A,
CENTD2, RPS3, GRIN2B, PTPRO, PDE3A, ITPR2, NR4A1, POMP, RFC3, PCCA, SIPA1L1,
SPTBN5, PLA2G4F, CAPN3, GTF3C1, KARS, NF1, MGAT5B, GAA, IL4I1, VPS16, PTPRA, PLCB4,
SREBF2

aNumber of SNPs showing significant correlation with virus diversity.
bThe empirical p value was calculated as described in the text and in Materials and Methods.
cGenes showing at least one SNP significantly correlated with virus diversity.
doi:10.1371/journal.pgen.1000849.t002
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loci. Notably, we also analysed genes that encode proteins

interacting with viral components: since loci involved in immune

response and in glycan biosynthesis were removed from this list,

the remaining genes are expected to be specific targets of viral-

driven selective pressure; consistently, we verified that a significant

excess of SNPs correlating with virus diversity map to these loci.

Conversely, a SNP excess was not noticed when the diversity of

other human pathogens was used for the analysis, suggesting that,

despite the correlation among different pathogen species across

geographic locations [9], the selective pressure imposed by viruses

can be distinguished from that exerted by other organisms.

As a further control for the possible confounding effects of other

environmental factors, we verified that the variants we identified at

the genome-wide level do not correlate with climate (temperature)

and UV radiation. This analysis was motivated by the known

association of virus diversity and biodiversity in general, with

temperature [10,51] and by the fact that both climate and UV

exposure have long been considered among the strongest selective

pressures in humans [52]. Since none of the SNPs we identified

correlated with either short wave radiation flux or temperature, we

consider that their geographic distribution is likely to have been

shaped by virus-driven selective pressure. In this respect it is worth

mentioning that UV irradiation has been shown to be immuno-

suppressive in mice (reviewed in [53–54]), but the effect of sun

exposure on immune functions in humans is still poorly

understood. Yet, herpes viruses (both simplex and zoster) and

some papillomavirus types have been shown to be reactivated by

UV exposure, suggesting that the link between short wave

radiation flux and virus-driven selective pressure might be more

complex than simply predicted on the basis of geographic

variation.

Our genome wide search for genes subjected to virus-driven

selection allowed the identification of a gene interaction network

that is enriched in both genes associated with virus diversity and in

genes encoding proteins that interact with viral products. Many of

the genes included in the identified network are of great interest

as they are known to be involved in the activation of mechanisms

that have direct or indirect protective effects against viruses. Thus,

Table 3. Top 30 SNPs (or SNP clusters) correlated with virus diversity.

SNP Gene symbol Description Annotationa t

rs10511316 CCDC80 coiled-coil domain containing 80 intron 0.627

rs1135029; rs189332; rs11235559 PDE2A phosphodiesterase 2A, cGMP-stimulated A867A; intron; intron 0.615

rs1011051; rs2278295 MYO5C myosin VC intron; intron 0.609

rs993715; rs2189883 CNTNAP2 contactin associated protein-like 2 intron; intron 0.609

rs11581 KIAA1529 - Q1642Q 0.607

rs3785415 CDH15 cadherin 15, type 1, M-cadherin intron 0.603

rs17256082 SCRN3 secernin 3 intron 0.600

rs4852988 ANXA4 annexin A4 intron 0.597

rs4575989; rs4629443 C1QTNF7 C1q and tumor necrosis factor related protein 7 intron; intron 0.597

rs7637370 CLDN18 claudin 18 intron 0.596

rs519332 EYA4 eyes absent 4 homolog intron 0.596

rs2188172; rs11760238 LHFPL3 lipoma HMGIC fusion partner-like 3 intron; intron 0.595

rs1650893 LOC51149 - Q42R 0.594

rs1322633 RNF217 ring finger protein 217 intron 0.593

rs7927476 NELL1 NEL-like 1 intron 0.593

rs2615666 TMEM132B transmembrane protein 132B intron 0.593

rs13020779 DIS3L2 DIS3 mitotic control homolog (S. cerevisiae)-like 2 intron 0.589

rs1719596 LEPREL1 leprecan-like 1 intron 0.589

rs1065154 SQSTM1 sequestosome 1 39 UTR 0.589

rs12145973 IL19 Interleukin 19 intron 0.589

rs1890139 PCCA propionyl Coenzyme A carboxylase, alpha polypeptide intron 0.588

rs6505045 ANKFN1 ankyrin-repeat and fibronectin type III domain containing 1 intron 0.587

rs4953260 PRKCE protein kinase C, epsilon intron 0.587

rs4077341 TNFRSF10C tumor necrosis factor receptor superfamily, member 10c,
decoy without an intracellular domain

intron 0.587

rs2793434 GPLD1 glycosylphosphatidylinositol specific phospholipase D1 intron 0.587

rs6599300 MAEA macrophage erythroblast attacher intron 0.584

rs13340461 CCND3 cyclin D3 intron 0.584

rs11784487 ANK1 Ankyrin 1 intron 0.584

rs10849446 SCNN1A sodium channel, nonvoltage-gated 1 alpha intron 0.583

rs12186418 PDZD2 PDZ domain containing 2 intron 0.583

aFor nonsynonymous substitutions the aminoacid change is reported.
SNPs are ranked according to t values. For multiple correlating SNPs in the same gene, the correlation coefficient is only shown for the strongest SNP.
doi:10.1371/journal.pgen.1000849.t003
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beside the well known activities of IL1A (MIM 147760) and B

(MIM 147720), IL4 (MIM 147780), TGFB1 (MIM 190180), IL16

(MIM 603035), IFNG (MIM 147570) and TNF (MIM 191160),

OAS2 (MIM 603350) encodes a protein that activates latent

RNases, resulting in the degradation of viral RNA and in the

inhibition of viral replication [55]. CCL17 (MIM 601520) induces

T lymphocytes chemotaxis, thus potentiating the immune

responses, and PPP3CA (MIM 114105), also known as calci-

neurin, activates NFATc [56], a key factor in the up-regulation of

IL2 (MIM 147680) [57], the main cytokine responsible for T

lymphocytes growth and differentiation. Finally, ULBP2 (MIM

605698) encodes an MHC1-related protein that binds to NKG2D

Figure 1. Network analysis of genes associated with virus diversity. Interactions between human proteins are delimited by the hatched grey
circle. Genes are represented as nodes; edges indicate known interactions (sold lines depicts direct and hatched lines depict indirect interaction).
Human genes are colour-coded as follows: orange, genes with at least one SNP significantly associated with virus diversity; yellow, genes with at least
one SNP that did not withstand genome-wide Bonferroni correction but displayed a rank higher than the 99th and a p value lower than 1025 (these
genes were not included in the input IPA list used to generate networks); grey, genes covered by at least one SNP in the HGDP-CEPH panel; white,
genes with no SNPs in the panel. Virus-host interactions are shown for genes subjected to virus-driven selection only; genes interacting with viral
products that display no SNP significantly associated with virus diversity are denoted with an asterisk. Viral products are reported outside the hatched
circle and colour coded as follows: purple, HIV-1; green, Human herpesvirus; blue, Human rotavirus G3; cyan, Human adenovirus 2; black, Human
T-lymphotropic virus 1.
doi:10.1371/journal.pgen.1000849.g001

Virus-Driven Selection on Human Genes

PLoS Genetics | www.plosgenetics.org 6 February 2010 | Volume 6 | Issue 2 | e1000849



(MIM 602893) [58], an activating receptor expressed on CD8 T

cells as well as on NK cells, NKT cells and cd T cells. In the light

of the viral pathogenesis of a growing number of neoplasia, it is

very interesting that other members of the network play a well

described role in the inhibition of tumoral growth. In particular,

E2F1 (MIM 189971) is known to have a pivotal role in the control

of cell cycle and in the activation of tumour suppressor proteins

and, together with TP53I3, TADA3L, and TP53BP2 mediates

p53-dependent and independent apoptosis [59–60]. CCND3 (MIM

123834) is involved in cell cycle progression through the G2 phase,

whereas RAD23A (MIM 600061) up-regulates the nucleotide

excision activity of 3-methyladenine-DNA glycosylase [61],

therefore playing a role in DNA damage recognition in base

excision repair. Finally, NR4A2 (MIM 601828) encodes a nuclear

orphan receptor expressed in T cells and involved in apoptosis

[62]. NR4A2 is also known to play a central role in eliciting the

production of inflammatory cytokines in multiple sclerosis (MS

(MIM 126200)) [63]. Notably, variants in PPP3CA (Figure 1) have

recently been reported to correlate with MS severity as well [64].

We therefore investigated whether other genes carrying SNPs

which correlate with virus diversity have been identified in GWAS

for MS susceptibility or severity. Three additional genes, JMJD2C

(MIM 605469), C20orf133 (also known as MACROD2, (MIM

611567)) and CSMD1 (MIM 608397) have been associated with

MS [64] and display SNPs significantly correlated with virus

diversity (Table S1). While the function of C20orf133 is unknown,

JMJD2C encodes a histone demethylase expressed at very high

levels in B cells and cytotoxic lymphocytes (see materials and

methods), a pattern consistent with its being subjected to virus-

driven selective pressure. Finally, CSMD1, in analogy to the

aforementioned SERPING1, acts as a regulator of the complement

system [65]; notably, complement activation plays a central role in

both response to viruses and inflammatory reactions, particularly

in the central nervous system [66].

Analysis of the 30 stronger associations (Table 3) indicated that

several genes are part of the network described above or have been

involved in immune response (see InnateDB gene list, Table 2).

Conversely, others encode relatively unknown products (e.g.

KIAA1529 (MIM 611258), LHFPL3 (MIM 609719), LOC51149,

RNF217, TMEM132B, LEPREL1 (MIM 610341), ANKFN1,

MYO5C (MIM 610022), ANXA4 (MIM 106491) and SCRN3).

Among these genes, MYO5C, ANXA4 and SCRN3 are involved in

membrane trafficking events along exocytotic and endocytotic

pathways, suggesting that they might play a role in either viral cell

entry [67] or lytic granule exocytosis; this might be the case for

ANXA4 which is expressed at high levels in NK cells (see materials

and methods). Most interestingly, EYA4 (MIM 603550) (Table 3)

has recently been described as a phosphatase involved in triggering

innate immune responses against viruses [68]. Finally, both

PDE2A (MIM 602658) and SCNN1A (MIM 600228) might play

a role in maintaining lung epithelial barrier homoeostasis during

viral infection. Indeed, both genes can be induced by TNF-alpha

in lung epithelial cells [69–70] and can influence lung fluid

reabsorption and, therefore, edema formation. In line with these

observations, expression of the amiloride-sensitive epithelial Na+
channel (SCNN1A codes for the a subunit) is affected by infection

with influenza virus, severe acute respiratory syndrome coronavi-

rus and respiratory syncitial virus.

In humans, resistance to infectious diseases is thought to be

under complex, multigenic control with single loci playing a small

protective role [47]. This concept also holds for viral infection as

demonstrated by the role of genetic variants in modulating the

susceptibility to HIV infection or disease progression (reviewed in

[71]). Classic GWAS offer a powerful resource to identify

susceptibility loci for infectious diseases; yet GWAS typically have

limited power to detect variants with a low frequency or a small

effect. Indeed, recent GWAS for SNPs determining the host

control of HIV-1 [4–5] failed to identify most known loci with a

role in AIDS progression. The alternative approach we have

proposed here is based on the identification of variants subjected

to virus-driven selective pressure. Similarly to the GWAS results

mentioned above we did not identify well known antiviral-

response genes. Still, we noticed that variants in TRIM5 (MIM

608487) (rs2291845, t= 0.44, p = 1.8661025, rank = 0.97) and

IFIH1 (MIM 606951) (also known as MDA5, rs10439256, t= 0.51,

p = 5.461027, rank = 0.99) showed significant associations with

virus-diversity, although they did not withstood genome-wide

analysis. Also, it is worth mentioning that variants with a well

established role in resistance to viral infections may be neutrally

evolving; this is the case for the D32 allele of CCR5 (MIM 601373)

for example, which confers protection against HIV-1 infection and

possibly against other pathogens, but displays no selection

Table 4. Significantly over-represented PANTHER categories.

PANTHER category PANTHER description Number of genesa p valueb

Biological process Signal transduction 61 1.7461029

Cell adhesion-mediated signalling 16 9.1061026

Cell adhesion 16 7.9861024

Cell communication 24 2.7961023

Neuronal activities 13 1.4361022

Carbohydrate metabolism 13 2.0561022

Extracellular matrix protein-mediated signalling 5 2.4761022

Immunity and defense 21 3.5661022

Molecular function Receptor 30 4.2761025

Other receptor 11 3.1961024

Extracellular matrix linker protein 4 5.2761023

Extracellular matrix 10 2.2961022

aNumber of genes that correlate with virus diversity in each PANTHER category.
bp values are Bonferroni corrected.
doi:10.1371/journal.pgen.1000849.t004
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signature [72]. This is possibly due to how long and how strong the

selective pressure has been exerted. Conversely, variants subjected

to selective pressure must have (or have had along human history)

some selective advantage, indicating that the SNPs we have

identified can be regarded as candidate modulators of infection

susceptibility or disease progression.

Materials and Methods

Environmental variables
Virus absence/presence matrices for the 21 countries where

HGDP-CEPH populations are located were derived from the

Global Infectious Disease and Epidemiology Network database

(Gideon, http://www.gideononline.com), a global infectious

disease knowledge tool. Information in Gideon is weekly updated

and derives from World Health Organization reports, National

Health Ministries, PubMed searches and epidemiology meetings.

The Gideon Epidemiology module follows the status of known

infectious diseases globally, as well as in individual countries, with

specific notes indicating the disease’s history, incidence and

distribution per country. We manually curated virus absence/

presence matrices by extracting information from single Gideon

entries. These may refer to either species, genera or families (in

case data are not available for different species of a same genus/

family). Following previous suggestions [7–9], we recorded only

viruses that are transmitted in the 21 countries, meaning that cases

of transmission due to tourism and immigration were not taken

into account; also, species that have recently been eradicated as a

result, for example, of vaccination campaigns, were recorded as

present in the matrix. A total of 81 virus species/genera/families

were retrieved (Table S6). The same approach was applied to

calculate the diversity of other pathogens, namely bacteria,

protozoa and helminths [9]. The annual minimum and maximum

temperature were retrieved from the NCEP/NCAR database

(http://www.ngdc.noaa.gov/ecosys/cdroms/ged_iia/datasets/a04/,

Legates and Willmott Average, re-gridded dataset) using the

geographic coordinates reported by HGDP-CEPH website for

each population (http://www.cephb.fr/en/hgdp/table.php). Sim-

ilarly, net short wave radiation flux data were obtained from

NCEP/NCAR (http://www.esrl.noaa.gov/psd/data/gridded/data.

ncep.reanalysis.surfaceflux.html, Reanalysis 1: Surface Flux); these

data were read using Grid Analysis and Display System (GrADS,

http://www.iges.org/grads/). Daily values for four years (1948–

1951) were averaged to obtain an annual mean.

Since virus diversity, due to data organization in Gideon, can

only be calculated per country (rather than per population), the

same procedure was applied to climatic variables. Therefore the

values of annual temperature and radiation flux were averaged for

populations located in the same country. This assures that a

similar number of ties is maintained in all correlation analyses.

Data retrieval and statistical analysis
Data concerning the HGDP-CEPH panel derive from a

previous work [6]. Atypical or duplicated samples and pairs of

close relatives were removed [73].

A SNP was ascribed to a specific gene if it was located within the

transcribed region or no farther than 500 bp upstream the

transcription start site. MAF for any single SNP was calculated as

the average over all populations. The list of immune response

genes was derived from the InnateDB website (http://www.

innatedb.com/) and it contains a non-redundant list of 5,070

immune genes derived from ImmPort, IRIS, Septic Shock Group,

MAPK/NFKB Network and Immunome Database; it only

includes genes derived from curated immune gene lists.

Genes involved in glycan biosynthesis were obtained by merging

genes from two KEGG pathways (‘‘Glycan structures - biosyn-

thesis 1’’ and ‘‘Glycan structures - biosynthesis 2’’). Additional

genes were identified by searching Gene Ontology categories for

genes that act as glycosyltransferases (GO:0016757) and are

located in either the Golgi or the endoplasmic reticulum

(GO:0005783, GO:0005793 and GO:0005794). The list of human

genes coding for proteins interacting with viral products was

derived from three sources: a previously published study [38], the

VirHostNet website [74] (http://pbildb1.univ-lyon1.fr/virhostnet/)

and the HIV-1 Human Protein Interaction Database [75] (http://

www.ncbi.nlm.nih.gov/RefSeq/HIVInteractions/).

Expression data were obtained from SymAtlas (http://symatlas.

gnf.org/). The location of genomic elements that are highly

conserved among vertebrates was derived from UCSC annotation

tables (http://genome.ucsc.edu/; ‘‘PhastCons Conserved Ele-

ments, 44-way Vertebrate Multiz Alignment’’ track).

All correlations were calculated by Kendall’s rank correlation

coefficient (t), a non-parametric statistic used to measure the

degree of correspondence between two rankings. The reason for

using this test is that even in the presence of ties, the sampling

distribution of t satisfactorily converges to a normal distribution

for values of n larger than 10 [76].

In order to estimate the probability of obtaining n SNPs located

within m genes and significantly associated with virus diversity, we

applied a re-sampling approach: samples of m genes were

randomly extracted from a list of all genes covered by at least

one SNP in the HGDP-CEPH panel (number of genes = 15,280)

and for each sample the number of SNPs significantly associated

with virus diversity was counted. The empirical probability of

obtaining n SNPs was then calculated from the distribution of

counts deriving from 10,000 random samples. A SNP was ascribed

to a gene if it was located within the transcribed region or in the

500 upstream nucleotides.

Analysis of PANTHER over-represented functional categories

and pathways was performed using the ‘‘Compare Classifications of

Lists’’ tool available at the PANTHER classification system website

[77] (http://www.pantherdb.org/). Briefly, gene lists are compared

to the reference list using the binomial test for each molecular

function, biological process, or pathway term in PANTHER.

All calculation were performed in the R environment [78]

(http://www.r-project.org/).

Network construction
Biological network analysis was performed with Ingenuity

Pathways Analysis (IPA) software using an unsupervised analysis

(www.ingenuity.com). IPA builds networks by querying the

Ingenuity Pathways Knowledge Base for interactions between the

identified genes and all other gene objects stored in the knowledge

base; it then generates networks with a maximum network size of 35

genes/proteins. We used all genes showing at least one significantly

associated SNP as the input set; in this case a SNP was ascribed to a

gene if it was located within the transcribed region or in the 25 kb

upstream. All network edges are supported by at least one published

reference or from canonical information stored in the Ingenuity

Pathways Knowledge Base. To determine the probability of the

analysed genes to be found together in a network from Ingenuity

Pathways Knowledge Base due to random chance alone, IPA applies

a Fisher’s exact test. The network score represents the -log (p value).

Supporting Information

Table S1 SNPs in InnateDB genes that significantly correlate

with virus diversity.
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Found at: doi:10.1371/journal.pgen.1000849.s001 (0.05 MB PDF)

Table S2 SNPs in genes involved in glycan biosynthesis that

significantly correlate with virus diversity.

Found at: doi:10.1371/journal.pgen.1000849.s002 (0.03 MB

DOC)

Table S3 SNPs in genes coding for proteins interacting with

viral products that significantly correlate with virus diversity.

Found at: doi:10.1371/journal.pgen.1000849.s003 (0.05 MB PDF)

Table S4 SNPs significantly associated with virus diversity. The

table reports all SNPs that withstood Bonferroni correction at the

genome-wide level (with a= 0.05) and displayed a Tau percentile

rank higher than the 99th among MAF-matched SNPs, as

described in the main text and in material and methods. SNPs

are ranked according to the value of Tau. If the SNP is located

within a genic region (or in the 500 upstream nucleotides) the gene

symbol is reported. Also, the gene closest to the SNP and its

distance (in bp) are indicated. The aminoacid substitution is

reported for nonsynonymous variants; SNPs annotated as

‘‘phastCons element’’ are located within non-coding genomic

regions that display high sequence conservation among mammals

(as described in the text).

Found at: doi:10.1371/journal.pgen.1000849.s004 (0.21 MB

DOC)

Table S5 Correlations between SNPs associated with virus

diversity and other climatic variables. The table shows correlation

coefficients between each SNP associated with virus diversity and

the following climatic variables: average annual maximum

temperature (Tmax), average annual minimum temperature

(Tmin), short wave radiation flux (Irradiation SW). After

Bonferroni correction all p values were .0.05.

Found at: doi:10.1371/journal.pgen.1000849.s005 (0.42 MB

DOC)

Table S6 List of viruses identified in at least one country (n = 81)

Found at: doi:10.1371/journal.pgen.1000849.s006 (0.01 MB

DOC)
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