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Abstract

Background: In a variety of organisms, including mammals, caloric restriction improves metabolic status and lowers the
incidence of chronic-degenerative diseases, ultimately leading to increased lifespan.

Methodology/Principal Findings: Here we show that knockout mice for Eps8, a regulator of actin dynamics, display
reduced body weight, partial resistance to age- or diet-induced obesity, and overall improved metabolic status. Alteration in
the liver gene expression profile, in behavior and metabolism point to a calorie restriction-like phenotype in Eps8 knockout
mice. Additionally, and consistent with a calorie restricted metabolism, Eps8 knockout mice show increased lifespan. The
metabolic alterations in Eps8 knockout mice correlated with a significant reduction in intestinal fat absorption presumably
caused by a 25% reduction in intestinal microvilli length.

Conclusions/Significance: Our findings implicate actin dynamics as a novel variable in the determination of longevity.
Additionally, our observations suggest that subtle differences in energy balance can, over time, significantly affect
bodyweight and metabolic status in mice.
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Introduction

Obesity is associated with an increased risk of numerous co-

morbidities, such as type 2 diabetes, hypertension and cardiovas-

cular diseases, collectively referred to as metabolic syndrome, and

cancer [1,2,3]. The mechanisms involved are being clarified,

following the seminal discovery that adipose tissue, far from being

a passive reservoir for the accumulation of lipids, is an endocrine

organ that produces dozens of factors that regulate several aspects

of organism homeostasis [1,2,3]. Consistently, mounting evidence

links the production of pro-inflammatory factors, by excess adipose

tissue, to the development of a systemic chronic inflammatory state

that contributes to the development of obesity-associated morbid-

ities [1,2,3].

Studies in mice carrying fat-specific disruption of the insulin

receptor gene (FIRKO mice) demonstrated how the insulin

signaling pathway plays a major role in the homeostasis of adipose

tissue, while its subversion leads to pathological conditions.

FIRKO mice display 50% reduction in adipose tissue, despite

normal food intake [4], and are protected from age-related and
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hyperphagia-induced obesity, and obesity-related glucose intoler-

ance [4]. These metabolic changes correlate with extended

longevity [5], thus corroborating the idea that reduced fat mass,

even in the presence of normal or increased food intake, can

reduce obesity-associated metabolic alterations and extend life-

span. The notion that insulin signaling in adipose tissue is critical

in the regulation of lifespan received further support by findings

that sirtuin 1 (SIRT1), encoded by the mammalian orthologue of

SIR2 - a yeast life-extending gene -, inhibits adipogenesis by

repressing PPAR-c, an insulin-dependent master regulator of fat

cell development [6].

It has been known for many years that caloric restriction (CR),

with adequate nutrition, improves cardiometabolic health, pre-

vents tumorigenesis, and increases life span in experimental

animals [7]. One relevant issue is whether CR exerts its beneficial

effects per se or through the reduction of adipose tissue mass.

Studies in FIRKO mice [4,5] support the latter possibility, while

studies in genetic models of CR have not yet addressed the issue.

Here, we report one such a model, eps8-null (Eps8KO) mice [8,9],

which unexpectedly links actin dynamics to individual variations in

bodyweight, metabolic status and longevity.

Eps8 is a multimodular protein involved in actin remodeling

[9,10,11,12,13] through several activities, including regulation of

Rac, a pivotal GTPase in the control of actin dynamics [9,14], and

direct interaction with actin. Through this latter property, Eps8

exerts both actin barbed end capping and actin bundling activities

[11,12]. We systematically analyzed Eps8KO mice to unmask

possible defects pointing to phenotypes related to human disease.

This analysis revealed that Eps8KO mice weigh less than WT

mice and are partially resistant to aging and diet-induced obesity.

Moreover, Eps8KO mice display a CR phenotype, accompanied

by increased insulin sensitivity and an improved metabolic status,

which are likely responsible for the increased lifespan observed in

Eps8KO mice. This negative energy balance in Eps8KO mice is

not caused by decreased food intake or increased energy

expenditure, instead it correlates with decreased intestinal

absorption and reduced intestinal microvilli length. Thus, the

actin remodeler Eps8 is required for proper microvilli morpho-

genesis and loss of Eps8 in mice leads to altered intestinal function,

improved metabolism and increased lifespan.

Results

Eps8KO Mice Are Predisposed to Leanness
Eps8KO mice displayed a significant reduction in bodyweight,

when compared to wild-type (WT) mice, something that became

much more evident during aging (Fig. 1A) or high-fat diet-induced

obesity (Fig. 1B). To gain insights into the nature of these

phenomena, we used Soxhlet analysis to measure whole body fat

content and lean body mass in Eps8KO mice. Reduced

bodyweight was due to a reduction in both the fat and the lean

mass in young and, more pronouncedly, in old Eps8KO mice

(Fig. 1C). When the weight of individual organs was measured as a

fraction of total body weight, however, we observed that for the

majority of inner organs there was no significant difference

between Eps8KO and WT mice. Instead, a significant reduction

in inguinal, epididymal and scapular fat, relative to total body

weight, was observed in Eps8KO mice (Fig. 1D). Importantly,

total brain weight was unaffected in Eps8KO mice, which resulted

in an increase of its fractional contribution to body weight, in older

mice (Fig. 1D).

We concluded that Eps8KO mice show a lean phenotype. In

addition, results from the detailed measurements of organ weight

are compatible with the possibility that these mice are functionally

calorie-restricted. Mice subjected to alimentary CR, in fact, show

an absolute reduction in both lean and fat mass, and a relatively

higher proportional loss of fat mass, while the brain is the sole

organ that does not show a reduction in weight [15,16]. The

possibility that Eps8KO mice are calorie-restricted will be further

analyzed, and discussed, in a following section.

Improved Metabolic Status in Eps8KO Mice
Increased bodyweight correlates inversely with insulin sensitivity

and overall metabolic status, which in turn affects the risk of type 2

diabetes and of cardiovascular diseases [17,18]. Accordingly,

Eps8KO mice displayed increased insulin sensitivity both at a

young and an older age and after high fat diet (Fig. 2A); however,

they displayed no increased glucose tolerance (Fig. 2B). Insulin

levels were lower in Eps8KO mice at all ages and for all dietary

regimes (Fig. 2C). Thus, in Eps8KO mice, reduced bodyweight

both during aging- and diet- induced obesity correlates with

improved insulin sensitivity.

We next compared metabolic parameters of Eps8KO and WT

mice (Table S1). While only insulin and leptin levels were reduced

in Eps8KO mice fed a normal diet (8% reduction in bodyweight

compared to WT mice), after a high fat diet (20% reduction in

bodyweight), Eps8KO mice additionally displayed significantly

reduced glucose, triglyceride and cholesterol values. A similar

improvement in blood parameters was observed in Eps8KO mice

after an overnight fast (Table S1). We concluded that Eps8KO

mice display an overall improved metabolic status.

Eps8KO Mice Display Reduced Fat Absorption
One possible cause of reduced bodyweight is reduced food

intake/assimilation. We did not detect significant differences in

food intake in Eps8KO mice, either when fed on normal chow or

on a high fat diet (Fig. 3A). Similarly, we did not detect alterations

in the amount of feces produced by Eps8KO mice (Fig. 3B).

Instead, determining the calorific value of the feces using a

combustion calorimeter, we found that the feces of Eps8KO mice

displayed a higher energy content than those of normal mice, both

on a normal and on a high fat diet (Fig. 3C). This increase in fecal

energy content was not due to altered intestinal permeability or

intestinal transit time (Fig. 3D).

Collectively, the above data suggest that Eps8KO mice absorb

less. To investigate this possibility directly, we initially measured fat

absorption, since increased fecal calorie content was more

pronounced when Eps8KO mice were fed a high fat diet. Using

the fecal dual isotope method in which the non-absorbable

sitostanol serves as an internal normalizer, we observed a significant

reduction in oleic acid absorption in Eps8KO mice (Fig. 3E). Next

we measured intestinal absorption using the plasma dual isotope

method in which plasma lipases were inhibited to allow accumu-

lation of the absorbed lipids. Oleic acid and triolein (a triglyceride

analog) absorption was equally reduced, indicating that the action of

intestinal lipases is not impaired in Eps8KO mice (Fig. 3F). To

address whether the absorption deficit was specific for fat or whether

absorption of other nutrients was also impaired in Eps8KO mice,

we used the everted sac model. Uptake of 14C-MDG, 14C-Gly-Sar

was similar in WT and Eps8KO mice, while 14C-oleic acid uptake

was reduced in intestinal sacs from Eps8KO mice (Fig. 3G).

Permeability to 3H-mannitol was negligible throughout the

experiment (Fig. S1). Thus, while sugar and peptide absorption is

normal, fat absorption is specifically impaired in Eps8KO mice.

Energy Expenditure of Eps8KO Mice
The above data show that reduced food assimilation, in

particular fat, is associated with the lean phenotype of Eps8KO

Eps8KO Mice Are Thinner
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Figure 1. Reduced bodyweight in Eps8KO mice. A–B. Age- (A) and high fat diet-induced (B) obesity in Eps8KO and wild-type mice (KO and WT,
respectively, in this and all subsequent figures). HFD, high fat diet. C. Soxhlet analysis. D. Weight of individual organs. Ing., inguinal white fat; Epid.,
epididymal white fat; Sca., scapular brown fat; Kidn., kidney. Values are expressed as percent bodyweight. In all panels (and in all subsequent figures):
n, number of mice tested per condition (in D, 13–17 mice were used, depending on the analyzed organ). In all panels (and in all subsequent figures),
values are expressed as means 6 SEM. Two-tailed t-test was used to assess statistical significance: *, P,0.05; **, P,0.01; ***, P,0.005; n.s., not
significant (in this and in all subsequent figures).
doi:10.1371/journal.pone.0009468.g001

Eps8KO Mice Are Thinner
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Figure 2. Increased insulin sensitivity in Eps8KO mice. A. Insulin tolerance, measured as blood glucose after insulin injection. B. Glucose
tolerance, measured as blood glucose after glucose injection. C. Plasma insulin levels after overnight fast. HFD, high fat diet.
doi:10.1371/journal.pone.0009468.g002

Eps8KO Mice Are Thinner
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Figure 3. Reduced intestinal fat absorption in Eps8KO mice. A. Food intake. B. Feces production. C. Feces energy content. D. Left, intestinal
permeability, determined fluorometrically in the plasma 4 hr after an oral gavage of Dextran-FITC (4 kD). Right, in vivo intestinal transit, determined
as the time (transit time) between oral gavage of Carmin Red and the appearance of red feces. E. Absorption of 14C-oleic acid determined by the fecal
dual isotope method. F. Intestinal fat absorption determined by the plasma dual isotope method. Please note that while differences are readily
detectable between genotypes, no difference in absorption is observable between the two substrates, within genotypes. This indicates that the
breakdown of triglycerides at the intestinal level is not impaired. G. Intestinal uptake of a fatty acid (left), peptidic (middle), and sugar (right) substrate
determined by the everted intestinal sac model. Grey bars depict background values after competition with excess cold substrate: OA, 40 mM cold
oleic acid; SG, 20 mM cold sarcosyl-glycine, MDG, 100 mM cold methyl-glucopyranoside. In each experiment 3 sacs/mouse were prepared from the
number of mice/experimental condition indicated in the figure. In all panels: ND, normal diet; HFD, high fat diet.
doi:10.1371/journal.pone.0009468.g003

Eps8KO Mice Are Thinner
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mice. However, increased energy expenditures might also

contribute to this phenotype.

Daily energy expenditure, determined as oxygen consumption at

room temperature, was increased in Eps8KO mice (Fig. 4A). Next,

we measured the metabolic rate at 30uC (TNZ, thermal neutral

zone), where energy expenditure for thermal regulation is minimal.

Under these conditions, we did not detect any significant difference

between WT and KO mice (Figure 4A). We also measured

locomotor activity. On a 24 hr schedule, activity was not

significantly increased in Eps8KO mice (Fig. 4B), although we

noticed a trend towards increased activity during the light phase

(P = 0.06), but not during the dark phase, in Eps8KO mice (Fig. 4C).

This initial set of results indicated that there is increased energy

expenditure in Eps8KO mice (Fig. 4A). However, this could not be

immediately ascribed to increased locomotor activity (Fig. 4B–C)

or to increased metabolic rate when the need for thermogenesis

was minimized at the TNZ (Fig. 4A). One possibility, to explain

the increased energy expenditure is that Eps8KO mice invest

more than WT in thermoregulation, possibly due to reduced

insulation. To gain more insights into this issue, we measured core

body temperature (Tb). In Eps8KO mice, there was reduced Tb

during the light but not during the dark phase (Fig. 4D). In

addition, we found that, in Eps8KO mice, core body temperature

inversely correlated with body weight, while in WT mice no such

correlation was observed (Fig. 4E).

These results suggest that, in Eps8KO mice, energy resources

are limited and individual mice allocate available energy resources

preferentially either into fat storage or into thermogenesis. To test

this hypothesis directly, we fed mice a high fat diet and measured

core body temperature at the beginning and at the end of the

experiment. As expected, under conditions of increased caloric

intake, core body temperature in Eps8KO mice rose to levels of

WT mice (Fig. 4F), while it remained unvaried in mice fed a

normal diet. These results further support the hypothesis that

limited energy resources are at the base of the reduced core body

temperature in Eps8KO mice. Interestingly, reduced core body

temperature is a phenotype also displayed by calorie-restricted

mice [19,20], an observation that further supports the possibility

that Eps8KO mice might be functionally calorie-restricted.

Eps8KO Mice Are Calorie-Restricted
To corroborate our hypothesis, we employed several approach-

es. Calorie-restricted mice show a characteristic gene expression

profile, reflecting alterations in metabolic pathways due to reduced

availability of nutrients [21,22,23]. We analyzed the gene

expression profiles in livers from Eps8KO and WT mice. Eps8

is not expressed in liver [24], thus differences in gene expression

should reflect metabolic changes rather than the direct effect of the

lack of Eps8. We found 20 genes differentially expressed in

between WT and Eps8KO livers (cut-off 6 1.6 fold, P,0.05,

Table S2). We validated, by quantitative PCR, nine genes (four

upregulated and five downregulated in the Eps8KO/WT

comparison), and found 100% concordance (Table S2).

We then compared this expression profile with a number of liver

expression profiles published for the CR phenotype of mice

[21,22,23]. As shown in Fig. 5A, there was a very significant

overlap between the genes differentially expressed in livers of

Eps8KO vs. WT mice and those differentially expressed in livers of

CR vs. control mice. In addition, 15 of the 20 genes of our profile

were concordantly and significantly differentially expressed in at

least one of four published CR datasets (Fig. 5B, see also Table S3).

It should be noted that in our expression profiling analysis the

number of significantly differentially expressed genes was lower than

in the published studies that we used for our comparisons. One

obvious possibility is that differences in the profiling platforms

employed in the various studies account for the differences. It should

also be noted that Eps8KO mice represent a ‘‘chronic’’ condition of

calorie restriction, in which adaptive changes might have occurred.

In addition, Eps8KO are only moderately and selectively calorie-

restricted (the absorption defect is fat-specific). The other studies

reported conditions of acute (from 24 h to 8 weeks) and massive

calorie restriction (starvation), in which metabolic and gene

expression changes are more likely to be of a vaster magnitude.

Regardless, the metabolic changes occurring in the livers of Eps8KO

mice closely resemble those occurring under condition of CR.

If Eps8KO mice were indeed functionally calorie-restricted they

should display increased longevity [7]. Indeed Eps8KO lived

significantly longer than WT mice (Fig. 5C). The median survival

of Eps8KO mice was increased by 26% (P = 0.005), mean survival

by 37% (P = 0.00071) and maximum survival by 9% (P = 0.012).

Lifespan was significantly extended both in male and female

Eps8KO mice (Fig. S2A–B). Increased lifespan in genetically

modified mice has been linked to either a reduction in free radical

production or alterations in the insulin signaling pathway [25].

Moreover, Eps8 has recently been suggested to control ROS

production directly [26]. However, we did not detect altered ROS

production in primary fibroblasts (Fig. 5D) or in macrophages (Fig.

S2C) derived from Eps8KO mice. Similarly, we did not detect

alterations in insulin signaling in fibroblasts or adipocytes devoid of

Eps8 (Fig. 5E). We concluded that the longevity phenotype of

Eps8KO mice is not due to direct alterations of ROS production

or insulin signaling, and it can therefore most likely be ascribed to

the functional CR obtained in these animals.

A Microvillar Morphogenetic Defect in Eps8KO Mice
We searched for the possible causes of functional CR in

Eps8KO mice. Since these mice absorb less fat, we directed our

attention to possible intestinal alterations. In the mouse, Eps8 is

expressed in the bowel, both in the small intestine and, to a lesser

extent, in the colon (Fig. 6A). Histological examination of the small

intestine did not reveal gross differences between Eps8KO and

WT mice (Fig. 6B), and a morphometric analysis showed no

differences in villus length, crypt height, or number of alcian-blue

positive goblet cells (Fig. 6C). Similarly, no evident alterations were

detectable in the large intestine of Eps8KO mice (data not shown).

These results suggest that more subtle changes might be

responsible for the phenotype of Eps8KO mice. We analyzed the

subcellular localization of Eps8 in intestinal cells. We found that

EGFP-Eps8, but not EGFP alone, colocalizes with F-actin to the

apical membrane of differentiated intestinal Caco-2 cells, suggest-

ing that Eps8 is localized to intestinal microvilli (Fig. 6D).

Microvillar localization of Eps8 was confirmed by biochemical

fractionation of the intestinal brush border membrane (Fig. S3).

Thus, we analyzed the morphology of intestinal enterocytes of

Eps8KO mice at the ultrastructural level. Microvilli in Eps8KO

enterocytes appeared disorganized and were significantly shorter

than their WT counterparts (Figure 6E–F). This was not

accompanied by a general disorganization of the actin cytoskel-

eton as assessed by phalloidin staining for F-actin (data not shown).

Since microvilli serve to augment the absorptive surface of the

intestine, their reduction in Eps8KO mice is compatible with the

absorption defect and with the calorie restriction phenotype that

we observed in these animals.

Discussion

In this study, we show that the genetic removal in mice of a

regulator of actin dynamics, Eps8, leads to a complex phenotype

Eps8KO Mice Are Thinner
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Figure 4. Energy expenditure of Eps8 KO mice. A. Oxygen consumption (VO2) determined at ambient temperature (RT), and at 30uC (TNZ,
thermal neutral zone). B–C. Locomotor activity determined on a 24 hr cycle (B) or represented as the average of day and night time (C). In panel B
(and in the following panel D), time points, that differed significantly between WT and Eps8KO mice are indicated by horizontal lines. Red and black
lines indicate values that were higher or lower, respectively, in Eps8KO vs. WT mice. D. Core body temperature, determined telemetrically in WT and
Eps8KO mice, and presented as a 24 hr cycle (top) or as the average of day and night time (bottom). E. Scatter plot of the correlation between core
body temperature and bodyweight. F. Core body temperature before and after 8 weeks on normal chow (ND) or on high fat diet (HFD). In all graphs
n = 7 for WT and 8 for KO.
doi:10.1371/journal.pone.0009468.g004

Eps8KO Mice Are Thinner
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Figure 5. Eps8KO mice display a CR-like phenotype. A. The 20 genes differentially expressed in the livers of Eps8KO mice vs. WT (See Table S2)
were compared to published studies that analyzed differential gene expression in the livers of CR mice compared to controls [CR-I, [21]; CR-II, [22]; CR-
III, [23]]. In the study by Pohjanvirta et al., two conditions of starvation (4 days and 10 days) were used, and both are reported in the comparison. In
the study by Bauer et al., several conditions were used and we report the longest one (48 hs) in the comparison. ‘‘Genes differ. expr. (P,0.05)’’,
number of significantly (P,0.05) differentially expressed genes in this study (Eps8KO) and in the other studies (CR) (the number of Eps8KO genes vary
because not all genes that we analyzed were present on the chips used in the other studies). ‘‘Overlap (concord.)’’, genes overlapping between the
indicated datasets and concordantly regulated (upregulated or downregulated); the observed (Obs.) overlapping genes are reported in comparison
to the expected (Exp.) overlap in a random distribution. ‘‘P’’, p-value of the observed overlap vs. the expected one (Pearsons’s chi-squared test).
Additional details are in the Materials and Methods section. B. Detailed analysis of the overlap between genes from the Eps8KO list (column ‘‘Gene’’;
in red, upregulated genes, in green, downregulated genes) with CR lists from other studies (CR-I, CR-II and CR-III as in A). Only concordant overlaps
are shown and are indicated by a red box if the gene was upregulated, or by a green box if the gene was downregulated. Genes not present in a
specific array experiment are indicated as NP C. Kaplan-Meyer survival curves for Eps8KO mice and WT littermates. D. ROS production as measured
by DCFDA fluorescence in primary embryo fibroblasts (PEF) from Eps8KO and p66KO mice and WT littermates. p66KO fibroblasts [48] were used as
positive controls. E. Insulin signaling. Left, PEF from Eps8KO or WT mice were treated with Insulin 10 mg/ml for the indicated times, followed by
immunoblot (IB) as shown. Right, 3T3-L1 adipocytes were subjected to Eps8 silencing (eps8 siRNA) or to mock-silencing (ctrl siRNA) followed by
Insulin treatment and IB as in left.
doi:10.1371/journal.pone.0009468.g005

Eps8KO Mice Are Thinner
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Figure 6. Eps8 is required for correct microvillar morphogenesis in the mouse. A. IB analysis of Eps8 in the intestine. Duod., duodenum,
Jejen., jejunum, Ile. B. Small intestines (jejunum) from WT or KO mice were stained with hematoxylin-eosin (H&E, top) to assess general morphology,
or Alcian blue (bottom) to visualize goblet cells. Bar, 100 mm. C. Morphometric analysis of Alcian blue positive cells (top), villus height (middle) and
crypt depth (bottom) in the indicated intestinal segments. D. Confocal images of Caco-2 cells, transfected with Eps8 (EGFP-Eps8, right) or control
EGFP (EGFP, left). Cells were allowed to differentiate for 10 days on collagen-coated coverslips, and then stained for F-actin using rhodaminated
phalloidin. The merged images (merge. Bottom panels) show the colocalization (yellow) of EGFP-Eps8 or EGFP (green) with F-actin (red). Bar, 10 mm.
E. Transmission electron microscope analysis of the intestinal brush border demonstrates shortened and irregular shaped microvilli (dashed red
brackets) in the duodenal tracts of KO compared to WT mice. Bar, 0.5 mm. F. Morphometric analysis of duodenal microvilli length.
doi:10.1371/journal.pone.0009468.g006

Eps8KO Mice Are Thinner
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characterized by leanness, improved metabolic status and

increased lifespan. All these phenotypes most likely rest on the

fact that Eps8KO mice are functionally calorie-restricted.

Mechanistically, our data are compatible with a model in which

the lack of Eps8 causes an alteration in microvillar morphogenesis

and hence in the absorptive function of the intestinal brush border.

The altered absorptive function of the intestine in turn, leads to a

limited but constant reduction in energy intake, which is not

compensated by increased food intake. The first result of the

reduced energy intake is a reduction in bodyweight with

consequent leanness. The reduction in weight is, in part, due to

loss of adipose tissue. The concomitant reduction in insulation

leads to a greater caloric demand for thermoregulation, which,

when combined with the reduced energy intake, causes a CR-like

state in the mice over time. As a consequence, insulin sensitivity is

increased, glucose levels are lowered, and core body temperature

decreases. These phenotypes are characteristic of an improved

metabolic status that is most likely responsible for the increased

lifespan detected in Eps8KO mice. While this scenario needs

further experimental confirmation, first and foremost the repro-

duction of the phenotype in an intestine-specific KO strain, our

results unexpectedly link a well-characterized regulator of actin

dynamics to individual variations in bodyweight, metabolic status

and longevity, and mark this process as a potential co-determinant

in the pathogenesis of obesity and of its co-morbidities.

Eps8 Is Essential for Proper Microvillar Morphogenesis
Our findings identify the process of microvillar morphogenesis

as the most likely initial step in the determination of the lean

phenotype of Eps8KO mice. How does Eps8 control this process?

Microvilli are highly dynamic structures undergoing constant

remodeling through actin treadmilling. Consistently, even when

microvilli have reached their final length and become bundled by

cross-linkers, actin monomers are continuously added at the

barbed end of the actin filaments, facing the microvilli tips, and

dissociate from the pointed end [27]. By controlling this process,

actin binding and bundling proteins are crucial regulators of

microvillar length and architectural organization, respectively.

Eps8 is a multimodular actin remodeling protein, exerting both

actin barbed end capping and F-actin cross-linking and bundling

activity. The switch between these activities is regulated through

interaction with its binding partners: association with Abi-1

activates Eps8’s capping, association with Irsp53 its bundling

activity [11,12]. A further degree of regulation is exerted by

phosphorylation regulating both Eps8’s association with F-actin as

well as its capping activity [28]. Thus, Eps8 represents an actin

remodeler that can be dynamically regulated to modulate its

function. In C.elegans, the bundling activity of Eps8 is essential for

microvilli formation, whereas the capping activity is dispensable

[29]. Whether the same holds true for mammals needs to be

demonstrated. The fact that the capping activity of mouse Eps8 is

20-fold higher than the one of worm Eps8 [10] might suggest that

for mammalian microvilli morphogenesis not only the bundling

but also the capping activity is needed. It is worth pointing out that

in addition to Eps8 two other Eps8 gene family members, that

display similar biochemical activities of Eps8, are expressed in the

intestine [24], suggesting a further and unexplored level of

complexity in the regulation of microvilli growth. Single and

combined knockout mice for the various Eps8 family members will

be needed to dissect the specific and redundant functions of the

Eps8 family members in microvilli morphogenesis.

How do other actin binding and bundling proteins fit into this

picture? In vitro work in cell lines had suggested an important role

for Villin and Espin, two F-actin bundling proteins, enriched in the

intestinal brush border, in microvillus morphogenesis [30,31,32].

Instead, neither knockout mice show any microvillar alterations,

suggesting that, in vivo the loss of these two proteins is compensated

by other F-actin bundlers. Instead, loss of Formin (Plastin 1), an F-

actin bundler, which additionally, through its interaction with

Keratin19, links the microvillar actin rootlets to the terminal web,

leads to shortened microvilli and reduced transmembrane

resistance in mice [33]. Surprisingly, Formin knockout mice do

not show any metabolic alterations. Since in these mice reduced

microvilli length is accompanied by increased permeability, it is

tempting to speculate that the two alterations balance each other,

leading net to normal nutrient uptake.

Determination of the Calorie-Restricted Phenotype of
Eps8KO Mice

Based on our data, we propose that the initiating event in the

generation of the complex phenotype of Eps8KO mice is the

reduction of the intestinal surface area available for nutrient

absorption. However, we detected a specific fat absorption defect

in Ep8KO mice, while sugar and peptides were equally well

absorbed in comparison to WT mice. One possible explanation for

the selectiveness of the defect might reside in the fact that sugars

and peptides are transported across the apical surface of

enterocytes via specific carriers. Such active transport mechanisms

might compensate for the reduction of the transport area, either by

increasing their rate or their concentration (although we did not

measure these variables directly). Conversely, fatty acids enter via

free diffusion, and thus a reduction in surface area would directly

impinge on their influx rate.

A number of issues require further discussion. First, why do

Eps8 mice not compensate the reduced absorption by eating

more? Food intake is centrally regulated [34] and Eps8 is

expressed in the brain [8], raising the possibility that alterations

in the CNS are at the basis of the phenotype. Although, we did not

directly investigate this possibility, it is worth noting that we have

previously shown that neuronal Eps8 controls at least one type of

behavioral response, i.e. that to ethanol [8]. Other, not mutually

exclusive, possibilities must also be contemplated. For instance, gut

signals - both hormonal and nutrients - feed back to the brain to

regulate food intake [35]; it is possible that the lack of Eps8 could

impinge on the regulation of gut-derived signaling to control food

intake. Finally, Eps8KO mice might not feel very hungry. The

reduction in intestinal absorption is fat specific meaning that

normal circulating levels of glucose and amino acids are still

available to signal satiety.

It should also be noted that, despite the fact that Eps8KO mice

do not eat more than WT littermates in absolute terms, they do so,

when food intake is normalized to bodyweight. This possibly

reflects the fact that they react, at least partially, to lower levels of

leptin and insulin. The fact that the differences that we observe are

rather small raises another interesting point: is the absorption

defect sufficient to explain the CR phenotype? The effect of CR on

lifespan is observed at 20–40% reduction in food intake [36], a

condition not likely mimicked by the absorption defect of Eps8KO

mice. Thus, other factors possibly contribute to the negative

energy balance. From our data, the prime suspect is heat loss,

consequent to reduced thermoinsulation due to diminished fat

mass, as also supported by the finding that Eps8KO mice invest

more than WT littermates for thermoregulation. Reduced

absorption and increased heat loss would lead to a slow, but

progressive, negative energy balance responsible for the functional

CR of Eps8KO mice.

Finally, and compatibly with their CR phenotype, Eps8KO

mice display improved metabolic status, which is the most likely
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cause of their increased lifespan. Indeed, we could not evidence

any alterations in insulin signaling or in ROS production in

primary cells derived from Eps8KO mice. This finding argues that

Eps8 does not play a direct role in the classical pathways

implicated in the regulation of lifespan [25], and that the longevity

phenotype is likely a consequence of the functional CR of these

mice. In further support of this possibility, we could evidence

alterations in the gene expression profile of livers from Eps8KO

mice that were similar to those detectable under conditions of CR

[21,22,23]. The absence of Eps8 expression in the liver [24]

definitely rules out a direct impact of Eps8 on biochemical

pathways potentially leading to CR and increased lifespan, and

further supports the notion that these phenotypes can be ascribed

to the improved metabolic status of the KO mice.

Implications
Our findings raise the possibility that actin dynamics might play

a previously unsuspected role in the co-determination of obesity

and of its associated morbidities. Whether this correlation reflects a

real occurrence in humans is presently a matter of speculation;

however, based on our results, an investigation of polymorphisms

in the Eps8 gene, which might point to possible hypomorphic

alleles, seems warranted. Such an analysis should be extended to

other Eps8-family members, since in principle hypomorphic alleles

of these genes might have a similar impact to that of Eps8 on

microvillar morphogenesis and on the ensuing phenotypes.

Our data suggest that small changes in the daily energy balance

are sufficient to gradually improve the metabolic state and prolong

lifespan. This observation is important as it is generally thought

that severe caloric restriction of 20–40% is necessary to achieve

such effects [36]. Our findings might open perspectives for much

more feasible therapeutic strategies than the rigorous dieting

regimens that few people are able to follow.

Materials and Methods

Animal Housing, Diet and Aging
Mice were housed on a 12-h light/dark cycle and had ad libitum

access to water and food. Eps8KO mice were backcrossed for ten

generations into C57BL/6 mice and then used for the aging

experiments. All other experiments were performed after an

additional 8 generations of backcross. Both mice from heterozy-

gous crosses (diet, metabolism, gene expression profile, everted sac)

and homozygous F2N18 colonies (all remaining experiments) were

used. Male mice were used unless otherwise indicated. For the diet

experiments, mice were single housed at 10 weeks of age. After one

week of habituation mice were placed either on a normal chow

(Harlan Teklad Global 2018) or on a high fat diet (60% fat,

D12492, Research Diets Inc.) and food intake and bodyweight

were monitored for 10 weeks, twice weekly. All experiments were

performed in accordance with the guidelines established in the

IFOM-IEO Campus Principles of Laboratory Animal Care

(directive 86/609/ECC).

Analysis of the Metabolic Status
For glucose tolerance tests, mice were fasted overnight for 16 h

and then injected intraperitoneally with 2 g/kg body weight

glucose. For insulin tolerance test (ITT), mice were fasted for 5 h

and then injected with 0.4 U/kg body weight (for 3 month old

mice) or 0.5 U/kg body weight (for 6 and 12 month old mice) of

human insulin (Eli Lilly) into the peritoneal cavity. Overnight fast

was chosen for GTT since mice are night active and most of the

food intake occurs during the night.; for ITT a 5 hrs fast was

chosen because prolonged fasting causes the blood glucose values

to drop too much after insulin administration. Blood glucose

values were determined by an automatic glucose monitor

(Glucotrend 2, Roche) and Accu-Chek active bands (Roche).

Plasma parameters reported in Table S1 were measured as

described in Text S1.

Analysis of Intestinal Absorption
Everted intestinal sacs (1–1,5 cm length) were prepared from

the upper part of the small intestine of WT and Eps8KO mice

under constant oxygenation as described [37,38]. Details are in

Text S1.

For fecal dual isotope experiments, mice were starved overnight

and then received a gastric bolus of 100 ml cornoil containing

1 mCi 14C-Oleic Acid and 1 mCi non-absorbable 3H-Sitostanol.

Feces were collected for 4 days every 24 hrs. Samples were

homogenized in 3 M KOH in 60% EtOH and incubated over

night at 60uC under shaking to solubilize fatty acids [39]. Ten ml

Hionic Fluor (Perkin Elmer) was added to 100 ml aliquots, left in

the dark at room temperature for 4 h and then counted using a

liquid scintillation counter. Absorption was calculated as:

% absorption~ 14C
�

3H dosing mixture { 14C
�

3H feces
� ���

14C
�

3H dosing mixture
�
x100

For plasma dual isotope experiments, mice were starved

overnight, injected with 500 mg/kg Tyloxapol to inhibit plasma

lipases and after 10 min given an intragastric bolus of 100 ml

cornoil containing 2 mCi 14C-Oleic Acid and 2 mCi Triolein.

Blood was sampled at the indicated time points and 10 ml were

solubilized in 100 ml Isopropanol/Soluene-350 (1:1) for 30 min.

Ten ml 30% peroxide was added and samples were incubated

overnight at 37uC in tightly capped vials. Samples were cooled to

room temperature and 10 ml Hionic Fluor (Perkin Elmer) was

added. Samples were left in the dark at room temperature for 4 h

and then counted using a liquid scintillation counter.

In vivo intestinal permeability was measured as described in An

et al., [40]. Intestinal transit time was measured as described in

Friebe et al., [41]. Details are in Text S1.

Analysis of Energy Expenditure
For the measurement of oxygen consumption and carbon

dioxide production, mice were placed inside a climate chamber.

Gas concentrations were measured by sucking compressed air

through custom made metabolic chambers. Further details are in

Text S1. Core body temperature (Tb) and activity were monitored

using implanted thermosensitive transmitters. For the determina-

tion of total daily energy expenditure (DEE) at room temperature

mice were kept in metabolic cages with food and water ad libitum.

Red mouse igloos (Plexx, NL) were offered as shelters. The

measurement started in the afternoon of day one and was

terminated in the morning of day three. This procedure enabled a

recording of a complete data set of resting (photophase) and

activity (scotophase) during a period of 24 consecutive hours. For

the determination of the thermoneutral zone, metabolic rate was

monitored within a wide range of ambient temperatures from 6 to

34uC. Details are described in Text S1.

Histology and Ultrastructural Analysis
Intestinal segments from WT and Eps8KO mice were fixed in

10% buffered formalin, processed and embedded in paraffin. Five

mm tissue sections were stained with H&E or Alcian Blue.

Morphometric analysis was with the image analysis software
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Image-Pro Plus (version 4.5, Media Cybernetics, Silver Spring,

USA). Ultrastructural analysis was essentially as in Croce et al.

[10]. Briefly, intestinal pieces of 161 mm2, collected from the

proximal duodenum of 4 WT and 4 Eps8KO male mice of 6

months of age, fed ad libidum on standard chow. Samples were

first fixed in 2.5% glutaraldheyde for 2 h at room temperature,

postfixed in osmium tetroxide for 2 h and then in uranyl acetate

for another hour. Subsequently, samples were dehydrated through

a graded ethanol series and propylene oxide and embedded in

resin (Poly-Bed; Polysciences, Inc., Warrington, PA) overnight at

42uC and 2 days at 60uC. Ultrathin sections (50 nm) were

collected, stained with uranyl acetate/lead citrate and observed

under an electron microscope (model CM10 or Model G2 Tecnai;

Philips, Eindhoven, The Netherlands). Morphometric analysis was

performed arbitrarily in ten different regions per tissue block in

which the intestinal tight junctions were well preserved as a read-

out of the intactness of the tissue. A total length of 70 mm intestinal

surface per animal was analyzed.

Statistical Analyses
Means were compared between WT and Eps8KO mice using

two-tailed Student’s t test. Values in the text are means 6 S.E.M.

Differences were considered significant at p,0.05.

Cell Lines and Cellular Biochemistry
Preparation of PEFs and macrophages, and conditions for the

cultivation of 3T3-L1 and Caco-2 cells (obtained from ATCC-

LGC) are in Text S1. Preparation of brush border membranes,

determination of ROS, and IB analysis are also in Text S1.

Gene Expression Analysis
Glass cDNA-chips were produced as recently described. A full

description of the approximate 21.000 probes on the microarray is

available in the GEO database (GPL4937). The expression data

have been submitted to the GEO database (GSE14454).

For preparation of total RNA, individual organs were thawed in

a buffer containing chaotropic salt (RLT buffer, Qiagen) and

homogenized using a Polytron homogenizer. Total RNA from

individual samples was obtained according to the manufacturer’s

protocols using RNeasy Midi kits (Qiagen). Microarray slides were

hybridized and processed as described previously [42].

The TIGR Microarray Data Analysis System [TM4 [43,44])]

was used for normalization [MIDAS; [45]] and identification of

genes with significant differential regulation [SAM, Significance

Analysis of Microarrays; [46]]. Expression data were normalized

by performing a total intensity normalization to transform the

mean log2 ratio to zero. To eliminate low-quality array elements

several filtering methods were applied. They included: background

checking for both channel with a signal/noise threshold of 2.0, one

bad tolerance policy parameter and flip dye consistency checking

[47].

Validation was performed by quantitative PCR using Roche

chemistry on selected genes.

Gene Expression Meta Analysis
Microarray gene expression data of Pohjanvirta et al. [22]

(GSE9121, Affymetrix RAT230 2.0 chip), and Bauer et al. [23]

(GSE858, custom two channels cDNA microarray) were down-

loaded from Gene Expression Omnibus (GEO, www.ncbi.nlm.

nih.gov/geo/). Normalized data were log2 transformed and

analyzed using GeneSpring GX 7.3 (Agilent Technologies,

USA). Statistical analysis was performed using a two-samples

parametric Welch’s t-test (variance not assumed equal) followed by

multiple testing correction (Benjiamini and Hochberg False

Discovery Rate). All genes with a P-value less than 0.05 were

considered to be significantly regulated. In the Bauer et al. study, a

direct design for two colors cDNA microarray experiment was

employed (i.e. the treated versus control condition were analyzed

directly on the same chip) and the sole gene expression profile of

control mice, as in the Pohjanvirta et al. study, was not available.

Therefore, in order to analyze this dataset consistently with the

analysis of Pohjanvirta et al. (i.e. two-samples Welch’s t-test with

multiple test correction), we compared the 48 h starved group with

the 48 h sugar-supplemented group.

Supporting Information

Text S1 Supplemental experimental procedures for Plasma

parameters, Everted sac experiments, In vivo Intestinal Permeabil-

ity, Intestinal transit time, Feces energy content, Open respiratory

system, Body temperature and activity, Determination of the

thermoneutral zone (TNZ) and basal metabolic rate (BMR),

Soxhlet analysis, Primary embryonic fibroblasts, 3T3-L1, Caco-2,

Macrophages, Determination of Reactive Oxygen Species

(ROS), Immunoblotting, Preparation of intestinal brush-border

membranes.

Found at: doi:10.1371/journal.pone.0009468.s001 (0.07 MB

DOC)

Figure S1 Normal intestinal permeability during everted sac

assays in vitro. A–C. Bar graphs depicting the uptake of 3H-

Mannitol during everted sac uptake assays in sacs obtained from

WT and Eps8KO mice. Uptake was also monitored after addition

of cold competitors (grey bars), specific for each assay: A, 40 mM

Oleic Acid (OA, n = 6); B, 20 mM Sarcosyl-glycine (SG, n = 4);

and C, 100 mM Methyl-D-glucopyranoside (MDG, n = 4). Values

are expressed as mean 6 SEM; significance was assessed using 2-

tailed student’s t-test and no difference was found between

genotypes.

Found at: doi:10.1371/journal.pone.0009468.s002 (0.15 MB

PDF)

Figure S2 Increased lifespan in both male and female Eps8KO

mice, and ROS production during FccR-mediated internalization

in macrophages. A–B. Kaplan-Meyer survival curves depicting

increased survival of: A, male; B female Eps8KO and WT mice.

The mean and median survival is significantly increased both in

male and female Eps8KO mice (P = 0.02 and P = 0.009,

respectively, independent of the sex). C. Bar graphs depicting

relative fluorescence of DCFDA after FccR-mediated internaliza-

tion in wild-type (WT) or Eps8KO (KO) peritoneal exudate

macrophages. After addition of the internalization stimulating

immune-complex, cells were kept on ice (4uC, negative control) or

shifted to 37uC to allow for internalization and subsequent ROS

production. No significant difference was observed between

genotypes. The experiment was performed in duplicate (at 4uC)

or triplicate (at 37uC) with n = 3 per genotype.

Found at: doi:10.1371/journal.pone.0009468.s003 (0.20 MB

PDF)

Figure S3 Eps8 is enriched in the intestinal brush border

membrane fraction. Left, schematics of intestinal brush border

membrane preparation. Right, immunoblot analysis of an

intestinal brush border membrane preparation. Individual frac-

tions (equal amount of proteins were loaded) were blotted for

Ezrin, a bona fide brush border membrane protein, for Sos1, a

cytosolic protein (as a negative control) and for Eps8, as indicated.

S0 indicates the starting homogenate, S1–S4 the supernatants and

P1–P4 the pellets of the subsequent purification steps. P4
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represents the final brush border membrane fraction. The

enrichment (per mg of loaded proteins) is also given, as assessed

by densitometric scans of the immunoblots.

Found at: doi:10.1371/journal.pone.0009468.s004 (0.24 MB

PDF)

Table S1 Blood parameters. Blood parameters of 6 month-old

Eps8KO (KO) and wild-type (WT) mice, fed for 10 weeks on a

high fat diet (HFD, 60% fat of caloric intake) or on normal chow

(ND). F indicates a fed state and S a starved state (overnight fast)

before blood sampling. Values are reported as mean 6 SEM (n =

number of mice per experiment). Significance was assessed using

two-tailed student’s t-test: *, P,0.05; **, P,0.01; ***; P,0.005.

Found at: doi:10.1371/journal.pone.0009468.s005 (0.06 MB

DOC)

Table S2 Expression profile of Eps8KO liver. Genes that were

differentially expressed in Eps8KO liver respect to wild-type mice

by gene-chip analysis are shown. For each gene we show: the

common name (Gene), the accession number, the category derived

from the Gene Ontology term, the known function, the level of

differential expression in the gene-chip analysis (Chip fold change),

and the validation by QPCR (QPCR fold change). ND, not done.

Found at: doi:10.1371/journal.pone.0009468.s006 (0.06 MB

DOC)

Table S3 Meta-analysis of Eps8KO regulated genes. Meta

analysis of genes differentially expressed in the liver of the

Eps8KO/WT comparison in two independent datasets of CR

mice. In the study by Pohjanvirta et al. 2008, two conditions of

starvation (4 days and 10 days) were used, and both are reported in

the comparison. In the study by Bauer et al. 2004, several

conditions were used and we report the longest one (48 h) in the

comparison. These data were used to create panel B of Fig. 5. In

that panel, the study by Pohjanvirta et al. 2008 is referred as CR-

II, and the study by Bauer et al. 2004 as CR-III. In that panel

(Fig. 5B), we also computed the data from another study by

Dhabhi et al. 2004 (referred to in the panel as CR-I). In the case of

the study by Dhabhi et al. 2004, however, the raw data of the

dataset are not available. We could not therefore perform a

metanalysis, and simply used the gene list of differentially

expressed genes as the authors reported it in their publication.

In this table, each gene differentially expressed in the Eps8KO/

WT comparison (column ‘‘Gene’’) is followed by the chip fold

change in the Eps8KO/WT comparison (in all cases P,0.05), and

by the metanalyzed data from Pohjanvirta et al. 2008 and Bauer

et al. 2004 indicating the fold change and the P-value (Welch’s t-

test, Hochberg and Benjamini correction). See details in Materials

and Methods. NP, genes not present on the microarray platform

used in the indicated studies.

Found at: doi:10.1371/journal.pone.0009468.s007 (0.06 MB

DOC)
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