
DOTTORATO DI RICERCA IN INFORMATICA

XXIII CICLO

SETTORE SCIENTIFICO DISCIPLINARE INF/01 INFORMATICA

Privacy Preservation in
Location-Based Proximity Services

Tesi di Dottorato di Ricerca di:

Dario Freni

Relatore:
Prof. Claudio Bettini

Coordinatore del Dottorato:
Prof. Ernesto Damiani

Anno Accademico 2009/2010

Contents

1 Introduction 1

1.1 Problem description . 1

1.2 Contribution . 2

1.3 Outline . 3

2 Privacy models for Location Based Services: an overview 5

2.1 A classification of attacks to LBS privacy 5

2.1.1 Attacks exploiting quasi-identifiers 7

2.1.2 Snapshot versus historical attacks 8

2.1.3 Single versus multiple-issuer attacks 9

2.1.4 Attacks exploiting knowledge of the defense 10

2.2 Defenses to LBS privacy threats 10

2.2.1 Anonymity based defenses 12

2.2.2 Defenses based on private information obfuscation . . 18

2.2.3 Encryption based defenses 22

2.3 Impact of realistic simulations on the evaluation of defense

techniques . 23

2.3.1 The MilanoByNight simulation 24

2.3.2 Experimental settings 28

2.3.3 Impact of the adversary model on the evaluation of

the generalization algorithms 30

2.3.4 Impact of the deployment model on the evaluation of

the generalization algorithms 31

I

CONTENTS II

3 Privacy preservation in Proximity Services 35

3.1 Related work . 36

3.2 Problem definition . 39

3.2.1 The proximity service 39

3.2.2 Privacy concerns and privacy requirements 41

3.2.3 Adversary model and privacy preservation 43

3.3 Privacy preserving techniques 45

3.3.1 SP-Filtering , Hide&Seek and Hide&Crypt 45

3.3.2 Analysis of SP-Filtering , Hide&Seek and Hide&Crypt

protocols . 50

3.3.3 Longitude . 57

3.3.4 Analysis of the Longitude protocol 62

3.3.5 C-Hide&Seek and C-Hide&Hash 66

3.3.6 Analysis of C-Hide&Seek and C-Hide&Hash protocols 77

3.4 Comparison of the protocols 90

4 Evaluation of the proposed defenses 93

4.1 Empirical evaluation . 93

4.1.1 The experimental setting 93

4.1.2 Evaluation of the quality of service 95

4.1.3 Evaluation of the system costs 100

4.1.4 Evaluation of the achieved privacy 105

4.2 Implementation of the service 106

4.2.1 Mobile client . 109

4.2.2 Web client . 110

4.2.3 Monitor application 111

5 Conclusions and future work 113

5.1 Summary of the contributions 113

5.2 Future work . 114

CONTENTS III

A Proofs 117

A.1 Proof of Proposition 1 . 117

A.2 Proof of Theorem 1 . 119

A.3 Proof of Proposition 2 . 119

A.4 Proof of Theorem 2 . 121

A.5 Proof of Proposition 3 . 122

A.6 Proof of Theorem 3 . 125

A.7 Proof of Lemma 1 . 126

A.8 Proof of Lemma 2 . 126

A.9 Proof of Theorem 4 . 126

A.10 Proof of Theorem 5 . 128

A.11 Proof of Theorem 6 . 130

A.12 Proof of Theorem 7 . 130

B Notation 132

List of Figures

2.1 General privacy threat in LBS 6

2.2 Average anonymity. 30

2.3 Performance evaluation for different values of the total pop-

ulation. 32

2.4 Evaluation of the Greedy algorithm using AB andMRM data

sets. Pid−in = Pid−out = 0.1 33

2.5 Average privacy using AB and MRM data sets. Pid−out =

Pid−in/10. 34

3.1 Regions LA and LB . 47

3.2 Possible locations of B . 54

3.3 Examples of modular translations of a point and of a cell.

Eki(c) represented in gray. 61

3.4 Examples of modular distance 62

3.5 Example of the certainty region CRA 62

3.6 Two forms of approximation introduced by the Longitude

Protocol. 66

3.7 Location update policy and generation of single-use keys. . . 68

3.8 Location update sub-protocol in C-Hide&Seek 69

3.9 Proximity request sub-protocol in C-Hide&Seek 70

3.10 Computation of granules of GUB considered in proximity by A 71

3.11 Proximity request sub-protocol in C-Hide&Hash. 75

3.12 Different cases of proximity between a point and a region . . 83

IV

LIST OF FIGURES V

3.13 Approximation incurring with the minimum-distance semantics 85

3.14 Expected precision . 85

3.15 Expected recall . 86

3.16 Privacy with respect to a buddy 88

4.1 Examples of the granularity approximation 95

4.2 Evaluation of the impact of the approximations 97

4.3 Evaluation of the quality of service (considering both approx-

imations) . 98

4.4 Evaluation of the system costs 101

4.5 Size of the uncertainty region. 106

4.6 System architecture . 107

4.7 Android application . 109

4.8 Web application interface (“Map” tab) 110

4.9 Monitor application interface 111

Chapter 1

Introduction

1.1 Problem description

The increased availability of GPS-enabled mobile devices that provide ac-

cess to Internet services has caused an incredible proliferation of new mobile

services that offer personalized information to users depending on their lo-

cation, called location-based services (LBS). In parallel, social network (SN)

services have become very popular among Internet users. As SN services are

almost entirely based on user-generated content, SN companies have focused

on providing easy access to their services, as well as new ways for the users

to generate information. We called geo-social networks (GeoSNs) those SN

in which the geographical positions of participants and of relevant resources

are used to enable new information services.

In most SNs, each user has a contact list of friends, also called buddies.

A basic service in GeoSNs is the proximity service that alerts the user when

any of her buddies is in the vicinity, possibly enacting other activities like

visualizing the buddy’s position on a map, or activating a communication

session with the buddy. Such proximity services are already available as

part of GeoSNs (e.g., Brightkite1), as part of a suite of map and navigation

services (e.g., Google Latitude2), or as an independent service that can be

1http://brightkite.com
2http://www.google.com/latitude

1

http://brightkite.com
http://www.google.com/latitude

1.2. Contribution 2

integrated with social networks (e.g., Loopt3).

From a data management point of view, a proximity service involves

the computation of a range query over a set of moving entities issued by a

moving user, where the range is a distance threshold value decided by the

user. All existing services are based on a centralized architecture in which

location updates, issued from mobile devices, are acquired by the SP, and

proximity is computed based on the acquired locations.

While proximity services are very attractive for many SN users, they

also raise severe privacy concerns: a) the users may not fully trust the

service provider that will handle their location data, b) the users would

like to have better control on the precision of location data released to

their buddies. For the purpose of alleviating these concerns, we address the

problem of protecting users’ location privacy in the context of proximity

services, considering different possible adversaries, including the SP and, to

a different extent, the buddies.

Existing proximity services do not offer any protection regarding point

a) above other than legal privacy policy statements, and they offer a very

limited control regarding point b); for example, some solutions allow the

user to limit the location released to the buddies to the precision level of

city.

1.2 Contribution

The main goal of this dissertation is the investigation of privacy issues in

location-based proximity services and the proposal of effective defense tech-

niques.

The solutions proposed in the research area of LBS privacy preservation

(see Chapter 2 for a detailed survey) are not effective or directly applicable

to proximity services. In this thesis we present a rigorous study of location

privacy in proximity services, considering two categories of adversary: the

3http://www.loopt.com

http://www.loopt.com

1.3. Outline 3

service provider (SP) and the other buddies. We propose a flexible way to let

users express privacy controls with respect to each category of adversaries.

Indeed, each user is allowed to specify his privacy requirements in terms of

regions of the geographical space: given a specific geographic position of the

user, the region including the position defines the highest location precision

exposed to the considered adversary.

We propose five protocols for enforcing users’ privacy requirements. All

the protocols have been formally studied and validated against a well defined

adversary model. Each protocol differs from the others for its requirements,

performance or privacy guarantees. A theoretical analysis of each protocol

formally supports the privacy guarantees and evaluates the expected per-

formance in terms of quality of service, privacy and costs. In addition, the

same performance aspects are measured in an extensive experimental work.

The practicality of our approach is illustrated by a complete implementation

of the techniques in a fully-functional system, including client applications

for web browsers and mobile phones.

Results presented in this dissertation are the outcome of research per-

formed at the EveryWare Lab., at the D.I.Co. department of the Università

degli Studi di Milano, and at the Center for Secure Information Systems at

George Mason University. Contributions included in following chapters have

been already partially published; in particular, the classification and con-

tributions presented in Chapter 2 derive from investigations included in [5],

and contributions presented in Chapter 3 are included in [16,34,36,39].

1.3 Outline

The dissertation is structured as follows. In Chapter 2 we present the prob-

lem of privacy threat in LBS and a categorization of the attacks to the

privacy and of the defense techniques that have been proposed in literature.

In the same chapter, we present a study of the impact of the user movement

dataset used during the experimental analysis on the evaluation of defense

techniques, and we introduce a realistic simulation of user movement called

1.3. Outline 4

MilanoByNight. Chapter 3 provides a deep analysis of the privacy threats

enabled by the use of proximity services, including a discussion of the ex-

isting techniques, a formalization of the privacy problem and the adversary

model. In the same chapter we propose five privacy preserving protocols, and

for each protocol we present a rigorous formal analysis of their properties.

Chapter 4 presents an extensive experimental evaluation, and the implemen-

tation of these protocols in a fully-functional instant messaging system. In

Chapter 5 we conclude the dissertation discussing the open problems and

summarizing the contributions of this work.

Chapter 2

Privacy models for Location

Based Services: an overview

This chapter presents an overview of the related work in the field of pri-

vacy in LBS. In Section 2.1 we introduce a categorization to the attacks to

users’ privacy in LBS, while in Section 2.2 we classify the main proposed

defense techniques according to the threats they have been designed for,

and according to other general features. Section 2.3 presents an analysis of

the impact of the user movement dataset on the experimental evaluation of

privacy preserving techniques.

2.1 A classification of attacks to LBS privacy

There is a privacy threat whenever an adversary is able to associate the iden-

tity of a user to information that the user considers private. In the case of

LBS, this sensitive association can be possibly derived from location-based

requests issued to service providers. More precisely, the identity and the

private information of a single user can be derived from requests issued by

a group of users as well as from available background knowledge. Figure 2.1

shows a graphical representation of this general privacy threat in LBS.

A privacy attack is a specific method used by an adversary to obtain the

5

2.1. A classification of attacks to LBS privacy 6

requests!

issues!

background!
knowledge!

user!
identity!

private!
information!

sensitive!
association!

adversary can infer!

has! has!

requests!

issues!

requests!

issues!

Figure 2.1: General privacy threat in LBS

sensitive association. Privacy attacks can be divided into categories mainly

depending on several parameters that characterize the adversary model. An

adversary model has three main components: a) the target private informa-

tion, b) the ability to obtain the messages exchanged during service, and c)

the background knowledge and the inferencing abilities available to the ad-

versary. The target private information is the type of information that the

adversary would like to associate with a specific individual, like e.g., her po-

litical orientation, or, more specifically, her location. Different classes of ad-

versaries may also have different abilities to obtain the messages exchanged

with the service provider, either by eavesdropping the communication chan-

nels or by accessing stored data at the endpoints of the communication.

This determines, for example, the availability to the adversary of a single

message or multiple messages, messages from a specific user or from multiple

users, etc.. Finally, the adversary may have access to external knowledge,

like e.g., phone directories, lists of members of certain groups, voters lists,

and even presence information for certain locations, and may be able to

perform inferences, like joining information from messages with external in-

formation as well as more involved reasoning. For example, even when a

request does not explicitly contain the sensitive association (e.g., by using

pseudo-identifiers to avoid identification of the issuer), the adversary may

2.1. A classification of attacks to LBS privacy 7

re-identify the issuer by joining location data in the request with presence

data from external sources. Regarding background knowledge, two extreme

cases can be considered. When no background knowledge is available, a pri-

vacy threat exists if the sensitive association can be obtained only from the

messages in the service protocol. When “complete” background knowledge

is available, the sensitive association is included and the privacy violation

occurs independently from the service request.

Hence, privacy attacks should not only be categorized in terms of the

target private information, and of the availability to the adversary of ser-

vice protocol messages (the first two of the main components mentioned

above), but also in terms of the available background knowledge and infer-

encing abilities. In the following, we list some categories of privacy attacks

specifically enabled by background knowledge.

• Attacks exploiting quasi-identifiers in requests;

• Snapshot versus historical attacks;

• Single- versus multiple-issuer attacks;

• Attacks exploiting knowledge of the defense;

Each category is discussed in the rest of this section.

2.1.1 Attacks exploiting quasi-identifiers

Either part of the sensitive association can be discovered by joining informa-

tion in a request with external information. When we discover the identity

of the issuer (or even restrict the set of candidate issuers) we call the part of

the request used in the join quasi-identifier. For example, when the location

data in the request can be joined with publicly available presence data to

identify an individual, we say that location data act as quasi-identifier. Simi-

larly to privacy preserving database publication, the recognition of what can

act as quasi-identifier in service request is essential to identify the possible

attacks (as well as to design appropriate defenses).

2.1. A classification of attacks to LBS privacy 8

2.1.2 Snapshot versus historical attacks

Many of the first approaches presented in the literature [6, 23, 27, 40] have

proposed techniques to ensure a user’s privacy in the case in which the

adversary can acquire a single request issued by that user. More specifically,

these approaches do not consider attacks based on the correlation of requests

made at different time instants. An example are attacks exploiting the

ability of the adversary to link a set of requests, i.e., to understand that the

requests have been issued by the same (anonymous) user.

When historical correlation is ignored, we say that the corresponding

threats are limited to the snapshot case. Intuitively, it is like the adversary

can only obtain a snapshot of the messages being exchanged for the service at

a given instant, while not having access to the complete history of messages.

In contrast with the snapshot case, in the historical case it is assumed

that the adversary is able to link a set of requests. Researchers [3, 25]

have considered such a possibility. Several techniques exist to link different

requests to the same user, with the most trivial ones being the observation of

the same identity or pseudo-identifier in the requests, and others being based

on spatiotemporal correlations. We call request trace a set of requests that

the adversary can correctly associate to a single user. We use Example 1 to

show that defense techniques for the snapshot cases cannot straightforwardly

be used in the historical case.

Example 1. Suppose Alice requires 3-anonymity and issues a request r. An

algorithm safe against attacks exploiting knowledge of the defense is used to

generalize r into a request r′ whose spatiotemporal region includes only Alice,

Bob, and Carl. Afterwards, Alice issues a new request r1 that is generalized

into a request r′1 whose spatiotemporal region includes only Alice, Ann, and

John. Suppose the adversary is able to link requests r′ and r′1, i.e., he is

able to understand that the two requests have been issued by the same user.

The adversary can observe that neither Bob nor Carl can be the issuer of r′1,

because they are not in the spatiotemporal region of r′1; Consequently, they

cannot be the issuers of r′ either. Analogously, considering the spatiotem-

2.1. A classification of attacks to LBS privacy 9

poral region in r′, he can derive that Ann and John cannot be the issuers of

the two request. Therefore, the adversary can identify Alice as the issuer of

r′ and r′1.

In this example, in addition to adversary’s ability of using location as

quasi-identifier, the ability to link requests is crucial for the attack to be

successful.

2.1.3 Single versus multiple-issuer attacks

When the adversary model limits the requests that can be obtained to those

being issued by a single (anonymous) user, we say that all the attacks are

single-issuer attacks. When the adversary model admits the possibility that

multiple requests from multiple users are acquired, and the adversary is

able to understand if two requests are issued by different users, we have a

new important category of attacks, called multiple-issuer attacks. Note that

this is an orthogonal classification with respect to snapshot and historical.

Example 2 shows that, in the multiple-issuer case, an adversary can infer

the sensitive association for a user even if the identity of that user is not

revealed to the adversary.

Example 2. Suppose Alice issues a request r and that the adversary can

only understand that the issuer is one of the users in a set S of potential

issuers. However, if all of the users in S issue requests from which the

adversary can infer the same private information inferred from r, then the

adversary can associate that private information to Alice as well.

In the area of privacy in databases, this kind of attack is known as

homogeneity attack [32]. In LBS, differently from the general case (depicted

in Figure 2.1), in the snapshot, multiple-issuer case, a single request for

each user in a group is considered. More involved and dangerous threats

can occur in the historical, multiple-issuer case.

2.2. Defenses to LBS privacy threats 10

2.1.4 Attacks exploiting knowledge of the defense

In the security research area, it is frequently assumed that the adversary

knows the algorithms used for protecting information, and indeed the algo-

rithms are often released to the public. We have shown [35] that the first

proposals for LBS privacy protection ignored this aspect leading to solutions

subject to so called inversion attacks. As an example of these attacks, con-

sider a defense technique that produces a LBS request with a generalized

spatial region instead of the exact location (i.e., a spatial cloaking technique),

and suppose that this request is observed by the adversary. Suppose also

that he gets to know the identity of the four potential issuers of that request,

since he knows who was in that region at the time of the request; Still he

cannot identify who, among the four, is the actual issuer, since cloaking has

been applied to ensure 4-anonymity. However, if he knows the cloaking algo-

rithm, he can simulate its application to the specific location of each of the

candidates, and exclude any candidate for which the resulting cloaked re-

gion is different from the one in the observed request. Some of the proposed

algorithms are indeed subject to this attack. Kalnis et al. [27] show that

each generalization function satisfying a property called reciprocity is not

subject to the inversion attack. Recently, Deutsch et al. [14] observed that

even if the reciprocity property is satisfied, if the generalization function

produces generalized regions of different size or position for different users

inside the same anonymity set, an adversary knowing the generalization

could still break anonymity. In our chapter, depending on the assumption

in the adversary model about the knowledge of the defense algorithm we

distinguish def-aware attacks from def-unaware attacks.

2.2 Defenses to LBS privacy threats

Defense techniques can be categorized referring to the attacks’ classifica-

tion reported above, depending on which specific attacks they have been

designed for. However, there are other important criteria to distinguish

2.2. Defenses to LBS privacy threats 11

defense approaches:

1. Defense technique: Identity anonymity versus private information ob-

fuscation versus encryption

2. Defense architecture: Centralized versus decentralized

3. Defense validation: Theoretical versus experimental.

The different defense techniques can be classified as anonymity-based if

they aim at protecting the association between an individual and her private

information by avoiding the re-identification of the individual through a re-

quest (or a sequence of requests). This is achieved by transforming the parts

of the original request acting as quasi-identifiers to obtain a generalized re-

quest. On the contrary, techniques based on private information obfuscation

aim to protect the same association by transforming the private information

contained in the original request, often assuming that the identity of the in-

dividual can be obtained. Finally, encryption-based techniques use private

information retrieval (PIR) methods that can potentially protect both the

identity of the issuer and the private information in the request.

Centralized defense architectures assume the existence of one or more

trusted entities acting as a proxy for service requests and responses between

the users and the service providers. The main role of the proxy is to trans-

form requests and possibly responses according to different techniques in

order to preserve the privacy of the issuers. Decentralized architectures, on

the contrary do not assume intermediate entities between users and service

providers. Among the benefits of centralized architectures are a) the ability

of the proxy to use information about a group of users (e.g., their location)

in order to more effectively preserve their privacy, and b) the availability of

more computational and communication resources than the users’ devices.

The main drawbacks are considered the overheads in updating on the proxy

the information about the users, and the need for the user to trust these

entities.

2.2. Defenses to LBS privacy threats 12

A third criterion to distinguish the defenses that have been proposed is

the validation method that has been used. In some cases, formal results,

based on some assumptions, have been provided so that a certain privacy is

guaranteed in all scenarios in which the assumptions hold. In other cases,

only an experimental evaluation, usually based on synthetic data, is pro-

vided. In Section 2.3 we discuss how this approach may be critical if the

actual service deployment environment does not match the one used in the

evaluation.

In this section we classify the main proposals appeared in the literature

according to this categorization.

2.2.1 Anonymity based defenses

Most of the techniques proposed in the LBS literature to defend privacy

through anonymity consider the location as a quasi-identifier. Indeed, it

is implicitly or explicitly assumed that background knowledge can in some

cases lead an adversary to infer the identity of the issuer given her location at

a given time. Consequently, the target private information for the considered

attacks is usually the specific service being requested, or the location of the

issuer whenever that location cannot be used as quasi-identifier.1

When the location acts as a quasi-identifier, the defense technique trans-

forms the location information in the original request into a generalized lo-

cation. In the following we call anonymity set of a generalized request, the

set of users that, considering location information as quasi-identifier, are not

distinguishable from the issuer.

Centralized defenses against snapshot, single-issuer and def-unaware

attacks.

Anonymity based defenses with centralized architectures assume the exis-

tence of a trusted proxy that is aware of the movements of a large number

1Indeed, location cannot be the target private information when it can be found ex-

plicitly associated with identities in background knowledge.

2.2. Defenses to LBS privacy threats 13

of users. We call this proxy Location-aware Trusted Server (LTS).

The first generalization algorithm that appeared in the literature is

named IntervalCloaking [23]. The paper proposes to generalize the requests

along the spatial and/or temporal dimension. For what concerns the spatial

dimension, the idea of the algorithm is to iteratively divide the total region

monitored by the LTS. At each iteration the current area qprev is partitioned

into quadrants of equal size. If less than k users are located in the quadrant

q where the issuer of the request is located, then qprev is returned. Other-

wise, iteration continues considering q as the next area. For what concerns

the temporal dimension, the idea is to first generalize the spatial location

(with the above algorithm) at a resolution not finer than a given thresh-

old. Then, the request is delayed until k users pass through the generalized

spatial location. This defense algorithm has only been validated through

experimental results.

An idea similar to the spatial generalization of IntervalCloaking is used

by Mokbel et al. [40] that propose Casper, a framework for privacy protection

that includes a generalization algorithm. The main difference with respect to

IntervalCloaking is that, in addition to the anonymity parameter k, the user

can specify the minimum size of the area that is sent to the SP. While it is not

explicit in the paper, the idea seems to be that, in addition to k-anonymity,

the algorithm also provides a form of location obfuscation. Similarly to

IntervalCloaking, Casper has been validated through experimental results.

Centralized defenses against snapshot, single-issuer and def-aware

attacks.

Many papers extend IntervalCloaking to provide defenses techniques that

guarantee anonymity when more conservative assumptions are made for the

adversary model. Kalnis et al. [27], propose the Hilbert Cloak algorithm

that provides anonymity also in the case in which the adversary knows the

generalization function. The idea of Hilbert Cloak is to exploit the Hilbert

space filling curve to define a total order among users’ locations. Then,

2.2. Defenses to LBS privacy threats 14

Hilbert Cloak partitions the users into blocks of k: the first block from the

user in position 0 to the user in position k − 1 and so on (note that the

last block can contain up to 2 · k − 1 users). The algorithm then returns

the minimum bounding rectangle (MBR) computed considering the position

of the users that are in the same block as the issuer. The correctness of

the Hilbert Cloak algorithm is formally provided and the performance of the

algorithm has been also experimentally evaluated.

A different algorithm, called CliqueCloak is proposed by Gedik et al. [18].

The main difference with respect to the IntervalCloaking algorithm is that

CliqueCloak computes the generalization among the users that actually issue

a request and not among the users that are potential issuers. Indeed, Clique-

Cloak collects original requests without forwarding them to the SP until it

is possible to find a spatiotemporal generalization that includes at least k

pending requests. Then, the requests are generalized and forwarded to the

SP. The advantage of the proposed technique, whose correctness is formally

proved, is that it allows the users to personalize the degree of anonymity as

well as the maximum tolerable spatial and temporal generalizations. How-

ever, the algorithm has high computational costs and it can be efficiently

executed only for small values of k.

In [35] Mascetti et al. present another three generalization algorithms

that are proved to guarantee anonymity against snapshot, single-issuer and

def-aware attacks. The aim is to provide anonymity while minimizing the

size of the generalized location. The algorithm with the best performance

with respect to this metric is called Grid. Intuitively, this algorithm par-

titions all users according to their position along one dimension. Then, it

considers the users in the same block as the issuer and it partitions them

according to their location along the other dimension. Finally, each block

has at least cardinality k and the algorithm computes the generalized loca-

tion as the minimum bounding rectangle (MBR) that covers the location of

the users in the same block as the issuer.

2.2. Defenses to LBS privacy threats 15

Decentralized defenses against snapshot, single-issuer attacks.

Some papers propose defense techniques that do not require a centralized ar-

chitecture. Chow et al. [13] propose a decentralized solution called CloakP2P

in which it is assumed that users can communicate with each other using

an ad-hoc network. Basically, before sending the request, a user looks for

the k − 1 closest users in the neighborhood through the ad-hoc network.

The location information of the request is then generalized to the region

containing these users and the request is issued to the server through one

of these users that is randomly selected. This algorithm guarantees privacy

only against def-unaware attacks and it is evaluated through experimental

results only.

Privè is a distributed protocol based on the Hilbert Cloak algorithm

([22]). In this case, the data structure that contains the positions of the users

on the Hilbert curve is a B+-tree that is distributed among the users in the

system. The generalization is a distributed algorithm that traverses the tree

starting from the root and finds the set of users containing the issuer. The

algorithm is proven to be correct and guarantees privacy also against def-

aware attacks. However, this solution suffers from some scalability issues.

To address these issues, Ghinita et al. [21] propose the MobiHide algorithm

which improves the scalability but that does not guarantee anonymity if

the generalization algorithm is known to the adversary. The algorithm is

formally validated.

A different decentralized solution is proposed by Hu et al. [26]. The

main characteristic of the proposed technique is that it does not require the

users to disclose their locations during the anonymization process. Indeed,

it is assumed that a user’s devices is able to measure the closeness from its

peers through its omnidirectional antenna (using WiFi signal, for example).

When a request is generalized, the distance information is used to compute

the anonymity set and the generalized location is obtained through a secure

computation among the users in the anonymity set. The proposed approach

is safe against def-aware attacks and its correctness is formally proved.

2.2. Defenses to LBS privacy threats 16

Centralized defenses against historical, single-issuer attacks.

Several papers further extend the ideas of IntervalCloaking to provide a

defense in the historical case. The problem of anonymity in the historical,

single-issuer case has been first investigated in [7]. In the paper it is shown

that the defense technique for the snapshot case cannot be straightforwardly

applied to provide protection against a historical attack. In addition, a

centralized algorithm is proposed. A brief description of the formalization of

the problem presented in the paper follows. To define the notion of historical

anonymity, it is reasonable to assume that the LTS not only stores in its

database the set of requests issued by each user, but also stores for each

user the sequence of her location updates. This sequence is called Personal

History of Locations (PHL). More formally, the PHL of user u is a sequence

of 3D points (〈x1, y1, t1〉, . . . , 〈xm, ym, tm〉), where 〈xi, yi〉, for i = 1, . . . ,m,

represents the position of u (in two-dimensional space) at the time instant

ti. A PHL (〈x1, y1, t1〉, . . . , 〈xm, ym, tm〉) is defined to be LT-consistent with

a set of requests r1, . . . , rn issued to a SP if for each request ri there exists an

element 〈xj , yj , tj〉 in the PHL such that the area of ri contains the location

identified by the point xj , yj and the time interval of ri contains the instant

tj . Then, given the set R̄ of all requests issued to a certain SP, a subset

of requests R̄′ = {r1, . . . , rm} issued by the same user u is said to satisfy

Historical k-Anonymity if there exist k−1 PHLs P1, . . . , Pk−1 for k−1 users

different from u, such that each Pj , j = 1, . . . , k − 1, is LT-consistent with

R′.

Following the main ideas presented in [7] other anonymization techniques

for the historical case have been proposed in [12, 50]. The work in [12] also

aims at providing protection against a def-aware attack, however it is not

clear if the proposed algorithm achieves this goal since it is only evaluated

through experimental results. The work in [50] proposes two generalization

algorithms, the first one, called plainKAA, exploits the same general idea

presented in [7]. The second one is an optimization of the first, based on the

idea that in the generalization of the requests the users that were not in the

2.2. Defenses to LBS privacy threats 17

anonymity set of a previous request can contribute to anonymity protection.

It is unclear if this optimization can preserve historical k-anonymity. Both

algorithms are validated through experimental results only.

Mascetti et al. propose a formal model for the historical case [37] and

experimentally show that, under certain conservative assumptions, it is not

possible to guarantee anonymity without generalizing the user locations to

large areas. Under these assumptions, considered in most of the related work

on the snapshot case, the adversary knows the association between each

user identity and the location of that user. The ProvidentHider algorithm

is proposed to guarantee anonymity in the historical case under the relaxed

assumptions that the adversary knows this association only when users are

located in certain areas (e.g., workplaces). The correctness of the algorithm

is formally proved and its applicability is experimentally evaluated.

The Greedy algorithm for historical k-anonymity We now present

a simple centralized defense that belongs to this category. This algorithm

enforces historical anonymity, and it will be used as reference algorithm in

Section 2.3.

Our algorithm uses a snapshot anonymization algorithm, like already

mentioned Grid, that is safe against snapshot, single-issuer and def-aware

attacks. We modify this algorithm by adding the requirement that the

perimeter of the MBR be always smaller than a user-given maxP value.

To achieve this, we basically shrink the obtained MBR from the snapshot

algorithm by recursively removing users that are distant from the issuer

until the perimeter of the MBR is smaller than maxP .

The idea of the Greedy algorithm was first proposed in [7] and a similar

algorithm was also described in [50]. This algorithm computes the general-

ization of the first request r in a trace using an algorithm for the snapshot

case. (In our implementation, we use Grid as the snapshot algorithm to

compute the generalization of the first request.) When this first request is

generalized, the set A of users located in the generalized location for the

2.2. Defenses to LBS privacy threats 18

first request is stored. The generalized locations of each subsequent request

r′ that is linked with r is then taken as the MBR of the location of the users

in A at the time of r′. As in the modification of the Grid algorithm, when

the MBR is larger than maxP , we recursively shrink it until its perimeter

is smaller than maxP . Algorithm 1 gives the pseudocode. This algorithm

is called initially with the first request r and empty set A = ∅, and subse-

quently, it is called with the successive request and the A′ returned from the

previous execution.

Centralized defenses against multiple-issuer attacks.

Preliminary results on the privacy leaks determined by multiple-issuer at-

tacks are reported in [4]. Defenses for this kind of attacks are based on

accurately generalizing location (as a quasi-identifier) in order to obtain QI-

groups of requests with a certain degree of diversity in private values. A

defense against multiple-issuer attacks both in the snapshot and in a lim-

ited version of the historical case is proposed by Riboni et Al. [42] using

a combination of identity anonymity and private information obfuscation

techniques. Further research is needed along this line. For example, to

understand under which conditions close values in private information can

really be considered different (e.g., location areas).

2.2.2 Defenses based on private information obfuscation

As mentioned at the beginning of this section, these defenses aim at obfus-

cating private information released by users’ requests as opposed to general-

izing quasi-identifiers. To the best of our knowledge, all of the techniques in

this category consider location as the private information to be protected,

and implicitly or explicitly assume that user identity is known to the adver-

sary or could be discovered. In the following of this chapter, we use location

obfuscation to denote the general category of defenses aimed at obfuscating

the exact location as private information of the (possibly identified) issuer.

Differently from the anonymity based defenses considering location as

2.2. Defenses to LBS privacy threats 19

Algorithm 1 Greedy

Input: a request r, an anonymity set A, anonymity level k, and a maximum

perimeter maxP .

Output: a generalized request r′ and an anonymity set A′.

Method:

1: find the MBR of all the current locations (at the time of request r) of

users in A (note that if A = ∅ then the MBR is empty).

2: if (the perimeter of the MBR is smaller than maxP) then

3: if (|A| > 1) then

4: replace the spatial information in r with the MBR, obtaining r′

5: let A′ = A

6: else

7: call Grid algorithm∗ with r, k, and maxP , obtaining r′

8: let A′ be the set of users currently in the spatial region of r′

9: end if

10: else

11: recursively shrink the MBR until its perimeter is smaller than maxP

12: replace the spatial region in r with the resulting MBR, obtaining r′

13: let A′ be the set of users currently located in the resulting MBR

14: if (|A′| ≤ 1) then

15: call Grid algorithm with r, k, and maxP , obtaining r′

16: let A′ be the set of users currently in the spatial region of r′

17: end if

18: end if

19: return r′ and A′

∗ Instead of Grid, other snapshot algorithms can be used here.

quasi-identifier, in this case it is less important to know the location of

other users in order to provide privacy protection. For this reason, most of

the location obfuscation techniques do not require a common location-aware

trusted entity and, according to our categorization, they have a decentralized

2.2. Defenses to LBS privacy threats 20

architecture. Sometimes these defenses are also claimed to provide a form

of k-anonymity, leading to confusion with anonymity based defenses. The

underlying idea is that due to the obfuscation, the location of the issuer (who

is possibly not anonymous at all) cannot be distinguished among k possible

locations. In order to avoid confusion this property should be called location

anonymity.

The idea of protecting location privacy by obfuscating location informa-

tion was first proposed by Gruteser et al. [24]. The technique is aimed at

avoiding the association of a user with a sensitive area she is crossing or

approaching. The proposed defense is based on appropriately suspending

user requests, ensuring that the location of the user may be confused among

at least other k areas. The proposed technique requires a centralized entity,

but it should not be difficult to modify the proposed algorithm so that it

could be run directly on the users’ mobile device. This defense algorithm is

only validated via experiments. It is also not clear which privacy guarantees

are provided if the adversary knows the algorithm.

Duckham et al. propose a protocol that allows a user to obtain the result

of 1-NN (Nearest Neighbor) queries among a set of points of interest without

disclosing her exact location [15]. The protocol is iterative. At the first

iteration the user sends her obfuscated location to the SP that replies with

the pair 〈q, C〉 where q is the point of interest having the highest confidence

C of being the closest to the user. At each following iteration, the user can

decide whether to provide additional location information in order to obtain

a result with higher confidence. It is not specified how the generalization of

the user’s location is computed.

A different approach, proposed by Kido et al. [30], consists in sending,

together with the real request, a set of fake requests. Since the adversary

cannot distinguish the real request from the fake ones, it cannot discover the

real location of the issuer, among the locations of the fake requests. This

decentralized solution is effective also in the case in which the adversary

knows the defense function. However, this solution has the problem that, in

2.2. Defenses to LBS privacy threats 21

order to effectively protect the location information, a high number of fake

requests should be sent hence impacting on the communication costs. The

technique is validated through experimental results only.

In [2], Ardagna et al. propose to use a combination of location obfus-

cation techniques and a metric to measure the obfuscation achieved. The

difference with respect to other approaches is that the resulting obfuscation

area may not contain the actual location of the issuer; moreover, the lo-

cation measurement error introduced by sensing technologies is taken into

account. It is not formally proved that the proposed defense protects against

def-aware attacks. According to our categorization, the paper considers a

centralized architecture, even if the proposed obfuscation techniques can be

probably run on the client side.

Yiu et al. [51] proposed a different solution to obfuscate location infor-

mation, specific for LBS requests that require K-NN queries. The idea of

the algorithm, named SpaceTwist, is to issue each request as if it would

originate from a location different from the real user location. The request

may be repeated (from the same fake location) incrementally retrieving more

nearest neighbor resources, until a satisfactory answer for the real location

is obtained. This solution is particularly interesting since it does not require

the existence of the centralized entity that provide privacy protection and

involves no range NN queries on the server side. In the paper it is also

formally shown how the adversary can compute the area where the user is

possibly located under the assumptions that the adversary only knows the

fake location, the number of requested resources, the replies from the server

and the termination condition of the algorithm.

Solutions based on location obfuscation and/or encryption have also

been proposed in the context of location-based proximity services, that we

describe in detail in Chapter 3. A more detailed survey of the solutions

proposed in literature for this category of services is in Section 3.1.

Referring to our categorization of attacks, the existing location obfusca-

tion defenses focus on snapshot and single-issuer attacks. Example 3 shows

2.2. Defenses to LBS privacy threats 22

that, in some cases, a historical attack can further restrict the possible lo-

cations of a user.

Example 3. A request issued by Alice is obfuscated in such a way that an

adversary only knows that Alice is located in an area A1 at time t1. After

a short time, Alice issues a second request that is obfuscated in such a way

that the adversary knows that Alice is located somewhere in area A2 at time

t2. Now, assume that there is a subregion A′ of A2 such that, due to speed

constraints, no matter where Alice were located in A1 at time t1, she has no

way to get to A′ at time t2. Now the adversary knows that at time t2, Alice

cannot be located in A′ and hence she must be in A2 \A′.

This class of dynamic attacks based on the knowledge of speed con-

straints have been further investigated by Ghinita et al. [19] for generic

location-based services. Recently, Freni et al. [17] proposed two techniques

based on spatio-temporal obfuscation to protect privacy in the context of

resource publishing services in geo-social networks, also considering an ad-

versary aware of the maximum velocity of the users.

2.2.3 Encryption based defenses

We call encryption based, the defense proposals based on private informa-

tion retrieval (PIR) techniques. The general objective of a PIR protocol is

to allow a user to issue a query to a database without the database learning

the query. In [20] this techniques is used to protect users’ privacy in the LBS

that computes 1-NN queries. The proposed solution is proved to solve the

privacy problem under the most conservative assumptions about the adver-

sary model as it does not reveal any information about the requests to the

adversary. Nevertheless, some concerns arises about the applicability of the

proposed technique. First, the proposed solution applies to 1-NN queries

only and it is not clear how it could be extended to other kinds of queries

like K-NN queries or range queries. Second, this technique has high com-

putational and communication overhead. Indeed, the experimental results

2.3. Impact of realistic simulations on the evaluation of defense
techniques 23

shown in the paper give evidence that, although using a small database of

objects to be retrieved, the computation time on the server side is in the

order of seconds, while the communication cost is in the order of megabytes.

In particular, the amount of data that needs to be exchanged between the

server and the client is larger than the size of the database itself. It is not

clear for which kind of services this overhead could be tolerable.

Two more recent solutions propose PIR protocols that are aided by the

presence of a secure hardware on the server [29, 41]. The secure hardware

is a tamper-resistant additional CPU installed on the server that can run

programs independently from the server itself and that can communicate

directly with the clients over secure channel. In the solution proposed by

Khoshgozaran et al. [29], upon receiving a K-NN query the secure hardware

computes a set of cells that contains all the points of the query result.

The client then retrieves the content of these cells using a PIR protocol.

Papadopoulos et al. [41] observe that this approach could still be vulnerable

to attacks based on the cardinality of the retrieved cells, as the SP can still

observe the number of queries issued by one client. Therefore, their solution

requires the server to compute a query plan to be distributed to the client

before issuing a query. The query plan indicates the exact number of PIR

retrievals that must be issued by a client during a transaction. Even if a

particular query result could be retrieved with less retrievals, to ensure safety

the client is required to issue dummy retrievals until the number indicated

in the query plan is reached.

2.3 Impact of realistic simulations on the evalua-

tion of defense techniques

As we motivated in the previous section, the correctness of an anonymity-

preserving technique can be formally proved based on the specific assump-

tions made on the adversary model. However, in practice, different ad-

versaries may have different background knowledge and inferencing abili-

2.3. Impact of realistic simulations on the evaluation of defense
techniques 24

ties. Hence, one approach consists in stating conservative assumptions un-

der which anonymity can be guaranteed against a broad range of potential

adversaries. The drawback of this approach is clear from the conservative

assumptions about location knowledge considered so far by anonymity based

solutions: in order to protect from the occasional knowledge by the adver-

sary about people present at a given location (unknown to the defender), it

is (often implicitly) assumed the same knowledge for all locations. Such as-

sumptions are not realistic and lead to overprotecting the users’ anonymity,

hence negatively impacting the quality of service. A different approach,

taken by several researcher is experimental evaluation. Since large set of

real, accurate data are very hard to obtain, in most cases experiments are

based on synthetic data generated through simulators. In this section we

focus on validating anonymity-based defense techniques, and we show that

in order to obtain significant results, simulations must be very carefully de-

signed. In addition to evaluating the Greedy algorithm as a representative of

historical anonymity based defenses, we are interested in the following more

general questions: a) how much does the adversary model affect the privacy

obtained by the defense according to the evaluation?, and b) how much does

the specific service deployment model affect the results of the evaluation?

It should be noted that question b) also applies to those experimental

evaluations that aim to show the effectiveness and the impact of privacy-

preserving techniques that not necessarily oriented at enforcing anonymity,

like the obfuscation or encryption based defenses already discussed in the

previous section.

2.3.1 The MilanoByNight simulation

In order to carefully design the simulation, we concentrate on a special cate-

gory of proximity based services, called friend-finders, that can be accessed

anonymously or by using a pseudonym. Commercial examples of such ser-

vices are mobile dating services like Grindr or MeetMoi, in which users are

looking for other people with similar sexual orientation. As these services

2.3. Impact of realistic simulations on the evaluation of defense
techniques 25

can be accessed anonymously, anonymity-based techniques for LBS like the

ones presented in this chapter are normally applicable. In Chapter 3 we

will also employ this simulation during the experimental evaluation of the

defense techniques based on private information obfuscation specifically de-

signed for proximity services.

A first privacy threat for a user of this proximity-based service is the

association of that user’s identity with the service parameters and, in par-

ticular, with the group of target participants, since this can reveal the user’s

interests or other private information. Even if the user’s identity is not ex-

plicit in a request, an adversary can obtain this association, by using the

location information of a request as a quasi-identifier.

A second privacy threat is the association of the user’s identity with

the locations visited by that user. We recall that this association takes

place independently from the service requests if the adversary’s background

location knowledge is “complete” (see Section 2.1). However, consider the

case in which the background knowledge is “partial” i.e., it contains the

association between user identity and location information only for some

users in some locations at some time instants. Example 4 shows how, in

this case, an adversary can exploit a set of friend-finder requests to derive

location information that are not included in the background knowledge.

Example 4. User A issues a friend-finder request r1. An adversary obtains

r1 and discovers that A is the issuer by joining the location information in

the request with his background knowledge (i.e., the location information of

r1 is used as quasi-identifier). Then, A moves to a different location and

issues a request r2. The adversary obtains r2, but in this case his background

knowledge does not contain sufficient information to identify the issuer of

the request. However, if the adversary can understand that r1 and r2 are

linked (i.e., issued from the same issuer), then he derives that A is also the

issuer of r2 and hence obtains new location information about A.

We suppose that the friend-finder service is primarily used by people dur-

ing entertainment hours, especially at night. Therefore, the ideal dataset for

2.3. Impact of realistic simulations on the evaluation of defense
techniques 26

our experiments should represent movements of people on a typical Friday

or Saturday night in a big city, when users tend to move to entertainment

places. To our knowledge, currently there are no datasets like this publicly

available, specially considering that we want to have large scale, individ-

ual, and precise location data (i.e., with the same approximation of current

consumer GPS technology).

Relevant Simulation Parameters

For our experiments we want to artificially generate movements for 100, 000

users on the road network of Milan2. The total area of the map is 324

km2, and the resulting average density is 308 users/km2. The simulation

includes a total of 30, 000 home buildings and 1, 000 entertainment places;

the first value is strictly related to the considered number of users, while

the second is based on real data from public sources which also provide

the geographical distribution of the places. Our simulation starts at 7 pm

and ends at 1 am. During these hours, each user moves from house to an

entertainment place, spends some time in that place, and possibly moves to

another entertainment place or goes back home.

All probabilities related to users’ choices are modeled with probability

distributions. In order to have a realistic model of these distributions, we

prepared a survey to collect real users data. We are still collecting data, but

the current parameters are based on interviews of more than 300 people in

our target category.

Weaknesses of mostly random movement simulations

Many papers in the field of privacy preservation in LBS use artificial data

generated by moving object simulators to evaluate their techniques. How-

ever, most of the simulators are usually not able to reproduce a realistic

behavior of users. For example, objects generated by the Brinkhoff genera-

2 100, 000 is an estimation of the number of people participating in the service we

consider.

2.3. Impact of realistic simulations on the evaluation of defense
techniques 27

tor [10] cannot be aggregated in certain places (e.g., entertainment places).

Indeed, once an object is instantiated, the generator chooses a random des-

tination point on the map; after reaching the destination, the object disap-

pears from the dataset. For the same reason, it is not possible to reproduce

simple movement patterns (e.g.: a user going out from her home to another

place and then coming back home), nor to simulate that a user remains for

a certain time in a place.

Despite these strong limitations, we made our best effort to use the

Brinkhoff simulator to generate a set of user movements with characteristics

as close as possible to those described above. For example, in order to

simulate entertainment places, some random points on the map, among

those points on the trajectories of users, were picked. The simulation has the

main purpose of understanding if testing privacy preservation over random

movement simulations gives significantly different results with respect to

more realistic simulations.

Generation of user movements with a context simulator

In order to obtain a dataset consistent with the parameters specified above,

we need a more sophisticated simulator. For our experiments, we have cho-

sen to customize the Siafu context simulator [33]. With a context simulator

it is possible to design models for agents, places and context. Therefore, it

is possible to define particular places of aggregation and make users dynam-

ically choose which place to reach and how long to stay in that place.

The most relevant parameters characterizing the agents’ behavior are

derived from our survey. For example, one parameter that characterizes the

behavior of the agents is the average time spent in an entertainment place;

This value was collected in our survey and resulted to have the following

values: 9.17% of the users stays less than 1 hour, 34.20% stays between 1

and 2 hours, 32.92% stays between 2 and 3 hours, 16.04% stays between 3

and 4 hours, and 7.68% stays more than 4 hours. Details on the simulation

can be found in [38].

2.3. Impact of realistic simulations on the evaluation of defense
techniques 28

2.3.2 Experimental settings

In our experiments we used two datasets of users movements. The dataset

AB (Agent-Based) was generated with the customized Siafu simulator, while

the datasetMRM (Mostly Random Movement) was created with the Brinkhoff

simulator. In both cases, we simulate LBS requests for the friend-finder

service by choosing random users in the simulation, we compute for each

request the generalization according to a given algorithm, and finally we

evaluate the anonymity of the resulting request as well as the Quality of

Service (QoS).

Different metrics can be defined to measure QoS for different kind of

services. For instance, for the friend-finder service we are considering, it

would be possible to measure how many times the generalization leads the

SP to return an incorrect result i.e., the issuer is not notified of a close-by

friend or, vice versa, the issuer is notified for a friend that is not close-by.

While this metric is useful for this specific application, we want to measure

the QoS independently from the specific kind of service. For this reason, in

this chapter we evaluate how QoS degrades in terms of the perimeter of the

generalized location.

In addition to the dataset of user movements, we identified other two pa-

rameters characterizing the deployment model that significantly affect the

experimental results: the number of users in the system, which remains

almost constant at each time instant and the user-required degree of indis-

tinguishability k. These two parameters, together with the most important

others, are reported in Table 2.1, with the values in bold denoting default

values.

We also identified three relevant parameters that characterize the adver-

sary model. The parameter Pid−in indicates the probability that the adver-

sary can identify a user when she is located in a entertainment place while

Pid−out is the probability that the adversary identifies a user in any other

location (e.g., while moving from home to a entertainment place). While

we also perform experiments where the two probabilities are the same, our

2.3. Impact of realistic simulations on the evaluation of defense
techniques 29

Table 2.1: Parameter values

Parameter Values

dataset AB , MRM

number of users 10k, 20k, 30k, 40k, 50k, 60k, 70k, 80k, 90k, 100k

k 10, 20, 30, 40, 50, 60

Pid−in 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0

Pid−out 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1

Plink 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.87, 0.9, 1.0

scenario suggests as much more realistic a higher value for Pid−in (it is

considered ten times higher than Pid−out). This is due to the fact that

restaurants, pubs, movie theaters, and similar places are likely to have dif-

ferent ways to identify people (fidelity or membership cards, WiFi hotspots,

cameras, credit card payments, etc.) and in several cases more than one

place is owned by the same company that may have an interest in collecting

data about its customers. Finally, Plink indicates the probability that two

consecutive requests can be identified as issued by the same user.3 While

we perform our tests considering a full range of values, the specific default

value reported in the table is due to a recent study on the ability of linking

positions based on spatiotemporal correlation [49].

The experimental results we show in this section are obtained by running

the simulation for 100 issuers and then computing the average values.

In our experiments we evaluated two generalization algorithms. One al-

gorithm is Greedy which is described in Section 2.2 and is a representative of

the historical generalization algorithm proposed so far [7,12,50]. The other

algorithm is Grid which is briefly described in Section 2.2.1 is a represen-

tative of the snapshot generalization algorithms. In [35] Grid is shown to

have better performance (in terms of the quality of service) when compared

3The limitation to consecutive requests is because in our specific scenario we assume

linking is performed mainly through spatiotemporal correlation.

2.3. Impact of realistic simulations on the evaluation of defense
techniques 30

to other snapshot generalization algorithms like, for example, Hilbert Cloak.

We also evaluated the privacy threat when no privacy preserving algorithm

is applied. The label NoAlg is used in the figures to identify results in this

particular case.

2.3.3 Impact of the adversary model on the evaluation of the

generalization algorithms

We now present a set of experiments aimed at evaluating the impact of

the adversary model on the anonymity provided by the generalization algo-

rithms.

Two main parameters characterizing the adversary model are Pid−in and

Plink. In Figure 2.2(a) we show the average privacy, in terms of probability

of re-identification, for different values of Pid−in when, in each test, Pid−out is

set to Pid−in/10. As expected, considering a trace of requests, the higher the

probability of identifying users in one or more of the regions from which the

requests in the trace were performed, the smaller is the level of anonymity.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 p
riv

ac
y

Probability of identification (inside)

Greedy
Grid

NoAlg

(a) Varying Pid−in (Pid−out = Pid−in/10).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 p
riv

ac
y

Probability of linking two consecutive requests

Greedy
Grid

NoAlg

(b) Varying Plink.

Figure 2.2: Average anonymity.

Figure 2.2(b) shows the impact of Plink on the average privacy. As

expected, high values of Plink lead to small values of privacy. Our results

show that the relation between the Plink and privacy is not linear. Indeed,

privacy depends almost linearly on the average length of the traces identified

by the adversary. In turn, the average length of the traces grows almost

2.3. Impact of realistic simulations on the evaluation of defense
techniques 31

exponentially with the value of Plink.

To summarize the first set of experiments, our findings show that the

parameters that characterize the adversary model significantly affect the

evaluation of the generalization algorithms. This implies that when a gener-

alization algorithm is evaluated it is necessary to estimate realistic values for

these parameters. Indeed, an error in the estimation may lead to misleading

results.

2.3.4 Impact of the deployment model on the evaluation of

the generalization algorithms

We now show a set of experimental results designed to evaluate the impact

of the deployment model on the evaluation of the generalization algorithms.

Figure 2.3(a) shows that the average privacy obtained with Greedy and

Grid is not significantly affected by the size of the total population. Indeed,

both algorithms, independently from the total number of users, try to have

generalized locations that cover the location of k users, so the privacy of

the requests is not affected. However, when the density is high, the two

algorithms can generalize to a small area, while when the density is low, a

larger area is necessary to cover the location of k users (see Figure 2.3(b)).

On the contrary, the privacy obtained when no generalization is performed

is significantly affected by the total population. Indeed, a higher density

increases the probability of different users to be in the same location and

hence it increases privacy also if the requests are not generalized.

The set of tests reported in Figure 2.4 compares the privacy achieved by

the Greedy algorithm on the two datasets for different values of k and for

different values of QoS. The experiments on MRM were repeated trying also

larger values for the QoS threshold (maxP = 2000 and maxP = 4000), so

three different versions of MRM appear in the figures. In order to focus on

these parameters only, in these tests the probability of identification was set

to the same value for any place (Pid−in = Pid−out = 0.1), and for the MRM

dataset the issuer of the requests was randomly chosen only among those

2.3. Impact of realistic simulations on the evaluation of defense
techniques 32

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10000 40000 70000 100000

A
ve

ra
ge

 p
riv

ac
y

Number of users

Greedy
Grid

NoAlg

(a) Average privacy.

 300

 400

 500

 600

 700

 10000 40000 70000 100000

A
ve

ra
ge

 p
er

im
et

er
 (

m
)

Number of users

Greedy
Grid

(b) Average perimeter.

Figure 2.3: Performance evaluation for different values of the total popula-

tion.

that stay in the simulation for 3 hours, ignoring the ones staying for much

shorter time that inevitably are part of this dataset. This setting allowed us

to compare the results on the two datasets using the same average length of

traces identified by the adversary.

Figure 2.4(a) shows that the average privacy of the algorithm evaluated

on the AB dataset is much higher than on the MRM dataset. This is mainly

due to the fact that in AB users tend to concentrate in a few locations (the

entertainment places) and this enhances privacy. This is also confirmed by

a similar test performed without using any generalization of locations; we

obtained values constantly higher for the AB dataset (the average privacy

is 0.67 in AB and 0.55 in MRM).

In Figure 2.4(b) we show the QoS achieved by the algorithm in the two

datasets with respect to the average privacy achieved. This result confirms

that the level of privacy evaluated on the AB dataset using small values of

k and maxP for the algorithm cannot be observed on the MRM dataset

even with much higher values for these parameters.

From the experiments shown in Figure 2.4 we can conclude that if the

MRM dataset is used as a benchmark to estimate the values of k and

maxP that are necessary to provide a desired average level of privacy, then

the results will suggest the use of values that are over-protective. As a

consequence, it is possible that the service will exhibit a much lower QoS

2.3. Impact of realistic simulations on the evaluation of defense
techniques 33

than the one that could be achieved with the same algorithm.

 0.7

 0.8

 0.9

 1

 10 20 30 40 50 60

A
ve

ra
ge

 p
riv

ac
y

k

AB. maxP=1000
MRM. maxP=1000
MRM. maxP=2000
MRM. maxP=4000

(a) Average privacy as a function of the

level of indistinguishability k.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 400 800 1200 1600 2000 2400

A
ve

ra
ge

 p
riv

ac
y

Average perimeter (m)

AB. maxP=1000
MRM. maxP=1000
MRM. maxP=2000
MRM. maxP=4000

(b) Average privacy as a function of the

average perimeter.

Figure 2.4: Evaluation of the Greedy algorithm using AB and MRM data

sets. Pid−in = Pid−out = 0.1

The above results may still support the safety of using MRM , since

according to what we have seen above a technique achieving a certain level

of privacy may only do better in a real scenario. However, our second set of

experiments shows that this is not the case.

In Figure 2.5 we show the results we obtained by varying the probability

of identification. For this test, we considered two sets of issuers in the MRM

data set. One set is composed by users that stay in the simulation for 3

hours, (MRM long traces, in Figure 2.5), while the other contains issuers

randomly chosen in the entire set of users (MRM all traces, in Figure 2.5),

hence including users staying in the simulation for a much shorter time.

In Figure 2.5(a) and 2.5(b) we can observe that the execution on the

MRM dataset leads to evaluate a privacy level that is higher than the one

obtained on the AB dataset. In particular, the evaluation of the Grid al-

gorithm using the MRM dataset (Figure 2.5(b)), would suggest that the

algorithm is able to provide a high privacy protection. However, when evalu-

ating the same algorithm using the more realistic dataset AB, this conclusion

seems to be incorrect. In this case, the evaluation on the MRM dataset may

lead to underestimate the privacy risk, and hence to deploy services based

on generalization algorithms that may not provide the minimum required

2.3. Impact of realistic simulations on the evaluation of defense
techniques 34

level of privacy.

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
ve

ra
ge

 p
riv

ac
y

P_id_in

AB
MRM long traces

MRM all traces

(a) Greedy algorithm.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
ve

ra
ge

 p
riv

ac
y

P_id_in

AB
MRM long traces

MRM all traces

(b) Grid algorithm.

Figure 2.5: Average privacy using AB and MRM data sets. Pid−out =

Pid−in/10.

Chapter 3

Privacy preservation in

Proximity Services

In the previous chapter we presented the most relevant techniques to pre-

serve privacy in generic LBSs, in which a user issues a location-based request

to a SP, and does not want the SP to obtain sensitive information about

her. In the context of GeoSNs, however, other users participating in the

service may obtain the location information of a certain user, and this may

pose additional threats to her privacy.

The focus of this chapter is the problem of protecting privacy in location-

based proximity services, a particular category of service that is often offered

by GeoSN providers to let their users discover which of their buddies are

nearby. The existing techniques for LBS, presented in the previous chapter,

are not directly applicable to this scenario, as it will be explained in Sec-

tion 3.1. In the same section we present the works that have been already

presented in literature. In Section 3.2 we formally define the privacy prob-

lem, the privacy threats and the considered adversary model. Section 3.3

describes some protocols that we propose to enforce users’ privacy in this

context, including a formal analysis of each of the proposed protocols. The

implementation and experimental evaluation of the protocols will be pre-

sented in the next chapter.

35

3.1. Related work 36

3.1 Related work

Computing proximity involves the continuous evaluation of spatial range

queries over a set of moving entities, with the radius range possibly changing

[11, 46]. The literature on this problem is both from the database, and

the mobile computing community; recent contributions are briefly surveyed

in [1], where an efficient algorithm for proximity detection named Strips

is presented. Another solution for efficient proximity detection has been

recently proposed by Yiu et al. [52]. The goal of this and similar approaches

is the efficiency in terms of computation and communication complexity,

while privacy issues are mostly ignored.

The techniques presented in Section 2.2 cannot be directly applicable to

the context of proximity based services. As already mentioned, anonymity-

based defenses aim to enforce the anonymous access to a LBS by ensuring

that a request cannot be reassociated to the original issuer. In the case

of proximity based services, we assume that the identity of the user may

be easily obtained or already known to the adversary, and we consider the

location of the user as a sensitive information to be protected. Most of

the defenses based on private information obfuscation that we mentioned in

Section 2.2.2 have been applied for LBS performing k-NN spatial queries,

and do not apply to proximity detection. Some encryption-based PIR ap-

proaches provide support for range and k-NN spatial queries, but they all

require the index of the database to be built offline, and hence they are not

still suitable for a database of moving entities like users of a proximity ser-

vices, that requires frequent updates to the index structure. Khoshgozaran

et al. [28] propose a system to maintain an encrypted index on the server side

and efficiently update it, which makes it suitable for maintaining a database

of moving buddies. The system supports encrypted range and k-NN spatial

queries, hence it could be used to offer proximity based services. However,

the system requires users to be organized in groups, with each group shar-

ing a symmetric secret key, and all the users in a group must trust each

other. Furthermore, the proposed techniques for retrieving the query re-

3.1. Related work 37

sults seem to be vulnerable to cardinality attacks, like the ones considered

by Papadopoulos et al. [41] for PIR techniques, if the SP has an a-priori

knowledge about the distribution of the users.

Ruppel et al. [43] propose a technique for privacy preserving proximity

computation based on the application of a distance preserving transforma-

tion on the location of the users. However, the SP is able to obtain the

exact distances between users, and this can lead to a privacy violation. For

example, having this knowledge, it is possible to construct a weighted graph

of all the users, assigning to each edge connecting two users their exact dis-

tance. It is easily seen that a “relative” distribution of the user locations can

be extracted from this graph. If the SP has a-priori knowledge about the

distribution of the users (as considered in our adversary model), it is possi-

ble to merge the distribution resulting from the graph with the a-priori one,

thus revealing some location information about the individuals. In addition,

there is no privacy guarantee with respect to the other users participating

in the service.

Zhong et al. propose three different techniques for privacy preservation

in proximity-based services called Louis, Lester and Pierre [53]. These tech-

niques are decentralized secure computation protocols based on public-key

cryptography. Louis is a three-parties secure computation protocol. By

running this protocol, a user A gets to know whether another user B is in

proximity without disclosing any other location information to B or to the

third party T involved in the protocol. T only helps A and B compute their

proximity, and it is assumed to follow the protocol and not to collude with

A or B. However, T learns whether A and B are in proximity. Considering

our adversary model, which will be explained in detail in Section 3.3, this

third party cannot be the SP that may use proximity information to violate

location privacy, and it is unlikely to be played by a third buddy since it

would involve significant resources. The Lester protocol allows a user A

to compute the exact distance from a user B only if the distance between

the two users is under a certain threshold chosen by B. The main advan-

3.1. Related work 38

tage of these two techniques is that they protect a user’s privacy without

introducing any approximation in the computation of the proximity. How-

ever, Louis incurs in significant communication overheads, and Lester in

high computational costs. In addition, the only form of supported privacy

protection with respect to the buddies is the possibility for a user to refuse

to participate in the protocol initiated by a buddy if she considers the re-

quested proximity threshold too small. The Pierre protocol partitions the

plane where the service is provided into a grid, with each cell having edge

equal to the requested distance threshold. The locations of the users are

then generalized to the corresponding cell, and two users are considered in

proximity if they are located in the same cell or in two adjacent cells. The

achieved quality of service decreases as the requested proximity threshold

grows. We will explain in more detail the actual impact on service precision

in Section 4.1. Finally, it should be mentioned that Lester and Pierre proto-

cols are based on a buddy-to-buddy communication, and although this can

guarantee total privacy with respect to the SP (as no SP is involved in the

computation), scalability issues may arise since each time a user moves she

needs to communicate her new position to each of her buddies.

Another solution for privacy preserving computation of proximity, called

FriendLocator, has been proposed by Šikšnys et al. [48]. Similarly to Pierre,

two users are considered in proximity when they are located in the same

cell or two adjacent cells of the grid constructed considering the proximity

threshold shared by the users. An interesting aspect of the proposed solu-

tion is the location update strategy, which is designed to reduce the total

number of location updates to be sent by the users, hence reducing com-

munication costs. Two users share a hierarchy of grids, where each grid is

identified by a level. The larger the value of the level is, the finer the grid.

The highest level grid is the one in which the edge of a cell is equal to the

proximity threshold. The detection of proximity is then incremental, i.e.

if two users are in adjacent cells at the level n grid, then their respective

cells in the grid of level n+ 1 are checked, until they are detected either not

3.2. Problem definition 39

to be in proximity, or to be in proximity considering the highest level grid.

With this solution, when two users are detected not to be in proximity at a

certain level l, there is no need for them to check again the proximity until

one of them moves to a different cell of the level l grid. As a consequence,

less location updates are needed, and this is experimentally shown to sig-

nificantly reduce the total number of messages exchanged. However, the

FriendLocator protocol reveals some approximate information about the

distance of users to the SP (e.g. the level in which the incremental proxim-

ity detection protocol terminates and whether the buddies are in proximity

at that level). As already observed for the Louis protocol, in our adver-

sary model this information can lead to a privacy violation. Furthermore,

the impact on the quality of service of using a large proximity threshold is

identical to the Pierre protocol discussed above.

A more recent solution by the same authors [47], called VicinityLocator,

solves this problem by letting users specify their privacy preferences as spa-

tial granularities (see Section 3.2.2) independently from the requested prox-

imity threshold. A similar location update strategy is employed to minimize

the communication costs. However, similarly to FriendLocator, the SP

learns some information about the distance of the users, and this could lead

to a privacy violation in our adversary model.

3.2 Problem definition

In this section we formally define the service we are considering, the users’

privacy concerns and requirements, the adversary model, and the occurrence

of a privacy violation.

3.2.1 The proximity service

By issuing a proximity request, user A is interested to know, for each of her

buddies B, if the following condition is satisfied:

d(locA, locB) ≤ δA (3.1)

3.2. Problem definition 40

where d(locA, locB) denotes the Euclidean distance between the reported

locations of A and B and δA is a threshold value given by A. When Equa-

tion 3.1 is true, we say that B is in the proximity of A. The proximity

relation is not symmetric, since δB may be different from δA,

Two different subcategories of proximity-based services can be identified,

based on how the buddies of a user are selected. If the buddies are explic-

itly added as “friends”, like in most social networks and instant messaging

applications, we call them “contact-list-based” services. On the contrary,

if the buddies are retrieved through a particular query e.g. based on their

interest, we call it a “query-driven” proximity service. Technically, the main

difference is that in the “contact-list-based” service it is reasonable to as-

sume that each user can share a secret with each of her buddies, as we do

in our proposed techniques. On the contrary, in the case of “query-driven”

services, the set of buddies may change dynamically, and the number of bud-

dies can be potentially very large. In this situation, it may not be practical

to share a secret with each buddy. This categorization is important when

discussing the applicability of a certain technique to a real-world scenario,

as in many solutions it is required that users share secret information.

With the presence of a service provider (SP), and in absence of privacy

concerns, a simple protocol can be devised to implement the proximity ser-

vice: The SP receives location updates from each user and stores their last

known positions, as well as the distance threshold δA for each user A. While

in theory each user can define different threshold values for different bud-

dies, in this chapter, for simplicity, we consider the case in which each user

A defines a single value δA for detecting the proximity of all of her buddies.

When the SP receives a location update, it can recompute the distance be-

tween A and each buddy (possibly with some filtering/indexing strategy for

efficiency) and communicate the result to A. In a typical scenario, if B is

in proximity, A may contact him directly or through the SP; however, for

our purposes, we do not concern ourselves as what A will do once notified.

In the following of this chapter we refer to the above protocol as the Naive

3.2. Problem definition 41

protocol.

3.2.2 Privacy concerns and privacy requirements

The privacy we are considering in the scenario of proximity-based services is

location privacy : we assume that a user is concerned about the uncontrolled

disclosure of her location information at specific times.

Considering the Naive protocol, it is easily seen that the SP obtains the

exact location of a user each time she issues a location update. Furthermore,

a user’s location information is also disclosed to her buddies. If Alice is in

the proximity of Bob (one of her buddies), then Bob discovers that Alice is

located in the circle centered in his location with radius δBob. Since δBob is

chosen by Bob and can be set arbitrarily without consent from Alice, Alice

has no control on the location information disclosed to Bob.

Our definition of location privacy is based on the idea that the users

should be able to control the location information to be disclosed. In the

considered services, a user may prefer the service provider to have as little

information about her location as possible, and the buddies not to know her

exact position, even when the proximity is known to them. Moreover, the

exchanged information should be protected from any eavesdropper.

In general, the level of location privacy can be represented by the uncer-

tainty that an external entity has about the position of the user. This uncer-

tainty is a geographic region, called minimal uncertainty region (MUR), and

its intuitive semantics is the following: the user accepts that the adversary

knows she is located in a MUR R, but no information should be disclosed

about her position within R.

In the solutions presented in this dissertation, each user can express

her privacy preferences by specifying a partition of the geographical space

defining the MURs that she wants guaranteed. For example, Alice specifies

that her buddies should never be able to find out the specific campus building

where Alice currently is; in this case, the entire campus area is the minimal

uncertainty region. The totality of these uncertainty regions for a user can

3.2. Problem definition 42

be formally captured with the notion of spatial granularity.

While there does not exist a formal definition of spatial granularity that

is widely accepted by the research community, the idea behind this concept

is simple. Similar to a temporal granularity [8], a spatial granularity can

be considered a subdivision of the spatial domain into a discrete number of

non-overlapping regions, called granules. For simplicity, we consider only

granularities1 that partition the spatial domain, i.e., the granules of a gran-

ularity do not intersect and the union of all the granules in a granularity

yields exactly the whole spatial domain. Each granule of a granularity G is

identified by an index (or a label). We denote with G(i) the granule of the

granularity G with index i.

Users specify their privacy requirements via spatial granularities, with

each granule being a MUR. In our solutions we assume that a user A can

specify two granularities

GSP
A and GUA

defining the minimum location privacy requirements for SP and for any other

user, respectively, as the two categories of potential adversaries.

The two extreme cases in which a user requires no privacy protection

and maximum privacy protection, respectively, can be naturally modeled.

In one extreme case, for example, if a user A does not want her privacy to be

protected with respect to her buddies then A sets her GUA privacy preference

to the bottom granularity ⊥ (a granularity that contains a granule for each

basic element, or pixel, of the spatial domain). In the other extreme, if

user A wants complete location privacy, for example with respect to the SP,

then she sets her GSP
A privacy preference to the top granularity >, i.e., the

granularity that has a single granule covering the entire spatial domain. In

this case, A wants the entire spatial domain as MUR.

Our approach can be easily extended to model the case in which a user

specifies different granularities for different buddies or for different groups

1Here and in the following, when no confusion arises, we use the term “granularity” to

mean “spatial granularity”.

3.2. Problem definition 43

of buddies. However, for the sake of clarity, we will assume that a single GUA

privacy is specified by each user.

3.2.3 Adversary model and privacy preservation

In the GeoSN setting, a typical user may have different privacy concerns

with respect to her buddies or with respect to third-party entities, like the

SP. For this reason, we choose to consider two separate adversary models,

one for the SP and one for the buddies, respectively. Assuming the SP and

the buddies as potential adversaries, also models other types of adversaries.

Firstly, it models the case of an external entity taking control of the SP

system or of a buddy’s system. Secondly, it models the case of an external

entity eavesdropping one or more communication channels between users

and the SP. Note that, in the worst case, the eavesdropper can observe all

the messages that are exchanged in the protocol. Since the same holds for

the SP, the eavesdropper can learn at most what the SP learns.

The techniques we present in this dissertation not only guarantee each

user’s privacy requirement against these two adversary models, but also they

are able to give some privacy guarantees in the case of a set of colluding

buddies. This will be discussed in more detail in Section 3.3.6.

In both adversary models we assume that the adversary has exactly the

following knowledge:

• the protocol,

• the spatial granularities adopted by each user, and

• an a-priori probabilistic distribution of the locations of the users.

The two models differ in the sets of messages received during a protocol

run, and in their ability (defined by the protocol in terms of availability of

cryptographic keys) to decrypt the content of the messages.

The a-priori knowledge of the location of a user A is given by a loca-

tion random variable priA with the probability mass distribution denoted

3.2. Problem definition 44

P (priA). In other words, as prior knowledge we assume that the location

of a user A follows a known distribution given by the distribution of the

random variable priA. Note that we assume the spatial domain is discrete,

i.e., a countable set of “pixels”.

Let M be the set of messages exchanged between the entities involved

in the service. The adversary can compute the a-posteriori probability dis-

tribution of the location random variable postA as the distribution of the

location of A under the given messages M and the prior knowledge priA:

P (postA) = P (locA|M, priA)

Technically, we may view locA as a uniform random variable over the spatial

domain, i.e., the possible location of A when no knowledge is available.

The condition for privacy preservation is formally captured by Defini-

tion 1.

Definition 1. Given a user A with privacy requirement GA
2, and M the

set of messages exchanged by the proximity service protocol in which A is

participating, A’s privacy requirement is said to be satisfied if

P (locA|M, priA, locA ∈ gA) = P (locA|priA, locA ∈ gA)

for all a-priori knowledge priA and all granules gA of GA.

The above definition requires that the location distribution of user A does

not change due to the messages M , given the a-priori knowledge and the fact

that A is located in gA. Hence, a privacy violation occurs when the adversary

acquires, through the analysis of the protocol messages, more information

about the location of A than allowed by her privacy requirements, i.e., when

the probability distribution of the position of A within the region defined

by granule gA changes with respect to priA.

In the extreme case a user needs complete location privacy with respect

to an adversary, the GA requirement is the top granularity >, and hence gA

2Depending on the considered adversary, this can be either GSP
A or GU

A.

3.3. Privacy preserving techniques 45

is the entire spatial domain in the above definition. In this case, the defi-

nition requires P (locA|M, priA) = P (locA|priA), i.e., P (postA) = P (priA)

or no new location information for each user A. In the case GA is not >,

the definition requires that with the additional knowledge of A being in a

granule, the adversary cannot derive anything more (e.g., where within the

granule) from the messages exchanged.

3.3 Privacy preserving techniques

In this section we present our techniques to preserve privacy in proximity

based services.

3.3.1 SP-Filtering , Hide&Seek and Hide&Crypt

A first solution to protect users’ privacy is to encrypt the location informa-

tion each user sends to the SP and devising a secure computation method

for obtaining the distance between the users. However, in the applicative

context we are considering, maintaining a shared secret between each pair

of users may involve high costs. A solution that does not require a shared

secret cannot be applied, either, since it would necessarily require the SP to

contact every buddy each time any of the other buddies updates her loca-

tion. This is clearly infeasible due to communication and computation costs

both on the client and the SP sides.

In the solutions we present in this section, we consider a hybrid approach

in which a secure computation is performed only after a filtering step based

on obfuscated locations. More precisely, we present three different privacy

preserving protocols, the first of which is called SP-Filtering and does not

involve any communication between the buddies to evaluate their proximity.

The other two, named Hide&Seek and Hide&Crypt , provide a more accurate

estimation of the proximity by using SP-Filtering as the first step followed

by a refinement step involving buddy-to-buddy communication. Hide&Crypt

implements this last step with a secure computation. These solutions do

3.3. Privacy preserving techniques 46

not require users to share a secret with each other, and hence they could

be applicable to both “contact-list based” and “query driven” category of

proximity services. In this section we illustrate the protocols and their formal

properties. Section 3.3.2 presents the analysis of the protocols presented in

this section.

The SP-Filtering protocol

SP-Filtering is a three-party protocol that computes the proximity of B to A

with a certain approximation, guaranteeing the satisfaction of the minimum

location-privacy requirements of both A and B.

The idea of the algorithm is that when a user A performs a location

update, instead of providing her exact location to the SP, she sends a gener-

alized location that is computed as a function of GUA and the granule GSP
A (i)

where A is located. More precisely, A sends to SP the location LA(i) that

is computed as the union of the granules of GUA that intersects with GSP
A (i).

Formally:

LA(i) =
⋃

i′∈N|GU
A(i′)∩GSP

A (i)6=∅

GUA(i′)

Each buddy B does the same when location is updated with LB(j) simi-

larly defined, where j is the index such that the location of B is in GSP
B (j).

Then, the SP can compute, for each buddy B of A, the minimum and maxi-

mum distance between any two points of LA(i) and LB(j). We denote with

mindist and maxdist the minimum and maximum distance, respectively.

Given mindist and maxdist , the SP can try to answer whether B is in the

proximity of A or not. Indeed, if maxdist < δA, then B is in the proximity

of A, independently from where exactly A and B are located within LA(i)

and LB(j), respectively. Figure 3.1(a) shows an example of this situation.

In this case, the SP sends the “B is in proximity” message to A. On the

contrary, if mindist > δA, then the SP can conclude that B is not in the

proximity of A. Figure 3.1(b) graphically shows that this happens when,

no point of LB is in the proximity of A. In this case, the SP sends the

3.3. Privacy preserving techniques 47

“B is not in proximity” message to A (or stays silent depending on the

service requested by A). Finally, if none of the two cases above happen (i.e.,

mindist ≤ δA ≤ maxdist), then the SP is not able to compute whether B is

really in the proximity of A or not. See Figure 3.1(c) for an example: if A is

located close to the top right corner of LA(i) and B is located close to the

bottom left corner of LB(j), then B is in the proximity of A, otherwise he is

not. However, since the SP does not know where A and B are located within

the granules LA(i) and LB(j), respectively, it cannot precisely evaluate the

proximity in terms of δA and sends the “B is possibly in proximity” message

to A.

(a) B is in proximity of

A

(b) B is not in proximity of

A

(c) B is possibly in proximity

of A

Figure 3.1: Regions LA and LB

The Hide&Seek protocol

The main limitation of the SP-Filtering protocol is that, in order to protect

the privacy of user C, granularity GSP
C should be coarse. However, if GSP

C

is coarse, in many cases the SP in not able to compute whether a user is

in the proximity, i.e., the case depicted in Figure 3.1(c). To address this

problem, we now present the Hide&Seek protocol. The idea is that a user C

can provide the SP with coarse location information and in case the SP is

not able to determine the proximity with respect to another user, then the

two users can run a two-party protocol to compute the proximity.

The two-party protocol is straightforward: A sends to B the values i′ and

δA where i′ is the index of the granule of GUA where A is located. Since GUA

3.3. Privacy preserving techniques 48

is public, B can obtain it, for example from the SP. Then, B can compute

d′ as the minimum distance between any two points of GUA(i′) and GUB(j′)

where GUB(j′) is the granule where B is located. If d′ > δA, then B sends

to A the message “B is not in proximity”. Otherwise, B can possibly be in

proximity of A; In this case B sends to A the message “B is in proximity”.

Note here, the conclusion that “B is in proximity” is an approximate one

as this can be wrong if δA distance is strictly judged. This is a necessary

imprecision due to privacy protection, and we take this imprecision as one

performance measure of privacy protection techniques, as it will be shown

in Section 4.1.

Protocol 2 Hide&Seek
Prerequisites: A andB are running the SP-Filtering protocol. A is located

in GUA(i′), B is located in GUB(j′).

Protocol:

1: A receives “B is possibly in proximity” from the SP

2: A sends to B “starting two-parties protocol 〈i′, δA〉”

3: B computes: d′ = mindist(GUA(i′), GUB(j′))

4: if (d′ ≥ δA) then

5: B sends to A “B is not in proximity”

6: else

7: B sends to A “B is in proximity”

8: end if

Note that the computation run by B during the Hide&Seek protocol

is similar to the computation executed on the SP during the SP-Filtering

protocol. The main difference is that, in this case, the location of A and B

are generalized to the granularities GUA and GUB, respectively. In this case,

B has more chances to be able to compute whether A is in the proximity, if

granularities GUA and GUB are “finer-than” GSP
A and GSP

B , respectively. In this

view, the SP-Filtering protocol has the role of preventing A from starting

the two-parties protocol with B, when not strictly necessary, hence reducing

computation and communication overheads.

3.3. Privacy preserving techniques 49

The Hide&Crypt protocol

The Hide&Seek solution requires that exactly the maximum tolerable amount

of location information is revealed each time a users initiates the two-parties

computation. That is, the protocol does guarantee the minimum privacy re-

quirements, but it does not do more in terms of privacy protection. As men-

tioned in the introduction, in addition to the minimum privacy requirements,

a user would prefer to reveal as little information as possible about their lo-

cation. In order to address this problem, we now present the Hide&Crypt

protocol.

Similarly to the Hide&Seek , the Hide&Crypt is composed of two sub-

protocols: the SP-Filtering protocol and a two-parties protocol between

two users. The difference with respect to the Hide&Seek protocol is that

the two-parties proximity problem is solved through a secure computation

protocol. The main idea is that, when the SP-Filtering protocol cannot

determine the proximity of B for A, A will compute the set S of granules of

GUB such that, if B is contained in any of these granules, then B is possibly

in the proximity of A. To test if B is indeed located in any granule of S,

A can run the set-inclusion secure-computation protocol with B and hence

to conclude if B is possibly in proximity (a solution to the secure two-

parties set-inclusion problem was proposed in [31]). A technical issue of this

protocol is that if B knows the cardinality of S he can be able to infer some

location information about A. For example, on a grid-based granularity, it

can happen that the number of granules considered in proximity when the

user is located at the center of a granule is different to the case in which the

user is located close to the corner of a granule. For this reason, the protocol

we propose is an extension of the secure two-parties set-inclusion problem

in which the cardinality of the set S is kept secret too.

More precisely, Hide&Crypt works as follows. First, A computes the set

S′ of indexes of granules of GUB that intersects with the circle C centered in

the location of A with radius δA. Then, in order to hide to B the cardinality

of this set, A creates a new set S by adding to S′ some negative numbers.

3.3. Privacy preserving techniques 50

The aim of negative numbers is to increase the cardinality of S without

affecting the result of the computation. The cardinality of S should be

increased so that it is as large as the number sMax(GUB, δA) that represents

the maximum number of granules of GUB that intersect with any circle with

radius δA. Note that sMax(GUB, δA) can be computed off-line since its values

depends only on GUB and δA. Then, A encrypts all the elements of S with

a encryption function3 E∗ and a private key KA and sends the result to B.

User B encrypts again, using his private key KB, each element in the set he

receives and sends it back to A together with the encryption of the index j

such that B is located in GUB(j). Finally, A encrypts again E∗KB
(j) using the

key KA and checks if the result is contained in E∗KB
(E∗KA

(S)) 4. Encryption

function E∗ is such that E∗KA
(E∗KB

(j)) ∈ E∗KB
(E∗KA

(S)) if and only if j ∈ S.

Since negative numbers are not valid indexes, j ≥ 0, and hence j ∈ S if and

only if j ∈ S′. Therefore A computes whether B is in her proximity or not.

3.3.2 Analysis of SP-Filtering , Hide&Seek and Hide&Crypt

protocols

SP-Filtering

Proposition 1 formally states the location privacy provided by the SP-

Filtering protocol.

The correctness of this formal result is based on an additional condi-

tion about the granules of GSP
A and GUA that we require beyond the basic

definitions of the spatial granularities. The condition is formally stated as

∀g ∈ GSP
A , h ∈ GUA g ⊆ h or h ⊆ g or h ∩ g = ∅ (3.2)

In other words, if a granule of GSP
A and a granule of GUA have an intersection,

then either the former totally contains the latter or vice versa. Since we

3Our results hold for any commutative encryption function such that, given two keys

KA and KB and two values i and j, E∗KA
(E∗KB

(i)) = E∗KB
(E∗KA

(j)) if and only if i = j.
4 We denote with E∗K(S) the encryption of each element of the set S. Formally,

E∗K(S) =
⋃

i∈S E∗K(i). Note that E∗K(S) is a set and, hence, its elements are not ordered.

3.3. Privacy preserving techniques 51

Protocol 3 Hide&Crypt

Prerequisites: A and B are running the SP-Filtering protocol. User A

knows GUB, a private key KA, the circle C centered in A’s location with

radius δA, and the value sMax(GUB, δA). B knows a private key KB, and

the granule GUB(j) where B is located.

Protocol:

1: A receives “B is possibly in proximity” from the SP.

2: A computes: S′ = {j ∈ N s.t. GUB(j) ∩ C 6= ∅}

3: A computes: S′′ as a set of sMax(GUB, δA)− |S′| random negative num-

bers.

4: A computes: S = S′ ∪ S′′

5: A sends “starting two-parties protocol E∗KA
(S)” to B

6: B sends 〈E∗KB
(E∗KA

(S)), E∗KB
(j)〉 to A

7: A computes: E∗KA
(E∗KB

(j))

8: if (E∗KA
(E∗KB

(j)) ∈ E∗KB
(E∗KA

(S))) then

9: A computes that B is in proximity

10: else

11: A computes that B is not in proximity

12: end if

assume a granularity “covers” the entire spatial domain, (i.e., the union of

the granules of one granularity is the whole area), for each granule GUA(j),

there exists granule GSP
A (i) such that they intersect, and furthermore, if

condition (3.2) is satisfied, it must be the case that one of two granules

totally contains the other. A sufficient condition to satisfy condition (3.2)

is that either GSP
A is a finer than GUA or vice versa5.

When two users A and B run the SP-Filtering protocol, the SP learns the

region LA(i) and LB(j) where the two users are located, but cannot exclude

any location of these regions as possible location for A and B, respectively.

5The finer-than relationship was defined for temporal granularities (see, among others,

[8]) and it can be easily extended for spatial granularities. Basically, GSP
A is a finer than

GU
A if the former is a finer partitioning of the space than the latter is.

3.3. Privacy preserving techniques 52

When the SP-Filtering protocol is used to compute the proximity of B with

respect to A, B does not receive any message and hence he does not acquire

any information about the location of A. Vice versa, A can acquire some

information about the possible location of B, depending on the message A

receives from the SP. Proposition 1 formalizes the location knowledge that

A acquires about B.

Proposition 1. Let A be located in GSP
A (i) and

Sin = {j ∈ N|maxdist(LA(i), LB(j)) ≤ δA}

Sout = {j ∈ N|mindist(LA(i), LB(j)) ≥ δA}

Whenever the SP-Filtering protocol is used to compute the proximity of B

with respect to A:

1. if A receives the “B is in proximity” message from the SP, then A can-

not exclude that B is located in any location of Area in
F =

⋃
j∈Sin

LB(j);

2. if A receives the “B is not in proximity” message from the SP, then A

cannot exclude that B is located in any location of Areaout
F =

⋃
j∈Sout

LB(j);

3. if A receives the “B is possibly in proximity” message from the SP, then

A cannot exclude that B is located in any location of AreaNoFilter =

(Area in
F ∪Areaout

F)C .

In Theorem 1 we prove that the SP-Filtering protocol guarantees to

protect the minimum location privacy requirements. The idea of the proof

is that for each participating user C, LC(i) covers at least one granule of

GUC and one of GSP
C .

Theorem 1. Let C be a user participating in the SP-Filtering protocol. The

minimum privacy requirements of C are guaranteed.

3.3. Privacy preserving techniques 53

The computation complexity of the SP-Filtering protocol on the client

and SP sides depends on the complexity of the operations applied on gran-

ularities (the computation of LC(i) on the client side for user C, and the

computation of mindist and maxdist on the SP side). In Section 4.1 we

describe a class of spatial granularities for which these computations can be

executed in constant time. In terms of communication cost, SP-Filtering

requires each user to issue a message to the SP for each location update

and the SP to issue a message to a user each time the proximity status with

respect to any of her buddies needs to be updated.

Hide&Seek

Whenever a user A runs the two-parties part of the Hide&Seek protocol to

compute if B is in her proximity, the SP does not acquire any additional in-

formation about the locations of A and B. However, A acquires information

about B and vice versa. Proposition 2 formalizes the location information

A acquires about B and that B acquires about A.

Proposition 2. Let A be located in GUA(i′) and

S′out = {j′ ∈ N|mindist(GUA(i′), GUB(j′)) ≥ δA}

Whenever the Hide&Seek protocol is used to compute the proximity of B

with respect to A:

1. if A receives the “B is not in proximity” message from B, then A can-

not exclude that B is located in any location of Areaout
S = AreaNoFilter∩⋃

j′∈S′out
GUB(j′);

2. if A receives the “B is in proximity” message from B, then A cannot

exclude that B is located in any location of Area in
S = AreaNoFilter ∩

(Areaout
S)C ;

3.3. Privacy preserving techniques 54

3. B cannot exclude that A is located in any location of Areapassive
S =

GUA(i′).

Proposition 2 guarantees what user A can deduce on the position on B

based on the messages A receives from B, and vice versa. Figure 3.2 may

help in the understanding of the location privacy guarantees provided by the

Hide&Seek protocol. User A receives the message “B is in proximity” or “B

is not in proximity” from the SP when B is in close proximity (Area in
F) or is

far away (Areaout
F), respectively. If the SP is not able to compute whether

B is in proximity of A, then A can infer that B is located in AreaNoFilter

(Areain ∪ Areaout in Figure 3.2). More precisely, in this case, if A receives

the message “B is not in proximity” or “B is in proximity” from B then A

can deduce that B is located in Area in
S (Areain , in Figure 3.2) or Areaout

S

(Areaout , in Figure 3.2), respectively.

Figure 3.2: Possible locations of B

Theorem 2 proves that the Hide&Seek protocol guarantees the minimum

location privacy requirements.

Theorem 2. Let C be a user participating in the Hide&Seek protocol. The

minimum privacy requirements of C are guaranteed.

The computational complexity of the Hide&Seek protocol is the same

as the SP-Filtering protocol since the computation of mindist has the same

complexity of the computation of d′. Hence, using the class of spatial gran-

3.3. Privacy preserving techniques 55

ularities we present in Section 4.1, the computation can be executed in con-

stant time. For what concerns the communication cost of the protocol, in

addition to the messages required by the SP-Filtering protocol, Hide&Seek

requires each user to exchange two messages of constant size with another

user each time the two-parties computation is run. In Section 4.1 we evaluate

the number of these messages in our experimental setting.

Hide&Crypt

Similarly to the Hide&Seek protocol, also in Hide&Crypt the SP acquires

no information about the location of A and B when the two-parties part is

run. Proposition 3 formally states the information that A acquires about

B and that B acquires about A when the Hide&Seek protocol is used to

compute the proximity of B with respect to A.

Proposition 3. Let B be located in GSP
B (j), C be the circle centered in the

location of A with radius δA and

S′ = {j′ ∈ N|GUB(j′) ∩ C 6= ∅}

S′sp = {i ∈ N|mindist(LA(i), LB(j)) <

< δA < maxdist(LA(i), LB(j))}

Whenever the Hide&Seek protocol is used to compute the proximity of B

with respect to A:

1. if A can compute that B is in proximity as the result of the secure

computation protocol with B, then A cannot exclude that B is located

in any location of Area in
C = AreaNoFilter ∩ (

⋃
j′∈S′ G

U
B(j′));

2. if A can compute that B is not in proximity as the result of the secure

computation protocol with B, then A cannot exclude that B is located

in any location of Areaout
C = AreaNoFilter ∩ (Area in

C)C ;

3.3. Privacy preserving techniques 56

3. B cannot exclude that A is located in any location of Areapassive
C =⋃

i∈S′sp LA(i).

The idea of the privacy protection guaranteed by Hide&Crypt is similar

to the one of Hide&Seek and is graphically depicted in Figure 3.2. In this

case, Areain and Areaout correspond to Area in
C and Areaout

C , respectively.

There are two main differences with respect to Hide&Seek . First, as we mo-

tivate and experimentally observe in Section 4.1, Area in
C is generally smaller

than Area in
S and hence Areaout

C is generally larger than Areaout
S (we recall

that Area in
S ∪ Areaout

S = AreaNoFilter and Area in
C ∪ Areaout

C = AreaNoFilter).

Second, while Areapassive
S is the exact granule of GUA where A is located,

Areapassive
C is a coarser area that generally covers several granules of GUA.

In Section 4.1 we show, through our experimental results, that Hide&Crypt

provides on average more privacy protection than Hide&Seek . With Theo-

rem 3, we formally guarantee that Hide&Crypt provides the minimal location-

privacy requirements.

Theorem 3. Let C be a user participating in the Hide&Crypt protocol. The

minimum privacy requirements of C are guaranteed.

The computational complexity of the Hide&Crypt protocol is the same as

the SP-Filtering protocol on the SP. On the client, the computational com-

plexity is the same as in the SP-Filtering protocol plus the time required to

encrypt the sMax(GUB, δA) integers. Assuming that the computation of the

SP-Filtering can be performed in constant time, like in our experiments,

and assuming a fixed size of the encryption key, the computational com-

plexity is linear in the size of the data to encrypt i.e, is linear in the size of

sMax(GUB, δA). For what concerns the communication cost, Hide&Crypt re-

quires the exchange the same number of messages as the Hide&Seek protocol

with the difference that each message has a length linear in sMax(GUB, δA).

3.3. Privacy preserving techniques 57

3.3.3 Longitude

One problem with Hide&Crypt is that it can lead to high communication and

computation cost for the client when a user requires total privacy with re-

spect to the SP. Indeed, in this case, the two-party subprotocol of Hide&Seek

and Hide&Crypt has to run for every proximity request, as the SP would be

totally excluded from the proximity computation. An empirical analysis of

the costs of this drawback is in Section 4.1.3.

Aiming at reducing system costs, we developed another protocol called

Longitude. This protocol, presented in this section, does not require users

to do any two-party computation, and achieves total privacy with respect

to the SP i.e. the GSP
A is set to >, under the assumption that the adversary

has no a-priori knowledge about users’ locations. While this assumption can

be unrealistic when considering the entire world as spatial domain, it can

be reasonable when the service is limited to a smaller area, like a city, and

the adversary does not know the distribution of the users over this area.

Differently from the other solutions, only grid-based granularities having

cells of the same size can be chosen as privacy preference with respect to the

other users. We then use the notation GrUA for the grid selected as privacy

preference by user A.

The protocol

The main steps of the Longitude protocol are the following: each time A

wants to check whether B is in proximity, A runs the encryptLocation pro-

cedure to encrypt the cell cA of GrUA where A is located and sends it to

the SP. Then, the SP sends a message to B requiring a location update. B

runs the encryptLocation procedure to encrypt, using the same key as A,

the cell cB of GrUB where B is located and sends the result to the SP. Since

the SP does not know the key used to encrypt the two cells, it is not able to

acquire any location information about A and B. However, the encryption

function is designed in such a way that the SP, upon receiving a request

from A and an answer from B with cells encrypted with the same key, can

3.3. Privacy preserving techniques 58

derive some information about the proximity relationship between A and B.

This is obtained through the computeProximity procedure. The SP sends

this proximity related information in the form of a boolean value to the

requester A who can compute, through the procedure getResult, whether B

is in proximity or not.

The encryption function is such that, if A sends her location cell to

the SP using the same encryption key in different instants and while being

in different cells, and the SP is aware of this, he can possibly learn some

information about the movement of A, and hence about her location. For

this reason, A changes the encryption key each time she communicates her

location cell to the SP. The following is a simple protocol to achieve this, but

many optimizations and different solutions can be devised without affecting

the main results of Longitude. We assume A and B share a secret K; the

actual key used to encrypt the location information is obtained through a

pseudo-random number generator (PRNG) with seed K. To compute this

shared secret A and B can, for example, employ a key agreement protocol,

like Diffie-Hellman. An index i is locally stored by A, it is incremented at

each proximity request, and it is used to select the i-th generated key for

the current request. Its value is also included in the proximity request, since

the locations of other buddies will need to be encrypted with a key selected

according to i.

The encryptLocation procedure

The procedure is schematically illustrated as Procedure 4. It is used to issue

requests for proximity as well as to send responses to location requests by

the SP. The inputs are the location l of the user running the procedure,

the grid GrU chosen to protect the privacy of the user, and the seed K,

the parameter lastIndex that takes the value of i (i.e., the index of the last

key generated by the PRNG by the user running the procedure), and the

optional parameter newIndex that is only defined when the procedure is

used to respond to a proximity request issued by another buddy; In this

3.3. Privacy preserving techniques 59

case, the value of newIndex is the index of the key used by the issuing

buddy. If the procedure is used to issue a request for proximity, the index

is incremented. If the procedure is used to send a response to a location

request, it first checks if the index used by the buddy issuing the request

has ever been used. If this is the case, using the same index again could

compromise the user’s privacy and the procedure simply terminates, hence

ignoring the request incoming from the SP. Otherwise, the key with this

index is generated with the PRNG.

The next steps consist in assigning to variable ki the value of the i-th

number generated by the PRNG with seed K and in computing the cell c

of the grid GrU where the user running the procedure is currently located.

This cell is then encrypted using the encryption function E, described in

the following, and the key ki. Finally, the result is sent to the SP together

with the value of i and the value of i is stored so that it can be used in the

next run of the procedure.

Procedure 4 encryptLocation

Input: a location l, a grid GrU , the seedK, the value lastIndex , the optional

value newIndex .

Procedure:

1: if (issuing request for proximity) then

2: i = lastIndex + 1

3: else {responding to a proximity request}

4: if (newIndex ≤ lastIndex) then return

5: i = newIndex

6: end if

7: ki is the i-th number generated by the PRNG with seed K

8: c is the cell of GrU that contains the location l

9: c′ = Eki(c)

10: send 〈i, c′〉 to the SP.

11: store i {for the next execution}

3.3. Privacy preserving techniques 60

Before describing the encryption function, we first introduce some nota-

tion. In our approach we assume that users are moving in a bi-dimensional

space W which consists in a rectangular grid of sizex × sizey points. For

each point p ∈ W , we denote with px and py the projection of p on the x

and y axis, respectively.

The encryption function E we propose is based on a “modular transla-

tion”. The idea is to apply, to each point of c, a translation followed by a

modulus operation in such a way that no point is moved outside W . For

example, if a point is moved by the translation right above the top boundary

of W , the modulus operation moves it right above the bottom boundary of

W and hence still within W (see Figure 3.3(a)).

The translation shift value is represented by α = 〈αx, αy〉 which is com-

puted from the key ki as follows: αx = ki mod sizex, αy = ki mod sizey.

The encryption function Eki is then specified as:

Eki(cA) =
⋃
p∈cA

〈(px + αx) mod sizex, (py + αy) mod sizey〉

In practice, c′A = Eki(cA) is computed by applying a transformation to

each point of cA. On the x axis, the transformation consists in shifting

the point by αx and then in applying the module sizex. On the y axis the

transformation is analogous. It is worth noting that, depending on α and

cA, Eki(cA) could be a set of contiguous points (see Figure 3.3(b)) as well

as a set of non-contiguous points (see Figure 3.3(c))

The computeProximity procedure

The computeProximity procedure (see Procedure 5) is run by the SP when

it receives two locations encrypted with the same key.

The first step of the procedure consists in computing the “minimum

modular distance” between c′A and c′B as follows:

mmd(c′A, c
′
B) = min

p∈c′A,p′∈c
′
B

moddist(p, p′)

where moddist is the modular distance between p and p′. Intuitively, the

modular distance is the Euclidean distance computed as if W were “circular”

3.3. Privacy preserving techniques 61

(a) Translation of a

point

(b) Contiguous points (c) Non-contiguous

points

Figure 3.3: Examples of modular translations of a point and of a cell. Eki(c)

represented in gray.

Procedure 5 computeProximity

Input: 〈i, c′A〉 received from A, which issued a proximity request, and 〈i, c′B〉

received from B, which is responding to the request.

Procedure:

1: dist = mmd(c′A, c
′
B) {minimum modular distance}

2: send A the boolean value (dist ≤ δA)

on both axes. For example, consider two points p and p′ (see Figure 3.4(a)),

with the same horizontal position such that p is close to the top boundary of

W and p′ is close to the bottom boundary. The Euclidean distance of the two

points is about sizey while the modular distance is close to zero. The same

holds on the other axis (see Figure 3.4(b)) and also on the combination

on the two axis (see Figure 3.4(c)). Formally, given two points p and p′,

∆x = |px − p′x| and ∆y = |py − p′y|, the modular distance is defined as:

moddist(p, p′) = min(
√

(∆x)2 + (∆y)2,
√

(sizex −∆x)2 + (∆y)2,√
(∆x)2 + (sizey −∆y)2

√
(sizex −∆x)2 + (sizey −∆y)2)

The final step of computeProximity consists in comparing the minimum

modular distance between c′A and c′B with δA, the proximity threshold of A.

The boolean value of this comparison is sent to A.

3.3. Privacy preserving techniques 62

(a) On the vertical axis (b) On the horizontal

axis

(c) On both axis

Figure 3.4: Examples of modular distance

The getResult procedure

In the getResult procedure (see Procedure 6) user A, which is running the

procedure, decides whether B is in proximity or not. This result is obtained

considering the boolean value received from the SP and the relative position

of the cell cA, where A is located, with respect to a region called “certainty

region” of A. This region, denoted by CRA, is the set of points of W that

are farther than δA from the boundaries of W (see Figure 3.5).

The correctness of the result computed by the getResult, as well as the

approximation introduced by the protocol and its safety are discussed in

Section 3.3.4.

Figure 3.5: Example of the certainty region CRA

3.3.4 Analysis of the Longitude protocol

In this section we first discuss the safety of the Longitude protocol with

respect to privacy protection and then we analyze its correctness and the

3.3. Privacy preserving techniques 63

Procedure 6 getResult

Input: The boolean value res received from the SP, the cell c where the

user running the procedure is located, the certainty region CR of the user

running the protocol, the user B which responded to the proximity request.

Procedure:

1: if (res = True AND c ⊆ CR) then

2: B is in proximity

3: else

4: B is not in proximity

5: end if

approximation it introduces. We first introduce a formal proposition that

will be used in the protocol analysis.

Proposition 4. Given two cells cA and cB and a key ki, the encryption

function E is such that:

mmd(cA, cB) = mmd(Eki(cA), Eki(cB))

Proposition 4 intuitively states that the encryption function E presented

in Section 3.3.3 does not alter the minimum modular distance between cA

and cB.

Safety

We first analyze the privacy that the Longitude protocol provides to a user

with respect to another buddy and with respect to the SP under the as-

sumptions that the SP and the buddies do not collude. Then, we discuss

the location information that is disclosed in case collusion occurs.

During the execution of the protocol the only message that A receives

containing information related to the location of a buddy B is the boolean

value received from the SP as a response to A’s request for the proximity

of B. When A receives True from the SP (i.e., mmd(c′A, c
′
B) ≤ δA), due

to Proposition 4, A learns that B is located in a cell cB of GB such that

3.3. Privacy preserving techniques 64

mmd(cA, cB) ≤ δA. Since A knows cA and GB, she can compute the set of

cells where B is possibly located. Formally, A cannot exclude B is located in

any cell c of GB such that mmd(cA, c) ≤ δA. Analogously, when A receives

False from the SP A cannot exclude B is located in any cell c of GB such

that mmd(cA, c) > δA. Consequently, the minimum privacy requirement of

B with respect to A are guaranteed.

For what concerns the privacy protection with respect to the SP, it is

easily seen from the protocol that the SP only learns the minimum modular

distance between c′A and c′B and hence, due to Proposition 4, the minimum

modular distance between cA and cB. This knowledge does not disclose any

explicit location information about A and B. It should be noted, however,

that the SP learn a relative information about the location of A and B,

that is a value related to the distance among their cells. Hence, in case

the adversary has an a-priori knowledge of users location, it may be able

to exclude some portion of the spatial domain as a possible location of the

users. Therefore, Definition 1 is not satisfied by Longitude with respect to

the SP.

We now turn to consider collusion. If a user B considers all buddies

as untrusted, he will probably use the same (coarse) grid for everybody.

In this case, even if buddies collude, the minimum privacy requirements

are guaranteed. However, if user B has different degrees of trust on her

buddies (hence using different grids), and these buddies collude, the location

of B could be discovered with high precision by intersecting the location

information about B acquired by the colluding buddies. This can be easily

avoided by imposing the following constraint on the relationship among the

spatial grids used as privacy preferences: cells from different grids never

partially overlap. In this case, the location of B is never disclosed with a

precision higher than the finest grid among those defined for the colluding

buddies. In other words, the minimum privacy requirement defined for the

most trusted buddy among the colluding ones is guaranteed. Collusion with

the SP is not likely in the service model we are considering, since the SP is

3.3. Privacy preserving techniques 65

considered untrusted, while a certain degree of trust is assumed among the

participating buddies that indeed share a secret. In the worst case in which

the trust model is broken by a buddy A of B colluding with the SP, the SP

can obtain and share with A the cell cB where B is located each time B sends

this information encrypted with the secret seed K shared with A. Note that

the minimum privacy requirement with respect to A is guaranteed, and that

the SP can only obtain the same location information about B available to

A.

Service Precision

We now discuss the correctness of Longitude in terms of the service precision

it provides. If A receives False from the SP then, according to the com-

puteProximity procedure, mmd(c′A, c
′
B) > δA. Due to Proposition 4, this

means that mmd(cA, cB) > δA. Since mmd(cA, cB) is a lower bound to the

real distance between A and B, it is guaranteed that B is not in proximity

of A. Vice versa, if A receives True, it is not possible for A to conclude

that B is in proximity, since two forms of approximation are introduced.

We now explain the reason for these approximations, and our choice for the

conditions under which the protocol declares B’s proximity.

One form of approximation, which we call the modular-shift error is

due to the fact that the encryption function does not preserve the distance.

Indeed, as shown in Figure 3.6(a), it can happen that, while c′A is close to

c′B, cA is far from cB. This would imply that, when the SP sends True

to A (i.e., mmd(c′A, c
′
B) ≤ δA) A does not actually know whether B is in

proximity or not. However, it can be easily seen that when cA is in the

certainty region CRA, mmd(cA, cB) ≤ δA implies that mindist(cA, cB) ≤

δA. In this case A can exclude the modular-shift error. Consequently, A

knows that mindist(cA, cB) ≤ δA and considers B as in proximity whenever

True is returned by the SP, and cA is contained in CRA (lines 1-2 of the

getResult procedure). If True is returned but cA is not contained in CRA,

then A cannot conclude that B is in proximity. As we shall see in our

3.3. Privacy preserving techniques 66

experimental results, this case is very rare and, as a practical and efficient

solution, procedure getResult returns in this particular case B as not being

in proximity. Clearly, this leads to some possible false negative responses.

A technical solution to avoid this approximation at some extra cost is to

apply a P2P protocol between A and B, whenever this case arises [36].

(a) modular-shift error (b) Cell approximation

Figure 3.6: Two forms of approximation introduced by the Longitude Pro-

tocol.

The second form of approximation, which we call cell approximation, is

due to the fact that B may not be in proximity of A even if mindist(cA, cB) ≤

δA. Figure 3.6(b) shows an example of this situation. The consequence of

cell approximation is that, even if A knows that mindist(cA, cB) ≤ δA, she

cannot be sure whether d(loc(A), loc(B)) ≤ δA. Nevertheless, in this case A

assumes B to be in proximity. This can lead to some false positive cases. In

our experimental evaluation we show that for many practically useful grids

GA and GB, cell approximation only minimally affects quality of service.

3.3.5 C-Hide&Seek and C-Hide&Hash

In this section we present two protocols to preserve location privacy in

proximity-based services called C-Hide&Seek and C-Hide&Hash. Like Lon-

gitude, these solutions are completely centralized, in order to reduce com-

putation and communication costs for the users, especially with respect to

the Hide&Crypt when conservative privacy preferences with respect to the

3.3. Privacy preserving techniques 67

SP are required i.e. the GSP
A is set to >. Differently from Longitude, these

protocols can guarantee total privacy with respect to the SP even if the SP

has a-priori knowledge about the users location, and the users can choose

arbitrary granularity GUA as privacy preferences, instead of grids.

In order to ensure user’s privacy, the two protocols adopt symmetric

encryption techniques. In the following, we assume that each user A has a

key KA that is shared with all of her buddies and is kept secret to every-

body else. Hence, each user A knows her own key KA and one key KB for

each buddy B. Since we are considering a contact-list-based service, this

key exchange is assumed to be performed with any secure method before

running our protocols. An example of key exchanging protocol is provided

in Section 4.2.

For the sake of presentation, we decompose each protocol into two parts:

the location update sub-protocol is used by a user to provide her location

information, while the proximity request sub-protocol is used by a user to

compute the proximity of her buddies. The location update sub-protocol is

almost the same in both of our proposed solutions. What really distinguishes

C-Hide&Seek and C-Hide&Hash is the proximity request sub-protocol, and

these sub-protocols are described later in this section. We conclude this

section with a discussion about possible technical extensions.

The location update sub-protocol

The location update sub-protocol is run by a user to provide location infor-

mation to the SP. In particular, it defines how a user A provides to the SP

the encrypted index of the granule of GUA where she is located.

Before describing the sub-protocol, we first discuss when it should be run.

Consider the following naive policy: a user A updates her location only when

she crosses the boundary between two granules of GUA, reporting the index of

the new granule. It is easily seen that, independently from how the location

update is performed, each time this message is received, the adversary learns

that A is very close to the border between two granules, excluding many

3.3. Privacy preserving techniques 68

other locations, and hence violating the privacy requirements. Intuitively,

the problem of the above policy is that the probability that a location update

is performed at a given time depends on the location from where the message

is sent.

The solution we propose is the following: time is partitioned into update

intervals and an approximate synchronization on these intervals among the

participating nodes is assumed.6 Each update interval has the same duration

T and is identified by an index. Each user has a value t in [0, T) and

sends exactly one location update during each update interval after that

time t elapses from the beginning of the interval (see Figure 3.7). It is

easily seen that, by using this update policy, the location updates are issued

independently from the location of the users.

Figure 3.7: Location update policy and generation of single-use keys.

We now describe how the location update sub-protocol works. User A

first computes the index i of the granule of GUA where she is located. Then, A

encrypts i using a slightly different technique in the two proposed solutions.

In the C-Hide&Seek protocol a symmetric encryption function E is applied,

while in the C-Hide&Hash protocol a hashing function H is used. When

applying the hashing function H, in order to prevent brute-force attacks, a

secret key is used as a “salt”, i.e., a secret key is concatenated to i, and the

resulting value is given as input to H. In the following, we refer to this salt

6In our current implementation, all the messages sent from the SP to the users contain

the timestamp of the SP, allowing clients to synchronize their clocks using a Lamport-style

algorithm. The overhead due to this solution is negligible. Other forms of global clock

synchronization could also be used as, e.g., using GPS devices.

3.3. Privacy preserving techniques 69

as the “key” used to hash i, and we denote with HK(i) the hashing of the

value i with key K.

The safety of the protocols depends on the fact that the key used to

encrypt or hash i is changed at every use. At the same time, we need the

key to be shared by a user with all of her buddies. While other techniques

can be adopted to achieve this result, our solution is the following: the key

KA that A shares with all of her buddies is used to initialize a keystream.

When user A issues a location update, she computes the key Kui as the ui-th

value of this keystream, where ui is the index of the current update interval

(see Figure 3.7). Since each user issues a single location update during

each time interval, this solution ensures that every message is encrypted

or hashed with a different key. Finally, A sends to the SP the message

〈A, ui, EKui(i)〉 if running C-Hide&Seek , and 〈A, ui,HKui(i)〉 if running C-

Hide&Hash. The SP stores this information as the last known encrypted

location for A. Figure 3.8 shows the message sent from A to the SP by the

C-Hide&Seek protocol.

Figure 3.8: Location update sub-protocol in C-Hide&Seek .

Proximity request with C-Hide&Seek

The proximity request sub-protocol is run by a user that wants to discover

which of her buddies are in proximity. In the C-Hide&Seek protocol, this

sub-protocol works as follows: When A wants to discover which buddies are

in proximity, she sends a request to the SP. The SP replies with a message

containing the last known encrypted location of each buddy of A. That is,

for each buddy B, A receives a tuple 〈B, ui, EKui(i)〉. Since A knows KB

and the index ui is in the message, she can compute the value Kui used by

3.3. Privacy preserving techniques 70

B to encrypt his location, and hence she can decrypt EKui(i). Finally, since

A also knows GUB, by using i, she obtains the granule gB = GUB(i) where B

is located. A can then compute the distance between her exact location and

gB, and compare it with δA, finally determining the proximity. Figure 3.9

shows a graphical representation of the sub-protocol.

Figure 3.9: Proximity request sub-protocol in C-Hide&Seek .

Note that we are now considering the proximity between a point and a

region. In this section, we consider that a point and a region are in proxim-

ity, with respect to a distance threshold, if the minimum distance between

the two objects is less than the threshold. Since, in our protocol, the region

represents the area where a user B is possibly located, this interpretation

of proximity means that there is a possibility for users A and B to actu-

ally be in proximity. The same minimum distance interpretation has been

used in related work on privacy-aware proximity computation. Alternative

interpretations and their effects are discussed in Section 3.3.6.

The C-Hide&Seek protocol provides a simple and efficient solution that,

as will be shown in Section 3.3.6, completely hides the location of the users

to the SP, and that also guarantees the privacy requirements with respect

to the buddies. However, it reveals exactly the maximum tolerable amount

of location information (gB for user B) to any buddy issuing a proximity

request. Even if their privacy requirements are guaranteed, users would

probably prefer to disclose as little information as possible about their loca-

tion when not strictly needed. For example, is there an alternative solution

that does not reveal to a user A the granule information of a buddy B if he

is not in proximity?

3.3. Privacy preserving techniques 71

In the next section we present the C-Hide&Hash protocol that provide

such a solution and, in general, ensures a higher level of privacy. This is

achieved at the cost of higher computation and communication costs, as

explained in Section 3.3.6.

Proximity request in C-Hide&Hash

The C-Hide&Hash protocol has two main differences with respect to C-

Hide&Seek . The first difference is that a hash function H is used during

the location update, instead of the encryption function. This is due to the

requirement in this protocol to avoid revealing the relationship between two

plaintext values (the granule indexes) by observing the relationship among

the corresponding encrypted values (see Section 3.3.6 for a more detailed

explanation). Since in this protocol we do not need to decrypt the result

of the function, but we only need to check for equality of encrypted values,

hashing can be used. As specified in Section 3.3.5, each location update

in C-Hide&Hash from user A to the SP is a message containing the tuple

〈A, ui,HKui(i)〉.

Figure 3.10: Computation of granules of GUB considered in proximity by A

The second and main difference with respect to C-Hide&Seek is the

computation of the proximity request sub-protocol. The intuition is that

when A issues a proximity request, she computes, for each of her buddies B,

3.3. Privacy preserving techniques 72

the set of indexes of granules of GUB such that, if B is located in any granule

of the set, then B is in proximity (see Figure 3.10). Then, if B provides the

granule in which he is located, it is possible to reduce the proximity problem

to the set-inclusion problem, by checking if that granule is included in the

set computed by A. We want to do this set inclusion without revealing to

A which of the candidate granules actually matched the granule of B.

More precisely, the computation of a proximity request in the C-Hide&Hash

protocol works as follows. When a user A issues a proximity request, she

starts a two-party set inclusion protocol with the SP. The protocol is a se-

cure computation, and consequently the SP does not learn whether A is in

proximity with her buddies, and A only learns, for each of her buddies B,

whether B is in proximity or not, without learning in which granule B is

located. The secure computation exploits a commutative encryption func-

tion E∗. In addition to the keys used in the C-Hide&Seek protocol, at each

proximity request, the requesting user and the SP each generates a random

key that is not shared with anyone else. We denote these keys K1 for user

A and K2 for the SP.

The proximity request sub-protocol is divided into three steps, whose

pseudo-code is illustrated in Protocol 7. In Step (i), user A computes, for

each buddy B, the set S′ of indexes of granules of GUB such that, if B is

located in one of these granules, then B is in proximity. More formally,

A computes the set of indexes i such that the minimum distance mindist

between the location of A and GUB(i) is less than or equal to δA. Then,

in order to hide the cardinality of S′, A creates a new set S by adding to

S′ some non-valid randomly chosen indexes (e.g., negative numbers). This

is done to increase the cardinality of S without affecting the result of the

computation. The cardinality of S is increased so that it is as large as the

number sMax(GUB, δA), already introduced in Section 3.3.1, that represents

the maximum number of granules of GUB that intersect with any circle with

radius δA. Note that sMax(GUB, δA) can be computed off-line since its values

depend only on GUB and δA. In the following, when no confusion arises, we

3.3. Privacy preserving techniques 73

Protocol 7 C-Hide&Hash: proximity request
Input: User A knows, the last completed update interval, and the proximity thresh-

old δA. Also, for each of her buddy B, A knows the granularity GU
B , the key KB

and the value of sMax(GU
B , δA).

Protocol:

(i) Client request from A

1: proxReq = ∅
2: generate a random key K1

3: for each buddy B of A do

4: S′ = {j ∈ N s.t. mindist(locA, G
U
B(j)) ≤ δA}

5: S′′ = a set of sMax(GU
B , δA)− |S′| non-valid random indexes.

6: S = S′ ∪ S′′

7: Kui is the ui-th value of the keystream initialized with KB

8: ES =
⋃

i∈S E
∗
K1

(HKui (i))

9: insert 〈B, ui, ES〉 in proxReq
10: end for

11: A sends proxReq to the SP

(ii) SP response

1: proxResp = ∅
2: generate a random key K2

3: for each 〈B, ui, ES〉 in proxReq do

4: ES′ =
⋃

e∈ES E
∗
K2

(e)

5: retrieve 〈B, ui, hB〉 updated by B at update interval ui

6: h′ = E∗K2
(hB)

7: insert 〈B,ES′, h′〉 in proxResp
8: end for

9: SP sends proxResp to A

(iii) Client result computation

1: for each 〈B,ES′, h′〉 in proxResp do

2: h′′ = E∗K1
(h′)

3: if h′′ ∈ ES′ then
4: A returns “B is in proximity”

5: else

6: A returns “B is not in proximity”

7: end if

8: end for

use sMax as a short notation for sMax(GUB, δA). In Line 8, each element

of S is first hashed using the key Kui, which is obtained as the ui-th value

generated by the keystream initialized withKB. In this case ui is the index of

the update interval preceding the current one. Then, the result is encrypted,

3.3. Privacy preserving techniques 74

using the commutative encryption function E∗ and key K1 that is randomly

generated. The element composed by the set ES computed in Line 8, B,

and ui is then added to the set proxReq.

Once the operations in Lines 4 to 9 are executed for each buddy B, the

set proxReq is sent to the SP.

Upon receiving proxReq, the SP starts Step (ii). For each tuple 〈B, ui, ES〉

in proxReq, the SP encrypts with the E∗ function each element of ES using

key K2, which is randomly generated. The result is the set ES′. Then, it

retrieves the tuple 〈B, ui, hB〉 updated by B at the update interval ui. In

this tuple, hB is the value of the index of the granule of GUB where B is

located, hashed with the key Kui. Since ui is the update interval preceding

the current one, our location update policy assures that a location update

with update interval ui has already been issued by every buddy B. Finally,

the SP encrypts hB with the commutative encryption function E∗ using key

K2. The resulting value h′ is added, together with B and ES′, to the set

proxResp.

Once the computations at Lines 4 to 7 are executed for each buddy B,

the set proxResp is sent to A.

In Step (iii), given the message proxResp received from the SP, A com-

putes the proximity of her buddies. For each tuple 〈B,ES′, h′〉, A obtains

h′′ as the encryption of h′ with E∗ and the key K1 and checks if the result

is in ES′. If this is the case, then B is in proximity, otherwise he is not.

More formally, h′′ ∈ ES′ if and only if the granule of GUB with index i

containing B is in S′, that is equivalent to B being in proximity. Indeed,

for each buddy B, we recall that:

h′′ = E∗K1
(E∗K2

(hB))

and

ES′ =
⋃
i∈S

(E∗K2
(E∗K1

(HKui(i)))

Consequently, due to the commutative property of the encryption function,

3.3. Privacy preserving techniques 75

h′′ ∈ ES′ if and only if

hB ∈
⋃
i∈S

HKui(i)

Since hB and the elements of the set are hashed using the same key Kui,

hB is in the set if and only if i ∈ S. Since S = S′ ∪ S′′ and i 6∈ S′′ (because

S′′ contains invalid integers only while i is a valid integer) then i ∈ S if and

only if i ∈ S′. By definition of S′, this implies that B is in proximity.

Figure 3.11 shows the messages exchanged during the proximity request

sub-protocol of C-Hide&Hash.

Figure 3.11: Proximity request sub-protocol in C-Hide&Hash.

Contrasting velocity attacks and other background knowledge

It is easily seen that our location update policy, based on fixed length update

intervals, makes the probability that a location update is issued independent

from the location from where it is issued. This is an important property used

in Section 3.3.6, together with others, to prove the safety of our solutions

under the adversary models we consider.

Clearly, if the adversary had arbitrary background knowledge, there

would not be any technique that could guarantee privacy. However, it is

3.3. Privacy preserving techniques 76

interesting to consider some other forms of knowledge that the adversary

could use. With respect to previous proposals, our defenses are resistant

to an important type of background knowledge: a-priori distribution of the

users’ locations. There are, however, other types of knowledge that may be

interesting to consider as, for example, the time-dependent a-priori location

knowledge. This includes knowledge on the relative position of users at a

certain time, as well as a-priori probability of user movements. With this

kind of knowledge it is also possible to perform attacks based on the velocity

of users. Consider Example 5.

Example 5. User A sends two location updates in two consecutive update

intervals i and j from granule g1 and g2, respectively. Her buddy B issues

a proximity request in each update interval and discovers the granule where

A is located. So far, no privacy violation occurred for A. However, if B

knows that A moves at most with velocity v, then he can exclude that A is

located in some locations l of g2. Indeed, B knows that the temporal distance

between the two location updates of A is equal to the length T of the update

period. Now B can exclude that A is located in any location l of g2 such that

the time required to move from any point of g1 to l with velocity v is larger

than T . Hence B violates the privacy requirement of A.

The problem in Example 5 arises when the adversary knows the max-

imum velocity of a user. Velocity-based attacks have been recently con-

sidered independently from proximity services [19], but the application of

those solutions in our framework would lead to the release of some location

information to the SP. In the following we show how to adapt our location

update policy to provide protection preserving our privacy properties in the

specific case in which the adversary knows the maximum velocity v of a user.

Let tMax(g1, g2) be the maximum time required to move at velocity v

from each point of granule g1 to each point of granule g2. The problem of

Example 5 arises when the temporal distance between two location updates

issued from two different granules g1 and g2 is less then tMax(g1, g2). The

problem can be solved by imposing that A, after entering g2, randomly re-

3.3. Privacy preserving techniques 77

ports g1 or g2 as the granule where she is located until time tMax(g1, g2)

elapses from the last location update in g1. This solution is a form of tem-

poral generalization as it adds uncertainty to the adversary, about when the

user crosses the border between g1 and g2. More specifically, the adversary

is unable to identify the exact instant in which the user crossed the border in

a time interval of length at least tMax(g1, g2). Consequently, by definition

of tMax(g1, g2), the adversary cannot exclude that A moved from any point

of g1 to any point of g2.

The extension of our defense techniques to other forms of background

knowledge is one of the subjects for future work.

3.3.6 Analysis of C-Hide&Seek and C-Hide&Hash protocols

The main goal of our techniques is to guarantee the satisfaction of users’

privacy requirements under the given adversary models. In the Privacy

subsection, we prove that our two protocols have this property.

However, there are other important parameters to be considered in an

evaluation and comparison among protocols that satisfy the privacy require-

ments. In general, the higher the privacy provided by the protocol, the better

is for the users; since location privacy in our model is captured by the size

of the uncertainty region, in the Size of uncertainty region subsection we

consider this parameter.

A second parameter to be considered is service precision. The percentage

of false positives and false negatives introduced by a specific protocol must

be evaluated. This is considered in the Service precision subsection.

Last but not least, it is important to evaluate the overall system cost,

including computation and communication, with a particular attention to

client-side costs. This is considered in the System costs subsection.

The proofs of the formal results presented in this section are in Ap-

pendix A.

3.3. Privacy preserving techniques 78

Privacy

We analyze the privacy provided by C-Hide&Seek and C-Hide&Hash consid-

ering the adversary models presented in Section 3.2 under the no-collusion

assumption, i.e., assuming that the SP does not collude with the buddies

and that the buddies do not collude among themselves. Then, we show the

privacy guarantees provided by the two algorithms in the more general case

of possibly colluding adversaries.

Satisfaction of privacy requirements We first analyze the C-Hide&Seek

protocol. Since the private key KA is only known to A and to the buddies

of A, the SP is not able to decrypt the index of the granule where A is lo-

cated. Analogously, the SP is not able to obtain location information about

A’s buddies and, in particular, does not obtain any information about the

distance between A and her buddies.

We now state a formal property of the C-Hide&Seek that is used in the

formal proof of the above observations.

Lemma 1. The C-Hide&Seek protocol ensures that under any a-priori knowl-

edge priA, the following two random variables are probabilistically indepen-

dent: (1) The binary random variable ur(A): an update/request is sent by

user A, and (2) random variable locA, i.e., the location of A, of any distri-

bution. Formally, we have

P (ur(A)|locA, priA) = P (ur(A)|priA),

for any a-priori location knowledge priA and location random variable locA

for user A.

Note that we are assuming discrete time and discrete location. A con-

tinuous case can be formalized and proved equally easily. Also, this lemma

does not concern the type or content of a message sent by A, but just the

fact that a message is sent by A.

Another property we use to prove our safety result is provided by the

encryption algorithms, via the information theoretical notion of “perfect se-

3.3. Privacy preserving techniques 79

crecy” [9]. Intuitively, perfect secrecy for an encryption algorithm means

that given ciphertext c, each plaintext p has the same probability to be en-

crypted to c (posterior), with a randomly chosen key, as the probability of

p to be used in the first place (prior). That is, P (p|c) = P (p). Equivalently,

given plaintext p, each ciphertext c has the same probability to be the en-

cryption of p (posterior), with a randomly chosen key, as the probability of

c to appear in the first place as ciphertext (prior). That is, P (c|p) = P (c).

Applied to our situation, when SP receives a message 〈A, ui, EKui(l)〉, since

Kui is hidden from the SP and can be chosen arbitrarily, the probability

that SP receives any other message of the form 〈A, ui, EKui(l′)〉 is the same.

Most of practical encryption algorithms do not have the theoretical per-

fect secrecy, but use computational hardness to achieve secrecy in the sense

that it is computationally very hard (or impractical) to derive the plaintext

from the ciphertext. Intuitively, P (p|c) = P (p) holds because c does not

yield any information about p. Therefore, we use the simplifying, practical

assumption that the encryption methods we use do give us perfect secrecy.

The above perfect secrecy discussion applies to single messages. When

dealing with multiple messages, correlation between plaintexts may reveal

secrets when the same key is used. This is the classical scenario of repeated

key use problem, and one solution to this problem is to use so-called one-

use-pad or keystreams as we do in our proposed protocols. As each key

is only used once, encrypted messages are independent to each other when

perfect secrecy is assumed.

From the above discussion and assumptions, Lemma 2 follows. Since

the lemma involves random variables on messages, we need to specify the

message space for these variables. We consider the randomness of the mes-

sages to be on the encrypted part, while other parts are fixed. Formally,

we call each sequence 〈B, ui1〉, . . . , 〈B, uin〉, where B is a user and uij is a

time interval, a (message set) type. (Recall that a message is of the form

〈B, ui, ES〉.) The messages of the same type differ on the encrypted part of

the messages and constitute a message space. When a generic message M

3.3. Privacy preserving techniques 80

is mentioned, we assume it is a variable over all the messages with a specific

type.

Lemma 2. Given messages M = M1 ∪ M2 issued in the C-Hide&Seek

protocol, where M1 ∩M2 = ∅, we have

P (M |locA, priA) = P (M1|locA, priA) ∗ P (M2|locA, priA),

for all a-priori knowledge priA and location locA for user A.

With Lemma 1, perfect secrecy, and Lemma 2, we now show a main

result, namely, the SP does not acquire any location information as a conse-

quence of a location update or a proximity request using the C-Hide&Seek

protocol. The following formal results implicitly refer to our adversary mod-

els that, in particular, assume that the SP has no background knowledge

other than the protocol, the a-priori distribution, and the granularities.

Theorem 4. Let A be a user issuing a sequence of location updates and

proximity requests following the C-Hide&Seek protocol. Then, A’s privacy

requirement is satisfied with respect to the SP.

We now turn to the location information acquired by the buddies. In

the C-Hide&Seek protocol, a user A issuing a proximity request does not

send any location information, hence her buddies, even if malicious, cannot

violate her privacy requirements. When the same user runs the location

update subprotocol in C-Hide&Seek , her buddies can only obtain the granule

at the granularity GUA in which A is located. As a consequence, the privacy

requirement of A is guaranteed. This is formally stated in Theorem 5.

Theorem 5. Let A be a user issuing a sequence of location updates and

proximity requests following the C-Hide&Seek protocol. Then, A’s privacy

requirement is satisfied with respect to each of A’s buddies.

We consider now the C-Hide&Hash protocol. Since KA is only known

to A and her buddies, the SP is not able to acquire the location information

provided by A during a location update. This follows from Theorem 4.

3.3. Privacy preserving techniques 81

The difference of the C-Hide&Hash from the C-Hide&Seek is that when A

issues a proximity request in C-Hide&Hash, an encrypted message is sent

to the SP. However, due to the property of the secure computation protocol

in C-Hide&Hash, the only information that the SP acquires about the set

provided by A is its cardinality. Actually, the cardinality of this set is

always sMax(GUB, δA) that, by definition, depends only on δA and GUB, and

not on the actual location of A or B. Consequently, the SP does not acquire

any information about the location of A and B, including their distance.

Theorem 6 formally states this property.

Theorem 6. Let A be a user issuing a sequence of location updates and

proximity requests following the C-Hide&Hash protocol. Then A’s privacy

requirement is satisfied with respect to the SP.

Similarly to the C-Hide&Seek protocol, in C-Hide&Hash each buddy of

A can only obtain location information derived from A’s location update.

It is worth noting that in the C-Hide&Seek protocol, each time B issues

a proximity request, he obtains the granule of GUA where his buddy A is

located. Differently, using the C-Hide&Hash protocol, B only gets to know

whether the granule where A is located is one of those in SA. This means

that, if A is not in proximity, then B only learns that A is not in any of the

granules of SA. Otherwise, if A is in proximity, B learns that A is in one of

the granules of SA, without knowing exactly in which granule she is located.

This is formally stated in Theorem 7.

Theorem 7. Let A be a user issuing a sequence of location updates and

proximity requests following the C-Hide&Hash protocol. Then, A’s privacy

requirement is satisfied with respect to each of A’s buddies.

In Section 4.1 we show that, on average, C-Hide&Hash provides more

privacy with respect to the buddies than C-Hide&Seek , but at extra costs,

making each protocol more adequate than the other based on user prefer-

ences and deployment modalities.

3.3. Privacy preserving techniques 82

Privacy in case of possibly colluding adversaries We now consider

the case in which our reference adversaries can collude, and we analyze the

privacy guarantees of the C-Hide&Hash and C-Hide&Seek protocols in this

scenario.

First, consider the case in which two buddies B and C collude to violate

the privacy of a user A. The problem can be easily extended to consider

more buddies. Let lB be the set of possible locations of A obtained by B as a

result of a proximity request. Let lC be the analogous information acquired

by C during the same update interval. Since B and C collude, they can

derive that A is located in lB ∩ lC . However, due to Theorem 7, given GUA(i)

the granule where A is located, it holds that lB ⊇ GUA(i) and lC ⊇ GUA(i)

(recall that GUA is the privacy requirement of A with respect to the buddies).

Consequently, lB ∩ lC ⊇ GUA(i) and hence the privacy requirement of A is

guaranteed also in the case B and C collude.

Now, consider the case in which the SP colludes with one or more bud-

dies. For example, if one of the buddies shares the secret key KA with the

SP, the SP can learn the granule where A is located. In this case, the privacy

requirement of A with respect to the SP is not guaranteed. Nevertheless,

even if the SP knows KA, he cannot discover the location of A within the

granule of GUA(i) where A is located. This is because, by the definition of the

two protocols, every message issued by A does not depend on the location of

A within GUA(i). Consequently, the privacy requirement with respect to the

buddies is still guaranteed. This means that the lowest privacy requirement

of the two colluding entities is preserved and this is the best that can be

achieved in case of collusion.

Service precision

The techniques proposed in the literature as well as the techniques we pro-

pose in this dissertation, generalize the location of one of the two users to an

area. When proximity is computed, the exact location of that user within

the area is not known. Hence, proximity is evaluated as the distance between

3.3. Privacy preserving techniques 83

a point and a region.

Consider how it is possible to compute the proximity between a user A

whose exact location is known and a user B whose location is only known

to be in region. It is easily seen that if the maximum distance between the

point and the region is less than the proximity threshold, then the two users

are in proximity, independently from where B is located within the region.

Figure 3.12(a) shows an example of this situation. On the contrary, if the

minimum distance is larger than the distance threshold, then the two users

are not in proximity. Figure 3.12(b) graphically shows that this happens

when no point of the region containing B is in proximity of A. If none of

the two cases above happen (i.e., the threshold distance is larger than the

minimum distance and less than the maximum distance), we are in presence

of an uncertainty case, in which it is not possible to compute whether the

two users are in proximity without introducing some approximation in the

result. For example, Figure 3.12(c) shows that if B is located close to the

bottom left corner of the region then B is in the proximity of A, otherwise

he is not.

(a) B is in proximity of

A

(b) B is not in proximity

of A

(c) B is possibly

in proximity of

A

Figure 3.12: Different cases of proximity between a point and a region

The choice we made in the presentation of our protocols is to consider

two users as in proximity in the uncertainty case. The rational is that in

this case it is not possible to exclude that the users are not in proximity.

The other solutions presented in this chapter, as well as previous approaches

3.3. Privacy preserving techniques 84

([53]) facing a similar issue have adopted the same semantics.

One drawback of this minimum-distance semantics is that it generates

false positive results and this may be undesirable in some applications. In-

deed, if user B is reported to be in proximity of A, then A may decide to

contact B (e.g., through IM). This may be annoying for B, if he is not actu-

ally in proximity. Consider, for example, the case in which the location of B

is reported at the granularity of a city: B is always reported as in proximity

of A when A is in the same city, independently from the proximity threshold

chosen by A.

An alternative semantics, that we name maximum-distance semantics,

solves this problem. The idea is to consider two users as in proximity only

when it is certain that they are actually in proximity. This happens when the

maximum distance between their areas is less than the distance threshold.

While this approach does not generate any false-positive, it does produce

false-negatives. The two semantics above have a common drawback: in cer-

tain cases it happens that the probability of providing a false result is larger

than the probability of providing a correct result. Consider the example

depicted in Figure 3.13 in which the minimum-distance semantics is con-

sidered. User B is considered in proximity but the answer is wrong if B is

located in the region colored in gray. Assuming a uniform distribution of

B inside gB, it is much more likely to have an incorrect result, rather than

a correct one. An analogous problem can arise for the maximum-distance

approach.

The percentage of false results can be minimized by considering user B as

in proximity only when at least one half of the area is actually in proximity.

The drawback of this mostly-in-proximity semantics is that it incurs in both

false positive and false negative results.

Our protocols are designed so that it is very easy to change the current

proximity semantics. Since this can be done client-side, without the need for

changes server-side nor in the code other peers are running, the semantics

can be potentially chosen through the user interface at any time.

3.3. Privacy preserving techniques 85

Figure 3.13: Approximation incurring with the minimum-distance semantics

We analytically measured the impact of the different semantics on the

accuracy of our protocols by calculating the expected precision and the ex-

pected recall. The expected precision is defined as the probability that a

buddy reported to be in proximity according to a given semantic is actually

in proximity. Vice versa, the expected recall is defined as the probability

that a buddy actually in proximity is reported to be in proximity according

to a given semantic.

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

ex
p

ec
te

d
p

re
ci

si
on

δ/l

min-dist
max-dist

Figure 3.14: Expected precision

Figures 3.14 and 3.15 show the minimum expected precision and recall

for the minimum-distance and the maximum-distance semantics. Both mea-

sures depend on the ratio between δ and the area of the granules in which

3.3. Privacy preserving techniques 86

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

ex
p

ec
te

d
re

ca
ll

δ/l

min-dist
max-dist

Figure 3.15: Expected recall

a user is considered in proximity. For this analysis we considered a grid-like

granularity containing cells having edge of size l and we assume users are

uniformly distributed. As can be observed in Figure 3.14, the maximum-

distance semantic has always precision equal to 1. This is because all the

buddies considered in proximity are always actually in proximity. The mini-

mum-distance has precision of about 1/3 when the values of δ and l are equal,

and this value grows logarithmically when δ is larger than l. The analysis of

expected recall (Figure 3.15) shows that the minimum-distance has always

recall equal to 1. This is because if a buddy is actually in proximity, it is

always reported in proximity using this semantic. The maximum-distance

semantic, on the contrary, has a minimum expected recall equal to 0 when

δ and l are equal. This is because, with this parameters, it can happen that

no cells of size l are fully contained in a circle having radius δ. However,

the recall of the maximum-distance grows more rapidly than the precision

of the minimum-distance.

Size of uncertainty regions

As already discussed in Section 3.3.6, our protocols are proven to always

guarantee the privacy requirement with respect to the buddies. However,

the main difference between our two protocols consists in the fact that C-

3.3. Privacy preserving techniques 87

Hide&Hash can provide additional privacy with respect to one buddy. For

example, if a user A issues a proximity request using C-Hide&Hash, and

a buddy B is reported as being not in proximity, A only learns that B is

not located in any of the granules considered in proximity (i.e., the ones

included in S). The resulting uncertainty region of B, in this case, is equal

to the entire space domain minus the region identified by S. When B is re-

ported to be in proximity, A learns that B is located in one of the granules

of S, but not exactly in which of those granules. Therefore, the uncertainty

region in this case is given by the region identified by S. The size of this

region depends on the value δA, on the area of the granules in GUB, and on

the distance semantics chosen by A. In order to show how the size of the

uncertainty region is affected by these parameters, we simplify the analy-

sis by considering grid-like granularities, similarly to Section 3.3.6. Each

granularity is a grid identified by the size l of the edge of its cells.

Figure 3.16 shows the additional privacy achieved by C-Hide&Hash for

different values of δ/l. The additional privacy is measured as the lower

bound of the number of granules in S. As can be observed, using both

semantics, the additional privacy grows when δ is larger than l. This means,

for example, that if δ is 5 times larger than l, then the actual size of the

uncertainty region of B is 60 (or 88) times larger than the minimum privacy

requirement if A is using the maximum-distance (or minimum-distance,

resp.) semantics.

System costs

We separately evaluate the computation and communication costs involved

in running the two proposed protocols. The analytical evaluation reported

here is complemented with experimental results in Section 4.1.

C-Hide&Seek In order to perform a location update, a user needs to com-

pute the index of the granule where she is located. The time complexity of

this operation depends on the data structure used to represent granularities.

3.3. Privacy preserving techniques 88

0

100

200

300

400

1 2 3 4 5 6 7 8 9 10

N
u

m
b

er
o
f

g
ra

n
u

le
s

(l
ow

er
b

o
u

n
d
)

δ/l

C-H&Hash/min-dist
C-H&Hash/max-dist

C-Hide&Seek

Figure 3.16: Privacy with respect to a buddy

As we shall show in Section 4.1, with our implementation of the granularities

this operation can be performed in constant time. The complexity of the

encryption operation depends on the encryption function and on the length

of the encryption key. Considering a fixed key length, the encryption of

the index of the granule can be performed in constant time. Since the SP

only needs to store the received information, the expected computational

complexity is constant. The communication cost is constant and consists in

an encrypted integer value.

For what concerns the cost of a proximity request on the client side, for

each buddy the issuing user needs to decrypt the index and to compute the

distance of the granule with that index from her location. In our imple-

mentation these operations can be performed in constant time and hence

the time complexity of the proximity request operation on the client side is

linear in the number of buddies. On the SP side, the computational cost

to retrieve the last known locations of the buddies is linear in the number

of buddies. The communication consists in one request message of constant

size from the user to the SP, and of one message from the SP to the user

with size linear in the number of buddies.

C-Hide&Hash The cost of a location update operation on the client is

similar to the cost of the same operation using C-Hide&Seek , since the only

3.3. Privacy preserving techniques 89

difference is that a hashing function, which can be computed in constant

time, is applied instead of the encryption function. Like in C-Hide&Seek ,

the SP only needs to store the received information. Hence, computational

costs of a location update are constant both for the client and for the SP.

The communication cost is constant, as the only exchanged message consists

in a hashed value.

On the client side, a proximity request from A requires, for each buddy

B, the computation of the granules of GUB which are considered in prox-

imity, the hashing, and the encryption of a number of granule indexes in

the order of sMax(GUB, δA). The value of sMax can be pre-computed for a

given granularity. The computation of the granules considered in proximity

can be performed in constant time in our implementation, using grids as

granularities. The computation of the hashing and the encryption functions

can also be performed in constant time, hence the time complexity of a

proximity request is linear in the number of buddies times the maximum

among the sMax values for the involved granularities. When the client re-

ceives the response from the SP, the result computation performed by A

for each buddy B requires the encryption of a number (the encrypted value

sent by the SP), and the lookup of the encryption in a set of encrypted

values with cardinality sMax(GUB, δA). As the lookup in the set of hashes

requires at most sMax operations, the time complexity is then linear in the

number of buddies times the maximum value of sMax. Hence, this is also

the overall complexity on the client side. On the SP side, the response to a

proximity request from a user A requires, for each buddy B, a) the retrieval

and the encryption of the hashed location of B, b) the encryption of the

sMax(GUB, δA) hashed granule indexes sent by A. As the encryption runs in

constant time, the time complexity is linear in the number of buddies times

the maximum value of sMax.

Regarding the communication costs, both of the messages involved in the

proximity request sub-protocol contain the encryption of a set of a number

of hashed values linear in the number of buddies times the maximum value

3.4. Comparison of the protocols 90

Table 3.1: Parameter values

Query Distance Privacy Privacy System

Protocol driven approximation wrt SP wrt buddies costs

buddies

SP-Filtering X Region-Region Minimum Same as SP Low

required

Hide&Seek X Region-Region Minimum Minimum Average

required required

Hide&Crypt X Point-Region Minimum More than High

required required

Longitude Region-Region Total1 More than Low

required2

C-Hide&Seek Point-Region Total Minimum Low

required

C-Hide&Hash Point-Region Total More than Average

required

1 assuming the adversary has no a-priori knowledge of the locations

2 privacy requirement must be expressed as a grid with cells of the same size

of sMax.

3.4 Comparison of the protocols

Table 3.1 shows a comparison of the characteristics of the protocols presented

in this chapter.

As can be observed, the SP-Filtering , Hide&Seek and Hide&Crypt proto-

cols are the only ones that can support services in which the buddies are not

predetermined. However, the system costs of Hide&Seek and Hide&Crypt

can significantly grow if the users have strict privacy requirements with

3.4. Comparison of the protocols 91

respect to the SP, as this would require frequent buddy-to-buddy communi-

cations. Among these three protocols, Hide&Crypt achieves a better service

precision due to a more precise distance approximation, and can provide

more privacy than strictly required.

The main advantages of the Longitude protocol are the communication

and computation costs, as it is fully centralized and employs a fast symmetric

encryption function. The drawbacks of this protocol are the lack of privacy

guarantee with respect to the SP, under the assumption that the a-priori

distribution of the location of users is already known, and the constraint

about the privacy preferences with respect to the users to be limited to

grids, instead of arbitrary spatial granularities.

The C-Hide&Seek and C-Hide&Hash protocols can achieve a service pre-

cision comparable to Hide&Crypt , with a significant reduction of the system

costs. Both protocols are formally proved to guarantee total privacy with

respect to the SP. In addition, the C-Hide&Hash protocol can achieve more

privacy than strictly required with respect to the buddies, at a relatively low

additional cost in terms of computation and communication. The sustain-

ability of these costs as well as the effective performance in terms of privacy

and quality of service has been empirically verified, and results are reported

in Chapter 4.

The selection of an appropriate protocol to be used depends on the ap-

plicative context and on the requirements of the service. The C-Hide&Seek

and C-Hide&Hash protocols are the solutions that provide the best privacy

guarantees, keeping the costs sustainable both on the client and the server

side. The C-Hide&Seek protocol can also easily be modified to be used as

a location tracking service (like Google Latitude), that is another popular

category of services in the context of GeoSNs. It should be noted that the

C-Hide&Hash protocol may require a large amount of computing resources

when applied to a very large scale of users, compared to the other protocols,

and the resulting cost may be a concern for a small service provider. If this

is case, the Longitude protocol could be a lighter solution, but users should

3.4. Comparison of the protocols 92

be aware of its weakness with respect to an adversary with a-priori knowl-

edge of the locations of the users. Finally, if the applicative context requires

“query-driven” buddies, only the SP-Filtering , Hide&Seek and Hide&Crypt

solutions can be applicable.

Chapter 4

Evaluation of the proposed

defenses

4.1 Empirical evaluation

We conducted experiments to measure the performance of our C-Hide&Seek

and C-Hide&Hash protocols, which are our most recent and promising solu-

tions, and to compare them with our Hide&Seek and Hide&Crypt protocols

as well as the Pierre and FriendLocator protocols [48, 53]. We present the

experimental setting in Section 4.1.1. Then, in Sections 4.1.2, 4.1.3 and 4.1.4

we evaluate the protocols according to three evaluation criteria: quality of

service, privacy and system costs, respectively.

The experiments reported in this section do not include the Longitude

solution, because it does not fully satisfy Definition 1 with respect to the SP

as explained in Section 3.3.4. We point the reader to the relative publication

for the experiments about this protocol [34].

4.1.1 The experimental setting

The experimental evaluation of the protocols presented in Section 3.3 was

performed on a survey-driven synthetic dataset of user movements, which

was obtained using the MilanoByNight simulation (see Section 2.3.1). We

93

4.1. Empirical evaluation 94

carefully tuned the simulator in order to reflect a typical deployment sce-

nario of a proximity service for geo-social networks: 100, 000 potential users

moving between their homes and one or more entertainment places in the

city of Milan during a weekend night. The simulation also models the time

spent at the entertainment places, i.e., when no movement occurs, following

probability distributions extracted from user surveys. All the test results

shown in this section are obtained as average values computed over 1, 000

users, each of them using the service during the 4 hours of the simulation.

Locations are sampled every 2 minutes. The total size of the map is 215

km2 and the average density is 465 users/km2. All the components of the

system are implemented in Java. Server-side test were performed on a 64-bit

Windows Server 2003 machine with 2.4Ghz Intel Core 2 Quad processor and

4GB of shared RAM. Client-side tests were run on a HTC Magic mobile de-

vice, running Android as operating system. We implemented the symmetric

encryption and the hashing functions using the RC4 and MD5 algorithms,

respectively, while the RSA public key encryption algorithm was used for

the key distribution.

In the experiments we used grid-based granularities. Each granularity

is identified by the size of the edge of one cell of the grid. The location-to-

granule conversion operations required by our protocol can be performed in

constant time. For the sake of simplicity, in our tests we assume that all the

users share the same parameters and that each user stays on-line during the

entire simulation. Table 4.1 shows the parameters used in our experiments.

Note that the “number of buddies” parameter refers to the number of on-line

buddies that, for the considered type of application, is usually significantly

smaller than the total number of buddies. The parameter GSPA is set to > for

all protocols i.e. the users require total privacy with respect to the SP. This

parameter could only vary for the Hide&Seek and Hide&Crypt protocols,

and its fixed for the other protocols. For the impact of this parameter to

Hide&Seek and Hide&Crypt we point the reader to the paper that presented

these protocols [36].

4.1. Empirical evaluation 95

Table 4.1: Parameter values

Parameter Values

δ 200m, 400m, 800m, 1600m

Edge of a cell of GU
A 100m, 200m, 400m, 800m

Number 10, 20, 40,

of buddies 80

4.1.2 Evaluation of the quality of service

(a) Pierre / FriendLocator (b) Our solutions

Figure 4.1: Examples of the granularity approximation

The first set of experiments evaluate the impact of the techniques on the

quality of service, by measuring the exactness of the answers returned by

each protocol. Indeed, two forms of approximation are introduced by our

protocols. The granularity approximation is caused by the fact that, when

computing the proximity between two users, the location of one of them is

always generalized to the corresponding granule of her privacy requirement

granularity. The other approximation, which we call the time-dependent ap-

proximation, is due to the fact that, when a user issues a proximity request

with C-Hide&Seek , proximity is computed with respect to the last reported

location of each buddy. The approximation is introduced because the bud-

4.1. Empirical evaluation 96

dies have possibly moved since their last location update. Similarly, during

the computation of a proximity request with C-Hide&Hash, the location

transmitted by each buddy during the previous update interval is used.

For what concerns the granularity approximation, a similar problem oc-

curs with the Pierre and FriendLocator protocols too. Indeed, both pro-

tocols, in order to detect proximity between buddies, partition the domain

space into a grid, with each cell having edge l equal to the distance thresh-

old δ, that must be shared by the users. Then, a buddy B is considered in

proximity of A whether B is located in the same cell as A or in one of the 8

adjacent cells. The approximation introduced by these techniques depends

entirely on the chosen value of δ. Differently, in our solutions, each user

can choose her privacy requirements independently from the value of δ. For

example, consider Figure 4.1. The black dot is the actual location of user

A. The dark gray circle with radius δ is the area where the buddies of A are

actually in proximity of A. The light gray area is the region in which buddies

are erroneously reported to be in proximity1. Considering Figure 4.1(a), as

l is always equal to δ when using Pierre or FriendLocator, the total area of

the 9 cells considered in proximity is 9δ2, while the area of the circle is πδ2,

which is almost 3 times smaller. This means that, assuming a uniform dis-

tribution of the users, using Pierre or FriendLocator the probability that

a buddy reported as in proximity is actually in proximity is about 1/3. On

the contrary, in the protocols presented in this paper the size of the granules

is independent from the chosen δ. In our example, this means that when the

value l is smaller than δ, the region in which users are erroneously reported

in proximity becomes smaller (Figure 4.1(b)).

Figure 4.2(a) shows how the granularity approximation impacts on the

service precision for different values of the edge of granularity cells. The

metric we use for the measurement is the information retrieval notion of

precision: the ratio between the number of correct “in proximity” answers

1Here and in the following, we assume users of our protocols are choosing the minimum-

distance semantics

4.1. Empirical evaluation 97

0.2

0.4

0.6

0.8

0 200 400 600 800

P
re

ci
si

on

Edge of a cell of G (m)

C-H&Seek/C-H&Hash
Pierre/FriendLoc

(a) Granularity approximation only

0.7

0.8

0.9

1

0 4 8 12 16 20

P
re

ci
si

on

Time interval (min)

C-Hide&Seek
C-Hide&Hash

(b) Time-dependent approximation only

Figure 4.2: Evaluation of the impact of the approximations

over the total number of “in proximity” answers. Intuitively, the precision

measures the probability that a buddy reported “in proximity” is actually

in proximity. Note that the analysis would be incomplete without con-

sidering the notion of recall : the ratio between the number of correct “in

proximity” answers over the sum of correct “in proximity” and incorrect

“not in proximity” answers. Intuitively, the recall measures the probability

that a buddy actually in proximity is reported “in proximity”. In this case,

since we are considering the minimum-distance semantics (see Section 3.3.6),

the granularity approximation does not produce any incorrect “not in prox-

imity” answer, and hence the recall is equal to 1. When conducting this

experiment, in order to exclude from the evaluation the effects of the time-

dependent approximation, for each buddy we used his current location as

the last reported location. Since Pierre and FriendLocator do not consider

4.1. Empirical evaluation 98

GUA, their precision is constant in the chart and, as expected, is below 0.4.

On the contrary, C-Hide&Seek and C-Hide&Hash have a significantly bet-

ter precision when the edge of the cells of GUA is small. Intuitively, this is

because the area where a buddy is erroneously reported as in proximity is

smaller than δ (see Figure 4.1(b)). Figure 4.2(a) also shows the precision

when the edge of a cell of GUA is larger than δ; The values are not reported

for Pierre and FriendLocator since in this case they do not guarantee the

privacy requirements.

0.2

0.4

0.6

0.8

0 200 400 600 800

P
re

ci
si

on

Edge of a cell of G (m)

C-H&Seek/C-H&Hash
Pierre/FriendLoc

(a) Precision

0.85

0.9

0.95

1

0 200 400 600 800

R
ec

al
l

Edge of a cell of G (m)

C-Hide&Seek
C-Hide&Hash

(b) Recall

0.96

0.97

0.98

0.99

1

0 200 400 600 800

A
cc

u
ra

cy

Edge of a cell of G (m)

C-H&Seek/C-H&Hash
Pierre/FriendLoc

(c) Accuracy

Figure 4.3: Evaluation of the quality of service (considering both approxi-

mations)

Figure 4.2(b) shows the impact of the time-dependent approximation.

The chart shows the results for our protocols only, as the other protocols pro-

posed in the literature are not exposed to this kind of approximation. In or-

der to exclude from this evaluation the effects of the granularity approxima-

tion, we performed these tests with the exact locations of the users, instead

of the generalized ones. The chart shows, on the x axis, different lengths of

4.1. Empirical evaluation 99

the update interval and, on the y axis, the precision of the C-Hide&Seek and

C-Hide&Hash protocols. It can be observed that C-Hide&Seek has better

precision. This is due to the fact that C-Hide&Hash always uses the location

reported during the previous update interval, while Hide&Seek uses the last

location, that can be the one reported during the current update interval or

during the previous one. Since the time-dependent approximation also in-

troduces incorrect “not in proximity” answers, we also measured the recall.

The corresponding chart is omitted as it is almost identical to the one in

Figure 4.2(b). For example, using C-Hide&Hash and an update interval of

4 minutes, the value of the precision is 0.89 and the recall is 0.88.

The computation of the precision and recall under the time-dependent

approximation confirms the intuition that using long update intervals nega-

tively impacts on the quality of service. The choice of a value for the update

interval should consider, in addition to this approximation, the cost of per-

forming a location update. In general, the optimal value can be identified

based on specific deployment scenarios. Considering our movement data, we

chose 4 minutes as a trade off value since it guarantees precision higher than

0.9 and sustainable system costs as detailed in Section 4.1.3. Our choice is

consistent with similar proximity services like, for example, Google Latitude

that currently requires location updates every 5 minutes.

Figure 4.3 shows the analysis of the quality of service considering both

the granularity and time-dependent approximations. Figure 4.3(a) shows

the precision of C-Hide&Hash and C-Hide&Hash protocols compared with

the precision of Pierre and FriendLocator. We represent the precision of C-

Hide&Seek and C-Hide&Hash with a single curve because the two protocols

behave similarly. For example, when the edge of a cell of GUA is 200m, the

precision of C-Hide&Seek and C-Hide&Hash is 0.59 and 0.57, respectively,

while it is 0.61 for both protocols when the time-dependent approximation

is not considered. This shows that this second type of approximation does

not have a significant impact.

Figure 4.3(b) shows the recall of our protocols. Note that Pierre and

4.1. Empirical evaluation 100

FriendLocator do not lead to incorrect “not in proximity” answers, and

hence their recall is equal to 1. On the contrary, our protocols can generate

incorrect “not in proximity” answers due to the time-dependent approxima-

tion. This chart shows that the recall of C-Hide&Seek and C-Hide&Hash

is always above 0.95 and 0.9, respectively. From Figure 4.3(b) we can also

observe that the recall increases for coarser granularities. This is due to the

fact that less incorrect “not in proximity” answers are returned if a coarser

granularity is used. While this may appear unreasonable, the explanation is

straightforward: there is an incorrect “not in proximity” answer only when

a buddy is currently in proximity (considering Figure 4.1(b), his location

is in the dark gray area) while the location used in the computation of the

proximity is outside the light gray area. If a granularity is coarse, then

the light gray area is large and hence incorrect “not in proximity” are less

frequent.

Figure 4.3(c) shows the accuracy for each considered protocol, i.e., the

percentage of correct answers. Also in this case, the accuracy of C-Hide&Seek

and C-Hide&Hash is represented with a single curve, as the two protocols

behave similarly. Comparing this figure with Figure 4.3(a), we can observe

that the accuracy achieved by all the protocols is much higher than the pre-

cision. This is due to the fact that this metric also considers the correct “not

in proximity” answers that are usually the most frequent answers, since the

proximity query area determined by the distance threshold is usually much

smaller than the entire space. Figure 4.3(c) shows that our protocols achieve

better accuracy than Pierre and FriendLocator when the value of the edge

of the granularity cells is smaller than δ. In particular, for our default values,

the accuracy of both C-Hide&Seek and C-Hide&Hash is higher than 0.99.

4.1.3 Evaluation of the system costs

The second set of experiments evaluates the computation and communica-

tion costs of the different protocols. For the analysis of the Pierre protocol,

4.1. Empirical evaluation 101

0

500

1000

1500

2000

0 10 20 30 40 50 60 70 80

co
m

p
u
ta

ti
on

ti
m

e
(m

s)

buddies

C-Hide&Hash
Hide&Crypt

C-Hide&Seek

(a) Computation time to issue a proximity

request

0

100

200

300

400

0 10 20 30 40 50 60 70 80

#
o
f

m
es

sa
ge

s

buddies

Pierre/Hide&Crypt
C-H&Seek/C-H&Hash

(b) Communication cost of a proximity re-

quest

0

200

400

600

800

1000

0 10 20 30 40 50 60 70 80

k
b
y
te

s
ex

ch
an

ge
d

buddies

Pierre
Hide&Crypt

C-Hide&Hash
C-Hide&Seek

(c) Communication cost of a proximity re-

quest

0

1000

2000

3000

4000

5000

6000

0 10 20 30 40 50 60 70 80

k
b
y
te

s/
h
o
u
r

ex
ch

an
g
ed

buddies

Pierre
Hide&Crypt

C-Hide&Hash
C-Hide&Seek

(d) Hourly communication cost generated

by one user (location updates and proxim-

ity requests)

Figure 4.4: Evaluation of the system costs

we used the NearbyFriend2 application, developed by the same authors,

which integrates the Pierre protocol in a desktop IM application.

First, we consider the costs related to the location update sub-protocol.

This analysis does not apply to existing solutions as location updates are

only required by our centralized solutions. As analyzed in Section 3.3.6,

the temporal complexity of computing a location update is constant in the

number of buddies. In our implementation, the computation of each location

update requires, on the client side, about half of a millisecond for both the C-

Hide&Seek and the C-Hide&Hash protocols. Similarly, the communication

cost is independent from the number of buddies and the payload of each

2http://crysp.uwaterloo.ca/software/nearbyfriend/

http://crysp.uwaterloo.ca/software/nearbyfriend/

4.1. Empirical evaluation 102

location update message consists in few bytes. Considering the overhead

caused by the XML encapsulation, the dimension of each location update is

in the order of a few hundred bytes.

The computation time needed to run a proximity request on the clients

is shown in Figure 4.4(a). Note that the values reported in this figure only

consider the computation time required by the issuing user. Indeed, all the

protocols require the SP (in case of centralized services) or the other buddies

(in case of distributed services) to participate in the protocol, and hence to

perform some computation. For example, in the case of Hide&Crypt and

Pierre, the total computation time of a user’s buddies to answer a proximity

request issued by that user is about the same as the computation time

required to issue the request. As observed in Section 3.3.6, the computation

time of a proximity request is linear in the number of buddies. Figure 4.4(a)

shows that C-Hide&Hash requires significantly more time with respect to

C-Hide&Seek , especially when the number of buddies is large. For example,

the time needed to issue a proximity request for 40 buddies is about 20 ms

for C-Hide&Seek , while about 900 ms using C-Hide&Hash. The figure also

shows that the computation times of C-Hide&Hash and Hide&Crypt are

similar, with Hide&Crypt performing slightly better. This is due to the fact

that in Hide&Crypt each of the sMax indexes only needs to be encrypted,

while in C-Hide&Hash it also needs to be hashed.

For what concerns other existing solutions, we did not implement the

Pierre protocol on our mobile device platform. However, considering the

experimental results presented by the authors (see [53]), the computation

time of a single proximity request with a single buddy is more than 350ms3.

Since, for C-Hide&Hash, the computation time on a mobile device of a

proximity request with a single buddy is about 22ms, according to the data

we have, our solution is at least one order of magnitude more efficient than

the Pierre solution.

Regarding the computation costs on the server side, the complexity of

3It is unclear whether this result is obtained on a mobile device.

4.1. Empirical evaluation 103

a proximity request using C-Hide&Hash on the server side is similar to the

one on the client side. However, in our experiments we observed that our

high-end desktop machine is about 500 times faster than the mobile client

to execute these operations. As a consequence, the computation for a single

user having 40 buddies requires less than 2ms. While we did not run scala-

bility tests on our server, this result suggests that, from the computational

point of view, even a single desktop machine can provide the service to a

large number of users.

Figures 4.4(b) and 4.4(c) show the system communication cost of a prox-

imity request issued by a user. In Figure 4.4(b) we measure the num-

ber of messages exchanged by the system for each proximity request. It

is easily seen that using a centralized protocol (i.e., C-Hide&Seek and C-

Hide&Hash), only two messages need to be exchanged (one for the request

and one for the response) independently from the number of buddies the

issuer has. On the contrary, the decentralized protocols requires at least

two messages for each buddy. Moreover, in our implementation of the

Hide&Crypt protocol, each communication between two users needs to tran-

sit through the SP. The same applies to the Pierre protocol, using the Near-

byFriend implementation. Consequently, at each location update, for each

buddy, four messages transit in the system: two between the issuer and the

SP and two between the SP and the buddy.

Figure 4.4(c) shows a comparison of the total amount of data exchanged

in the system for each proximity request. Consistently with our analysis,

the communication cost grows linearly with the number of buddies for both

of our centralized protocols. It is easily seen that this also applies to the

other protocols. The chart shows that NearbyFriend incurs in high commu-

nication costs. The reason is that, each time a proximity request is issued,

a message of almost 3KB is sent from the user to each of her buddies and

a message having a similar size is sent back in the reply. We believe that

this overhead is mostly given by the fact that NearbyFriend needs all the

communications between two users to be encapsulated in a secure channel.

4.1. Empirical evaluation 104

This is required because the Pierre protocol itself does not guarantee that

any third party acquiring the messages cannot derive location information

about the users. Since each message between two users transits through the

server, the communication cost is almost 12KB for each buddy. The other

decentralized solution we compare with, Hide&Crypt , has better communi-

cation costs. Indeed, each message is less than 1KB, and hence the cost is

about 1/4 if compared to Pierre.

Our centralized solutions are even more efficient. This is due to the

fact that only two messages need to be exchanged between the user and

the SP for each proximity request. In case of C-Hide&Hash, each message

has the same dimension than in Hide&Crypt , and hence, in this case, the

communication cost is one half with respect to Hide&Crypt , and about one

order of magnitude less with respect to Pierre. Finally, C-Hide&Seek , in

addition to being a centralized solution, also benefits from the fact that each

message contains only a few hundred of bytes. Consequently, this protocol

is about 4 times more efficient than C-Hide&Hash.

In Figure 4.4(d) we evaluate the communication cost of the continuous

use of a proximity service with our protocols. As mentioned in Section 4.1.2,

we consider that location updates are issued every 4 minutes. Considering

the results of our user survey, we use 10 minutes as the average frequency

of proximity requests. The main difference of this figure with respect to

Figure 4.4(c) is that it also considers the communication costs derived by

the location updates. However, since each location update costs less than 300

bytes, and 15 location updates need to be issued in one hour, the total hourly

cost for this sub-protocol is about 4KB, which is negligible with respect to

the communication cost of the proximity requests. The figure also shows

that the centralized protocols require significantly less communication than

the decentralized ones. In particular, C-Hide&Seek for one hour requires

less than 100KB when the user has 40 online buddies. C-Hide&Hash, on

the other side, requires 400KB per hour for the same number of buddies.

We believe that this cost is largely sustainable on a wireless broadband

4.1. Empirical evaluation 105

network (e.g., 3G), and that, given the additional privacy with respect to

curious buddies achieved using C-Hide&Hash, privacy concerned users may

find this trade-off attractive.

Our experimental evaluation also included the measurement of the cost

to distribute the private key (see Section 4.2). Both the computation and

communication costs are linear in the number of buddies that need to re-

ceive the new key. For a single buddy, the computation time is about 7ms,

measured on the mobile device, while the communication cost is less than

200 bytes. An experiment of key distribution to 40 buddies, resulted in a

computation time of 275 ms, and a communication cost of 7KB.

4.1.4 Evaluation of the achieved privacy

In Section 3.3.6 we proved that both of our protocols guarantee the users’

privacy requirements. We also observed that that C-Hide&Hash provides

more privacy than what would be strictly necessary to guarantee the re-

quirements. In this last set of experiments we evaluate how much additional

privacy is provided by C-Hide&Hash in terms of the size of the uncertainty

region. We recall that this is the area where a user A is possibly located as

it can be computed by one of A’s buddies after issuing a proximity request

that returns A as in proximity.

Figure 4.5 shows that the privacy provided by C-Hide&Hash is always

significantly larger than the privacy requirement, and it grows for coarser

granularities GUA. Intuitively, with C-Hide&Hash, the uncertainty region

corresponds to the union of the light and dark gray areas represented in

Figure 4.1(b). Consequently, as the size of the cells of GUA decreases, the

size of the light gray area tends to zero, and the uncertainty region becomes

closer and closer to the dark gray area only. This means that the privacy

provided by C-Hide&Hash is at least πδ2 even when the user requires her

location to be obfuscated in a smaller area.

4.2. Implementation of the service 106

0

1

2

3

4

100 200 300 400 500 600 700 800

U
n

ce
rt

ai
n
ty

re
g
io

n
(k

m
2
)

Edge of a cell of G (m)

C-Hide&Hash
privacy req.

Figure 4.5: Size of the uncertainty region.

4.2 Implementation of the service

We implemented the techniques presented in Section 3.3 and the Pierre and

FriendLocator solution in a system, called Pcube, that provides proximity

notification coupled with typical instant messaging (IM) functionalities. In

addition to providing this service, the system allows a “live” comparison of

the performance of the different protocols in terms of service precision and

privacy achieved.

The system is built as an extension of XMPP (Extensible Messaging and

Presence Protocol), an open standard protocol often used in commercial ap-

plications as a message oriented middleware [44]. The choice of extending

XMPP is driven by the following considerations. First, the XMPP protocol

can be easily extended to support custom services and messages, like the

proximity service, in our case. In particular, by extending XMPP messages,

we designed a proper XML protocol for each of our techniques. The system

architecture is shown in Figure 4.6. The SP providing the proximity services

is implemented as a XMPP component (called Proximity component) i.e.,

a pluggable entity that extends the default XMPP functionalities. Hence,

we developed a distinct XMPP component for each technique that requires

algorithms to run on the SP side. A second advantage is that the XMPP

protocol already includes standard sub-protocols for client-to-client commu-

4.2. Implementation of the service 107

Proximity!
component!

XMPP!
server!

XMPP!
server!

…

…

…

…

Proximity!
component!

XMPP!
server!

Figure 4.6: System architecture

nication and for managing the list of buddies. We used these sub-protocols

as primitives in our implementation. Since the XMPP architecture is de-

centralized, clients running on different servers can communicate with each

other. In our case, since a component acts as a special type of client, this

means that our proximity service is accessible to a user registered to an

existing XMPP service, including popular IM services like Google Talk or

Jabber. This makes it possible to use, in the proximity service, the same list

of buddies used in those IM services. Clearly, proximity can be computed

only for those buddies that are participating in the same proximity service.

For what concerns the client, we developed a multi-platform web ap-

plication and an other application specifically designed for Android based

smartphones. In addition to the typical functionalities of an IM application,

the clients implement all the proximity protocols presented in Section 3.3

and provide the typical functionalities of a full-fledged proximity service,

4.2. Implementation of the service 108

including the detection of the client user’s location, the notification of any

buddies in proximity, and the graphical visualization of the location un-

certainty region for each buddy. We also developed a monitoring system

that emulates different users using multiple protocols at the same time, and

provides a web interface to control the users and analyze the performances

of the different protocols. A more detailed description of the clients is in

Sections 4.2.1, 4.2.2 and 4.2.3.

One of the issues emerged during the implementation of the C-Hide&Hash

and C-Hide&Seek protocols concerns key management. Indeed, both pro-

tocols require that each user A has a key KA that is shared with all of her

buddies, and it is kept secret to everybody else. A first problem is how A

can share her key with one buddy B in a secure manner. This operation is

required, for example, when the user accesses the proximity service for the

first time or a new buddy is added to the buddy list. To address this prob-

lem, we employ standard public key cryptography techniques to encrypt,

for each buddy of a user A, the key KA; After being encrypted, the key

can be safely transmitted over an insecure channel. The second problem is

how to revoke a secret key. For example, this is necessary when a buddy

is removed from the buddy list, or when the key is compromised. In our

implementation, in order to revoke a key, it is sufficient to generate a new

secret key and to send it to the authorized buddies.

The cost of sending a key to all the buddies is clearly linear in the number

of buddies. In Section 4.1 we show that the costs to perform this operation

on a mobile device are sustainable. In addition, it should be observed that

the distribution of the key to all the buddies is only needed when a user

first subscribes to the proximity service or when a buddy is removed from

the buddy list. These are very sporadic events during a typical IM service

provisioning.

4.2. Implementation of the service 109

(a) Buddy list (b) Menu buttons

Figure 4.7: Android application

4.2.1 Mobile client

The application running on Android uses the platform’s API to acquire the

location and has the main functionalities of the web application. For ex-

ample, Figure 4.7(a) shows the main interface of the application, containing

the two lists of buddies with Alice being in proximity. When the physical

“menu” button is pressed (Figure 4.7(b)), the application shows the options

to update the location, to set the proximity range, to change the settings

and to sign out.

4.2. Implementation of the service 110

Figure 4.8: Web application interface (“Map” tab)

4.2.2 Web client

Figure 4.8 shows a screenshot of the web application. All the typical func-

tionalities of an IM application are provided (e.g.: setting a nickname, choos-

ing a picture, changing the availability status). The user can see the address

from where the last location update was sent to the SP and can require to

update her location (using the “update location” link). The application uses

Geolocation API4 to obtain a user’s location directly from the browser. Also,

the user can see and change the distance threshold below which buddies are

considered in proximity (the so called “Proximity Range”). The “Settings”

link brings to an interface that allows a user to change his preferences for

the location updates, the protocols to be used and the privacy preferences

for each protocol, where applicable. In the center part of the interface, there

4http://www.w3.org/TR/geolocation-API/

http://www.w3.org/TR/geolocation-API/

4.2. Implementation of the service 111

are two tabs. The “Chat” tab allows users to communicate each other via

instant messaging. The “Map” tab, which is the one highlighted in this

screenshot, shows on a map a) a red “location-mark” situated where Alice

(the user, in the example) issued the last location update, b) a circle, cen-

tered in Alice’s location, representing the proximity query (the “proximity

range” is 500m in the example) and c) a shadowed rectangle representing

the uncertainty region where the selected buddy (Bob, in the example) is

located.

4.2.3 Monitor application

Figure 4.9: Monitor application interface

We developed a set of tools to visually evaluate the performances of

the different techniques. To perform the evaluation, we simulate multiple

users accessing the service, that can be arbitrarily moved on a map by

using a web-based control application, shown in Figure 4.9. The simulated

users are semi-automatic XMPP clients that accept movement and setting

4.2. Implementation of the service 112

“commands” from the monitor, run the proximity protocols and report back

statistics to the monitor. The statistics are then processed and graphically

shown on the screen.

The “Precision” tab shows, for each protocol, the region in which the

buddies of a user are reported in proximity, and the actual proximity region

centered in that user’s location. It is then possible to see interactively how

these regions change with the different parameters, and what would be their

precision in a real-word scenario. The “Privacy” tab reports the effective

uncertainty region achieved by each protocol, letting the evaluator observe

how the regions compare with different parameters. Finally, the “Costs”

tab reports live graphs about the effective traffic generated by the clients

for each different protocol.

Chapter 5

Conclusions and future work

In this chapter we summarize main contributions of this dissertation and we

address problems arising from data privacy preservation in proximity-based

services that still need to be deeply investigated.

5.1 Summary of the contributions

The main goal of this thesis was the analysis of the privacy issues in the

context of location-based proximity services and the proposal of defense

techniques to provide controllable disclosure of location information to the

users.

To perform this analysis, a deep study of the existing privacy preserving

techniques for LBS has been performed, in order to evaluate their applicabil-

ity to this particular context. We presented a formalization of the problem

of location privacy in proximity services, considering both the SP and the

other participants to the service as potential adversary for a user. We pro-

posed a flexible way to express users’ privacy requirements, by letting them

define geographical region in which they do not want to be exactly localized

by a considered adversary.

We proposed five different protocols that are formally proved to enforce

users’ privacy preferences against a well defined adversary model with each

protocol having different characteristics in terms of requirements, perfor-

113

5.2. Future work 114

mance or privacy guarantees. All the protocols have been theoretical an-

alyzed and the result of the analysis has been confirmed by an extensive

experimental evaluation. The protocols perform better than other solutions

already presented in literature under every performance measure we consid-

ered.

An implementation of our solution was included in a fully functional

instant messaging system that can extend the functionality of existing com-

mercial products with proximity services. The developed tools also allowed

an empirical and visual comparison of the different solutions we proposed,

as well as other solutions presented in literature.

5.2 Future work

Proximity services

An interesting extension of our protocols is to allow users to specify differ-

ent privacy preferences with respect to different groups of buddies. This is

not difficult, but it exposes the users to dangerous collusion attacks if fur-

ther constraints are not imposed. The presented protocols are not subject

to buddies’ collusion attacks since each user defines the same granularity

as privacy preference with respect to all of her buddies. If this is not the

case, a user A, by assigning two different granularities with respect to bud-

dies B and C to reflect her different level of trust, would expect that if B

and C collude the lowest privacy requirement among the two is preserved.

However, an adversary could actually intersect the uncertainty regions and

potentially violate both privacy requirements. In order for our protocols to

defend against such a collusion, some relationships need to be imposed on

the granularities used in the system. While details are out of the scope of

this paper, intuitively, granules from different granularities should never par-

tially overlap. For example, using hierarchical grids as granularities would

be a sufficient condition.

Another direction we plan to investigate is to extend the adversary mod-

5.2. Future work 115

els we considered in this paper to include not only (atemporal) a-priori lo-

cation knowledge, but also time-dependent location knowledge. This would

model not only a-priori knowledge about velocity, that our solutions can

already deal with, but also a-priori probabilistic proximity information. It

is still unclear if the proposed protocols, with appropriate location update

strategies need to be modified in order to be proved privacy-preserving ac-

cording to our definitions.

The design of an entirely decentralized proximity service is another chal-

lenging task. As we have observed, current decentralized solutions can lead

to high computation and communication costs, which is the main reason

why, in our solutions, we involved the SP in the computation of the proxim-

ity. However, we do not exclude that a properly designed decentralized pro-

tocol could provide a location privacy-aware proximity service while keeping

the system costs sustainable.

Privacy in GeoSN

Our current research effort is dedicated to the study of privacy threats for

GeoSN services different from proximity services. In fact, proximity services

only one of the services available to GeoSN users. More precisely they are a

particular subcategory of the friend tracking services, that typically allow a

user to see the location of their buddies on a map regardless of the distance

between them.

Another popular category of GeoSN services is the publication of re-

sources tagged with geo-location. Such resources can be, for example, sta-

tus messages, photos, or “check-ins” and they are tagged with the loca-

tion in which they were generated. Further, resources may reference other

users: for example, this occurs when a user tags a photo with the people in

the photo. Most popular services exploiting GeoSN resources are Facebook

Places, Foursquare, Google Picasa, Flickr, Brightkite, Google Buzz, Google

Latitude, Gowalla, Loopt, Twitter, and Whrrl.

In a recent work [17], which we describe briefly, we analyzed some of the

5.2. Future work 116

privacy threats for users of this category of services and proposed two tech-

niques to preserve privacy while maintaining some utility of the published

data.

The privacy threats we described in Section 3.2.2 for proximity-based

services also apply to the context of resource publishing services. In addi-

tion, we considered the temporal component of the location information as

potentially private. A typical example is a user who elects to not let people

know that he attended a religious ceremony or a political meeting. Another

privacy concern we addressed is absence privacy, that is the uncontrolled dis-

closure of the absence of a user from a geographic position at specific times

can occur. This concern is conceptually different from location privacy and

requires different protection techniques. A typical example is a user not

wishing to let people know that he will not be at home for an extended

period of time, as this information could be used to plan a burglary. Note

that these concerns are amplified in those GeoSNs that allow user-tagging of

geo-localized resources, because the users do not have control about being

tagged in a resource. We proposed a model to let users express their location

and absence privacy preferences, and designed an enforcing mechanism that

employs specific spatial or temporal cloaking techniques, and publication

delay. For further details we point the reader to the relative paper.

As a future work in this field, it would be interesting to investigate a more

flexible way of expressing users privacy preferences, possibly differentiating

their preference for different (groups of) users. Another interesting problem

that deserves a deeper study are the co-location privacy violation [45] i.e.

an adversary obtains to know that two users met in a certain place, which

can be considered a privacy violation if those users do not want to disclose

the fact that they meet.

Appendix A

Proofs

A.1 Proof of Proposition 1

In order to prove Proposition 1, we first prove Lemma 3.

Lemma 3. Let i, Sin , Sout , Area in
F , Areaout

F and AreaNoFilter as defined in

Proposition 1. Whenever the SP-Filtering protocol is used to compute the

proximity of B with respect to A:

1. A receives the message “B is in proximity” from the SP, if and only

if B is located in Area in
F ;

2. A receives the message “B is not in proximity” from the SP, if and

only if B is located in Areaout
F ;

3. A receives the message “B is possibly in proximity” from the SP, if

and only if B is located in AreaNoFilter ;

Proof. We prove thesis 1. The proof for thesis 2. is analogous. Given thesis

1. and 2., thesis 3. follows trivially.

⇒) If loc(B) ∈ Area in
F then A receives the message “B is in prox-

imity” from the SP.

Let j be such that loc(B) ∈ GSPB (j). We now prove that j ∈ Sin . Thesis

follows since, by definition of Sin , maxdist(LA(i), LB(j)) ≤ δA and hence,

117

A.1. Proof of Proposition 1 118

by definition of the SP-Filtering protocol, the SP sends the message “B is

in proximity” to A.

By definition of Area in
F , since loc(B) ∈ Area in

F , then loc(B) ∈
⋃
k∈Sin

LB(k).

By definition of LB, this implies loc(B) ∈
⋃
k′∈S′in

GUB(k′) where S′in =⋃
k∈Sin

{k′ ∈ N|GUB(k′) ∩GSPB (k) 6= ∅}.

Now, let j′ be the index such that loc(B) ∈ GUB(j′). Since loc(B) ∈⋃
k′∈S′in

GUB(k′) and loc(B) ∈ GUB(j′) and since two granules of the same

granularity do not intersect, j′ ∈ S′in .

By Condition 3.2, either GUB(j′) ⊆ GSPB (j) or GSPB (j) ⊂ GUB(j′).

If GUB(j′) ⊆ GSPB (j) then it does not exist any other granule of GSPB

except GSPB (j) that intersects with GUB(j′). Hence, by contradiction, j ∈ Sin .

Indeed, if j 6∈ Sin then, by definition of S′in j
′ 6∈ S′in , which is absurd.

If GSPB (j) ⊂ GUB(j′) then, by Condition 3.2 and by the fact that each

granularity is a partitioning of the entire spatial domain, there exists a set

S such that GUB(j′) =
⋃
k∈S G

SP
B (k). Since there exists no other granule of

GSPB except those in S that intersects with GUB(j′), by definition of S′in , there

exists at least one k ∈ S which is also in Sin , otherwise j′ would not be in

S′in , By definition of LB, for each m,n ∈ S, LB(m) = LB(n). In particular,

LB(k) = LB(i). Hence, by definition of Sin , since k ∈ Sin , i ∈ Sin .

⇐) If A receives the message “B is in proximity” from the SP,

then loc(B) ∈ Area in
F .

Let j be such that loc(B) ∈ GSPB (j). By definition of the SP-Filtering

protocol, the SP returns “B is in proximity” to A if maxdist(LA(i), LB(j)) ≤

δA. Hence, by definition of Sin , j ∈ Sin . Finally, by definition of LB,

loc(B) ∈ GSPB (j) ⊆ LB(j) and hence, by definition of Area in
F , loc(B) ∈

Area in
F

We can now prove Proposition 1.

Proof. The thesis follows since, by definition of the SP-Filtering protocol,

if A receives any of the three messages, then A does not receive any other

message. Hence, the thesis follows by Lemma 3.

A.2. Proof of Theorem 1 119

A.2 Proof of Theorem 1

Proof. We first prove that (a) there exists at least one granule of GSPC such

that SP is not able to exclude any location of that granule as possible location

of C. Then we prove that (b) there exists at least one granule of GUC such

that any other buddy D is not able to exclude any location of that granule

as possible location of C.

(a) By assumption, the SP has no information about the location of

C other than the one exchanged during the protocol. Hence, the SP only

knows that C is located in LC(i) where i is the granule of GSPC where C is

located. By definition of LC , GSPC (i) ⊆ LC(i), hence the SP cannot exclude

any location of GSPC (i) as possible location of C.

(b) By assumption, D has no information about the location of C other

than the one exchanged during the protocol. Hence, by Proposition 1, D

cannot infer any location information about C other than C is located in

Area in
F or in Areaout

F or in AreaNoFilter . We now prove, for each of the three

areas, that if C is located in the area, than that area covers at least the

granule GUC(i′) where C is located.

Area in
F and Areaout

F are defined as the union of regions LC which, in turn

are obtained as the union of granules of GUC . Hence, Area in
F and Areaout

F

are defined as union of granules of GUC . Consequently, by definition, also

AreaNoFilter is the union of granules of GUC .

Since, by definition of granularity, two granules of the same granularity

do not overlap, if loc(C) ∈ GUC(i′), then it does not exists any other granule

i′′ 6= i′ such that loc(C) ∈ GUC(i′′). Hence, if loc(C) ∈ Area in
F , then, since

Area in
F is the union of granules of GUC , then GUC(i′) ⊆ Area in

F .

The proof is analogous for Areaout
F and AreaNoFilter .

A.3 Proof of Proposition 2

In order to prove the thesis, we prove that:

(a) A receives the message “B is not in proximity” from B if and only if B

A.3. Proof of Proposition 2 120

is located in Areaout
S ;

(b) A receives the message “B is in proximity” from B, if and only if B is

located in Area in
S ;

(c) B receives the message “starting two-parties protocol 〈i′, δA〉” if and only

if A is located in GUA(i′).

Once (a), (b) and (c) are proved, the thesis follows. Indeed, in case A

receives the message “B is not in proximity” from B, by definition of the

Hide&Seek protocol, the only other message that A receives is “B is possibly

in proximity” from the SP. From Lemma 3 the SP sends the “B is possibly

in proximity” message to A if and only if B is located in AreaNoFilter . Hence,

if A receives the message “B is not in proximity” from B, then A cannot

exclude that B is located in any location of Areaout
S ∩ AreaNoFilter . Since

AreaNoFilter ⊆ Areaout
S , then Areaout

S ∩ AreaNoFilter = Areaout
S hence the

thesis. The proof is analogous in the case A receives from B the message

“B is in proximity” or in the case B receives from A the message “starting

two-parties protocol 〈i′, δA〉”.

Case (a) ⇒) If A receives the message “B is not in proximity”

from B then B is located in Areaout
S .

We show that loc(B) ∈ AreaNoFilter and that loc(B) ∈
⋃
k∈S′out

GUB(k).

Thesis follows by definition of Areaout
S .

By Lemma 3, the SP-Filtering protocol returns the “B is possibly in

proximity” message to A if and only if loc(B) ∈ AreaNoFilter .

By definition of the Hide&Seek protocol, given j′ such that loc(B) ∈

GUB(j′), B sends the message “B is not in proximity” toA only if mindist(GUA(i′), GUB(j′)) ≥

δB. Then, by definition of S′out, j
′ ∈ S′out and hence loc(B) ∈ GUB(j′) ⊆⋃

k∈S′out
GUB(k).

Case (a)⇐) If B is located in Areaout
S , then A receives the message

“B is not in proximity” from B.

Since, by assumption, loc(B) ∈ Areaout
S , then loc(B) ∈

⋃
k∈S′out

GUB(k).

By definition of S′out, mindist(GUA(i′), GUB(j′)) ≥ δA. Hence, by definition of

A.4. Proof of Theorem 2 121

the Hide&Seek protocol, the protocol returns the “B is not in proximity“

message.

Case (b) ⇒) If A receives the message “B is in proximity” from

B then B is located in Area in
S .

By definition of the Hide&Seek protocol, A receives the the message “B

is in proximity” from B if and only if the SP-Filtering protocol returns “B is

possibly in proximity” and if B does not return the “B is not in proximity”

message. From Lemma 3, it follows that the SP returns “B is possibly

in proximity” if and only if loc(B) ∈ AreaNoFilter . From point (a) above,

it follows that B does not return the “B is not in proximity” message if

and only if loc(B) ∈ (Areaout
S)C . Hence B returns the “B is in proximity”

message if and only if

loc(B) ∈ AreaNoFilter ∩ ((Areaout
S)C = Area in

S

Case (b)⇐) If B is located in Area in
S , then A receives the message

“B is in proximity” from B.

Since, by assumption, loc(B) ∈ Area in
S , by definition of Area in

S , loc(B) 6∈⋃
k∈S′out

GUB(k). By definition of S′out, given j′ such that loc(B) ∈ GUB(j′),

mindist(GUA(i′), GUB(j′)) > δA. Hence, by definition of the Hide&Seek pro-

tocol, the protocol returns the “B is in proximity” message.

Case (c) directly follows from the definition of the Hide&Seek protocol.

A.4 Proof of Theorem 2

Proof. During each execution of the Hide&Seek protocol the SP does not

receive any additional information with respect to the execution of the SP-

Filtering protocol. Hence, from Theorem 1, it follows that there exists at

least one granule of GSPC such that the SP is not able to exclude any location

of that granule as possible location of C. We now prove that, for each buddy

D, there exists at least one granule of GUC such that D is not able to exclude

any location of that granule as possible location of C.

A.5. Proof of Proposition 3 122

By assumption, D has no information about the location of C other than

the one exchanged during the protocol. While executing the protocol, D can

receive 6 messages:

(a) “C is in proximity” from the SP;

(b) “C is not in proximity” from the SP;

(c) “C is possibly in proximity” from the SP;

(d) “C is not in proximity” from C;

(e) “C is in proximity” from C;

(f) “starting two-parties protocol 〈i′, δC〉” from C.

Given i′ such that loc(C) ∈ GUC(i′), we prove that, for each of these

messages, D is not able to exclude any location of GUC(i′) as possible location

of C.

For messages (a), (b) and (c), thesis follows from Theorem 1. For mes-

sage (f), thesis follows by the definition of the Hide&Seek protocol.

For message (d), by definition, Areaout
S is the union of granules of GUA.

Since, by definition of granularity, two granules of the same granularity do

not overlap, if loc(C) ∈ GUC(i′), then it does not exists any other granule

i′′ 6= i′ such that loc(C) ∈ GUC(i′′). Hence, since loc(C) ∈ Areaout
S , and

Area in
F is the union of granules of GUC , then GUC(i′) ⊆ Area in

F .

The proof is analogous for case (e).

A.5 Proof of Proposition 3

We first prove, in Lemma 4, that the secure computation of the Hide&Crypt

protocol solves the set-inclusion problem.

Lemma 4. Let S′ be a set of positive integers. Let S′′ be a set of negative

integers. Let j be a positive integer. Let E∗ be a commutative encryption

function such that, for each pair of values i and i′ and each pair of key KA,

KB,

E∗KA
(E∗KB

(i)) = E∗KB
(E∗KA

(i′))⇔ i = i′

A.5. Proof of Proposition 3 123

Let KA, KB be two keys. Then,

E∗KA
(E∗KB

(j)) ∈ E∗KB
(E∗KA

(S′ ∪ S′′))⇔ j ∈ S′

Proof. By defintion,

E∗KA
(E∗KB

(j)) ∈ E∗KB
(E∗KA

(S′ ∪ S′′))

m

E∗KA
(E∗KB

(j)) ∈
⋃

j′∈(S′∪S′′)

E∗KB
(E∗KA

(j′))

By assumption about E∗, if j is in S′ ∪ S′′, then E∗KB
(E∗KA

(j)) is in⋃
j′∈(S′∪S′′)E

∗
KB

(E∗KA
(j′)). Vice versa, if E∗KB

(E∗KA
(j)) is in

⋃
j′∈(S′∪S′′)E

∗
KB

(E∗KA
(j′)),

then j is in S′ ∪ S′′. Hence

j ∈ (S′ ∪ S′′)⇔ E∗KB
(E∗KA

(j)) ∈
⋃

j′∈(S′∪S′′)

E∗KB
(E∗KA

(j′))

Since, by assumption, j is positive and S′′ contains negative elements

only, j 6∈ S′′,

j ∈ S′ ⇔ j ∈ (S′ ∪ S′′)

Hence the thesis.

We can now prove Proposition 3.

Proof. Thesis 3. follows from the fact that, by the definition of the Hide&Crypt

protocol, A sends a “starting the secure two parties protocol” only when

the SP cannot compute whether B is in the proximity of A. The SP cannot

compute whether B is in the proximity of A if and only if A is located in

AreapassiveC (the proof is analogous to the proof of Lemma 3).

In order to prove thesis 1. and 2., we show that:

(a) A can compute that B is in proximity as the result of the secure com-

putation protocol with B if and only if B is located in Area in
C ;

(b) A can compute that B is not in proximity as the result of the secure

A.5. Proof of Proposition 3 124

computation protocol with B if and only if B is located in Areaout
C The the-

sis follows since, A initiates the secure two parties computation only if the

SP is not able to compute whether B is in proximity of A. From Lemma 3

the SP is not able to compute whether B is in proximity of A only when

loc(B) ∈ AreaNoFilter . Hence, if A can compute that B is in proximity as the

result of the secure computation protocol with B, then from result (a) above

A cannot exclude that B is located in any location of AreaNoFilter ∩Area in
C .

The thesis follows since, by definition of Area in
C , AreaNoFilter ⊆ Area in

C .

The proof is analogous in case A can compute that B is not in proximity

as the result of the secure computation protocol with B.

We prove case (a). Case (b) follows since if A starts the two-parties pro-

tocol, then B must be in AreaNoFilter and Areaout
C = AreaNoFilter∩(Area in

C)C .

⇒) If A can compute that B is in proximity as the result of the

secure computation protocol with B then loc(B) ∈ Area in
C . We show

that loc(B) ∈ AreaNoFilter and loc(B) ∈
⋃
k∈S′ G

U
B(k).

By Lemma 3, A initiates the two-parties protocol only if loc(B) ∈

AreaNoFilter .

Given j′ such that loc(B) ∈ GUB(j′) since A can compute that B is in

proximity, then j′ ∈ S′. Hence loc(B) ∈ GUB(j′) ⊆
⋃
k∈S′ G

U
B(k).

⇐) If loc(B) ∈ Area in
C then A can compute that B is in proximity

as the result of the two-parties computation

Since, loc(B) ∈ Area in
C ⊆ AreaNoFilter , from Lemma 3, it follows that A

initiates the secure computation with B. If loc(B) ∈ Area in
C , then loc(B) ∈⋃

k′∈S′ G
U
B(k′). Let j′ be such that loc(B) ∈ GUB(j′). Since, by defini-

tion of granularity, granules of the same granularity do not overlap, from

loc(B) ∈
⋃
k′∈S′ G

U
B(k′) and loc(B) ∈ GUB(j′) it follows that j′ ∈ S′. Since,

by Lemma 4, the two-parties protocol computes the set inclusion between

j′ and S′, A computes that B is in proximity if and only if j′ ∈ S′. Hence,

since j′ ∈ S′, then A can compute that B is in proximity as the result of the

two-parties protocol.

A.6. Proof of Theorem 3 125

A.6 Proof of Theorem 3

Proof. During each execution of the Hide&Crypt protocol the SP does not

receive any additional information with respect to the execution of the SP-

Filtering protocol. Hence, from Theorem 1, it follows that there exists at

least one granule of GSPC such that the SP is not able to exclude any location

of that granule as possible location of C. We now prove that, for each buddy

D, there exists at least one granule of GUC such that D is not able to exclude

any location of that granule as possible location of C.

By assumption, D has no information about the location of C other than

the one exchanged during the protocol. From Proposition 1 and Proposi-

tion 3, it follows that, while executing the Hide&Crypt protocol, D can

restrict the location of C to:

(a) Area in
F , when D receives the message“C is in proximity” from the SP;

(b) Areaout
F when D receives the message “C is not in proximity” from the

SP;

(c) AreaNoFilter when D receives the message “C is possibly in proximity”

from the SP;

(d) Area in
C when D can compute that C is in proximity as the result of the

two-parties computation;

(e) Areaout
C when D can compute that C is not in proximity as the result of

the two-parties computation;

(f) AreaPassive
C when D receives the message “starting two-parties protocol”

from C.

Given i′ such that loc(C) ∈ GUC(i′), we prove that, for each of these cases,

D is not able to exclude any location of GUC(i′) as possible location of C.

For cases (a), (b) and (c), thesis follows from Proposition 1. For case

(d), (e) and (f), the proof is analogous to the one of Theorem 2.

A.7. Proof of Lemma 1 126

A.7 Proof of Lemma 1

Proof. The sought after independence intuitively means that whether an

update/request is sent to SP by a user A is not related to where the user is

located. Formally, by the definition of conditional probability, we have

P (ur(A)|locA, priA)

= P (ur(A), locA|priA)/P (locA|priA)

= (P (ur(A)|priA) ∗ P (locA|priA))/P (locA|priA)

= P (ur(A)|priA).

The second equality is due to the protocol, in which an update/request is

sent at fixed time intervals for each user independent of the user’s location.

Hence, the lemma follows.

A.8 Proof of Lemma 2

Proof. All we need is

P (M1|M2, locA, priA) = P (M1|locA, priA),

i.e., the knowledge of the messages in M2 does not have any impact on

the probability of messages in M1. But this follows the perfect secrecy

assumption and the use of keystreams in our protocol.

A.9 Proof of Theorem 4

Proof. We prove the theorem by showing that for each set M of messages

exchanged during the protocol, we have P (postA) = P (priA). That is, the

messages M do not change the SP ’s knowledge of A’s location. By assump-

tion of the theorem, P (postA) = P (locA|M, priA) as the only knowledge is

M and priA. The knowledge that locA ∈ gA is useless as we assume in this

case that gA is the whole spatial domain. By the definition of conditional

A.9. Proof of Theorem 4 127

probability, we have

P (locA|M, priA) =

P (M |locA, priA) ∗ P (locA|priA)/P (M |priA).

It now suffices to show

P (M |locA, priA) = P (M |priA). (A.1)

Intuitively, Equation A.1 says that the messages M are independent of the

location of A. This follows from two observations: the first is that the

issuance of messages does not depend on the location of A by Lemma 1 and

the second is that the (encrypted) messages are independent of the content

of the messages by Lemma 2. More formally, assume

M = m1, . . . ,mn.

Let ur(M) be the messages of the form

ur(m1), . . . , ur(mn),

where ur(mi) is “an update/request is sent by user Bi”. That is, ur(mi)

disregards the encrypted part of the message but only says that a message

is sent and by whom. By perfect secrecy assumption, the probability of a

particular (single) message is the same as any other (single) message that

differs only in the encrypted part, and hence the same as the probability of

ur(mi). Consider the case of two messages in M , i.e., n = 2. Now we have:

P (M |locA, priA)

= P (m1,m2|locA, priA)

= P (m1|m2, locA, priA) ∗ P (m2|locA, priA)

= P (m1|locA, priA) ∗ P (m2|locA, priA) by Lemma 2

= P (ur(m1)|locA, priA) ∗ P (ur(m2)|locA, priA)

by the above discussion

= P (ur(m1), ur(m2)|locA, priA) by Lemma 2

= P (ur(M)|locA, priA)

A.10. Proof of Theorem 5 128

The above can be extended to nmessages inM and also to show the equation

P (M |priA) = P (ur(M)|priA). Hence,

P (M |locA, priA)

= P (ur(M)|locA, priA)

= P (ur(M)|priA) by Lemma 1

= P (M |priA)

and the thesis is established.

A.10 Proof of Theorem 5

Proof. Given a buddy B, we prove the theorem by showing that for each set

M of messages exchanged during the protocol, we have

P (locA|M, priA, locA ∈ gA) = P (locA|priA, locA ∈ gA),

where A is another user, and gA is the location information that is encrypted

in the messages of A with the key shared between A and B. In other words,

we want to show that B will not acquire more location information about

A through the messages other than what B already knows. Intuitively, this

is true since the location information revealed by A is only at the granule

level, but not where within the granule.

The formal proof is the same as for Theorem 4 but with the following

two changes: (1) ur(m) represents that request was sent from the granule

included in the message if the message is intended to B; otherwise, it is the

same as before. (2) locA ∈ gA is included in priA, or equivalently we replace

each occurrence of priA with “locA ∈ gA, priA”. Let us now examine the

steps in the proof of Theorem 4.

Lemma 1 still holds since updates/requests are sent regardless of loca-

tions if the user who sent the message is C 6= A. If C = A, then the ur(A)

gives the location (the granule) where the message is sent. In this case, the

location is totally dependent on the given information of locA, locA ∈ gA

A.10. Proof of Theorem 5 129

and priA. Note that l is an index of a granule, any information contained

in locA and priA below the granule level is not relevant to the probability

of a message.

For Lemma 2, the content in M2 still does not have any impact on the

content in M1 even when B can decrypt the messages intended to him as

there is no information (from priA, locA, and locA ∈ gA) that restricts any

possible content in M1, so the conditional probability of M1 does not change

regardless the existence of M2.

For the discussion regarding the probability of mi and ur(mi), with the

addition of locA ∈ gA, we still have that the conditional probability of mi

being the same as that of ur(mi). Indeed, assume

mi = 〈C, ui, EKui(l)〉.

If C 6= A, then all messages of the type have the same probability with

or without knowing A’s location since C’s location information is not as-

sumed in the conditional probability. This case is exactly the same as for

the SP and the conditional probability of mi is the same as that of ur(mi).

If C = A, since B can decrypt the message, hence knowing the location l

in the message, this location l (an index value of a granule in GUA) needs

to be consistent with the location knowledge in locA and priA: if it is not

consistent, then the probability of the message is zero; otherwise, the prob-

ability is totally dependent on the probability of A being in GUA(l) given

locA, locA ∈ gA, and priA. But the same can be said about ur(mi) (which

says that a message was sent at the given location), i.e., the probability of

ur(mi) depends totally on locA, locA ∈ gA, and priA. Therefore, mi and

ur(mi) have the same conditional probability. By the same reasoning as in

the proof of Theorem 4, ur(M) has the same conditional probability as M .

With all the above discussions, the theorem is established.

A.11. Proof of Theorem 6 130

A.11 Proof of Theorem 6

Proof. The proof follows the same style of that for Theorem 4. That is, we

show P (M |locA, priA) = P (M |priA), i.e., the location of A does not change

the probability of messages M conditioned on priA. Like for Theorem 5, we

examine the proof steps of Theorem 4 for the purpose of the current thesis.

Lemmas 1 and 2 both hold due to the use of hashing function that displays

stronger secrecy than encryption. The important difference is the discussion

of the conditional probabilities of m and ur(m). If m is an update, then the

same applies as in the proof of Theorem 4. The difference is when m is a

proximity request. In this case, the message contains multiple components.

The critical step is to show that all such messages have the same conditional

probability (to the SP) and hence the same as the conditional probability of

ur(m). This is not difficult since the location information in the condition

is opaque to the SP. This opaqueness is given by two facts. The first is

that the number of components in the message is the same regardless of the

location information. The second is that the indexes of the granules and

the “padding” (S′′ in the protocol) in the message components are hashed

and hence to the SP all possible granule indexes are equally possible in the

encrypted (byK1 in the protocol) message. (Here, hashing before encryption

with K1 is important as the adversary cannot attack using known pattern of

the plaintext.) The above observations lead to the thesis of this theorem.

A.12 Proof of Theorem 7

Proof. Intuitively, to the buddies, the C-Hide&Hash is much stronger than

C-Hide&Seek since buddies only share a hashing function and the buddies

location information is encrypted by a random key (generated by the SP)

before sending to the requesting user B. Formally, the proof follows the

same style as that for Theorem 5. The only difference is what it means

when a message is “consistent” with the location knowledge. In this case,

from B’s perspective, we need to define ur(m) to be the binary random

A.12. Proof of Theorem 7 131

variable that “the user is in one of the requesting granules or not” for the

message sent back from the SP (as the reply to a proximity request from B).

After B requesting proximity, B will receive a message from the SP with the

encrypted hash value of A’s location (in addition to the “kick back” from the

SP in the form of encrypted values that B sent to the SP). Even though B

and A shares the hash function, B does not know the encryption key which

is randomly generated by the SP (K2 in the protocol). Therefore, this value

is probabilistically independent of the location of A. In this case, based on

the protocol, the only information B obtains is whether A is in a granule

among the ones given by B. This needs to be consistent with the location

information contained in locA and priA. If not, then the probability of this

message is zero, and otherwise the probability is totally dependent on locA

and priA as no other information is available. The thesis follows the above

discussions in the same style as the proof of Theorem 5.

Appendix B

Notation

A summary of the notation used in this dissertation follows:

• locA – the original (exact) location of a user A

• δA – the proximity threshold requested by A i.e. the minimum distance

required to consider another user being in proximity

• R – the minimum uncertainty region (MUR) in which a user does not

want an adversary to exclude any of the points as possible location

• M – the set of exchanged messages

• GSP
A – the spatial granularity selected by a user A as privacy prefer-

ence, with respect to the service provider

• GUA – the spatial granularity selected by a user A as privacy preference,

with respect to the other users

• GrUA – the grid-based spatial granularity selected by a user A as privacy

preference, with respect to the other users

• LA(i) – given the granule of GSP
A with index i, the region given by the

union of granules of GUA intersecting GSP
A (i)

• EKA
– E is a symmetric encryption function, using KA as encryption

key.

132

133

• E∗KA
– E∗ is a commutative encryption function, using KA as encryp-

tion key.

• HKA
– H is an hashing function, using KA as salt.

• d(locA, locB) – the Euclidean distance between the locations of users

A and B

• priA – random variable denoting the distribution of the location of a

user A. This distribution is known a-priori by the adversary

• postA – random variable denoting the distribution of the location of

a user A. This distribution is computed a-posteriori by the adversary

i.e. after considering the set M

• mindist – the minimum distance between two regions

• maxdist – the maximum distance between two regions

• moddist – the modular distance between two points i.e. the Euclidean

distance computed as if the considered finite spatial domain were “cir-

cular” on both axis

• mmd – the minimum modular distance between two regions

Bibliography

[1] Arnon Amir, Alon Efrat, Jussi Myllymaki, Lingeshwaran Palaniappan,

and Kevin Wampler. Buddy tracking - efficient proximity detection

among mobile friends. Pervasive and Mobile Computing, 3(5):489–511,

2007.

[2] Claudio A. Ardagna, Marco Cremonini, Ernesto Damiani, Sabrina

De Capitani di Vimercati, and Pierangela Samarati. Location privacy

protection through obfuscation-based techniques. In Proc. of the 21st

Annual IFIP WG 11.3 Working Conference on Data and Applications

Security, volume 4602 of Lecture Notes in Computer Science, pages

47–60. Springer, 2007.

[3] Alastair R. Beresford and Frank Stajano. Mix zones: User privacy

in location-aware services. In Proc. of the 2nd Annual Conference on

Pervasive Computing and Communications, pages 127–131. IEEE Com-

puter Society, 2004.

[4] Claudio Bettini, Sushil Jajodia, and Linda Pareschi. Anonymity and

diversity in LBS: a preliminary investigation. In Proc. of the 5th In-

ternational Conference on Pervasive Computing and Communications,

pages 577–580. IEEE Computer Society, 2007.

[5] Claudio Bettini, Sergio Mascetti, X. Sean Wang, Dario Freni, and Sushil

Jajodia. Anonymity and historical-anonymity in location-based ser-

vices. In Privacy in Location-Based Applications, volume 5599 of Lec-

ture Notes in Computer Science. Springer, 2009.

134

BIBLIOGRAPHY 135

[6] Claudio Bettini, Sergio Mascetti, X. Sean Wang, and Sushil Jajodia.

Anonymity in location-based services: towards a general framework. In

Proc. of the 8th International Conference on Mobile Data Management,

pages 69–76. IEEE Computer Society, 2007.

[7] Claudio Bettini, X. Sean Wang, and Sushil Jajodia. Protecting pri-

vacy against location-based personal identification. In Proc. of the 2nd

VLDB workshop on Secure Data Management, volume 3674 of LNCS,

pages 185–199. Springer, 2005.

[8] Claudio Bettini, Xiaoyang Sean Wang, and Sushil Jajodia. Time

Granularities in Databases, Temporal Reasoning, and Data Mining.

Springer, 2000.

[9] Matt Bishop. Computer Security: Art and Science, chapter 32. Addi-

son-Wesley, 2003.

[10] Thomas Brinkhoff. A framework for generating network-based moving

objects. GeoInformatica, 6(2):153–180, 2002.

[11] Hae Don Chon, Divyakant Agrawal, and Amr El Abbadi. Range and

knn query processing for moving objects in grid model. Mobile Networks

and Applications, 8(4):401–412, 2003.

[12] Chi-Yin Chow and Mohamed Mokbel. Enabling private continuous

queries for revealed user locations. In Proc. of the 10th Interna-

tional Symposium on Spatial and Temporal Databases, pages 258–275.

Springer, 2007.

[13] Chi-Yin Chow, Mohamed F. Mokbel, and Xuan Liu. A peer-to-peer

spatial cloaking algorithm for anonymous location-based service. In

Proc. of the 14th International Symposium on Geographic Information

Systems, pages 171–178. ACM, 2006.

[14] Alin Deutsch, Richard Hull, Avinash Vyas, and Kevin Keliang Zhao.

Policy-aware sender anonymity in location based services. In Proceed-

BIBLIOGRAPHY 136

ings of the 26th IEEE International Conference on Data Engineering

(ICDE 2010), 2010.

[15] Matt Duckham and Lars Kulik. A formal model of obfuscation and

negotiation for location privacy. In Proc. of the 3rd International Con-

ference, on Pervasive Computing, pages 152–170. Springer, 2005.

[16] Dario Freni, Sergio Mascetti, Claudio Bettini, and Marco Cozzi. Pcube:

A system to evaluate and test privacy-preserving proximity services. In

Proc. of the 11th International Conference on Mobile Data Manage-

ment, 2010.

[17] Dario Freni, Carmen Ruiz Vicente, Sergio Mascetti, Claudio Bettini,

and Christian S. Jensen. Preserving location and absence privacy in

geo-social networks. In Proceedings of the 19th ACM Conference on

Information and Knowledge Management (CIKM 2010), 2010.

[18] Bugra Gedik and Ling Liu. Protecting location privacy with personal-

ized k-anonymity: Architecture and algorithms. IEEE Transactions on

Mobile Computing, 7(1):1–18, 2008.

[19] Gabriel Ghinita, Maria Luisa Damiani, Claudio Silvestri, and Elisa

Bertino. Preventing velocity-based linkage attacks in location-aware

applications. In Proc. of ACM International Symposium on Advances

in Geographic Information Systems, pages 246–255. ACM Press, 2009.

[20] Gabriel Ghinita, Panos Kalnis, Ali Khoshgozaran, Cyrus Shahabi, and

Kian-Lee Tan. Private queries in location based services: Anonymizers

are not necessary. In Proc. of SIGMOD, pages 121–132. ACM Press,

2008.

[21] Gabriel Ghinita, Panos Kalnis, and Spiros Skiadopoulos. Mobihide: A

mobile peer-to-peer system for anonymous location-based queries. In

Proc. of the 10th International Symposium of Advances in Spatial and

Temporal Databases, pages 221–238. Springer, 2007.

BIBLIOGRAPHY 137

[22] Gabriel Ghinita, Panos Kalnis, and Spiros Skiadopoulos. Prive: anony-

mous location-based queries in distributed mobile systems. In Proc. of

the 16th international conference on World Wide Web, pages 371–380.

ACM Press, 2007.

[23] Marco Gruteser and Dirk Grunwald. Anonymous usage of location-

based services through spatial and temporal cloaking. In Proc. of the 1st

International Conference on Mobile Systems, Applications and Services,

pages 31–42. The USENIX Association, 2003.

[24] Marco Gruteser and Xuan Liu. Protecting privacy in continuous

location-tracking applications. IEEE Security & Privacy, 2(2):28–34,

2004.

[25] Baik Hoh and Marco Gruteser. Protecting location privacy through

path confusion. In Proc. of the First International Conference on Se-

curity and Privacy for Emerging Areas in Communications Networks,

pages 194–205. IEEE Computer Society, 2005.

[26] Haibo Hu and Jianliang Xu. Non-exposure location anonymity. In

Proc. of the 25th International Conference on Data Engineering, pages

1120–1131. IEEE Computer Society, 2009.

[27] Panos Kalnis, Gabriel Ghinita, Kyriakos Mouratidis, and Dimitris Pa-

padias. Preventing location-based identity inference in anonymous spa-

tial queries. IEEE Transactions on Knowledge and Data Engineering,

19(12):1719–1733, 2007.

[28] Ali Khoshgozaran and Cyrus Shahabi. Private buddy search: Enabling

private spatial queries in social networks. In Symposium on Social In-

telligence and Networking (SIN 2009), 2009.

[29] Ali Khoshgozaran, Cyrus Shahabi, and Houtan Shirani-Mehr. Location

privacy: going beyond k-anonymity, cloaking and anonymizers. Knowl-

edge and Information Systems, 2010.

BIBLIOGRAPHY 138

[30] Hidetoshi Kido, Yutaka Yanagisawa, and Tetsuji Satoh. Protection of

location privacy using dummies for location-based services. In Proc.

of the 21st International Conference on Data Engineering Workshops,

page 1248. IEEE Computer Society, 2005.

[31] Shundong Li, Yiqi Dai, Daoshun Wang, and Ping Luo. Symmetric

encryption solutions to millionaire’s problem and its extension. In Proc.

of 1st International Conference on Digital Information Management.

IEEE computer society, 2006.

[32] Ashwin Machanavajjhala, Johannes Gehrke, Daniel Kifer, and Muthu-

ramakrishnan Venkitasubramaniam. l-Diversity: Privacy Beyond

k-Anonymity. In Proceedings of the 22nd International Conference on

Data Engineering, page 24. IEEE Computer Society, 2006.

[33] Miquel Martin and Petteri Nurmi. A generic large scale simulator for

ubiquitous computing. In Proc. of the 3rd Conference on Mobile and

Ubiquitous Systems: Networks and Services. IEEE Computer Society,

2006.

[34] Sergio Mascetti, Claudio Bettini, and Dario Freni. Longitude: Cen-

tralized privacy-preserving computation of users’ proximity. In Proc.

of 6th VLDB workshop on Secure Data Management, Lecture Notes in

Computer Science. Springer, 2009.

[35] Sergio Mascetti, Claudio Bettini, Dario Freni, and X. Sean Wang. Spa-

tial generalization algorithms for LBS privacy preservation. Journal of

Location Based Services, 1(3):179–207, 2007.

[36] Sergio Mascetti, Claudio Bettini, Dario Freni, X. Sean Wang, and Sushil

Jajodia. Privacy-aware proximity based services. In Proc. of the 10th

International Conference on Mobile Data Management, pages 31–40.

IEEE Computer Society, 2009.

[37] Sergio Mascetti, Claudio Bettini, X. Sean Wang, Dario Freni, and

Sushil Jajodia. ProvidentHider : an algorithm to preserve historical k-

BIBLIOGRAPHY 139

anonymity in lbs. In Proc. of the 10th International Conference on Mo-

bile Data Management, pages 172–181. IEEE Computer Society, 2009.

[38] Sergio Mascetti, Dario Freni, Claudio Bettini, X. Sean Wang, and Sushil

Jajodia. On the impact of user movement simulations in the evaluation

of LBS privacy-preserving techniques. In Proc. of the International

Workshop on Privacy in Location-Based Applications, volume CEUR-

WS Vol-397, pages 61–80, 2008.

[39] Sergio Mascetti, Dario Freni, Claudio Bettini, X. Sean Wang, and Sushil

Jajodia. Privacy in geo-social networks: proximity notification with

untrusted service providers and curious buddies. The VLDB Journal,

2011.

[40] Mohamed F. Mokbel, Chi-Yin Chow, and Walid G. Aref. The new

casper: query processing for location services without compromising

privacy. In Proc. of the 32nd International Conference on Very Large

Data Bases, pages 763–774. VLDB Endowment, 2006.

[41] Stavros Papadopoulos, Spiridon Bakiras, and Dimitris Papadias. Near-

est neighbor search with strong location privacy. In Proceedings of the

36th International Conference on Very Large Data Bases (VLDB 2010),

2010.

[42] Daniele Riboni, Linda Pareschi, Claudio Bettini, and Sushil Jajodia.

Preserving anonymity of recurrent location-based queries. In Proc. of

16th International Symposium on Temporal Representation and Rea-

soning. IEEE Computer Society, 2009.

[43] Peter Ruppel, Georg Treu, Axel Küpper, and Claudia Linnhoff-Popien.

Anonymous user tracking for location-based community services. In

Proc. of the Second International Workshop on Location- and Context-

Awareness, volume LNCS 3987, pages 116–133. Springer, 2006.

[44] Peter Saint-Andre. Extensible messaging and presence protocol

(XMPP): core. RFC 3920, IETF, 2004.

BIBLIOGRAPHY 140

[45] Carmen Ruiz Vicente, Dario Freni, Claudio Bettini, and Christian S.

Jensen. Location-related privacy in geo-social networks. IEEE Internet

Computing, 2011, to appear.

[46] Simonas Šaltenis, Christian S. Jensen, Scott T. Leutenegger, and

Mario A. Lopez. Indexing the positions of continuously moving ob-

jects. SIGMOD Rec., 29(2):331–342, 2000.

[47] Laurynas Šikšnys, Jeppe R. Thomsen, Simonas Šaltenis, and Man Lung

Yiu. Private and flexible proximity detection in mobile social networks.

In Proc. of the 11th International Conference on Mobile Data Manage-

ment, pages 75–84, 2010.

[48] Laurynas Šikšnys, Jeppe R. Thomsen, Simonas Šaltenis, Man Lung

Yiu, and Ove Andersen. A location privacy aware friend locator. In

Proc. of the 11th International Symposium on Spatial and Temporal

Databases, volume 5644 of Lecture Notes in Computer Science, pages

405–410. Springer, 2009.

[49] Nikolay Vyahhi, Spiridon Bakiras, Panos Kalnis, and Gabriel Ghinita.

Tracking moving objects in anonymized trajectories. In Proc. of 19th

International Conference on Database and Expert Systems Applications,

pages 158–171. Springer, 2008.

[50] Toby Xu and Ying Cai. Location anonymity in continuous location-

based services. In Proc. of ACM International Symposium on Advances

in Geographic Information Systems, page 39. ACM Press, 2007.

[51] Man Lung Yiu, Christian S. Jensen, Xuegang Huang, and Hua Lu.

SpaceTwist: Managing the trade-offs among location privacy, query

performance, and query accuracy in mobile services. In Proc. of the 24th

International Conference on Data Engineering, pages 366–375. IEEE

Computer Society, 2008.

[52] Man Lung Yiu, Leong Hou U, Simonas Šaltenis, and Kostas Tzoumas.

Efficient proximity detection among mobile users via self-tuning poli-

BIBLIOGRAPHY 141

cies. In Proceedings of the 36th International Conference on Very Large

Data Bases (VLDB 2010), 2010.

[53] Ge Zhong, Ian Goldberg, and Urs Hengartner. Louis, Lester and Pierre:

Three protocols for location privacy. In Privacy Enhancing Technolo-

gies, volume LNCS 4776, pages 62–76. Springer, 2007.

	Introduction
	Problem description
	Contribution
	Outline

	Privacy models for Location Based Services: an overview
	A classification of attacks to LBS privacy
	Attacks exploiting quasi-identifiers
	Snapshot versus historical attacks
	Single versus multiple-issuer attacks
	Attacks exploiting knowledge of the defense

	Defenses to LBS privacy threats
	Anonymity based defenses
	Defenses based on private information obfuscation
	Encryption based defenses

	Impact of realistic simulations on the evaluation of defense techniques
	The MilanoByNight simulation
	Experimental settings
	Impact of the adversary model on the evaluation of the generalization algorithms
	Impact of the deployment model on the evaluation of the generalization algorithms

	Privacy preservation in Proximity Services
	Related work
	Problem definition
	The proximity service
	Privacy concerns and privacy requirements
	Adversary model and privacy preservation

	Privacy preserving techniques
	SP-Filtering, Hide&Seek and Hide&Crypt
	Analysis of SP-Filtering, Hide&Seek and Hide&Crypt protocols
	Longitude
	Analysis of the Longitude protocol
	C-Hide&Seek and C-Hide&Hash
	Analysis of C-Hide&Seek and C-Hide&Hash protocols

	Comparison of the protocols

	Evaluation of the proposed defenses
	Empirical evaluation
	The experimental setting
	Evaluation of the quality of service
	Evaluation of the system costs
	Evaluation of the achieved privacy

	Implementation of the service
	Mobile client
	Web client
	Monitor application

	Conclusions and future work
	Summary of the contributions
	Future work

	Proofs
	Proof of Proposition 1
	Proof of Theorem 1
	Proof of Proposition 2
	Proof of Theorem 2
	Proof of Proposition 3
	Proof of Theorem 3
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 4
	Proof of Theorem 5
	Proof of Theorem 6
	Proof of Theorem 7

	Notation

