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Abstract

In this paper we study the identification conditions in structural VAR models with different
regimes of volatility. We propose a new specification that allows to address identification in the
conventional likelihood-based setup. We propose a formal general framework for identification and
prove that exact-identification assumptions in the standard SVAR literature appear here to be
over-identified, and thus subject to statistical inference.
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I Problem and Motivation

In the Structural VAR (SVAR) literature the problem of identification refers to the definition of
instantaneous correlations among independent shocks that are otherwise hidden in the covariance
matrix of the VAR innovations. Since the seminal work by Sims (1980), many approaches have been
proposed, regarding triangularization of the correlation matrices (Amisano and Giannini, 1997), long-
run constraints (Blanchard and Quah, 1989; King et al., 1991; Pagan and Pesaran,2008), identification
of only a subset of all the shocks (Christiano et al., 1999), inequality constraints (Uhlig, 2005; Canova
and De Nicolò, 2002; Faust, 1998), Bayesian techniques (Koop, 1992).

In the last years, the literature has benefitted from the idea that heteroskedasticity or other
peculiarities in the data can add important information to the identification of simultaneous equations
systems (Rigobon, 2003; Klein and Vella, 2003; Lewbel, 2008). In this direction, Lanne and Lutkepohl
(2010) use the distributional features of the residuals to identify structural shocks, while Lanne and
Lutkepohl (2008) and Lanne et al. (2010) discuss identification of the structural parameters of the
SVAR models in the presence of different regimes of volatility. Our paper moves in this direction
and provides a formal general framework that allows us to study identification as in the conventional
likelihood-based approach in the spirit of Rothenberg (1971).

The specification of the model is based on the assumptions that the different regimes of volatility
are known and that such regimes do not alter the structural parameters of the SVAR. The only
effects of volatility states are thus confined to the variance-covariance matrices of the reduced form
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innovations. Such assumptions are common with those of Lanne and Lutkepohl (2008) and Lanne et
al. (2010), but in our specification we allow the variance-covariance matrices to vary among states
in a reacher way than simple multiplicative factors regarding the variances only. As a consequence,
the impulse response functions vary across the different regimes of volatility. Rubio-Ramirez et al.
(2005) and Sims and Zha (2006) also consider SVAR models with different regimes of volatility and
different impulse responses, although in their specifications, based on Markov regime switching, all
the parameters of the SVAR are allowed to vary across regimes.

The rest of the paper is organized as follows: In Section II we present the specification of the model
while conditions for identification of the structural parameters are discussed in Section III. Section IV
concludes.

II A SVAR model with different regimes of volatility

The model is based on a variation of the AB-specification proposed by Amisano and Giannini (1997)
in which, however, we include the possibility of different levels of heteroskedasticity in the data. Let
the data generating process follows a VAR model of the form

yt = A1yt−1 + · · ·+Apyt−p + ut (1)

where yt is a g-dimensional vector of observable variables, and ut a vector of innovations with non-
constant covariance matrix, i.e. ut ∼ (0,Σt). The covariance matrix Σt hiddens all possible si-
multaneous relationships among uncorrelated structural shocks εt ∼ (0, Ig), and can be defined as
Σt = A−1CtC

′
tA
′−1, where A and Ct are the structural parameters that connects the reduced form

innovation ut with the uncorrelated shocks εt in the following way:

Aut = Ctεt. (2)

The matrix Ct accounts for possible heteroskedasticity and is defined as follows

Ct = (Ig +BDt) (3)

where the matrix Dt is a diagonal matrix assuming only 0 − 1 values, indicating whether, at time t,
the i-th endogenous variable is in a state of high (1) or low (0) volatility. The heteroskedasticity, thus,
is intended as different regimes of volatility that might apply to one or more variables in the system.
This approach to model the heteroskedasticity implicitly imposes a maximum number of regimes, i.e.
2g. When all variables are in a state of low volatility (Dt = 0), the model in (2) reduces to the K-model
in the terminology of Amisano and Giannini (1997), while when one or more variables are in a state of
high volatility the correlation structure becomes more complicated and involves both interdependences
among variables and among structural shocks1. In the state of low volatility the correlations among
the endogenous variables are captured by the A matrix as in the traditional systems of equations but
with two important improvements: a) less stringent constraints for obtaining identification, as proved
in the next section; b) the error terms are uncorrelated and can be interpreted as structural shocks as
in the conventional SVAR literature.

Differently with respect to Lanne and Luktepohl (2008), we do not impose any form of triangular-
ization in the A matrix for obtaining identification. Moreover, the transmission of structural shocks
in states of high volatility, captured by the combination of B and Dt, might be different among the
states. When a structural shock hits the economy, depending on the particular regime of volatility,
it propagates differently among all the other variables of the system. While in Lanne and Lutkepohl
(2008) and Lanne et al. (2010) the differences among the states are confined to different variances
of the structural shocks, in the present specification we allow for differences in the covariances too.
The consequences for the identification of the parameters are not trivial and are analyzed in the next
section.

1A similar specification has been proposed by Favero and Giavazzi (2002) in which, however, Dt refers to simple
intervention dummies, and the identification problem has been solved with exclusion restrictions in the dynamic part of
the model.
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III Main Result

Suppose the SVAR model defined in (1)-(3) is enriched with the distributional assumption that

ut ∼ N (0,Σt) (4)

where, as defined before, Σt = A−1CtC
′
tA
′−1 represents the covariance matrix in the different states

of volatility. All the information concerning Σt is contained in the residuals of the VAR model ût and
in the Dt matrices indicating the states of volatility.

The log-likelihood function for the parameters of interest is

L (A,B) = c+
T

2
log |A|2 − 1

2

T∑
t=1

log |Ct|2 −
1
2

T∑
t=1

tr
(
A′C−1′

t C−1
t Aûtû

′
t

)
. (5)

The log-likelihood function can also be written in a more compact form as

L (A,B) = c+
T ∗

2
log |(Is ⊗A)|2 − T ∗

2
|B∗|2 − 1

2
tr
[
T ∗
(
Is ⊗A′

)
B∗−1′B∗−1 (Is ⊗A) Σ̂

]
(6)

where s indicates the number of distinct states of volatility and the (gs× gs) matrix B∗ is defined as

B∗ = (Igs + (Is ⊗B)D) (7)

where D is a block diagonal matrix of the form

D =

 D1

. . .
Ds

 (8)

where Di is the diagonal (g × g) matrix describing the i-th state of volatility. More precisely, as
described before, it presents Dijj = 1 whether the j-th endogenous variable is in a state of high
volatility and 0 if it is in a state of low volatility. Σ̂ is the (gs× gs) block diagonal matrix that collects
the estimates of the covariance matrices in each state

Σ̂ =

 Σ̂1

. . .
Σ̂s

 (9)

where Σ̂i = 1/Ti
∑Ti

t=1 ûtû
′
t, for i = 1 . . . s. In the same way we can define the corresponding theoretical

second moments for the error terms as:

Σ =

 Σ1

. . .
Σs

 . (10)

The matrix T ∗ is defined as

T ∗ = (Ig ⊗ T ∗∗) with T ∗∗ =

 T1

. . .
Ts

 (11)

and indicates the number of elements in the sample for each state of volatility. This new parameteri-
zation reveals to be extremely useful for investigating the order and rank conditions for identification
as reported in the following proposition. Throughout, use is made of the following notation: Kgs is the
g2s2 × g2s2 commutation matrix as defined in Magnus and Neudecker (2007), Ngs = 1/2 (Igs +Kgs),
while the H matrix, defined in Magnus and Neudeckers (2007) pag. 56, is such that, given two matrices
A (m× n) and B (p× q), then vec (A⊗B) = (H ⊗ Ip) vecB, where H = (In ⊗Kqm) (vecA⊗ Iq).
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Proposition 1 Suppose the DGP follows a VAR model as defined by (1)-(4) with s ≥ 2 different
states of volatility as assumed in (10). Assume further that prior information is available in the form
of q linear restrictions on A and B:

RAvecA+RBvecB = r (12)

Then (A0, B0) is locally identified if and only if the matrix

J (A0, B0) =
(
−2NgsE1 (HA ⊗ Ig) 2NgsE2 (HB ⊗ Ig)

RA RB

)
(13)

has full column rank 2g2, where

E1 =
[
(Is ⊗A)−1B∗B∗′

(
Is ⊗A′

)−1 ⊗ (Is ⊗A)−1
]

(14)

E2 =
[
(Is ⊗A)−1B∗D ⊗ (Is ⊗A)−1

]
(15)

with B∗ and D defined as in (7) and (8), respectively.

Proof. Following Rothenberg (1971), the identification can be studied by considering the solution of
the following system of equations:

(Is ⊗A)−1B∗B∗′
(
Is ⊗A′

)−1 − Σ = 0 (16)
RAvecA+RBvecB − r = 0 (17)

The model is locally identified if and only if the system has the null vector as the unique solution.
Equations (16)-(17) form a system of non-linear equations. Differentiating (16)-(17) gives:

− (Is ⊗A)−1 (Is ⊗ dA) (Is ⊗A)−1B∗B∗′ (Is ⊗A)−1 + (Is ⊗A)−1 dB∗B∗′ (Is ⊗A)−1 +

+ (Is ⊗A)−1B∗dB∗′ (Is ⊗A)−1 − (Is ⊗A)−1B∗B∗′
(
Is ⊗A′

)−1 (
Is ⊗ dA′

) (
Is ⊗A′

)−1 = 0(18)
RAdvecA+RBdvecB = 0(19)

Remembering that B∗ = (Igs + (Is ⊗B)D), and using the vec operator and its properties allows us
to rewrite the system as

−
[
(Is ⊗A)−1B∗B∗′

(
Is ⊗A′

)−1 ⊗ (Is ⊗A)−1
]
vec (Is ⊗ dA) +[

(Is ⊗A)−1B∗D ⊗ (Is ⊗A)−1
]
vec (Is ⊗ dB) +[

(Is ⊗A)−1 ⊗ (Is ⊗A)−1B∗D
]
Kgsvec (Is ⊗ dB) +

−
[
(Is ⊗A)−1 ⊗ (Is ⊗A)−1B∗B∗′

(
Is ⊗A′

)−1
]
Kgsvec (Is ⊗ dA) = 0 (20)

RAdvecA+RBdvecB = 0 (21)

Using the properties of the commutation matrix2 Kgs we obtain

−
(
Ig2s2 +Kgs

) [
(Is ⊗A)−1B∗B∗′

(
Is ⊗A′

)−1 ⊗ (Is ⊗A)−1
]
vec (Is ⊗ dA) +(

Ig2s2 +Kgs

) [
(Is ⊗A)−1B∗D ⊗ (Is ⊗A)−1

]
vec (Is ⊗ dB) = 0 (22)

RAdvecA+RBdvecB = 0 (23)
2See Magnus and Neudecker (2007), pagg. 54-56.
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or, using the definition Ngs = 1/2
(
Ig2s2 +Kgs

)
−2Ngs

[
(Is ⊗A)−1B∗B∗′

(
Is ⊗A′

)−1 ⊗ (Is ⊗A)−1
]
vec (Is ⊗ dA) +

+2Ngs

[
(Is ⊗A)−1B∗D ⊗ (Is ⊗A)−1

]
vec (Is ⊗ dB) = 0 (24)

RAdvecA+RBdvecB = 0 (25)

The Jacobian matrix J (A,B), of dimension
(
g2s2 + q

)
× 2g2, where q is the number of constraints,

becomes

J (A,B) =
(
−2NgsE1 (HA ⊗ Ig) 2NgsE2 (HB ⊗ Ig)

RA RB

)
(26)

where the g2s2 × g2s2 matrices E1 and E2 are defined as in (14) and (15). A sufficient condition for
(A0, B0) to be identifiable is that J evaluated at A0 and B0 has full column rank.

2

Interestingly, this result clearly generalizes the condition for local indentification of the Amisano
and Giannini (1997) AB-model in the case of no regimes of volatility3, i.e. s = 1.

Corollary 1 Under the assumptions of Proposition 1, if s ≥ 2 and the g2s2×g2 matrix NgsE1 (Ha ⊗ Ig)
has full column rank then the restrictions in RA are not necessary for local identification.

Proof. By definition, rank (Ngs) = gs (gs+ 1) /2. It is also easy to show that the g2s2 × g2 matrix
E1 (HA ⊗ Ig) has full column rank g2. Thus, rank (NgsE1 (HA ⊗ Ig)) ≤ min

(
gs (gs+ 1) /2, g2

)
. How-

ever, when s ≥ 2, then gs (gs+ 1) /2 > g2, allowing the matrix NgsE1 (HA ⊗ Ig) to have full column
rank. The J matrix in (26) can be thus of full column rank even without any restriction on the A
matrix.

2

Remark 1. The restrictions on the B matrix, instead, depend on the nature of heteroskedasticity
as expressed in the D matrix. The rank of D is equivalent to the number of variables in a state of
high volatility. As a consequence, E2 is of reduced rank, making more complicated, although not
impossible, that NgsE2 (HB ⊗ Tg) will have full column rank. In this latter case, the inclusion of
restrictions in the B matrix becomes not necessary for identification.

Corollary 2 A necessary (order) condition for identification is that s ≥ 2.

Proof. The order condition states that the number of rows in the J matrix be larger than the number
of columns. Without any further constraint, this situation applies when g2s2 ≥ 2g2, which is always
true when s ≥ 2.

2

Remark 2. When q restrictions are necessary for local identification and the condition in Propo-
sition 1 is sutisfied, then the number of overidentifying restrictions is g2s2 + q − 2g2, i.e. the number
of rows in the J matrix in (26) that exceeds the number of columns g2. Such overidentifying restric-
tions generate degrees of freedom fundamental in test for hypotheses for restrictions that are generally
just-identified in the traditional SVAR literature.

3Althought in the original work Amisano and Giannini (1997) concentrate the analysis of identification on the non
singularity of the information matrix (Rothenberg, 1971, Theorem 2), equivalent conditions can be obtained by following
the same strategy as the one pursued in the present paper (Rothenberg, 1971, Theorem 6).
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IV Estimation and Inference

In this section we turn to the problem of estimating the parameters of the structural form in the case of
different levels of volatility, assuming that some sufficient conditions for identification are satisfied. We
propose a Full-Information Maximum Likelihood (FIML) estimator that is based on the maximization
of the likelihood function of the structural form of the model. The following proposition presents the
score vector and the information matrix.

Proposition 2 Consider a SVAR model as defined in (1)-(4), with the associated log-likelihood func-
tion (6), the score vector, in row form, is

f ′ (θ) =
dl (θ)
dvec θ

=
(
fA (θ) , fB (θ)

)
(27)

where

fA =
[
vec

(
T ∗
(
Is ⊗A−1′)′)′ (HA ⊗ Ig)

]
−
[
vec

(
B∗−1′B∗−1 (Is ⊗A)T ∗Σ̂

)′
(HA ⊗ Ig)

]
(28)

fB = −
[
vec

(
B∗−1′T ∗D

)′ (HB ⊗ Ig)
]

+
[
vec

(
B∗−1′B∗−1 (Is ⊗A)T ∗Σ̂

(
Is ⊗A′

)
B∗−1′D

)′
(HB ⊗ Ig)

]
(29)

and the information matrix is

FT (θ0) = −E
(

d2l (θ)
dθdθ′

)
= 2H ′

(
(T ∗ ⊗ Igs)Ngs (T ∗ ⊗ Igs)Ngs

(T ∗ ⊗ Igs)Ngs (T ∗ ⊗ Igs)Ngs

)
H (30)

where

H =

( (
B∗′ (Is ⊗A′)−1 ⊗B∗−1

)
(HA ⊗ Ig) 0

0 −
(
D ⊗B∗−1

)
(HB ⊗ Ig)

)
. (31)

Proof. Starting from the log-likelihood function in (6), the first differential becomes

dl (θ) = tr T ∗ (Is ⊗A)−1 (Is ⊗ dA)− tr T ∗B∗−1 (Is ⊗ dB)D

−1
2
tr
[
T ∗
(
Is ⊗ dA′

)
B∗−1′B∗−1 (Is ⊗A) Σ̂

]
+

1
2
tr
[
T ∗
(
Is ⊗A′

)
B∗−1′D

(
Is ⊗ dB′

)
B∗−1′B∗−1 (Is ⊗A) Σ̂

]
+

1
2
tr
[
T ∗
(
Is ⊗A′

)
B∗−1′B∗−1 (Is ⊗ dB)DB∗−1 (Is ⊗A) Σ̂

]
−1

2
tr
[
T ∗
(
Is ⊗A′

)
B∗−1′B∗−1 (Is ⊗ dA) Σ̂

]
, (32)

using the properties of the vec operator and the Kgs matrix, the first differential becomes

dl (θ) = vec
(
T ∗
(
Is ⊗A−1′))′ (HA ⊗ Ig) vecdA− vec

(
B∗−1′T ∗D

)′ (HB ⊗ Ig) vecdB

−1
2
vec

(
B∗−1′B∗−1 (Is ⊗A) Σ̂T ∗

)′
(HA ⊗ Ig) vecdA

+
1
2
vec

(
B∗−1′B∗−1 (Is ⊗A) Σ̂T ∗

(
Is ⊗A′

)
B∗−1′D

)′
(HB ⊗ Ig) vecdB

+
1
2
vec

(
B∗−1′B∗−1 (Is ⊗A)T ∗Σ̂

(
Is ⊗A′

)
B∗−1′D

)′
(HB ⊗ Ig) vecdB

−1
2
vec

(
B∗−1′B∗−1 (Is ⊗A)T ∗Σ̂

)′
(HA ⊗ Ig) vecdA (33)

but given that T ∗ is diagonal, thus T ∗Σ̂ = Σ̂T ∗, and the score vector in (27)-(29) immediately follows.
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The information matrix, instead, refers to the second differential

d2l (θ) = −tr T ∗ (Is ⊗A)−1 (Is ⊗ dA) (Is ⊗A)−1 (Is ⊗ dA)
+tr T ∗B∗−1 (Is ⊗ dB)DB∗−1 (Is ⊗ dB)D

+
1
2
tr
[
T ∗
(
Is ⊗A′

)
B∗−1′D

(
Is ⊗ dB′

)
B∗−1′B∗−1 (Is ⊗A) Σ̂

]
+

1
2
tr
[
T ∗
(
Is ⊗A′

)
B∗−1′B∗−1 (Is ⊗ dB)DB∗−1 (Is ⊗A) Σ̂

]
−1

2
tr
[
T ∗
(
Is ⊗A′

)
B∗−1′B∗−1 (Is ⊗ dA) Σ̂

]
+

1
2
tr
[
T ∗
(
Is ⊗A′

)
B∗−1′D

(
Is ⊗ dB′

)
B∗−1′B∗−1 (Is ⊗A) Σ̂

]
−tr

[
T ∗
(
Is ⊗A′

)
B∗−1′D

(
Is ⊗ dB′

)
B∗−1′D

(
Is ⊗ dB′

)
B∗ − 1′ (Is ⊗A) Σ̂

]
−1

2
tr
[
T ∗
(
Is ⊗A′

)
B∗−1′D

(
Is ⊗ dB′

)
B∗−1′B∗−1 (Is ⊗ dB)DB∗−1 (Is ⊗A) Σ̂

]
+

1
2
tr
[
T ∗
(
Is ⊗A′

)
B∗−1′D

(
Is ⊗ dB′

)
B∗−1′B∗−1 (Is ⊗ dA) Σ̂

]
+

1
2
tr
[
T ∗
(
Is ⊗A′

)
B∗−1′B∗−1 (Is ⊗ dB)DB∗−1 (Is ⊗A) Σ̂

]
−1

2
tr
[
T ∗
(
Is ⊗A′

)
B∗−1′D

(
Is ⊗ dB′

)
B∗−1′B∗−1 (Is ⊗ dB)DB∗−1 (Is ⊗A) Σ̂

]
−tr

[
T ∗
(
Is ⊗A′

)
B∗−1′B∗−1 (Is ⊗ dB)DB∗−1 (Is ⊗ dB)DB∗−1 (Is ⊗A) Σ̂

]
+

1
2
tr
[
T ∗
(
Is ⊗A′

)
B∗−1′B∗−1 (Is ⊗ dB)DB∗−1 (Is ⊗ dA) Σ̂

]
−1

2
tr
[
T ∗
(
Is ⊗A′

)
B∗−1′B∗−1 (Is ⊗ dA) Σ̂

]
+

1
2
tr
[
T ∗
(
Is ⊗A′

)
B∗−1′D

(
Is ⊗ dB′

)
B∗−1′B∗−1 (Is ⊗ dA) Σ̂

]
+

1
2
tr
[
T ∗
(
Is ⊗A′

)
B∗−1′B∗−1 (Is ⊗ dB)DB∗−1 (Is ⊗ dA) Σ̂

]
. (34)

After some algebra, and giving that E
[
Σ̂
]

= (Is ⊗A)−1B∗B∗′ (Is ⊗A′)−1, the information matrix
can be written as

−E
[
d2l (θ)

]
= 2 (vecdA)′ (HA ⊗ Ig)′

(
(Is ⊗A)−1B∗ ⊗B∗−1′

)
(T ∗ ⊗ Igs)Ngs(

B∗′
(
Is ⊗A′

)−1 ⊗B∗−1
)

(HA ⊗ Ig) vecdA

−2 (vecdA)′ (HA ⊗ Ig)′
(

(Is ⊗A)−1B∗ ⊗B∗−1′
)

(T ∗ ⊗ Igs)Ngs(
D ⊗B∗−1

)
(HB ⊗ Ig) vecdB

−2 (vecdB)′ (HB ⊗ Ig)′
(
D ⊗B∗−1′)Ngs (T ∗ ⊗ Igs)

(
B∗′

(
Is ⊗A′

)−1 ⊗B∗−1
)

(HA ⊗ Ig) vecdB
+2 (vecdB)′ (HB ⊗ Ig)′

(
D ⊗B∗−1′)Ngs (T ∗ ⊗ Igs)

(
D ⊗B∗−1

)
(HA ⊗ Ig) vecdB. (35)

The information matrix FT (θ0), as defined in (30)-(31), immediately follows.

2

Using the results of Proposition 2 it becomes natural to implement the score algorithm in order
to find FIML estimates of the parameters. In fact, once calculated the information matrix FT (θ) and
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the score vector f (θ), the score algorithm is based on the following updating formula (see for example
Harvey, 1990, p. 134):

θn+1 = θn + [FT (θn)]−1 f (θn) . (36)

If the local identification does not require any restriction on the parameters, choosing accurately the
starting values for θ, the recursive algorithm (36) provides consistent estimates θ̂ for the true values
θ0. Once obtained, we can insert such consistent estimates into the information matrix and obtain the
estimated asymptotic covariance matrix of θ̂:

Σ̂θ = F
(
θ̂
)−1

=
[
p lim
x→0

1
T
FT
(
θ̂
)]−1

. (37)

Under the assumptions previously introduced, we obviously obtain

θ̂
L→ N

(
θ0, Σ̂θ

)
(38)

allowing us to make inference on the parameters in the standard way.
In the more general case, in which we have both a priori knowledge on the parameters and different

levels of volatility, and we use a combination of the two for obtaining the local identification, the FIML
approach is a bit more complicated. In particular, introducing some restrictions on the parameters,
both the score vector and the information matrix need to account for such restrictions. The solution,
however, becomes straightforward if we consider the restrictions in the explicit form as follows

vecA = SAγA + sA
vecB = SBγB + sB

(39)

or in more compact form (
vecA
vecB

)
=
(
SA 0
0 SB

)(
γA
γB

)
+
(
sA
sB

)
(40)

or equivalently
θ = Sγ + s (41)

Using the standard chain of differentiation the score vector for the new set of parameters γ can be
defined as

f (γ) = S′f (θ) (42)

and, taking into account that the information matrix can be also defined as

FT (θ) = E
[
f (θ) · f ′ (θ)

]
, (43)

considering the new vector of parameters γ, it becomes

FT (γ) = S′FT (θ)S. (44)

The score algorithm, at this stage, can be implemented for γ in order to obtain the FIML estimates γ̂.
Consistent estimates for θ and for the covariance matrix Σθ directly follows from the Cramer’s linear
transformation theorem by substituting the estimated γ̂ in (40). The standard asymptotic result

θ̂
L→ N

(
θ0,

1
T
S′FT (γ̂)S

)
(45)

thus applies.
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V Conclusion

In this paper we have presented a theoretical framework for studing the identification of SVAR models
with different regimes of volatility. In particular, we proposed a specification of the system that explic-
itly allows for different states of volatility. We suppose that the structural shocks hitting the economy
present a constant covariance matrix, but in particular periods, such shocks might have amplified,
generating thus clusters of higher volatility. The knowledge of such periods of high instability can
represent a useful source of information for identifying the system, especially when a priori restrictions
on the parameters of the model cannot be justified.

Under the assumption that the parameters remain constant over different states of volatility, we
provide an order and a rank condition for solving the problem of local identification, both in the
cases with and without restrictions on the parameters. The order condition, in particular, states that
without any constraint, it is necessary to have at least two different levels of heteroskedasticity to
reach local identification. The rank condition, instead, depends on the combination of high and low
levels of volatility present in the data.

Given the particular specification of the model, a fertile ground for possible empirical applications
can be found in the literature of contagion, where, as highlighted in Forbes and Rigobon (2002), the
distinction between interdependences (relations between endogenous variables) and pure contagion
(transmission of structural shocks) is crucial. Moreover, this methodology can be useful in the analysis
of the financial transmission, as discussed in Ehrmann et al. (2010), where the complexity of the
processes requires the investigation of all possible simultaneous relationships among the variables and
the structural shocks.
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