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Chapter 9 
 

Measures of Association Applied  
to Operational Risks 

 
R. Kenett and S. Salini 

 
Synopsis 

Association rules are a basic analysis tools for unstructured data such as accident reports, call centres 
recordings and CRM logs. Such tools are commonly used in basket analysis of shopping carts for 
identifying patterns in consumer behaviour. In this chapter we show how association rules are used to 
analyze unstructured operational risk data in order to provide risk assessments and diagnostic 
insights. We will also present a new graphical display of association rules that permits effective 
clustering of associations with a novel association rule called the Relative Linkage Disequilibrium. 
 
Keywords: Association rules, Data Mining, Relative Linkage Disequilibrium (RLD), itemsets, 
interest measures. 
 

9.1 Introduction 
Association rules are one of the most popular unsupervised data mining methods (Agarwal et al, 
1993, Borgelt et al, 2004, Kenett and Salini, 2008a and 2008b, Roever et al, 2008 and Tan et al, 
2004). They were developed in the field of computer science and typically used in applications such 
as market basket analysis, to measure the association between products purchased by consumers, or 
in web clickstream analysis, to measure the association between the pages seen by a visitor of a site. 
Sequence rules algorithms are employed to analyse also the sequence of pages seen by a visitor.  
 
Association rules belong to the category of local models, i.e. methods that deal with selected parts of 
the dataset in the form of subsets of variables or subsets of observations, rather than being applied to 
the whole database.  This element constitutes both the strength and the weak point of the approach. 
The strength is in that being local; they do not require a large effort from a computational point of 
view. On the other hand, the locality itself means that a generalization of the results cannot be 
allowed, not all the possible relations are evaluated at the same time. 
 
Mining frequent itemsets and association rules is a popular and well researched method for 
discovering interesting relations between variables in large databases. Piatetsky-Shapiro, 1991, 
describes analyzing and presenting strong rules discovered in databases using different measures of 
interest. The structure of the data to be analyzed is typically referred to as transactional in a sense 
explained below. 
 
Let I = {i1, i2, . . . , in} be a set of n binary attributes called "items". Let T = {t1, t2, . . . , tm} be a set of 
transactions called the database. Each transaction in T has a unique transaction ID and contains a 
subset of the items in I. Note that each individual can possibly appear more than once in the dataset. 
In market basket analysis, a transaction means a single visit to the supermarket, for which the list of 
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products bought is recorded, while in web clickstream analysis, a transaction means a web session, 
for which the list of all visited web-pages is recorded. From this very topic specific structure, the 
more common data matrix can be easily derived, a different transaction (client) for each row, and a 
product (page viewed) for each column. The internal cells are filled with 0 or 1 according to the 
presence or absence of the product (page).  
 
A rule is defined as an implication of the form X => Y where X,Y  I and X Y = ¢;. The sets of 
items (for short itemsets) X and Y are called antecedent (left-hand-side or LHS) and consequent 
(right-hand-side or RHS) of the rule. In an itemset, each variable is binary, taking two possible values 
only, "1" if a specific condition is true, and "0" otherwise.  
 
Each association rule describes a particular local pattern, based on a restricted set of binary variables, 
and represents relationships between variables which are binary by nature. In general, however, this 
does not have to be the case and continuous rules are also possible. In the continuous case, the 
elements of the rules can be intervals on the real line, that are conventionally assigned a value of 
TRUE= 1 and FALSE=0. For example, a rule of this kind can be X>0 => Y> 100. 
 
Once obtained, the list of association rules extractable from a given dataset is compared in order to 
evaluate their importance level. The measures commonly used to assess the strength of an association 
rule are the indexes of support, confidence, and lift. 
 

• The support for a rule A => B is obtained by dividing the number of transactions which 
satisfy the rule, N{A=>B}, by the total number of transactions, N 

 
support {A=>B} = N{A=>B} / N 

 
The support is therefore the frequency of events for which both the LHS and RHS of the rule 
hold true. The higher the support the stronger the information that both type of events occur 
together.  

• The confidence of the rule A => B is obtained by dividing the number of transactions which 
satisfy the rule N{A=>B} by the number of transactions which contain the body of the rule, 
A. 

confidence {A=>B} = N{A=>B} / N{A} 
 
The confidence is the conditional probability of the RHS holding true given that the LHS 
holds true. A high confidence that the LHS event leads to the RHS event implies causation or 
statistical dependence.  

• The lift of the rule A => B is the deviation of the support of the whole rule from the support 
expected under independence given the supports of the LHS (A) and the RHS (B). 

 
lift {A=>B} = confidence{A=>B} / support{B} 

 
           = support{A=>B}/support{A}support{B} 

 
Lift is an indication of the effect that knowledge that LHS holds true has on the probability of 
the RHS holding true. Hence Lift is a value that gives us information about the increase in 
probability of the "then" (consequent RHS)  given the "if" (antecedent LHS) part. 
 when lift is exactly 1: No effect (LHS and RHS independent). No relationship between 

events.  
 for lift greater than 1: Positive effect (given that the LHS holds true, it is more likely that the 
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RHS holds true). Positive dependence between events.  
 if lift is smaller than 1: Negative effect (when the LHS holds true, it is less likely that the 

RHS holds true). Negative dependence between events.  
 
Relative Linkage Disequilibrium (RLD) is an association measure motivated by indices used in 
population genetics to assess stability over time in the genetic composition of populations. This same 
measure has been also suggested as an exploratory analysis methods applied to general 2x2 
contingency tables (see Kenett, 1983 and Kenett and Zacks, 1998). To define RLD, consider a 
transactions set with item A on the Left Hand Side (LHS) and item B on the Right Hand Side (RHS) 
of an association rule. In a specific set of transactions, these two events generate four combinations 
whose frequencies are described in Table 9.1 below: 

 
Table 9.1: The association rules contingency table of A and B 

 
 
                 
 
 

 

 
 the relative frequency of occurrence of both A and B 
 the relative frequency of transactions where only A occurs 
 the relative frequency of transactions where only B occurs 
 the relative frequency of transaction where neither A or B occur 

 
There is a natural one to one correspondence between the set of all possible 2x2 contingency tables, 
such as Table 9.1, and points on a simplex (see Figure 9.1). We exploit this graphical representation 
to map out association rules. The tables that correspond to independence in the occurrence of A and 
B, correspond to a specific surface within the simplex presented in Figure 9.1. By "independence" we 
mean that knowledge of marginal frequencies of A and B is sufficient to reconstruct the entire table, 
i.e. the items A and B do not interact. 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 9.1: The surface of independence (D=0) 
 
 
 
 
Let    and .  
 

relative frequency of item B 

 B ^B 
A x1 x2 
^A x3 x4 
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relative frequency of item A 
 
The surface in Figure 9.1 corresponds to contingency tables with D=0 (or lift = 1). 
 
It can be easily verified that: 
 

 =  support {A=>B} 

 

 

 
 

and that 

confidence {A=>B} =  

 

lift {A=>B} = ,  

 
The geometric interpretation of D makes it an appealing measure of interaction. As mentioned, the 

surface on Figure 9.1 represents all association rules with . However points closer to the edges 
of the simplex will have intrinsically smaller values of D.  

 
Let DM  be the distance from the point corresponding to the contingency table on the simplex to the 

surface D=0 in the direction (1, -1, -1, 1).  
 
We define Relative Linkage Disequilibrium (RLD) = D/ DM. 
 
As can be seen geometrically, RLD standardizes D by the maximal distance DM . 
 
The computation of RLD can be performed through the following algorithm: 
 

 

 

 
Asymptotic properties of RLD are available in Kenett, 1983, and RLD can be also used for statistical 
inference. 
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9.2 The arules R script library 
The arules extension package for R (Hashler et al 2005 and 2008) provides the infrastructure needed 
to create and manipulate input data sets for the mining algorithms and for analyzing the resulting 
itemsets and rules. Since it is common to work with large sets of rules and itemsets, the package uses 
sparse matrix representations to minimize memory usage. The infrastructure provided by the package 
was also created to explicitly facilitate extensibility, both for interfacing new algorithms and for 
adding new types of interest measures and associations. 
 
The library arules provides the function interestMeasure() which can be used to calculate a broad 
variety of interest measures for itemsets and rules. All measures are calculated using the quality 
information available from the sets of itemsets or rules (i.e., support, confidence, lift) and, if 
necessary, missing information is obtained from the transactions used to mine the associations.  For 
example, available measures for itemsets are:  
 All-confidence (Omniecinki, 2003) 
 Cross-support ratio (Xiong et al, 2003) 
For rules the following measures are implemented:  
 Chi square measure (Kenett and Zacks, 1998) 
 Conviction (Brin et al, 1997) 
 Hyper-lift and hyper-confidence (Hashler et al, 2006) 
 Leverage (Piatetsky-Shapiro, 1991) 
 Improvement (Bayardo et al, 2000) 
 Several measures from Tan, 2004,  (e.g., cosine, Gini index, φ- coefficient, odds ratio) 
 Relative Linkage Disequilibrium (RLD), Kenett and Salini 2008a and 2008b. 
As mentioned above, the Relative Linkage Disequilibrium measure (RLD) is in the function 
“InterestMeasure()”. We use the function quadplot() and triplot() of the library klaR (Roever, 2008) 
to produce the simplex 3D and 2D representation.  
 

9.3 Some Examples 

9.3.1 Market Basket Analysis 
The first example that we consider is an application to a classical market basket analysis data set. The 
Groceries data set contains 1 month (30 days) of real world point of sale transaction data from a 
typical local grocery outlet (Hashler, 2008). The data set contains 9835 transactions and the items are 
aggregated into 169 categories. 
 
In order to compare the classical measure of association rule with RLD, we plot in Figure 9.2 
measures of the 430 rules obtained with the a-priori algorithm setting minimum support  equal to 
0.01 and minimum confidence to 0.1. 
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Figure 9.2: Plot of Relative Linkage Disequilibrium versus Support,  

Confidence and Lift for the 430 rules of Groceries data set 
 
The plot shows that RLD, like confidence and lift, is able to identify rules that have similar support. 
Moreover for low levels of confidence, the value of RLD is more variable and therefore more 
informative. The relationship of RLD with lift is interesting. It seems that RLD can differentiate 
between groups of rules with similar levels of lift.  
 
Table 9.2 displays the first 20 rules sorted by lift. For each rule, the RLD, the Odds Ratio and the Chi 
Square values are reported.  Figure 9.3 shows the value of RLD versus Odds Ratio and versus Chi 
Square for the top 10 rules. 
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Table 9.2: First 20 rules for groceries data, sorted by Lift. 
 

 
 
As we expect for the relationship between RLD and Odds Ratio, the two measures are coherent but 
still different. The Chi Square values appear not to be correlated with RLD so that the information 
provided by RLD is not redundant with Chi Square. Moreover, RLD is more intuitive than the Odds 
Ratio and Chi Square since it has a useful graphical interpretation.  
 

  
Figure 9.3: Plot of Relative Linkage Disequilibrium versus Odds Ratio  
and Chi Square for the top 10 rules of Groceries data set sorted by RLD 
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9.3.2 PBX System Risk Analysis 
In the following example we present an analysis of data collected from Private Branch Exchange 
(PBX) Telecommunication Systems (See also Chapter 5 and Cerchiello and  Giudici, 2007).  
 
Operational risks, in this context, are typically classified into hardware, software, interface, network 
and security related events (See Chapter 3). Assessing operational risks involves merging data from 
different sources such as system logs, call centre records, technical service data bases and customer 
complaints (see Chapter 5). 
 
The problem consists of mapping the severity level of problems, and the Event Category (EC) of a 
PBX under constant monitoring. Seven variables are considered, as shown in Table 9.3. For more 
details about the data see Cerchiello and Bonafede, 2009. 
 
 

Table 9.3: Event Category data set 
PBX 
No Severity 

Customer 
Type  EC2 EC1 ALARM1 ALARM2 ALARM3 

90009 2 High Tech SEC08 Security  NO_ALARM NP NP 

90009 2 High Tech NTC09 
Network 
Communications NO_ALARM NP NP 

90009 2 High Tech SEC08 Security  NO_ALARM NP NP 
90009 2 High Tech SEC08 Security  NO_ALARM NP NP 
90021 2 Municipalities SEC08 Security  NO_ALARM NP NP 

90033 2 Transportation SFW05  Software 
PCM TIME 
SLOT NP NP 

90033 3 Transportation INT04 Interface 
PCM TIME 
SLOT NP NP 

90033 3 Transportation SEC05 Security  
PCM TIME 
SLOT NP NP 

90038 2 Municipalities SFW05  Software NO_ALARM NP NP 
 
The data is recoded as a binary incidence matrix by coercing the data set to transactions. The new 
data sets present 3733 transactions (rows) and 124 items (columns). Figure 9.4 shows the item 
frequency plot (support) of the item with support major than 0.1.  
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Figure 9.4: Item Frequency Plot (Support>0.1) of EC data set 

 
We apply to the data the apriori algorithm setting minimum support to 0.1 and minimum confidence 
to 0.8 and obtain 200 rules. The aim of this example is to show the intuitive interpretation of RLD 
through its useful graphical representation. Figure 9.5 shows the simplex representation of the 
contingency tables corresponding to these 200 rules. The corners represent tables with relative 
frequency  (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1).  The dots on the left figure represent all the rules 
derived from the EC data set and the dots on the right figure correspond to the first 10 rules sorted by 
RLD.  
 
 

 
Figure 9.5: 3D Simplex representation for 200 rules of EC data set (left) 

and for the top 10 rules sorted by RLD (right) 
 
 
Figure 9.5 shows that using a simplex representation, it is possible to immediately have an idea of the 
rules' structure. In our case, there are 4 groups of aligned rules. Aligned rules imply that they have 
the same support.   
 
In order to improve the interpretation, we can try to reduce the dimensionality of the 2X2 table. A 
two dimensional representation is shown in Figure 9.6.  On the left bottom part of the simplex, there 
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are rules with high support, on the right bottom there are rules with low support and at the top are the 
rules with medium support. The table corresponding to the center point is (0,5, 0,5, 0,5, 0,5).  
 

 
Figure 9.6: 2D Simplex representation for the top 10 rules, sorted by RLD 

 

9.3.3 A Bank's Operational Risk Analysis 
Operational risk in the banking industry is defined as the risk of loss resulting from inadequate or 

failed internal processes, people and systems or from external events (Basel, 2004). 
These include: 
 Internal fraud 
 External fraud 
 Employment practices & workplace safety 
 Clients, products & business practices 
 Damage to physical assets 
 Business disruption & system failures 
 Execution, delivery & process management 
 Includes legal risk. 

Operational risks exclude reputational and business/strategic risk. 
 

The rising interest of the banking industry in operational risks is due, among other reasons, to the 
globalization of the financial markets, the growth of IT applications, and the increasing diffusion of 
sophisticated financial products. The Basel II capital accord requires banks to put aside a minimum 
capital requirement which matches its exposure to credit risk, market risk and operational risk. 
Specifically, a 12% of minimum capital requirement needs to be allocated to operational risks (Basel, 
2004).  

 
The Basel II agreement splits operational risk exposures and losses into a series of standardized 

business units, called ‘business lines’, and into groups of operational risk losses according to the 
nature of the underlying operational risk event, called ‘event types’. In (Basel, 2008) a 
comprehensive Loss Data Collection Exercise (LDCE) initiated by the Basel II Committee, through 
the work of its Operational Risk Subgroup of the Accord Implementation Group (AIGOR), is 
described. The exercise follows other similar exercises sponsored by the Basel Committee and 
individual member countries over the last five years. The 2008 LDCE is a significant step forward in 
the Basel Committee's efforts to address Basel II implementation and post-implementation issues 
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more consistently across member jurisdictions. While similar to two previous international LDCEs, 
which focused on internal loss data, this LDCE is the first international effort to collect information 
on all four operational risk data elements: 1) internal data, 2) external data, 3) scenario analysis, and 
4) business environment and internal control factors (BEICFs). The BEICFs are used in an Advanced 
Measurement Approach (AMA) for calculating operational risk capital charges under Basel II. As an 
independent contribution to the LDCE we present here the application of RLD to internal operational 
risk data collected by a large banking institution. Our goal is to demonstrate, with a concrete 
example, how RLD can be used to assess risks reported in such organizations using textual reports.  
 

We consider a data set of operational risk events with 20 variables, some categorical, some 
continuous and some textual, with a description of the loss event. Examples of such descriptions are: 

o "Booked	  on	  fixed	  income	  trade	  that	  was	  in	  the	  wrong	  pat	  fund	  code.	  Have	  cancelled	  trade	  
resultant	  in	  error	  of	  15000"	  

o "Cash	  contribution	  not	  invested	  due	  to	  incorrect	  fax	  number	  used	  by	  client.	  Not	  our	  error	  
but	  noted	  due	  to	  performance	  impact	  on	  the	  fund."	  

o "The	  client	  sent	  a	  disinvestment	  instruction	  that	  was	  incorrectly	  processed	  as	  an	  investment.	  
Due	  to	  a	  positive	  movement	  in	  the	  equity	  markets	  the	  correction	  of	  the	  error	  led	  to	  a	  gain." 

 
In the data preparation phase, we discretized the continuous variables (expected and actual values 

of loss) and, using the library tm of R (Feinerer, 2007), we selected the textual description variables, 
in particular, activity, process and risk type. Than, the data was processed for an association rules 
analysis.  

 
Following these steps, we obtain a new data set with 2515 transactions and 235 items (the levels of 

the variables). The a-priori algorithm produces 345,575 rules1. With such a large number of rules 
traditional measures of association typically cannot identify "interesting" associations. Too many 
rules with too little a difference between them. Moreover, with traditional measures of association, it 
is often difficult to explore and cluster rules in an association rules analysis. RLD and its 
complementary simplex representation help us in tackling this problem.  

 
For each rule, we calculate RLD and sort the rules accordingly. Figure 9.7 shows the first 200 rules 

with the highest level of RLD.  
 

 
Figure 9.7: Simplex representation of the first 200 rules sorted by RLD for operational risk data set  
 
 

                                                
1 We modify the default level of support in the arules alghoritm of R, we set a very low level of support 0,01. This is useful in 

operational risk application, because we expect that the loss event are not so frequent.   
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We compare the top 200 rules derived from sorting association rules by support, confidence and lift 
with RLD (see Figure 9.8). RLD clearly provides the highest resolution and interesting spread. 

 
 

 
Figure 9.8: Comparison of the first 200 rules sorted by RLD, support, confidence and lift for the 

operational risk data set  
 
 
We proceed with an automatic clustering of the rules. This is applied here to the first 200 rules 

sorted by RLD, but can also be done for other rules.  
 
The hierarchical cluster analysis is applied to the elements in the association rules contingency 

table on the numbers that we use in the calculation of RLD.  Figure 9.9 shows the cluster dendrogram 
with a highlight of 12 clusters of association rules.  
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Figure 9.9: Cluster dendrogram for the 200 rules for operational risk data set 

  
Now we produce a simplex representation for each one of the clusters. Figure 9.10 shows these 

plots. Rules in the same cluster have similar type of association. All the rules in these plots have a 
very high level of RLD, near 1, but different values for the other association measures. For example 
the rules in the left bottom corner of the clusters 5, 10 and 12 are characterized by very low support 
and very high lift. On the contrary rules in clusters 2 and 3 have high support, high confidence and 
low lift. In cluster 11 there are rules with confidence equal to 1, lift nearer 1 and very low support, 
etc…  

 
This example demonstrates the unique property of RLD, using a real data set. We conclude with a 

summary and some direction for future work. 
 

 
Figure 9.10: Cluster simplex plot for the 200 rules for operational risk data set  
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9.4 Summary 
Relative Linkage Disequilibrium is a useful measure in the context of association rules, especially 

for its intuitive quantitative and visual interpretation. An inherent advantage to informative graphical 
displays is that the experience and intuition of the experimenter who collects the data can contribute 
to the statistician's data analysis. This is an essential component of Information Quality (InfoQ) 
discussed in Chapter 1. 

 
The context for applications of RLD ranges from web sites logs, customer satisfaction surveys, 

operational risks data, call centers records and many other sources of textual data. The first two 
examples presented in this chapter show that RLD, like confidence and lift, is able to identify rules 
that have similar support. Moreover for low levels of confidence, the value of RLD is more 
informative. The relationship with lift is interesting, it seems that RLD can differentiate between 
groups of rules with the same level of lift. RLD is correlated with the Odds Ratio but differs from the 
Chi Square values. The second example highlights the major advantage of the new measure: it is 
more intuitive than the Odds Ratio and Chi Square and has a useful graphical representation of the 
rules’ structure and allows us to identify groups of rules. The third example shows how RLD can be 
used to select and cluster association rules.  

 
RLD can contribute to identify rare events in large text files, events called "Black Swans" (see 

Chapter 1, Chapter 14 and Taleb, 2007). Combining RLD with simplex representations can help 
display item sets with low support exhibiting significant association patterns. This chapter provides 
an introduction to Relative Linkage Disequilibrium with applications to Operational Risk 
Management. Hopefully it will stimulate more research on association rules and their close 
relationship with contingency tables. 
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