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ABSTRACT 

 

This research work analyses processes and dynamics occurring during the early stages of a 

biological invasion in freshwater habitats.  

I analysed processes determining the Procambarus clarkii invasion and the impact on 

native amphibians and odonates that have complex life cycles, I surveyed 148 among 

temporary and permanent wetlands of running and standing waters in a region that is at 

the edge of the  invasion range of P. clarkii, I performed repeated sampling sessions in each 

wetland obtaining both qualitative and quantitative data on freshwater communities, I 

characterized each wetland using standard parameters, and I used GIS software for the 

description of the surrounding landscape. I analysed all data using spatial models and 

considering the spatial autocorrelation (for details see chapter 2).  

Data analysis showed that the environmental features are important in determining 

the early phases of the crayfish invasion; in the study area, P. clarkii spreads more 

frequently in association with large and permanent wetlands in human-altered 

landscapes, and the autocorrelation of its populations is stronger at distances up to 2500 m 

suggesting that dispersion affect invasion processes up to this distance (chapter 2).  

Further analysis showed that environment shapes both alien invasive species (AIS) 

and freshwater communities, but considering the optimal environmental features for P. 

clarkii and for amphibians and odonates, I observed important differences related to 

wetland size, depth, hydroperiod, exposition, presence of aquatic macrophytes, and 

surrounding landscape features (chapters 2, 3, and 5).  

The observed relationships among distribution and composition of native 

communities and distribution of P. clarkii suggests that the invasive crayfish has only a 

limited direct impact on adult amphibians and odonates, but the analysis of juvenile 

stages of native communities (larvae of amphibians, larvae and exuviae of odonates) 

showed the dramatic loss of their abundance and richness in wetlands invaded by the 
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crayfish, indicating that, despite adults attempt reproduction in invaded sites, P. clarkii 

causes, with its activities, the fall down of their reproductive success (chapters 4 and 5). 

This research confirms the strong negative impact of AIS on native communities. 

My data indicate that P. clarkii determines the loss of reproductive sites, and the decrement 

of the reproductive success when native populations use the invaded sites for breeding 

(chapters 4, 5, and 6).  

This research highlights the importance of studying the early stages of an invasion, 

confirming that in this phase AIS populations have larger environmental needs that might 

make them more vulnerable at management actions (chapters 2, 3, and 6).  

Through the analysis and description of the mechanisms determining the AIS 

impact on native communities, this research helps to identify the ongoing processes at 

early stages of the AIS invasion, and the consequences that the invasive crayfish will have 

in the near future, allowing managers to start conservation actions before that the invasion 

consequences become irreversible.  
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RIASSUNTO 

 

Questa ricerca analizza i processi che si verificano durante gli stadi precoci di una 

invasione biologica negli habitat d‘acqua dolce, in particolare, sono qui analizzati i 

meccanismi che determinano l‘invasione di Procambarus clarkii e l‘impatto di questo 

gambero sulle comunità autoctone degli anfibi e degli odonati, organismi che hanno cicli 

vitali complessi, con fasi sia acquatiche sia terrestri.  

Sono stati studiati 148 differenti habitat acquatici, sia lotici sia lentici, con 

idroperiodo sia temporaneo sia permanente. Gli habitat acquatici indagati sono situati 

nell‘Italia nord-occidentale, in un territorio che è stato solo recentemente invaso da P. 

clarkii e che costituisce il limite nord del suo areale italiano.  

All‘interno di ciascuna area umida sono state eseguite ripetute sessioni di 

campionamento che hanno consentito la raccolta di dati, sia qualitativi sia quantitativi, 

relativi alla composizione e distribuzione delle comunità studiate.  

Ciascuna area umida è stata caratterizzata utilizzando un set di parametri standard 

mentre per la descrizione del paesaggio circostante è stata utilizzata la cartografia tematica 

della Regione Lombardia elaborata in ambiente GIS (per dettagli vedere il capitolo 2). 

Tutti i dati raccolti sono stati analizzati utilizzando modelli statistici spaziali che 

considerassero l‘autocorrelazione spaziale esistente tra le variabili analizzate. 

L‘analisi dei dati ha mostrato che le caratteristiche ambientali hanno una importanza 

significativa nel determinare le fasi precoci dell‘invasione di P. clarkii; infatti, nell‘area 

indagata, P. clarkii ha mostrato una significativa associazione con zone umide  ampie, 

permanenti e circondate da un paesaggio ad elevata alterazione antropica. La 

distribuzione spaziale delle popolazioni di P. clarkii ha inoltre mostrato di risentire 

dell‘effetto dell‘autocorrelazione spaziale sino ad una distanza di 2500 m suggerendo che 

le dinamiche dell‘invasione di P. clarkii siano influenzate dalla dispersione sino a questa 

distanza (capitolo 2).  
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Analisi successive hanno mostrato importanti differenze nei parametri che rendono 

l‘ambiente ottimale per ciascuno dei taxa considerati (P. clarkii, anfibi e odonati). In 

particolare sono state osservate differenze relative a profondità, idroperiodo, estensione ed 

esposizione dell‘area umida, presenza di macrofite acquatiche e caratteristiche del 

paesaggio circostante (capitoli 2, 3 e 5). 

 Le analisi effettuate sulla relazione tra la composizione e la distribuzione delle 

comunità autoctone degli anfibi e degli odonati e la distribuzione delle popolazioni di P. 

clarkii hanno suggerito l‘esistenza di un limitato impatto diretto del gambero invasivo 

sugli stadi adulti degli anfibi e degli odonati, ma le analisi compiute sugli stadi giovanili 

delle comunità autoctone (larve degli anfibi, larve ed esuvie degli odonati) hanno mostrato 

la forte riduzione della loro abbondanza e ricchezza nelle zone umide invase dal gambero 

indicando che, nonostante i tentativi da parte degli individui adulti di riprodursi in tali 

siti, il gambero ne provoca la riduzione del successo riproduttivo (capitoli 4, 5 e 6). 

I risultati ottenuti sottolineano l‘importanza di studiare gli stadi precoci di una 

invasione, confermando che, in questa fase, le specie alloctone hanno richieste ambientali 

che possono accrescere il successo delle azioni di gestione (capitoli 2, 3 e 6). 

Questa ricerca conferma il forte impatto negativo delle specie invasive sulle 

comunità autoctone: la presenza di P. clarkii determina la perdita di siti riproduttivi e la 

riduzione del successo riproduttivo quando le specie autoctone utilizzano i siti invasi per 

la riproduzione (capitoli 4, 5 e 6). 

Attraverso l‘analisi dei meccanismi che determinano l‘impatto delle specie invasive 

sulle comunità autoctone, questa ricerca fornisce indicazioni utili ad identificare i processi 

in atto nelle prime fasi dell‘invasione e le conseguenze che la diffusione del gambero 

invasivo avrà nel prossimo futuro. Queste conoscenze potrebbero guidare verso l‘avvio di 

azioni di conservazione prima che gli effetti dell‘invasione diventino irreversibili.   
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1.1. THESIS STRUCTURE    

 

This thesis work analyses the relationships and dynamics that occur during early stages of 

a biological invasion. I considered freshwater communities and the invasion processes are 

here studied from multiple perspectives. I analysed both processes determining the 

invasion and effects on native populations.  

I studied the red swamp crayfish, Procambarus clarkii, considered a keystone alien 

invasive species, and both amphibian and odonate communities, which are well known 

taxa already used as indicators for biological assessment and environmental monitoring 

(Córdoba-Aguilar, 2008; Linder et al., 2003; Wells, 2007).  

I surveyed a total of 148 wetlands in Lombardy, Northern Italy, within the upper Po 

River plain, and the hilly pre-Alpine region called Brianza (Figure 1); this region is 

characterized by a sub-continental temperate climate, with annual average temperatures 

between 10° C, and 14.4° C, and annual average rainfall between 1400 mm and 1600 mm 

(Rogora et al., 2002). This region is rich in wetlands, forming a complex network of lakes, 

ponds, rivers, and canals of various size. I studied both standing and running waters 

including small lakes (Lake Varese, Lake Annone, Lake Pusiano, Lake Alserio, Lake 

Segrino, and Lake Montorfano), rivers and streams (River Ticino, River Lambro, Stream 

Curone, and Stream Nirone), and a wide variety of lentic and lotic biotopes like bogs, 

marshes, ponds, canals, springs, and fontanili. I investigated both temporary and 

permanent habitats located at an altitude between 132 m of Bernate Ticino and 397 m of 

Lake Montorfano.  

Currently this region is at the edge of the invasion range of P. clarkii including areas 

with published and unpublished records (Barbaresi and Gherardi, 2000; Fea et al., 2006; 

Romanò and Riva, 2002), as well as areas where P. clarkii has not been recorded, but the 

species might be present because of proximity to localities of presence and existence of 

potentially suitable wetlands (Cruz and Rebelo, 2007; Gherardi, 2006).  
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Figure 1. Study area; black lines enclose the areas where the surveyed wetlands are located; 1: Lake 

Varese and Regional Nature Reserve Brabbia Marsh; 2: River Lambro, Lake Annone, Lake Pusiano, 

Lake Alserio, Lake Segrino, Lake Montorfano, and Albate Marsh; 3: Montevecchia and Valle del 

Curone Regional Park; 4: Groane Regional Park; 5: Grugnotorto Park; 6: River Ticino. Map derived 

from the CORINE land cover; red: urban areas; yellow: cultivated areas; green: natural vegetation 

(mainly woodlands); grey: sterile areas; blue: water bodies. 
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Invasion dynamics are determined by multiple processes embedded within a complex 

spatial context (McIntire and Fajardo, 2009); invaded ecosystems show a complex web of 

interactions that involves environmental stressors, alien species and native communities 

(Didham et al., 2007; Strayer, 2010); therefore, the identification of ongoing mechanisms 

can be difficult, and only a small subset of studies considered the effects of alien invasive 

species (AIS) concurrently to the ones of environmental alterations, such as urbanization 

or the degradation of natural environments, that can have both negative and non-additive 

interactions with native species (Didham et al., 2007).  

This thesis is composed by an introduction on the biology and ecology of the 

studied organisms, by four sections (chapters 2, 3, 4, and 5) that are four partially 

independent papers, in which the different lines of this research are discussed, and by a 

conclusion (chapter 6), where I discuss the main results and implications of this research 

work. 

The first paper (chapter 2) analyses the P. clarkii spatial patterns and the 

mechanisms driving its invasion, to understand how environmental features influence the 

spread of this species. The problem is analysed using information theory, and spatial 

statistics (McIntire and Fajardo, 2009). Are tested four a priori hypotheses representing 

different biological processes that can explain the invasion of P. clarkii: (1) Connectivity; (2) 

Landscape alteration; (3) Wetland features; (4) Vegetation hypothesis. Understanding the 

mechanisms of an invasion allow to identify areas where the invasion risk is highest, 

helping to undertake more effective management and control actions (Hulme, 2006). 

The second paper (chapter 3) shows the relationships between wetland features 

(hydroperiod; wetland size) and the distribution of amphibians and P. clarkii, to evaluate 

whether wetland features determine suitability in a different direction for these taxa. This 

analysis helps to focus management efforts within the areas where suitability for 

amphibians is high, while environmental features are suboptimal for P. clarkii. 

The third paper (chapter 4) assesses the relationships between the distribution of 

amphibian breeding sites and P. clarkii, while taking into account environmental features; 



1. Thesis structure and introduction 

 

 

14 

 

subsequently, it analyses the abundance of amphibian larvae in a subset of wetlands 

where amphibians breed, testing whether P. clarkii causes a loss of breeding success (a key 

parameter of fitness). The distribution of both native and alien species can be strongly 

affected by spatial autocorrelation: nearby localities can have similar occupancy, because 

species distribution is limited by dispersal mechanisms (particularly in AIS), and because 

species biotopes are related to environmental features (e.g., vegetation, climate, and 

landscape composition) which are, in turn, spatially autocorrelated (Beale et al., 2010); 

therefore, spatial autocorrelation was integrated into all analyses. 

The fourth paper (chapter 5) assesses the relationship between P. clarkii and the 

richness of the odonate communities. The distribution of adult odonates, larval stages, and 

exuviae, that indicate the odonate reproductive success (Córdoba-Aguilar, 2008), are 

analysed considering the landscape composition, the wetland features, and the spatial 

autocorrelation, to explain the observed community patterns at early stages of the P. clarkii 

invasion (Hamasaki et al., 2009), to suggest long term effects of this AIS on odonate 

communities, and to propose management lines.  

The fallowing paragraphs (paragraphs 1.2, 1.3, 1.4 and 1.5) introduce the model 

species, to familiarize with their biology and ecology; amphibians and odonates are 

attractive organisms that have complex life cycles (Stoks et al., 2008; Wilbur, 1980) with 

adults and juvenile stages that occupy different niches and are subjected to different 

impact from environmental stressors. This work analyses this biological complexity 

allowing a detailed description of the ongoing phenomena and mechanisms driving alien 

species invasions and determining their impact on native communities. 
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1.2. ALIEN INVASIVE SPECIES (AIS) 

 

With their usual functioning ecological systems produce services that are essential to 

preserve life on earth and that significantly contribute to human welfare. The biodiversity 

is an essential part of the ecological systems and biodiversity conservation is necessary to 

safeguard the ecosystem functions and life (Vilà et al., 2010; Worm et al., 2006).  

In last decades, human activities have strongly contributed to the dramatic 

acceleration of biodiversity loss and now this process is clearly detected at global scale 

(Costanza et al., 1997; Daily et al., 1997; Drake, 2009; Worm et al., 2006). As the world‘s 

global economy increases scale, trends of transport, and travel activities, as dramatically 

enhances the spread of alien species, allowing them to easily surmount natural geographic 

barriers and accelerating the invasion processes (Wittenberg and Cock, 2001). As a result 

currently there are approximately 50.000 alien species in the United States (Pimentel et al., 

2005), 11.000 alien species are inventoried in Europe (Drake, 2009), and more than 60% of 

alien insects and 25% of alien plants in Europe arrived during the last 50 years (Pyšek et 

al., 2010).  

Alien species are organisms that are found out of their natural distribution area, 

and that could not be there without the human mediation. In some cases alien species can 

take advantage from the new environmental and biological features, or from human made 

habitat alterations (Bulleri and Airoldi, 2005; Didham et al., 2007; Schlaepfer et al., 2010); 

then, some alien species can quickly increase their abundance and distribution becoming 

invasive (AIS), and strongly affecting natural ecosystems by competing native species, 

consuming them, preying them, overgrowing them, spreading diseases, and hybridizing 

with them. Negative impact of AIS comprises alteration of hydrology, fire regimes, food 

web, flux of nutrients and other ecosystem processes, and can lead to the collapse of the 

invaded habitats. The AIS impact is now recognized as one of the major drivers of 

biodiversity loss both at local and at global scale (Pimentel, 2002); in fact, many native 
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ecosystems have been irretrievably invaded by AIS, leading to the extinction of thousands 

native species (Drake, 2009; Wittenberg and Cock, 2001).   

The AIS introduction is often unintentional (Vitousek et al., 1997) but biological 

invasions should be considered a further impact of human activities on natural 

environments, determining enormous additional costs on agriculture, forestry, fisheries, 

and other human enterprises, as well as on human health. The financial costs of an 

invasion can be grouped by its detrimental effects on provisioning ecosystem services and 

by the costs needed to manage the AIS. Nevertheless, the economic evaluation of alien 

species cannot be based exclusively on market costs, and must include indirect and non-

use value costs (Pejchar and Mooney, 2010; Vilà et al., 2010).  

The evidence of increasing numbers of alien species introductions over the past few 

decades must contribute to the development of a global and regional awareness and to 

devote further researches to understand the AIS impact. The European DAISIE 

consortium ‗‗Delivering Alien Invasive Species Inventories for Europe‘‘, founded by the 

sixth framework program of the European Commission, has the aim to create an inventory 

of alien species that threaten European environment, providing the basis for spread 

prevention and control of them, and highlighting risks and impacts of invasions. 

There are two main stages in the invasion processes: first, the introduced species 

must arrive, survive, and establish itself in a new area; second, the alien species, 

developing an invasive behavior, spreads and replaces native species; the number of 

individuals introduced and the number of release events have emerged as the most 

important factors for predicting whether or not an alien species will become established 

(Allendorf and Lundquist, 2003).  

Alien species are not equally distributed among the different habitats of a region; in 

European habitats, can be recognized two major groups of AIS: plants and insects versus 

vertebrates (Pyšek et al., 2010). These two groups appear to be complementary in terms of 

habitat use: the highest number of alien plants and insects are found in human-made 
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urban or cultivated habitats. Conversely, vertebrate invaders are more distributed among 

cultivated land and habitats with aquatic and riparian woodlands. 

Freshwater habitats are particularly vulnerable to alien species invasions: hundreds 

of freshwater species have been moved outside of their native ranges by a number of 

vectors such as canals, ballast waters, or by deliberate introductions, and releases from 

aquaria, gardens, and bait buckets (Strayer, 2010), and the alien species introductions into 

freshwaters are today regarded as a main driver of biodiversity loss (Gherardi, 2007).  

A disconcerting example of the large presence of alien species in freshwater 

ecosystems is provided from Italian inland waters where 112 non native animals have 

been already recognized (64 invertebrates and 48 vertebrates) constituting the 2% of the 

total inland water fauna, and including seven AIS listed among the 100 worst invasive 

species at global scale (Gherardi et al., 2008); again, the rate of extinctions is impressive in 

freshwater habitats, even five times higher than those of terrestrial habitats (Ricciardi and 

Rasmussen, 1999) and AIS  are a major cause of this biodiversity loss.  

The most ecologically important AIS in freshwaters include pathogens that can 

destroy entire populations, aquatic plants that alter the quantity and quality of primary 

production and have strong engineering effects, molluscs that as primary consumers 

change the food web from its base, fishes that disrupt at various level the food web, and 

decapods acting as powerful omnivores and ecosystem engineers (Strayer, 2010).  
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1.3. THE RED SWAMP CRAYFISH Procambarus clarkii  

 

Crayfishes are the largest mobile macroinvertebrates in freshwater 

ecosystems; they are an important component of freshwater 

habitats where their populations can strongly influence the 

environmental features (Holdich and Lowery, 1988).  

Freshwater crayfishes occur naturally on all continents 

except Antarctica, the sub-continent of India, and Africa (they are 

present in Madagascar) (Souty-Grosset et al., 2006); North America 

and Australia are the two centers of highest crayfish diversity. 

Taxonomically, crayfishes are Decapoda that belong to two 

superfamilies: Astacoidea (families Astacidae and Cambaridae) 

and Parastacoidea (family Parastacidae). Astacidae are distributed 

across Europe and in North America west of the Rocky Mountains 

while Cambaridae are distributed in North America east of Rocky 

Mountains, and south through Mexico and in Asia. Cambaridae is 

the largest freshwater crayfish family, with over 409 described 

species (Souty-Grosset et al., 2006).   

Procambarus clarkii (Girard, 1852) is a cambarid crayfish 

native to north-eastern Mexico and south-central USA. For its 

dominant rule in culture and capture fisheries it is considered 

among the most important commercial species of crayfish; 

because of its economic and alimentary value it has 

been widely introduced and is now invasive worldwide 

with the exception of Australia and Antarctica 

(Barbaresi and Gherardi, 2000; Huner, 1994).  

Within Europe P. clarkii was first introduced for 

aquaculture during 1973, in southern Spain, where soon 

Figure 2. From top to bottom: 

Procambarus clarkii adult male,  

P. clarkii soon after moulting, 

and P. clarkii female with 

offspring attached to the 

abdomen.  

Images by M. E. Siesa. 
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becomes established; afterwards, new introductions have followed throughout Europe, 

where is currently present in 13 countries, appearing for the first time in Italy during 1977 

(Gherardi, 2006; Souty-Grosset et al., 2006). 

The enhanced plasticity of P. clarkii life cycle (Gherardi et al., 2000) enable it to 

tolerate a wide range of physical, chemical, and biological conditions, it is a generalist 

crayfish that can live in a wide range of different wetlands, including rice fields, marshes, 

ponds, lakes, reservoirs, irrigation canals and flowing waters, from 0 to 1200 m a.s.l. that is 

its altitudinal limit in Europe (Souty-Grosset et al., 2006). P. clarkii can survive both in 

waterbodies that freeze during winter and in seasonally flooded waterbodies that, in its 

natural range, host the most abundant populations (Huner, 1988).  

During the dry season P. clarkii makes burrows with a depth of more than 2 m that 

provide humid survival shelters (Correia and Ferreira, 1995; Cruz and Rebelo, 2007; Ilhéu 

et al., 2003). P. clarkii can survive for long period overland and shows a dispersal ability 

that can exceed 3 km per day (Barbaresi and Gherardi, 2000; Barbaresi et al., 2004; 

Gherardi et al., 2002).  

Procambarus clarkii is considered an r-selected species with high fecundity, fast 

maturation and short life cycle, it can reach the maturity after eleven moults, with an 

intermoult period of 6–30 days at 20-22° C making possible two generations per year. 

Mating occurs during autumn winter and spring, when, depending on female size, P. 

clarkii can produce more than 700 eggs each oviposition, with embryonic development that 

lasts 2-3 weeks at 22° C. In addition, P. clarkii shows complex mother-offspring 

relationships that can enhance offspring survival, increasing the demographic growth of 

invasive populations (Aquiloni and Gherardi, 2008; Gherardi, 2006; Hazlett et al., 2003; 

Huner, 1988; Huner and Lindqvist, 1991; Savini and Occhipinti-Ambrogi, 2008; Souty-

Grosset et al., 2006). 

Procambarus clarkii is a keystone AIS that can have multiple negative impact on 

native species, ecosystems, and human health. P. clarkii can diffuse the crayfish plague 

Aphanomyces astaci and outcompete native European crayfishes, causing their striking 



1. Thesis structure and introduction 

 

 

20 

 

decline (Gherardi and Panov, 2009; Gil-Sánchez and Alba-Tercedor, 2006; Souty-Grosset et 

al., 2006); P. clarkii is a polytrophic and opportunistic crayfish that feeds on vegetal 

detritus but also on molluscs, insects, amphibians, fishes and macrophytes, causing 

complex changes in the food webs and leading to the decline of several native species 

(Cruz and Rebelo, 2005; Cruz et al., 2008; Ficetola et al., 2010; Gherardi, 2006; Siesa et al., 

2010a; Siesa et al., 2010b; Souty-Grosset et al., 2006). Procambarus clarkii accumulates in its 

tissues heavy metals, pesticides and toxins of cyanobacteria, transferring them to its 

consumers (Alcorlo et al., 2006; Gherardi, 2006), it can also spread parasite helmints of the 

genus Paragonimus, potentially pathogenic for humans (Gherardi and Panov, 2009).  

Moreover, P. clarkii can destroy submerged macrophytes using chelipads in non 

consumptive actions, it can damage agricultural areas such as rice plantations by feeding 

on young rice plants, and with its burrowing activity it can destabilize dams and banks, 

and cause release of nutrients from the sediment to the water (Barbaresi and Gherardi, 

2000; Gherardi and Panov, 2009; Matsuzaki et al., 2009; Souty-Grosset et al., 2006).  

Procambarus clarkii, that is considered one of the 100 worst alien species in Europe 

(Drake, 2009), acts as an ecosystem engineer which modifies the flow of nutrients and 

alters multiple features of invaded wetlands. In mesotrophic and eutrophic wetlands it can 

lead to a switch from a clear to a turbid water phase, with abundant microalgae and 

reduced primary production by hydrophytes and periphyton (Gherardi and Acquistapace, 

2007; Matsuzaki et al., 2009). With its activities P. clarkii leads to a dramatic loss of the 

biodiversity and increase of biotic homogenisation (Correia and Anastacio, 2008; Cruz et 

al., 2008; Gherardi and Acquistapace, 2007). 

Worldwide, main predators of P. clarkii are fishes and large wading birds like 

herons, egrets and storks; other predators are carnivorous mammals such as otters, minks, 

raccoons, turtles, snakes and alligators; invertebrates like dytiscid beetles, aquatic 

hemipterans, fisher spiders, and dragonfly larvae can also be effective predators of early 

juvenile stages of the crayfish (Correia, 2001; Souty-Grosset et al., 2006; Witzig et al., 1986).  
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The management of large invasive populations of P. clarkii is a challenge that led to 

multiples practical attempts and researches (Aquiloni et al., 2009; Aquiloni et al., 2010; 

Gherardi and Panov, 2009). In Spain organophosphate pesticides used by farmers caused 

the deaths of thousands of birds (Holdich and Lowery, 1988); in Italy the synthetic 

pyrethroid ―ciflutrin‖ has been tested in laboratory and found to be relatively effective 

against the invasive crayfish (Souty-Grosset et al., 2006); biodegradables surfactants, 

which inhibit oxygen consumption, might have some potential in limiting the damage 

being done by P. clarkii in rice crops (Souty-Grosset et al., 2006); the sterilization by X-ray 

irradiation of a large number of males, then released in invaded habitats, is under research 

for its potential in reduction of  the overall reproductive success of P. clarkii populations 

(Aquiloni et al., 2009); the potential of European eel (Anguilla anguilla), an effective 

predatory fish, was also tested to employ it in the biological control of P. clarkii (Aquiloni 

et al., 2010). 

None of the so far attempted actions had a decisive effect in controlling invasive 

populations of P. clarkii (Aquiloni et al., 2009; Aquiloni et al., 2010). More effective 

management programs give primary importance to the prevention and early detection of 

new introductions, and adopt a combination of methods, that have to be calibrated with 

the application context (Aquiloni et al., 2005; Hein et al., 2007; Keller et al., 2008; Polasky, 

2010). 
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1.4. ECOLOGY AND CONSERVATION OF AMPHIBIANS 

 

For the complexity of their life cycles (Wilbur, 1980) and the 

degree to which their life cycles vary in response to environmental 

conditions, amphibians are exceptional among tetrapods.  

In the ―standard‖ life cycle of most amphibians, 

reproductive females lay eggs in water, larvae hatch, feed, and 

gradually metamorphose into terrestrial or semi-aquatic adults; 

larvae and adults of urodeles are carnivorous, while anuran larvae 

are mostly herbivorous and adults are carnivorous (Wells, 2007).  

Amphibian larvae can modify their rates of development in 

response to environmental conditions such as temperature, 

hydroperiod, water depth, dissolved oxygen concentration, pH, 

competitors, larval density, food availability, and presence of 

predators. These factors, either independently or in concert, could 

affect larval growth and development, depending on the relative 

costs and benefits of remaining in the larval stage or, under 

unfavorable environmental conditions, to accelerate the 

metamorphosis (Wells, 2007).  

Amphibian larvae affect primary production and nutrient cycle in 

aquatic biotopes: in pond ecosystems, the increased tadpole 

biomass observed during the life cycle of anuran populations can 

be accompanied by reduced standing crop of 

suspended particles, including phytoplankton, by a 

shift in the state of nitrogen from largely particulate to 

largely dissolved, and by reduced rates of primary 

production, with a shift in phytoplankton community 

Figure 3. From top to bottom: 

Rana latastei adult female, Hyla 

intermedia first year juvenile, 

and Salamandra salamandra 

pregnant female.  

Images by M. E. Siesa. 
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structure determining the reduction of filamentous algae; tadpoles can regulate the 

primary production by both reducing standing crop and altering specific growth rates of 

algae; when metamorphosis removes these transient consumers, rates of primary 

production can dramatically increase (Seale, 1980).  

At all life stages amphibians constitute a food resource for a rich predator 

community; vertebrate predators include fishes, reptiles like turtles and snakes, birds, 

mammals, and even larval and adults urodeles and anurans; invertebrate predators 

worldwide are leeches, arthropods like amblypygids, spiders, aquatic bugs, and 

predaceous aquatic beetles. Larval odonates and crustacean decapods like crayfishes are 

further important predators of amphibians (Bowerman et al., 2010; Wells, 2007).  

The amphibian population demography is complex to study because the life cycles 

of most amphibians include different stages being exposed to different predators, and to 

different physical and biological environmental features, an then, to understand what 

factors regulate the size of amphibian populations, studies are needed on complex 

processes occurring at all life stages (Hellriegel, 2000).  

Studies analysing prey-predator interactions in amphibian populations, although 

include lists of potential predators, seldom provide quantitative data on the impact of 

those predators on amphibian survivorship, and the impact of specific predators is even 

more difficult to estimate; therefore data on the demographic impact of predation are 

currently scarce, at present, we need more information on sources of mortality at all stages 

of the life cycle for any amphibian species (Wells, 2007). 

Habitat fragmentation and alteration is one of the major factors leading to the 

observed decline of several amphibian species (García-Muñoz et al., 2010). Amphibians 

are strongly sensitive to changes of environmental parameters, in North America and 

Europe, where there is an impressive and well documented decline of amphibian 

populations, this trend is usually associated with habitat alterations.  

Because of their complex life cycle that force amphibians to a life between water 

and ground, amphibian populations survival is strongly dependent by the features of both 
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aquatic and terrestrial habitats; suitable terrestrial habitats surrounding breeding ponds 

are needed for amphibian persistence (Hazell et al., 2001). Wetlands surrounded by forests 

or scrublands or in watersheds less exploited by humans have an increased suitability for 

amphibians. The highest amphibian richness values have been found in wetlands where 

the watersheds are more heterogeneous, with numerous shelters and migration corridors 

which are essential for the survival during the terrestrial phase. Others important factors 

that can determine amphibian decline include the direct exploitation, the impact of 

pathogens, the global climate change (Stuart et al., 2008), the increased ultraviolet B (UV-

B) radiation and the augmented predation pressure due to the introduction of invasive 

predators, like fishes or crayfishes, in aquatic biotopes where amphibians evolved in 

absence of them (Alford and Richards, 1999; Cruz et al., 2008 ); alien predators, such as the 

North American bullfrog Rana catesbeiana and the freshwater crayfish P. clarkii, can 

determine the collapse and the extinction of amphibian populations (Cruz et al., 2006b; 

Cruz et al., 2008; Siesa et al., 2009b).  

Amphibians are considered the most threatened taxon between vertebrates, at 

present, the 43.2% of the amphibian species have declining populations and, applying the 

IUCN Red List criteria (IUCN, 2001), 32.5% of them (1856 species) are considered 

Vulnerable, Endangered or Critically Endangered, and a generalized increase of this 

percentage is expected in the next future. There is an urgent need of new data on the 

causes of amphibian decline, in fact, for the 22.5% of the amphibian species there is a 

remarkable lack of data on population demography, ecological needs, threats, and 

declining causes (Chanson et al., 2008; Stuart et al., 2008).  
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1.5. ECOLOGY AND CONSERVATION OF ODONATES 

 

Odonates have a complex life cycle (Corbet, 2004; Wilbur, 1980) 

with incomplete metamorphosis; odonate life cycle includes egg, 

larva, and adult stage but no pupa, and comprises an abrupt 

ontogenetic change in individual‘s morphology and habitat (Stoks 

et al., 2008; Wilbur, 1980).  

Eggs are laid either freely in water, inserted in the 

vegetation growing in the water, in the vegetal detritus, in the 

sediment, beside water, or in damp ground; after laying, eggs 

may enter diapause, to pass through harsh environmental 

conditions, or develop immediately, hatching from two, like most 

Zygoptera, to four weeks after laying. After hatching, individuals 

emerge as aquatic or semi-aquatic larvae and can remain as larvae 

for weeks, if they occupy temporary ponds, to years, in case of 

semivoltine species developing in permanent waters. At the end 

of the larval phase, individuals metamorphose into aerial adults 

that may survive for a few days, in the most of the species, to 

months, like the Sympecma genera that overwinter at the adult 

stage (Askew, 2004; Corbet, 2004).  

Odonates are top predators in vertebrate free habitats 

(Simaika and Samways, 2008); both larvae and adults are 

carnivores, they are generalist feeders preying 

anything of suitable size such as leeches, molluscs, 

worms, crustaceans, midges, mosquito larvae, fish fry, 

and tadpoles (Askew, 2004; McPeek, 2008; Simaika 

and Samways, 2008). Larvae catch the prey detecting 

them with the antennae and with the eyes, and using a 

Figure 4. From top to bottom: 

Lestes sponsa mature male, 

Enallagma cyathigerum mature 

male, and Sympetrum sanguineum 

immature female.  

Images by M. E. Siesa. 
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specialized mouth part that differentiate from the labium and is called mask. The mask, a 

unique odonate adaptation, is a prehensile structure that can be shot out to grab the prey 

(Askew, 2004; Corbet, 2004; McPeek, 2008).  

Although predators at all life stages odonates can play a wide set of functions in the 

food web of freshwater ecosystems that depend on the species, life stage, presence of other 

predators, and composition of the biological community in the biotopes (Corbet, 2004; 

Crumrine, 2010).  

Several species of odonates are stenotopic and require specific habitat conditions 

(Oertli, 2008), and one of the primary environmental features that shape odonate 

communities is the habitat difference between flowing and standing waters; predators 

may also play an important role in determining the distribution of species; other 

important factors for odonate species distribution are the water quality, the sediment and 

the microhabitat substrate, the presence and type of the vegetation, the quantity and 

quality of the shadow, the extent of aquatic habitats, and the water depth (Corbet, 2004; 

Córdoba-Aguilar, 2008).  

Odonates have a peculiar life cycle that put them in contact with the aquatic 

environment, during the juvenile phases, and with the surrounding landscape, from the 

emerging phase, giving them a particular sensitivity to human disturbance both at 

microhabitat and at landscape level (Samways and Steytler, 1996). Based on adult stage 

observation, it was evaluated the relative importance of the different habitat elements on 

odonate community composition, finding that the abundance of benthos preys and the 

within-habitat environment and landscape features have comparable effects in 

determining the adult odonate assemblages (Hamasaki et al., 2009; Yamanaka et al., 2009); 

in addition, odonate species richness appears to be associated with species richness of 

vascular plants both in the aquatic biotope and in the surrounding landscape (Hamasaki et 

al., 2009; Mabry and Dettman, 2010; Sahlen and Ekestubbe, 2001). 
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Odonate community composition and demography depend on the demographic rates of 

each life stage that are influenced by a wide set of physical, chemical, and biological 

parameters (Corbet, 2004; Pierce et al., 1985; Worthen et al., 2001). 

After deposition, eggs may die or fail to develop because they are unfertilized, or the 

development may be arrested by unfavorable environmental parameters, furthermore, 

eggs can be parasitized or eaten (Fursov and Kostyukov, 1987). 

Because many species spend the majority of their life as larvae, the larval stage is a 

demographically critical phase of the life cycle for determining both odonates distribution 

and abundance (McPeek, 2008). Although the demographic effects of parasites have been 

better studied in the adult stage, parasites are a possibly significant source of larval 

mortality and difficulty to growth. Some of the key parasites that infect odonate larvae are 

nematodes and microsporidians (McPeek, 2008).  

Odonate larvae are frequently food-limited due to lower productivity habitats, or 

because of competition for resources with other organisms in the food web. In presence of 

mortality threats like conspecifics cannibals or other predators, odonate larvae reduce 

growth rates until more than 50%; reduced growth rates may be critical for species living 

in water bodies that dry periodically where fast juvenile phase is crucial; processes that 

slow growing, forcing odonate larvae to remain longer time in smaller size classes, 

increase larval exposure to potential mortality sources like cannibals and predators 

thereby increasing the larval mortality rate. Larval mortality due to predation is the major 

demographic force shaping abundances for most species (Crumrine, 2010; McPeek, 2008); 

habitually, the most important larval predators are fishes, other odonates (Crumrine, 

2010), and other aquatic insects  like predaceous diving beetles and aquatic hemipterans 

(Heads, 1985; Magnusson and Williams, 2006); experimental results reveal that up to 80% 

of larval mortality is due to the dominant predator present in the species biotope (McPeek, 

2008; Stoks and McPeek, 2003).  

Crayfishes, with their feeding activity, can drive to the decline of abundance and 

richness of macrophytes and macrobenthic invertebrates, dramatically altering the 

http://pubs.nrc-cnrc.gc.ca/fra/livres/livres/9780660179674.html
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odonate habitat and reducing richness and abundance of odonate communities (Gherardi 

and Acquistapace, 2007; Matsuzaki et al., 2009; McCarthy et al., 2006; Nyström et al., 1996; 

Ott, 2009; Ott and Samways, 2010; Siesa et al., 2009c; Wilson et al., 2004); bigger dragonfly 

larvae (e.g. Aeshnidae) are effective predators of young crayfishes (until 30 mm total 

length) (Gydemo et al., 1990; Witzig et al., 1986) but larger crayfishes can easily feed on 

odonate larvae, even preferring them to other type of prey (Ilhéu and Bernardo, 1993). 

Odonates are the first insect order evaluated at global scale applying the IUCN Red 

List Categories and Criteria (IUCN, 2001); 10% of odonates are considered threatened and 

assigned to an IUCN Red List category among Vulnerable, Endangered, and Critically 

Endangered (Clausnitzer et al., 2009).  

Odonates constitute an effective tool for environmental assessment and monitoring; 

when sampled using standardized methods, odonates provide excellent data for ecological 

and evolutionary studies, and are proposed as biodiversity indicators, for the assessment 

of water-body health, for the monitoring of management practices, for the detection and 

prediction of the biological impact of the climate warming, and for the evaluation of AIS 

impact (Oertli, 2008; Ott, 2007; Sahlen and Ekestubbe, 2001; Samways, 2008; Settele et al., 

2010). Odonates are considered a keystone, umbrella, and flagship taxon; they are present 

in different aquatic biotopes and wetlands like marshes, peat bogs, ponds, lakes, and 

running waters; they are well diverse, well identifiable, and have a well established 

taxonomic framework; they use aquatic habitats as larvae and terrestrial areas as adults; 

they are geographically widespread, they are particularly well accessible and amenable to 

standard sampling; they are likely to generate political and popular sympathy; they are 

well studied, for many species are available data on ecological traits, and they have a 

significant conservation value. These reasons allow to recognize odonates as an interesting 

and helpful model to study the ecological interactions in freshwater ecosystems 

(Clausnitzer et al., 2009; Oertli, 2008; Sahlen and Ekestubbe, 2001). 
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ABSTRACT 

 
The red swamp crayfish Procambarus clarkii is native to Eastern North America, but has 

been introduced worldwide. It is a keystone invasive species causing multiple issues to 

native ecosystems. Analysing spatial dynamics and distribution patterns can help to 

understand the mechanisms driving invasions. We assessed the distribution of P. clarkii in 

119 waterbodies in a recently invaded area, through multiple techniques. We evaluated 

four a priori hypotheses on processes that may determine crayfish invasion: landscape 

alteration, connectivity, wetland suitability for abiotic and biotic features. We used 

spatially explicit statistical techniques (Spatial Eigenvector Mapping and Generalized 

Additive Models) within an information-theoretic framework to assess the support of 

hypotheses; we also analysed the pattern of spatial autocorrelation. The analysis of 

detectability showed high reliability of survey results. Procambarus clarkii was significantly 

associated to the largest, permanent wetlands within the most human-dominated 

landscapes, indicating that abiotic features of wetlands and landscape alteration are major 

drivers of the species‘ distribution. Species distribution data, residuals of ordinary 

regression models, and spatial eigenvectors all showed positive and significant spatial 

autocorrelation at distances up to 2500 m; this may be caused by the dispersal ability of the 

species. At the early stages of the invasion, this crayfish can take advantage of human 

activities; wetlands with high suitability may act as sources for the invasion. Our analyses 

help to understand the processes determining the invasion and to identify areas most at 

risk where screening and early management efforts can be focused. 

 

KEYWORDS: a priori inference, habitat selection, isolation, landscape composition, 

spatial autocorrelation. 
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2.1. INTRODUCTION 

 

The red swamp crayfish Procambarus clarkii is native of Eastern North America, but has 

been introduced worldwide because of its economic and alimentary value, as it is 

considered among the most important commercial species of crayfish, and is now invasive 

in five continents (Barbaresi and Gherardi, 2000; Huner, 1994).  

Multiple features determine the high invasiveness of P. clarkii: it has great ecological 

plasticity, tolerating a wide range of physical, chemical, and biological conditions. 

Furthermore, P. clarkii is traditionally defined as an r-selected species that can produce, 

depending on female size, more than 700 eggs; complex mother-offspring relationships 

can enhance offspring survival increasing the demographic growth of invasive 

populations (Aquiloni and Gherardi, 2008; Gherardi, 2006; Hazlett et al., 2003; Huner and 

Lindqvist, 1991; Savini and Occhipinti-Ambrogi, 2008). 

Procambarus clarkii is a keystone alien invasive species that can have multiple 

negative consequences on native species, ecosystems and human health. It is a polytrophic 

and opportunistic crayfish, feeding on vegetal detritus but also on molluscs, insects, 

amphibians, fishes and macrophytes, and therefore causing complex changes in food webs 

and leading to the decline in the abundance and diversity of several native species (Cruz 

and Rebelo, 2005; Cruz et al., 2008; Gherardi, 2006; Souty-Grosset et al., 2006). 

Furthermore, P. clarkii can diffuse the crayfish plague Aphanomyces astaci and outcompete 

native European crayfishes, thereby causing their decline (Gherardi and Panov, 2006; Gil-

Sánchez and Alba-Tercedor, 2006; Souty-Grosset et al., 2006). Procambarus clarkii is also 

able to accumulate heavy metals, pesticides and toxins of cyanobacteria transferring them 

to its consumers(Alcorlo et al., 2006; Gherardi, 2006), and can spread parasite helminths of 

the genus Paragonimus, potentially pathogenic for humans (Gherardi and Panov, 2006). 

Moreover, P. clarkii can damage agricultural areas such as rice plantations, by feeding on 

young rice plants, and dams, canals, river and lakes where with its burrowing activity 

may destabilize banks (Barbaresi and Gherardi, 2000; Gherardi and Panov, 2006; Souty-
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Grosset et al., 2006). Its excavation activities also cause sediment resuspension and 

nutrient release from the sediment to the water. Submerged macrophytes are destroyed 

using chelipads in non-consumptive actions. Therefore, P. clarkiis acts as an ecosystem 

engineer which modifies the flow of nutrients and alters multiple features of  invaded 

wetlands (Matsuzaki et al., 2009). 

The eradication or control of large, invasive populations of P. clarkii is challenging 

(Aquiloni et al., 2009; Aquiloni et al., 2010). Understanding the mechanisms determining 

the invasion dynamics can allow us to identify areas where the risk of establishment and 

invasion is highest, helping to tackle the invasion at the earliest stages and therefore 

increasing the effectiveness of management (Hulme, 2006). However, invasion dynamics 

are determined by multiple processes embedded within a complex spatial context (Gallien 

et al., 2010; McIntire and Fajardo, 2009); therefore, the identification of ongoing 

mechanisms can be difficult. Information theory, and recent development of spatial 

statistics constitute a robust framework to develop and test explicit hypotheses on the 

mechanisms determining spatial patterns of invasive species, and can therefore help to 

identify the mechanisms driving species invasion (McIntire and Fajardo, 2009).  

This study analysed the spatial dynamics and the diffusion pattern of P. clarkii, to 

understand how environmental features influence the spread of this species. We 

considered four a priori hypotheses representing different biological processes that can 

explain the invasion of P. clarkii (Table 1). (1) Connectivity hypothesis: large, permanent 

wetlands or rivers can act as sources of invasive populations, therefore invasion risk is 

highest close to these large waterbodies (Cruz and Rebelo, 2007; Rahel, 2007). (2) 

Landscape alteration hypothesis: increased environmental disturbance due to human 

activities favours synanthropic species including many invasive species; furthermore 

introductions can be more frequent in human dominated areas. Therefore, human 

alteration of landscape can increase the risk of introduction and invasion (Cutway and 

Ehrenfeld, 2009; Ficetola et al., 2007; King and Tschinkel, 2008; Leprieur et al., 2008). (3) 

Wetland features hypothesis: P. clarkii is often associated to large, permanent wetlands, 
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therefore hydrological and morphological features of waterbodies can determine the 

likelihood of establishment and invasion (Cruz and Rebelo, 2007). (4) Vegetation 

hypothesis: vegetation within and nearby wetlands is a key feature of waterbodies that 

can have strong effects on animal communities (Van Buskirk, 2005), and therefore can be 

important also for the establishment of P. clarkii. We analysed an area of Northern Italy 

where P. clarkii has been introduced only recently; the study area is at the leading edge of 

the invasion range (Barbaresi and Gherardi, 2000; Fea et al., 2006). In this area, the 

abundance of P. clarkii is currently limited, therefore our analysis would allow to identify 

the mechanisms most important at the early stages of the invasion, i.e., the stages at which 

management and control can be more effective (Hulme, 2006). 

 

2.2. METHODS 

 

Study area and surveys 

 

We considered 119 waterbodies (ponds, slow stream ditches and small lakes) in 

Lombardy, Northern Italy, within the upper plain of the Po river at altitudes of 132-397 m 

a.s.l. (Figure 1). Annual average temperature is 10°-14.4° C and annual mean rainfall is 

1400-1600 mm (Gerletti and Marchetti, 1977). This region is rich in wetlands, with a 

complex network of lakes, ponds, rivers and canals of varying size. The study area is 

currently at the edge of the invasion range of P. clarkii; we surveyed areas with published 

and unpublished records of P. clarkii (Barbaresi and Gherardi, 2000; Fea et al., 2006; 

Romanò and Riva, 2002), as well as areas where P. clarkii has not been recorded, but the 

species might be present because of proximity to localities of presence and the existence of 

potentially suitable wetlands.  

We surveyed each wetland seven times from March to August to assess the 

distribution of P. clarkii. We used multiple techniques to evaluate species presence, 

including nocturnal visual encounter surveys, repeated dip-netting of the wetland banks, 
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bottom and vegetation, the identification of burrows and exuviae (Reynolds et al., 2006). 

Three surveys were held after sunset, using multiple light sources to perform night-

viewing and 4 surveys were performed during daylight. At each survey, multiple 

researchers sampled each site for about 20 min. We recorded relative humidity and air 

temperature at each survey; data were recorded in the field using pre-printed tables and a 

personal digital assistant equipped with GPS and ArcPad GIS software. 

 

 

 

 

Figure 1. Study area (Lombardy region, Northern Italy). Black lines enclose the areas where 

wetlands are located, dark shaded areas represent lakes and major rivers, light shaded areas 

represent urban areas. 
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Environmental variables 

 

We measured 10 environmental variables describing features of wetlands and the 

surrounding landscape, and representing the four a priori hypotheses on factors 

determining the diffusion of P. clarkii (Table 1). Connectivity hypothesis. We measured the 

overland distance to the nearest river, lake or large pond (surface ≥ 1ha). We used 

overland distance because previous studies showed that this measure may be more 

appropriate than distance along the hydrographic network, particularly in still water 

(Cruz and Rebelo, 2007). Landscape alteration hypothesis. We measured urban cover % in a 

radius of 400 m from the wetland. We used a 400 m radius as previous studies showed 

landscape features at this scale influence the distribution of other species living in similar 

wetlands (Ficetola et al., 2009); preliminary analyses performed at different scales (100 m; 

1000 m) yielded very similar results. We measured landscape features (connectivity, urban 

cover) on the basis of the regional Vector Map of the Lombardy region (2008 land use 

maps; www.cartografia.regione.lombardia.it). Wetland features hypothesis. For each wetland 

we recorded three abiotic features: Maximum depth, surface area, and hydroperiod (0: 

temporary, i.e. dry during at least one survey; 1: retained water during all the samplings) 

(Table 1). Vegetation hypothesis. In May, for each wetland we measured four features 

describing the vegetation of the wetland and of the nearby areas: percentage of canopy 

cover, percentage of shoreline and emergent vegetation of the wetland, cover of grass and 

shrubs within 30 m from the wetland. The measurement of vegetation variables was 

performed following standard assessment protocols for details see Table 1 (Ficetola and 

De Bernardi, 2004; Knutson et al., 2004; Werner and Glenmeier, 1999). 
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Statistical analyses 

 

A site is determined to be occupied by a given species if it is detected at that site, but non 

detecting a species during all sampling occasions does not necessarily indicate the species 

is absent. We therefore used PRESENCE (Hines, 2006; MacKenzie et al., 2006)to evaluate 

the probability of occupancy of sites where we did not detect it. For the analysis, we 

assumed that probability of detection can be affected by Julian date, hour of survey, air 

temperature, and humidity %. 

Some of our a priori hypotheses were represented by multiple environmental 

variables (Table 1). This can pose problems for the analyses, because variables 

representing the same process are inherently correlated, and intercorrelated variables can 

bias regression estimates (Berry and Feldman, 1985). Furthermore, the number of variables 

included in an analysis affects its power and the Akaike‘s Information Criterion (see 

below). For this reason, we used principal component analysis (PCA) to reduce the 

variables representing the same hypothesis to a lower number of uncorrelated 

components. For the variables describing wetland features, PCA extracted a single 

component representing 49% of variation of original variables; this variable (hereafter: 

WETLAND) was positively correlated to wetland area (r = 0.56, P < 0.001), depth (r = 0.83, 

P < 0.001) and permanent hydroperiod (r = 0.68, P < 0.001). For the variables describing 

vegetation features, PCA extracted two components. The first component 

(VEGETATION_1) explained 43% of variance, and was significantly correlated to riparian 

vegetation (r = 0.88, P < 0.001), surrounding grass (r = 0.90, P < 0.001) and shrubs (r = 0.74, 

P < 0.001); the second component (VEGETATION_2) explained 26% of variance, and was 

significantly correlated to canopy cover (r = 0.81, P < 0.001), riparian vegetation (r = -0.21, 

P = 0.02), emergent vegetation (r = 0.74, P < 0.001) and surrounding shrubs (r = 0.24, P = 

0.009). In our analyses, we used the variables extracted by PCA instead of the original 

variables. 
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Several methods have been proposed for regression analysis of spatial data and 

performance can be different among the various approaches, thus we built our models 

using two different techniques (Beale et al., 2010; Bini et al., 2009; Dormann, 2007). First, 

we analysed data using spatial eigenvector mapping (SEVM). This method is relatively 

new, but is increasingly used for the analysis of ecological data. SEVM allows the 

translation of the spatial arrangement of data points into explanatory variables 

(eigenvectors) capturing spatial effects (Dormann, 2007). There are multiple 

implementations of SEVM, depending on how the eigenvectors to be included in the 

models are selected (Bini et al., 2009). In our implementation, we selected the 

eigenvector(s) best reducing the spatial autocorrelation of residuals, and then included as 

spatial predictors into generalized linear models (Dormann, 2007; Griffith and Peres-Neto, 

2006). Comparisons among statistical methods showed that this method is flexible and 

efficient, also when analysing non-normal data (Bini et al., 2009; Dormann et al., 2007; 

Peres-Neto and Legendre, 2010). Furthermore, the identity of eigenvectors included into 

models has been proposed to be indicative of the scale at which autocorrelation takes 

effect (Diniz-Filho and Bini, 2005).  

Second, we used generalized additive models (GAM), as implemented by Beale et 

al. (2010). In this implementation, we incorporated the coordinates of data in GAMs as 

covariates; we assumed linear relationships between species distribution and the 

environmental predictors representing our hypotheses (Beale et al., 2010). Simulations 

showed that GAMs are among the techniques with lowest bias and with good 

performance even in presence of violations of assumptions, such as non-stationariety of 

autocorrelation (Beale et al., 2010). 

We used an information-theoretic approach, following the procedure detailed in 

Denoël et al. (2009), to evaluate the support of the hypotheses explaining the distribution 

of P. clarkii (Burnham and Anderson, 2002; McIntire and Fajardo, 2009). First, we built 

models relating to presence / absence of P. clarkii to the variables representing the four a 

priori hypotheses (Table 1). We built exploratory models considering only one hypothesis 
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at each time; subsequently, we built complex models representing all combinations of 

hypotheses. We then calculated the Akaike‘s Information Criterion (AIC) for each model: 

models explaining most of the variation with less predictors have the lowest AIC values 

and are considered to be the ―best models‖. AIC may select overly complex models, 

therefore we considered a complex model as a candidate model only if it had AIC less 

than the AIC of all its simpler nested models (Richards, 2008). For each candidate model, 

we calculated the Akaike‘s weight w (AIC weight), representing the probability of the 

different models given the data (Lukacs et al., 2007). We estimated the amount of variation 

explained by models using Nagelkerke‘s R2 (R2N). This procedure was repeated twice, 

with SEVMs and with GAMs; in all models, we assumed binomial error distribution. We 

used variance partitioning to evaluate the amount of variation explained by the 

environmental variables and by ―spatial variables‖, represented by extracted 

eigenvector(s) in SEVM, and by the coordinates included as covariates in GAMs (Beale et 

al., 2010; Cushman and McGarigal, 2002). 

Finally, we analysed the pattern of spatial autocorrelation, to evaluate whether it 

can provide information about the scale at which the invasion process occurs. We used 

Moran‘s I to assess at multiple spatial scales the spatial autocorrelation of (a) the 

distribution of P. clarkii; (b) the residuals of an ordinary least squares (OLS) logistic model 

relating P. clarkii distribution to wetland features and urban cover (the best model 

obtained in the results), and (c) the eigenvector extracted by the best SEVM model to 

reduce spatial autocorrelation (Diniz-Filho and Bini, 2005). We performed analyses using 

R 2.9 (www.r-project.org); we built correlograms using SAM 3.0 (Rangel et al., 2010). 
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Table 1. A priori hypotheses on processes that may explain the distribution of P. clarkii, and 

environmental variables recorded to test these hypotheses. 

 

 Hypothesis Environmental variables PCA factors 

1 Connectivity along hydrographic 

network / major waterbodies 

Isolation1 (m) - 

2 Landscape alteration Urban cover (%)2 - 

3 Wetland abiotic features Maximum depth (cm)1 

Surface area (m2)1 

Hydroperiod (see text) 

Wetland 

4 Wetland vegetation features Canopy cover (%) 

Shoreline vegetation (%) 

Sum of subemergent, emergent and floating vegetation (%) 

Surrounding grass (%) 

Surrounding scrub (%) 

Vegetation_1 

Vegetation_2 

 

1: the variable was transformed using natural logarithms. 

 
2: the variable was squaretoot arcsine transformed prior to analyse. 
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2.3. RESULTS 

 

We detected P. clarkii in 16 out of the 119 wetlands. In all wetlands where we detected its 

presence, we also detected the presence of juveniles, indicating that these constitute 

reproductive populations. 

The analysis of detectability showed that, for all sites where we did not observe P. 

clarkii, the probability of occupancy was always < 0.01; for all wetlands, four surveys were 

always enough to detect P. clarkii with confidence > 95%. This indicates that our surveys 

estimated presence / absence with reliability. 

 

Exploratory models 

 

Using both SEVM and GAMs, P. clarkii was significantly associated with less isolated 

wetlands, and to large, permanent wetlands (Table 2). Furthermore, in GAMs P. clarkii was 

associated  with wetlands with low scores for the variable Vegetation_2, representing an 

association with limited canopy cover and abundant emergent vegetation. 

 

Table 2. Exploratory models considering only one hypothesis. 

 

Variables SEVM GAM 

 
21 P 21 P 

Isolation 4.24 0.039 15.82 <0.001 

Urban cover 1.943 0.163 0.789 0.375 

Wetland* 11.65 <0.001 419.30 <0.001 

Vegetation_1* 

Vegetation_2* 

0.39 

0.81 

0.531 

0.367 

0.89 

20.33 

0.346 

<0.001 

 

*: PCA scores. See Table 1. 
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Spatial Eigenvector Mapping 

 

In all SEVMs, one eigenvector was enough to reduce spatial autocorrelation to non-

significant values and was included in the models. The eigenvector best reducing 

autocorrelation was the same in all models with high support. 

The model with the highest AIC weight suggests that the distribution of P. clarkii is 

influenced by the joint effect of wetland abiotic features and landscape alteration (Table 

3a). According to this model, P. clarkii was significantly associated to the largest, 

permanent wetlands (21 = 12.4, P < 0.001); although urban cover was included in this 

model, it did not show a significant effect (21 = = 2.7, P = 0.10). This model explained a 

substantial proportion of variation (R2L = 0.42). In the best model, the SEVM eigenvector 

accounted for most of the explained variation (62%); wetland features were the 

environmental variable with the highest explanatory power, while the contribution of 

urbanization was limited (Table 4a). A simpler model, that did not consider urbanization, 

had a slightly lower support (w = 0.41), and explained a comparable amount of variation 

(R2L = 0.39). A candidate model considering isolation only had a very limited support (w = 

0.01). Vegetation was not included in any candidate model. 

 

Generalized additive models 

 

Also with GAMs, the model with the highest weight (w = 0.69) was the one considering 

the joint effect of wetland abiotic features and landscape alteration (Table 3b). According 

to this model, P. clarkii was significantly associated to the largest, permanent wetlands 

within the most human-dominated landscapes (P < 0.001 for both variables). A second 

model, considering the joint effect of wetland features and isolation, had a lower support 

(w = 0.23; Table 3b). This second model suggests that P. clarkii was associated to the large, 

permanent wetlands less isolated from the major waterbodies. A simpler model, 

considering wetland features only, had a limited support (w = 0.08). All models that 
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excluded wetland features had very low support. Vegetation features were not included in 

models with high support (Table 3b). Also with GAMs, the spatial component explained 

most of variation; wetland features was the environmental variable with the highest 

contribution, while urban cover / isolation explained a minor proportion of variation 

(Tables 4b and 4c). Finally, it should be remarked that when using GAMs, the best models 

explained nearly 99% of variation, suggesting that some form of overfitting may occur. 

 

Spatial autocorrelation 

 

Autocorrelation of species distribution was positive and significant at distances up to 2500 

m (Figure 2). OLS residuals and the eigenvector extracted by SEVM showed similar 

autocorrelation pattern, with generally positive and significant values at distance up to 

2500 m, and negative or non significant values ad distances > 5000 m (Figure 2). 
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Table 3. Candidate models explaining the distribution of P. clarkii on the basis of environmental 

variables. a: Models built using spatial eigenvector mapping (SEVM); b: Models built using 

generalized additive models. Models are ranked according to their Δ-AIC; the model with the 

lowest Δ-AIC is the best AIC model. 

 

 

Rank Environmental variables AIC Δ-AIC w 

a: Spatial eigenvector mapping    

1 Wetland features*; Urban cover, SEVM eigenvector 70.67 0.00 0.581 

2 Wetland features*; SEVM eigenvector 71.38 0.71 0.406 

3 Isolation, SEVM eigenvector 78.79 8.12 0.010 

b: Generalized additive models    

1 Wetland features*; Urban cover 15.36 0.00 0.691 

2 Wetland features*; Isolation 17.59 2.23 0.227 

3 Wetland features* 19.75 4.39 0.077 

4 Urban cover; Isolation 25.75 10.39 0.004 

5 Isolation 28.35 12.99 0.001 

6 Urban cover; Vegetation_1*, Vegetation_2* 31.39 16.03 <0.001 

7 Vegetation_1*, Vegetation_2* 33.21 17.85 <0.001 

8 Urban cover 33.22 17.86 <0.001 

 

AIC: Akaike information criterion. 

Δ-AIC: difference between the AIC of each model and the AIC of the best model. 

w: AIC weight of the model. 

*: PCA scores. See Table 1. 
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Table 4. Variance partitioning representing the amount of explained variation accounted for by the 

best models. 

 

Variable % 

a: Spatial Eigenvector Mapping 
 

Wetland features 26.4 

Urban cover 6.9 

Space (SEVM eigenvector) 62.1 

Joint 4.6 

b: Generalized additive models, 

Model 1 

 

Wetland features 22.3 

Urban cover 7.1 

Space (coordinates) 63.1 

Joint 7.4 

c: Generalized additive models, 

Model 2 

 

Wetland features 22.7 

Isolation 12.8 

Space (coordinates) 53.8 

Joint 10.6 
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Figure 2. Spatial autocorrelation (Moran‘s I), measured at multiple distance classes, of the P. clarkii 

distribution pattern (black diamonds); of residuals of OLS regression relating P. clarkii distribution 

to environmental variables (empty triangles); and of the eigenvector extracted by spatial 

eigenvector mapping (grey squares). Error bars represent twice the standard error of Moran‘s I; 

asterisks indicate that I was positive and significant. 
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2.4. DISCUSSION  

 

Our analysis showed that multiple processes can explain the distribution of P. clarkii at the 

early stages of the invasion; two different statistical approaches (Spatial eigenvector 

mapping and spatial generalized additive models) yielded essentially the same results, 

suggesting that our conclusions are robust. 

Regression models (Table 3) suggest that two processes are the most likely drivers 

of the distribution of P. clarkii: wetland suitability and alteration of the surrounding 

landscape. Procambarus clarkii is a generalist species that can occupy a wide range of 

wetlands, including small temporary waterbodies; it has been suggested that habitat 

characteristics can have only marginal significance (Cruz and Rebelo, 2007; Gherardi, 

2006). Nevertheless, our analyses showed that, at the early stages of the invasion, wetland 

features can be extremely important for crayfish distribution: P. clarkii was strongly 

associated to large and permanent wetlands. Wetland hydroperiod is known to be a 

limiting factor for the presence of this species: P. clarkii can also be found in temporary 

wetlands, but in such habitats it needs shelter, like boulders, wood debris, crevices or a silt 

substrate to make burrows and retain the humidity, allowing their survival (Correia and 

Ferreira, 1995; Cruz and Rebelo, 2007; Ilhéu et al., 2003). Furthermore, wetlands should 

have a hydroperiod longer than 4 months for the persistence of P. clarkii (Gutiérrez Yurrita 

and Montes, 1999). Large, permanent wetlands can therefore act as major sources of P. 

clarkii, and the proximity to such wetlands is a key factor determining crayfish presence in 

temporary biotopes (Cruz and Rebelo, 2007). In our study, we have detected a significant 

effect of isolation in exploratory univariate models (Table 2), but the support of the 

isolation hypothesis was limited in multivariate models (Table 3). The difference between 

our results and the ones of Cruz and Rebelo (2007) may be related to differences in 

statistical modelling. In our analyses, both SEVMs and GAMs included predictors 

describing the spatial arrangement of data. These ―spatial predictors‖ were extremely 

important in explaining crayfish distribution and accounted for most of the variation 
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explained by models (> 50%; Table 4). Therefore, we do not argue that proximity to 

invaded wetlands is unimportant, however, the analysis of spatial autocorrelation helps to 

explicitly assess the scale at which isolation may take effect, influencing wetland 

occupancy. 

Spatial autocorrelation is pervasive in species distribution, and can be caused by 

exogenous and endogenous processes. Exogenous autocorrelation arises when species 

distribution is influenced by spatially autocorrelated environmental features. Endogenous 

autocorrelation arises through biological processes occurring at population level (e.g., 

aggregation, dispersal) that determine the spatial distribution of populations (Beale et al., 

2010; Wagner and Fortin, 2005). Discriminating between exogenous and endogenous 

autocorrelation is challenging; in principle, exogenous autocorrelation can be removed 

from models if all relevant autocorrelated predictors are considered. Although it is always 

possible that some relevant, unidentified predictor is missing, the analysis of residual 

autocorrelation, or the analysis of ―spatial predictors‖ removing autocorrelation (e.g., 

SEVM eigenvectors), can provide insight on endogenous processes determining species 

distribution (Chapman et al., 2009; Diniz-Filho and Bini, 2005; Dormann, 2009; Dormann et 

al., 2007; Van Teeffelen and Ovaskainen, 2007). 

In our analysis, species distribution was positively autocorrelated at distances up to 

2500 m (Figure 2); this indicates that wetlands that are less than 2500 m apart tend to have 

similar occupancy. In other words, the presence of occupied wetlands within 2500 m 

increases the likelihood of occurrence of P. clarkii. The pattern of autocorrelation was 

similar for raw species distribution data, for the residuals of OLS models and for the 

SEVM eigenvectors (Figure 2); the similarity of results obtained through different 

approaches suggests that autocorrelation may be linked to some endogenous process. 

Dispersal is a major source of endogenous autocorrelation (Beale et al., 2010). P. clarkii 

shows physiological and ethological adaptations allowing a remarkable dispersal ability 

(Barbaresi and Gherardi, 2000; Gherardi, 2006; Payette and McGaw, 2003). It may disperse 

both in water and overland where it can survive long periods. The overall locomotory 
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activity can even exceed 3 km per day (Barbaresi and Gherardi, 2000; Gherardi et al., 2002). 

Therefore 2500 m might correspond to the distance at which dispersal influences the 

distribution of populations; analyses performed in the Iberian peninsula using logistic 

regression yielded comparable results, and showed that the likelihood of presence of P. 

clarkii increases if there are occupied wetlands at distances ≤ 2000 m (Cruz and Rebelo, 

2007). In this respect, the analysis of spatial autocorrelation may be more flexible and 

appropriate than logistic regression to identify such distance, because it is a spatially 

explicit approach while logistic regression has constraints limiting its capability to detect 

threshold distances (Ficetola and Denoël, 2009). Finally, dispersal is often context 

dependent, and individuals can cover different distances in diverse environments (Cruz 

and Rebelo, 2007; Olden, 2007). Lastly, natural dispersal is not the only possible 

explanation of the autocorrelation pattern. Procambarus clarkii is sometime captured by 

fisherman that may release it in nearby wetlands (i.e., human assisted dispersal). 

Furthermore, it is possible that our analyses lack relevant autocorrelated predictors that 

influence species distribution. 

Landscape alteration was a further process important for the distribution of P. 

clarkii (Table 3). This feature may facilitate the environmental presence of P. clarkii through 

multiple nonexclusive mechanisms. First, proximity to urban areas increases the 

possibility that humans introduce this alien species into new wetlands. Introductions can 

be both accidental and deliberate, for example for food purposes or recreational scopes 

(e.g., release of pets, fishing) (Cruz and Rebelo, 2007; Cutway and Ehrenfeld, 2009; 

DiStefano et al., 2009; Hirsch, 2009). Furthermore, wetlands in altered landscapes can have 

simplified communities with a reduced number of species and different predators 

(Didham et al., 2007; Pickett et al., 2001). Generalist invasive predators with high tolerance 

to human disturbance, such as P. clarkii, can take advantage of these environmental 

features, reaching high densities and potentiallly disperse to more natural environments 

(Correia, 2003; Cutway and Ehrenfeld, 2009; Didham et al., 2007). Nevertheless, landscape 
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alteration explained a limited amount of variation in our models (Table 4), and the other 

processes are probably more important in determining invasion dynamics. 

In conclusion, our analyses suggest that crayfish invasion can be favored by the 

colonization of large, permanent wetlands (e.g., small lakes, large ponds) in human 

dominated landscapes, where it can establish numerous and stable populations. These 

waterbodies can act as a source for the dispersal and colonization of nearby smaller, 

temporary or isolated wetlands (Cruz and Rebelo, 2007; Gherardi et al., 2002; Keller et al., 

2008). Prevention of new introductions would certainly be the optimal strategy to limit the 

spread of this species (Keller et al., 2008). Unfortunately, new introductions continue: the 

identification of major factors determining the early stages of invasion may help to set up 

protocols for early monitoring and we feel that, our analyses helps to identify areas most 

at risk and where screening can be focused. Early detection when crayfishes are at low 

densities may allow for the establishment of control strategies that  maintain low densities 

(Aquiloni et al., 2009; Aquiloni et al., 2010; Hein et al., 2007), and therefore limit the 

dispersal into nearby but isolated waterbodies.  
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ABSTRACT 

 

Alien invasive species are a major threat to amphibians. The red swamp crayfish, 

Procambarus clarkii, is native of Eastern North America but has been introduced 

worldwide, and can cause dramatic declines of amphibians. We analysed the distribution 

of amphibians and of P. clarkii in an area of Northern Italy where the crayfish has been 

recently introduced. We assessed the relationship between wetland features, the 

distribution of P. clarkii, and the richness and structure of amphibian communities. We 

surveyed 114 wetlands using a combination of standard methods; we recorded 

environmental features (size, depth, hydroperiod), and analysed relationships using 

generalized additive models, including components taking into account spatial 

autocorrelation. We found the richest communities in wetlands with intermediate size and 

hydroperiod. Conversely, P. clarkii was associated to the largest, permanent wetlands. 

Amphibian communities were significantly nested; wetlands with intermediate size and 

hydroperiod hosted communities with less gaps than expected by chance. However, two 

species (Bufo bufo and Salamandra salamandra) were less nested than the other amphibians. 

Management focusing on relatively small, semipermanent wetlands, that are isolated from 

the main hydrographic network, may be an effective strategy for amphibian conservation, 

because these wetlands can have suboptimal features for P. clarkii. Nevertheless, these 

wetlands are not enough for the conservation of the whole amphibian community, 

because some species have peculiar requirements.  

  

KEY WORDS: management, wetland suitability, hydroperiod, impact trend.  
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3.1. INTRODUCTION 

 

Alien invasive species (AIS) pose major threats to conservation, as they can cause the 

decline of native species through multiple mechanisms, such as competition, predation, 

spread of diseases and complex modifications of habitats (Diamond, 1989; Smith et al., 

2009; Strayer et al., 2006). Amphibians are particularly susceptible to the negative 

consequences of AIS; among terrestrial vertebrates, amphibians are the class for which the 

highest proportion of species is threatened by AIS (McGeoch et al., 2010). Invasive 

amphibians and fishes are the most often cited AIS determining the decline of native 

amphibians. For example, invasive amphibians are implicated in the spread of the chytrid 

fungus Batrachochytrium dendrobatidis, which is the aetiological agent of chytridiomycosis 

(Fisher and Garner, 2008; Garner et al., 2006; Soto-Azat et al., 2010); the predation by alien 

fishes can cause reproductive failure and the extinction of amphibian populations (Adams, 

2000; Denoël et al., 2005; Knapp, 2005); invasive amphibians can threat native species 

through predation, competition and toxicity (Adams, 2000; Crossland et al., 2008; Kats and 

Ferrer, 2003; Smith, 2005). 

Other exotic predators, such as crayfishes, can pose serious threats to amphibian 

populations, but have received a more limited attention (Gherardi, 2006). The red swamp 

crayfish, Procambarus clarkii, is native of Eastern North America and Mexico, but has been 

introduced for aquaculture in all continents except Australia (Huner, 2002). Procambarus 

clarkii is currently present in most countries of Western Europe; large territories have been 

invaded in the Iberian Peninsula, France and Italy (Gherardi, 2006). Procambarus clarkii can 

effectively prey on larvae of several species of European amphibians (Cruz et al., 2006a; 

Cruz and Rebelo, 2005; Gherardi et al., 2001), and the presence of this crayfish can exclude 

amphibians from potentially suitable reproductive areas (Cruz et al., 2006a; Cruz et al., 

2006b). For instance, P. clarkii caused the disappearance of >50% of amphibian species 

from the Paul do Boquilobo Nature Reserve in Portugal (Cruz et al., 2008), and the 

extinction of the threatened frog Rana latastei from part of its small range (BERNINI et al., 
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2007). Unfortunately, the complete eradication of invasive populations of P. clarkii is 

extremely difficult, and would require the application of multiple approaches (Aquiloni et 

al., 2009; Aquiloni et al., 2010). Intensive trapping may reduce its abundance (Hein et al., 

2007), but this approach would be extremely expensive and can not be applied at large 

scale. On the other hand, management actions can be targeted to specific areas with the 

highest conservation priority, to mitigate impact. Such an approach might be more 

effective in areas where environmental suitability for P. clarkii is limited. 

Hydroperiod and size are key features of wetlands, and determine suitability for 

amphibians (Van Buskirk, 2005; Werner et al., 2007). Small wetlands with short 

hydroperiod (ephemeral wetlands) have a high risk of drying before amphibian larvae 

attain metamorphosis. On the other hand, large wetlands with long hydroperiod 

(permanent) often have a high abundance of native and exotic predators that increase 

larval mortality. For these reasons, the richest communities of amphibians are frequently 

found in wetlands with intermediate size and hydroperiod (Van Buskirk, 2005; Werner et 

al., 2007), while only a few species adapt to wetlands with very short or very long 

hydroperiod (Van Buskirk, 2003). On the other hand, hydroperiod and wetland features 

can also influence suitability for AIS, such as P. clarkii (Adams, 2000; Cruz and Rebelo, 

2007). 

In this study, we analysed an area where P. clarkii was introduced only recently 

(about five years ago: Fea et al., 2006; unpublished data), and where it currently does not 

attain very high densities; therefore, well targeted management actions can be effective at 

this stage. We analysed the relationship between wetland features (hydroperiod; wetland 

size) and the distribution of both amphibians and P. clarkii, to evaluate whether wetland 

features determine suitability in a different direction for these taxa. If the maximum 

suitability for amphibians is attained in wetlands with different features from the ones 

with the highest suitability for P. clarkii, management efforts can be focused to the areas 

where suitability for amphibians is high while environmental features are suboptimal for 

P. clarkii. Furthermore, we analysed nestedness of amphibian communities. A set of 
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communities is nested if the species composition of species-poor sites is a proper subset of 

the richest ones (Patterson, 1986; Ulrich et al., 2009). In this case, poorer fragments tend to 

have similar communities, composed mostly by widespread species, while the 

conservation of richest sites may allow the maintenance of the majority of species. 

Therefore, the analysis of nestedness can provide important information on which species 

take advantages from a given management strategy (Atmar, 1993; but see also Fischer and 

Lindenmayer, 2005). 

 

3.2. METHODS 

 

Study area and sampling 

 

We considered 114 wetlands (ponds, slow stream ditches and small lakes) in Lombardy 

region, Northern Italy. The study area is located North of the city of Milano, comprises the 

upper portion of the Po river lowland and the foothills of Brianza; the altitude range is 

150-397 m (Figure 1). The study area is human dominated; agricultural and urban areas 

constitute the most frequent land use. Nevertheless, several natural parks (e.g., Groane 

regional park, Lambro Valley regional Park, Curone Valley regional park) protect natural 

areas and host important localities for amphibian conservation (e.g., Ficetola et al., 2009; 

Siesa et al., 2009a). We surveyed each wetland four times from March to June. In each 

survey, we used multiple techniques to assess the presence of amphibians and of P. clarkii. 

For amphibians, we used visual encounter surveys, clutch counts, repeated dip netting of 

wetland bottoms and banks, and audio point counts (5 min. each) to identify calling males 

of anurans (Dodd, 2010; Heyer et al., 1994). For P. clarkii, we used nocturnal visual 

surveys, dip netting, and the identification of exuviae (Reynolds et al., 2006) . We 

performed three surveys after dusk and one survey in daytime. Failing to detect a species 

during all sampling occasions does not necessarily indicate the species is absent, leading to 

the risk of underestimation of species occupancy, which may influence the outcome of 
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analyses (MacKenzie et al., 2006). Nevertheless, preliminary analyses of detectability 

performed using PRESENCE (Hines, 2006; MacKenzie et al., 2006) showed that four surveys 

allowed to detect P. clarkii and most of amphibians with high confidence (Siesa et al., 

2010a; Siesa et al., unpublished manuscript). In late May-early June we measured 

maximum depth and surface area of each wetland. We considered a wetland temporary if 

it was dry or nearly dry in at least one of the surveys. 

 

 

 

Figure 1. Study area (Lombardy region, Northern Italy). Black lines enclose the areas where 

wetlands are located, dark shaded areas represent lakes and major rivers, light shaded areas 

represent urban areas. 
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Statistical analyses 

 

The three wetland features measured (area, depth and permanence) were strongly 

correlated among them: large wetlands were deeper and permanent. We therefore used 

principal component analysis (PCA) to reduce these variables to a single component 

representing the gradient of wetland features (see Van Buskirk, 2005; Werner et al., 2007 

for a similar approach); area and depth were transformed using natural logarithms prior 

to run PCA, to improve normality. PCA extracted a single component explaining 50% of 

variation; PCA scores were positively related to wetland area (r = 0.54, P < 0.001) and 

depth (r = 0.83, P < 0.001), and to permanent hydroperiod (r = 0.68, P < 0.001). Therefore, 

PCA scores represent a gradient from small, shallow, temporary wetlands to large and 

permanent waterbodies. 

We used generalized additive models (GAMs) to analyse the relationships between 

wetland features, the presence / absence of P. clarkii, and the richness of amphibian 

communities. GAMs are a semi-parametric extension of generalized linear models; the 

advantage of GAMS over linear models is that the shape of the response curves describing 

the relationships between dependent and continuous independent variables are data 

driven, instead of being predefined by linear or quadratic terms (Denoël and Lehmann, 

2006; Wood, 2006). This flexibility allows GAMs to better fit non linear relationships with 

unknown features. GAMs can handle non-normal error distribution, and are particularly 

suited to evaluate whether ecological relationships are curvilinear (e.g., Denoël and 

Lehmann, 2006; Ficetola and Denoël, 2009). In GAMs, increasing values for the effective 

degrees of freedom (edf) indicate increased complexity and non-linearity of the response 

curve (Wood, 2006). We therefore identified a clearly nonlinear response if edf > 2 (Ficetola 

and Denoël, 2009). For logistic models (i.e., models with binomial error), the term 

―linearity‖ was referred to the plot on the logit scale (Ficetola and Denoël, 2009). 

Our data have a strong spatial structure. Spatially structured data need to be 

analysed using appropriate statistical methods, because the presence of spatial 
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autocorrelation may bias the results of standard regression techniques (Beale et al., 2010; 

Dormann, 2007). We therefore incorporated the coordinates of data points as covariates in 

GAMs, following the approach detailed by BEALE et al. (2010). Simulation studies showed 

that this is among the techniques with the best performance in the analysis of spatial data; 

this approach has limited bias even in the presence of violations of assumptions, such as 

non-stationariety of autocorrelation (Beale et al., 2010). In our analysis, we used a binomial 

error distribution to assess the relationship between the presence / absence of P. clarkii 

and wetland features; we used Poisson error distribution to assess the relationship 

between species richness and wetland features; we used likelihood ratio tests to assess 

significance. We performed the analyses in R (www.r-project.org). 

We used the metric NODF (Nestedness metric based on Overlap and Decreasing 

Filling) to assess the nestedness of the system of amphibian communities (Almeida-Neto 

et al., 2008). Communities and species are represented by a matrix in which each row is a 

site, and each column is a species. The NODF metric ranges from 0 to 100, and can be 

defined as the percentage of species in right columns, and communities in inferior rows 

overlapping, respectively, with those found in left columns and upper rows; nested 

matrices have higher values of NODF (Almeida-Neto et al., 2008; Ulrich et al., 2009). 

NODF has advantages over other metrics of nestedness, such as the possibility to assess 

separately nestedness of species and sites, and the possibility to order communities 

following explicit ecological gradients; furthermore, NODF is less prone to statistical 

errors than other metrics (Almeida-Neto et al., 2008). Sorting the communities according to 

ecological factors allows to test hypotheses on the causes of nestedness of the system 

(Guimaraes and Guimaraes, 2006; Ulrich et al., 2009). Therefore we sorted sites according 

to the scores obtained from GAMs relating richness to wetland features and we sorted 

species in decreasing order of frequency. We assessed significance of nestedness using 

1000 permutations of random matrices; we used the null model CE to produce random 

matrices. In this null model, the probability of occupancy of a cell ai,j is (Pi/C + Pj/R)/2, 

where Pi is the number of presences in a row i, Pj.is the number of presences in a column j, 
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C and R are the number of columns and rows, respectively (Guimaraes and Guimaraes, 

2006). Analyses performed using different metrics and null models, such as ATMAR & 

PATTERSON‘s (1993) T, yielded equivalent results (not shown). We also calculated 

nestedness individually for species, to identify species with less nested distribution 

(Almeida-Neto et al., 2008). We performed nestedness analyses using ANINHADO 

(Guimaraes and Guimaraes, 2006). 

 

3.3. RESULTS 

 

In our surveys we detected P. clarkii in 12 wetlands. Furthermore, we detected the 

presence of nine amphibians: the fire salamander Salamandra salamandra; the Italian crested 

newt Triturus carnifex; the smooth newt Lissotriton vulgaris; the common toad Bufo bufo; the 

Italian tree frog Hyla intermedia; the agile frog Rana dalmatina; the Italian agile frog R. 

latastei; the common frog R. temporaria and the pool frog Pelophylax synklepton esculentus. 

Four species (Italian crested newt; Italian tree frog, agile frog and Italian agile frog) are 

included in the annexes II and / or IV of the ―habitat‖ directive of the European Union 

(EC 43/1992) and require strict protection of populations and their habitats. Species 

richness per wetland ranged from 0 to 9 (average ± SE:2.01 ± 0.14). 

We observed P. clarkii in wetlands with a large range of environmental features, 

ranging from small lakes (e.g., Lake Alserio) to about 20 m2 ponds. Nevertheless, the 

distribution of P. clarkii was strongly related to positive scores of the PCA component 

describing wetland features (GAM: 2 = 616.5, edf = 1, P < 0.001). The relationship between 

suitability for P. clarkii and PCA scores was strictly linear (edf = 1), indicating that 

suitability steadily increased in large, deep wetlands with permanent hydroperiod (Figure 

2a). 

The richness of amphibian communities was significantly related to the PCA 

component describing wetland features (GAM: 2 = 7.94, edf = 2.2, P = 0.023). However, 

the relationship between hydroperiod and richness of amphibian communities was non 
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linear (edf = 2.2). We observed the richest communities in wetlands with intermediate PCA 

scores, indicating that suitability is highest in wetlands with intermediate size and 

hydroperiod (Figure 2b). When taking into account wetland features, the relationship 

between the richness of amphibian communities and the presence of P. clarkii was not 

significant (GAM: 2 = 0.47, df = 1, P = 0.49). 

When sorted following the GAM scores, the community set was significantly nested 

(Figure 3). NODF of the system was 33.9, and was significantly higher than nestedness of 

random matrices (average NODF = 20.6; range: 14.3-26.7, permutation P < 0.001) (Figure 

3). The average nestedness of species was 44.3. However, two species showed 

considerably lower nestedness: S. salamandra (NODF = 25.8) and B. bufo (NODF = 21.0) 

(Figure 3). 
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Figure 2. Response curves of generalized linear models, describing the relationship between pond 

features (components extracted by Principal Component Analysis) and (a) presence of Procambarus 

clarkii; (b): richness of amphibian communities. Dotted lines represent 95% confidence intervals. 

The y-axes are based on residuals, and indicate the influence of the explanatory variable on the 

prediction. 
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Figure 3. Matrix of species distribution; each row 

represents one site, each column represents the distribution 

of one species. Communities are sorted following score of 

GAMs. Only sites with at least one species of amphibian 

are represented.  
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3.4. DISCUSSION 

 

Our study showed that amphibian communities and the alien crayfish Procambarus clarkii 

are strongly influenced by wetland features (size, depth and hydroperiod), but the shape 

of the relationships was different between amphibians and P. clarkii. For both taxa, the 

smallest, temporary wetlands had very low suitability. However, for P. clarkii suitability 

was highest in the largest, permanent waterbodies, while amphibian species richness was 

highest in wetlands with intermediate size and hydroperiod (Figure 2). The curvilinear 

relationship between PCA scores and community richness was not unexpected; other 

studies have found the highest amphibian richness in wetlands with intermediate features 

(e.g., Van Buskirk, 2005; Werner et al., 2007). This likely occurs first because only species 

with fast larval development can successfully reproduce in ephemeral wetlands (such as, 

in the study area, H. intermedia and the toad Bufo viridis, not detected in the visited 

wetlands) (Ficetola and De Bernardi, 2004; Skelly et al., 1999; Van Buskirk, 2003), therefore 

these wetlands tend to have poor communities. Secondly, large permanent wetlands often 

have high abundance of predators (both fishes and invertebrates) (Baber et al., 2004; 

Werner et al., 2007); in these wetlands amphibians are often limited to the species capable 

to withstand predators, such as the common toad (which have larvae unpalatable to fishes: 

Van Buskirk, 2003) or pool frogs (which have behavioural adaptations: Semlitsch and 

Reyer, 1992). Therefore, wetlands with intermediate features were suitable for the majority 

of species, and harbour both common and rare species. For instance, GAMs predicted that 

the highest amphibian richness would be attained in wetlands with PCA scores close to 

zero (Figure 2b), which correspond to small, shallow ponds with a surface of about 70 m2 

and a maximum depth of about 30 cm. 

The relationship between wetland features and suitability was different for the 

crayfish, as suitability was highest in the largest, permanent wetlands (Figure 2a). 

Procambarus clarkii can survive also in temporary wetlands, where it needs shelters or a 

soft substrate to dig burrows retaining humidity (Cruz and Rebelo, 2007; Ilhéu et al., 2003); 
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nevertheless, a longer hydroperiod can allow a longer activity period. Furthermore, P. 

clarkii can not reproduce successfully if the hydroperiod is too short (Gutierréz-Yurrita 

and Montes, 1999). Therefore, large permanent wetlands, particularly if non isolated or 

connected through the hydrographic network to other waterbodies, suffer the highest risk 

of invasion (Cruz and Rebelo, 2007) see also the chapter 2 of this thesis. 

After taking into account wetland features, invaded water bodies did not host a 

lower species richness that those without P. clarkii. However, this does not mean that P. 

clarkii does not affect amphibian communities: first, the crayfish invaded the area recently, 

and the invasion can require some years until the decline of amphibians becomes 

noticeable (Cruz et al., 2008). Analyses of survival or reproductive success can help to 

understand whether amphibians suffer limited fitness in invaded wetlands, and which life 

history stages are more affected. Second, vulnerability can vary among species (Cruz et al., 

2006a); analyses focusing on individual species, such as the ones more affected by crayfish 

predation or those with high conservation concern, can provide a more detailed picture. 

When sorted according to GAM scores, the community set was significantly nested. 

This indicates that sites with high GAM scores (i.e., intermediate wetland features) host 

not only the richest communities, but also communities with less gaps (i.e., more complete 

communities) than expected on the basis of the simple variation of species richness. This 

further confirms the importance of these wetlands for the conservation of amphibian 

communities, as some of them hosted all or nearly all the amphibian species of the study 

area (Figure 3). Nevertheless, it should be remarked that the system was not perfectly 

nested, as the actual NODF score was well below 100 (which is the maximum NODF value 

and indicates perfect nestedness). Therefore, it is important considering wetlands with a 

range of different features (Fischer and Lindenmayer, 2005). Particular attention should be 

played to idiosyncratic species, i.e., those with less nested distribution; these species 

would not be protected by management efforts focusing on the conservation of the 

wetlands with features suitable for the majority of species (Fischer and Lindenmayer, 

2005). Idiosyncratic species are often characterized by particular environmental 
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requirements (Ulrich et al., 2009). In this study system, two species showed a much lower 

level of nestedness compared to the overall community: fire salamander and common 

toad. This can be explained by the peculiar features of environments where they breed: the 

fire salamander breeds mostly in small streams, while all the other species prefer ponds 

(e.g., Ficetola et al., 2009); the common toad is usually associated with permanent, large 

waterbodies, while it is rarely found in temporary wetlands (e.g., Van Buskirk, 2005). 

As P. clarkii invaded only recently the study area, and we did not a strong 

relationship between crayfish distribution and richness of amphibian communities, our 

study can be considered as ―year zero‖ data. Integrating studies on alien species within a 

temporal framework can be extremely useful (Strayer et al., 2006). Year zero data can be 

used for comparisons, to assess temporal trends of both native and invasive species and to 

understand when the amphibian decline takes effect. For example, Cruz et al. (2008) 

showed a collapse of amphibian communities about ten years after the invasion of P. 

clarkii. In our study area, the crayfish was introduced about five years ago, and several 

wetlands have been invaded only in the last few years. This would suggests that crayfish 

requires some years to reach the high densities determining the amphibian decline, and / 

or that amphibians can survive for some period after the invasion. For instance, adults 

may continue to attempt breeding in invaded wetlands, even if crayfish predation 

determine a limited fitness. Crayfish abundance is relatively high in several of the invaded 

wetlands (mean: 7.7 individuals / m2; unpublished data), but is lower in the areas invaded 

more recently. However, the density of P. clarkii is expected to increase with time, and 

waterbodies with very high crayfish densities can also act as sources and determine the 

colonization of nearby waterbodies with suboptimal features (e.g., temporary wetlands). 

This will probably increase impact on amphibians, and might even modify the 

relationship between hydroperiod and crayfish distribution (Figure 2a). 

Our results can have important consequences for wetland management aimed at 

amphibian conservation in these human dominated landscapes. In environments that are 

suitable for P. clarkii, this crayfish can cause the extinction of many amphibian species: if 
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crayfish eradication is not feasible, the conservation of many amphibians would depend 

on the existence of temporary wetlands with suitable features, isolated from the invaded 

waterbodies (Cruz et al., 2008). First, the preservation of existing temporary waterbodies 

would be extremely important. Small, temporary wetlands are sometimes overlooked in 

conservation plans, and are declining worldwide because they are often drained, or 

transformed in permanent waterbodies (for example, as water reservoirs). (Beja and 

Alcazar, 2003; Moser et al., 1996). Furthermore, it may be possible to actively manage the 

hydroperiod of wetlands, to match the requirements of target species. In extreme 

situations, such as the human dominated landscapes considered in this study, amphibian 

conservation may strongly depend on the active management of the features of landscapes 

and wetlands. Nevertheless, it should be remarked that temporary wetlands can not be 

considered an optimal solution working for all species. In these environments, amphibians 

sometimes attain lower fitness (Karraker and Gibbs, 2009), and species requiring long 

periods for metamorphosis (e.g., crested newts) can not successfully reproduce there. 

Networks of wetlands with different hydroperiod, allowing the persistence of species with 

different requirements, can be important for the maintenance of the whole communities 

(Beja and Alcazar, 2003; Snodgrass et al., 2000; Van Buskirk, 2003). In the last years, it is 

increasingly recognised that isolated, non-permanent waterbodies can play a pivotal role 

for amphibian conservation, as they harbour unique communities and may suffer a lower 

impact of AIS. In human dominated landscapes the abundance of AIS is quickly 

augmenting and the role of temporary wetlands for conservation is expected to increase in 

the next future. 
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ABSTRACT 

 

Early assessment of the impact of alien invasive species is crucial to set up timely 

management, but often the impact is evident when is too late for action. We evaluated 

relationships between the alien crayfish, Procambarus clarkii, the distribution of native 

amphibians, and the abundance of their larvae, and assessed whether considering 

measures of reproductive success provide a more prompt measure of impact than 

considering just species distribution. We surveyed 125 wetlands in Italy, in an area 

recently invaded by P. clarkii, to assess the presence of breeding activity of amphibians and 

the distribution of P. clarkii. We measured the abundance of amphibian larvae before 

metamorphosis through pipe sampling. We built models analysing the relationships 

between amphibian and crayfish distribution, while taking into account spatial 

autocorrelation and environmental features; analyses were performed at both the species 

(generalized linear models and spatial eigenvector mapping) and community level 

(constrained redundancy analysis). When considering the distribution of breeding sites, 

only two amphibians (Lissotriton vulgaris and Hyla intermedia) where negatively related to 

P. clarkii, while the relationship between the distribution of other the species and P. clarkii 

was positive or not significant. However, for all amphibians, the abundance of larvae was 

negatively related to the alien crayfish. Analyses performed at community and single 

species levels yielded consistent results. Procambarus clarkii impacts amphibians through 

different processes. Newts probably select uninvaded wetlands for breeding; other species 

(e.g., frogs) attempt breeding in wetlands with crayfish, but suffer very low success 

because of strong predation. Considering distribution data only would not provide a 

correct picture of the impact of this alien species; measures of reproductive success may 

allow a more prompt assessment of the impact. 

KEYWORDS: amphibian decline, biological invasions, breeding success, breeding habitat, 

landscape composition, Procambarus clarkii, spatial autocorrelation. 



4. Early assessment of the impact of alien species on adult and larval amphibians 

 

 

68 

 

4.1. INTRODUCTION 

 

Alien Invasive Species (AIS) are a major cause of biodiversity loss at the global scale. The 

prevention of introduction events, and the control of established species, are key 

management tools for biodiversity conservation. Management of AIS have a higher 

likelihood of success if performed at early stages of invasions (i.e., immediately after 

introduction, or soon after naturalization) (Hulme, 2006). Nevertheless, only a subset of 

species that are introduced become invasive and have negative consequences (Jeschke and 

Strayer, 2005; Vilà et al., 2010). As thousands of species have been and continue to be 

released, but only some of them will negatively affect biodiversity, management is often 

focused on those species with the strongest impact on biodiversity, or in the areas where 

these species have the worst consequences (Vilà et al., 2010). The rapid identification of the 

effects of AIS on native biota is therefore a necessary first step for management actions. 

However, an early assessment of the effects of AIS may be complex for multiple 

reasons. In the long term, negative consequences of AIS are expected to determine 

modifications of distribution of native species, thus observations of decline or range 

contraction are common measures of impact; species distribution data and time series 

provide key information to assess whether AIS are determining declines (e.g., Bos et al., 

2008; Cruz et al., 2008; Elliott et al., 2010; Strayer et al., 2006). However, distribution data 

can provide an incomplete picture, because species may survive under suboptimal 

conditions for relatively long periods, depending on generation time. Therefore, 

documenting declines and extinctions can require long periods (Strayer et al., 2006), and 

conclusive results may be attained only when it is too late for effective management. 

Measuring the impact of AIS on fitness parameters of native species may allow a more 

prompt indicator of processes ongoing, and on the actual consequences of AIS. 

Complex relationships between environmental features and species distribution 

constitute a further issue to understanding the impact of AIS. Environmental 

modifications, such as urbanization or the degradation of natural environments, often 
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have negative consequences on native species. At the same time, introductions are more 

frequent in human dominated areas, and human induced modifications facilitate the 

expansion of some AIS (Didham et al., 2007). As both native and AIS depend from the 

same environmental features, it may be difficult to establish whether the decline of a 

species was caused by AIS or by environmental modifications: negative relationships 

between native and invasive species can be observed both if AIS actually have negative 

effects, and if native and alien species respond differently to the same environmental 

modifications. Analyses considering both habitat modifications and AIS are needed to 

tease apart their relative role. Nevertheless, only a small subset of studies considered the 

effects of AIS jointly to the ones of environmental modifications (Didham et al., 2007). 

The American red swamp crayfish, Procambarus clarkii, is native of Eastern North 

America and Mexico, but has been introduced worldwide and is currently invasive in 

wide areas of Europe (Capinha and Anastácio, 2011; Gherardi and Panov, 2009). 

Procambarus clarkii is a keystone AIS that can have multiple consequences on both native 

species and ecosystem functioning. For instance, P. clarkii can cause the decline of native 

crayfishes through competition and the spread of the crayfish plague, Aphanomyces astaci 

(Gherardi, 2006; Gherardi and Panov, 2009), it feeds on aquatic stages of amphibians and 

can cause the decline of several amphibian species (Cruz et al., 2006a; Cruz et al., 2006b; 

Cruz et al., 2008; Gherardi et al., 2001), and can reduce macrophytes determining the shift 

of aquatic ecosystems from a clear water phase, with abundant submerged vegetation, to a 

turbid phase, without macrophytes. (Matsuzaki et al., 2009). 

In this study, we evaluated the relationships between P. clarkii and native 

amphibians; we compared analyses of the distribution of breeding adults with analyses of 

the distribution of larvae, to assess whether considering different life history stages can 

provide different measures of the impact of the crayfish on native species. We considered 

an area of Northern Italy where the crayfish has been introduced only recently (about five 

years ago; Fea et al., 2006) and where it still has a limited distribution (see results); this 

stage may represent the phase at which managers decide whether control efforts are 
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required. First, we evaluated the relationship between the distribution of P. clarkii and the 

distribution of amphibians breeding wetlands, while taking into account potential effects 

of environmental features on species distribution. Subsequently, we analysed the 

relationship between P. clarkii and the abundance of larvae in wetlands where we 

observed breeding activity, as a measure of breeding success. We show that the two 

analyses offer a different perspective on the consequences of AIS on native amphibians, 

and that the analysis of breeding success may allow a more prompt and appropriate 

assessment of the effects on some native species. Each analysis was performed at two 

levels: single species and whole community. Single species analysis help to identify more 

precisely the issues of target species, community analyses can allow to unravel more 

complex and general relationships. 

 

4.2. METHODS 

 

Study area and methods outline 

 

We considered 125 wetlands (slow stream ditches, ponds and small lakes) in Lombardy 

region, Northern Italy. The study area comprises the upper portion of the Po river lowland 

and the Brianza foothills; the altitude range is 150-397 m, see Ficetola et al. (2011c) or 

chapter 3 for a map of the study area. The study area is human dominated; agricultural 

and urban areas constitute the most frequent land use. Nevertheless, there are several 

natural parks protecting important sites for amphibian conservation (e.g., Ficetola et al., 

2009). First, we surveyed all the wetlands to assess relationships between the distribution 

of amphibian breeding sites and P. clarkii. Subsequently, we evaluated the abundance of 

amphibian larvae in a subset of wetlands where amphibians bred, and we tested whether 

P. clarkii causes a loss of breeding success in these wetlands. The occurrence of spatial 

autocorrelation increases the complexity of analysing these relationships. The distribution 

of both native and AIS can be strongly affected by spatial autocorrelation: nearby localities 
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can have similar occupancy, because species distribution is limited by dispersal 

mechanisms, and because species are related to environmental features (e.g., vegetation, 

climate, landscape composition) which are in turn spatially autocorrelated (Beale et al., 

2010). Therefore, we integrated spatial autocorrelation into all our analyses. 

 

Distribution of breeding sites 

 

We surveyed each wetland four to six times from March to June; 114 wetlands where 

surveyed in 2009, 11 further wetlands were surveyed in 2010 (total: 125 wetlands). During 

each survey, we used a combination of multiple techniques to assess the presence of 

breeding amphibians and of P. clarkii. For amphibians, we used visual encounter surveys, 

clutch counts, and repeated dip netting of wetland bottom and banks to assess the 

presence of individuals; we also performed audio point counts (5 min. each) to identify 

calling males (Dodd, 2010). For P. clarkii, we used nocturnal visual surveys, dip netting, 

and the identification of exuviae (Reynolds et al., 2006). We performed at least three 

surveys after dusk and at least one survey in daytime. Previous analyses showed that 

these methods allow a successful characterization of both breeding amphibians and P. 

clarkii (Sewell et al., 2010; Siesa et al., unpublished manuscript) and see chapter 2. We also 

recorded four survey-specific environmental variables: air temperature, air humidity (%), 

wind speed (Beaufort scale) and presence of rain during the survey. 

 

Abundance of larvae 

 

In late May-early June 2010, we used pipe sampling to quantitatively assess the abundance 

of amphibian larvae and P. clarkii in 34 ponds (Skelly and Richardson, 2010). In this 

period, larvae of all amphibian species are still in the breeding wetlands. Samples were 

collected by quickly thrusting the pipe through the water column and into the sediments, 

to seal the sample area. Small nets (1 mm mesh size) were used to remove all animals from 
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the water column and from the first centimeters of the sediment. Net sweeps were 

collected until at least 10 consecutive sweeps were performed without capturing any 

animal (Skelly and Richardson, 2010; Werner et al., 2009). We collected samples with a 0.25 

m2 circular pipe sampler. Number of pipe samples was proportional to wetland surface 

(average: four samples per wetland); in most of wetlands we collected four to six samples, 

a smaller number of samples was collected in a few, very small wetlands. We used 

detectability analyses (see below) to assess the reliability of this sampling. In order to 

maximise the possibility to detect relationships between amphibians and P. clarkii, pipe 

sampling was focused on a non-random subsample of sites. We performed pipe sampling 

on sites where we detected reproductive activity of amphibians, while keeping a balanced 

ratio (50%) between wetlands invaded and not invaded by the crayfish. In all the sampled 

sites, at least one species of brown frog (Rana latastei or R. dalmatina) laid eggs. 

Furthermore, we sampled most wetlands where we detected signs of breeding activity of 

newts. Larvae where identified following standard keys (Lanza et al., 2007). There is 

morphological overlap between tadpoles of R. dalmatina and R. latastei, and they can not be 

identified in the field with certainty (Barbieri et al., 2000). Therefore, tadpoles of these two 

species were pooled in a single group (―brown frogs‖) for some analysis. Tadpoles of these 

closely related frogs have a very similar ecology (Lanza et al., 2007); it is thus likely that 

they respond in a similar way to P. clarkii. For each species, we calculated abundance as 

number of larvae / m2. Individuals of P. clarkii were weighed, to measure their mass (g / 

m2). 

 

Environmental variables 

 

In late May-June, we recorded eight parameters used as standard characterization of 

amphibian breeding wetlands: maximum width, maximum depth, average stream 

velocity, canopy cover, percentage of riparian vegetation along the shoreline, percentage 

of emerging or floating vegetation on wetland surface, presence of fishes, water 
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permanence (Table 1). Parameters were recorded using standard bio-assessment protocols; 

details on their measurement are reported elsewhere (Barbour et al., 1999; Ficetola et al., 

2011b, see Table 1; Van Buskirk, 2005). Furthermore, we used the ArcView GIS (© ESRI, 

1999) to measure the land cover in the landscape surrounding each wetland, on the basis 

of the 2008 vector map of the Lombardy region (www.cartografia.regione.lombardia.it). 

We considered three land cover typologies (Table 1): urban, agriculture and natural 

vegetation. Land cover was measured in a radius of 100 m and of 400 m from each 

wetland, because previous analyses showed that amphibians respond strongly landscape 

features at these scales within the study area (Ficetola et al., 2009). 

 

Statistical analyses 

 

Species abundance obtained through pipe sampling and environmental variables were 

transformed using logarithms or square-root arcsin to improve normality (Table 1). Some 

measures of wetland morphology (area, depth, hydroperiod) and of landscape 

composition were strongly correlated (Pearson‘s correlation: |r| ranging from 0.3 to 0.8); 

strong multicollinearity among independent variables may bias regression analyses (Berry 

and Feldman, 1985). To remove multicollinearity, and to reduce the number of candidate 

models, we used principal component analyses (PCA) to reduce correlated variables to a 

smaller number of uncorrelated factors. A first PCA run over the variables describing 

abiotic features (Table 1), extracted one variable explaining 51% of variance; this variable 

(hereafter named abiotic features) was positively related to area (r = 0.62), depth (r = 0.83) 

and hydroperiod (r = 0.65) (P < 0.001 for all correlations). Therefore, high values of abiotic 

features indicate large, deep and permanent wetlands. Similarly, we ran PCA over the 

variables describing landscape composition (percentage of wooded, urban and 

agricultural landscape; Table 1); we repeated this analysis at two spatial scales (100 m and 

400 m of radius, see above). The component extracted by the PCA at the 400 m radius 

(landscape 400) explained 63% of variation of variables, and was positively related to 
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urban (r = 0.76) and agricultural cover (r = 0.58), and negatively related to natural 

vegetation (r = -0.99) at this scale (P < 0.001 for all correlations). Similarly, the component 

extracted by the PCA at the 100 m radius (landscape 100) explained 57% of the original 

variables, and was positively related to urban (r = 0.68) and agricultural cover (r = 0.72), 

and negatively related to natural vegetation (r = -0.99) at this scale (P < 0.001 for all 

correlations). After the substitution of variables with PCA scores, we found no strong 

correlation among environmental variables (|r| ≤ 0.4 in all correlations). 

 

Detectability analysis 

 

A site is surely "occupied" if a species is detected at that site, but non detecting a species 

during all sampling occasions does not necessarily indicate the species is absent; this can 

lead to a underestimation of occupancy and might affect the results of analyses. We used 

PRESENCE 2.4 to estimate occupancy, and evaluate the probability of occupancy of sites 

were we did not detect species (Hines, 2006; MacKenzie et al., 2006; Sewell et al., 2010). 

Occupancy modelling uses data on presence/absence at multiple sampling occasions, and 

estimates both occupancy and detection rates. It is also possible include site and survey-

specific parameters as covariates (MacKenzie et al., 2006; Sewell et al., 2010). We repeated 

this analysis for both breeding sites data, and for pipe sampling data. 

For the breeding sites dataset, we assumed that the probability of detection of each 

species at a given survey might be affected by six survey-specific covariates: Julian date, 

hour of survey, air temperature, cloud cover, wind speed and humidity %. For each 

species, we built models assuming that detection probability depends on all possible 

combinations of these covariates; we considered the model with the lowest Akaike‘s 

Information Criterion (AIC) as the minimum adequate model describing species 

detectability (Burnham and Anderson, 2002). We calculated misdetection rate as the 

percentage difference between the observed occupancy and the occupancy estimated from 

the PRESENCE model; we assumed that a species was reliably detected if misdetection rate 
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was < 5%. For a few species, misdetection rate was > 5% (see results). For these species, we 

re-run species distribution models (see below), using the probability of occupancy at a 

given site (as estimated by PRESENCE models) as dependent variable. Occupancy models 

where run separately for sites surveyed in different years. 

For the pipe sampling dataset, we run occupancy models assuming that the 

detection probability of larvae of each species was constant across all the pipe samples 

collected in a given site, as all samples at a given wetland were collected during the same 

sampling occasion. 

 

Species distribution 

 

First, we analysed separately the relationship between the distribution of breeding sites of 

each species, the environmental features, and the distribution of P. clarkii. We used an 

information theoretic approach, based on AIC (Burnham and Anderson, 2002), to identify 

the combination of variables best describing the distribution of each species detected in 

>10% of sites, following the procedure detailed in Denoël et al. (2009). We built generalized 

linear models (GLM) assuming binomial error including all possible combinations of 

environmental variables. For each species, we performed preliminary analyses to assess at 

which spatial scale (100 or 400 m) it is more strongly related to landscape features, and we 

considered the relevant scale only (see Ficetola et al., 2009). For each model, we calculated 

AIC and Δ-AIC, which is the difference in AIC between a candidate and the model with 

lowest AIC (i.e., the best model). The use of AIC as sole selection criterion may select 

overly complex models, therefore we used two additional criteria for the identification of 

candidate models. We considered a complex model only if it had a Δ-AIC less than the Δ-

AIC of all its simpler nested models; furthermore, we considered only models including 

significant variables (Denoël et al., 2009; Maggini et al., 2006; Raffalovich et al., 2008; 

Richards, 2008). For each candidate model, we also calculated Nagelkerke‘s R2 (R2N) as a 

measure of variance explained. Per each model i, we calculated the AIC weight wi, which 



4. Early assessment of the impact of alien species on adult and larval amphibians 

 

 

76 

 

is the probability for a model to be the best one among the candidates, given the data 

(Lukacs et al., 2007). Furthermore, if the presence of P. clarkii was included in the best 

models, we compared models including the same environmental variables, with and 

without crayfish presence; similarly, if the presence of P. clarkii was not included in the 

best model, we compared the best model with a similar model considering also P. clarkii. 

We also report significance values of variables, to facilitate the interpretation of models 

and of the role of environmental variables (Stephens et al., 2007). 

Spatial autocorrelation may bias results of standard regressions models, therefore 

we used a Monte Carlo procedure to assess whether the residuals of best models were 

spatially autocorrelated (Lichstein et al., 2002). If residuals were autocorrelated, we used 

Spatial Eigenvector Mapping (SEVM) instead of standard GLM. SEVM allows the 

translation of the spatial arrangement of data points into explanatory variables capturing 

the spatial effects; we identified the eigenvector(s) best reducing spatial autocorrelation, 

and we included them into the models (Moran's eigenvectors; see Dormann et al., 2007; 

Griffith and Peres-Neto, 2006; Peres-Neto and Legendre, 2010 for details). This 

implementation of SEVM is considered among the most robust spatial methods (Bini et al., 

2009; Dormann et al., 2007); advantages of SEVM include the possibility to handle non-

normal errors; furthermore, unlike other methods, its aim is removing residual 

autocorrelation (Dormann et al., 2007). 

Second, we used constrained redundancy analysis (RDA) to assess the relationship 

between the composition of amphibian communities, environmental features and the 

distribution of P. clarkii. RDA is a multivariate, canonical analysis that allows to evaluate 

how much of the variation of the structure of a multivariate data set (e.g., species 

composition) is explained by one or more datasets representing independent variables 

(e.g., environmental variables) (Legendre and Legendre, 1998). Spatial autocorrelation 

may affect also canonical analyses, therefore we integrated autocorrelation in RDA using 

an approach similar to the one developed by Peres-Neto and Legendre (2010). We 

identified the Moran‘s eigenvectors reducing spatial autocorrelation of each species, while 
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controlling for the effect of environmental variables; the matrix including all the 

eigenvectors selected for at least one species was identified as the spatial matrix (Peres-

Neto and Legendre, 2010). To assess the relationship between amphibian communities and 

environmental features, we used a RDA considering community composition as 

dependent, environmental features as constraining matrix (i.e., independent) and the 

spatial matrix as conditioning matrix (the effect of which is partialled out). Similarly, to 

assess the relationship between amphibians and P. clarkii, we used a RDA with 

community composition as dependent, presence of P. clarkii as constraining matrix, and 

both the environmental and spatial matrices as conditioning. We calculated the 

significance of variance explained by RDAs by performing ANOVA-like permutation tests 

(10,000 permutations) (Legendre and Legendre, 1998). 

 

Larval abundance 

 

We used GLMs to assess the relationships between the abundance of amphibian larvae 

and P. clarkii . First, to take into account the potential effect of environmental features, we 

built models relating larval abundance to environmental variables. In these models 

(‗environment-only‘), we included the environmental variables selected by the best models 

of the analysis of species distribution (see above). Subsequently, we built models 

considering both environmental features and the presence of P. clarkii (‗environment+P. 

ckarkii‘). For each species, models with and without P. clarkii were compared using AIC, as 

described above. We also assessed whether the environment + P. clarkii models performed 

significantly better than the environment-only models. If residuals of GLMs were spatially 

autocorrelated, we used SEVM instead than standard GLM. We considered the mass of P. 

clarkii (g / m2) as a measure of its abundance, because large individuals can exert higher 

predation pressure. Analyses performed using the number of individuals / m2 yielded 

identical results (not shown). The abundance of P. clarkii and of amphibian larvae was log-

transformed to improve normality. We built univariate models for all species detected in > 
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15% of sites. One of these species (Triturus carnifex; see results) was not included in the 

species distribution model. For this species, the ‗environment-only‘ model included a 

constant only, while the ‗environment + P. clarkii‘ model included crayfish abundance 

only. Preliminary analyses including combinations of potential environmental variables 

yielded identical results. 

Subsequently, we used a series of RDAs to assess the relationships between larval 

communities (abundance of all species detected in more than one site), environmental 

features and abundance of P. clarkii, while taking into account the effect of spatial 

autocorrelation (Legendre and Legendre, 1998; Peres-Neto and Legendre, 2010, see above 

for details). We performed all analyses using packages SPDEP and VEGAN within the R 

statistical environment (www.r-project.org). 
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Table 1. Environmental variables recorded. Some groups of variables have been summarised by 

factors extracted through principal component analyses (PCA) prior to perform single species or 

community analyses. 

Environmental features Summarized by PCA? 

a: wetland features 
 

Surface1 (m) Abiotic features 

Maximum depth1 (cm) Abiotic features 

Permanence during the study period (Y/N) Abiotic features 

Stream velocity1 (m/s)  

Fish presence (Y/N, visual estimate)  

Canopy cover (%, visual estimate)2  

Emerging vegetation (% of vegetation 

emerging from water surface,visual 

estimate)2 

 

Riparian vegetation (%,visual estimate)2  

b: landscape features  

Forest cover (%) 2, 3 landscape 400 or landscape 100 

Cropland cover (%) 2, 3 landscape 400 or landscape 100 

Urban cover (%) 2, 3 landscape 400 or landscape 100 

1: Log-transformed prior to analyse.  

2: square-root arcsin transformed prior to analyse. 

3: measured in a radius of 400 m for the analysis of S. salamandra, and in a radius of 100 m for the 

community analysis (Ficetola et al., 2009). 
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4.3. RESULTS 

 

In our surveys we detected P. clarkii in 19 wetlands (occupancy, O = 15%). We detected the 

presence of nine amphibians: fire salamander Salamandra salamandra (O = 10%); Italian 

crested newt Triturus carnifex (O = 8%); smooth newt Lissotriton vulgaris (O = 12%); 

common toad Bufo bufo (O = 17%); Italian tree frog Hyla intermedia (O = 22%); agile frog 

Rana dalmatina (O = 40%); Italian agile frog R. latastei (O = 37%); common frog R. temporaria 

(O = 4%) and pool frog Pelophylax synklepton esculentus (O = 56%). Four species (Italian 

crested newt; Italian tree frog, agile frog and Italian agile frog) are included in the annexes 

II and / or IV of the ―habitat‖ directive of the European Union (EC 43/1992) and require 

strict protection of populations and their habitats. For the majority of species misdetection 

rate was <5%; misdetection rate was > 5% for three species (crested newt: misdetection M 

= 8%; tree frog: M = 26%; and pool frog: M = 7%) indicating that these species might have 

remained undetected at some sites. 

 

Species distribution: single species analyses 

 

For three species (smooth newt, tree frog and pool frog), the best AIC models included the 

presence of P. clarkii (Table 2). For these species, we compared models with and without P. 

clarkii. The smooth newt was associated with relatively large, non-ephemeral wetlands 

without fish and without crayfish; the pool frog was associated with relatively large, 

permanent wetlands within human dominated landscapes, with presence of crayfish 

(Table 2). For the tree frog, two slightly different models had similar support. Both models 

indicate that the tree frog was associated with wetlands without crayfish within human 

dominated landscapes. Furthermore, one model suggested that this species was associated 

with sunny wetlands, a second model suggested association with relatively large wetlands 

(Table 2). 
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For the smooth newt, the support of the model without crayfish was very low, indicating 

that most likely crayfish negatively affects newt distribution. Conversely, for the pool frog 

and the tree frog, the support of models not considering crayfish presence was > 0.18, 

indicating some uncertainty in the identification of the ‗best‘ model and of the effect of 

crayfish (Table 2). 

Crayfish presence was not included in any candidate model for the common toad, 

the agile frog and the Italian agile frog (Table 3). The common toad was associated with 

wetlands within natural landscapes, with fish and abundant riparian vegetation; the agile 

frog was associated with abundant riparian vegetation (Table 3). For the Italian agile frog, 

two models had similar support. Both models indicate that this frog was associated with 

shaded wetlands, with abundant riparian and aquatic vegetation, within the most natural 

landscapes. Furthermore, one model suggested that this frog was associated with 

relatively large, permanent wetlands, while the second model suggested that it was 

associated with wetlands occupied by fish (Table 3). 

The best AIC models explained a substantial percentage of variation for the smooth 

newt, the common toad, the agile frog and the Italian agile frog, while the amount of 

variation explained was lower for the tree frog and the pool frog (Tables 2 and 3). The 

SEVM eigenvectors, representing spatial autocorrelation, were incorporated and explained 

a significant amount of variation in the models of the smooth newt, tree frog, common 

toad and agile frog (Tables 2 and 3). 

For tree frog and pool frog, detectability analyses suggested some degree of 

imperfect detection (see above). Therefore, we repeated analyses using occupancy 

estimated by PRESENCE as dependent variable (see Table S1 in Supporting Information). 

The best models where similar to the standard models presented in Table 2, but tended to 

include a lower number of variables and explained a lower amount of variation. For tree 

frog, the presence of P. clarkii was not included in any of the best models. 
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Table 2. Relationships between species distribution, environmental features and presence of P. 

clarkii: comparison of models with and without the effect of P. clarkii. The table includes species for 

which the presence of P. clarkii was included in the best AIC models. Spatial Eigenvector Mapping 

(SEVM) was used for L. vulgaris and H. intermedia. R2N: Nagelkerke‘s R2; K: number of parameters 

in the model; AIC: Akaike‘s Information Criterion; w: AIC weight. 

 

Species   Model including P. clarkii  Without P. 
clarkii 

 
  sign 2 P R2N K AIC w  K AIC w 

Lissotriton vulgaris  P. clarki (-) - 14.2 <0.001 0.62 4 53.4 0.998  3 65.7 0.002 

 

 abiotic 
features 

+ 19.2 <0.001         

  fish - 5.8 0.016         
  SEVM eigv.  32.1 <0.001         
              
Hyla intermedia a P. clarki - 4.1 0.042 0.38 4 107.0 0.533  3 109.1 0.186 
  landscape 400 + 4.1 0.043         
  canopy cover - 7.5 0.006         
  SEVM eigv.  20.4 <0.001         
 b P. clarki - 4.9 0.027 0.37 4 108.7 0.228  3 111.6 0.053 
  abiotic 

features 
+ 5.7 0.017         

  landscape 400 + 5.5 0.019         
  SEVM eigv.  25.7 <0.001         
              
Pelophylax s. esculentus  P. clarki + 4.8 0.029 0.18 3 161.8 0.800  2 164.5 0.200 
  abiotic 

features 
+ 6.0 0.014         

  landscape 400 + 8.3 0.004         
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Table 3. Relationships between species distribution, environmental features and presence of P. 

clarkii. The table includes species for which the presence of P. clarkii was nor included in the best 

models, and reports the significance of P. clarkii, if added to the best models. Spatial Eigenvector 

Mapping (SEVM) was used for B. bufo and R. dalmatina. See Table 2 for abbreviations. 

 

   Best AIC models  Effect of P. clarkii 

Species 
 Variables sign 2 P R2N K AIC w  21 P 

Bufo bufo  landscape 400 - 24.0 <0.001 0.56 4 72.4 1  0.2 0.644 
  emerging vegetation + 14.0 <0.001        
  fish + 12.0 <0.001        
  SEVM eigenvector  11.9 <0.001        
             
Rana dalmatina  riparian vegetation  + 19.6 <0.001 0.51 3 116.9 1  2.7 0.104 
  SEVM eigenvectors  33.0 <0001        
             
Rana latastei a abiotic features (+) + 24.8 <0.001 0.44 5 128.1 0.52  1.6 0.204 
  landscape 400 (-) - 5.9 0.015        
  canopy cover + 7.5 0.006        
  emerging vegetation + 20.8 <0.001        
  riparian vegetation + 17.8 <0.001        
 b landscape 400 (-) - 25.6 <0.001 0.44 5 128.3 0.48  2.2 0.138 
  canopy cover + 6.9 0.009        
  emerging vegetation + 22.0 <0.001        
  riparian vegetation + 18.4 <0.001        
  fish presence + 5.8 0.016        
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Species distribution: community analysis 

 

RDA showed that, after controlling for the effect of spatial autocorrelation, community 

structure was strongly and significantly related to environmental features (permutation 

test, P < 0.0001; Figure 2a). Relationships between amphibians and environmental features 

were similar to the ones depicted by univariate models (Table 2, Figure 1a). After taking 

into account the effect of spatial autocorrelation and environmental features, amphibian 

communities were significantly related to the distribution of the alien crayfish 

(permutation test, P = 0.0009; Figure 1b). The pool frog, agile frog and Italian agile frog 

were associated with wetlands invaded by the crayfish; conversely newts, salamander, 

common toad and tree frog were associated with wetlands without crayfish (Figure 2b). 

Variance partitioning showed that environmental variables accounted for 40% of 

explained variation in community structure, spatial autocorrelation accounted for 38%, 

while crayfish presence accounted for 6%. The remaining variation was explained by the 

joint effects of multiple variables. 

The analysis performed using probability of occupancy, estimated by PRESENCE, as 

dependent variable yielded identical results (effect of environmental features: P < 0.0001; 

effect of P. clarkii: P = 0.0003; Figure S1 in Supplementary Material). 

 

Distribution of larvae 

 

We detected P. clarkii in 50% of wetlands surveyed with pipe sampling. Furthermore, we 

detected larvae of seven amphibian taxa: S. salamandra (O = 9%); T. carnifex (O = 35%); L. 

vulgaris (O = 44%); B. bufo (O = 3%); H. intermedia (O = 17%); P. s. esculentus (O = 21%) and 

brown frogs (i.e., R. dalmatina + R. latastei) (O = 79%). Detectability analysis showed that, 

for all species, misdetection rate of larvae was < 3%. 

Univariate models showed that, after taking into account the effect of environmental 

variables, the abundance of larvae was negatively related to the abundance of crayfish 
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(Figure 2, Table 4). For all species, the model taking into account the abundance of alien 

crayfish had much higher support than the models without crayfish. Models considering 

environmental features only explained a limited amount of variation, while in most of 

cases models considering also the abundance of crayfish explained a substantial amount of 

variation (Table 4). Residual autocorrelation was significant for the larvae of the smooth 

newt only. For this species, one SEVM eigenvector was incorporated into the models 

(Table 4). 

It should be remarked that the relationship between larval abundance and the alien 

crayfish was negative and significant also for pool frogs (Table 4, Figure 2d), despite 

breeding sites surveys indicated an association between crayfish distribution and this 

species (Table 2). This suggests that pool frogs often attempt breeding in wetlands with 

crayfish, but breeding is not successful. To test this hypothesis, we repeated the analysis 

considering only the 23 wetlands where we detected pool frog breeding activity and we 

performed pipe sampling. In these wetlands, the abundance of pool frog larvae was 

negatively related to the abundance of P. clarkii (F1,19 = 4.9, P = 0.039; regression model 

taking also into account landscape and abiotic features). Procambarus clarkii was present in 

39% of these 23 wetlands. 

RDA showed that, after taking into account spatial autocorrelation and 

environmental features, larval communities were significantly related to the distribution 

of the alien crayfish (permutation test, P = 0.012). For all species, the abundance of larvae 

was negatively related to crayfish abundance (Figure 3). Environmental variables 

accounted for 9% of explained variation in community structure, autocorrelation 

accounted for 25%, while crayfish presence accounted for 18% of explained variation. The 

remaining variation was explained by the joint effects of multiple variables. 
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Figure 1. Results of constrained redundancy analysis showing (a) the relationship between 

wetland features and amphibian distribution, while taking into account spatial autocorrelation; (b) 

the relationship between amphibian distributing and presence of Procambarus clarkii, while taking 

into account wetland features and autocorrelation. Ss: Salamandra salamandra; Tc: Triturus carnifex; 

Lv: Lissotriton vulgaris; Hi: Hyla intermedia; Bb: Bufo bufo; Rd: Rana dalmatina; Rl: R. latastei; Pe: 

Pelophylax s. esculentus. Constraining variables are in grey colour. 
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Figure 2. Relationship between the abundance of the invasive crayfish, P. clarkii, and the 

abundance of amphibian larvae in 34 wetlands. 
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Figure 3. Results of constrained redundancy analysis showing (a) the relationship between 

wetland features and the abundance of amphibian larvae while taking into account spatial 

autocorrelation; (b) the relationship between the abundance of amphibian larvae, and the 

abundance of Procambarus clarkii, while taking into account wetland features and autocorrelation. 

Constraining variables are in grey colour. 
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Table 4. Models relating the abundance of amphibian larvae to environmental features and 

abundance of P. clarkii: comparison of models with and without the effect of P. clarkii. Significance 

values refer to the effect of P. clarkii; SEVM was used for L. vulgaris only, because of the spatial 

autocorrelation of residuals. See Table 2 for abbreviations. 

 

Species SEVM Environmental only  Environmental + P. clarkii 

 
 K R2 AIC w  K R2 AIC w F d.f. P 

L. vulgaris Y 4 0.52 132.2 0.08  5 0.61 127.4 0.92 6.4 1,29 0.017 

T. carnifex N 1 - 123.9 <0.01  2 0.36 110.6 0.99 24.6 1,32 0.0002 

H. intermedia N 3 0.03 132.3 0.16  4 0.17 129.0 0.84 5.0 1,31 0.032 

Agile frogs N 6 0.08 160.3 <0.01  7 0.39 147.9 0.99 14.1 1, 27 0.0008 

P. s. esculentus N 3 0.02 133.7 0.07  4 0.20 138.9 0.93 7.1 1,31 0.012 
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4.4. DISCUSSION 

 

We observed strong relationships between the invasive crayfish P. clarkii and amphibian 

communities, but the estimates of its influence, based on species distribution data, were 

different from those obtained through analysis of the abundance of larvae (Figures 1b, and 

3). The analysis of species distribution data was based on the presence of breeding adults 

and egg masses, and suggested that only some species were negatively related to P. clarkii 

(i.e., did not breed in invaded wetlands), while others (pool frog and brown frogs) were 

apparently associated with invaded wetlands (Tables 2 and 3, Figure 1b). Observing such 

a result, without considering data on breeding success, would suggest the misleading 

conclusion that these frogs are not negatively affected by the alien crayfish. The analysis of 

larvae lead to very different conclusions: for all species, the abundance of larvae was 

negatively related to the distribution of the alien crayfish, suggesting a strong impact on 

reproductive success (Table 4, Figures 2 and 3). Therefore, the alien crayfish may affect 

amphibian communities through multiple mechanisms: loss of suitable breeding sites, and 

loss of fitness in sites if breeding occurs in invaded sites. 

Some species, such as newts, may avoid breeding in invaded wetlands because of 

the predation pressure (Cruz et al., 2006a). For instance, newts have a complex breeding 

behaviour; males may defend territories for courtship and both sexes remain in breeding 

wetlands for relatively long periods (Griffiths, 1995). Therefore, adults may directly 

experience predation by crayfish and avoid invaded wetlands. Native species may also 

avoid invaded sites because AIS alter environmental features and make them unsuitable 

(Didham et al., 2007). Procambarus clarkii can reduce the presence of macrophytes in 

waterbodies (Matsuzaki et al., 2009); some amphibians select wetlands with abundant 

aquatic vegetation, which provides support for deposition and shelter for larvae (Cruz et 

al., 2006b; Hartel et al., 2010; Strijbosch, 1979). In these cases, P. clarkii may negatively 

impact amphibians through the loss of breeding wetlands. In human dominated 

landscapes, the number of suitable breeding wetlands is already limited, and loss of 
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breeding sites may quickly disrupt metapopulation dynamics and determine local 

extinction (Ficetola and De Bernardi, 2004). 

Other species, such as brown frogs and pool frogs, often bred in invaded sites, still 

the frequency and abundance of larvae was very low there, suggesting that larvae are 

heavily preyed. Experiments demonstrated that P. clarkii is able to prey on larvae of most 

European amphibians (Cruz and Rebelo, 2005; Gherardi et al., 2001); crayfish predation is 

therefore the most likely cause of the negative relationship between crayfish and tadpole 

abundance (Figure 2). The relationship was particularly clear for brown frogs. Brown frogs 

laid eggs in all ponds monitored through pipe sampling, but we detected very few or no 

tadpoles in the wetlands with high crayfish density (Figure 2e). Procambarus clarkii 

invaded the study area only in the last years (five years before the beginning of this study, 

or less; Fea et al., 2006). For several amphibians detected, lifespan is equal or even longer 

than this value (Lanza et al., 2007), therefore, adults may continue to attempt breeding in 

invaded wetlands despite poor fitness. Amphibians are able to detect the presence of some 

predators in wetlands, and avoid breeding in these environments (Resetarits Jr, 2005). 

However, in Europe the presence of native crayfish that live in ponds and prey on 

amphibians is very limited (Souty-Grosset et al., 2006), therefore it is unlikely that 

European frogs evolved the ability to identify and avoid wetlands with crayfish. Explosive 

breeders, such as brown frogs and toads, can be particularly unable to detect the presence 

of predatory crayfish, because females stay in breeding wetlands only for a few hours. 

Our measure of larval abundance can not be used as a proxy of larval survival, 

because absence of larvae may indicate either low reproductive effort, or high larval 

mortality. An accurate estimate of fitness would require an exhaustive measurement of the 

number eggs laid, and the use of drift fences to capture all metamorphosing individuals; 

such an estimate can be performed in one or a few small ponds (Dodd, 2010; Karraker and 

Gibbs, 2009), but is extremely difficult at large scale. On the other hand, measurement of 

larval abundance may be considered a good proxy of the overall reproductive success (see 

e.g., Werner et al., 2009), because for several species (smooth newt, common toad and Rana 
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frogs) larval sampling was performed immediately before the onset of metamorphosis. 

Therefore, we believe that information obtained through larval sampling is useful to 

compare breeding performance among ponds. 

It has been proposed that native species may change habitat use in response to the 

invasion of alien predators, for example by shifting to suboptimal environments where 

AIS are absent (Creel et al., 2005; D'Amore et al., 2009). Procambarus clarkii is a generalist 

that can survive also in temporary wetlands, but it is more frequent in large, permanent 

waterbodies: a long hydroperiod allows a prolonged activity period, while reproductive 

success can be limited in ephemeral wetlands (Cruz and Rebelo, 2007; Gutierréz-Yurrita 

and Montes, 1999) see also the chapter 2 of this thesis. This hypothesis would predict that 

amphibians shift their habitat preferences and select more temporary wetlands, where 

suitability for the crayfish is lower. However, we did not detect such a shift of habitat 

preferences. Species-habitat relationships (Tables 2 and 3) where similar to the ones 

detected by previous studies in uninvaded areas (e.g., Denoël and Ficetola, 2008; Ficetola 

and De Bernardi, 2004; Indermaur et al., 2010; Pavignano et al., 1990). In practice, most 

species were associated with relatively large and permanent wetlands, contrary to the 

predictions of the habitat use change hypothesis (Figure 1). Shifts in habitat use may be 

caused by learning, or by natural selection running against individuals breeding in certain 

environments. For instance, amphibians can quickly evolve adaptations in response to 

environmental changes (including the introduction of hitherto absent species) that affect 

fitness in aquatic environments (Ficetola et al., 2011a; Skelly and Freidenburg, 2000). 

Again, the short time since crayfish invasion probably prevented adaptations; future 

studies assessing habitat shifts would be valuable to understand evolutionary or 

behavioural responses to AIS. 

AIS are a major cause of the decline of biodiversity but, when a new species invades 

a biota, the consequences can be not evident for long periods (Strayer et al., 2006). Early 

understanding of the impact over native species may allow more prompt management 

actions, with increased possibility of success. In our study case, considering the 



4. Early assessment of the impact of alien species on adult and larval amphibians 

 

 

93 

 

distribution of adult amphibians only would lead to misleading conclusions, as adult 

amphibians continue to attempt breeding in invaded wetlands, despite the very limited 

larval survival. Measuring the impact on fitness components, such as reproductive 

success, can be more complex and resource consuming than collecting distribution data. 

Nevertheless, this approach allows a more clear understanding of the ongoing processes 

and of the consequences that AIS will have in the next future. These information may 

allow managers to start conservation actions before than consequences of AIS become 

irreversible. In this study case, management actions may include the control of crayfish 

abundance in the wetlands with the highest suitability for amphibians, through 

mechanical, physical, chemical or biological approaches, and the prevention of invasion in 

new areas (Gherardi and Panov, 2009). 
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Supporting information 

 

 

 

Figure S1. Results of constrained redundancy analysis showing (a) the relationship between 

wetland features and amphibian distribution, while taking into account spatial autocorrelation; (b) 

the relationship between amphibian distributing and presence of Procambarus clarkii, while taking 

into account wetland features and autocorrelation. For T. carnifex, H. intermedia and P. s. esculentus 

species occupancy was estimated using PRESENCE. Species codes are described in Figure 2; 

constraining variables are in grey colour. 
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Table S1. Relationships between species distribution, environmental features and presenceof P. 

clarkii: models using probability of presence, as estimated by occupancy models. R2N: Nagelkerke‘s 

R2; K: number of parameters in the model; AIC: Akaike‘s Information Criterion; w: AIC weight. 

 

Hyla intermedia Best AIC models  Effect of P. clakii 

  sign F df P R2 K AIC w  F df P 

a 
abiotic 
features 

+ 4.1 1,121 0.045 0.22 3 90.1 0.54  0.3 1,120 0.578 

 landscape 400 + 4.2 1,121 0.043         
 SEVM eigv.  29.1 1,121 <0.001         
b canopy cover - 6.0 1,122 0.016 0.20 2 90.4 0.46  1.1 1,121 0.301 
 SEVM eigv.  23.4 1,122 <0.001         
              

Pelophylax s. esculentus Model including P. clarkii  Model without  
P. clarkii 

 
          K AIC w 

 P. clarki + 8.5 1,122 0.029 0.11 2 218.9 0.955  1 225.0 0.045 
 landscape 400 + 10.9 1,122 0.004         
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ABSTRACT 

 

The temporal dimension is a key parameter when analysing the impact of alien invasive 

species. Studies on early invasion stages allow to better understand how ongoing 

processes modify native communities helping to plan effective management actions. 

Procambarus clarkii is an invasive crayfish that alters multiple features of invaded wetlands 

but its impact on organisms with complex life cycles is little investigated. We considered 

121 wetlands, and we used both quantitative and qualitative data to evaluate the 

relationships between P. clarkii and the richness of adults, larvae, and exuviae of odonates. 

We recorded environmental features of each wetland and we used GIS to measure the 

natural vegetation in the surrounding landscape. We performed analysis using spatially 

explicit techniques (Generalized Linear Models and spatial Generalized Additive Models) 

allowing the integration of spatial autocorrelation into analyses. Spatial autocorrelation, 

wetland features and landscape features explained a significant amount of odonate 

community richness. We observed a significant relationship between P. clarkii and the 

odonate community, but the effect of the invasive crayfish on the three odonate stages was 

different: species richness measured using both larvae and exuviae was negatively related 

to the crayfish presence, while negative effects on adults were less evident. At early stages 

of the invasion, larvae and exuviae may be more helpful for the assessment of the impact 

of invasive species, while adults may better describe the long term consequences of an 

invasion at the landscape scale. The invasion of P. clarkii has different negative impact on 

different stages of species with complex life cycles. 

 

KEY WORDS: Procambarus clarkii, biological invasions, freshwater ecosystems, early 

assessment, environmental features, differential impact mechanisms. 
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5.1. INTRODUCTION  

 

There are approximately 50.000 alien invasive species in the United States and 11.000 are 

inventoried in Europe (Drake, 2009; Pimentel et al., 2005); alien invasive species (AIS) have 

been recognized as one of the major causes of biodiversity loss. Many native ecosystems 

have been irretrievably modified by AIS, determining the decline and even the extinction 

of thousands of native species (Drake, 2009; Gherardi, 2007; Wittenberg and Cock, 2001).  

AIS can damage native species through multiple mechanisms, including 

competition, predation, spread of diseases and hybridization (Pimentel, 2002). Prevention 

of new introductions is the optimal strategy to avoid the negative consequences of AIS, 

but If this is not feasible, earlier management actions, at the same cost, have the greater 

effectiveness (Allendorf and Lundquist, 2003; Polasky, 2010; Wittenberg and Cock, 2001).  

Only a subset of alien species become invasive, showing clear negative impact on 

native ecosystems (Jeschke and Strayer, 2005; Suarez et al., 2005; Vilà et al., 2010), and 

priority is given to manage species that clearly show negative effects on native habitats. 

Research is therefore required to assess environmental impact of alien species and help 

setting correct management actions (Vilà et al., 2010; Wittenberg and Cock, 2001).       

Inland waters are particularly exposed to alien species invasions: hundreds of 

freshwater species have been moved outside of their native ranges as a direct consequence 

of the use of this ecosystem for human activities (Gherardi et al., 2008; Strayer, 2010), and 

the deterioration of freshwater habitats is determining species extinction at rates even five 

times higher than those for terrestrial habitats (Ricciardi and Rasmussen, 1999).  

AIS can strongly stress the invaded environments, being part of a complex web of 

environmental interactions that involves environmental stressors, alien species, and native 

communities, furthermore, AIS introductions are more frequent where human activities 

alter the environment and assist their spread (Didham et al., 2007). Analyses considering 

both habitat modifications and AIS are therefore needed to take apart their relative role 

(Didham et al., 2007; Strayer, 2010). Nevertheless, only a small subset of studies considered 
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the effects of AIS concurrently to the ones of environmental modifications, such as 

urbanization or the degradation of natural environments, that can have negative non-

additive interactions with native species. 

Biological invasions can be described as multi-step processes: first, the introduced 

species must arrive, survive, and establish itself in a new area; second, the alien species 

develops an invasive behavior, spreads and impacts on native environment and native 

species (Allendorf and Lundquist, 2003). Over time, during the different invasion stages, 

in invaded habitats occur complex ecological and evolutionary processes, such as changes 

in the invaded biological community, changes in the species that invade, changes in the 

abiotic environment, and changes in the interaction between the ecosystem components; 

the temporal dimension is therefore a key parameter that needs to be considered when 

analysing the effects of AIS (Strayer et al., 2006).  

Research on later phases of invasion often describes widely altered communities, in 

contrast, the study of early stages, when the AIS has not completed the habitat invasion, 

allow to better understand how ongoing processes modify the invaded communities. 

Research on early invasion stages may also helps to plan more effective and less costly 

management actions, helping to prevent further damages and AIS spread (Polasky, 2010). 

The red swamp crayfish Procambarus clarkii is a freshwater AIS native of Eastern 

North America, now invasive in five continents (Barbaresi and Gherardi 2000; Huner 

1994); it is considered one of the 100 worst AIS in Europe (Drake, 2009); it has high 

fecundity and great ecological plasticity that determine its high invasiveness (Aquiloni 

and Gherardi, 2008; Gherardi, 2006; Hazlett et al., 2003; Huner and Lindqvist, 1991). 

Procambarus clarkii is a polytrophic opportunistic crayfish that can change the habitat 

features, altering the flow of nutrients, and having multiple negative consequences on 

native species and ecosystems (Gherardi, 2006; Matsuzaki et al., 2009). Procambarus clarkii 

can feed on detritus, macrophytes, molluscs, fishes, amphibians and insects (Gherardi, 

2006; Souty-Grosset et al., 2006), altering the biodiversity of macrobenthic and odonate 

communities (McCarthy et al., 2006; Nyström et al., 1996; Wilson et al., 2004).  
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Odonates are often used in ecological studies as surrogates of wetland biodiversity and to 

assess water-body health (Oertli, 2008; Sahlen and Ekestubbe, 2001; Samways, 2008), and 

among insects, odonates are one of the orders to which the greater conservation attention 

is devoted; for instance, they are the first insect order for which researchers attempted a 

global evaluation of the conservation status using the IUCN Red List Categories 

(Clausnitzer et al., 2009). Previous researches gave clear indications on the multiple 

negative effects of P. clarkii invasion on native ecosystems. Laboratory tests and gut 

contents analysis showed that P. clarkii can feed on odonates, even preferring them to 

other food like living fish, and vegetal matter (Correia, 2003; Ilhéu and Bernardo, 1993). 

However, information on the impact of P. clarkii on odonate communities in natural 

environments remains scarce.  

This study evaluates the relationships between P. clarkii and the richness of odonate 

communities in an area recently invaded by this crayfish. Odonates show a complex life 

cycle (Wilbur, 1980), with aquatic larvae and adults living in sub-aerial conditions. AIS can 

therefore have a different impact on the different life cycle stages (Corbet, 2004; Córdoba-

Aguilar, 2008). For instance: (1) AIS can determine the complete disappearance of 

odonates in the invaded areas; (2) adult odonates may be present in the invaded areas, but 

avoid breeding in  invaded wetlands; (3) adult odonates could attempt breeding in 

invaded wetlands, but the AIS hamper breeding success.  

Analysing relationships between AIS and the different life cycle stages can help to 

disentangle the mechanisms determining the AIS impact on odonates (McCauley et al., 

2008; Serrano-Meneses et al., 2008). In particular, we evaluated the relationships between 

P. clarkii and (1) the richness of adults; (2) the richness and abundance of larvae, and (3) 

the richness of exuviae. Adults, showing the greater dispersal ability, determine the 

distribution of dragonfly communities; Larvae indicate that odonates grow in wetlands, 

and exuviae indicate the successful larval development and the complement of the life 

cycle (Corbet, 2004; Córdoba-Aguilar, 2008). In all our analyses we also considered the 
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spatial autocorrelation and environmental features to take into account their potential 

effects. 

 

5.2. METHODS 

 

Study area and methods outline 

 

We considered 121 waterbodies (ponds, slow streams, ditches, and small lakes) in 

Lombardy region, Northern Italy, in an area including the upper Po River plain and the 

foothills of Brianza, at altitudes ranging between 132 m and 397 m; annual average 

temperature between 10 °C and 14.4 °C, and annual mean rainfall between 1400 mm and 

1600 mm (Gerletti and Marchetti 1977). The landscape of this region is human dominated 

(Figure 1), with large agricultural and urban areas, and is characterized by a complex 

network of lakes, ponds, rivers, and canals. In this region, several natural parks host 

important freshwater communities. The area was recently invaded by P. clarkii, 

approximately between the years 2004 and 2006 (Fea et al., 2006), and P. clarkii currently 

has an highly fragmented distribution in the area (chapter 2). We surveyed 108 wetlands 

during 2009 and 13 further wetlands during 2010 (total 121).  

We performed 6 surveys for each wetland, searching for odonate adults, exuviae 

,and larvae, and for P. clarkii; in a subset wetlands we performed an additional survey 

sampling quantitatively both odonate larvae and P. clarkii; we described each sampled 

wetland using a standard set of environmental parameters; taking into account the 

environmental parameters, surveys were performed to assess relationships between 

odonate distribution and P. clarkii, and to derive guidance on the reproductive success and 

reciprocal influence.  

 The spatial autocorrelation is a phenomenon affecting the distribution of both 

native populations and exotic species (Hamasaki et al., 2009; Smolik et al., 2010), resulting 

in a higher similarity of species assemblages occupying closer localities. Species 
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distribution is, in fact, limited by endogenous factors due to species ecology and by 

exogenous factors that comprises autocorrelated environmental features (e.g., vegetation, 

climate, and landscape composition) (Beale et al., 2010; Dormann, 2007), therefore we 

integrated spatial autocorrelation into all our analyses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Study area (Lombardy region, Northern Italy). Black lines enclose the areas where 

wetlands are located, dark shaded areas represent lakes and major rivers, light shaded areas 

represent urban areas. 
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Odonate communities and P. clarkii surveys 

 

From May to August 2009, we used a combination of multiple techniques to assess the 

presence of odonates and of P. clarkii. We performed at least 4 surveys in daytime and two 

surveys after dusk.  

For P. clarkii, we used nocturnal and diurnal visual census of individuals and 

exuviae helped by dip netting (Reynolds et al., 2006).  

For odonates, we explored wetlands during the central hours of the day, with 

sunny weather and little wind speed or no wind; during each survey we looked for adults, 

last instar exuviae, and larvae using visual census helped by aerial net, binoculars, and 

magnifying lens for adults, and deep net for larvae. A sweep net helped exuviae detection, 

especially in temporary wetlands where, due to the broad water level fluctuations, banks 

have a wide and indeterminate extension. Adults are the less demanding odonate life 

stage to study but surveys including the three studied stages give more detailed 

information. Exuviae, in particular, give useful indications on all other life stages and 

denote the reproductive success at breeding sites (Córdoba-Aguilar, 2008; Ott, 2010).  

 

Quantitative sampling of larval odonates and P. clarkii  

 

In late May-early June 2010 we performed an additional survey using pipe sampling to 

asses quantitatively the abundance of odonate larvae (McCauley et al., 2008; Werner et al., 

2009).  

Pipe sampling was focused on a subsample of 34 wetlands keeping a balanced ratio 

(50%) between wetlands invaded and not invaded by the invasive crayfish.  

We used a 0.25 m2 circular pipe sampler; samples were collected by quietly 

approaching an area and quickly sinking the pipe through the water column into the 

sediments, to seal the sample area. We used small nets (1 mm mesh size) to remove all 

animals from the water column and from the first centimeters of the sediment. Net sweeps 
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were stopped after at least 10 consecutive performed sweeps without capturing any 

animal (Werner et al., 2009). We collected a number of samples proportional to wetland 

surface (average samples number: four).  

Odonate larvae were identified following standard keys (Carchini, 1983; 

Heidemann and Seidenbusch, 2002). Because of the morphological overlapping, 

particularly wide during early larval stages, in our analysis we pooled larvae of the 

following species as singles species groups: (1) Coenagrion puella and C. pulchellum as C. 

puella-pulchellum; (2) Sympetrum sanguineum and S. striolatum as S. sanguineum-striolatum. 

All Individuals of P. clarkii were weighed to measure their mass (g / m2). 

 

Environmental variables 

 

In late May-June, we recorded eight parameters used as standard characterization of 

wetlands: surface area, maximum depth, water permanence, average stream velocity,  

presence of fishes, canopy cover, percentage of riparian vegetation along the shoreline, 

percentage of emerging or floating vegetation on wetland surface (Table 1). Parameters 

were recorded using standard bio-assessment protocols; vegetation cover was visually 

estimated (Table 1), details on their measurement are reported elsewhere (Barbour et al., 

1999; Van Buskirk, 2005; Ficetola et al., 2011b). Furthermore, as odonate communities are 

affected by landscape features (Hamasaki et al., 2009; Samways and Steytler, 1996), we 

used the ArcView GIS (© ESRI, 1999) to measure the percentage of natural vegetation in 

the landscape surrounding each wetland, on the basis of the 2008 vector map of the 

Lombardy region (www.cartografia.regione.lombardia.it). Natural vegetation was 

measured in a radius of 400 m from each wetland.  
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Table 1. Environmental variables recorded.  

 

Environmental variables 

a: wetland  

Surface1 (m) 

Maximum depth1 (cm) 

Permanence during the study period (Y/N) 

Stream velocity1 (m/s) 

Fish presence (Y/N, visual estimate) 

Canopy cover (%, visual estimate)2 

Emerging vegetation (% of vegetation emerging from water surface,visual estimate)2 

Riparian vegetation (%,visual estimate)2 

b: landscape 

Natural vegetation (%) 2  

 

1: Log-transformed prior to analyse.  

2: square-root arcsin transformed prior to analyse. 
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Statistical analyses 

 

We used Generalized linear models (GLM) and generalized additive models (GAM) to 

assess the relationships between the richness of odonate communities, the presence of P. 

clarkii, and the environmental features. We repeated analyses three times (adults, larvae, 

and exuviae) and at three levels (overall community, Anisoptera only, and Zygoptera 

only). In all analysis, community richness (number of species) was the dependent variable, 

while we included environmental variables and P. clarkii as dependent variables.  

For the analysis of adults and exuviae, we considered 107 wetlands and the 

distribution of P. clarkii were described by presence-absence data. For the analysis of 

larvae, we considered 34 wetlands, and, in this case, the distribution of P. clarkii were 

described by its abundance (g / m2).  

In the analysis of adults and exuviae, residuals of preliminary GLMs where 

spatially autocorrelated. Spatial autocorrelation may bias the results of standard 

regression techniques (Beale et al., 2010), therefore we used spatial GAM to assess the 

relationships between community richness, presence of P. clarkii and environmental 

features, while taking into account the effect of spatial autocorrelation. Spatial GAMs 

incorporate the coordinates of localities in GAMs as covariates (Beale et al., 2010). 

Simulations showed that spatial GAMs are among the techniques with lowest bias, and 

with good performance, even in presence of violations of assumptions, such as 

nonstationarity of spatial autocorrelation (Beale et al., 2010).  

For the analysis of Zygoptera exuviae, residual deviance was much lower than one 

(variance inflaction factor = 0.39), therefore we used a quasi-Poisson family instead then 

using a Poisson family, and we calculated significance using an F test instead than using 

an χ2 test (Crawley, 2007). To confirm that our results were not affected by the statistical 

approach, we also performed preliminary analyses using Spatial Eigenvector Mapping 

(Dormann et al., 2007); these analyses yielded the same results. 
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For the analysis of larval community richness, we had a limited number of wetlands (N = 

34); including too many environmental variables in a model would lead to the risk of 

overfitting models; therefore, we used Akaike‘s Information Criterion (AIC) to identify the 

minimum adequate model (MAM) explaining community richness on the basis of a 

limited number of independent variables. We built GLMs (Poisson error distribution), 

corresponding to all combinations of environmental variables, and we calculated the AIC 

for each model. We identified the model with lowest AIC as the MAM, which can be 

defined as the model explaining most variance with the lowest number of variables 

(Diniz-Filho et al., 2008). For this analysis, estimates of the abundance of P. clarkii (g / m2) 

where available, therefore we used as independent variable crayfish abundance instead 

than crayfish presence / absence. For the analysis of larval communities, residuals were 

not spatially autocorrelated (permutation test, P > 0.05 for all models) (Lichstein et al., 

2002). In all analyses, environmental variables were not strongly correlated among them 

(for all pairwise correlations, |r| < 0.4). We performed analyses in the R statistical 

environment (www.r-project.org). 

 

5.3. RESULTS 

 

We detected P. clarkii in 33 wetlands (31%). During our surveys we detected the presence 

of forty-two odonates species, 17 Zygoptera and 25 Anisoptera (Tables 2 and 3). The 

average richness was 6.6 species per wetland (SD = 4.1).  

 

Adult communities richness 

 

If data of adults are considered, the richest odonate communities were associated to 

relatively deep, permanent, and standing waters, with abundant emerging vegetation, and 

within landscapes with natural vegetation. The relationship between community richness 

and presence of P. clarkii was not significant (Table 4a). 

http://www.r-project.org/
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Relationships between community richness and environmental variables remained the 

same if only Anisoptera are considered (Table 4b).  

The situation was different for Zygoptera. Data from adults suggest that the richest 

communities are associated to permanent wetlands with presence of P. clarkii (Table 4c). 

For all analyses, spatial autocorrelation explained a significant amount of variation.  

 

Larval community richness 

 

We detected P. clarkii in 50% of wetlands surveyed with pipe sampling; furthermore, we 

detected larvae of fourteen odonate taxa (Tables 2 and 3); in invaded wetlands we found 

seven odonate taxa: Lestes viridis, Ischnura elegans, C. puella-pulchellum, Aeshna cyanea, 

Orthetrum albistylum, Orthetrum cancellatum, and S. sanguineum-striolatum.  

The overall richness of odonate larval communities was negatively related to the 

abundance of P. clarkii. Furthermore, we observed the richest larval communities in deep 

wetlands within the most natural landscapes (Table 5a). The relationship between 

community richness and P. clarkii was negative and significant also if Anisoptera are 

analysed separately (Table 5b).  

For Zygoptera, the richest larval communities were associated to the wetlands with 

lower canopy cover (i.e., sunny wetlands) (Table 5c). The abundance of P. clarkii was not 

included in the MAM of Zygoptera. The relationship between abundance of P. clarkii and 

richness of Zygoptera was not significant both if P. clarkii was added to the MAM (21 = 

0.1, P = 0.829) and if P. clarkii was included as unique predictor of Zygoptera richness (21 

= 0.9, P = 0.349). 

 

Exuviae richness 

 

We detected exuviae of eighteen odonate taxa (Tables 2 and 3); in invaded wetlands we 

found eight species of odonates: Calopteryx virgo, C. splendens, Lestes viridis, Platycnemis 



5. Impact of an invasive crayfish on complex life cycles: a case study with odonates 

 

 

109 

 

pennipes, Coenagrion puella, Aeshna isoceles, Orthetrum cancellatum, and Sympetrum 

sanguineum.  

If exuviae are considered, the richness of odonate communities was negatively 

related to the abundance of P. clarkii (Table 6a); the relationship between community 

richness and P. clarkii was negative and significant also if Anisoptera and Zygoptera are 

analysed separately (Tables 6b and 6c).  

Relationships between community richness and environmental variables were 

weak; the only significant relationship was a lower richness of Zygoptera in running 

waters. For all analyses, spatial autocorrelation explained a significant amount of 

variation. 

 

Table 2. Odonates detected: Zygoptera species, relative adults frequency, and indications on the 

species detection as exuvia and larva. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

*: species detected.  
 

1: species merged in a single taxon for analyses. 

Species found Adult frequency  Larva detected  Exuvia detected  

Suborder Zygoptera   

Calopteryx splendens 0.18 * * 
Calopteryx virgo 0.28  * 
Lestes barbarus 0.01   
Lestes dryas 0 *  
Lestes sponsa 0.03   
Lestes virens 0.02 *  
Lestes viridis 0.16 * * 
Platycnemis pennipes 0.20 * * 
Pyrrhosoma nymphula 0.06   
Ischnura elegans 0.53 * * 
Ischnura pumilio 0.07  * 
Erythromma viridulum 0.06   
Erythromma lindenii 0.07  * 
Enallagma cyathigerum 0.03   
Coenagrion puella 0.43 *1 * 
Coenagrion pulchellum 0.14 *1  
Ceriagrion tenellum 0.17   
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Table 3. Odonates detected: Anisoptera species, relative adults frequency, and indications on the 

species detection as exuvia and larva. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
*: species detected.  
 

 1: species merged in a single taxon for analyses. 

 

 

 

Species found Adult frequency  Larva detected  Exuvia detected  

Suborder Anisoptera    

Aeshna affinis  0.06   
Aeshna cyanea 0.21 * * 
Aeshna isoceles 0.36 * * 
Aeshna mixta 0.04 *  
Anax imperator 0.39  * 
Anax parthenope 0.27  * 
Onychogomphus forcipatus 0.04   
Onychogomphus uncatus 0.02   
Cordulegaster bidentata 0.04   
Cordulegaster boltonii 0.13  * 
Cordulia aenea 0.03   
Somatochlora flavomaculata 0.26   
Somatochlora metallica 0.02   
Libellula depressa 0.15   
Libellula fulva 0.16  * 
Libellula quadrimaculata 0.12 * * 
Orthetrum albistylum 0.30 *  
Orthetrum brunneum 0.01   
Orthetrum cancellatum 0.30 * * 
Orthetrum coerulescens 0.21   
Crocothemis erythraea 0.21   
Sympetrum fonscolombii 0.11  * 
Sympetrum pedemontanum 0.01   
Sympetrum sanguineum 0.62 *1 * 
Sympetrum striolatum 
 

0.04 
 

*1  
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Table 4. Relationships between the richness of odonate adult communities, the presence of P. 

clarkii ,and environmental features, as explained by generalized additive models (GAM). 

 

Analyses level  Variables B χ df P 

a. Overall community      

 P. clarkii 0.12 1.1 1 0.297 
 stream -2.69 9.0 1 0.003 
 Area 0.07 0.4 1 0.529 
 depth 0.43 7.3 1 0.007 
 canopy -0.17 2.8 1 0.096 
 riparian veg. 0.00 0.0 1 0.974 
 emerging veg. 0.25 5.2 1 0.022 
 permanence 1.17 30.0 1 <0.001 
 landscape veg. 0.54 5.8 1 0.016 
 Spatial variables  52.2 10 <0.001 

b. Anisoptera only      

 P. clarkii -0.02 0.0  0.908 
 stream -3.02 6.1  0.014 
 area 0.03 0.1  0.801 
 depth 0.42 4.6  0.031 
 canopy -0.23 3.3  0.068 
 riparian veg. -0.06 0.2  0.655 
 emerging veg. 0.27 4.0  0.047 
 permanence 0.94 15.9  <0.001 
 landscape veg. 0.58 4.2  0.040 
 Spatial variables  34.6 10 <0.001 

c. Zygoptera only      

 P. clarkii 1.06 19.7  <0.001 
 stream -1.48 1.7  0.197 
 area 0.13 0.7  0.419 
 depth 0.29 1.3  0.251 
 canopy -0.04 0.1  0.810 
 riparian veg. 0.08 0.3  0.609 
 emerging veg. 0.17 1.0  0.325 
 permanence 2.07 15.4  <0.001 
 landscape veg. 0.49 2.0  0.157 
 Spatial variables  15.7 8 0.038 
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Table 5. Relationships between the richness of odonate larval communities, the presence of P. 

clarkii, and environmental features, as explained by the minimum adequate model (MAM) 

identified using Akaike‘s Information Criterion (AIC) among Poisson error distribution GLMs of 

all combinations of environmental variables. 

 

Analyses level Variables B χ df P 

a. Overall community      

 P. clarkii -0.31 9.2 1 0.002 
 depth 0.863 3.9 1 0.049 
 landscape veg. 1.63 4.2 1 0.041 

b. Anisoptera only      

 P. clarkii -0.29 5.4  0.021 

c. Zygoptera only      

 canopy -1.38 5.1 1 0.025 
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Table 6. Relationships between the richness of odonate exuviae, the presence of P. clarkii, and 

environmental features, as explained by generalized additive models (GAM). 

Analyses level Variables B Χ df P 

a. Overall community      

 P. clarkii  -1.20 6.0 1 0.014 
 stream -3.81 0.9 1 0.347 
 area -0.10 0.1 1 0.752 
 depth 0.46 0.9 1 0.356 
 canopy -0.16 0.2 1 0.649 
 riparian veg. 0.00 <0.1 1 0.992 
 emerging veg. -0.04 <0.1 1 0.932 
 permanence 153.30 <0.1 1 0.999 
 landscape veg. 0.05 <0.1 1 0.944 
 Spatial variables  23.3 7 0.001 

b. Anisoptera only  

 P. clarkii -1.67 6.9  0.009 
 stream -3.88 0.5  0.482 
 area -0.04 0.0  0.919 
 depth 0.70 1.2  0.265 
 canopy -0.16 0.1  0.722 
 riparian veg. -0.23 0.2  0.636 
 emerging veg. 0.36 0.5  0.500 
 permanence 140.80 <0.1  0.999 
 landscape veg. 0.35 0.1  0.709 
 Spatial variables  16.1 3 0.001 

c. Zygoptera only      

 P. clarkii -1.95 6.4 1,86 0.014 
 stream -21.83 9.1 1,86 0.003 
 area 0.42 0.8 1,86 0.361 
 depth 2.23 7.4 1,86 0.008 
 canopy 0.46 1.2 1,86 0.274 
 riparian veg. 0.41 0.7 1,86 0.395 
 emerging veg. 0.41 0.7 1,86 0.409 
 permanence 134.30 <0.1 1,86 0.999 
 landscape veg. 0.49 0.2 1,86 0.634 
 Spatial variables  2.8 12,86 0.003 
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5.4. DISCUSSION 

 

The number of taxa found in the study area (Tables 2 and 3) accounts for 62% of species of 

the total regional fauna (Balestrazzi and Pavesi, 2008), suggesting that our sampling 

protocol exhaustively covered the odonate biodiversity of the study area.  

We observed a strong relationship between P. clarkii and the odonate communities, 

but the effect of the invasive crayfish on the native species distribution was different when 

considering separately the distribution of odonate adults, larvae, and exuviae. In our 

analyses features of wetlands and of the surrounding landscape where the main drivers of 

adult community richness. Adult richness was higher in relatively deep, permanent, and 

standing waters, with abundant emerging vegetation, within landscapes with natural 

vegetation. The analysis of Anisoptera richness was in agreement with the analysis of all 

odonates. Conversely, if analysed separately, adult Zygoptera showed only a positive 

relationship with permanent wetlands (Table 4). Our results are similar to those reported 

for others regions (Mabry and Dettman, 2010; McCauley et al., 2008; Sahlen and 

Ekestubbe, 2001), confirming the importance of these environmental variables for odonate 

communities.  

The richness of adult community was not negatively related to the presence of the 

invasive crayfish, actually, if Zygoptera are analysed separately, our results suggest a 

positive relationship between adult damseflies richness and the invasive crayfish (Table 4). 

Limiting our analysis to adult distribution would lead to the incorrect conclusion that the 

invasive crayfish has not an adverse effect on odonate communities, and might even have 

a positive effect. Performing a separate analysis on different odonate life history stages 

helps to draw out a more detailed description of the actual impact of crayfish invasion on 

odonates. 

When larvae are analysed (Table 5), we found the association of richest 

communities with relatively deep wetlands, in landscapes with natural vegetation; these 

relationship remained positive if Anisoptera are considered separately, while for 



5. Impact of an invasive crayfish on complex life cycles: a case study with odonates 

 

 

115 

 

Zygoptera we found a positive relationship only with the more sunny wetlands. Larval 

community richness was negatively related to the abundance of the invasive crayfish both 

if the overall community was considered, and if Anisoptera were analysed separately. 

Conversely, the richness of Zygoptera larvae was not related to the crayfish abundance, 

even if adults were associated with P. clarkii.  

Exuviae give the best indication of the successful odonate reproduction within a 

wetland (Oertli, 2008), and all the analyses of exuviae confirmed the negative relationship 

between the invasive crayfish and the odonate community richness (Table 6), this negative 

relationship was strong also for Zygoptera, even if analyses suggested different patterns in 

adults and larvae (Tables 4c, 5c, and 6c).  

Our analysis shows the multiple steps of the dramatic impact of the crayfish invasion on 

odonate communities. In early invaded wetlands P. clarkii can have the strongest impact 

on juvenile aquatic stages of odonates; this negative effect could be the result of both direct 

and indirect interactions: P. clarkii can directly prey on larval odonates reducing their 

number (Correia, 2003; Ilhéu and Bernardo, 1993; Maezono and Miyashita, 2004; McCarthy 

et al., 2006; Nyström et al., 1996), but it can also negatively affect richness and abundance 

of the macrobenthic community, reducing invertebrates and amphibian larvae that 

constitute the main prey of larval odonates (Correia and Anastacio, 2008; Cruz et al., 2008). 

Furthermore aquatic predators, such as P. clarkii, can induce defensive mechanisms on 

dragonflies that negatively affect their feeding activity and metabolism rate (Heads, 1985; 

Serrano-Meneses et al., 2008). Processes that slow the larval growth, forcing larval 

odonates to remain longer in water, expose them for longer to mortality sources like 

predation and habitat drying; furthermore, adults can emerge late, and at smaller size, 

with potential negative effects on their fecundity (McPeek, 2008; Serrano-Meneses et al., 

2008; Stoks et al., 2008). 

Odonates are strongly associated with macrophytes: during larval stages they use 

the aquatic vegetation for anchorage, concealment, defence, and as foraging sites (Corbet, 

2004; Córdoba-Aguilar, 2008). The destruction of macrophytes by the invasive crayfish 
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(Gherardi and Acquistapace, 2007) can negatively impact larval stages, in fact, by 

consuming plant material, P. clarkii could also destroy eggs laid on this substrate, with 

further negative consequences on abundance of larval population.  

Exuviae analysis confirmed that the invasive crayfish leads to a generalized 

environmental deterioration (Gherardi, 2006; Gherardi and Panov, 2009) making the 

aquatic environment unsuitable for the development of juvenile stages.  

 Procambarus clarkii could therefore negatively affect odonate communities through 

two, non-exclusive, main mechanisms: loss of breeding sites, and fall of the reproductive 

success at the breeding sites.  

Adults of some odonate species could avoid reproduction in wetlands where P. 

clarkii is present as a consequence of chemical or mechanical signals directly related to the 

presence of the crayfish, or because of the environmental changes caused by its presence; 

for instance, P. clarkii removes aquatic macrophytes, which are important factors for the 

selection of breeding sites for odonates (Corbet, 2004; Córdoba-Aguilar, 2008; Maezono 

and Miyashita, 2004; Sahlen and Ekestubbe, 2001). The analysis of adults does not support 

this hypothesis because, after taking into account environmental features, we found no 

negative relationships between the presence of P. clarkii and the presence of adult 

odonates; furthermore, previous studies suggest that, for the selection of reproduction 

sites, odonates use mainly visual and tactile cues based on habitat structure, while they 

have a limited ability to detect predators (Corbet, 2004; Crumrine et al., 2008). 

Nevertheless, high density populations of P. clarkii could directly negatively affect 

deposition of endophytic species, by attempting the predation of adults that, during eggs 

laying, spend long time submerged in the water. 

Adults of other odonate species breed in the invaded wetlands; this strategy, that in 

our data is evident for Zygoptera, might arise because of lack of detection of cues, or by 

the reduction of odonate competitors and predators like fishes, insects, and larger 

dragonflies (Blaustein et al., 2004; Crumrine, 2010; Gydemo et al., 1990; Pierce et al., 1985). 
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However the negative relationship with P. clarkii observed with the exuviae analysis 

indicate that this strategy would lead to the fall of the odonate reproductive success.     

Spatial autocorrelation explained a significant component of community richness 

(Tables 4 and 6), this probably arises because dispersal is extremely important to maintain 

odonate communities; sites neighbouring species-rich wetlands therefore host more 

species than expected on the basis of the sole environmental features (Hamasaki et al., 

2009; McCauley et al., 2008; Yamanaka et al., 2009). Within the study area, only a subset of 

wetlands are invaded by P. clarkii, therefore non invaded sites could support natural 

populations that disperse in the surrounding landscape and attempt reproduction in 

invaded wetlands. Unfortunately, simulation and empirical studies showed that, if the 

proportion of suitable patches in a given landscape falls below a given threshold, dispersal 

can not anymore maintain populations, and species can undergo abrupt extinction (Fahrig, 

2002; Ficetola and Denoël, 2009). The community of odonates can be therefore maintained 

only if the numbers of wetlands without P. clarkii, where odonates can attain positive 

fitness, remain high. 

Procambarus clarkii is a generalist crayfish that is well adapted to live in temporary 

wetlands with short hydroperiod, even shorter than 4 Months, but the reproductive 

success of this crayfish is higher in wetlands with longer hydroperiod, that are more easily 

and stably invaded (Cruz and Rebelo, 2007; Gutiérrez Yurrita and Montes, 1999); 

unfortunately, deep and permanent wetlands are also the ones hosting the richest odonate 

communities (Tables 4, 5, and 6), while most of species can not successfully reproduce in 

ephemeral wetlands (Heidemann and Seidenbusch, 2002; Schultz, 2009; Stevens and 

Bailowitz, 2008). Our study therefore suggests that odonates can be extremely sensitive to 

the impact of this AIS. Larvae and exuviae are the stages that are affected first by the 

crayfish and show the earliest crayfish impact at the wetland scale, while negative effects 

on adults are less evident at early stages of the crayfish invasion and may indicate long 

term consequences and landscape scale effects.  
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The conservation of odonate communities requires management actions aimed to limiting 

the distribution of P. clarkii; in invaded regions keeping isolated wetlands free from the 

invasive crayfish, and create new breeding sites, can be effective conservation tools. 

Unfortunately, the control of this AIS is extremely difficult (Aquiloni et al., 2010; Gherardi, 

2006; Gherardi and Panov, 2009), challenging conservation of freshwater biodiversity in 

the quickly expanding invaded areas. 
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Alien species invasions are an increasingly important aspect of global change (Didham et 

al., 2007; Perrings et al., 2010) but the managing of AIS and the detailed assessment of their 

impact on the invaded ecosystems is challenging; in particular, there is a lack of detailed 

information on AIS invasion processes and damages. 

This research analyses different aspect of the P. clarkii invasion, starting from the 

spatial patterns and processes determining its invasion (chapter 2), and subsequently 

studying its impact on native freshwater populations (chapters 3, 4, and 5). I have chosen 

to investigate amphibians and odonates because they are well known taxa, already widely 

used in environmental research, and for their ecological, cultural and conservation value. I 

analysed a large area, sampling a total of 148 wetlands, including running and standing 

waters both temporary and permanent, where P. clarkii is at the early stages of the 

invasion, with invaded wetlands alternate to not invaded suitable wetlands (chapter 2). 

The data analysis considered environmental parameters of each wetland and of the 

surrounding landscape. The spatial autocorrelation was an additional parameter 

evaluated in all our analysis.  

Procambarus clarkii is an AIS with high tolerance to a wide range of environmental 

conditions, therefore some authors suggested that habitat characteristics can only 

marginally determine its invasion trend (Cruz and Rebelo, 2007; Gherardi, 2006). 

Nevertheless, my data (chapter 2) on the early stages of invasion showed that, at this 

phase, habitat characteristics can be extremely important drivers of the invasion, in 

particular my results indicate that, at early invasion stages, P. clarkii spread is strongly 

associated with large and permanent wetlands in human-altered landscapes. In addition, 

the presence of occupied wetlands within 2500 m increases the likelihood of occurrence of 

P. clarkii, highlighting the importance of dispersal processes for invasion dynamics. These 

environmental requirements should be considered during the management of this AIS.  

Furthermore, this research highlights the importance of studying the early phases of 

an invasion, confirming that, in this phase, the AIS populations have higher 

environmental requirements: in fact, the knowledge of environmental features that can 
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strongly determine AIS success as invaders might make them more vulnerable at 

management actions. 

This research confirms the association between P. clarkii and human activities 

(chapter 2); P. clarkii is an omnivorous feeder with high tolerance to human disturbance, 

its populations were associated with human-altered landscapes; altered environments 

with simplified communities can favour the invasive crayfish that, after reaching high 

population densities in disturbed environments, can disperse to more natural biotopes 

(Correia 2003; Didham et al. 2007; Cutway and Ehrenfeld 2009).  

AIS can strongly stress the invaded environments and make them unsuitable for 

native species (Didham et al., 2007; Strayer, 2010); but only a small subset of studies 

considered the effects of AIS concurrently to the ones of environmental modifications 

(Didham et al., 2007); in fact the impact of AIS on native communities is strongly negative 

(paragraph 1.2) but the dramatic effects on native ecosystems have multiples causes and 

mechanisms that, at present, are poorly understood. The mechanisms determining the 

observed negative effects, and not only the negative effects, must to be considered for AIS 

management: this is especially true during the control phase of AIS management (Cox, 

2004; Polasky, 2010) and helps to set out more effective management actions. 

Procambarus clarkii has a strong impact on both amphibian and odonate 

communities (chapters 4 and 5) (Cruz et al., 2008; McCarthy et al., 2006); this research 

confirmed its dramatic negative impact and I investigated the mechanisms determining it. 

Both amphibians and odonates have complex life cycles and studies on main life history 

stages give the opportunity to observe the AIS impact from different perspective 

(Córdoba-Aguilar, 2008; Wells, 2007). Separate analysis of different life stages led to 

different estimates of the invasive crayfish impact. This research (chapters 3, 4, and 5) 

shows that P. clarkii impact on native communities determines loss of reproductive sites 

and fall down of the reproductive success when native populations of amphibians and 

odonates use the invaded sites for breeding, and the impact of P. clarkii could be even 

more negative when invasion occurs in human dominated areas where suitable breeding 
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sites are already scarce, and where natural populations are affected by multiple human-

related stressors that enhance the AIS negative effect (Didham et al., 2007; Perrings et al., 

2010). 

All the considered taxa (the invasive crayfish, amphibians, and odonates) are 

strongly influenced by environmental features. This research underlines that, while the 

invasive crayfish is associated to human-altered landscapes, odonates and amphibians 

find their optimal habitat in more natural environmental conditions; considering the 

wetland features that are optimal for the invasive crayfish and for native communities, 

this research shows further important differences mainly referred to parameters like the 

wetland size, depth, hydroperiod, exposition, and presence of aquatic macrophytes 

(chapters 2, 3, and 5).  

This research suggests the importance to well understand the habitat requirements 

of both AIS and threatened native communities to perform effective management actions 

(chapters 2, 3, 4, and 5).  

AIS are currently the main cause of biodiversity loss both at local and at global 

scale, but multiple processes have a joint action in determining the invasion dynamics and 

impact on native ecosystems (Didham et al., 2007; Strayer et al., 2006). Prevention of new 

introductions is certainly the best strategy to tackle the AIS problem (paragraphs 1.2 and 

1.3), but when prevention fails, the early detection of an invasive species and the rapid 

application of control strategies are the decisive actions to limit the impact of exotic species 

(Hulme et al., 2009; Perrings et al., 2010; Wittenberg and Cock, 2001).  

This research helps to identify the ongoing processes at early stages of the AIS invasion 

and the consequences that the invasive crayfish will have in the near future; these 

information may allow managers to start conservation actions before than consequences of  

AIS become irreversible.  
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