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Abstract

We carry out a systematic study of classification problems on networked data,
presenting novel techniques with good performance both in theory and in
practice.

We assess the power of node classification based on class-linkage infor-
mation only. In particular, we propose four new algorithms that exploit the
homiphilic bias (linked entities tend to belong to the same class) in different
ways.

The set of the algorithms we present covers diverse practical needs: some
of them operate in an active transductive setting and others in an on-line
transductive setting. A third group works within an explorative protocol,
in which the vertices of an unknown graph are progressively revealed to the
learner in an on-line fashion.

Within the mistake bound learning model, for each of our algorithms
we provide a rigorous theoretical analysis, together with an interpretation
of the obtained performance bounds. We also design adversarial strategies
achieving matching lower bounds. In particular, we prove optimality for all
input graphs and for all fixed regularity values of suitable labeling complexity
measures. We also analyze the computational requirements of our methods,
showing that our algorithms can to handle very large data sets.

In the case of the on-line protocol, for which we exhibit an optimal algo-
rithm with constant amortized time per prediction, we validate our theoret-
ical results carrying out experiments on real-world datasets.
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Chapter 1

Introduction

1.1 Networked data

The development of pattern recognition methods has traditionally focused on
problems where each data element can be represented by a point in a linear
space. Many algorithms have been devised in this context, both in on-line
and batch settings. Two popular examples are the family of Perceptron
algorithms and the Maximum Likelihood methods.

The possibility of describing each data element as a numerical feature
vector led to the construction of a flurry of techniques with which the algo-
rithms’ performance can be characterized through powerful analytical tools.

Though many of these methods have had a remarkable impact on Machine
Learning, they are neither sufficient nor appropriate for dealing with inputs
coming from more complex domains, in which the relational structure of
the available information plays a crucial role. Many real-world datasets are
indeed rich in structure, involving heterogenous data samples related to each
other. This kind of data continue to gain attention in several research areas
for various reasons.

One of these reasons concerns the attempt to describe a complex object
through the interaction of its components. This need emerged in the last
decades in bioinformatics, where the components are molecules, genes, or
gene products, but it is also common in research areas like computer vision
or language processing. The problems addressed in these fields naturally
highlight the expressive limitations of the approaches describing data just as
points of a linear space.

1



2 CHAPTER 1. INTRODUCTION

Another important reason is related to the growing interest in internet
and social networks. The World Wide Web is probably the most active,
fast-growing, and heterogenous source of information currently available.
The tremendous scale of the World Wide Web makes it one of the most
interesting, rich and high-throughput dataset but, at the same time, calls for
new fast and accurate machine learning/data mining techniques. Automatic
web-page categorization ([93], [28], [88]), web page ranking ([72]), analysis
of political web-blog datasets ([98]), clustering and discovering authoritative
web-pages for improving web search ([56]), are some of the most common
machine learning and data mining applications that are most wanted in
these years. Users are becoming more demanding, which entails the need
of very fast web-searches and categorization methods. Automatic ontology
creation with different granularity levels motivates the development of new
classification algorithms that take into account even the personal profile of
each single user.

A major web phenomenon, which has attracted considerable attention
recently, is the popularity of on-line social networks. Day after day new
communication tools are replacing more conventional systems of interaction,
and web users consider on-line social networks as being one of their preferred
ways for interacting. Such a widespread use of social networks poses new
challenges concerning practical problems like link prediction ([62]), analysis
of the spreading of diseases in epidemiological models ([5], [68], [35]), tar-
geted advertising ([97]), prediction of user interests ([92]), and analysis of
the network’s structural properties and evolution over time ([16], [59], [21]).
These challenges show the limitations of algorithms operating on geometric
domains.

In the web and social networks data samples are interdependent, since
each web page is connected to others through hyperlinks, and the users of
a social network are interconnected through different types of relationships.
In particular, the connections of a social network are the channels used for
spreading influence and ideas among its individuals, giving rise to concerted
behaviours widely analyzed in sociology. Moreover, new user-centric fam-
ilies of applications are currently emerging on the web, where relational
dependencies play an even more crucial role. Some examples are publishing
and knowledge management platforms like youtubeTM (www.youtube.com),
deliciousTM (www.delicious.com) and, more in general, Blogs and Wikis.
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In addition to the World Wide Web, there are several other kinds of do-
mains, which are natively described as a graph, for which inferences need to
be made. Recent work has in fact concentrated on applications, for example
for predicting movie evaluations ([96]) or which movie will be a blockbuster
([64]) in graphs representing movie rating datasets, for categorizing scientific
papers that are linked to their authors and to each other via citations ([89]),
for performing counterterrorism analysis ([66]), or for studying the evolution
through time of large dynamic graphs for telecommunications fraud detec-
tion ([30]).

Though recently the interest in graph-based learning problem has re-
markably increased, the topic has been studied for a longtime. In Statistical
Physics, the Ising model (1925) ([50]) is used for singling out the properties
of physical systems with pairwise interacting components associated with
binary states, computing the free energy of the relative networks. Undi-
rected graphical models have been used also in Spatial Statistics ([79]). For
example, in ([12]) lattice analysis schemes are employed for modeling condi-
tional probability in finite systems of spatially interacting random variables.
Graph-based algorithms have been applied also in for reconstructing images
mapping each pixel to a node of a grid graph ([11], [37], [31], [43], [95]).

1.2 Graph construction

Besides the expansion of World Wide Web and on-line social networks, there
is a number of other significant motivations for the growing interest in prob-
lems concerning graph-based datasets, like the possibility to convert "flat"
data, that can be represented with feature vectors, into data interaction net-
works. In fact, a widespread approach to the solution of several classification
problems is representing the data through an undirected weighted graph in
which edge weights quantify the similarity between data points. This tech-
nique for coding input data has been applied to several domains, including
classification of genomic data ([90]), face recognition ([27]), and text catego-
rization ([39]). In most applications, edge weights are computed through a
complex data-modeling process and convey crucially important information
for classifying nodes, which makes it possible to infer information related to
each data sample even exploiting the graph topology solely.

There are several methods commonly used for transforming a given dataset
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in a graph. Once each data entity is mapped to a point in a linear space,
the first step consists in modeling the interaction between each pair of data
samples through a suitable metric distance, so that the edge weights are sim-
ply determined by the distance between all pairs of points in the considered
linear space. A distance widely employed for such purpose is the Gaussian
function ([9]).

Embedding the dataset in a linear space for these purposes is not always
possible. In such cases, the full adjacency matrix is generated by employ-
ing suitable similarity functions chosen through a deep understanding of
the problem structure. For example Pandey et al. ([71]) adopt weighting
schemes for modeling the interactions of protein-protein networks, based on
likelihood values. These scores have been assigned through various tech-
niques estimating the experimental reproducibility of these interactions in
([58]). Balcan et al. ([6]) construct graphs from the images of surveillance
videos for solving person identification problems. In this case three kinds
of edges have been generated: "face edges" (determined with "pixelwise"
Euclidean distance between face images), "color edges" (defined in terms of
cosine similarity on the color histograms) and "time edges" (based on the
time difference between two images). Finally, for TF-IDF representation of
documents, the affinity between pairs of samples is often estimated through
the cosine measure or the χ2 distance.

After the generation of the full adjacency matrix, the second phase for
obtaining the final graph consists in an edge sparsification/reweighting op-
eration. Some of the edges of the clique obtained in the first step are pruned
and the remaining ones can be reweighted to meet the specific requirements
of the given classification problem. One of the most common approaches for
this pruning operation is the construction of k-nearest neighbors graphs,
which simply instantiates k indirect edges between each node to the k nodes
corresponding to its k nearest samples, according to the distance/similarity
function previously computed. Another sparsification technique is generat-
ing ε-balls, which consists in pruning, in the initial clique, all edges whose
weights are smaller than a threshold value ε. A suitable choice of the parame-
ters governing the degree of sparsification in both these approaches, namely k
and ε, leads to an improvements over the fully-connected graph for tasks like
clustering and manifold learning (see [20] and references therein). However,
an improper choice of these parameters may cause the presence of discon-
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nected components. Jebara et al. ([52]) propose an alternative sparsification
method called b-matching that, by generalizing the solution of a maximum
weight matching problem, ensures that the final graph is b-regular. They
also experimentally demonstrated the robustness of this approach in pre-
diction tasks. A further technique for generating a graph ([20]) consists in
building a graph ensemble that combines multiple minimum spanning trees,
each fitting to a perturbed version of the dataset.

Constructing a graph with these methods obviously entails various kinds
of loss of information. However, in problems like node classification, the use
of graphs generated from several datasets can lead to an improvement in
accuracy performance. Hence, the transformation of a dataset into a graph
may, at least in some cases, partially remove various kinds of irregularities
present in the original datasets, while keeping some of the most useful infor-
mation for classifying the data samples. Moreover, as shown in this thesis, it
is possible to accomplish classification tasks on the obtained graph using a
running time remarkably lower than is needed by algorithms exploiting the
initial datasets.

Hence, data interconnections undoubtedly play a crucial role in pattern
recognition problems related to this kind of structured domains, spurring
the development of graph-based algorithms able to take into account the
topology of the underlying representation network.

1.3 Node classification without side information

The abundance and heterogeneity of networked data presents special chal-
lenges for a wide range of tasks, from the analysis of structural properties of
graphs to the study of disease spread in epidemiological models. The most
common and perhaps important class of problems involving graph-based
datasets is node classification. In this context, each vertex belongs to one
or more classes and the learner is asked to classify a given subset of nodes
usually in an on-line or batch setting.

In many cases, the algorithms devised for solving node classification prob-
lems are driven by the following assumption: linked entities tend to be as-
signed to the same class. This assumption, in the context of social net-
works, is known as homophily ([13], [65]) and involves ties of every type,
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including friendship, work, marriage, age, gender, and so on. In social net-
works, homophily naturally implies that a set of individuals can be parted
into subpopulations that are more cohesive. In fact, the presence of ho-
mogenous groups sharing interests is one of the most significant reasons for
affinity among interconnected individuals, which suggests that, in spite of
its simplicity, this principle turns out to be very powerful for node classi-
fication problems in general networks. This motivates the development of
several classification techniques based on this bias and the graph topology
solely. A further motivation is represented by the various existing methods
for transforming flat data into networks (see Section 1.2), codifying part of
the information associated with the data samples into edge weights. Finally,
it is worth pointing out that gathering attribute information associated with
the networked data samples may be very expensive in some cases, and it is
therefore worthwhile validating and analyzing the predictive capabilities of
methods that do not use side information associated with the vertices.

We now survey some of the most popular node classification methods able
to operate without side information —namely, based on the graph topology
and the homophilic bias solely.

Formally, in this classification problem we are given an undirected, con-
nected, and weighted graph G(V, E,W) with node set V , edge set E, and
positive edge weights wi,j > 0 for each (i, j) 2 E. We focus on the case in
which the labels are binary. Hence, a labeling of G can be defined as an
assignment y = (y1, . . . , yn) 2 {−1,+1}n, where n = |V |. The algorithm’s
performance for this problem is usually measured simply with the total num-
ber of prediction mistakes occurred.

There are two main settings for this problem: passive and active.
In the passive setting the learner is a pure observer, since it obtains

some of the node labels without being able to choose how this information
is provided. Passive learning approaches can be subdivided into batch and
on-line. In the batch paradigm, the temporal order in which the training
data information are obtained does not typically matter for the learning
task. The learner knows the labels yi for all i belonging to some node subset
K � V (training set) and the goal is to predict the labels yj of all j of the
set U � V \ K (test set).

In the on-line paradigm, vertices are presented in an arbitrary order.
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More precisely, at each time step, the algorithm is required to predict the
label of a new arbitrarily chosen node. After each prediction, the true label
is revealed. As real-world applications typically involve large graphs, on-
line learners play an important role because of their good scaling properties.
Moreover, on-line classification enables a clear characterization of the optimal
performance through the analysis of the interplay between the learner and
an adversary generating the node permutation and the labeling (typically
under some regularity constraint). The study of this interaction provides
theoretical performance guarantees for each individual input graph, thus
guiding the choice of a suitable algorithm for a given problem. Furthermore,
in many applications, methods having good on-line performances are often
competitive even when used in batch settings.

In the active setting of the node classification problem the learner is
allowed to choose the subset of training nodes. The choice of these vertices
is driven by the goal of minimizing the number of mistakes made on the non-
queried nodes. The active setting is motivated by several practical needs.

First of all it is worthwhile to note that the batch node classification
problem can be especially hard if the training set is formed by a subset of
nodes of V connected to the rest of the graph through very few edges. In
this case, if all training set nodes are assigned to the same label, say +1,
and all test set nodes are assigned to the same random label, equal to +1

or −1 with probability 1/2, then any algorithm would make in expectation
half mistake per required prediction. However, the labels of all linked test
nodes are equal, as well as that ones of all linked training nodes. Hence, the
labeling is regular according to the homophilic bias, since in the input graph
very few pairs of adjacent nodes are assigned to different labels. A suitable
choice of the training set plays therefore a crucial role in the prediction task.

Moreover, in real-world web-based problems, for example, though the
datasets can be very large, only a few labels may be obtained. More specifi-
cally the off-line (non-adaptive) active protocol can be motivated by consid-
ering that, in many situations, requiring a label is time consuming, since it
may involve expensive experiments [41]. Hence, it may be significantly less
costly to run a single batch of experiments in parallel as compared to run-
ning experiments in series. Active learning on graphs has been investigated
from a theoretical viewpoint by Guillory and Bilmes [41], and by Afshani et
al. [1].
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As pointed out in ([100]), several methods operating in the passive batch
setting can be naturally cast in a regularization framework. These algo-
rithms estimate a function f on set V in such a way that it satisfies two
requirements: (i) f is close to the given labels yi for all i 2 K (fitting con-
straint), and (ii) is smooth on the whole node set (smoothness constraint).
This can be expressed by a linear combination of two terms: a loss function
and a regularization term, relative to the first and the second constraints re-
spectively. Usually, the loss function depends on the difference, for all node
i 2 K, between f(i) and yi, and the regularization term is expressed as a
function of difference, for all pair (j, k) 2 E, between f(j) and f(k).

These graph methods differ only for the choice of these two terms.
Blum and Chawla ([14]) reduce the node classification to the mincut

problem, also known as st-cut (source-target) problem. In the graph ob-
tained via a suitable transformation of the initial dataset, the positive labels
act as sources and must be separated from the negative labels, which acts as
targets, minimizing the cutsize. The intuition underlying this reduction is
simply that nodes that are strongly connected are unlikely to be separated
by the mincut. Hence the mincut provides a solution also for the original
classification problem, taking into account the homophilic principle. Clearly
the sources and targets are fixed in the mincut problem. This imply that
in the linear combination of loss and regularization term, the loss function
can be seen as multiplied by an infinite coefficient, so that the minimization
problem involves the regularization term solely.

This technique can be viewed as giving the most probable configuration
to the labeling if each label yi is seen as a random variable depending only on
the labels of the nodes adjacent to i. The random function whose arguments
are drawn from the set of the random labels y1, . . . , yn is a Markov Random
Field. More in general, a Markov Random Field is random process defined
on the node set of a graph G, in such a way that the random variable vi
associated with node i depends only on all vj such that (i, j) 2 E. Hence two
random variables vi are mutually dependent only through a combination of
local interactions on the graph structure.

A shortcoming of the method used by Blum et al. is that the solution
gives hard classification without confidence. This problem is addressed in
[15] extending the mincut approach by adding randomness to the graph
structure.
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The learning problem can also be formulated in terms of a Gaussian
Random Field on the given graph. In general, a Gaussian Random Field can
be defined as a probability measure P of a sample space on which is mapped a
set X of random variables, satisfying the following property: for each variable
subset {x1, x2, . . .}, the vector with components P(x1), P(x2), . . . is distributed
as a multivariate Gaussian. Zhu et al. in [102] adopt Gaussian fields assigning
a probability distribution P on functions f : V → R. P is defined as a
function of the loss and regularization terms of f, representing respectively
the fitting and smoothness constraints of the labeling of the input graph.
Their approach is a continuous relaxation to the discrete Markov Random
Field and it is intimately connected to random walks and spectral graph
theory. The solution function f : V → R is forced to take values f(i) = yi

for all nodes i 2 L, which is equivalent to having a infinite loss coefficient in
the linear combination of loss and regularization term (like for the mincut
of approach of Blum and Chawla – [14]). The smoothness penalty term
depends only on the differences between f(i) and f(j) for all i, j 2 V such
that (i, j) 2 E. The energy function f minimizing the regularization terms is
harmonic, i.e., it satisfies ∆f = 0 on the unlabeled nodes U and is equal to
the given labels on the nodes of K, where the Laplace’s operator ∆ coincides
in this case with the Laplacian matrix of G. An interesting property of this
function is that f(i) is equal, for each node i 2 U, to the weighted average
of the values of f for all the i’s neighbors. Moreover f is unique, it satisfies
0 � f(i) � 1 for all i 2 V . More precisely f(i) is equal to the probability of
hitting, with a random walk starting from node i, a node labeled with 1.

Zhou et al. ([99]) propose an algorithm inspired by diffusion kernels
([54], [57], [85]) to find a smooth function that can be defined in terms of
spreading activation networks ([4], [82]). Their approach, unlike the two
methods described above, is characterized by a parametric trade-off between
fitting and smoothness constraint.

Belkin et al. [8] propose a Tikhonov regularization algorithm using a loss
function and a smoothness penalty term subject to the harmonic constraint∑
i f(i) = 0.
Bengio et al. [10], besides showing how different node classification al-

gorithms can be cast into a common framework where the objective is to
minimize a quadratic cost criterion, propose a new method for "propagat-
ing" the label values through the edge connections from labeled examples to
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the whole dataset. This method is inspired by the Jacobi iterative method
for linear systems. The approaches spreading the known labels on the other
nodes using the graph structure (see also [101]) clearly reflect the homophilic
bias, and are known as label propagation methods.

Using a maximum margin and maximal average margin based argument,
Pelckmans at al. ([75]) prove a generalization bound for approaches whose
prediction of each label yi is based on the weighted average of the labels of the
i’s neighbors. They also construct a convex formulation and implemented
this scheme as a linear program.

Szummer and Jaakkola ([87]) classify the vertices of the considered graph
through the use of a t-step random walk.

On-line linear learners, such as the Perceptron algorithm, have been ap-
plied to the binary classification of the vertices of a graph by embedding
the vertices of the graph in R

|V | through a map transforming node i to the
i-th coordinate versor ei 2 R

|V |. For example, the graph Perceptron algo-
rithm [49, 47] predicts the label yi (associated with versor ei) using the linear
kernel K = L

y
G+1 1>, where LG is the Laplacian of G, LyG is its pseudoinverse,

and 1 = (1, . . . , 1)>.
The idea of using a spanning tree to reduce the cutsize induced by the

labeling, i.e., the number of edges incident to nodes with different labels, has
been investigated in [48], where the graph Perceptron is applied to a spanning
tree T of G. A different technique [46] attempts to control the cutsize by
linearizing T via a depth-first visit so as to preserve some regularity property
of the labeling and running a Nearest Neighbor predictor on the obtained
line graph.

In [46] the authors classify the vertices of the considered graph through a
combination of Perceptron and Nearest-Neighbor previously proposed in [44].

Herbster and Lever in [45] give a p-seminorm on the space of graph
labellings. On every step their algorithm predicts using the labelling min-
imizing the p-seminorm and is consistent with the revealed labels. When
p = 2 this is the harmonic energy minimization procedure of [102] that we
described above. In the limit as p→ 1 this is equivalent to predicting with
a label-consistent mincut.

Another on-line algorithm for binary classification is the so-called graph-
tron algorithm [74]. This algorithm predicts at time t with the majority
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vote of the labels of previously mistaken nodes that are adjacent to it.
Finally, it is worthwhile mentioning the work of Smola and Kondor [85],

where the authors introduced a family of kernels on graphs based on the
notion of regularization operators.

1.4 Statistical relational learning methods

The homophilic bias assumption can be considered very powerful for classi-
fication problems in which the network is formed by only one type of nodes
and links. However, in other kind of graph-based problems, the network
is formed by an heterogeneous set of objects which are usually associated
with a list of attributes, and incorporate a much richer relational structure.
The properties of each entity depend probabilistically on those of the linked
entities. In this section we briefly mention some of the methods able to han-
dle this kind of heterogeneous datasets, capturing probabilistic interactions
between attributes of related entities.

In the last years, statistical approaches, suitable for learning from a col-
lection of homogeneous independent instances, have been combined with
relational learning methods. For the task of hypertext classification Slattery
and Craven in [83] devised a method involving a statistical learner, a feature
selection procedure based on word frequencies and the relational structure
induced by the hyperlinks connecting the documents.

Chakrabarti et al. in [26] combined textual and linkage features into a
general statistical model for predicting the topics of documents, considering
at the same time the local features of the document being classified, together
with the text of the document’s neighbor.

Popescul et al. in [77] propose an approach integrating inductive logic
programming techniques ([60]) for generating features exploring the rela-
tional structure of the dataset, together with a logistic regression model
which takes into account also local features of the data being classified.

Slattery and Mitchell in [84] propose an iterative algorithm for the web
page classification task. Their method exploits the presence of additional
regularity in the test set and combines the use of recursive rules for identi-
fying the most informative pages with text-based classifiers in an iterative
relaxation scheme.

Other techniques are based on probabilistic relational models ([76], [69])
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which represent a joint probability distribution over a relational dataset and
extend the standard attribute-based Bayesian network representation ([73])
quantifying probabilistic interactions between attributes of related entities.
This kind of structure exploits the possibility that a variable used in one
instantiation of a Bayesian network may refer to the same variable in another
Bayesian network.

In order to use the whole structure of knowledge encoded by this rela-
tional representation, Friedman at al. ([34]) show how to extend statistical
methods for learning Bayesian network to the task of learning these more
complex models.

Getoor at al. ([38]) extend probabilistic relational models, which origi-
nally focused on modeling the distribution over the entity attributes, by a
unified statistical framework for nodes and links which defines probability
distributions over the presence of links between objects.

Since Bayesian networks must be acyclic, probabilistic relational model
cannot handle directly homophily. Relational dependency networks ([67]) is
a form of graphical model able to model cyclic dependence and homophily. It
estimates a set of conditional distributions independently, avoiding therefore
the complexity of estimating a full joint distribution.

One of the main advantages of the approaches we mentioned is the ca-
pability to handle structured data with a very complex relational nature.
However, it is also important to note that it is difficult to provide, for this
kind of algorithms, theoretical analyses which guarantee accuracy perfor-
mances as for the methods handling homogeneous datasets whose complexity
is governed by the homophilic bias solely.

1.5 Overview of our main contributions

Many algorithms developed for node classification and based only on the
homophilic principle are heuristic methods whose accuracy performance are
not formally analyzed. Such an analysis would require, first of all, a rigorous
definition of a regularity measure related to the considered bias. The few
techniques with theoretical performance guarantees almost always do not
provide a lower bound analysis validating the quality of the exhibited results,
nor they are computationally efficient.
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Moreover, an increasing amount of relational data is becoming available
every day, and the tremendous volume of information provided by data
sources like the World Wide Web demands a more severe point of view
on what can be considered as being a "computationally efficient algorithm".
Several prediction algorithms developed for the node classification problem
perform matrix operations or linear programming applications, requiring a
total time cubic (or worse) in the number of predictions. These methods are
clearly impractical when handling very large-scale datasets, such as on-line
social networks, on-line movie rating, and paper coauthors networks.

In this thesis we assess the power of class-linkage alone proposing four
node classification algorithms based on the homophilic bias and the graph
topology. For all these methods we provide

� An accuracy analysis and a careful comparison against other methods
together with an interpretation of the obtained mistake bounds.

� A matching lower bound, which implies optimality (up to constant or
O(log |V |) factors) for every input network.

� Time and space complexity analysis showing that our algorithms are
able to handle very large datasets.

Moreover, in Chapter 2, 3 and 5, we also give two new regularity measures
for this problem, carrying out a comparison to other existing measures.

Finally, for one of our methods, which requires amortized constant time
per prediction (for most input graphs —see Chapter 3), we validate the
theoretical results with careful experimental comparisons against other com-
peting methods. In particular, we show that our algorithm compares well
to all competitors while using, in most cases, the least amount of time and
memory resources.

We thus carry out a systematic study of the node classification problem
achieving the difficult objective of presenting novel techniques able to satisfy,
at the same time, desirable theoretical and practical requirements. More
precisely, whilst designing each algorithm, we take into account the running
time and memory space required and the performance accuracy. In order
to accomplish this goal, the accuracy analysis of these methods is based
on a careful study of the game between the forecaster and an adversary
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deciding the labeling, which stems directly from the homophilic bias and
the considered protocol rules.

The set of the algorithms we present covers diverse practical needs. In
fact, some of them operate in an active transductive setting, others in an
on-line passive transductive setting and others still in an explorative model
(which is somehow related to the graph exploration problem introduced in
[32]).

One of the main obstacles in developing these methods arises from the
need of having very good scalability properties. This leads us to avoid the
use of many powerful but computational expensive analytical tools, which
are ubiquitous in the literature related to these problems. Some of these
tools involve carrying out matrix operations or linear programming applica-
tions. In fact, in order to develop very scalable algorithms, we depart from
traditional approaches, resorting to both novel and well-established combi-
natorial methods related to graph-based problems. Some of these are ad hoc
techniques devised for this work.

Hence, although there is a wide literature addressing the node classifica-
tion problem, our methodologies for proving optimality, and the implemen-
tation techniques we employ for improving the computational resource use,
are not "mainstream", which implies a further difficulty for achieving our
objective.

This thesis originates from the following publications:

� ([22]) N. Cesa-Bianchi, C. Gentile, F. Vitale, Fast and optimal pre-
diction of a labeled tree. Proceedings of the 22nd Annual Conference
on Learning Theory, Omnipress, 2009 – (COLT 2009).

� ([25]) N. Cesa-Bianchi, C. Gentile, F. Vitale, and G. Zappella. Ran-
dom spanning trees and the prediction of weighted graphs. Pro-
ceedings of the 27th International Conference on Machine Learning,
Omnipress 2010 – (ICML 2010).

� ([24]) N. Cesa-Bianchi, C. Gentile, F. Vitale, and G. Zappella. Active
learning on trees and graphs. Proceedings of the 23rd Annual
Conference on Learning Theory, Omnipress 2010 – (COLT 2010).
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� ([23]) N. Cesa-Bianchi, C. Gentile, F. Vitale. Learning unknown
Graphs. Accepted for publication in Theoretical Computer Science,
special issue on Algorithmic Learning Theory.

The last paper is based on

� N. Cesa-Bianchi, C. Gentile, F Vitale: Learning Unknown Graphs.
20th International Conference on Algorithmic Learning Theory. Springer,
2009 – (ALT 2009).

Preliminary versions of [22], [25] and [24] have been presented respectively
in

� N. Cesa-Bianchi, C. Gentile, F. Vitale. Online Graph Prediction
with Random Trees. Workshop: New Challanges in Theoretical Ma-
chine Learning: Data Dependent Concept Spaces – (NIPS 2008).

� N. Cesa-Bianchi, C. Gentile, F. Vitale. Fast and Optimal Algo-
rithms for Weighted Graph Prediction. Workshop: Analyzing
Networks and Learning with Graphs – (NIPS 2009).

� N. Cesa-Bianchi, C. Gentile, F. Vitale, G. Zappella. Scalable al-
gorithms for learning on graphs. Workshop: Learning in Non-
(geo)metric Spaces – (ICML 2010).

We now describe in detail the main contributions of our work.

Transductive and explorative settings

We consider the transductive batch setting (the entire graph is known in ad-
vance) both within the on-line (passive) and the active protocol. In Chapter
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3 we present an algorithm operating within an on-line protocol and carry
out an experimental evaluation of this method in a batch setting. The posi-
tive results obtained suggest that good predictive capabilities in the on-line
protocol correspond, for this problem, to good practical performance in the
batch setting.

In Chapter 5 we present a novel prediction protocol that we call explo-
rative. In this protocol we drop the transductive assumption and study the
graph prediction problem from a purely sequential standpoint, where the
vertices (and their incident edges) of an unknown graph are progressively
revealed to the learner in an online fashion. As soon as a new vertex is
revealed, the learner is required to predict its label. Before the next vertex
is observed, the true label of the new vertex is fed back to the learner. In
this setting the learner is allowed to actively explore the graph in directions
that are judged easier to predict. This new setting is interesting from sev-
eral points of view. For example, in many real-world problem, the whole
network is so large that it cannot be considered as the problem instance in
its entirety. Ideally, one should be able to choose in a suitable way the parts
of the graph to operate which. A typical example related to this issue is the
target advertising problem in an on-line social network, in which the goal is
to target each member of a social network with the product he/she is most
likely to buy.

Complexity measures

We present two novel complexity measures for the node classification prob-
lem. In Chapter 5 we describe a new measure called merging degree. The
homophilic principle implies that labeling can be considered as being regular
when the graph can be partitioned into a small number of weakly intercon-
nected clusters (subgroups of network members) such that labels in each
cluster are all roughly similar. The merging degree is inherently related to
the degree of interaction among the clusters which the graph can be par-
titioned into. We carry out a careful comparison between this regularity
measure and the cutsize, showing that, in general, the merging degree is
able to quantify the labeling regularity in a more refined and robust way.

In Chapter 2 and 3 we propose a new natural complexity measure for
binary labeling, namely the number of edges connecting nodes with different



1.5. OVERVIEW OF OUR MAIN CONTRIBUTIONS 17

labels that happen to be included in a uniformly generated random spanning
tree. When the input graph is unweighted, this regularity measure coincides
with sum of the effective resistances between each pair of nodes i and j
such that (i, j) 2 E and yi 6= yj. The effective resistance between any pair of
nodes is a connectivity measure widely used in graph theory (see, e.g., [63]),
ad is equivalent to the resistance in an electrical network represented by the
considered graph, in which current flows along each edges (see Section 1.6).
The use of spanning trees has the advantage of retaining relevant spectral
information from the original graph. This regularity measure takes into
account the smoothness of the labeling on V , but, unlike the commonly used
cutsize, satisfies several desirable properties: it is invariant to uniform weight
scaling, it is locally density-independent since the contribution of each edge
(i, j) depends in inverse proportion on how strongly i and j are connected,
and it scales linearly in the number of nodes of the input graph (global
density independence).1

Optimal accuracy

For each algorithm that we present, we provide a rigorous theoretical analysis
together with an interpretation of the results obtained. We also design ad-
versarial strategies in order to exhibitmatching lower bounds. In particular,
through the complex interplay between the hard combinatorial constraints
related to our algorithms and the adversarial strategies, we prove optimality
for all input graphs and for all fixed regularity values.2

This kind of optimality is clearly "stronger" than other optimalities pro-
posed in the literature of node classification problem. For example, in [1]
Afshani et al. proved that their algorithm is optimal providing a "matching"
lower bound obtained by the analysis of a single graph constructed for this
purpose, which clearly may be different from the real input graph. Hence,

1Even simple measures based on the standard cutsize, like (|V |/|E|) �cutsize, scale linearly
in the number of nodes of the input graph. However it is immediate to see that such measures
do not satisfies the other properties.

2For the algorithm described in Chapter 3, the optimality actually holds for all graphs
save for some pathological inputs, like, for example, binary labeling such that the total
weight of the edges connecting nodes labeled in different way almost coincides with the
total weight of all the edges in E. Such a labeling patently contrasts with the homophilic
bias. Other pathological examples stem simply from the need of extending the connectivity
notion to weighted graphs. (see Chapter 3).
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in this case upper and lower bounds refers in general to different graphs and
their optimality does not hold for all input graphs.

Computational efficiency

Scalability is one of the main issues of this work. For all our algorithms, we
provide computational analyses ensuring that our methods are able to handle
very large datasets. In order to achieving our objective we resort to other
methodologies and develop new ad hoc combinatorial methods. In particular,
In Chapter 2 and 3 we use uniformly generated random spanning trees for
condensing the structural information of the original dataset, enabling the
use of some fast prediction techniques.

Finally, in Chapter 3 we reduce node classification to the problem of
predicting on a weighted line graph (inspired by [41]) and we devise an
innovative method solving this problem in constant amortized time per
prediction and space linear in the number of nodes.

Experiments

In Chapter 3 we describe an algorithm which is both computationally very
efficient and able to operate on weighted graphs. To evaluate the perfor-
mance of our algorithm and validate our theoretical analysis, we present the
results of an experimental comparison on a number of real-world weighted
graphs from different domains: text categorization, optical character recog-
nition, and bioinformatics. We compare our algorithm to online prediction
methods, intended as representatives of two different ways of facing the graph
prediction problem: global (Perceptron) vs. local (label-propagation) predic-
tion. The experimental results show that our method compares well to both
global and local prediction techniques, while being much faster.

1.6 Preliminaries

In this section we formally provide the basic definitions and notations used
throughout the thesis.
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1.6.1 Graphs and Laplacian matrix

Formally an unweighted graph G(V, E) is defined to be a pair (V, E), where
V is a non-empty finite set of elements called nodes (or vertices) and E is a
finite family of pair of elements of V called edges (or links). If (i, j) belongs
to E, we say that i is adjacent to j and that (i, j) is incident to nodes i
and j. When the pairs of V ’s elements contained in E are unordered then G
is called undirected. If each pair of elements of V is linked only through at
most one edge and there is no edge connecting a node with itself, the graph
is called simple. Throughout the thesis, we will focus on undirected and
simple graphs solely.

With each unweighted graph G(V, E) is associated its adjacency matrix
A. Each element ai,j of A is equal to 1 if (i, j) 2 E and 0 otherwise. Observe
that when a graph is simple all elements of the main diagonal of A are null.
Clearly, the adjacency matrix of a undirected graph is always symmetric.

The degree of a node i 2 V is the number of edges incident to i.
The Laplacian matrix LG of an unweighted graph G(V, E) is equal to

D−A, where D is the diagonal matrix such that Di,i is equal the degree of
node i.

When each edge (i, j) of a graph G is associated with a positive weight
wi,j (in general real-valued), then G is said to be weighted, and is denoted
by G(V, E,W). The matrix W contains the values of all weights wi,j. If
(i, j) 62 E then wi,j = 0.

The Laplacian matrix LG of a weighted graph G(V, E,W) is equal to
D−W, where D here is the diagonal matrix such that Di,i is equal the sum
of the weights of all edges incident to node i.

A subgraph G 0(V 0, E 0,W 0) of a given graph G(V, E,W) is a graph where
V 0 � V, E 0 � E and w 0

i,j is equal to wi,j if (i, j) 2 E 0 and null otherwise.
This definition extends for unweighted graphs simply observing that each
unweighted graph G(V, E) can be seen as a weighted graph G 0(V, E,W) in
which the weight matrix W coincides with the adjacency matrix A of G.

A walk is an alternate sequence of edges and vertices of the form
i1, (i1, i2), i2, (i2, i3), i3, . . .. The number of (not necessarily distinct) edges
present in the sequence is the lenght of the walk.

If all nodes of the sequence are distinct, the walk is said to be a path, and
is usually denoted by the sequence of vertices solely i1, i2, . . .. The length of
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a path is therefore equal to its number of nodes minus one.
If any two vertices of a given undirected graph G are connected via at

least one path, then G is connected.
The diameter of a connected graph is the number of edges present in

the longest path.
A bridge is a edge whose removal disconnects the graph.

We now give the definitions of some of the most important classes of
graphs. For the sake of simplicity we will refer to unweighted graphs. The
definitions of these graphs can be easily extended to the weighted case asso-
ciating a positive weight value with each edge.

A clique C(V, E) (or complete graph) is a graph where each node is
adjacent to every other node.

A tree T(V, E) is a connected graph with |V | − 1 edges.
A forest F is a set of trees having disjoint node sets.
A star-graph S(V, E) is a tree in which one of the nodes is adjacent to all

the others.
A line-graph L(V, E) is a tree with diameter equal to |V | − 1.
The terminal nodes of a line-graph are the two nodes having degree

equal to 1.
A lollipop-graph G(V, E) is a graph formed by a clique C and a line-graph

L having disjoint node sets, together with an edge incident to a node of C
and a terminal node of L.

A spanning-tree T(V, E 0) of a given graph G(V, E) is a subgraph of G
that is a tree and has the same node set of G.

1.6.2 Resistance and random spanning tree

The effective resistance rWi,j between two nodes of a given undirected and
simple graph G(V, E,W) is a connectivity measure widely used in graph
theory, which can be defined in terms of the Laplacian matrix of G as follows:

rWi,j = L
y
ii + L

y
jj − 2L

y
i,j ,

where Ly is the pseudoinverse of the Laplacian matrix of G.
The resistor of any edge (i, j) 2 E is defined as 1/wi,j.
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In the interpretation of the graph as an electric network where the weights
wi,j are the edge conductances, the effective resistance rWi,j is the voltage
between i and j when a unit current flow is maintained through them.

Given a graph G(V, E,W), a uniformly generated random spanning
tree is a random spanning tree taken with probability proportional to the
product of its edge weights. The probability that each edge (i, j) 2 E is
included in such spanning tree is equal to wi,jrWi,j (see, e.g., [63]).

The concepts of effective resistance and random spanning trees are inti-
mately connected with random walks, which can be defined as follows.

Given a graph G(V, E,W), a random walk is a walk generated randomly
through a sequence of steps in the following way. In the first step a vertex
i1 2 V is added to the random sequence. At each time step t the edge
(it−1, it) together with vertex it is added to the random walk with probability
wit−1,it/

∑
i: (it−1,i)2E

wit−1,i.
If we construct a spanning tree T of G performing a random walk on G

and adding to T , at each time step t, each randomly selected pair edge-vertex
((it−1, it), it) only if node it have never been added previously to the random
walk, then T is a uniformly generated random spanning tree (see, e.g. [63]).

1.6.3 Labeling and cutsize

A labeling of G is any assignment y = (y1, . . . , yn) 2 {−1,+1}n of binary
labels to its nodes.3 We use (G,y) to denote the resulting labeled weighted
graph.

A standard notion of label regularity is the cutsize of a labeled graph,
defined as follows. A φ-edge of a labeled graph (G,y) is any edge (i, j) such
that yi 6= yj. Similarly, an edge (i, j) is φ-free if yi = yj. The cutsize
ΦG(y) of (G,y) is the number of φ-edges in E, i.e. ΦG(y) = |(i, j) : yi 6= yj|

(independent of the edge weights).

3We focus on binary labeling. However, in Chapter 5 we will describe an algorithm able
to operate also with real labeling.
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1.7 Outline of the thesis

The thesis is organized as follows.

In Chapter 2 ([22]) we characterize, up to constant factors, the num-
ber of mistakes necessary and sufficient for sequentially predicting a given
tree with binary labeled nodes. We provide an efficient algorithm achiev-
ing this number of mistakes on any tree. In order to cope with adversarial
assignments of labels over a general graph, we advocate the use of random
spanning trees.

In Chapter 3 ([25]) we show that the mistake bound for predicting the
nodes of an arbitrary weighted graph is characterized (up to logarithmic
factors) by the the number of edges connecting nodes with different labels of
a random spanning tree of the input graph. In deriving our characterization,
we obtain a simple randomized algorithm achieving the optimal mistake
bound on any weighted graph. We validate the theoretical results carrying
out experiments on real-world datasets.

In Chapter 4 ([24]) we investigate the problem of active learning on a
given tree whose nodes are assigned binary labels in an adversarial way. We
characterize (up to constant factors) the optimal placement of queries so to
minimize the mistakes made on the non-queried nodes. The optimal number
of mistakes on the non-queried nodes is achieved by a simple and efficient
mincut classifier. Through a simple modification of the query selection algo-
rithm we also show optimality (up to constant factors) with respect to the
trade-off between number of queries and number of mistakes on non-queried
nodes. Finally, we provide a lower bound on the number of mistakes made on
arbitrary graphs by any active learning algorithm using a number of queries
which is up to a constant fraction of the graph size.

In Chapter 5 ([23]) we introduce a new model of online learning on la-
beled graphs where the graph is initially unknown and the algorithm is free
to choose which vertex to predict next. For this learning model, we define
an appropriate measure of regularity of a graph labeling called the merg-
ing degree. After observing that natural nonadaptive exploration/prediction
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strategies, like depth-first with majority vote, do not behave satisfactorily on
graphs with small merging degree, we introduce an efficiently implementable
adaptive strategy whose cumulative loss is provably controlled by the merg-
ing degree. Finally, we provide a matching lower bound demonstrating that
in the case of binary labels our analysis cannot be improved.

In Chapter 6 we conclude by mentioning some promising research di-
rections for future work.
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Chapter 2

Learning on unweighted trees and
graphs

2.1 Introduction

In the (passive) on-line setting for the node classification problem, bounds
on the number of prediction mistakes are naturally expressed in terms of the
cutsize. This immediately suggests a simple regularization technique: if the
mistakes of a prediction algorithm are bounded in terms of the cutsize of the
graph, then it should be beneficial to run the algorithm on a thinned version
of the original graph where some of the edges have been dropped. Since
dropping edges that cause the graph to disconnect is intuitively throwing
away too much structural information, we are naturally led to the idea of
running the learner on a spanning tree of the original graph.

This approach leaves us with the problem of choosing a good spanning
tree. Because of the adversarial nature of the on-line setting, the presentation
of vertices and the assignment of labels are both arbitrary. This suggests to
pick a tree at random among all spanning trees of the graph so as to prevent
the adversary from concentrating the cutsize on the chosen tree. Moreover,
we can exploit Kirchoff’s equivalence between the effective resistance of an
edge and its probability of being included in a random spanning tree. This
equivalence allows us to express the expected cutsize of the random spanning
tree in a simple form, namely, as the sum of resistances over all edges in
the cut of G induced by the adversarial label assignment. On the other
hand, the resistance-weigthed cutsize is a very natural measure of complexity

25
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for labeled graphs, and this is precisely the fact that led us to consider
random spanning trees. In Section 2.2 we exhibit a lower bound showing
that this measure captures the hardness of the node classification problem
even on weighted graphs: We demonstrate that given any weighted graph,
any prediction algorithm can be forced to make a number of mistakes which
is at least as big as the cutsize of the graph’s random spanning tree.

There is a vast literature on the problem of drawing random spanning
trees from a graph (see, e.g., the recent monograph [63]). For “most” graphs, a
random spanning tree can be sampled with a random walk in timeO(|V | ln |V |)

[18], or even O(|V |) [3, 94], although all known techniques take Θ(|V |3) in
the worst case. As a matter of fact, this cubic worst-case bound is a theo-
retical limitation only, since the bound is hardly met in practice. The space
complexity for generating a random spanning tree is always linear in the
graph size. Finally, although we exploit random spanning trees to reduce
the cutsize, similar approaches can also be used to approximate the cutsize
of a weighted graph (see, e.g., [86]).

Based on the above argument for using random spanning trees in graph
prediction tasks, we mainly focus on the problem of designing a good algo-
rithm for predicting an arbitrary tree.

In this chapter we present an algorithm that is both optimal (up to
constant factors) and efficient. Optimality is meant in the following sense:
Given any tree T , the worst-case (over labeling and node presentation or-
der) number of mistakes made by our algorithm can only be improved by
a factor which is constant with respect to the relevant parameters. As for
efficiency, we show that the overall running time of our algorithm is of order
min{K,nf}K+ n logDT , where K is the cutsize of the (labeled) tree T , DT is
the diameter of T , n = |V | and nf < n/2 is the number of nodes in T with
degree bigger than two.

2.1.1 Preliminaries

We now give some basic definitions used throughout this chapter.
We define Y(T, k) as the set of all labelings of T with exactly k φ-edges.

We will say that Y(T, k) has cutsize k.
A cluster C of a labeled tree (T,y) is a maximal subtree of T containing

no φ-edges.
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With π(i, j) we denote the (unique) path connecting node i to node j,
and d(i, j) denote the number of edges in π(i, j).

If A is a tree prediction algorithm and (T,y) is a labeled tree, then
m(A, T,y) denotes the worst-case number of prediction mistakes made by
A over all presentations i1, . . . , in of nodes of T . With a slight abuse of
language we define

m(A, T,�K) = max
k=1,...,K

max
y2Y(T,k)

m(A, T,y) .

This is the number of mistakes made by A on the worst-case choice of a
labeling of T with cutsize budget K. The maximization over k is needed
because maxy2Y(T,k)m(A, T,y) is in general not monotonic in k. We define
the minimax mistake bound on a tree T with cutsize budget K by

opt(T, K) = min
A
m(A, T,�K) ,

where the minimum is over all deterministic prediction algorithms.
Finally, when focusing on the nodes of a given cluster C throughout the

proofs, without loss of generality we assume they are all given label +1.

2.2 Lower bounds

We now describe an adversarial strategy that, given a tree T with n nodes
and cutsize K (for 1 � K < n) forces any deterministic prediction algorithm
A to make a certain number of mistakes that depends both on K and T . This
lower bound is achieved for a worst-case choice (depending on A) of both
labeling and node presentation order.

The lower bound is based on the following fact. Given a line graph ` (i.e.,
a “list”) with n+ 1 nodes 1, . . . , n+ 1 and |`| = n edges, a simple dichotomic
adversarial strategy can always force blog2

�
n+ 1

�
c mistakes using a cutsize

of at most 1. In order to achieve this, the adversary initially assigns an
arbitrary label to one of the two terminal nodes of `, say node 1. Now let
i1 be the node of ` such that there are exactly dn/2e edges between 1 and
i1. The adversary chooses node i1 first, and forces a mistake by picking
yi1 to be different from the algorithm’s prediction. Now let `1 � ` be the
(sub-)line having as terminal nodes 1 and i1 if yi1 6= y1, or nodes i1 and
n + 1, otherwise. Let i2 be the node of `1 such that there are d|`1|/2e edges
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between i1 and i2. The adversary then chooses node i2 and another mistake
is forced as in the previous step. The adversary proceeds recursively in this
way until the chosen sub-line contains a single edge. Then, irrespective to
the algorithm’s predictions, all the remaining nodes are labeled in such a way
that the cutsize does not increase. It is then easy to check that blog2

�
n+1

�
c

mistakes are forced. Moreover, it is important to observe that the above
adversarial strategy works even if y1 is already known to the algorithm. On
the other hand, this strategy cannot be applied if the known label is on an
internal node of `. This fact is used in the proof of Theorem 3.1 below.

The above adversarial strategy is extended to trees in the following way.
The adversary looks for a certain set L of K edge-disjoint line graphs con-
tained in T , and then applies the dichotomic strategy independently on each
line. To this end, it suffices the set L is a blanket, a notion which we now
define. Given a set L of edge-disjoint lines contained in a tree T , we say
that ` 2 L is a grafted line if one of the two terminal nodes of ` is also an
internal node of another line ` 0 2 L. This shared node is called the graft
node of `. We say that L is a connected blanket if: (i) The union of all
lines in L forms a (connected) tree, (ii) every node in this (connected) tree
can be internal node of at most one such line, and (iii) Every grafted line in
L shares with the remaining lines in L no nodes but the graft, and Finally,
L is a blanket if it is either a connected blanket or it has been obtained by
a connected blanket after removing one or more of its lines.1 See Figure 2.1
for an example. The size of a blanket L is the number of its lines |L|. Note
that a blanket need not include all edges of the original tree T . Also, observe
that for any size K < n, a size-K blanket over a tree T always exists: take L
to be any set of K distinct edges in T ; then no lines of L have internal nodes
and the blanket property trivially holds. On the other hand, a given tree T
clearly admits many size-K blankets.

Let L(T, K) be the set of all size-K blankets over T , and define the function
lb ("lower bound") as follows:

lb(T, K) = max
L2L(T,K)

∑
`2L

m`

where we use the abbreviation m` =
j
log2(|`| + 1)

k
.

1Observe that a given L might be generated by many connected blankets.
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Figure 2.1: A tree T whose nodes have been divided into three types: dark shaded,
light shaded, and white. A connected blanket is shown including dark shaded and
light shaded nodes only, along with their connecting edges. Another blanket L, of
size 9, is formed by 3 connected blankets (made up of 2, 2 and 6 lines, respectively),
and is obtained from the connected blanket by removing the two lines indicated by
the light shaded edges and nodes. The terminal nodes of each line are indicated by a
bulbous endpoint of the incoming edge. The edges directly connected to white nodes
are not part of the underlying connected blanket. The numbers denote a possible
depth-first presentation order followed by an adversary that starts from, say, the
dark shaded node on the top-left. This adversary assigns to the white nodes the
same label as their closest (dark or light) shaded nodes. Similarly, the light shaded
nodes belonging to the two removed lines are labeled as the corresponding line
terminal nodes.

Theorem 2.1 For any tree T with n nodes and any cutsize K = 1, . . . , n−

1, we have opt(T, K) � lb(T, K).

proof. Given any size-K blanket L over T , we need to exhibit an adversarial
strategy that allows the adversary to apply the logarithmic lower bounding
argument for line graphs to each line ` 2 L independently, by using at most
K φ-edges. A key fact here is that each line of L can be processed by the
adversary even if one of the two terminal nodes has already been revealed
to the learning algorithm.

Since L is a blanket, we know there exists a connected blanket L0 such
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that L � L0. The adversary initially finds a line `1 2 L which is not grafted
(`1 must exist since T has no cycles) and performs a depth-first visit over the
lines in L0 starting from a terminal node of `1. The adversary processes the
lines in L0 in the order determined by the visit. If the current line ` belongs
to L then the adversary applies the strategy for line-graphs spending one
(at most one when |`| = 1) φ-edge, and causing the learning algorithm to
make m` mistakes on `. Our argument gives no guarantees on the number of
mistakes forced on the lines in L0\L (e.g., the light shaded lines in Figure 2.1).
Thus, irrespective to the algorithm’s predictions, the non-terminal nodes of
a non-grafted line in L0 \ L are given the same label as the terminal node
shared with the line in L that precedes in the depth-first order. For instance,
in Figure 2.1 the three light shaded internal nodes in Line 2 are labeled like
the dark shaded terminal node shared with Line 1. This allows the adversary
to avoid using φ-edges on the removed lines ` 2 L0 \ L, at the cost of being
forced to set the label of the terminal nodes of one or more lines that follow
` in the depth-first order (for instance, assigning labels to the non-terminal
nodes of Line 2 determines the labels of the left terminal node of Line 3).
However, we know that this constraint is compatible with the lower bounding
argument for line graphs.

If ` 2 L0 is a grafted line, the depth-first order insures that ` will be
processed only after the (unique) line ` is grafted onto (in Figure 2.1, Line 7
is guaranteed to be processed after Line 6). Note that, again, this is key
to enabling the application of the lower bounding strategy for line graphs
independently on each line in L. Finally, the parts of T not in L0 (indicated
by white nodes in Figure 2.1) are labeled at the very end. The adversary
does not employ any further φ-edge by assigning to each such node the same
label as the closest labeled node (for instance, the three white nodes on the
bottom-right of Figure 2.1 are assigned the same label as the upper terminal
node of Line 11). 2

2.3 The optimal tree algorithm

In this section we describe a tree prediction algorithm that achieves, up
to constant factors, the lower bound proven in the previous section even
without knowing the cutsize budget K. Our algorithm, treeOpt, predicts a



2.3. THE OPTIMAL TREE ALGORITHM 31

Figure 2.2: A tree T with 9 revealed labels inducing 3 lb-trees T1, T2, and T3. Fork
nodes are denoted by double circles. T1 has two forks, T2 has none, T3 has one.
The outer white nodes do not belong to any lb-tree. This figure also explains the
behavior of treeOpt by illustrating examples of the three itemized cases (1, 2, and
3 in the box), depending on the position of the node it to be predicted. For instance,
in Case 2, treeOpt determines i 0 and i 00 as indicated, computes eyi 0(t) = −1, andeyi 00(t) = 0 (after running the fork label estimation procedure on i 00), and then
predicts byit = −1 with rule 2.b.

node with the label minimizing the cutsize consistent with all labels seen so
far. If this label is not unique, then the algorithm predicts using a nearest
neighbor method. As we show in Section 2.4.1, treeOpt can be viewed as
an approximate and efficient implementation of the Halving algorithm for
trees.

We say that a label (or node) is revealed at time t if the adversary already
selected that node (thus causing its label to be observed by the algorithm).
At any time step, the set of revealed labels defines a collection of edge-
disjoint subtrees of T , which we call label-bordered trees (or lb-trees, for
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short). Formally, given a labeled tree (T,y) with revealed labels yi1 , . . . , yit,
an lb-tree is any maximal subtree of T whose leaves are all revealed and
no internal node is. Clearly, a non-revealed node can belong to at most
one lb-tree. A fork node is any node of an lb-tree T 0 having degree greater
than two in T 0. Figure 2.2 gives an example. Note that the set of lb-trees,
together with their fork nodes, depends on the set of revealed labels, and
is therefore changing with time. For brevity, call a node that is either a
fork or a revealed node a hinge node. Also, call hinge line any line whose
terminals are hinge nodes, and such that no internal node is a hinge node.
Given a hinge node i, we compute its estimated label in such a way that the
cutsize of T given the past revealed labels is minimized. The procedure for
computing this estimate, called Fork Label Estimation Procedure (flep),
is the core of our algorithm. When there is no unique minimizing label, the
procedure assigns the fork a value of 0 (“undecided”), rather than +1 or −1.
Let eyi(t) be the label of i estimated by flep at time t. If i is revealed at time
t then eyi(t) = yi. Otherwise, eyi(t) is computed as follows: Let T 0 be the
(unique) lb-tree i belongs to. flep performs a depth-first visit of T 0 rooted
at i. The visit starts at i and, when backtracking to a node j after all the
children of j have been visited, flep assigns a temporary label to j given
by the majority vote among the temporary or revealed labels of its children.
Note that temporary labels set to 0 do not influence this vote. If the vote is
a tie, i.e., the sum over all involved labels is 0, then the temporary label of j
is set to 0, too. Once all nodes of T 0 have been visited (and the visit is back
to node i) flep returns the temporary label eyi(t) assigned to i. Figure 2.3
gives an example.

In the box is the pseudocode of our algorithm. This algorithm takes in
input a tree T , a set yi1 , . . . , yit−1 of revealed labels, and a node it to be
predicted. The algorithm then returns its prediction byit for the label of it.
In particular, if it is a fork node inside some lb-tree (Case 1), then treeOpt
just outputs the label eyit(t) returned by flep, unless flep returns 0. In
this latter case treeOpt outputs the default value −1. On the other hand,
if it is not a fork, but it is still contained in some lb-tree (Case 2), then
the algorithm determines the opposite hinge nodes (i 0 and i 00) closest to
it, computes (again through flep) estimated values eyi 0(t) and eyi 00(t), and
uses these values to compute its prediction. If it lies between nodes with
estimated (or revealed) labels +1 and −1 (Case 2.d) then treeOpt returns
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Algorithm treeOpt
Parameters : Tree T , revealed node labels yi1 , . . . , yit−1 , selected
node it.

1. If it is a fork in an lb-tree T 0 then:

byit ←
{ eyit(t) if eyit(t) 6= 0 [1.a]

−1 otherwise [1.b]

2. Else if it is contained in a lb-tree T 0 but it is not a fork
then:

� Let i 0 be the closest hinge node to it in T 0;

� Let i 00 be the second closest hinge node to it in T 0 such
that the paths connecting i 0 and i 00 to i have no edges
in common (i 00 always exists);

byit ←


+1 if eyi 0(t) + eyi 00(t) � 1 [2.a]
−1 if eyi 0(t) + eyi 00(t) � −1 [2.b]
−1 if eyi 0(t) = eyi 00(t) = 0 [2.c]eyi 0(t) otherwise [2.d]

(i.e. eyi 0(t)eyi 00(t) = −1)

3. Else (it is not contained in any lb-tree)

� Let s be the closest node to it in an lb-tree

[3.a] If ys is revealed at time t then byit ← ys

[3.b] Else recursively call treeOpt with parameters T ,
yi1 , . . . , yit−1, and s.
Obtain bys and set byit ← bys .

the label of the closer node. Finally, if it is not contained in any lb-tree (Case
3), the algorithm determines the closest node s inside some lb-tree, and then
either predicts through the label of s (if ys is revealed) or acts as if s were
the label to be predicted at time t (i.e., treeOpt recursively2 invokes itself

2Note that after the recursive call, treeOpt will not recur any more in that time step,
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Figure 2.3: Fork label estimation procedure (flep) within the displayed lb-tree.
The question mark indicates the fork node whose label has to be estimated. The
arrows indicate the backtracking steps of the depth-first visit, where the majority
vote (the arrow tags) among the temporary (or revealed) child labels is calculated.
For instance, the right-most fork node receives two +1 and one −1 from its three
incoming neighbors, and thus sends +1 to its left. The second fork node from the
right receives one +1 and one −1, thereby sending out 0. The fork node tagged
with “?” is estimated +1 (note that 0 is immaterial for the majority vote).

with it = s).
Figure 2.2 contains examples of the algorithm functioning. Note that

treeOpt reduces to a standard 1-Nearest Neighbor algorithm when the
tree T is a line graph (namely, when fork nodes are absent).

2.4 Mistake bound analysis

This section contains the analysis of treeOpt. We will prove the algorithm
is optimal up to (multiplicative) constant factors.

The following simple property of the function lb is of primary impor-
tance.

Lemma 2.1 For any tree T with n nodes and for any 1 � K � K 0 < n,
we have lb(T, K 0) � K 0

K
lb(T, K) .

proof. Let L 0 be a blanket of size K 0 over T achieving the maximum in the
definition of lb. Let L be the subset of L 0 obtained by keeping only the K

since rule 3.b will subsequently rely on rules 1 or 2 only.
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longest lines in L 0. Since L 0 is a blanket, so is L. By definition of lb,∑
`2L

m` � max
L2L(T,K)

∑
`2L

m` = lb(T, K). (2.1)

Besides, since L contains the K longest lines in L 0, for any ` 0 2 L 0 \ L we can
write

m` 0 � 1

K

∑
`2L

m` � lb(T, K)

K
. (2.2)

Hence

lb(T, K 0) =
∑
` 02L 0

m` 0 =
∑
` 02L

m` 0 +
∑
` 02L 0\L

m` 0

� lb(T, K) +
K 0 − K

K
lb(T, K) =

K 0

K
lb(T, K)

the inequality following from (2.1) and (2.2). 2

At a high level, the proof of optimality hinges on showing
m(treeOpt, T,�K) = O

�
ub(T, K) +K

�
, where ub is a function that bounds

the number of mistakes made by treeOpt in terms of a size-O(K) blan-
ket L(T,y) over T . This blanket is obtained by dividing T into subparts,
and then by mapping each subpart to a set of lines. The union of these
lines forms the blanket. Then we show that ub(T, K) � K+ 1+ lb(T,O(K)).
Since by Lemma 2.1 we have lb(T,O(K)) = O

�
lb(T, K)

�
, and K � lb(T, K)

holds by definition of lb, we immediately get m(treeOpt, T,� K) =

O
�
lb(T, K)

�
. Combined with Theorem 3.1, this implies the optimality con-

dition m(treeOpt, T,�K) = O
�
opt(T, K)

�
.

The proof is a bit involved and requires us to step through several aux-
iliary definitions and intermediate results. We first introduce some notions
related to the (inner and outer) structure of a cluster.

The blanket L over T used in the proof is the union of sets LC of edge-
disjoint lines from each cluster C. The sets LC will be defined later on.

Let C be a (non-degenerate) cluster containing at least two nodes. We will
define a covering P(C) of the nodes of cluster C—i.e., each node of C belongs
to at least one subset in P(C). Then, we will construct a mapping f that,
for each C, bijectively associates elements of P(C) with elements of subsets
of lines in LC, in such a way that for any non-degenerate C the number of
mistakes treeOpt makes on each element Q 2 P(C) is O

�∑
`2f(Q)m`

�
. If
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Figure 2.4: Cluster structure. All nodes within the cluster are labeled +1. The
displayed cluster C has 7 outer border nodes (hence ΦC = 7) and 4 inner border
nodes. The frame FC is made up of all dark or light shaded (and +1-labeled) nodes.
Dark shaded nodes are either frame-forks or inner border nodes (i.e., the terminal
nodes of a frame-line). The gray shaded edges indicate paths connecting pairs of
outer border nodes, identifying the cluster frame. The tagged frame-fork i has
di = 3. Thick black edges identify the shaft of each grafted tree. The shaft σ(`)

contoured by dotted lines is associated with the tagged frame-line `. Examples of
grafted shrubs are also displayed.

C is a degenerate cluster (i.e., C contains only one node), then f will not be
defined.

In order to define f over non-degenerate clusters, we need to introduce a
specific cluster structure terminology. See Figure 2.4 for reference.

Definition 2.1 Let a cluster C of a labeled tree (T,y) be given.

� The outer border nodes are all nodes of T not in C that are ad-
jacent to (exactly) one node of C. We denote by ΦC the number
of outer border nodes of cluster C, i.e., the number of φ-edges
connecting nodes in C to the outside.
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� The inner border nodes are all nodes of C that are adjacent to at
least an outer border node of C.

� The frame FC is the subtree of C whose nodes are on a path con-
necting any two outer border nodes. We denote by di the maximum
number of edge-disjoint paths connecting i with outer border nodes.

� A frame-fork is a node i of FC such that di � 3.

� A frame-line is a line ` � FC where each terminal node is either
a frame-fork or an inner border node, and such that no internal
node of ` is a frame-fork. Notice that di = 2 for all internal nodes
i of `.

� A tree grafted on a frame is3 any connected component of C that
remains after deleting all nodes of the frame FC and all edges in-
cident to them. Notice that di = 1 for all nodes i of such trees.
One can define, more generally, a tree grafted on a subtree T 0 in a
similar way.

� A graft node i of T is any node of FC adjacent to a node of a grafted
tree T 0; we will say that T 0 is grafted on i;

� A grafted shrub is a set of one or more trees grafted on the same
node;

� The shaft of a grafted tree T 0, denoted by σ(T 0), is the line connect-
ing the graft node i of T 0 to the farthest node in T 0. We define σ(`)

to be the shaft of maximal length among all trees grafted on inter-
nal nodes of a frame-line `. Moreover, for any shrub S grafted on
a node i, we define σ(S) to be the set containing the4 di+ 1 longest
shafts of trees in S.

3The reader might expect a grafted line, as defined in Section 2.2, be a special case of a
grafted tree. In fact, the two definitions are slightly divergent, in the sense that the former
includes the graft node, while the latter does not. For the sake of presentation, we find it
more convenient here to keep the graft node out of the grafted tree.

4Obviously, the number of shafts in σ(S) will actually be min
{
|S|, di + 1

}
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We now define P(C) for each cluster C, and the bijective mapping f fromS
CP(C) to the set of all lines of T . More precisely, f maps each Q 2 P(C)

to a subset of lines in C.
A subset Q of nodes in C belongs to P(C) if and only if one of the

following two cases is true:

1. Q is the set of nodes of a frame-line `, together with all the nodes of
shrubs grafted on internal nodes of `;

2. Q is the set of nodes of a shrub grafted on either a frame-fork or an inner
border node in C, together with the graft node.

For sets Q of type 1 we define f(Q) = {`, σ(`)}. For sets Q of type 2 we define
f(Q) = σ(S). Now, if we extend the mapping f by viewing it as defined overS
C (the union including non-degenerate clusters only) one can easily verify

its bijectivity: In fact, for any cluster C and any Q 2 P(C), the set of nodes
contained in a line ` 2 f(Q) is a subset of Q only. Let C1 = C1(T,y) be the
subset of degenerate (singleton) clusters. Given a labeled tree (T,y) with
cluster set C = C(T,y), define

L(T,y) =
[

C2C\C1

LC =
[

C2C\C1

[
Q2P(C)

f(Q) . (2.3)

Note that L = L(T,y) is a union of lines that do not contain φ-edges. If we
add to L all φ-edges of T we obtain a set of edge-disjoint lines whose only
grafted lines are the shafts. Those, in turn, share with the other lines the
graft nodes only. Hence this augmented set of lines is a connected blanket,
implying that the original L is indeed a blanket over T . We show below
(proof of Theorem 2.2) that |L| = O(K), being K the maximum cutsize of
(T,y).

The following sequence of lemmas, show the announced key property
of mapping f, as related to the behavior of treeOpt. Namely, for any
non-degenerate C, treeOpt makes on each element Q 2 P(C) at most
O
�∑

`2f(Q)m`

�
mistakes. For this purpose, we find it convenient to introduce

the function ub (“upper bound”):

ub(T, K) = max
y2Y(T,K)

0@���C1(T,y)
���+ ∑

`2L(T,y)

m`

1A.
ub(T, K) will be shown to be an upper bound (up to a constant factor) on
m(treeOpt, T,�K).
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Figure 2.5: A line ` with terminal nodes j 0 and j 00 and grafted trees above. Di-
chotomic behavior: after j 0 is revealed, the algorithm makes no more mistakes on
the nodes in the dashed rectangle (ties are broken as in prediction rule 1.b). After
j1 is revealed, the algorithm makes no more mistakes on the nodes in the dotted
rectangle, etc. Node g1 is the graft node involved in Case 3.b of treeOpt when
predicting the label of j1.

Lemma 2.2 Let C be a cluster and ` � ` 0 be a sub-line of some frame-
line ` 0 2 FC. Assume at time t one of the two terminal nodes of `
are revealed. Then after time t the total number of mistakes made by
treeOpt on either internal nodes of ` or trees grafted on ` is bounded
by blog2 |`|c � m` (see Figure 2.5 for reference).

proof. Let j 0 be the terminal node of ` whose label is revealed, and j 00 be the
other terminal node. After time t, as soon as the algorithm makes the first
mistake on a tree T 0 grafted on an internal node g of `, the majority vote in
the fork label estimation procedure ensures that the algorithm’s prediction
on g will be correct. Moreover the prediction rules 2.a and 3.a of treeOpt
ensure that no other mistake will be made in the whole shrub grafted on g. In
both cases we have used the hypothesis that ` contains no frame-forks which
could change the outcome of the majority vote. Since the four prediction
rules 2.a–2.d of treeOpt make no distinction between estimated fork labels
and true (revealed) labels, for the purpose of this analysis a mistake made
on g in ` is equivalent to a mistake made on a tree grafted on that node.
These observations, combined with the prediction rule 2.c, imply the two
following facts. Given a node r of `, denote by n(r) the closest hinge node
to r on π(r, j 0). Then:
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1. Each node r of ` on which a mistake is made after time t satisfies
d(r, n(r)) � d(r, j 00).

2. Let T 0 be a tree grafted on an internal node s of `. A mistake can be
made on T 0 only if d(s, n(s)) � d(s, j 00).

From the above, it is then easy to see that the number of internal nodes of `
on which the algorithm can make mistakes is at least halved after every new
mistake. Since correct predictions on nodes of ` imply correct predictions on
the whole shrub grafted on those nodes (see Figure 2.5), this halving process
implies that total number of mistakes made after time t on internal nodes
of `, or on trees grafted on `, is at most blog2 |`|c � m`. 2

The next three lemmas hold for any frame-line ` belonging to a cluster
C of a labeled tree (T,y).

Lemma 2.3 The total number of mistakes treeOpt makes on internal
nodes of ` is at most 2m`.

proof. As soon as the first node i gets revealed, line ` is split into the
two sub-lines `1 and `2 sharing i as terminal node. By Lemma 2.2 the
number of mistakes made on the internal nodes of ` is therefore bounded by
1+ blog2 |`1|c+ blog2 |`2|c � 1+ blog2 |`1||`2|c � 1+ b2 log2 |`| − 2c � 2m`. 2

Lemma 2.4 The total number of trees grafted on ` on which treeOpt
makes mistakes is at most 2m` + 1.

proof. As soon as three nodes of ` from three different trees grafted on `
have been revealed, on all subsequent time steps there will be at least one
node i of ` with estimated label eyi = +1. As in Lemma 2.3, node i splits the
line into two sub-lines, enabling the application of Lemma 2.2 to both. The
proof is concluded by noting that the number of trees on which at least a
mistake occurs must be bounded by the number of mistakes made on trees.
2

Lemma 2.5 There exists at most one tree grafted on ` where treeOpt
makes more than one mistake.
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proof. Let T0 be the first tree grafted on ` where a mistake occurs. Call
t the time step when this happens. Let T1 6= T0 be another tree grafted on
` where a mistake occurs at some later time step t 0 > t. The majority vote
of the fork label estimation procedure ensures that after time t 0 the graft
node of T1 will always be correctly estimated (if not yet revealed). Finally,
the prediction rule 1.a implies that no additional mistakes will be made on
T1. This implies that T0 is the only tree grafted on ` on which more than a
mistake may occur. 2

The next two lemmas bound the number of mistakes made on trees and
shrubs grafted on the frame of a cluster C.

Lemma 2.6 The number of mistakes made by treeOpt on a tree T0
grafted on the frame FC of C is at most mσ(T0) + 1.

proof. Let it be the first revealed node in T0, g be the graft node of T0,
and g 0 be the node in T0 adjacent to g. If we drop from T0 both it and all
edges incident to it, then T0 gets decomposed into subtrees. Denote by T1 the
subtree containing g 0, and by F the forest of the remaining subtrees. After
time t, any lb-tree created on connected components of F will be bordered by
+1 nodes. Hence, either prediction rule 3.a or prediction rule 3.b combined
with 2.a guarantee no more mistakes afterwards.

Let us now focus on nodes in T1. We can invoke Lemma 2.2 (where j 0 and
j 00 in that proof are here it and g) even if the line ` connecting it to g is not
part of any frame. Indeed, the result of Lemma 2.2 only depends on the fact
that during the backtracking phase of the fork label estimation procedure,
no temporary label −1 will be assigned to nodes grafted on that line. Thus
the number of mistakes made after time t on nodes in T1 is bounded by m`

which, in turn, is bounded by mσ(T0). This concludes the proof. 2

Lemma 2.7 The number of grafted trees of a shrub S grafted on i on
which treeOpt can make mistakes is at most di + 1.

proof. If |S| � di the claim is trivial. Hence, we continue by assuming
|S| > di. Suppose that at least one mistake has been made on di + 1 trees
grafted on i. If yi is revelead at time t, then the prediction rules 3.b and 2.a
ensure that no more mistakes will be made on S. On the contrary, if yi is not
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revelead, the majority vote in the fork label estimation procedure guarantees
that yi will always be correctly estimated in the future (i.e., eyi(s) = yi for
any s > t), and the same prediction rules 3.b and 2.a guarantee no more
mistakes. 2

The next key lemma bounds the number of mistakes made on any element
of P(C).

Lemma 2.8 Let C be a non-degenerate cluster, P(C) be the correspond-
ing covering. Let f be the bijective mapping defined above. Then the
number of mistakes made by treeOpt on any Q 2 P(C) is bounded by
O
�∑

`2f(Q)m`

�
.

proof. We first consider the case when Q is of type 1. In this case, the
total number of mistakes made on Q can be simply bounded by summing:
(i) the mistakes on the internal nodes of ` (Lemma 2.3); (ii) the mistakes
on the tree grafted on ` on which the algorithm can make more than one
mistake (Lemma 2.5 and Lemma 2.6); (iii) the number of the remaining trees
grafted on ` where the algorithm can make at most one mistake (Lemma 2.4
and Lemma 2.5). Putting together, the total number of mistakes made on
Q can be bounded by O

�∑
`2f(Q)m`

�
.

Let us now consider a subset Q of type 2, and let S be the shrub referred
to in the definition of such Q. By Lemma 2.6, Lemma 2.7, and the definition
of σ(S), the total number of mistakes made on Q can be bounded as∑

`2σ(S)

(m` + 1) =
∑
`2f(Q)

(m` + 1) ,

which is again O
�∑

`2f(Q)m`

�
. 2

Before proving the main result of this section, we need one more lemma
establishing a key property of the function ub.

Lemma 2.9 For all K = 1, . . . , n − 1, the function ub satisfies ub(T, K −

1) � ub(T, K) + 1.

proof. Fix T . Any labeling y of T with cutsize K − 1 can always be
obtained from a labeling y 0 with cutsize K by merging two clusters C1 and
C2. After this merge, L(T,y) contains at most a new line that was not already
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in L(T,y 0). This new line ` is the φ-edge deleted in the merge. Since |`| = 1,
ub(T, K− 1) � ub(T, K) +m` = ub(T, K) + 1. 2

Theorem 2.2 For any tree T with n nodes and any cutsize budget K,
m(treeOpt, T,�K) = O

�
lb(T, K)

�
.

proof. Pick any labeled tree (T,y) and let k � K be its cutsize. Let
L = L(T,y) be the blanket (2.3). Pick a non-degenerate cluster C 2 C(T,y).
Let TC be the tree obtained by augmenting the frame FC with the ΦC outer
border nodes of C as leaves (referring to Figure 2.4, the resulting TC is
the tree including all non-white nodes). Then observe that the number of
inner border nodes is O(ΦC). Since in any tree the number of nodes of
degree larger than 2 cannot be greater than the number of leaves, the total
number of frame-forks in C is also O(ΦC). Finally, since a frame-line in FC is
terminated by either a frame-fork or an inner border node, the total number
of frame-lines is also O(ΦC). This can be seen by noting that collapsing each
frame-line to a single edge turns FC into a tree with a number of nodes linear
in ΦC. This tree then has O(ΦC) edges, which implies that the frame-lines
in FC are also O(ΦC). Now, by definition of f: (i) the number of lines in LC
deriving from subsets Q of type 1 is linear in the number of frame-lines in C;
(ii) since the number of shafts having as terminal node an inner border node
(i.e., a leaf of FC) is linear in ΦC, and the total number of remaining shafts
(i.e., those grafted on frame-forks that are internal nodes of FC) is linear in
the number of frame-lines, the number of lines in LC deriving from subsets
Q of type 2 is O(ΦC). Therefore,

|L| =
∑
C2C\C1

|LC| =
∑
C2C\C1

O(ΦC) = O(K) .

To finish the proof observe that, by Lemma 2.8 and by definition of f,

m(treeOpt, T,y)

�
���C1(T,y)

���+O
0@ ∑
C2C\C1

∑
Q2P(C)

∑
`2f(Q)

m`

1A
=
���C1(T,y)

���+O
0@ ∑
`2L(T,y)

m`

1A
= O

�
ub(T, k)

�
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where k � K is the cutsize of y. Since the above holds for all labelings y of
T with cutsize at most K,

m(treeOpt, T,�K) = O
�

max
k=1,...,K

ub(T, k)

�
= O (ub(T, K) + K) ,

using Lemma 2.9 in the last step. Now, ub is defined in terms of a specific
blanket L, with |L| = O(K), and

���C1(T,y)
��� � K + 1 when y has cutsize

bounded by K. These facts imply ub(T, K) � K + 1 + lb
�
T,O(K)

�
. Finally,

using Lemma 2.1 and lb(T, K) � K, we obtain m(treeOpt, T,�K) = O
�
K+

lb
�
T,O(K)

��
= O

�
lb(T, K)

�
. 2

In order to compare the optimal bound achieved by our algorithm to
the bounds of other methods present in the literature, we note that, for
any given labeled tree (T,y), our algorithm makes a number of prediction
mistakes whose upper bound can be re-written as

O
�
ΦT (y)m`

�
(2.4)

where ΦT (y) is the cutsize of (T,y) and m` is the average of m` over all lines
` in the blanket L of size ΦT (y) maximizing

∑
`2Lm`.

Note that m` < log2DT + O(1) for all `. Moreover, for many classes of
trees T , if the cutsize is not too small then it is not even possible to find a
blanket of size ΦT (y) whose lines have average length linear in DT . In these
cases m` can be much smaller than logDT . As for the time complexity, since
m(treeOpt, T,�K) � K and m = m(A, T,�K) = Ω

�
m(treeOpt, T,�K)

�
for any deterministic algorithm A, if the cutsize isΩ(logDT ) our algorithm is
faster than the one in [44], which predicts all labels in time Θ(nm). Note also
that treeOpt does not require any explicit (and costly) pre-computation.
Moreover, unlike Perceptron-like algorithms which use n � n matrices, the
space required by treeOpt is always linear in n.

2.4.1 Comparison to the Halving algorithm

We now compare treeOpt to the so-called Halving algorithm (applied to
trees). This is a standard version space algorithm defined as follows. Let Yt
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be the set of labelings y 2 {−1,+1}n consistent with all labels revelead up
to time t. Define now Ymin

t � Yt as those labelings with minimum cutsize
in Yt. Halving predicts the label of it with the value y 2 {−1,+1} that
maximizes

���{u 2 Ymin
t−1 : uit = y

}���. For example, if assigning a certain label
to it increases the current cutsize (irrespective to the value of the remaining
non-revealed labels), then Halving always predicts the opposite label, i.e.,
the cut-minimizing label.

Proving tight mistake bounds for Halving is in general not straightfor-
ward. As a simple example, the best bound for Halving on a star graph
with n nodes and cutsize K < n/2 is O(K). This in contrast with the more
intuitive “version space bound” O

�
K log(n/K)

�
one might think of at first

glance. In this section, we prove the optimality of Halving (up to constant
factors), but because of the very difficult combinatorics involved, we do so
only indirectly, by exploiting the optimality of treeOpt.

The following lemma shows that when the fork label estimation procedure
(flep) of treeOpt returns a nondefault value (as in prediction rule 1.a),
then this value is the same cut-minimizing label predicted by Halving.

Lemma 2.10 Let eyr(t) be the value returned by flep run by treeOpt
at time t to evaluate the label of node r. If eyr(t) 6= 0 then ur = eyr(t) for
each u 2 Ymin

t .

proof. Let Tr be the lb-tree rooted at r at time t. Recall that the fork es-
timation procedure works by assigning temporary labels while backtracking
in the depth-first visit of Tr. We prove the following claim: each temporary
label y 0i(t) 6= 0 assigned to node i of Tr is such that the cutsize is at least
as small as the cutsize when i is assigned label −y 0i(t). The proof is by
induction on the maximum distance between i and its descendants in Tr.
When y 0i(t) = 0 we show that the cutsize-minimizing label for i is the same
as i’s parent. Finally, by applying the claim to the children of r, we obtain
that the cutsize-minimizing label of r is the majority vote over the children’s
temporary (or revealed) labels. 2

The same equivalence between treeOpt and Halving predictions holds
in other cases, for instance when it does not belong to any lb-tree. In general,
however, the predictions of the two algorithms may differ. Nevertheless, it is
possible to prove that the number of nodes where the two predictions differ
is small, as stated by the following theorem.
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Theorem 2.3 For any labeled tree (T,y) with cutsize K, and any presen-
tation i1, . . . , in of the nodes of T , the number of times when treeOpt
and Halving output a disagreeing prediction is bounded by O(lb(T, K)).

proof. The predictions of treeOpt and Halving differs only when: (i)
treeOpt estimates a fork as 0 (prediction rule 1.b); (ii) treeOpt predicts
a node between two forks estimated as 0 (prediction rule 2.c); (iii) Node it
does not belong to any lb-tree and the closest node in a lb-tree is a fork
estimated as 0 (prediction rule 3.b together with 1.b); (iv) it is on a hinge
line whose terminal nodes i 0 and i 00 are such that the label of i 00 (estimated
or revealed) is different from 0 and the label of i 0 is estimated as 0 (subcases
in prediction rules 2.a and 2.b).

The nodes in which cases (i) to (iii) may occur are easily seen to be O(K).
In case (iv) the two predictions differs only when it is closer to i 0. This fact
makes it possible to find a size-O(K) blanket L such that the number of
disagreeing predictions is O

�∑
`2Lm`

�
. 2

Theorem 2.3 implies that treeOpt approximates Halving, the two algo-
rithms making the same number of mistakes up to constant factors. A close
examination of the two algorithms reveals that when treeOpt predicts a
default value, Halving apparently needs to perform a certain amount of
computation. In this respect, we can view treeOpt as a “lighter” imple-
mentation of Halving. In fact, in the next section we show that treeOpt
can be implemented in a quite efficient manner.

2.5 Efficient implementation

A naive implementation of treeOpt requires space linear in the total num-
ber n of nodes. It is also easy to check that predicting a single label requires
time O(n), since each lb-tree has O(n) nodes. In this section we describe a
more sophisticated implementation that improves significantly the amortized
time per time step, while still using space linear in n.

Theorem 2.4 The total time treeOpt requires to predict all labels of a
labeld tree (T,y) with n nodes is

O
�
min{nf, K}K+ n logDT

�
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where K is the cutsize of (T,y), nf is the number of internal nodes of T
with degree greater than 2, and DT is the diameter of T .

Note that whenever K = O
�p
n
�
, the amortized time per step is at most

logarithmic in the diameter5 of T . In order to achieve this speed up, we
maintain the following data structures (see Figure 2.6).

Signals and signal values. We store extra links connecting neighboring
hinge nodes so as to avoid running the depth-first visit involved in flep.
For each hinge line ` with terminal nodes i and j we store an extra directed
link [i → j] connecting i to j, and a second one [j → i] connecting j to
i. We call these links signals. All signals of the form [i → j] are stored
together with node i. Each signal [i → j] is linked to its twin [j → i] and
to the node adjacent to i in `. Hence, when traversing ` for predicting with
rule 2, it is possibile to find both signals associated with ` in constant time
just after reaching one of the two terminal nodes. Each signal [i → j] has
a value v([i → j]) 2 {−1, 0, 1,�}. If j is a frame-fork, v([i → j]) is equal to
the temporary label that flep would assign to i when estimating yj. In the
special case when yi is already revealed and j is a fork node, v([i → j]) is
simply equal to yi. Finally, if yj is revealed then v([i → j]) is equal to �,
and we say that the signal is empty. Recall that, in order to return a label
for the fork node j, flep assigns temporary labels to each internal node of
the hinge line connecting i to j. These labels are v([i→ j]).

Fork values. We associate with each fork i a numerical value vi given
by the sum of the temporary or revelead labels of its children in the lb-
tree rooted at i. Observe that flep always returns sgn(vi) as the value
of a fork label yi (where we define sgn(0) = 0). Moreover, vi is equal to∑
j2N(i) v([j→ i]) where N(i) is the set of hinge nodes j such that i is linked

to j via a signal; note also that v([i → j]) = sgn(vi − v([j → i])) for each
signal [i→ j] where i and j are both forks.

Other auxiliary structures. By means of an initial depth-first visit of T ,
we associate with each edge (i, j) 2 E a direction given by the relationship

5Though we do not prove it here, the above computational bound can be further refined
by replacing logDT with a smaller structural parameter (independent of K). For some trees
the value of this parameter can be constant even when logDT = Θ(logn).
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child → parent in the tree T rooted at node i1, i.e., the node whose label is
revealed at the end of the first time step. Starting from any node i not con-
tained in any lb-tree, it is then possibile to find the nearest node j belonging
to an lb-tree in time linear in the distance between i and j by simply follow-
ing these edge directions. We associate with each pair of adjacent nodes i
and j in any given hinge line ` an extra directed link [i, j], along with its twin
link [j, i]. These links are useful when traversing `. Each node has a mark
that allows the algorithm to know whether the node belongs to an lb-tree,
or if it is a fork node or whether its label has been revealed or not.

Figure 2.6: Two lb-trees with the main auxiliary data-structures for the efficient
implementation. The numbers inside the fork nodes (the two doubly-circled nodes)
indicate the fork values vi. Node i1 is located at the bottom-left. The gray arrows,
directed towards i1, are aimed at supporting a quick implementation of prediction
rule 3 of treeOpt when finding the nearest node contained in an lb-tree. The
bidirectional black arrows denote signals exchanged between pairs of terminal nodes
of hinge lines.

We now describe the key concept of signal change propagation. Suppose
that a signal [i→ j] changes its value in such a way that v([i→ j]) 6= � both
before and after the signal modification. This modifies the value vj which, in
turn, may affect the values of some signals departing from j. Therefore, any
signal modification can propagate through the signal links in the lb-tree. It
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is important to observe that an increase (decrease) of signal value v([i→ j])

will not propagate if, before the change, vj � 2 ( vj � −2) (all values of
outgoing non-empty signal will remain equal to sgn(vj)).

We continue by describing how the algorithm uses and updates the auxil-
iary structures when predicting node it. The reader is referred to the three
prediction rules in the pseudocode of TreeOpt.

1) it is a fork. The algorithm predicts with sgn(vi) (or −1 if vi = 0), sets the
value of all signals incoming to i equal to � and that of all signals outgoing
from i equal to yi, propagating them if necessary.

2) it is contained in an lb-tree but it is not a fork. Let i 0 and i 00

be defined as in prediction rule 2. The algorithm finds the nearest hinge
node i 0 by traversing the hinge line in both directions (using a breadth-first
visit on that line). Then it uses the signs of vi 0 and vi 00 for predicting with
rule 2, creates the signals [it → i 0] and [it → i 00], and propagates them if
necessary. Finally, the algorithm replaces the two old signals linking i 0 to i 00

with [i 0 → it] and [i 00 → it], and sets both values to �.

3) it is not contained in any lb-tree. The algorithms finds the nearest
node s contained in an lb-tree using the extra-links directed towards i1 and
creates the auxiliary information for the new hinge line connecting it to s.
Then the algorithm predicts as if the adversary had asked for label ys, and
creates the signals [i → j] and [j → i]. If j is not a hinge node, then a new
signal is created. This signal is updated and propagated analogously to the
previous case.

The next lemma is useful for the complexity analysis. First of all, we define
a phase to be a maximal non-empty interval of time steps where no label
revelation increases the minimal cutsize consistent with the labels seen so
far. Hence a time step where the current minimal cutsize increases does not
belong to any phase.

Lemma 2.11 Let t belong to a phase and let vi(t) be the value of a fork
node i at the beginning of time t. If yi is not revelead at time t, then
vi(t+ 1) � vi(t) if vi(t) > 0, and vi(t+ 1) � vi(t) if vi(t) < 0.

proof. Considering without loss of generality that sgn
�
vi(t)

�
= +1, it is

enough to prove that if vi(t + 1) � vi(t). For each hinge node j connected
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with i by a non-negative signal, we have vj(t) � 1 (or yj has been revealed
before time t). By Lemma 2.10, vi(t+ 1) can be smaller than vi(t) only if a
non-negative numerical signal [j→ i] decreases its value in the signal change
propagation at time t, which implies the decrease of vj. Hence, decreasing a
positive fork value implies a previous decrease of another positive fork value
in the same change signal propagation, which concludes the proof. 2

We can now give the proof of the worst case time bound for predicting
the labels in T .

proof of Theorem 2.4. Each internal node i of a hinge line ` can be visited
only O

�
log |`|

�
= O(logDT ) times through prediction rule 2. As a matter

of fact, for each of the two traversing directions, the distance between i and
the node from which the breadth-first visit over ` starts is at least halved
each time i gets visited. This fact accounts for the O(n logDT ) term in the
bound.

Now observe that a node with degree smaller than 3 can never become a
fork. Moreover, the number of forks involved in a signal propagation process
in each tree grafted on a cluster frame is constant. The number of trees
grafted on a frame-line ` on which a signal change can propagate is again
constant. For each shrub S grafted on a node i, the number of trees of S
involved in the signal propagation is O(di). Lemma 2.11 applied to each
fork j, together with these observations, allows us to deduce that in a single
phase the signal propagation process takes time O

�
min{nf, K}

�
. This is also

the time required by a signal propagation in each step where the minimal
cutsize gets increased. Finally, the number of phases is equal to O(K).

The proof is concluded by considering that the total time required for
creating and emptying all signals, as well as for creating the other auxiliary
structures, is linear in n. 2

2.6 Application to labeled graph prediction

We now discuss the application of our tree prediction algorithm to the general
problem of predicting the labels of an undirected graph, and compare our
results to the existing literature. As mentioned in the introduction of this



2.6. APPLICATION TO LABELED GRAPH PREDICTION 51

chapter, when given a graph G = (V, E) with n nodes and arbitrary binary
labels y, we suggest running treeOpt on a (uniformly generated) random
spanning tree of G.

The expected cutsize of T is the resistance-weighted cutsize of G ΦR(y) =
1
4

∑
(i,j)2E ri,j(yi − yj)

2, which is significantly better than G’s cutsize ΦG(y)

in most cases. In fact, on an unweighted graph with n nodes, the effective
resistance ri,j of an edge (i, j) always lies in [2/n, 1]. In particular, ri,j is
very small when (i, j) is located in a densely connected area of the graph,
while ri,j = 1 when (i, j) is a bridge edge. For instance, in a dense graph
where ri,j = O(1/n) for all (i, j) 2 E, the adversary may choose y so as to
concentrate Θ(n) φ-edges on any specific tree, and yet ΦR(y) = O(1).

The above argument immediately leads to the following general result.
Let treeOpt+ be the (randomized) graph prediction algorithm that, on in-
putG, first generates a random spanning tree T ofG, and then runs treeOpt
on T . Define (G,y) and m(A,G,y) similarly to what we did for trees.

Corollary 2.1 For any undirected labeled graph (G,y), and for any pre-
sentation order i1, . . . , in of the nodes of G, the expected (over the ran-
dom choice of the spanning tree T) number of mistakes treeOpt+
makes on (G,y) is bounded as E

h
m(treeOpt+, G,y)

i
= O

�
ΦR(y) logn

�
.

proof. We have

E

h
m(treeOpt+, G,y)

i
= E

h
m(treeOpt, T,y)

i
= E

h
O
�
ΦT (y)m`

i
= O

�
ΦR(y) logn

�
where the second equality is (2.4), and the last one follows after (crudely)
upper bounding m` by logn. 2

Similar bounds could also be shown to hold with high probability, rather
than in expectation, by exploiting known concentration properties of random
spanning trees. See, e.g., [40] and references therein.

As mentioned in the introduction of this chapter, in Section 2.2 we
demonstrate that any prediction algorithm can be forced to make a num-
ber of mistakes which is at least as big as the cutsize of the graph’s random
spanning tree. This lower bound, together with Corollary 2.1, clearly implies
that treeOpt is optimal (up to a O(log |V |) factors) on any labeled graph.
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The best mistake bound we know of for the general graph prediction
problem has the form minρ

�
N (G, ρ) +ΦG(y)ρ

�
, where N (G, ρ) is the cov-

ering number of G in the resistance metric [46]. It is easy to see that this
bound gets large when the diameterDG is large. Moreover, real-world graphs
G (such as parts of the web graph) have dense regions that can cause a large
cutsize. In some of these cases, (take the lollipop graph as an extreme situa-
tion), it is just impossible to find a small-sized covering using balls of small
radius. A uniformly generated random spanning tree T of G guarantees,
instead, that the presence of dense parts of G will not dramatically increase
the cutsize of T . Hence the use of treeOpt on a random tree ensures an
appealing (expected) mistake bound where the cutsize factor cannot get too
large, except for degenerate and very irregular labelings.



Chapter 3

Learning on weighted trees and
graphs

3.1 Introduction
This chapter focuses on the on-line transductive version of the node classifi-
cation problem.

Although in the unweighted case previous studies use the cutsize to prove
several interesting upper bounds [46, 47, 48], no general lower bounds on the
number of prediction mistakes are known, leaving fully open the question
of characterizing the complexity of learning a labeled graph. In Chapter
?? we bounded the expected number of mistakes by the cutsize of a random
spanning tree of the graph, a quantity typically much smaller than the cutsize
of the whole graph. In this chapter we show that this quantity captures the
hardness of the graph learning problem. Given any weighted graph, we
prove that any prediction algorithm must err on a number of nodes which
is at least as big as the cutsize of the graph’s random spanning tree (which
is defined in terms on the graph’s weights). Moreover, we exhibit a simple
algorithm achieving the optimal mistake bound to within logarithmic factors
on any sufficiently connected weighted graph whose weighted cutsize is not
an overwhelming fraction of the total weight.

Following [22] (see Chapter 2), our algorithm first extracts a random
spanning tree of the original graph. Then, it predicts all nodes of this tree
using a generalization of the method proposed by [46]. Our tree prediction
procedure is extremely efficient: it only requires constant amortized time
per prediction and space linear in the number of nodes. Note that computa-
tional efficiency is a central issue in practical applications where the involved

53
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datasets can be very large. In such contexts, learning algorithms whose time
complexity scales, say, more than quadratically with the number of data
points should be considered impractical.

A further significant contribution of this work is the experimental evalu-
ation of our method, as compared to methods recently proposed in the lit-
erature on graph prediction. In particular, we compare our algorithm to the
Perceptron algorithm with Laplacian kernel by [47, 48], and to the label prop-
agation algorithm by [102], including its on-line version. The experiments
have been carried out on four medium-sized real-world datasets. The two
tree-based algorithms (ours and the Perceptron algorithm) have been tested
using spanning trees generated in various ways. Our experimental compari-
son shows that our on-line algorithm compares well to all competitors while
using, in most cases, the least amount of time and memory resources.

3.2 Preliminaries and basic notation
Let Eφ � E be the set of φ-edges in (G,y). The weighted cutsize ΦWG (y) of
(G,y) is ΦWG (y) =

∑
(i,j)2Eφ wi,j.

Fix (G,y). For (i, j) 2 E, let also pi,j = wi,jr
W
i,j be the probability that

(i, j) belongs to a random spanning tree T — see, Section 1.6 or, e.g., [63].
Then we have

EΦT (y) =
∑

(i,j)2Eφ

pi,j =
∑

(i,j)2Eφ

wi,jr
W
i,j (3.1)

where the expectation E is over the random choice of spanning tree T . Since∑
(i,j)2E pi,j is equal to n − 1, irrespective of the edge weighting, we have

0 � EΦT (y) � n − 1. Hence the ratio 1
n−1

EΦT (y) 2 [0, 1] provides a
density-independent measure of the cutsize in G, and even allows to com-
pare labelings on different graphs. It is also important to note that EΦT (y)

can be much smaller than ΦWG (y) when there are strongly connected regions
in G contributing prominently to the weighted cutsize. To see this, consider
the following scenario: If (i, j) 2 Eφ and wi,j is large, then (i, j) gives a big
contribution to1 ΦWG (y). However, this might not happen in EΦT (y). In
fact, if i and j are strongly connected (i.e., if there are many disjoint paths
connecting them), then rWi,j is very small and the terms wi,jrWi,j in (3.1) are
small too. Therefore, the effect of the large weight wi,j may often be com-

1It is easy to see that in such cases ΦW
G (y) can be much larger than n.
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pensated by the small probability of including (i, j) in the random spanning
tree.

3.3 A general lower bound

We start by stating a general lower bound, showing that any prediction
algorithm must err at least 1

2
EΦT (y) times on any weighted graph.

Theorem 3.1 Let G = (V, E,W) be a weighted undirected graph with n
nodes and weights wi,j > 0 for (i, j) 2 E. Then for all K � n there
exists a randomized labeling y of G such that for all (deterministic or
randomized) algorithms A, the expected number of prediction mistakes
made by A is at least K/2, while EΦT (y) < K.

proof. The adversary uses the weighting P induced by W and defined
by pi,j = wi,jr

W
i,j . By (1) pi,j is the probability that edge (i, j) belongs to a

random spanning tree T of G. Let Pi =
∑
j pi,j be the sum over the induced

weights of all edges incident to node i. We call Pi the weight of node i.
Let S � V be the set of K nodes i in G having the smallest weight Pi. The
adversary assigns a random label to each node i 2 S. This guarantees that,
no matter what, the algorithm A will make on average K/2 mistakes on the
nodes in S. The labels of the remaining nodes in V \ S are set either all
+1 or all −1, depending on which one of the two choices yields the smaller
ΦPG(y). We now show that the weighted cutsize ΦPG(y) of this labeling y is
less than K, independent of the labels of the nodes in S. Since the nodes in
V \ S have all the same label, the φ-edges induced by this labeling can only
connect either two nodes in S or one node in S and one node in V \S. Hence
ΦPG(y) = ΦP,intG (y) + ΦP,extG (y), where ΦP,intG (y) is the cutsize contribution
within S, and ΦP,extG (y) is the one from edges between S and V \ S. Let

PintS =
∑

(i,j)2E : i,j2S

pi,j

and
PextS =

∑
(i,j)2E : i2S,j2V\S

pi,j .

From the very definition of PintS and ΦP,intG (y) we have ΦP,intG (y) � PintS .
Moreover, from the way the labels of nodes in V \ S are selected, it follows
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that ΦP,extG (y) � PextS /2. Finally,∑
i2S

Pi = 2PintS + PextS

holds, since each edge connecting nodes in S is counted twice in the sum∑
i2S Pi. Putting everything together we obtain

2PintS + PextS =
∑
i2S

Pi � K

n

∑
i2V

Pi

=
2K

n

∑
(i,j)2E

pi,j

=
2K(n− 1)

n
,

the inequality following from the definition of S. Hence

EΦT (y) = ΦPG(y)

= ΦP,intG (y) +ΦP,extG (y)

� PintS +
PextS
2

� K(n− 1)

n
< K ,

thereby concluding the proof. 2

3.4 The Weighted Tree Algorithm
We now describe the Weighted Tree Algorithm (wta) for predicting the
labels of a weighted tree. In Section 3.5 we show how to apply wta to
the more general weighted graph prediction problem. wta first turns the
tree into a line graph (i.e., a list), then runs a fast nearest neighbor method
to predict the labels of each node in the line. Though this technique is
similar to that one used in [46], the fact that the tree is weighted makes the
analysis significantly more difficult, and the practical scope of our algorithm
significantly wider. Our experimental comparison in Section 3.7 confirms
that exploiting the weight information is often beneficial in graph prediction.

Given a labeled weighted tree (T,y), the algorithm initially creates a
weighted line graph L 0 containing some duplicates of the nodes in T . Then,
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each duplicate node (together with its incident edges) is replaced by a single
edge with a suitably chosen weight. This results in the final weighted line
graph L which is then used for prediction. In order to create L from T , wta
performs the following tree linearization steps:

1. An arbitrary node r of T is chosen, and a line L 0 containing only r is
created.

2. Starting from r, a depth-first visit of T is performed. Each time an edge
(i, j) is traversed (even in a backtracking step), the edge is appended
to L 0 with its weight wi,j, and j becomes the current terminal node of
L 0. Note that backtracking steps can create in L 0 at most one duplicate
of each edge in T , while nodes in T may be duplicated several times in
L 0.

3. L 0 is traversed once, starting from terminal r. During this traversal,
duplicate nodes are eliminated as soon as they are encountered. This
works as follows. Let j be a duplicate node, and (j 0, j) and (j, j 00) be the
two incident edges. The two edges are replaced by a new edge (j 0, j 00)

having weight2 wj 0,j 00 = min
{
wj 0,j, wj,j 00

}
. Let L be the resulting line.

The analysis of Section 3.4.1 shows that this choice of wj 0,j 00 guarantees that
the weighted cutsize of L is smaller than twice the weighted cutsize of T . Once
L is created from T , the algorithm predicts the label of each node it using
a nearest-neighbor rule operating on L with a resistance distance metric.
That is, the prediction on it is the label of is�, being s� = argmins<t d(is, it)
the previously revealed node closest to it, and d(i, j) =

∑k
s=1 1/wvs,vs+1 is

the sum of the resistors (i.e., reciprocals of edge weights) along the unique
path i = v1 → v2 → � � �→ vk+1 = j connecting node i to node j.

3.4.1 Analysis of WTA
The following lemma gives a mistake bound on wta run on any weighted
line graph. Let RWG =

∑
(i,j)2E\Eφ 1/wi,j the sum of resistors of φ-free edges

in a labeled graph (G,y). Let also f O
= g denote f = O(g).

Lemma 3.1 If wta is run on a weighted line graph (L,y), then the total
number mL of mistakes satisfies

2By iterating this elimination procedure, it might happen that more than two adjacent
nodes get eliminated. In this case, the two surviving terminal nodes are connected in L by
the lightest edge among the eliminated ones in L 0.
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mL
O
= ΦL(y)

 
1+ log

�
1+

eRWL ΦWL (y)

ΦL(y)

�!
+ K

where eRWL is the sum of the resistors of any arbitrary set including all
but K φ-free edges of L.

Note that the bound of Lemma 3.1 implies that, for any K � 0, one can drop
from the bound the contribution of any set of K resistors in RWL at the cost
of adding K extra mistakes.

We now proceed with the proof of Lemma 3.1. Some preliminary defini-
tions and auxiliary results are first needed.

From the description of wta in Section 5.4, we see that when L 0 is trans-
formed into L the pairs of edges (j 0, j) and (j, j 00) of L 0 which are incident to
a repeated node j get replaced in L (together with j) by a single edge (j 0, j 00)

—step 3. We call these edges spurious edges. Assume that (j 0, j 00) is spuri-
ous in L. When yj 0 6= yj 00 we have created a spurious φ-edge by eliminating
a φ-edge and a φ-free edge from L 0. When yj 0 = yj 00 = yj, we have created a
spurious φ-free edge by eliminating two φ-free edges from L 0. Finally, when
yj 0 = yj 00 6= yj, we have created a spurious φ-free edge by eliminating two
φ-edges from L 0. Let RW0 be the sum of resistors of all spurious φ-free edges
created during the elimination of pairs of φ-edges in L 0.

Lemma 3.2 Let (T,y) be a labeled tree, (L,y) be a linearized version of
it, and L 0 be the line graph with duplicates (as described above). Then
the following holds:

1. RWL � RWL 0 + RW0 � 2RWT + RW0 ;

2. ΦWL (y) � ΦWL 0 (y) � 2ΦWT (y);

3. ΦL(y) � ΦL 0(y) � 2ΦT (y).

proof. Note that each edge of T occurs in L 0 at least once and at most
twice. This proves ΦWL 0 (y) � 2ΦWT (y) and ΦL 0(y) � 2ΦT (y). Note further
that L contains some non-spurious edges from L 0 plus a number of spurious
edges. Each spurious φ-free edge (j 0, j 00) can be created (by eliminating a
node j) when either (i) yj 0 = yj 00 = yj, which implies that wj 0,j 00 corresponds
to the weight of a φ-free edge eliminated in L 0 together with node j, thus
wj 0,j 00 is not included in RW0 ; or (ii) yj 0 = yj 00 6= yj, which implies that wj 0,j 00
is included in RW0 . This proves the first inequality. To prove the remaining
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inequalities, first note that a spurious edge (j 0, j 00) cannot be a φ-edge in L
unless either (j, j 0) or (j, j 00) is a φ-edge in L 0. Moreover, if (j 0, j 00) is a φ-edge
in L, then its weight is not larger than the weight of the associated φ-edge
in L 0 —Step 3 in the description of wta. 2

We are now ready to prove Lemma 3.1.

proof of Lemma 3.1. Let a cluster be any maximal sub-line of L whose
edges are all φ-free. Then L contains exactly ΦL(y) + 1 clusters, which we
number consecutively, starting from one of the two terminal nodes. Consider
the k-th cluster ck. Let v0 be the first node of ck whose label is predicted
by wta. After yv0 is revealed, the cluster splits into two edge-disjoint sub-
lines3 c 0k and c 00k , both having v0 as terminal node. Let v 0k and v 00k be the
closest nodes to v0 such that (i) yv 0k = yv 00k 6= yv0 and (ii) v 0k is adjacent to
a terminal node of c 0k, and v 00k is adjacent to a terminal node of c 00k . The
nearest neighbor prediction rule of wta guarantees that the first mistake
made on c 0k (respectively, c 00k) must occur on a node v1 such that d(v0, v1) �
d(v1, v

0
k) (respectively, d(v0, v1) � d(v1, v 00k)). By iterating this argument for

the subsequent mistakes we see that the total number of mistakes made on
cluster ck is bounded by

1+

$
log2

R 0k + (w 0
k)

−1

(w 0
k)

−1

%
+

$
log2

R 00k + (w 00
k)

−1

(w 00
k)

−1

%

where R 0k is the resistance diameter of sub-line c 0k, and w 0
k is the weight of

the φ-edge between v 0k and the terminal node of c 0k closest to it (R 00k and w 00
k

are defined similarly). Hence, summing the above displayed expression over

3W.l.o.g., we assume that neither of the two sub-lines is empty, so that v0 is not a
terminal node of ck.
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clusters k = 1, . . . ,ΦL(y) + 1 we obtain
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where in the second step we used Jensen’s inequality and in the last one
the fact that

∑
k(R

0
k + R 00k) = RWL and

∑
kw

0
k =
∑
kw

00
k = O

�
ΦWL (y)

�
. This

proves the lemma in the case K = 0.
In order to conclude the proof, we simply observe that if we take any

semi-cluster c 0k (obtained, as before, by splitting cluster ck, being v0 2 ck
the first node whose label is predicted by wta), and pretend to split it
into two sub-clusters connected by a φ-free edge, we could repeat the above
dichotomic argument almost verbatim on the two sub-clusters at the cost of
adding an extra mistake. 2

We now provide an upper bound on the number of mistakes made by
wta on any weighted tree T = (V, E,W) in terms of the number of φ-edges,
the weighted cutsize, and RWT .

Theorem 3.2 If wta is run on a weighted and labeled tree (T,y), then
the total number mT of mistakes satisfies

mT
O
= ΦT (y)

 
1+ log

 
1+

RWT Φ
W
T (y)

ΦT (y)

!!
.

proof. Recall that RW0 is the sum of resistors on all spurious φ-free edges
obtained by eliminating pairs of φ-edges in L 0. Hence, we can injectively
associate with each such edge two distinct φ-edges in L 0, and therefore the
total number of spurious edges giving contribution to RW0 is bounded by
ΦL 0(y)/2, which in turn can be bounded by ΦT (y) via Lemma 3.2. Applying
Lemma 3.1 (setting eRWL to RWL − RW0 ) along with Lemma 3.2 concludes the
proof. 2
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The logarithmic factor in the above bound shows that the algorithm takes
advantage of labelings such that the weights of φ-edges are small (thus mak-
ing ΦWT (y) small) and the weights of φ-free edges are high (thus making RWT
small). This somehow matches the intuition behind wta’s nearest-neighbor
rule according to which nodes that are close to each other are expected to
have the same label. In particular, observe that the way the above quantities
are combined makes the bound independent of rescaling of the edge weights.
Again, this has to be expected, since wta’s prediction is scale insensitive.
On the other hand, it may appear less natural that the mistake bound also
depends linearly on the cutsize ΦT (y), independent of the edge weights.
As a matter of fact, this linear dependence on the unweighted cutsize cannot
be eliminated (this is a simple consequence of Theorem 3.1 in Section 3.3).

3.5 Predicting a weighted graph
In order to solve the more general problem of predicting the labels of a
weighted graph G, one can first generate a spanning tree T of G and then run
wta directly on T . In this case it is possible to rephrase Theorem 3.2 in terms
of properties of G. Note that for each spanning tree T of G, ΦWT (y) � ΦWG (y)

and ΦT (y) � ΦG(y). Specific choices of the spanning tree T control in
different ways the quantities in the mistake bound of Theorem 3.2. For
example, a minimum spanning tree tends to reduce the value of RWT , betting
on the fact that φ-edges are light. The next theorem relies on random
spanning trees.

Theorem 3.3 If wta is run on a random spanning tree T of a labeled
weighted graph (G,y), then the total number mG of mistakes satisfies

EmG
O
= E

h
ΦT (y)

i�
1+ log

�
1+wφmaxE

h
RWT

i��
(3.2)

where wφmax = max(i,j)2Eφ wi,j.

proof. Using Theorem 3.2 we can write

EmG
O
= E

24ΦT (y)
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where the second equality follows from the fact that ΦWT (y) � ΦT (y)wφmax,
and the third one follows from Jensen’s inequality applied to the concave
function

(x, y) 7→ x

�
1+ log

�
1+ ywφmax

��
x, y � 0.

2

Note that the mistake bound in (3.2) is scale-invariant, since E
h
ΦT (y)

i
=∑

(i,j)2Eφ wi,jr
W
i,j cannot be affected by a uniform rescaling of the edge weights,

and so is the product wφmaxE
h
RWT

i
= wφmax

∑
(i,j)2E\Eφ r

W
i,j .

We now compare the mistake bound (3.2) to the lower bound stated in
Theorem 3.1. In particular, we prove that wta is optimal (up to O(logn)

factors) on every weighted connected graph in which the φ-edges weights
are not “superpolynomially overloaded” w.r.t. the φ-free edge weights. In
order to rule out pathological cases, when the weighted graph is nearly dis-
connected, we impose the following mild assumption on the graphs being
considered.

We say that a graph is polynomially connected if the ratio of any pair
of effective resistances (even those between nonadjacent nodes) in the graph
is polynomial in the total number of nodes n. This definition essentially
states that a weighted graph can be considered connected if no pair of nodes
can be found which is substantially less connected than any other pair of
nodes. Again, as one would naturally expect, this definition is independent
of uniform weight rescaling. The following corollary shows that if wta is
not optimal on a polynomially connected graph, then the labeling must be
so irregular that the total weight of φ-edges is an overwhelming fraction of
the overall weight.

Corollary 3.4 Pick any polynomially connected weighted graph G with
n nodes. If the ratio of the total weight of φ-edges to the total weight
of φ-free edges is bounded by a polynomial in n, then the total number
of mistakes mG made by wta when run on a random spanning tree T
of G satisfies EmG

O
= E

h
ΦT (y)

i
logn.

proof. Let f > poly(n) denote a function growing faster than any
polynomial in n. Choose a polynomially connected graph G and a la-
beling y. For the sake of contradiction, assume that wta makes more
than O(E

h
ΦT (y)

i
logn) mistakes on (G,y). Then Theorem 5 implies
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wφmaxE
h
RWT

i
> poly(n). Since E

h
RWT

i
=
∑

(i,j)2E\Eφ r
W
i,j , we have that

wφmax max(i,j)2E\Eφ r
W
i,j > poly(n). Together with the assumption of polyno-

mial connectivity for G, this implies wφmaxr
W
i,j > poly(n) for all φ-free edges

(i, j). By definition of effective resistance, wi,jrWi,j � 1 for all (i, j) 2 E. This
gives wφmax/wi,j > poly(n) for all φ-free edges (i, j), which in turn implies∑

(i,j)2Eφ wi,j∑
(i,j)2E\Eφ wi,j

> poly(n),

thereby concluding the proof. 2

Note that when the hypothesis of this corollary is not satisfied the bound
of wta is not necessarly vacuous. For example, E

h
RWT

i
wφmax = npolylog(n)

implies an upper bound which is optimal up to polylog(n) factors. In par-
ticular, having a constant number of φ-free edges with exponentially large
resistance contradicts the assumption of polynomial connectivity, but it need
not lead to a vacuous bound in Theorem 3.3. In fact, one can use Lemma 3.1
to drop from the mistake bound of Theorem 3.3 the contribution of any set
of O(1) resistances in E

h
RWT

i
=
∑

(i,j)2E\Eφ r
W
i,j at the cost of adding just O(1)

extra mistakes. This could be interpreted as a robustness property of wta’s
bound against graphs that do not fully satisfy the connectedness assumption.

Corollary 3.4 can be compared to the expected mistake bound of the
graph Perceptron algorithm gpa on the same random spanning tree —see
Section 3.7 for more details on gpa. This bound depends on the expectation
of the product ΦWT (y)DWT , where DWT is the diameter of T in the resistance
distance metric. Note that these two factors are negatively correlated because
ΦW(y) dipends linearly on the edge weights whereas DWT dipends linearly
on the reciprocal of these weights —see the definition of resistance distance
in Section 3.2. Moreover, for any given scale of the edge weights, DWT can be
linear in the number n of nodes.

Finally, in light of the performance guarantees provided by Corollary 3.4,
it is worthwhile to compare wta with the treeOpt algorithm described in
Chapter 2. Both algorithms predict on a general input graph condensing its
structural information with a random spanning tree. wta is in general faster
than treeOpt and is able to operate also with weighted graphs. However,
treeOpt is able to achieve optimality up to constant factors on any labeled
tree, while Corollary 3.4 only ensures optimality up to O(logn) factors, even
when the input graph is a tree.
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3.6 Implementation

A direct implementation of wta operating on a tree T with n nodes runs in
time O(n logn) and requires linear memory space. We now describe how to
implement wta to run in time O(n), i.e., in constant amortized time per
step.

Once the given tree T is linearized into an n-node line L, we initially
traverse L from left to right. Call j0 the left-most terminal node of L. During
this traversal, the resistance distance d(j0, i) is incrementally computed for
each node i in L. This makes it possible to calculate d(i, j) in constant time
for any pair of nodes, since d(i, j) = |d(j0, i) − d(j0, j)| 8i, j 2 L. On top of
line L a complete binary tree T 0 with 2dlog2 ne leaves is constructed.4 The k-th
leftmost leaf (in the usual tree representation) of T 0 is the k-th node in L
(numbering the nodes of L from left to right). The algorithm maintains this
data-structure in such a way that at time t: (i) the subsequence of leaves
whose labels are revealed at time t are connected through a (bidirectional)
list B, and (ii) all the ancestors in T 0 of the leaves of B are marked. See
Figure 3.1.

When wta is required to predict the label yit, the algorithm looks for
the two closest leaves i 0 and i 00 oppositely located in L with respect to it.
The above data structure supports this operation as follows. wta starts
from it and goes upwards in T 0 until the first marked ancestor anc(it) of it
is reached. During this upward traversal, the algorithm marks each internal
node of T 0 on the path connecting it to anc(it). Then, wta starts from
anc(it) and goes downwards in order to find the leaf i 0 2 B closest to it. Note
how the algorithm uses node marks for finding its way down: For instance,
in Figure 3.1 the algorithm goes left since anc(it) was reached from below
through the right child node, and then keeps right all the way down to i 0.
Node i 00 (if present) is then identified via the links in B. The two distances
d(it, i

0) and d(it, i 00) are compared, and the closest node to it within B is
then determined. Finally, wta updates the links of B by inserting it between
i 0 and i 00.

In order to quantify the amortized time per trial, the key observation
is that each internal node k of T 0 gets visited only twice during upward

4For simplicity, this description assumes n is a power of 2. If this is not the case, we
could add dummy nodes to L before building T 0.
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Figure 3.1: Constant amortized time implementation of wta. The line L has n = 16

nodes (the adjacent squares at the bottom). Shaded squares are the revealed nodes,
connected through a dark grey doubly-linked list B. The depicted tree T 0 has both
unmarked (white) and marked (shaded) nodes. The arrows indicate the traversal
operations performed by wta when predicting the label of node it: The upward
traversal stops as soon as a marked ancestor anc(it) is found, and then a downward
traversal begins. Note that wta first descends to the left, and then keeps going
right all the way down. Once i 0 is determined, a single step within B suffices to
determine i 00.

traversals over the n trials: The first visit takes place when k gets marked
for the first time, the second visit of k occurs when a subsequent upward
visit also marks the other (unmarked) child of k. Once both of k’s children
are marked, we are guaranteed that no further upward visits to k will be
performed. Since the preprocessing operations take O(n), this shows that
the total running time over the n trials is linear in n, as anticipated.5

3.7 Experiments

We now present the results of an experimental comparison on a number
of real-world weighted graphs from different domains: text categorization,
optical character recognition, and bioinformatics.

Our goal is to compare the prediction accuracy of wta to the one achieved
by known baseline algorithms for weighted (and unweighted) graph predic-
tion. We compare our algorithm to the following two other on-line prediction
methods, intended as representatives of two different ways of facing the graph

5Note, however, that the worst-case time per trial is O(logn). For instance, on the very
first trial T 0 has to be traversed all the way up and down.
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prediction problem: global vs. local prediction.

The Perceptron algorithm with graph Laplacian kernel by [47],
abbreviated as gpa (graph Perceptron algorithm). This algorithm predicts
the nodes of a weighted graph G = (V, E) after mapping V via the linear
kernel based on L+

G + 1 1>, where LG is the laplacian matrix of G. Following
[48] we run gpa on a spanning tree T of the original graph. We do so
because computing the pseudoinverse L+

G when G is a tree takes time and
space quadratic in the number of nodes n (this in contrast to wta that runs
in linear time and linear space). gpa is a global approach in the sense that
the graph topology affects, via the inverse Laplacian, the prediction on all
nodes.

The On-line Majority Vote algorithm (abbreviated as omv). Since
the common underlying assumption to graph prediction algorithms is that
nearby nodes are labeled similarly, a very intuitive and fast algorithm for se-
quentially predicting the label of a node it is via a weighted majority vote on
all labels of the adjacent nodes seen so far, i.e., sgn

�∑
s<t : (is,it)2E

yiswis,it

�
.

The overall time and space requirements are both of order Θ(|E|), since we
need to read (at least once) the weights of all edges. omv-like algorithms are
local approaches, in the sense that prediction at one node is affected only
by adjacent nodes. omv, as presented above, is the most natural on-line
version of the label propagation (or energy minimization) algorithm [102],
abbreviated as labprop, which we keep as an accuracy baseline throughout
our experiments.6 labprop is a batch transductive learning method and is
computed by solving a (possibly sparse) linear system of equations which re-
quires O(kn2) time on an n-node graph with k neighbors per node. This bad
scalability, which prevented us from carrying out comparative experiments
on larger graphs of 105 nodes, should be taken into account when comparing
labprop to fast on-line (i.e., one-sweep) algorithms.

In our experiments, we combined wta and gpa with spanning trees gen-
erated in different ways (note that omv and labprop do not operate on
spanning trees).

6Many other algorithms have been proposed in the literature for graph prediction prob-
lems, including the label-consistent mincut approach of [14] and a number of other “energy
minimization” methods —e.g., the ones in [8, 45]. See [10] for a relatively recent survey on
this subject.
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Random Spanning Tree (rst). Each spanning tree is taken with prob-
ability proportional to the product of its edge weights — see Section 1.6 or,
e.g., Ch. 4 of [63]. In addition, we also tested wta combined with rst gen-
erated ignoring the edge weights (which were restored before running wta).
As shown in [94, 3], it is possible to generate unweighted random spanning
trees in time linear in the number n of nodes for many and important classes
of graphs. This gives a prediction algorithm whose total running time (in-
cluding the generation of the spanning tree) is O(n) for many graphs. We
abbreviate this spanning tree as nwrst (non-weighted rst).

Depth-first spanning tree (dfst). The spanning tree is created via
the following randomized depth-first visit: A root is selected at random,
then each newly visited node is chosen with probability proportional to the
weights of the edges connecting the current vertex with the adjacent nodes
that have not been visited yet. This spanning tree is faster to generate than
rst, and can be viewed as an approximate version of rst.

Minimum Spanning Tree (mst). The spanning tree minimizing the sum
of the resistors of all edges. This is the tree whose Laplacian best ap-
proximates the Laplacian of G according to the trace norm criterion —see,
e.g., [48].

Shortest Path Spanning Tree (spst). [48] use the shortest path tree for
its small diameter (at most twice the diameter of G), which allows them to
better control the theoretical performance of gpa. We generated n shortest
path spanning trees by varying the choice of the root node, and then took
the one having minimal diameter among them.

Finally, in order to check whether the information carried by the edge
weight has predictive value for a nearest neighbor rule like wta, we also
performed a test by ignoring the edge weights during both the generation
of the spanning tree and the running of wta’s nearest neighbor rule. This
is essentially the algorithm analyzed in [46], and we denote it with nwwta
(non-weighted wta). We combined nwwta with (weighted) mst, that is the
spanning tree on which wta performs best.

We ran our experiments on four medium size real-world datasets: (1)
The first 10,000 documents (in chronological order) of RCV1, with tf-idf
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Table 3.1: Macro-averaged and cross-validated classification error rates (percent-
ages) achieved by the various algorithms on the five datasets/graphs mentioned in
the main text. We compare wta, gpa, and the algorithm by [46] combined with
different spanning trees, to labprop and omv. Train:Test denotes the training
and test set size ratio (for instance, 3:1 means 75% train and 25% test). In bold-
face are the lowest errors on each dataset/graph among the on-line algorithms (thus
excluding labprop). Standard deviations (averaged over the binary problems) are
quite small. For instance, in Krogan and Comb, the average standard deviations
are below 1.0%.

Dataset RCV1-100 USPS-10 USPS-100 Krogan Combined
Train:Test 1:1 3:1 1:1 3:1 1:1 3:1 1:1 3:1 1:1 3:1

Algorithm
wta+rst 23.2 21.5 2.1 1.8 5.2 4.5 19.0 18.4 19.7 19.2
wta+df 20.4 18.7 2.0 1.6 4.2 3.5 18.7 18.1 19.7 19.1
wta+mst 11.8 10.2 1.0 0.8 1.0 0.9 18.3 17.6 19.6 19.1
wta+spst 21.4 20.1 2.3 1.9 4.2 3.6 19.5 18.9 19.9 19.5
wta+nwrst 23.8 22.0 2.4 2.0 5.8 5.0 19.4 18.7 19.9 19.5
gpa+rst 32.5 31.2 4.7 4.4 9.6 8.6 21.7 22.0 21.4 21.5
gpa+df 41.2 40.1 24.0 18.7 28.8 23.6 24.1 22.6 23.8 22.7
gpa+mst 20.4 18.2 2.0 1.7 2.0 1.8 20.7 20.9 21.1 20.7
gpa+spst 24.5 24.4 2.9 2.7 5.2 4.5 20.8 20.6 21.1 20.2
gpa+nwrst 32.1 31.4 6.0 5.4 10.1 9.9 21.8 21.5 22.0 22.0
nwwta+nwdfst 21.4 20.3 2.5 2.3 5.2 4.8 19.3 19.0 19.9 19.7
nwwta+mst 12.8 11.9 1.2 1.2 1.2 1.2 18.8 18.4 19.8 19.6
omv 25.4 20.9 1.1 0.7 1.9 1.6 16.3 16.0 17.5 17.3
labprop 10.9 9.5 0.8 0.7 2.0 1.7 15.1 15.3 16.0 16.2

preprocessing and vector normalization; (2) the USPS dataset with features
normalized into [0, 2]; (3) the dataset of [58, 71] abbreviated as KROGAN;
(4) a second dataset [71], abbreviated as COMBINED, resulting from a
combination of three datasets from [36, 51, 91];

On the RCV1 and USPS datasets we generated graphs with as many
nodes as the total number of examples (xi, yi), that is, 10,000 nodes for
RCV1 and 7291+2007 = 9298 for USPS. Following previous experimental
settings [102, 8], we used k-NN based on the standard Euclidean distance
kxi − xjk between node i and node j. The weight wi,j was set as wi,j =

e−kxi−xjk/σ2, if j is one of the k nearest neighbors of i, and 0 otherwise. To
set σ2, we first computed the average square distance between i and its k
nearest neighbors, and then took a further average over i. On USPS we
generated two graphs, USPS-10 and USPS-100, by running k-NN with
k = 10 and k = 100. On RCV1 we generated a single graph, RCV1-100, by
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setting k = 100. We selected the four most frequent categories in RCV1 and
all 10 categories in USPS.

KROGAN and COMBINED are high-throughput protein-protein inter-
action networks of budding yeast taken from [71]. We only consider the
biggest connected components of both datasets, obtaining 2,169 nodes and
6,102 edges for KROGAN, and 2,871 nodes and 6,407 edges for COMBINED.
In these graphs, each node belongs to one or more classes, each class repre-
senting a protein function. We selected the set of functional labels at depth
one in the FunCat classification scheme of the MIPS database [80], resulting
in 17 classes per dataset.

In order to associate binary classification tasks with the five
datasets/graphs (RCV1-100, USPS-10, USPS-100, KROGAN, and COM-
BINED) we binarized the corresponding multiclass problems via a stan-
dard one-vs-rest scheme. We thus obtained: 4 binary classification tasks
for RCV1-100, 10 binary tasks for USPS-10 and USPS-100, 17 binary tasks
for both KROGAN and COMBINED. For a given a binary task and dataset,
we tried different proportions of training and test set sizes. On all datasets
we used both the two-fold 50% train – 50% test and the four-fold 75% train
– 25% test. The error rate results we report in Table 3.1 are obtained by
(either two or four)-fold cross validation over the entire datasets after macro-
averaging over the corresponding binary tasks.

In our experimental setup we tried to control the sources of variance as
follows: (i) We first generated 10 random permutations of the node indices
for each of the five graphs/datasets; (ii) on each permutation we generated
the training/test splits, (iii) we computed mst and spst for each graph
and made (for wta, gpa, omv, and labprop) one run per permutation
on each of the 4+10+10+17+17 = 58 binary problems, averaging results
over permutations and splits; (iv) we generated 10 rst’s and 10 dfst’s for
each graph (possibly disregarding edge weights at either generation time or
prediction time), and operated as in (ii), with a further averaging over the
randomness in the tree generation.

Table 3.1 gives the average fraction of prediction mistakes achieved by
the various algorithms on the five datasets/graphs. Though the experiments
are not conclusive, several interesting observations can be made.

1. wta outperforms gpa on all datasets and with all spanning tree combi-
nations. In particular, though we only reported aggregated results, the
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same relative performance pattern among the two algorithms repeats
systematically over all binary classification problems. In addition, wta
runs significantly faster than gpa, requires less memory storage (linear
in n, rather than quadratic), and is also fairly easy to implement.

2. The best performing combination for both wta and gpa is mst. This
might be explained by the fact that mst tends to select light φ-edges
of the original graph.

3. By comparing nwwta to wta, we see that the edge weight information
in the nearest neighbor rule is beneficial.

4. On RCV1 and USPS the prediction performance of wta+mst is com-
parable to that of labprop, whereas on KROGAN and COMBINED
wta+mst is slightly inferior. However, recall that labprop takes
time O(kn2), where k is the node degree, whereas a single sweep of
wta+mst over the graph just takes7 time O(kn logn).

Moreover, a simple way of making wta outperform labprop on the
two biological datasets is to let wta predict through a committee of
rst’s aggregated via a majority vote. For instance, using wta with a
committee of 11 rst’s generated independently (either considering or
disregarding the edge weights) gets the following figures.

Dataset Krogan Combined
Train:Test 1:1 3:1 1:1 3:1

Algorithm
wta+11rst 14.9 14.4 14.9 14.6
wta+11nwrst 15.0 14.6 14.9 14.7
omv 16.3 16.0 17.5 17.3

labprop 15.1 15.3 16.0 16.2

Similar improvements are likely to occur on the other datasets. On
USPS, wta+mst, labprop, and omv tend to perform comparably.

5. nwrst and dfst are fast approximations to rst. Though the use of
nwrst and dfst does not provide the same theoretical performance
guarantees as rst, in our experiments the three do actually perform
comparably. Hence, in practice, nwrst and dfst might be viewed as
fast and practical ways to generate spanning trees for wta.

7The mst of a graph G = (V, E) can be computed in time O(|E| log |V |).
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Finally, in the next figure we show, for each algorithm, the performance
accuracy and the time used for predicting on the COMBINED dataset. The
times are calculated averaging over 10 executions and include uploading the
graph data into memory, drawing the spanning tree (if required) and running
the algorithm.

Algorithm Mistake [%] Time [s]
labprop 15.96 1.8
omv 17.47 0.2

wta+rst 19.66 0.69
wta+dfst 19.65 0.78
wta+nwrst 19.93 0.64
wta+mst 19.64 1.92
gpa+rst 21.41 18.26
gpa+dfst 23.83 25.42
gpa+nwrst 22.01 18.14
gpa+mst 21.14 18.82

wta+11rst 14.88 4.97
wta+11dfst 15.44 5.81
wta+11nwrst 14.94 4.4
gpa+11rst 14.84 198.32
gpa+11dfst 15.7 273.89
gpa+11nwrst 14.84 194.97

3.8 Conclusions
We introduced and analyzed wta, an on-line prediction algorithm for
weighted graph prediction. The algorithm uses random spanning trees and
has nearly optimal (expected) performance guarantees in terms of both pre-
diction accuracy and running time. Our initial experimental evaluation
shows that wta outperforms other previously proposed on-line predictors.
Moreover, when combined with an aggregation of random spanning trees,
wta also tends to beat standard batch predictors, such as label propagation.
These features make wta (and combinations thereof) suitable to large scale
applications.
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Chapter 4

Active learning on trees and
graphs

4.1 Introduction

In the active learning version of node classification problem, the learner is
allowed to choose the subset of training nodes. Similarly to standard feature-
based learning, one expects active methods to provide a significant boost of
predictive ability compared to a noninformed (e.g., random) draw of the
training set. The following simple example provides some intuition of why
this could happen when the labels are chosen by an adversary, which is the
setting considered in this chapter. Consider a “binary star system” of two
star-shaped graphs whose centers are connected by a bridge, where one star is
a constant fraction bigger than the other. The adversary draws two random
binary labels and assigns the first label to all nodes of the first star graph,
and the second label to all nodes of the second star graph. Assume that the
training set size is two. If we choose the centers of the two stars and predict
with a mincut strategy (see Section 1.3) we are guaranteed to make zero
mistakes on all unseen vertices. On the other hand, if we query two nodes
at random, then with constant probability both of them will belong to the
bigger star, and all the unseen labels of the smaller star will be mistaken.
This simple example shows that the gap between the performance of passive
and active learning on graphs can be made arbitrarily big.

In general, one would like to devise a strategy for placing a certain budget
of queries on the vertices of a given graph. This should be done so as to

73
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minimize the number of mistakes made on the non-queried nodes by some
reasonable classifier like mincut. This question has been investigated from a
theoretical viewpoint by Guillory and Bilmes [41], and by Afshani et al. [1].
Our work is related to an elegant result from [41] which bounds the number of
mistakes made by the mincut classifier on the worst-case assignment of labels
in terms of Φ(y)/Ψ(L). Here Ψ(L) is a function of the query (or training) set
L, which depends on the structural properties of the (unlabeled) graph. For
instance, in the above example of the binary system, the value of Ψ(L) when
the query set L includes just the two centers is 1. This implies that for the
binary system graph, Guillory and Bilmes’ bound on the mincut strategy is
Φ(y) mistakes in the worst case (note that in the above example Φ(y) � 1).
Since Ψ(L) can be efficiently computed on any given graph and query set L,
the learner’s task might be reduced to finding a query set L that maximizes
Ψ(L) given a certain query budget (size of L). Unfortunately, no feasible
general algorithm for solving this maximization problem is known, and so
one must resort to heuristic methods —see [41].

In this chapter we investigate the active learning problem on graphs in
the important special case of trees. We exhibit a simple iterative algorithm
which, combined with a mincut classifier, is optimal (up to constant factors)
on any given labeled tree. This holds even if the algorithm is not given
information on the actual cutsize Φ(y). Our method is extremely efficient,
requiring O(n lnQ) time for placing Q queries in an n-node tree, and space
linear in n. As a byproduct of our analysis, we show that Ψ can be effi-
ciently maximized over trees to within constant factors. Hence the bound
minLΦ(y)/Ψ(L) can be achieved efficiently.

Another interesting question is what kind of trade-off between queries and
mistakes can be achieved if the learner is not constrained by a given query
budget. We show that a simple modification of our selection algorithm is able
to trade-off queries and mistakes in an optimal way up to constant factors.

Finally, we prove a general lower bound for predicting the labels of any
given graph (not necessarily a tree) when the query set is up to a constant
fraction of the number of vertices. Our lower bound establishes that the
number of mistakes must then be at least a constant fraction of the cutsize
weighted by the effective resistances. This lower bound apparently yields a
contradiction to the results of Afshani et al. [1], who constructs the query
set adaptively. This apparent contradiction is also obtained via a simple
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counterexample that we detail in Section 4.5.

4.2 Preliminaries and basic notation

We measure the label regularity of the input tree (T,y) by the cutsize ΦT (y)

induced by y on T . We consider the following active learning protocol: given
a tree T with unknown labeling y, the learner obtains all labels in a query set
L � V, and is then required to predict the labels of the remaining nodes V\L.
Active learning algorithms work in two-phases: a selection phase, where a
query set of given size is constructed, and a prediction phase, where the
algorithm receives the labels of the query set and predicts the labels of the
remaining nodes. Note that the only labels ever observed by the algorithm
are those in the query set. In particular, no labels are revealed during the
prediction phase.

We measure the ability of the algorithm by the number of prediction
mistakes made on V \ L, where it is reasonable to expect this number to
depend on both the uknown cutsize ΦT (y) and the number |L| of requested
labels. A slightly different prediction measure is considered in Section 4.4.3.

Given a tree T and a query set L � V, a node i 2 V \ L is a fork node
generated by L if and only if there exist three distinct nodes i1, i2, i3 2 L
that are connected to i through edge disjoint paths. Let fork(L) be the set
of all fork nodes generated by L. Then L+ is the query set obtained by adding
to L all the generated fork nodes, i.e., L+ , L[fork(L). We say that L � V
is 0-forked iff L+ � L. Note that L+ is 0-forked. That is, fork(L+) � ; for
all L � V .

Given a node subset S � V , we use T \ S to denote the forest obtained
by removing from the tree T all nodes in S and all edges incident to them.
Moreover, given a second tree T 0, we denote by T \T 0 the forest T \V 0, where
V 0 is the set of nodes of T 0. Given a query set L � V , a hinge-tree is any
connected component of T \ L+. We call connection node of a hinge-tree
a node of L adjacent to any node of the hinge tree. We distinguish between
1-hinge and 2-hinge trees. A 1-hinge-tree has one connection node only,
whereas a 2-hinge-tree has two (note that a hinge tree cannot have more
than two connection nodes because L+ is zero-forked, see Figure 4.1).
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2-Hinge-tree

1-Hinge-tree

Forks
2-Hinge-tree

Figure 4.1: A tree T = (V, E) whose nodes are shaded (the query set L) or white
(the set V \ L ). The shaded nodes are also the connection nodes of the depicted
hinge trees (not all hinge trees are contoured). The fork nodes generated by L are
denoted by double circles. The thick black edges connect the nodes in L.

4.3 The active learning algorithm

We now describe the two phases of our active learning algorithm. For the
sake of exposition, we call sel the selection phase and pred the prediction
phase. sel returns a 0-forked query set L+

sel � V of desired size. pred takes
in input the query set L+

sel and the set of labels yi for all i 2 L+
sel. Then

pred returns a prediction for the labels of all remaining nodes V \ L+
sel.

In order to see the way sel operates, we formally introduce the function
Ψ�. This is the reciprocal of the Ψ function introduced in [41] and mentioned
in Section 5.1.

Definition 4.1 Given a tree T = (V, E) and a set of nodes L � V,

Ψ�(L) , max
;6�V 0�V\L

|V 0|���{(i, j) 2 E : i 2 V 0, j 2 V \ V 0}
��� .

In words, Ψ�(L) measures the largest set of nodes not in L that share the least
number of edges with nodes in L. From the adversary’s viewpoint, Ψ�(L) can
be described as the largest return in mistakes per unit of cutsize invested.
We now move on to the description of the algorithms sel and pred.

The selection algoritm sel greedily computes a query set that mini-
mizes Ψ� to within constant factors. To this end, sel exploits Lemma 4.6 (a)
(see Section 4.4.2) stating that, for any fixed query set L, the subset V 0 � V
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Figure 4.2: The sel algorithm at work. The upper pane shows the initial tree
T = T1max (in the box tagged with “1”), and the subsequent subtrees T2max, T3max,
T4max, and T5max. The left pane also shows the nodes selected by sel in chronological
order. The four lower panes show the connected components of T \Lt resulting from
this selection. Observe that at the end of round 3, sel detects the generation of
fork node 3 0. This node gets stored, and is added to Lsel at the end of the selection
process.

maximizing |V 0|���{(i,j)2E:i2V 0,j2V\V 0}

��� is always included in a connected component

of T \ L. Thus sel places its queries in order to end up with a query set L+
sel

such that the largest component of T \ L+
sel is as small as possible.

sel operates as follows. Let Lt � L be the set including the first t nodes
chosen by sel, T tmax be the largest connected component of T \ Lt−1, and
σ(T 0, i) be the size (number of nodes) of the largest component of the forest
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T 0 \ {i}, where T 0 is any tree. At each step t = 1, 2, . . . , sel simply picks
the node it 2 T tmax that minimizes σ(T tmax, i) over i and sets Lt = Lt−1 [ {it}.
During this iterative construction, sel also maintains a set containing all fork
nodes generated in each step by adding nodes it to the sets Lt−1.1 After the
desired number of queries is reached (also counting the queries that would
be caused by the stored fork nodes), sel has terminated the construction of
the query set Lsel. The final query set L+

sel, obtained by adding all stored
fork nodes to Lsel, is then returned.

The Prediction Algorithm pred receives in input the labeled nodes of
the 0-forked query set L+

sel and computes a mincut assignment. Since each
component of T \L+

sel is either a 1-hinge-tree or a 2-hinge-tree, pred is simple
to describe and is also very efficient. The algorithm predicts all the nodes of
hinge-tree T using the same label byT . This label is chosen according to the
following two cases:

1. If T is a 1-hinge-tree, then byT is set to the label of its unique connection
node;

2. If T is a 2-hinge-tree and the labels of its two connection nodes are
equal, then byT is set to the label of its connection nodes, otherwisebyT is set as the label of the closer connection node (ties are broken
arbitrarily).

In Section 4.6 we show that sel requires overall O(|V | logQ) time and O(|V |)

memory gg for selecting Q query nodes. Also, we will see that the total
running time taken by pred for predicting all nodes in V \ L is linear in |V |.

4.4 Analysis

For a given tree T , we denote bymA(L,y) the number of prediction mistakes
that algorithm A makes on the labeled tree (T,y) when given the query set
L. Introduce the function

mA(L, K) = max
y :ΦT (y)�K

mA(L,y)

1In Section 4.6 we will see that during each step Lt−1 → Lt at most a single new fork
node may be generated.
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denoting the number of prediction mistakes made by A with query set L on
all labeled trees with cutsize bounded by K. We will also find it useful to
deal with the “lower bound” function lbL(K). This is the maximum expected
number of mistakes that any prediction algorithm A can be forced to make
on the labeled tree (T,y) when the query set is L and the cutsize is not larger
than K. 2

We show that the number of mistakes made by pred on any labeled tree
when using the query set L+

sel satisfies

mpred(L
+
sel, K) � 10 lbL(K)

for all query sets L � V of size up to 1
8
|L+

sel|. Though neither sel nor pred
do know the actual cutsize of the labeled tree (T,y), the combined use of
these procedures is competitive against any algorithm that knows the cutsize
budget K beforehand.

While this result implies the optimality (up to constant factors) of our
algorithm, it does not relate the mistake bound to the cutsize, which is a
clearly interpretable measure of the label regularity. In order to address this
issue, we show that our algorithm also satisfies the bound

mpred(L
+
sel,y) � 4Ψ�(L)ΦT (y)

for all query sets L � V of size up to 1
8
|L+

sel|. The proof of these results needs
a number of preliminary lemmas.

Lemma 4.1 For any tree T = (V, E) it holds that min
v2V

σ(T, v) � 1
2
|V |.

proof. Let i 2 argminv2Vσ(T, v). For the sake of contradiction, assume
there exists a component Ti = (Vi, Ei) of T \ {i} such that |Vi| > |V |/2. Let s
be the sum of the sizes all other components. Since |Vi|+s = |V |−1, we know
that s � |V |/2− 1. Now let j be the node adjacent to i which belongs to Vi
and Tj = (Vj, Ej) be the largest component of T \{j}. There are only two cases
to consider: either Vj � Vi or Vj \Vi � ;. In the first case, |Vj| < |Vi|. In the
second case, Vj � {i} [

�
T \ Vi

�
, which implies |Vj| � 1+ s � |V |/2 < |Vi|. In

both cases, i 62 argminv2Vσ(T, v), which provides the desired contradiction.

Lemma 4.2 For all subsets L � V of the nodes of a tree T = (V, E) we
have

���L+
��� � 2|L|.

2Observe that function lb is used in also Section 2.2, but with a different meaning.
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proof. Pick an arbitrary node of T and perform a depth-first visit of
all nodes in T . This visit induces an ordering T1, T2, . . . of the connected
components in T \ L based on the order of the nodes visited first in each
component. Now let T 0

1 , T 0
2 , . . . be such that each T 0

i is a component of Ti
extended to include all nodes of L adjacent to nodes in Ti. Then the ordering
implies that, for i � 2, T 0

i shares exactly one node (which must be a leaf)
with all previously visited trees. Since in any tree the number of nodes of
degree larger than two must be strictly smaller than the number of leaves,
we have |fork(T 0

i )| < |Λi| where, with slight abuse of notation, we denote by
fork(T 0

i ) the set of all fork nodes in subtree T 0
i . Also, we let Λi be the set of

leaves of T 0
i . This implies that, for i = 1, 2, . . . , each fork node in fork(T 0

i )

can be injectively associated with one of the |Λi| − 1 leaves of T 0
i that are

not shared with any of the previously visited trees. Since |fork(L)| is equal
to the sum of |fork(Ti)| over all indices i, this implies that |fork(L)| � |L|.

Lemma 4.3 Let Lt−1 � Lsel be the set of the first t − 1 nodes chosen by
sel. Given any tree T = (V, E), the largest subtree of T \ Lt−1 contains
no more than 2

t
|V | nodes.

proof. Recall that is denotes the s-th node selected by sel during the
incremental construction of the query set Lsel, and that T smax is the largest
component of T \ Ls−1. The first t steps of the recursive splitting procedure
performed by sel can be associated with a splitting tree T 0 defined in the
following way. The internal nodes of T 0 are T smax, for s � 1. The children of
T smax are the connected components of T smax \ {is}, i.e., the subtrees of T smax

created by the selection of is. Hence, each leaf of T 0 is bijectively associated
with a tree in T \ Lt.

Let T 0nol be the tree obtained from T 0 by deleting all leaves. Each node
of T 0nol is one of the t subtrees split by sel during the construction of Lt.
As T tmax is split by it, it is a leaf in T 0nol. We now add a second child to
each internal node s of T 0nol having a single child. This second child of s is
obtained by merging all the subtrees belonging to leaves of T 0 that are also
children of s. Let T 00 be the resulting tree.

We now compare the cardinality of T tmax to that of the subtrees associated
with the leaves of T 00. LetΛ be the set of all leaves of T 00 andΛadd = T 00\T 0nol �
Λ be the set of all leaves added to T 0nol to obtain T 00. First of all, note that



4.4. ANALYSIS 81

|T tmax| is not larger than the number of nodes in any leaf of T 0nol. This is
because the selection rule of sel ensures that T tmax cannot be larger than
any subtree associated with a leaf in T 0nol, since it contains no node selected
before time t. In what follows, we write |s| to denote the size of the forest or
subtree associated with a node s of T 00. We now prove the following claim:

Claim. For all ` 2 Λ, |T tmax| � |`|, and for all ` 2 Λadd, |T tmax| − 1 � |`|.

Proof of Claim. The first part just follows from the observation that any
` 2 Λ was split by sel before time t. In order to prove the second part, pick
a leaf ` 2 Λadd. Let ` 0 be its unique sibling in T 00 and let p be the parent of
` and ` 0, also in T 00. Lemma 4.1 applied to the subtree p implies |` 0| � 1

2
|p|.

Moreover, since |`| + |` 0| = |p| − 1, we obtain |`| + 1 � 1
2
|p| � |` 0| � |T tmax|, the

last inequality using the first part of the claim. This implies |T tmax| − 1 � |`|,
and the claim is proven.

Let now N(Λ) be the number of nodes in subtrees and forests associated
with the leaves of T 00. With each internal node of T 00 we can associate a node
of Lsel which does not belong to any leaf in Λ. Moreover, the number |T 00\Λ|

of internal nodes in T 00 is bigger than the number |Λadd| of internal nodes of
T 0nol to which a child has been added. Since these subtrees and forests are all
distinct, we obtain N(Λ) + |T 00 \Λ| < N(Λ) + |Λadd| � |V |. Hence, using the
above claim we can writeN(Λ) �

�
|Λ|−|Λadd|

�
|T tmax|+|Λadd|

�
|T tmax|−1

�
, which

implies |T tmax| �
�
N(Λ)+ |Λadd|

�
/|Λ| � |V |/|Λ|. Since each internal node of T 00

has at least two children, we have that |Λ| � |T 00|/2 � |T 0nol|/2 = t/2. Hence,
we can conclude that |T tmax| � 2|V |/t.

4.4.1 Lower bounds

We now state and prove a lower bound on the number of mistakes that
any prediction algorithm (even knowing the cutsize budget K) makes on any
given tree, when the query set L is 0-forked. The bound depends on the
following quantity: Given a tree T(V, E), a node subset L � V and an integer
K, the component function Υ(L, K) is the sum of the sizes of the K largest
components of T \ L, or |V \ L| if T \ L has less than K components.

Theorem 4.1 For all trees T = (V, E), for all 0-forked subsets L+ � V,
and for all cutsize budgets K = 0, 1, . . . , |V | − 1, we have that lbL+(K) �
1
2
Υ(L+, K).
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proof. We describe an adversarial strategy causing any algorithm to make
at least Υ(L+, K)/2 mistakes even when the cutsize budget K is known be-
forehand. Since L+ is 0-forked, each component of T \L+ is a hinge-tree. Let
Fmax be the set of the K largest hinge-trees of T \ L+, and E(T ) be the set
of all edges in E incident to at least one node of a hinge-tree T . The adver-
sary creates at most one φ-edge3 in each edge set E(T1) for all 1-hinge-trees
T1 2 Fmax, exactly one φ-edge in each edge set E(T2) for all 2-hinge-trees
T2 2 Fmax, and no φ-edges in the edge set E(T ) of any remaining hinge-tree
T 62 Fmax. This is done as follows. By performing a depth-first visit of T , the
adversary can always assign disagreeing labels to the two connection nodes
of each 2-hinge-tree in Fmax, and agreeing labels to the two connection nodes
of each 2-hinge-tree not in Fmax. Then, for each hinge-tree T 2 Fmax, the
adversary assigns a unique random label to all nodes of T , forcing |T |/2

mistakes in expectation. The labels of the remaining hinge-trees not in Fmax

are chosen in agreement with their connection nodes.

Remark 1 Note that Theorem 4.1 holds for all query sets, not only
those that are 0-forked, since any adversarial strategy for a query set
L+ can force at least the same mistakes on the subset L � L+. Note
also that it is not difficult to modify the adversarial strategy described
in the proof of Theorem 4.1 in order to deal with algorithms that are
allowed to adaptively choose the query nodes in L depending on the
labels of the previously selected nodes. The adversary simply assigns
the same label to each node in the query set and then forces, with the
same method described in the proof, 1

2
Υ
�
L+, K

2

�
mistakes in expectation

on the K
2
largest hinge-trees. Thus there are at most two φ-edges in

each edge set E(T ) for all hinge-trees T , yielding at most K φ-edges
in total. The resulting (slightly weaker) bound is lbL+(K) � 1

2
Υ
�
L+, K

2

�
.

Theorem 4.2 and Corollary 4.1 can also be easily rewritten in order to
extend the results in this direction.

4.4.2 Upper bounds

We now bound the total number of mistakes that pred makes on any labeled
tree when the queries are decided by sel. We use Lemma 4.1 and 4.2, to-

3A φ-edge (i, j) is one where yi 6= yj.
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gether with the two lemmas below, to prove that mpred(L
+
sel, K) � 10 lbL(K)

for all cutsize budgets K and for all node subset L � V such that |L| � 1
8
|L+

sel|.

Lemma 4.4 For all labeled trees (T,y) and for all 0-forked query sets
L+ � V, the number of mistakes made by pred satisfies mpred(L

+,y) �
Υ
�
L+, ΦT (y)

�
.

proof. As in the proof of Theorem 4.1, we first observe that each compo-
nent of T \ L+ is a hinge-tree. Let E(T ) be the set of all edges in E incident
to nodes of a hinge-tree T , and Fφ be the set of hinge-trees such that, for
all T 2 Fφ, at least one edge of E(T ) is a φ-edge. Since E(T ) \ E(T 0) � ;
for all T , T 0 2 T \ L+, we have that |Fφ| � ΦT (y). Moreover, since for any
T 62 Fφ there are no φ-edges in E(T ), the nodes of T must be labeled as its
connections nodes. This, together with the prediction rule of pred, implies
that pred makes no mistakes over any of the hinge-trees T 62 Fφ. Hence, the
number of mistakes made by pred is bounded by the sum of the sizes of all
hinge-trees T 2 Fφ, which (by definition of Υ) is bounded by Υ

�
L+, ΦT (y)

�
.

The next lemma, whose proof is a bit involved, provides the relevant
properties of the component function Υ(�, �). Figure 4.3 helps visualizing the
main ingredients of the proof.

Lemma 4.5 Given a tree T = (V, E), for all node subsets L � V such that
|L| � 1

2
|Lsel| and for all integers k, we have: (a) Υ(Lsel, k) � 5Υ(L, k);

(b) Υ(Lsel, 1) � Υ(L, 1).

proof. We prove part (a) by constructing, via sel, three bijective mappings
µ1, µ2, µ3 : Psel → PL, where Psel is a suitable partition of T \ Lsel, PL is a
subset of 2V such that any S 2 PL is all contained in a single connected
component of T \ L, and the union of the domains of the three mappings
covers the whole set T \ Lsel. The mappings µ1, µ2 and µ3 are shown to
satisfy, for all forests4 F 2 Psel,

|F| � |µ1(F)|, |F| � 2|µ2(F)|, |F| � 2|µ3(F)| .
4In this proof, |µ(A)| denotes the number of nodes in the set (of nodes) µ(A). Also, with

a slight abuse of notation, for all forests F 2 Psel, we denote by |F| the sum of the number
of nodes in all trees of F. Finally, whenever F 2 Psel contains a single tree, we refer to F as
it were a tree, rather than a (singleton) forest containing only one tree.
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Since each S 2 PL is all contained in a connected component of T \L, this we
will enable us to conclude that, for each tree T 0 2 T \L, the forest of all trees
T \ Lsel mapped (via any of these mappings) to any node subset of T 0 has at
most five times the number of nodes of T 0. This would prove the statement
in (a).

The construction of these mappings requires some auxiliary definitions.
We call ζ-component each connected component of T \ Lsel containing at
least one node of L. Let it be the t-th node selected by sel during the
incremental construction of the query set Lsel. We distinguish between four
kinds of nodes chosen by sel—see Figure 4.3 for an example.
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Figure 4.3: The upper pane illustrates the different kinds of nodes chosen by sel.
Numbers in the square tags indicate the first six subtrees T tmax, and their associated
nodes it, selected by sel. Node i1 is a [� 1;� 1]-node, i2 is an initial [0;� 1]-node,
i3 is a (noninitial) [0;� 1]-node, i4 is an initial collision node, i5 is a (noninitial)
collision node, and i6 is a [0; 0]-node. As in Figure 4.2, we denote by 3 0 the fork
node generated by the inclusion of i3 into Lsel. Note that node i6 may be chosen
arbitrarily among the four nodes in T4max \ i4. The two black nodes are the set of
nodes we are competing against, i.e., the nodes in the query set L. Forest T \ L is
made up of one large subtree and two small subtrees. Time t = 2: Trees T2max and
Ti2 are shown. As explained in the proof, |Ti2 | � |T2max \ Ti2 |. The circled black
node is captured by i2. The nodes of tree T2max \ Ti2 are shaded, and can be used
for mapping any ζ-component through µ2. In the lower panes we illustrate some
steps of the proof of Lemma 4.5, with reference to the upper pane. Time t = 3:
Trees T3max and Ti3 are shown. Again, one can easily verify that |Ti3 | � |T3max \ Ti3 |.
As before, the nodes of T3max \ Ti3 are shaded, and can be used for mapping any
ζ-component via µ2. The reader can see that, according to the injectivity of µ2,
these grey nodes are well separated from the ones in T2max \ Ti2 . Time t = 4: T4max
and the initial collision node i4 are depicted. The latter is enclosed in a circled
black node since it captures itself. Time t = 5, 6: We depicted trees T5max and T6max,
together with nodes i5 and i6. Node i5 is a collision node, which is not initial since
it was already captured by the [0;� 1]-node i2. Node i6 is a [0; 0] node, so that the
whole tree T6max is completely included in a component (the largest, in this case) of
T \ L. Tree T6max can be used for mapping via µ3 any ζ-component. The resulting
forest T \L6 includes several single-node trees and one two-node tree. If i6 is the last
node selected by Lsel, then each component of T \ L6 can be exploited by mapping
µ1, since in this specific case none of these components contains nodes of L, i.e.,
there are no ζ-components left.

Node it is:

1. A collision node if it belongs to Lsel \ L;
2. a [0; 0]-node if, at time t, the tree T tmax does not contain any node of
L;

3. a [0;� 1]-node if, at time t, the tree T tmax contains k � 1 nodes
j1, . . . , jk 2 L all belonging to the same connected component of
T tmax \ {it};

4. a [� 1;� 1]-node if it 62 L and, at time t, the tree T tmax contains
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k � 2 nodes j1, . . . , jk 2 L, which do not belong to the same connected
component of T tmax \ {it}.

We now turn to building the three mappings.
µ1 simply maps each tree T 0 2 T \ Lsel that is not a ζ-component to the

node set of T 0 itself. This immediately implies |F| � |µ1(F)| for all forests
F (which are actually single trees) in the domain of µ1. Mappings µ2 and
µ3 deal with the ζ-components of T \ Lsel. Let Z be the set of all such
ζ-components, and denote by V0;0, V0;1, and V1;1 the set of all [0; 0]-nodes,
[0;� 1]-nodes, and [� 1;� 1]-nodes, respectively. Observe that |V1;1| < |L|.
Combined with the assumption |Lsel| � 2|L|, this implies that |V0;0|+|V0;1| plus
the total number of collision nodes must be larger than |L|; as a consequence,
|V0;0| + |V0;1| > |Z|. Each node it 2 V0;1 chosen by sel splits the tree T tmax

into one component Tit containing at least one node of L and one or more
components all contained in a single tree T 0it of T \ L. Now mapping µ2 can
be constructed incrementally in the following way. For each [0;� 1]-node
selected by sel at time t, µ2 sequentially maps any ζ-component generated
to the set of nodes in T tmax \Tit , the latter being just a subset of a component
of T \ L. A future time step t 0 > t might feature the selection of a new
[0;� 1]-node within Tit, but mapping µ2 would cover a different subset of
such component of T \ L. Now, applying Lemma 4.1 to tree T tmax, we can
see that |T tmax \ Tit | � |T tmax|/2. Since the selection rule of sel guarantees
that the number of nodes in T tmax is larger than the number of nodes of any
ζ-component, we have |F| � 2|µ2(F)|, for any ζ-component F considered in
the construction of µ2.

Mapping µ3 maps all the remaining ζ-components that are not mapped
through µ2. Let ∼ be an equivalence relation over V0;0 defined as follows:
i ∼ j iff i is connected to j by a path containing only [0; 0]-nodes and nodes in
V \(Lsel[L). Let it1 , it2 , . . . , itk be the sequence of nodes of any given equiva-
lence class [C]∼, sorted according to sel’s chronological selection. Lemma 4.3
applied to tree T t1max shows that |T tkmax| � 2|T t1max|/k. Moreover, the selection
rule of sel guarantees that the number of nodes of T tkmax cannot be smaller
than the number of nodes of any ζ-component. Hence, for each equiva-
lence class [C]∼ containing k nodes of type [0; 0], we map through µ3 a set
Fζ of k arbitrarily chosen ζ-components to T t1max. Since the size of each ζ-
component is � |T tkmax|, we can write |Fζ| � k|T tkmax| � 2|T t1max|, which implies
|Fζ| � 2|µ3(Fζ)| for all Fζ in the domain of µ3. Finally, observe that the
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number of ζ-components that are not mapped through µ2 cannot be larger
than |V0;0|, thus the union of mappings µ2 and µ3 do actually map all ζ-
components. This, in turn, implies that the union of the domains of the
three mappings covers the whole set T \ Lsel, thereby concluding the proof
of part (a).

The proof of (b) is built on the definition of collision nodes, [0; 0]-nodes,
[0;� 1]-nodes and [� 1;� 1]-nodes given in part (a). Let Lt � Lsel be the
set of the first t nodes chosed by sel. Here, we make a further distinction
within the collision and [0;� 1]-nodes. We say that during the selection
of node it 2 V0;1, the nodes in L \ T tmax are captured by it. This notion of
capture extends to collision nodes by saying that a collision node it 2 L\Lsel

just captures itself. We say that it is an initial [0;� 1]-node (resp., initial
collision node) if it is a [0;� 1]-node (resp., collision node) such that the
whole set of nodes in L captured by it contains no nodes captured so far.
See Figure 4.3 for reference. The simple observation leading to the proof of
part (b) is the following. If it is a [0; 0]-node, then T tmax cannot be larger
than the component of T \ L that contains T tmax, which in turn cannot be
larger than Υ(L, 1). This would already imply Υ(Lt−1, 1) � Υ(L, 1). Let now
it be an initial [0;� 1]-node and Tit be the unique component of T tmax \ {it}

containing one or more nodes of L. Applying Lemma 4.1 to tree T tmax we
can see that |Tit | cannot be larger than |T tmax \ Tit |, which in turn cannot be
larger than Υ(L, 1). If at time t 0 > t the procedure sel selects it 0 2 Tit
then |T t

0

max| � |Tit | � Υ(L, 1). Hence, the maximum integer q such that
Υ(Lq, 1) > Υ(L, 1) is bounded by the number of [� 1;� 1]-nodes plus the
number of initial [0;� 1]-nodes plus the number of initial collision nodes. We
now bound this sum as follows. The number of [� 1;� 1]-nodes is clearly
bounded by |L| − 1. Also, any initial [0;� 1]-node or initial collision node
selected by sel captures at least a new node in L, thereby implying that the
total number of initial [0;� 1]-node or initial collision node must be � |L|.
After q = 2|L|− 1 rounds, we are sure that the size of the largest tree of Tqmax

is not larger than the size of the largest component of T \ L, i.e., Υ(L, 1) .
We now put the above lemmas together to prove our main result con-

cerning the number of mistakes made by pred on the query set chosen by
sel.

Theorem 4.2 For all trees T and all cutsize budgets K, the number of
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mistakes made by pred on the query set L+
sel satisfies

mpred(L
+
sel, K) � min

L�V : |L|�
1
8

|L+
sel|

10 lbL
�
K
�
.

proof. Pick any L � V such that |L| � 1
8
|L+

sel|. Then

mpred(L
+
sel, K)

(Lem. 4.4)
� Υ(L+

sel, K)
(A)
� Υ(Lsel, K)

(Lem. 4.5 (a))
�

5Υ(L+, K)
(Thm. 4.1)

� 10 lbL+(K)
(B)
� 10 lbL(K) .

Inequality (A) holds because Lsel � L+
sel, and thus T \ L+

sel has connected
components of smaller size than Lsel. In order to apply Lemma 4.5 (a),
we need the condition |L+| � 1

2
|Lsel|. This condition is seen to hold after

combining Lemma 4.2 with our assumptions: |L+| � 2|L| � 1
4
|L+

sel| � 1
2
|Lsel|.

Finally, inequality (B) holds because any adversarial strategy using query
set L can also be used with the larger query set L+ � L.

Note also that Theorem 4.1 and Lemma 4.4 imply the following statement
about the optimality of pred over 0-forked query sets.

Corollary 4.1 For all trees T , for all cutsize budgets K, and for all 0-
forked query sets L+ � V, the number of mistakes made by pred satisfies
mpred(L

+, K) � 2lbL+

�
K
�
.

In the rest of this section we derive a more intepretable bound on
mpred(L

+,y) based on the function Ψ� introduced in [41]. To this end, we
prove that Lsel minimizes Ψ� up to constant factors, and thus is an optimal
query set according to the analysis of [41].

For any subset V 0 � V, let Γ(V 0, V \V 0) be the number of edges between
nodes of V 0 and nodes of V \ V 0. Using this notation, we can write

Ψ�(L) = max
;6�V 0�V\L

|V 0|

Γ(V 0, V \ V 0)
.

Lemma 4.6 For any tree T = (V, E) and any L � V the following holds.

(a) A maximizer of |V 0|
Γ(V 0,V\V 0)

exists which is included in the node set
of a single component of T \ L;
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(b) Ψ�(L) � Υ(L, 1).

proof. Let V 0
max be any maximizer of |V 0|

Γ(V 0,V\V 0)
. For the sake of con-

tradiction, assume that the nodes of V 0
max belong to k � 2 components

T1, T2, . . . , Tk 2 T \ L. Let V 0
i � V 0

max be the subset of nodes included
in the node set of Ti, for i = 1, . . . , k. Then |V 0| =

∑
i�k |V 0

i | and
Γ(V 0, V \V 0) =

∑
i�k Γ(V

0
i , V \V 0

i ). Now let i� = argmaxi�k|V 0
i |/Γ(V

0
i , V \V 0

i ).
Since

�∑
i ai

�.�∑
i bi

�
� maxi ai/bi for all ai, bi � 0, we immediately ob-

tain Ψ(V 0
i�) � Ψ(V 0

max), contradicting our assumption. This proves (a). Part
(b) is an immediate consequence of (a).

Lemma 4.7 For any tree T = (V, E) and any 0-forked subset L+ � V we
have Υ(L+, 1) � 2Ψ�(L+).

proof. Let Tmax be the largest component of T \ L+ and Vmax be its node
set. Since L+ is a 0-forked query set, Tmax must be either a 1-hinge-tree or a
2-hinge-tree. Since the only edges that connect a hinge-tree to external nodes
are the edges leading to connection nodes, we find that Γ(Vmax, V \Vmax) � 2.
We can now write

Ψ�(L+) = max
;6�V 0�V\L+

|V 0|

Γ(V 0, V \ V 0)
� |Vmax|

Γ(Vmax, V \ Vmax)
� |Vmax|

2
=
Υ(L+, 1)

2

thereby concluding the proof.

Lemma 4.8 For any tree T = (V, E) and any subset L � V we have
Ψ�(L+) � Ψ�(L).

proof. Let V 0
max be any set maximizing Ψ�(L+). Since V 0

max 2 V \ L+, V 0
max

cannot contain any node of L � L+. Hence

Ψ�(L) = max
;6�V 0�V\L

|V 0|

Γ(V 0, V \ V 0)
� |V 0

max|

Γ(V 0
max, V \ V 0

max)
= Ψ�(L+)

which concludes the proof.
We now put together the previous lemmas to show that the query set

Lsel minimizes Ψ� up to constant factors.

Theorem 4.3 For any tree T = (V, E) we have

Ψ�(Lsel) � min
L�V : |L|�

1
4

|Lsel|

2Ψ�(L)
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proof. Let L be a query set such that |L| � |Lsel|/4. Then we have the
following chain of inequalities:

Ψ�(Lsel)
(Lemma 4.6 (b))

� Υ(Lsel, 1)
(Lemma 4.5 (b))

�

Υ(L+, 1)
(Lemma 4.7)

� 2Ψ�(L+)
(Lemma 4.8)

� 2Ψ�(L) .

In order to apply Lemma 4.5 (b), we need the condition |L+| � 1
2
|Lsel|. This

condition holds because, by Lemma 4.2, |L+| � 2|L| � 1
2
|Lsel|.

Finally, as promised, the following corollary contains an interpretable
mistake bound for pred run with a query set returned by sel.

Corollary 4.2 For any labeled tree (T,y), the number of mistakes made
by pred when run with query set L+

sel satisfies

mpred(L
+
sel,y) � 4 min

L�V : |L|�
1
8

|L+
sel|

Ψ�(L)ΦT (y) .

proof. Observe that pred assigns labels to nodes in V \ L+
sel so as to

minimize the resulting cutsize given the labels in the query set L+
sel. We can

then invoke [41, Lemma 1], which bounds the number of mistakes made by
the mincut strategy in terms of the functions Ψ� and the cutsize. This yields

mpred(L
+
sel,y)

[41, Lemma 1]
� 2Ψ�(L+

sel)ΦT (y)
(A)
�

2Ψ�(Lsel)ΦT (y)
(Theorem 4.3)

� 4Ψ�(L)ΦT (y) .

Inequality (A) holds because Lsel � L+
sel, and thus T \ L+

sel has connected
components of smaller size than Lsel. In order to apply Theorem 4.3, we
need the conditon |L| � 1

4
|Lsel|, which follows from a simple combination of

Lemma 4.2 and our assumptions: |L| � 1
8
|L+

sel| � 1
4
|Lsel|.

Remark 2 A mincut algorithm exists which efficiently predicts even
when the query set L is not 0-forked (thereby gaining a factor of 2
in the cardinality of the competing query sets L – see Theorem 4.2 and
Corollary 4.2). This algorithm is a "batch" variant of the treeOpt
algorithm analyzed in Chapter 2. The algorithm can be implemented in
such a way that the total time for predicting |V | − |L| labels is O(|V |).
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4.4.3 Automatic calibration of the number of queries

A key aspect to the query selection task is deciding when to stop asking
queries. Since the more queries are asked the less mistakes are made after-
wards, a reasonable way to deal with this trade-off is to minimize the number
of queries issued during the selection phase plus the number of mistakes made
during the prediction phase. For a given pair A = hS, Pi of prediction and
selection algorithms, we denote by [q+m]A the sum of queries made by S and
prediction mistakes made by P. Similarly to mA introduced in Section 4.4,
[q+m]A has to scale with the cutsize ΦT (y) of the labeled tree (T,y) under
consideration.

As a simple example of computing [q +m]A, consider a line graph T =

(V, E). Since each query set on T is 0-forked, Theorem 4.1 and Corollary 4.1
ensure that an optimal strategy for selecting the queries in T is choosing a
sequence of nodes such that the distance between any pair of neighbor nodes
in L is equal. The total number of mistakes that can be forced on V \L is, up
to a constant factor,

�
|V |/|L|

�
ΦT (y). Hence, the optimal value of [q +m]A

is about

|L| +
|V |

|L|
ΦT (y) . (4.1)

Minimizing the above expression over |L| clearly requires knowledge ofΦT (y),
which is typically unavailable. In this section we investigate a method for
choosing the number of queries when the labeling is known to be sufficiently
regular, that is when a bound K is known on the cutsize ΦT (y) induced by
the adversarial labeling.5

We now show that when a bound K on the cutsize is known, a simple
modification of sel(we call it sel?) exists which optimizes the [q + m]A
criterion. This means that the combination of sel? and pred can trade-off
optimally (up to constant factors) queries against mistakes.

Given a selection algorithm S and a prediction algorithm P, define

5In [1] a labeling y of a graph G is said to be α-balanced if, after the elimination of all
φ-edges, each connected component of G is not smaller than α|V | for some known constant
α 2 (0, 1). In the case of labeled trees, the α-balancing condition is stronger than our
regularity assumption. This is because any α-balanced labeling y implies ΦT (y) � 1/α−1.
In fact, getting back to the line graph example, we immediately see that, if y is α-balanced,
then the optimal number of queries |L| is order of

p
|V |(1/α− 1), which is also infA[q+m]A.
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[q+m]hS,Pi by
[q+m]hS,Pi = min

Q�1

�
Q+mP(LS(Q), K)

�
where LS(Q) is the query set output by S given query budget Q, and
mP(LS(Q), K) is the maximum number of mistakes made by P with query
set LS(Q) on any labeling y with ΦT (y) � K —see definition in Section 4.4.
Define also [q+m]opt = infS,P[q+m]hS,Pi, where opt = hS�, P�i is an optimal
pair of selection and prediction algorithms. If sel knows the size of the query
set L� selected by S�, so that sel can choose a query budget Q = 8|L�|, then
a direct application of Theorem 4.2 guarantees that |L+

sel| +mpred(L
+
sel, K) �

10 [q +m]opt. We now show that sel?, the announced modification of sel,
can efficiently search for a query set size Q such that Q+mpred(L

+
sel(Q), K) =

O
�
[q+m]opt

�
when only K, rather than |L�|, is known. In fact, Theorem 4.1

and Corollary 4.1 ensure that mpred(L
+
sel, K) = Θ

�
Υ(L+

sel, K)
�
. When K is

given as side information, sel? can operate as follows. For each t � |V |,
the algorithm builds the query set L+

t and computes Υ(L+
t , K). Then it

finds the smallest value t� minimizing t + Υ(L+
t , K) over all t � |V |, and

selects Lsel? � Lt�. We stress that the above is only possible because the
algorithm can estimate within constant factors its own future mistake bound
(Theorem 4.1 and Corollary 4.1), and because the combination of sel and
pred is competitive against all query sets whose size is a constant fraction
of |L+

sel| —see Theorem 4.2. Putting together, we have shown the following
result.

Theorem 4.4 For all trees (T,y), for all cutsize budgets K, and for all
labelings y such that ΦT (y) � K, the combination of sel? and pred
achieves |Lsel?| +mpred(L

+
sel?, K) = O

�
[q+m]opt

�
when K is given to sel?

as input.

Just to give a few simple examples of how sel? works, consider a star graph.
It is not difficult to see that in this case t� = 1 independent of K, i.e., sel?
always selects the center of the star, which is intuitively the optimal choice.
If T is the “binary system” mentioned in the introduction of this chapter, then
t� = 2 and sel? always selects the centers of the two stars, again independent
of K. At the other extreme, if T is a line graph, then sel? picks the query
nodes in such a way that the distance between two consecutive nodes of L in
T is (up to a constant factor) equal to

q
|V |/K. Hence |L| = Θ(

q
|V |K), which

is the minimum of (4.1) over |L| when ΦT (y) � K.
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4.5 On the prediction of general graphs

In this section we provide a general lower bound for prediction on arbitrary
labeled graphs (G,y). We then contrast this lower bound to some results
contained in Afshani et al. [1].

Let ΦRG(y) be the sum of the effective resistances (see Se) on the φ-edges
of G = (V, E). The theorem below shows that any prediction algorithm using
any query set L such that |L| � 1

4
|V | makes at least order of ΦRG(y) mistakes.

This lower bound holds even if the algorithm is allowed to use a randomized
adaptive strategy for choosing the query set L, that is, a randomized strategy
where the next node of the query set is chosen after receiving the labels of
all previously chosen nodes.

Theorem 4.5 Given a labeled graph (G,y), for all K � |V |, there exists
a randomized labeling strategy such that for all prediction algorithms A
choosing a query set of size |L| � 1

4
|V | via a possibly randomized adaptive

strategy, the expected number of mistakes made by A on the remaining
nodes V \ L is at least K/8, while ΦRG(y) < K.

proof. Define the cost c(i) of any node i as the sum of the effective
resistances between i and all adjacent nodes:

c(i) =
∑

j: (i,j)2E

ri,j .

Let V 0 be the subset of V formed by the |V |/2 nodes having the smallest
cost.

Since, for all (i, j) 2 E, ri,j is equal to the probability of including the edge
in a uniformly generated random spanning tree, we know that

∑
(i,j)2E ri,j =

|V | − 1. Hence we have∑
i2V

c(i) =
∑
i2V

∑
j: (i,j)2E

ri,j = 2|V | − 2 ,

because for each edge (i, j) 2 E the resistance ri,j contributes twice in the
sum. This immediately implies that c(i) < 4 for all i 2 V 0. As a matter of
fact, if there were a vertex i 2 V 0 such that c(i) � 4, then c(j) � 4 for all
j 2 V \ V 0 by definition of V 0, which would in turn imply

∑
i2V c(i) � 2|V |.
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Now let y be the labeling in which K/4 nodes chosen uniformly at random
from the node subset V 0 are labeled with +1, and all the remaining nodes
of V are labeled with −1. Since each edge connecting nodes with different
labels must be incident to a node labeled with +1, we have

ΦRG(y) �
∑

i: yi=+1

c(i) < 4 � |{i 2 V : yi = +1}| < K .

Since |L| � |V |/4 = |V 0|/2 and |{i 2 V : yi = +1}| = K/4 � |V |/4 = |V 0|/2,
V 0 \ L contains in expectation at least K/8 nodes with label +1 and at least
K/8 nodes with label −1. Hence, every algorithm makes at least K/8mistakes
on the node subset V 0, no matter how it selects the query set L. 2

The above lower bound appears to contradict an argument by Afshani et
al. [1, Section 5]. This argument establishes that for any ε > 0 there exists a
randomized algorithm using at most K ln(3/ε)+K ln(|V |/K)+O(K) queries on
any given graph G = (V, E) with cutsize K, and making at most ε|V | mistakes
on the remaining vertices. This contradiction is easily obtained through the
following simple counterexample: assume G is a line graph where all node
labels are +1 but for K = o

�
|V |/ ln |V |

�
randomly chosen nodes, which are

also given random labels. For all ε = o
�
K
|V |

�
, the above argument implies that

order of K ln |V | = o(|V |) queries are sufficient to make at most ε|V | = o(K)

mistakes on the remaining nodes, among which Ω(K) have random labels
—which is clearly impossible.

4.6 Efficient Implementation

In this section we describe an efficient implementation of sel and pred. We
will show that the total time needed for selecting Q queries is O(|V | logQ),
the total time for predicting |V | − Q nodes is O(|V |), and that the overall
memory space is again O(|V |).

In order to locate the largest subtree of T \Lt−1, the algorithm maintains
a priority deque [55] D containing at most Q items. This data-structure
enables to find (resp. eliminate) the item with the smallest or largest key in
time O(1) (resp., time O(logQ)). In addition, the insertion of a new element
takes time O(logQ).



4.6. EFFICIENT IMPLEMENTATION 95

Each item inD has two records: a reference to a node in T and the priority
key associated with that node. Just before the selection of the6 t-th query
node it, the Q references point to nodes contained in the Q largest subtrees
in T \Lt−1, while the corresponding keys are the sizes of such subtrees. Hence
at time t the item top of D having the largest key points to a node in T tmax.

First, during an initialization step, sel creates, for each edge (i, j) 2 E,
a directed edge [i, j] from i to j and the twin directed edge [j, i] from j to i.
During the construction of Lsel the algorithm also stores and maintains the
current size σ(D) of D, i.e., the total number of items contained in D. We
first describe the way sel finds node it in T tmax. Then we will see how sel
can efficiently augment the query set Lsel to obtain L+

sel.
Starting from the node r of T tmax referred to by7 D, sel performs a depth-

first visit of T tmax, followed by the elimination of the item with the largest key
in D. For the sake of simplicity, consider T tmax as rooted at node r. Given
any edge (i, j), we let Ti and Tj be the two subtrees obtained from T tmax after
removing edge (i, j), where Ti contains node i, and Tj contains node j. During
each backtracking step of the depth-first visit from a node i to a node j, sel
stores the number of nodes |Ti| contained in Ti. This number gets associated
with [j, i]. Observe that this task can be accomplished very efficiently, since
|Ti| is equal to 1 plus the number of nodes of the union of Tc(i) over all
children c(i) of i. These numbers can be recursively calculated by summing
the size values that sel associates with all direct edges [i, c(i)] in the previous
backtracking steps. Just after storing the value |Ti|, the algorithm also stores
|Tj| = |T tmax| − |Ti| and associates this value with the twin directed edge [i, j].
The size of T tmax is then stored in D as the key record of the pointer to node
r.

It is now important to observe that the quantity σ(T tmax, i) used by sel
(see Section 4.3) is simply the largest key associated with the directed edges
[i, j] over all j such that (i, j) is an edge of T tmax. Hence, a new depth-first visit
is enough to find in time O(|T tmax|) the t-th node it = argmini2Ttmax σ(T tmax, i)

selected by sel. Let N(it) be the set of all nodes adjacent to node it in
T tmax. For all nodes i 0 2 N(it), sel compares |Ti 0 | to the smallest key bottom
stored in D. We have three cases:

1. If |Ti 0 | � bottom and σ(D) � Q − t then the algorithm does nothing,
6If t = 1 the priority deque D is empty.
7In the initial step t = 1 (i.e., when Tt

max � T) node r can be chosen arbitrarily .
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since Ti 0 (or subtrees thereof) will never be largest in the subsequent
steps of the construction of Lsel, i.e., there will not exist any node it 0
with t 0 > t such that it 0 2 Ti 0 .

2. If |Ti 0 | � bottom and σ(D) < Q− t, or if |Ti 0 | > bottom and σ(D) < Q

then sel inserts a pointer to i 0 together with the associated key |Ti 0 |.
Note that, since D is not full (i.e., σ(D) < Q), the algorithm need not
eliminate any item in D.

3. If |Ti 0 | > bottom and σ(D) = Q then sel eliminates from D the item
having the smallest key, and inserts a pointer to i 0, together with the
associated key |Ti 0 |.

Finally, sel eliminates node it and all edges (both undirected and directed)
incident to it. Note that this elimination implies that we can easily perform
a depth-first visit within T smax for each s � Q, since T smax is always completely
disconnected from the rest of the tree T .

In order to turn Lsel into L+
sel, the algorithm proceeds incrementally, using

a technique borrowed from [22]. Just after the selection of the first node i1,
a depth-first visit starting from i1 is performed. During each backtracking
step of this visit, the algorithm associates with each edge (i, j), the closer
node to i1 between the two nodes i and j. In other words, sel assigns a
direction to each undirected edge (i, j) so as to be able to efficiently find the
path connecting each given node i to i1. When the t-th node it is selected,
sel follows these edge directions from it towards i1. Let us denote by π(i, j)

the path connecting node i to node j. During the traversal of π(i1, it), the
algorithm assigns a special mark to each visited node, until the algorithm
reaches the first node j 2 π(i1, it) which has already been marked. Let η(i, L)
be the maximum number of edge disjoint paths connecting i to nodes in the
query set L. Observe that all nodes i for which η(i, Lt) > η(i, Lt−1) must
necessarily belong to π(it, j). We have η(it, Lt) = 1, and η(i, Lt) = 2, for all
internal nodes i in the path π(it, j). Hence, j is the unique node that we
may need to add as a new fork node (if j 62 fork(Lt−1)). In fact, j is the
unique node such that the number of edge-disjoint paths connecting it to
query nodes may increase, and be actually larger than 2.

Therefore if j 2 L+
t−1 we need not add any fork node during the incremen-

tal construction of L+
sel. On the other hand, if j 62 L+

t−1 then η(i, Lt−1) = 2,
which implies η(i, Lt) = 3. This is the case when sel views j as new fork
node to be added to the query set Lsel under consideration.
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In order to bound the total time required by sel for selecting Q nodes, we
rely on Lemma 4.3, showing that |T tmax| � 2|V |/t. The two depth-first visits
performed for each node it take O(|T tmax|) steps. Hence the overall running
time spent on the depth-first visits is O(

∑
t�Q 2|V |/t) = O(|V | logQ). The

total time spent for incrementally finding the fork nodes of Lsel is linear
in the number of nodes marked by the algorithm, which is equal to |V |.
Finally, handling the priority deque D takes |V | times the worst-case time
for eliminating an item with the smallest (or largest) key or adding a new
item. This is again O(|V | logQ).

We now turn to the implementation of the prediction phase. pred oper-
ates in two phases. In the first phase, the algorithm performs a depth-first
visit of each hinge-tree T , starting from each connection node (thereby vis-
iting the nodes of all 1-hinge-tree once, and the nodes of all 2-hinge-tree
twice). During these visits, we add to the nodes a tag containing (i) the la-
bel of node iT from which the depth-first visit started, and (ii) the distance
between iT and the currently visited node. In the second phase, we perform
a second depth-first visit, this time on the whole tree T . During this visit,
we predict each node i 2 V \ L with the label coupled with smaller distance
stored in the tags of8 i. The total time of these visits is linear in |V | since
each node of T gets visited at most 3 times.

4.7 Conclusions

The results proven in this chapter characterize, up to constant factors, the
optimal algorithms for adversarial active learning on trees in two main set-
tings. In the first setting the goal is to minimize the number of mistakes on
the non-queried vertices under a certain query budget. In the second setting
the goal is to minimize the sum of queries and mistakes under no restriction
on the number of queries.

An important open question is the extension of our results to the general
case of active learning on graphs. While a direct characterization of optimal-
ity on general graphs is likely to require new analytical tools, an alternative
line of attack is reducing the graph learning problem to the tree learning

8If i belongs to a 1-hinge-tree, we simply predict yi with the unique label stored in the
tag.
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problem via the use of spanning trees. Certain types of spanning trees, such
as random spanning trees, are known to summarize well the graph structure
relevant to passive learning — see Chapter 3. In the case of active learning,
however, we want good query sets on the graph to correspond to good query
sets on the spanning tree, and random spanning trees may fail to do so in
simple cases. For example, consider a set of m cliques connected through
bridges, so that each clique is connected to, say, k other cliques. The breadth-
first spanning tree of this graph is a set of connected stars. This tree clearly
reveals a query set (the star centers) which is good for regular labelings (cfr.,
the binary system example of Section 5.1). On the other hand, for certain
choices of m and k a random spanning tree has a good probability of hiding
the clustered nature of the original graph, thus leading to the selection of
bad query sets.

We also believe that an extension to general graphs of our algorithm does
actually exist. However, the complexity of the methods employed in [41]
suggests that techniques based on minimizing Ψ� on general graphs are com-
putationally very expensive.



Chapter 5

Adaptive exploration of unknown
graphs

5.1 Introduction

The learning model studied in the previous chapters is "transductive" in
nature, in the sense that the graph is assumed to be known, and the task is
to sequentially predict the labels of an adversarially chosen permutation of
the vertices.

In this chapter we drop the transductive assumption and study the graph
prediction problem from a purely sequential standpoint, where the vertices
(and their incident edges) of an unknown graph are progressively revealed
to the learner in an on-line fashion. As soon as a new vertex is revealed, the
learner is required to predict its label. Before the next vertex is observed,
the true label of the new vertex is fed back to the learner.

In order to allow the learner to actively explore the graph in directions
that are judged easier to predict, we assume the underlying graph is con-
nected, and force each newly revealed vertex to be adjacent to some vertex
dynamically chosen by the learner in the subgraph so far observed.

More formally (see Section 5.2 for a complete description the protocol):
at each time step t = 1, 2, . . . , the learner selects a known node qt having
unexplored edges, receives a new vertex it adjacent to qt, and is required
to output a prediction byt for the (unknown) label yt associated with it.
Then yt is revealed, and the algorithm incurs a loss `(byt, yt) measuring
the discrepancy between prediction and true label. Our basic measure of

99
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performance is the learner’s cumulative loss `(by1, y1) + � � � + `(byn, yn), over
a sequence of n predictions.

As a motivating application for this exploration/prediction protocol, con-
sider the advertising problem of targeting each member of a social network
(where ties between individuals indicate a certain degree of similarity in
tastes and interests) with the product he/she is most likely to buy. Suppose,
for the sake of simplicity, that the network and the preferences of network
members are initially unknown, apart from those of a single “seed member”.
It is reasonable to assume the existence of a mechanism that allows explo-
ration of the social network by revealing new members connected (i.e., with
similar interests) to members that are already known. This mechanism could
be implemented in different ways, e.g., by providing incentives or rewards
to members with unrevealed connections. Alternatively, if the network is
hosted by a social network service (like FacebookTM), the service provider
itself may release the needed pieces of information. Since each discovery
of a new network member is presumably costly, the goal of the marketing
strategy is to minimize the number of new members not being offered their
preferred product.

This social network advertising task can be naturally cast in our explo-
ration/prediction protocol: at each step t, find the member qt, among those
whose preferred product yt we already know, who is most likely to have
undiscovered connections it with the same preferred product as qt.

In order to leverage on the assumption that connected members tend to
prefer the same products (see [92]), we design a learning/exploration strategy
that perform well to the extent that the underlying graph labeling y =

(y1, . . . , yn) (which is not necessarily binary as in the previous chapters) is
regular in the following sense: The graph can be partitioned into a small
number of weakly interconnected clusters (subgroups of network members)
such that labels in each cluster are all roughly similar.

The cumulative loss bound we prove in this chapter holds for general
(real-valued) labels, and is expressed in terms of a measure of regularity
we call merging degree. The merging degree of a labeled graph G is inher-
ently related to the degree of interaction among the clusters which G can be
partitioned into. In the special case of binary labels, this measure is often
significantly smaller than the cutsize ΦG(y), and never larger than 2ΦG(y).
Furthermore, unlike ΦG(y), which may even be quadratic in the number of
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nodes, the merging degree is never larger than n, implying that our bound
is never vacuous.

The main results of this chapter are the following. We prove that, for
every binary-labeled graph G, the number of mistakes made on G by our
learning/exploration algorithm is at most equal to the merging degree of
G (Theorem 1). As a complementary result, we also show that, on any
connected graph it is possible to force any algorithm to make a number of
mistakes equal to half the merging degree (Theorem 2). We generalize the
upper bound result by giving a cumulative loss bound holding for any loss
function (Theorem 3). Finally, we show that our algorithm has small time
and space requirements, which makes it suitable to large scale applications.

The chapter is organized as follows. In the next subsection we briefly
overview some related work. The exploration/prediction protocol is intro-
duced in Section 5.2. We define our measure of graph regularity in Sec-
tion 5.3. In Section 5.4 we point out the weakness of some obvious ex-
ploration strategies (such as depth-first or breadth-first) and describe our
algorithm, which is analyzed in Section 5.5. In Section 5.6 we describe time
and space efficient implementations of our algorithm. We conclude in Section
5.7 with some comments and a few open questions.

5.1.1 Related work

on-line prediction of labeled graphs has often been studied in a “transductive”
learning model different from the one studied here. Since the techniques
proposed for transductive prediction assume knowledge of the entire graph
in advance, they do not have any mechanism for guiding the exploration
of the graph, hence they do not work well on the exploration/prediction
problem studied in this chapter.

On the other hand, our exploration/prediction model bears some similar-
ities to the graph exploration problem introduced in [32], where the measure
of performance is the overall number edge traversals sufficient to ensure that
each edge has been traversed at least once. Unlike that approach, we do not
charge any cost for visits of the same node beyond the first visit. Moreover,
in our setting depth-first exploration performs badly on simple graphs with
binary labels (see discussion in Section 5.2), whereas depth-first traversal is
optimal in the setting of [32] for any undirected graph —see [2].
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As explained in Section 5.4, our strategy works by incrementally build-
ing a spanning tree whose total cost is equal to the algorithm’s cumulative
loss. The problem of constructing a minimum spanning tree on-line is also
considered in [78], although only for graphs with random edge costs.

5.2 The exploration/prediction protocol

We use y = (y1, . . . , yn) 2 Yn to denote an unknown assignment of labels
yi 2 Y to the vertices i 2 V , where Y is a given label space, e.g., Y = R or
Y = {−1,+1}.

We consider the following protocol between a graph explo-
ration/prediction algorithm and an adversary. Initially, the algorithm
receives an arbitrary vertex i0 2 V and its corresponding label y0. For all
subsequent steps t = 1, . . . , n− 1, let Vt−1 � V be the set of vertices visited
in the first t − 1 steps, where we conventionally set V0 = {i0}. We assume
that the algorithm is told which nodes of Vt−1 have unexplored neighbors;
i.e., which nodes of Vt−1 are adjacent to nodes in V \ Vt−1. Then:

1. The algorithm chooses a node qt 2 Vt−1 among those with unexplored
neighbors.

2. The adversary chooses a node it 2 V \ Vt−1 adjacent to qt;

3. All edges (it, j) 2 E connecting it to previously visited vertices j 2 Vt−1
are revealed, including edge (qt, it);

4. The algorithm predicts the label yt of it with byt 2 Y;

5. The label yt is revealed and the algorithm incurs a loss.

At each step t = 1, . . . , n− 1, the loss of the algorithm is `(byt, yt), where
` : Y � Y → R

+ is a fixed and known function measuring the discrepancy
between byt and yt. For example, if Y = R, then we may set `(byt, yt) =

|byt − yt|. The algorithm’s goal is to minimize its cumulative loss `(by1, y1) +

� � � + `(byn, yn). Note that the edges (qt, it), for t = 1, . . . , n − 1, form a
spanning tree for G. This is key to understanding the way our algorithm
works —see Section 5.4.
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Figure 5.1: Two copies of a graph with real labels yi associated with each vertex
i. On the left, a shortest path connecting the two nodes enclosed in double circles
is shown. The path length is maxt `(sk−1, sk), where `(i, j) = |yi − yj|. The thick
black edge is incident to the nodes achieving the max in the path length expression.
On the right, the vertices of the same graph have been clustered to form a regular
partition. The diameter of a cluster C (the maximum of the pairwise distances
between nodes of C) is denoted by d. Similarly, d denotes the minimum of the
pairwise distances (i, j), where i 2 C and j 2 V \C. Note that each d is determined
by the thick black edge connecting the cluster to the rest of the graph, while d
is determined by the two nodes incident to the thick gray edge. The partition is
regular, hence d < d holds for each cluster. Also, the three subgraphs induced by
the clusters are connected.

5.3 Regular partitions and the merging degree

We are interested in designing exploration/prediction strategies that work
well to the extent that the underlying graph G can be partitioned into a
small number of weakly connected regions (the “clusters”) such that labels
on the vertices in each cluster are similar. Before defining this property
formally, we need a few key auxiliary definitions.

Given a path s1, . . . , sd in G, a notion of path length λ(s1, . . . , sd) can
be defined which is naturally related to the prediction loss. A reasonable
choice might be λ(s1, . . . , sd) = maxk=2,...,d `(sk−1, sk), where we conven-
tionally write `(st−1, st) instead of `(yst−1 , yst) when the labeling is under-
stood from the context. Note that, in the binary classification case, when
Y = {−1,+1} and `(by, y) = I{by6=y} (zero-one loss), if the labels of nodes
s1, . . . , sd are either all positive or all negative, then λ(s1, . . . , sd) = 0, oth-
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erwise λ(s1, . . . , sd) = 1.
In general, we say that λ is a path length assignment if it satisfies

λ(s1, . . . , sd−1, sd) � λ(s1, . . . , sd−1) � 0 (5.1)

for each path s1, . . . , sd−1, sd in G. As we see in Section 5.6, condition (5.1)
helps in designing efficient algorithms.

Given a path length assignment λ, denote by Pt(i, j) the set of all paths
connecting node i to node j in Gt = (Vt, Et), the subgraph containing all
nodes Vt and edges Et that have been observed during the first t steps. The
distance dt(i, j) between i and j is the length of the shortest path between i
and j in Gt,

dt(i, j) = min
π2Pt(i,j)

λ(π) .

We assume the path length λ(π) is 0 if π consists of one node only, (i.e.,
π = s1), which implies d(i, i) = 0 for all d.

A partition P of V in subsets C is regular if, for all C 2 P and for all
i 2 C,

max
j2C

d(i, j) < min
k62C

d(i, k)

where d(i, j), without subscript, denotes the length of the shortest path
between i and j in the whole graph G. See Figure 5.1 for an example.

We call cluster each element of a regular partition. Note that in a regular
partition each node is closer to every node in its cluster than to any other
node outside. When −d(�, �) is taken as similarity function, our notion of
regular partition becomes equivalent to the Apresjan clusters in [19] and to
the strict separation property of [7].

It is easy to see that, because of (5.1), all subgraphs induced by the
clusters on a regular partition are connected graphs. This simple fact is key
to the proof of Lemma 1 in Section 5.5.

Note that every labeled graph G = (V, E) has at least two regular parti-
tions, since both P = {V} and P =

{
{1}, {2}, . . . , {|V |}

}
are regular. Moreover,

as depicted in Figure 5.2, if labels are binary then the notion of regular par-
tition includes the (natural) partition made up of the smallest number of
clusters C, each one including only nodes with the same label.

Now, for any given subset C � V, define the inner border ∂C of C to
be the set of all nodes i 2 C that are adjacent to any node j 62 C. The outer
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Figure 5.2: A (natural) regular partition for a graph with labels in {−1,+1}. The
path length is measured as maxk `(sk−1, sk), where `(i, j) = |yi − yj|. The diameter
of each cluster C (the maximum of the pairwise distances between nodes of C) is
equal to 0, whereas the minimum of the pairwise distances (i, j), where i 2 C and
j 2 V \ C, is equal to 2.

border ∂C of C is the set of all nodes j 62 C that are adjacent to at least one
node in the inner border of C. See Figure 5.3 for an example.

Given the above, we are ready to introduce our measure of graph la-
bel regularity, which will be tightly related to the predictive ability of our
algorithm.

Given a regular partition P of the vertices V of an undirected, connected
and labeled graph G = (V, E), for each C 2 P the merging degree δ(C) of
cluster C is defined as

δ(C) = min
{
|∂C|, |∂C|

}
.

The overall merging degree of the partition, denoted by δ(P) is given by

δ(P) =
∑
C2C

δ(C) .

The merging degree δ(C) of a cluster C 2 P quantifies the amount of inter-
action between C and the remaining clusters in P.

In the binary case, it is not difficult to compare the merging degree of a
partition to the graph custsize. Since at least one edge contributing to the
cutsize ΦG(y) must be incident to each node in an inner or outer border of a
cluster, δ(P) is never larger than 2ΦG(y). On the other hand, as suggested
for example by Figure 5.4, δ(P) is often much smallerΦG(y). This is directly
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Figure 5.3: The inner border of the depicted subset C is the set of dark grey nodes,
the outer border is made up of the light grey nodes, hence |∂C| = 3 and |∂C| = 5.

implied by the two basic differences between merging degree and cutsize: (i)
The merging degree counts subsets of nodes, and thus δ(P) is never larger
than n; on the contrary, the cutsize counts subsets of edges, and thus on
dense graphs ΦG(y) can even be quadratic in n. (ii) The merging degree of
a cluster is the minimum between two quantities (the cardinalities of inner
and outer borders) related to the interaction among clusters. Hence, even
on sparse graphs (where ΦG(y) is close to the total number of border nodes
of G), the merging degree can take advantage of clusters having unbalanced
borders.

More importantly, as hinted again by Figure 5.4, δ(P) is typically more
robust to label noise than ΦG(y). For instance, if we flip the label of the
black node, the merging degree of the depicted partition gets affected only
by a small amount, whereas the cutsize can increase in a significant way. A
more detailed study of the robustness of merging degree and cutsize against
label flipping follows.

Let i be the node whose label yi has been flipped. We write δ(P,y)

to emphasize the dependence of the merging degree on the labeling y 2
{−1,+1}n. Let yold be the labeling before the flip of yi and ynew be the one
after the flip. The following statement is easily verified. It provides sufficient
conditions to insure that, after the label flip, δ(P,y) cannot change by more
than 2.

Fact 1 Given a graph G = (V, E) with labeling y 2 {−1,+1}n and a
node i 2 V, denote by Gi � G the maximal connected subgraph con-
taining i and made up of nodes labeled as yi (so that Vi � V is the
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Figure 5.4: A relatively dense graph G (repeated twice) with two clusters C1 and C2
(left-hand side, from top to bottom), or three clusters C1, C2, and C3 (right-hand
side, from top to bottom), depending on the label of the black node at the bottom.
If negative, this label might naturally be viewed as a noisy label. When we flip the
label of the black node from positive to negative, the cutsize increases (as it is often
the case in dense graphs) whereas the merging degree remains small. In particular,
for the graph on the leftΦG(y) = 14 and δ(P) = δ(C1)+δ(C2) = 5+5 = 10, while for
the graph on the rightΦG(y) = 25 and δ(P) = δ(C1)+δ(C2)+δ(C3) = 5+6+1 = 12.
Note that the black node in the left graph satisfies the assumptions of Fact 1, while
the square node in cluster C1 does not. Indeed, flipping this square node might cause
δ(P) to change significantly, whereas, in this case, ΦG(y) would remain unchanged.

cluster containing node i). If i is neither a border node of the cluster
nor an articulation node1 of Gi, then

���δ(P,ynew) − δ(P,yold)
��� � 2 while���ΦG(ynew) −ΦG(yold)

��� is always equal to the degree of i.

See again Figure 5.4 for an illustration of the above statement.
A couple of observations are in order. First, when G is a dense graph it

is fairly unlikely that a node exists which is an articulation node for its own
cluster. In addition, since the most part of nodes in a real graph are not
border nodes for any cluster, we tend to consider the case of the black node

1Recall that an articulation node of a connected graph is a node whose removal discon-
nects the graph.
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shown in Figure 5.4 as the most common situation. Second, the two condi-
tions on node i contained in Fact 1 are sufficient in order for the statement to
hold, but are not necessary. As a matter of fact, there are important classes
of labeled graphs (even sparse ones) where Fact 1 need not apply, still some-
thing interesting could be said about δ(P,y) as compared to ΦG(y). For
example, if G is a labeled tree, then all vertices i that are not border nodes
for any cluster are articulation nodes for the clusters which they belong to.
In such cases, it is straightforward to verify that���δ(P,ynew) − δ(P,yold)

��� � ���ΦG(ynew) −ΦG(yold)
���+ 1 .

That is, a high variation in merging degree must correspond to a similar (or
higher) variation in the cutsize.

The merging degree δ(P) is used to bound the total loss of our algorithm,
which is described in the following section.

5.4 The Clustered Graph Algorithm

Before describing our algorithm, we would like to stress that in our explo-
ration/prediction protocol, standard nonadaptive graph exploration strate-
gies (combined with simple prediction rules) are suboptimal, meaning that
their cumulative loss is not controlled by the merging degree. To this end,
consider the strategy depthFirst, performing a depth-first visit of G (par-
tially driven by the adversarial choice of it) and predicting the label of it
through the adjacent node qt in the spanning tree generated by the visit. In
the binary classification case with zero-one loss, the graph cutsize ΦG(y) is
an obvious mistake bound achieved by such a strategy. Figure 5.5 shows an
example where δ(P) = O(1) while depthFirst makes ΦG(y) = Ω(|V |) mis-
takes. This high number of mistakes is not due to the choice of the prediction
rule. Indeed, the same large number of mistakes is achieved by variants of
depthFirst where the predicted label is determined by the majority vote
of all labels (or just of the mistaken ones) among the adjacent nodes seen so
far.

Another algorithm which we may consider is the so-called graphtron
algorithm [74] for binary classification. As mentioned in Section 1.3, this
algorithm predicts at time t just with the majority vote of the labels of
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Figure 5.5: A binary labeled graph with three clusters such that δ(P) = 4 and
ΦG(y) = 8. We show that depthFirst makes order of ΦG(y) mistakes. Arrow
edges indicate predictions, and numbers on such edges denote the adversarial order
of presentation. For instance edge 3 (connecting a −1 node to a +1 node) indicates
that depthFirst uses the −1 label associated with the start node (the current qt
node) to predict the +1 label associated with the end node (the current it node).
Dark grey nodes are the mistaken nodes (in this figure ties are mistakes). Note that
in the dotted area we could add as many (mistaken) nodes as we like, thus making
the graph cutsize ΦG(y) arbitrarily close to |V | without increasing δ(P). These
nodes would still be mistaken if depthFirst predicted yt through a majority vote
among previously observed adjacent nodes, and they would remain mistaken if this
majority vote were only restricted to previously mistaken adjacent nodes. This is
because depthFirst is forced to err on the left-most node of the right-most cluster.

previously mistaken nodes that are adjacent to it. The number of mistakes
satisfies |EM| � 2ΦG(y), where EM � E are all edges of G whose endpoints
are both mistaken points. As a matter of fact, graphtron has been de-
signed for a harder protocol where the adversary is not restricted to choose
it adjacent to a previously observed node qt. The example in Figure 5.5
shows that, even in our easier protocol, this algorithm makes order of ΦG(y)

mistakes. This holds even when the graph labeling is consistent with the
majority vote predictor based on the entire graph.

Similar examples can be constructed to show that visiting the graph in
breadth-first order can still cause Ω(|V |) mistakes.

These algorithms fail mainly because their exploration strategy is obliv-
ious to the sequence of revealed labels. In fact, an adaptive exploration
strategy taking advantage of the revealed structure of the labeled graph can
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make a substantially smaller number of mistakes under our cluster regular-
ity assumptions. Our algorithm, called cga (Clustered Graph Algorithm),
learns the next “good” node qt 2 Vt−1 to explore, and is able to take advan-
tage of regular partitions. As we show in Section 5.5, the cumulative loss
of cga can be expressed in terms of the best regular partition of G with
respect to the unknown labeling y 2 R

n, i.e., the partition having minimum
merging degree.

At each time step t, cga sets byt to be the (known) label yqt of the selected
vertex qt 2 Vt−1. Hence, the algorithm’s cumulative loss is the cost of the
spanning tree with edges

{
(qt, it) : t = 1, . . . , |V | − 1

}
where edge (qt, it)

has cost `(i, j) = `(yi, yj). The key to controlling this cost, however, is the
specific rule the algorithm uses to select the next qt based on Gt−1. The
approach we propose is simple. If there exists a regular partition of G with
few elements, then it does not really matter how the spanning tree is built
within each element, since the cost of all these different trees will be small
anyway. What matters the most is the cost of the edges of the spanning tree
that join two distinct elements of the partition. In order to keep this cost
small, our algorithm learns to select qt so as to avoid going back to the same
region many times. More precisely, at each time t, cga selects and predicts
the label of a node adjacent to the node in the inner border of Vt−1 which is
closest to the previously predicted node it−1. Formally,

byt = yqt where qt = argmin
q2∂Vt−1

dt−1(it−1, q) . (5.2)

We say that cluster C is exhausted at time t if at time t the algorithm
has already selected all nodes in C together with its outer border, i.e., if
C [ ∂C � Vt. In the special but important case when labels are binary and
the path length is λ(s1, . . . , sd) = maxk `(sk−1, sk) (being ` the zero-one loss),
the choice of node qt in (5.2) can be defined as follows: If the cluster C
where it−1 lies is not exhausted at the beginning of time t, then cga picks
any node qt connected to it−1 by a path all contained in Vt−1 \ C. On the
other hand, if C is exhausted, cga chooses an arbitrary node in Vt−1.

Figure 5.6 contains a pictorial explaination of the behavior of cga, as
compared to depthFirst on the same binary labeled graph as in Figure 5.5.
As we argue in the next section (Lemma 1 in Section 5.5), a key property
of cga is that when choosing qt causes the algorithm to move out of a
cluster of a regular partition, then the cluster must have been exhausted.
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Figure 5.6: The behavior of cga displayed on the binary labeled graph of Figure 5.5.
The length of a path s1, . . . , sd is measured by maxk `(sk−1, sk) and the loss is the
zero-one loss. The pictorial conventions are as in Figure 5.5. As in that figure, the
cutsize ΦG(y) of this graph can be made as close to |V | as we like, still cga makes
δ(P) = 4 mistakes. For the sake of comparison, recall that the various versions of
depthFirst can be forced to err ΦG(y) times on this graph.

This suggests a fundamental difference between cga and simple algorithms
like depthFirst. Evidence of that is provided by comparing Figure 5.5 to
Figure 5.6. cga is seen to make a constant number of binary prediction
mistakes on simple graphs where depthFirst makes order of |V | mistakes.
In this figure, the leftmost cluster has merging degree 1, the middle one has
merging degree 2, and the rightmost one has merging degree 1. Hence this
figure shows a case in which the mistake bound of our algorithm is tight (see
Section 5.5). Note that the middle cluster has merging degree 2 no matter
how we increase the number of negatively labeled nodes in the dotted area
(together with the corresponding outbound edges).

5.5 Analysis

This section contains the analysis of cga’s predictive performance. The
computational complexity analysis is contained in Section 5.6. For the sake
of presentation, we treat the binary classification case first, since it is an
important special case of our setting.

Fix an undirected and connected graph G = (V, E). The following lemma
is a key property of our algorithm.
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Figure 5.7: Two clusters corresponding to the two cases mentioned in the proof of
Lemma 1. In both clusters the dark shaded area is C \ Vt−1 (i.e., the set of nodes
in cluster C that have already been explored) and the white area is C \ Vt−1. Case
1 (left cluster): A node j in C exists which has not been explored yet. Then there
is a node q 0 on the inner border of Vt−1, along a path connecting it−1 to j so as the
path from it−1 to q 0 is all contained in C \ Vt−1. Case 2 (right cluster): A node j
in the outer border of C exists which has not been explored yet. Then there is a
node in the inner border of C which is connected to it−1 so that we can single out
a further node q 0 with the same properties as in Case 1.

Lemma 1 Assume cga is run on a graph G with labeling y 2 Yn, and
pick any time step t > 0. Let P be a regular partition and assume
it−1 2 C, where C is any cluster in P. Then C is exhausted at time t− 1
if and only if qt 62 C.

proof. First, assume C is exhausted at time t − 1, i.e., C [ ∂C � Vt−1.
Then all nodes in C have been visited, and no node in C has unexplored
edges. This implies C\∂Vt−1 � ; and that the selection rule (5.2) makes the
algorithm pick qt outside of C. Assume now qt 62 C. Since each cluster is a
connected subgraph, if the labels are binary the prediction rule ensures that
cluster C is exhausted. In the general case (when labels are not binary) we
can prove by contradiction that C is exhausted by analyzing the following
two cases (see Figure 5.7).
Case 1. There exists j 2 C \ Vt−1. Since the subgraph in cluster C is
connected, there is a path in C connecting it−1 to j such that at least one
node q 0 2 C on this path: (a) has unexplored edges, and (b) belongs to Vt−1,
(i.e., q 0 2 ∂Vt−1), and (c) is connected to it−1 by a path all contained in
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C\ Vt−1. Since the partition is regular, q 0 is closer to it−1 than to any node
outside of C. Hence, by construction —see (5.2), the algorithm would choose
this q 0 instead of qt (due to (c) above), thereby leading to a contradiction.
Case 2. There exists j 2 ∂C \ Vt−1. Again, since the subgraph in cluster C
is connected, there is a path in C connecting it−1 to a node in ∂C adjacent
to j. Then we fall back into the previous case since at least one node q 0

on this path: (a) has unexplored edges, and (b) belongs to Vt−1, and (c) is
connected to it−1 by a path all contained in C \ Vt−1. 2

We begin to analyze the special case of binary labels and zero-one loss.

Theorem 1 If cga is run on an undirected and connected graph G with
binary labels then the total number m of mistakes satisfies

m � δ(P)

where P is the smallest partition P of V whose each cluster only includes
nodes having the same label. 2

The key idea to the proof of this theorem is the following. Fix a cluster
C 2 P. In each time step t when both qt and it belong to C a mistake never
occurs. The remaining time steps are of two kinds only: (1) Incoming lossy
steps, where node it belongs to the inner border of C; (2) outgoing lossy
steps, where it belongs to the outer border of C. With each such step we
can thus uniquely associate a node it in either (inner or outer) border of
C. The overall loss involving C, however, is typically much smaller than the
sum of border cardinalities. Consider all the incoming and outgoing lossy
steps concerning cluster C. The first lossy step after an incoming lossy step
must be outgoing and, viceversa, the first lossy step after an outgoing lossy
step must be incoming. In other words, for each given cluster C, incoming
and outgoing steps are interleaved. Since during any incoming lossy step
t a new node of C must be visited, before the subsequent incoming lossy
step t 0 > t the algorithm must visit a new node of V \ C. Visiting the first
node of V \C after time t will necessarily lead to a new outgoing lossy step.
Hence, incoming and outgoing steps must occur the same number of times,
and their sum must be at most twice the minimum of the size of borders

2Recall that such a P is a regular partition of V. Moreover, one can show that for this
partition the bound in the theorem is never vacuous.
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Figure 5.8: Sequence (starting from the left) of incoming and regular outgoing lossy
steps involving a given cluster Ci. We only show the border nodes contributing to
lossy steps. We map injectively each regular outgoing lossy step t to the previous
(incoming) lossy step µi(t). We also map injectively each incoming lossy step s to
the node ν1(s) in the inner border, whose label was predicted at time s. Finally,
we map injectively s also to the node ν2(s) in the outer border that caused the
previous (outgoing) lossy step for the same cluster.

(what we called merging degree of the cluster), since each node is visited
only once. The only exception to this interleaving pattern occurs when a
cluster gets exhausted. In this case, an incoming step is not followed by any
outgoing step for the exhausted cluster.

proof of Theorem 1. Index by 1, . . . , |P | the clusters in P. We abuse the
notation and use P also to denote the set of cluster indices. Let k(t) be the
index of the cluster which it belongs to, i.e., it 2 Ck(t). We say that step t
is a lossy step if ŷt 6= yt, i.e. the label of qt is different from the label of
it. A step t in which a mistake occurs is incoming for cluster i (denoted by
� → i) if qt 62 Ci and it 2 Ci, and it is outgoing for cluster i (denoted by
i → �) if qt 2 Ci and it 62 Ci. An outgoing step for cluster Ci is regular if
the previous step in which the algorithm made a mistake is incoming for Ci.
All other outgoing steps are called irregular. Let M→i (Mreg

i→) be the set of
all incoming (regular outgoing) lossy steps for cluster Ci. Also, let Mirr

i→ be
the set of all irregular outgoing lossy steps for Ci.

For each i 2 P, define an injective mapping µi : M
reg
i→ →M→i as follows

(see Figure 5.8 for reference): Each lossy step t in Mreg
i→ is mapped to the

previous step t 0 = µi(t) when a mistake occurred. Lemma 1 insures that
such step must be incoming for i since t is a regular outgoing step. This
shows that |M

reg
i→| � |M→i|. Now, let t be any irregular outgoing step for some

cluster, t 0 be the last lossy step occurred before time t, and set j = k(t 0). The
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very definition of an irregular lossy step, combined with Lemma 1, allows us
to conclude that t 0 is the last lossy step involving cluster Cj. This implies
that t 0 cannot be followed by an outgoing lossy step j → �. Hence t 0 is not
in the image of µj, and the previous inequality for |M

reg
i→| can be refined as

|M
reg
i→| � |M→i| − Ii. Here Ii is the indicator function of the following event:

“The very last lossy step t 0 such that either q 0t or i 0t belong to Ci is incoming
for Ci”. We now claim that ∑

i2P

Ii �
∑
i2P

|Mirr
i→| .

In fact, if we let t be an irregular lossy step and i be the index of the cluster
for which the previous lossy step t 0 is incoming, the fact that t is irregular
implies that Ci must be exhausted between time t 0 and time t, which in turn
implies that Ii = 1, since t 0 must be the very last lossy step involving cluster
Ci. This allows us to write

m =
∑
i2P

|M
reg
i→ [Mirr

i→| �
∑
i2P

�
|M→i| − Ii + |Mirr

i→|
�
�
∑
i2P

|M→i| . (5.3)

Next, for each i 2 P we define two further injective mappings that associate
with each incoming lossy step � → i a vertex in the inner border of Ci and
a vertex in the outer border of Ci. This shows that

|M→i| � min
{
|∂Ci|, |∂Ci|

}
= δ(Ci)

for each i 2 P. Together with (5.3), which we prove next, this completes the
proof (see again Figure 5.8 for a pictorial explanation).

The first injective mapping ν1 : M→i → ∂Ci is easily defined: ν1(t) =

it 2 Ci. This is an injection because the algorithm can incur loss on a vertex
at most once. The second injective mapping ν2 : M→i → ∂Ci is defined in
the following way. Let M→i be equal to {t1, . . . , tk}, with t1 < � � � < tk. If
t = t1 then ν2(t) is simply qt 2 ∂Ci. If instead t = tj with j � 2, then
ν2(t) = it 0 2 ∂Ci, where t 0 is an outgoing lossy step i → �, lying between
tj−1 and tj. Note that cluster Ci cannot be exhausted after step tj−1 since
another incoming lossy step �→ i occurs at time tj > tj−1. Combined with
Lemma 1 this guarantees the existence of such a t 0. Moreover, no subsequent
outgoing lossy steps i → � can mispredict the same label yit 0 . Hence ν2 is
an injection and the proof is concluded. 2
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Next, we turn to considering lower bounds on the prediction perfor-
mance. First, as we already observed, the edges (qt, it) produced during the
on-line functioning of the algorithm form a spanning tree T for G. Therefore,
in the case of binary labels, cga’s number m of mistakes is always equal to
the cutsize ΦT (y) of this spanning tree. This shows that an obvious lower
bound on m is the cost of the minimum spanning tree for G or, equivalently,
the size of the smallest regular partition P of V where each cluster includes
only nodes having the same label.

This argument can be strenghtened to show that an adaptive adversary
can always force any learner to make order of δ(P) mistakes in the binary
case, thus matching the upper bound of Theorem 1. For simplicity of expo-
sition, the following theorem is stated for deterministic algorithms, though
it can be trivially seen to hold (with a different leading constant) for ran-
domized algorithms as well.

Theorem 2 For any undirected and connected graph G = (V, E), for all
K < |V |, and for any learning strategy, there exists a labeling y of V such
that the strategy makes at least K mistakes while δ(P) � 2K. Here P is
the smallest regular partition P of V where each cluster only includes
nodes having the same label.

proof. Let G0 = (V0, E0) be any connected component of G with |V | − K

nodes, and let V 0 = V \ V0 be the set of the remaining K nodes. The
adversarial strategy forces a mistake on each node in V 0, and uses a common
arbitrary label for all the nodes in V0.

To finish the proof, we must now show that δ(P) � 2K. In order to do
so, observe that since G0 is a connected component in G, and all nodes of
V0 have the same label, V0 must be included in a cluster C0 2 P. Since
|C0| � |V0| = |V | − K, we have that δ(C0) � |∂C0| � |V 0| = K. Consequently,
for the remaining clusters we have∑

C2P\{C0}

δ(C) �
∑

C2P\{C0}

|∂C| � |V 0| = K .

Hence, δ(P) � 2K, and the proof is concluded. 2

It is important to observe that the adversarial strategy described in the above
proof works against a broad class of learning algorithms. In particular, it
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works against learners that are given the graph structure beforehand and
have full control on the sequence i1, . . . , in of nodes to be predicted. In
this respect, Theorem 1 shows that our less informed protocol is actually
sufficient to match the performance level dictated by the lower bound.

We now turn to the analysis of upper bounds for cga in the general case
of nonbinary labels. The following definitions are useful for espressing the
cumulative loss bound of our algorithm: Let P be a regular partition of the
vertex set V and fix a cluster C 2 P. We say that edge (qt, it) causes an
inter-cluster loss at time t if one of the two nodes of this edge lies in ∂C
and the other lies in ∂C. Edge (qt, it) causes an intra-cluster loss when
both qt and it are in C. We denote by `(C) the largest inter-cluster loss in
C, i.e.,

`(C) = max
i2∂C, j62∂C, (i,j)2E

`(yi, yj) .

Also `max
P is the maximum inter-cluster loss in the whole graph G, i.e., `max

P =

maxC2P `(C). We also set for brevity ¯̀
P = |P |−1

∑
C2P `(C). Finally, we

define
ε(C) = max

TC

∑
(i,j)2E(TC)

`(yi, yj)

where the maximum is over all spanning trees TC of C and E(TC) is the
edge set of TC. Note that ε(C) bounds from above the total loss incurred
in all steps t where qt and it both belong to C. As a matter of fact, cga’s
cumulative loss is actually

∑|V |
t=1 `(qt, it), where, as we said in Section 5.2,

the edges (qt, it), t = 1, . . . , |V | − 1 form a spanning tree for G; hence the
subset of such edges which are also incident to nodes in C form a spanning
forest for C. Our definition of ε(C) takes into account that the total loss
associated with the edge set of a spanning tree TC for C is at least as large
as the total loss associated with the edge set E(F) of any spanning forest F
for C such that E(F) � E(TC).

In the above definition, `(C) is a measure of connectedness between C
and the remaining clusters, ε(C) is a measure of “internal cohesion” of C,
while `max

P and ¯̀
P give global distance measures among the clusters within

P.
The following theorem shows that cga’s cumulative loss can be bounded

in terms of the regular partition P that best trades off total intra-cluster
loss, which is expressed by ε(C)), against total inter-cluster loss, which is
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expressed by δ(C) times the largest inter-cluster loss `(C). It is important to
stress that cga never explicitely computes this optimal partition: it is the
selection rule for qt in (5.2) that guarantees this optimal behavior.

Theorem 3 If cga is run on an undirected and connected graph G with
arbitrary real labels, then the cumulative loss can be bounded as

n∑
t=1

`(byt, yt) � min
P

0@|P |
�
`max
P − ¯̀

P

�
+
∑
C2P

�
ε(C) + `(C)δ(C)

�1A (5.4)

where the minimum is over all regular partitions P of V.

Remark 3 If ` is the zero-one loss, then the bound in (5.4) reduces to

n∑
t=1

`(byt, yt) � min
P

∑
C2P

�
ε(C) + δ(C)

�
. (5.5)

This shows that in the binary case the total number of mistakes can also
be bounded by the maximum number of edges connecting different clus-
ters that can be part of a spanning tree for G. In the binary case (5.5)
achieves its minimum either on the trivial partition P = {V} or on the
partition made up of the smallest number of clusters C, each one in-
cluding only nodes with the same label (this is what in Section 5.3 was
called the natural regular partition — see Theorem 1). In most cases,
the natural regular partition is the minimizer of (5.5), so that the intra-
cluster term ε(C) disappears. Then the bound only includes the sum of
merging degrees (w.r.t. that partition), thereby recovering the bound in
Theorem 1. However, in certain degenerate cases, the trivial partition
P = {V} turns out to be the best one. In such a case, the right-hand side
of (5.5) becomes ε(V) which, in turn, is bounded by ΦG(y).

The proof of Theorem 3 is similar to the one for the binary case, hence
we only emphasize the main differences. Let P be a regular partition of
V . Clearly, no matter how each C 2 P is explored, if qt, it 2 C then the
contribution of `(qt, it) to the total loss is bounded by ε(C). The remaining
losses contributed by any cluster C are of two kinds only: losses on incoming
steps, where the node it belongs to the inner border of C, and losses on
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outgoing steps, where it belongs to the outer border of C. As for the binary
case, with each such step we can thus associate a node in the inner and the
outer border of C, since incoming and outgoing step alternate for each cluster.
The exception is when a cluster is exhausted which, at first glance, seems to
requires adding an extra term as big as `max

P times the size |P | of the partition
(this term could have a significant impact for certain graphs). However, as
explained in the proof below, `max

P can be replaced by the potentially much
smaller term `max

P − ¯̀
P . In fact, in certain cases this extra term disappears,

and the final bound we obtain is just (5.5).

proof of Theorem 3. Fix an arbitrary regular partition P of V and
index by 1, . . . , |P | the clusters in it. We abuse the notation and use P also
to denote the set of cluster indices. We say that step t is a lossy step if
`(qt, it) > 0, and we distinguish between intra-cluster lossy steps (when qt
and it belong to the same cluster) and inter-cluster lossy steps (when qt
and it belong to different clusters). We crudely upper bound the total loss
incurred during intra-cluster lossy steps by

∑
C2P ε(C). Hence, in the rest of

the proof we focus on bounding the total loss incurred during inter-cluster
lossy steps only. We define incoming and outgoing (regular and irregular)
inter-cluster lossy steps for a given cluster Ci (and the relative sets M→i,
M

reg
i→ and Mirr

i→) as in the binary case proof, as well as the injective mapping
µi. In the binary case we bounded |M

reg
i→| by |M→i| − Ii. In a similar fashion,

we now bound
∑
t2M

reg
i→ `t by `(Ci)

�
|M→i| − Ii

�
, where we set for brevity

`t = `(qt, it). We can write∑
i2P

∑
t2M

reg
i→[Mirr

i→
`t �

∑
i2P

�
`(Ci)

�
|M→i| − Ii

�
+ `max

P |Mirr
i→|

�

�
∑
i2P

`(Ci)|M→i| + ∑
j2P : Ij=1

�
`max
P − `(Cj)

�

�
∑
i2P

`(Ci)|M→i| +∑
i2P

�
`max
P − `(Ci)

�

=
∑
i2P

`(Ci)|M→i| + |P |
�
`max
P − ¯̀

P

�

where the second inequality follows from
∑
i2P Ii �

∑
i2P |Mirr

i→| (as for the
natural regular partition considered in the binary case).
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The proof is concluded after defining the two injective mapping ν1 and
ν2 as in the binary case, and bounding again |M→i| through δ(Ci). 2

5.6 Computational complexity

In this section we describe an efficient implementation of cga and discuss
some improvements for the special case of binary labels. This implemen-
tation shows that cga is especially useful when dealing with large scale
applications.

Recall that the path length assignment λ is a parameter of the algorithm
and satisfies (5.1). In order to develop a consistent argument about cga’s
time and space requirements, we need to make assumptions on the time it
takes to compute this function. When given the distance between any pair of
nodes i and j, and the loss `(j, j 0) for any j 0 adjacent to j, we assume the length
of the shortest path i, . . . , j, j 0 can be computed in constant time . This
assumption is easily seen to hold for many natural path length assignments λ
over graphs, for instance λ(s1, . . . , sd) = maxk `(sk−1, sk) and λ(s1, . . . , sd) =∑
k `(sk−1, sk) —note that both these assignments fulfill (5.1).
Because of the above assumption on the path length λ, in the general

case of real labels cga can be implemented using the well-known Dijkstra’s
algorithm for single-source shortest path (see, e.g., [29, Ch. 21]). After all
nodes in Vt−1 and all edges incident to it have been revealed (step 3 of the
protocol in Section 5.2), cga computes the distance between it and any other
node in Vt−1 by invoking Dijkstra’s algorithm on the sub-graph Gt, so that
cga can easily find node qt+1. If Dijkstra’s algorithm is implemented with
Fibonacci heaps [29, Ch. 25], the total time required for predicting all |V |

labels is3 O
�
|V ||E|+ |V |2 log |V |

�
. In practice, the actual running time is often

lower, since at each time step t Dijkstra’s algorithm can be stopped as soon
as the node of ∂Vt−1 nearest to it in Gt has been found.

On the other hand, the space complexity is always linear in the size of G.

3In practice, the actual running time is often far less than O
�
|V ||E|+ |V |2 log |V |

�
, since at

each time step t Dijkstra’s algorithm can be stopped as soon as the node of ∂Vt−1 nearest
to it in Gt has been found.
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5.6.1 An improved analysis for the binary case

We now describe a special implementation for the case of binary labels. The
additional assumption λ(s1, . . . , sd) = maxk `(sk−1, sk) allows us to exploit
the simple structure of regular partitions. Coarsely speaking, we maintain
information about the current inner border and clusters, and organize this
information in a balanced tree, connecting the nodes lying in the same cluster
through special linked lists.

In order to describe this implementation, it is important to observe that,
since the graph is revelead incrementally, it might be the case that a single
cluster C in G at time t happens to be split into several disconnected parts
in Gt. In other words, the algorithm always knows that each group of nodes
being part of the same uniformly labeled and connected subgraph of Gt is
a subset of the same cluster C in G, but need not know if there are other
groups of nodes of Vt with the same label, that are actually part of C.

We call sub-cluster each maximal set of nodes that are part of the same
uniformly labeled and connected subgraph of Gt. The data structures we
use for organizing the nodes observed so far by the algorithm combine the
following substructures:

� A self-balancing binary search tree T containing the labeled nodes in
∂Vt. Each node of T corresponds to a node in ∂Vt and contains the
associated label. We will refer to nodes in ∂Vt and to nodes in T
interchangeably.

� Given a sub-cluster C, all nodes in C\ ∂Vt are connected via a special
list L(C) called border sub-cluster list.

� All nodes in each border sub-cluster list L(C) are linked to a special
time-varying set r(C) called sub-cluster record. This record enables
access to the first and last element of L(C) and stores the size of L(C).

Let C(it) be the sub-cluster containing it at time t. The above data struc-
tures are intended to support the following operations, which are executed in
the following order at each time step t, just after the algorithm has selected
qt.

1. Insertion of it. When it is chosen by the adversary, cga receives
the list N(it) of all nodes in Vt−1 adjacent to it. Note that all nodes
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in N(it) belong to ∂Vt−1 and are therefore in T at the current time
step. In order to perform the insertion, the algorithm inserts it into T
and temporarily considers it as the unique node of a new sub-cluster
C(it). Hence, the algorithm creates a border sub-cluster list L(C(it))

containing only it and a sub-cluster record r(C(it)) linked solely to it.
In this step it is (provisionally) inserted into T and in L(C(it)) even if
it has no unexplored neighbors at time t. The insertion of it requires
O(log t) time, since |∂Vt| � t.

2. Union of sub-clusters. After prediction, the label yt of it is revealed.
Since all nodes in N(it) having the same label as it belong now to the
same sub-cluster, we need to execute a sequence of merging operations
on each node j 2 N(it). This essentially involves concatenating border
sub-cluster lists and updating the links from nodes in T to sub-cluster
records. The merging operation can be implemented as a union-by-
rank in standard union-find data structures (e.g., [29, Ch. 22]).

3. Elimination of nodes. All nodes in {it} [ N(it) that are not part of
∂Vt are deleted from T , and the linked sub-cluster records are updated
(or eliminated). Once a node gets deleted from T , it will never be-
come again part of T . Hence, executing this step over the whole graph
requires O(|V | log |V |) time.

4. Choice of qt+1. If the border sub-cluster list of C(it) is not empty,
qt+1 is chosen arbitrarily among the nodes of this list. Otherwise qt+1
is set to any node in T .

Observe that checking all neighbors of it in T for deciding whether it is
necessary to run a merging operation in step 2 takes time O(|N(it)| log t).
Moreover, we now show that the running time for actually executing the
merging operation on |V | nodes is O

�
|V | log |V |

�
. In fact, for each node j in

N(it) cga repeats the following substeps:

1. We reach node j in T in time O(log t).

2. If the label of j is equal to yt, the algorithm merges the sub-cluster C(j)

with the current sub-cluster C(it) as follows: The algorithm concate-
nates the two associated border sub-cluster lists L(C(it)) and L(C(j)).
Let now Lmin be the smaller border sub-cluster list and Lmax be the
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larger one. cga makes all nodes of Lmin to point to the sub-cluster
record rmax of Lmax. The sub-cluster record associated with Lmin is
eliminated and the size of the concatenated border sub-cluster list of
rmax is updated, along with its initial and final nodes. This opera-
tion requires O(|Cmin|) time. Note that, after the update of the link
between a node s 2 V and its sub-cluster record, the size of the new
sub-cluster of s must be at least doubled. This implies that the total
time needed for this operation over all nodes in V is O(|V | log |V |).

3. If instead the label of j is different from yt the algorithm does nothing.

Figure 5.9 depitcs the first three steps (Insertion, Union, and Elimination)
of the above sequence at time t = 15.

The dominating cost in the time complexity is the total cost for reaching
at each time t the nodes of Vt−1 adjacent to it. (hence

∑|V |−1
t=1 |N(it)| = |E|).

Therefore the overall running time for predicting |V | labels is O
�
|E| log |V | +

|V | log |V |
�

= O
�
|E| log |V |

�
, which is the best one can hope for (an obvious

lower bound is |E|) up to a logarithmic factor.4

As for space complexity, it is important to stress that on every step t
the algorithm first stores and then throws away the received node list N(it)

—in the worst case the length of N(it) is linear in |V |. The space complexity
is therefore O(|V |). This optimal use of space is one of the most important
practical strengths of cga since the algorithm never needs to store the whole
graph seen so far.

5.7 Conclusions and open questions

We have presented a first step towards the study of problems related to
learning labeled graph exploration strategies. As we said in Subsection 5.1.1,
this is a significant departure from more standard approaches assuming prior
knowledge of the underlying graph structure.

Our exploration/prediction model could be extended in several direc-
tions. For example, in order to take into account information related to the

4Of course, if the algorithm knew beforehand the total number of nodes in V and each
node were numbered with an integer from 1 to |V | then, instead of T , we could use a static
data structure with constant time access to each element. In this case, the total time
complexity would be O(|E| + |V | log |V |).
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Figure 5.9: A snapshot of cga and related data structures at time t = 15 on a
labeled graph made up of two clusters (cluster “+” and cluster “−”). For simplicity
in this figure ij = j, for j = 1, . . . , 15. The top left part shows the graph with
revealed and unrevealed nodes. Just before node 15 gets revealed, the graph contains
three subclusters: C1 = {2, 3, 4, 5}, C2 = {1, 6, 7, 8, 9, 10}, and C3 = {11, 12, 13, 14}.
The associated border sub-cluster lists L(C1) = {2, 3, 4}, L(C2) = {1, 6, 7, 8}, and
L(C3) = {11, 12, 13} are organized into a balanced tree T . The corresponding sub-
cluster records contain the cardinality of each list as well as a pointer to the first
and the last element of the lists. Bottom left (a): When node 15 is revealed, a new
(provisional) cluster C4 = {15} is created along with the associated list and record.
On the right-hand side a sequence of merging operations between sub-clusters is
shown. In particular: (b) shows how C4 is merged with C3; in (c) the result of the
previous merger is merged with C1. In (d) the elimination of all nodes which are
no longer in the inner border of V15 (nodes 7 and 12 in this case) is shown.

presence of edge weights, our protocol of Section 5.2 could be modified to
let cga observe the weights of all edges incident to the current node. When-
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ever the weights of intra-cluster edges are heavier than those of inter-cluster
ones, our algorithm could take advantage of the additional weight informa-
tion. This calls for an analysis able to capture the interaction between node
labels and edge weights.

We may also consider scenarios where the optimal prediction on a node i
is some (possibly stochastic) function of an unknown node parameter ui 2 R

d

and some time-dependent side information xi,t 2 R
d. In this model the

advertising agent can potentially suffer loss upon each visit of the same
node i, until ui is learned sufficiently well. This creates a trade-off between
exploration of new regions and exploitation of nodes that have been visited
often enough in the past. In this context, a regular labelling of the graph is
an assignment of vectors ui such that nodes can be partitioned in a way that
kui − ujk tends to be small whenever i and j belong to the same partition
element.

Moreover, it would be interesting to see whether algorithms as efficient
as cga could be made competitive with respect to clustering of the nodes
which are more general than regular partitions. Some examples of these
weaker notions of valid clustering are mentioned in [7].

Finally, recalling that the lower bound of Theorem 2 holds for the trans-
ductive learning protocol as well —see Subsection 5.1.1, it would be inter-
esting to further investigate the connections between on-line transductive
learning protocols studied in Chapter 2 and 3 and semi-active learning pro-
tocols, like the one studied in this chapter.
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Chapter 6

Conclusive remarks

We presented an in-depth investigation on the problem of classifying the
nodes of a graph, whose edges represent the interaction between pairs of
data entities. We focus on solving the problem by relying on the graph
topology and the homophilic bias only. This is a significant departure from
more standard approaches, which assume that the data set contains also
information associated with each individual node. However, the scope of
this study is not only restricted to this specific bias, since the validation
of the power of the homiphilic principle can be seen as a first step toward
the development of more complex methodologies, able to take into account
both the relational components of the input data set and the information
associated with each individual data element.

In developing our algorithms, we focus on providing theoretical guaran-
tees on prediction accuracy and, at the same time, on computational effi-
ciency. The development of methods that simultaneously guarantee optimal
accuracy and computational efficiency is a very challenging goal. In fact,
the accuracy of most methods in the literature is not rigorously analyzed
from a theoretical point of view. Likewise, tight time and space complexity
bounds are not generally provided. This contrasts with the need to manage
extremely large relational datasets like, e.g., snapshots of the World Wide
Web.

The systematic study of the node classification that we carried out poses
several open problems and suggests new research directions to be investi-
gated.

One of the most important aspect of our methodology, which is perhaps

127
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the main key for obtaining very good scalability properties, is the use of
spanning trees of the original graph. Spanning trees (especially uniformly
generated) enable the use of fast combinatorial techniques and, at the same
time, condense in a suitable way the structural information of the given
graph. However, in the active setting (see Chapter 4), it is not easy to
derive a theoretical guarantee on the performance of algorithms operating
only with spanning trees of the input network. This suggests that, in some
cases, the information contained in the networked data could perhaps be
synthesized in a structure richer than a tree. A natural research direction
for addressing this problematic issue might be represented by the study of
a suitable combination of different spanning trees, which could shed light
on the use of new sparsification techniques even for other node classification
settings.

Another interesting research direction of our works is represented by ex-
tending our methods for handling datasets with several relations of different
arities and different entity types. Assuming that the labeling are binary,
if these kind of datasets are mapped into an undirected graph, for exam-
ple with an incidence graph ([17] Chapter 1 Section 3), then one could use
the algorithms described in Chapter 2 and 3, independently of the fact that
prediction are not required for all vertex types. The mistake bound could
be related to the complete labeling (involving also the nodes that are not
originally associated to any label) which is consistent with the labels present
in the dataset and minimizes the considered regularity measure. However, it
is not clear how to interpret graph connectivity measures, like the effective
resistance, relative to the incidence graph. Hence, it would be interesting to
develop some analytical tool and new methodologies for handling this kind
of datasets, providing performance guarantees that can be easily interpreted.

Some of the tools and methods we developed could be also be used for
addressing link prediction problems, in which the learner must predict the
existence of new links as the input network evolves in time. The study of
the graph topology performed for classifying the nodes of the input graph
could turn out to be useful even for solving this problem, since the research
of new high-throughput sparsification techniques, similar to the uniformly
generated random spanning tree, could reasonably be the key for developing
scalable algorithms even in this context. For similar reasons, it is worthwhile
to mention also the link classification problem (also known as edge sign
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prediction problem —see [61]), in which the learner is required to predict
the semantic binary label associated with each edge. In the link classification
model each edge can be in fact positive, representing friendship or similarity,
or negative, meaning antagonism or dissimilarity. As highlighted in [61], an
input graph for this problem could be separated in different clusters such
that the intra-cluster edges are mostly positive links, whereas the inter-
cluster ones are mostly negative. A possible bridge between node and link
classification problem is that a solution for the node classification problem
entails a "collateral" partitioning in cluster for the input network, so that
the two problems could be somehow cast in a common clustering framework.

Finally, besides the research directions mentioned above, the study we
carried out on the node classification problem based on network topology
and homophily could be combined both from a theoretical and practical
viewpoint with classification methodologies relying on side information as-
sociated to each individual node. In fact, we believe that modularity is one
of the main feature of our classification procedures, and the enhancement of
our techniques to handle more structured relational data and more complex
biases may be one of the most promising directions for future work.
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