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ABSTRACT 

 

Nucleophosmin (NPM1; also known as B23, NO38, or numatrin) is an abundant nuclear-

cytoplasmic shuttling protein that is involved in different cellular processes such as 

centrosome duplication, cell cycle progression and stress response [1-4]. NPM1 physically 

interacts with several nuclear proteins, including nucleolin [5], p120 [6], p53 [7] and 

Mdm2 [8]. Recently, it has been demonstrated that NPM1 forms a stable complex with the 

tumor suppressor p19/Arf [9] and it is absolutely required for its correct localization and 

stabilization in the nucleolus [10, 11]. The observation of chromosomal translocations of 

the NPM1 gene in human hematopoietic cancers has suggested that NPM1 contributes to 

tumor development by activating the oncogenic potential of the fused protein partners. 

Moreover, it has been found that about one-third of primary adult Acute Myeloid 

Leukemia (AML) patients bear mutations in the last exon of the NPM1 gene [12], leading 

to an aberrant cytoplasmic localization of the protein (NPMc+, [13]). Interestingly, the 

accumulation of NPMc+ in the cytoplasm appears responsible for the delocalization of 

proteins that, under normal conditions, interact with wild type NPM1 in the nucleus. In 

particular, NPMc+ binds, delocalizes and inactivates the p19/Arf tumor suppressor [14], as 

well as the Fbw7γ F-box protein that is involved in the proteasome-dependent degradation 

of the c-Myc oncoprotein [15]. These data prompted me to explore the possibility of 

blocking the aberrant activity of NPMc+ using NPMmutant-specific antibodies.                                                                                                         

I report here the isolation, from the ETH2-Gold phage display library [16], of a 

recombinant antibody in scFv format specific for the NPMc+ protein. It univocally targets 

the mutated region at the C-terminal end of NPMc+. The specificity of this antibody was 

evaluated in vitro by performing western immuno-blot analyses,  immunofluorescence and 

immunoprecipitation assays. I show that the scFv antibody performs as well as the mouse 
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monoclonal antibody specific for the same NPMc+ mutation and used as control. It is also 

able to immunoprecipitate the overexpressed and the endogenous NPMc+ proteins. 

Furthermore, I have found that the scFv can be efficiently expressed in mammalian cells as 

an intrabody, upon transfection of specific vectors that carry its cDNA sequence, and that it 

accumulates in the nucleus when fused to a nuclear localization signal (NLS). This 

evidence opened the opportunity to try the in vivo re-localization of NPMc+ from 

cytoplasm to the nucleus by using the recombinant antibody as a specific carrier. However, 

scFv-NLS fusions were unable to re-locate NPMc+ into the nucleus. The addition of 

multiple NLSs to the scFv did not modify the sub-cellular localization of NPMc+. In 

conclusion, I have been able to isolate a recombinant antibody that specifically targets 

NPMc+ protein. This antibody, directed against the C-terminal epitope of the mutated 

protein, has been biochemically and functionally characterized both in vitro and in vivo. 

The scFv successfully expresses as an intrabody in mammalian cells and specifically 

interacts with the native NPMc+ in vivo, thus giving the premises for its further 

development as a potential innovative therapeutic tool.   
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CHAPTER 1 

 

1. The immune system 

The immune system is a complex network of chemical mediators, cellular components, 

specialized tissues and organs that has evolved to protect the integrity of the organism 

against any kind of pathogen, chemical substance and foreign agent that may penetrate the 

body and damage it. This is accomplished through the identification, neutralization and 

removal of the exogenous molecules, therefore, the immune system must be able to 

distinguish between what is part of the organism, such as its own healthy cells and tissues 

(“self”), and what could be potentially harmful (“not self”). This ability is mediated by 

different classes of receptors and proteins (Toll-like receptors, T-cell receptors, MHC 

complexes and immunoglobulins), which either expose on their surface or directly 

recognize specific elements of the infectious agents (antigens), eliciting an appropriate 

immune response. Immunity can be subdivided into innate and adaptive, depending on the 

types of recognition mechanisms involved and responses developed. 

1.1 The innate immune system 

The innate immune system is the first host defense against any foreign pathogen that enters 

the body; it acts in a non-specific manner and does not give a long-term immunity. The 

innate immune response is very rapid due to the fact that i) only few kinds of molecular 

profiles are recognized as “non self” and ii) all the immunological components involved 

are already predetermined at the genetic level and are able to carry out their functions 

without the need of any further maturation step. First responses to infections are mediated 
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by i) chemical molecules, responsible for the process of inflammation (cytokines), ii) 

physical barriers (epithelial cells of the skin, mucous membranes and secretions), iii) blood 

proteins (complement system factors), and iv) cellular components, predominantly 

members of the myeloid cell line (mast cells, granulocytes, macrophages, dendritic cells) 

and, in minor part, of the lymphoid one (natural killer cells, γδ T lymphocytes and B1 

lymphocytes). These cells are characterized by the presence of specific membrane 

receptors responsible for antigen recognition and presentation (antigen presenting cells, 

APC); they are able to directly eliminate pathogens by phagocytosis and to induce 

inflammatory responses.  

1.2 The adaptive immune system  

Specific immunity is carried out by lymphoid B cells (humoral immunity) and T cells 

(cellular immunity) that work together with all the accessory cells, which are activated 

during the innate immune response. In mammals, B and T lymphocytes are produced in the 

bone marrow and mature in the bone marrow (B) and in the thymus (T), respectively 

(Figure 1A). After antigen exposure, T cells become activated, mature and differentiate in 

T helper cells, that coordinate the immune response by activating B lymphocytes and 

macrophages, and T cytotoxic cells, that are responsible for cell lysis. The complex 

mechanism carried out by the T helper cells relies on cell-cell interactions and on the 

release of soluble molecules (cytokines). In the presence of an antigen, B cells become 

activated, start proliferating (clonal expansion) and differentiating (primary response, 

Figure 1B). B cells differentiate into the germinal centers of the secondary lymphoid 

organs and develop into effector cells (plasma cells), that secrete immunoglobulins (Igs, 

named also antibodies) and memory B cells. Most likely, adaptive immunity has been 

selected because of its ability to adjust and change in a very specific way, each time an 

exogenous molecule comes in contact with one of its components. The large variability of 
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the molecular combinations represented by the antigens (it is estimated to be 107-109 

different variants) is well balanced by the enormous number of different molecules 

responsible for their identification. The adaptive immune response has evolved two key 

functions: i) the ability to retain an immunological memory, by preserving the cells 

responsible for the successful recognition and neutralization of exogenous agents 

(secondary response) and ii) the capacity to train all its components to discriminate 

between “self” and “non self”, in order to avoid autoimmunity (tolerance mechanism). The 

adaptive system acts through three consecutive steps: i) antigen recognition, ii) 

lymphocytes activation, iii) elimination of the antigen (effector phase). After these events 

have occurred, the adaptive system returns to homeostasis but preserving memory cells.   

 

A)

B)
 

Figure 1. Human lymphoid organs and adaptive immune response. A) Schematic representation 

of the human primary and secondary lymphoid organs (from “Mayo Foundation for Medical 

Education and Research”, www.mayo.edu). B) Scheme of the main cellular components and events 

involved in the adaptive immune response (from “the Human Immune Response System”, 

www.uta.edu/chagas/images/immunSys.jpg) 
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2. Immunoglobulins: molecular structure and function 

G. Edelman and R. Porter were the first to identify the structure of immunoglobulins, a 

discovery that was awarded by the Nobel Prize in 1972 [17, 18]. Igs are “Y” shaped 

glycoproteins circulating in the organism, able to neutralize pathogens by specifically 

recognizing their antigenic determinants (epitopes). Mature B cells express on their plasma 

membrane immunoglobulins that serve as antigen receptors (IgM) and, only after antigen 

exposure, differentiated B cells (plasma cells) start secreting immunoglobulins as soluble 

molecules (Figure 1B). IgGs are the most abundant class of immunoglobulins present in 

human blood (ca. 85% of serum Ig) and they are the most widely used for therapeutic and 

diagnostic applications [19]. They are organized into a tetrameric structure, formed by the 

interaction between four chains: two identical heavy chains (H, MW: 50-70 KDa) and two 

identical light chains (L, MW: 23 KDa), stabilized by hydrogen bonds and inter-/intra-

chain disulfide bridges. Both types of chains present a series of repetitive units, called 

immunoglobulin domains. In a typical IgG it is possible to recognize two functional 

regions joined by a flexible stretch of polypeptide chain (hinge region): i) the constant 

region, responsible for mediating the interaction between the antibody and the complement 

components or the innate immunity cells (Fc, fragment crystallizable); ii) the variable 

region, where the antigen binding site is located (Fab, fragment antigen binding; Figure 

2A). The portion of the antibody responsible for binding to the target epitope is called 

paratope and is constituted by the contribution of the variable domains of both light and 

heavy chains. Each variable domain contains three hypervariable complementarity 

determining regions (CDR1, CDR2, CDR3), that are responsible for the specificity of the 

antigen recognition. These regions form three flexible loops stabilized by the β-sheets of 

the framework regions (FR, Figure 2B and 2C). Among the six CDRs present in each 

antigen combining site, the two CDR3 sequences show the greatest variability, which is 
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generated by specific genetic and molecular mechanisms. Five different constant heavy 

chains (α, γ, δ, ε, µ) define five different functional classes (isotypes) of antibodies, named 

respectively IgA, IgG, IgD, IgE and IgM. Each of them presents specific effector functions 

and tissue distributions. 

 

Figure 2. Molecular structure of immunoglobulins. A) Scheme of an immunoglobulin showing the 

antigen binding site (Fab) and the Fc portion. B) Schematic representation of an immunoglobulin 

variable domain (VL). The three complementarity determining region (CDR) loops are coloured; 

β-sheets of the framework regions are in gray. C) Scheme of a typical variable domain structure 

showing the organization of the framework regions (FRs) and the complementarity determining 

regions (CDRs) (from “Cellular and molecular immunology”, Abbas and Lichtman, 5th edition) 

2.1 The immunoglobulin genes 

The large variability of the immunoglobulins associated to the membrane of B 

lymphocytes is generated in the bone marrow during B cells maturation. This process 

involves rearrangements into the germline antibody encoding genes. In fact, their 

transcription and translation starts after a series of random rearrangements (somatic/V(D)J 

recombination) has occurred. Each mature B cell exposes on its surface one specific 

immunoglobulin which recognizes only one antigenic epitope and which is encoded by a 
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single functional heavy chain gene and a single functional light chain gene. 

Immunoglobulin light chains (κ and λ) and heavy chains are encoded by different genetic 

loci constituted by distinct sequences, present in multiple copies (Figure 3). Some intronic 

regions, which contribute to the regulation of transcription and RNA splicing, are located 

between these genetic segments. The light chains (κ and λ) are encoded by the V and J 

(joining) genes, which rearrange giving the VLJL segment (light chain variable domain), 

and by the CL segment (light chain constant domain). The heavy chains are encoded by the 

V, D (diversity) and J genes, which rearrange giving the VHDHJH segment (heavy chain 

variable domain), and by the CH segment (heavy chain constant domain). The additional D 

(diversity) genetic region encodes for some of the heavy chain CDR3 residues. 

 

 

Figure 3. Genetic organization of the mouse immunoglobulin loci. (from “Immunobiology”, 

Janeway et al., 5th edition) 

2.2 The V(D)J recombination 

The process of V(D)J recombination is site-specific and is mediated by a complex of 

specific enzymes (V(D)J recombinases). The random rearrangements that occur during B 

lymphocytes maturation are regulated by a precise cascade of events in each genetic locus. 

The heavy chain segments undergo a first rearrangement which creates a DJ junction, 

deleting the interposed region. Then, one V gene segment is bound to the DJ portion 
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creating the rearranged VDJ complex; therefore, the primary RNA transcript comprehends 

the VDJ complex together with the proximal C genes (both µ and δ). A second specific 

splicing event between the VDJ region and the Cµ gene creates the functional mRNA 

encoding for the µ heavy chain (Figure 4, upper part). A similar process of recombination 

occurs in the light chain encoding regions and creates a VJ complex which is then 

combined with the C region (κ or λ), leading to a functional mRNA encoding for the κ or λ 

light chains (Figure 4, lower part).  

 

 

Figure 4. Gene rearrangement of the immunoglobulin heavy and light chains. (from Gilbert 

S.F., “Developmental biology”, 8th edition) 
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In the endoplasmic reticulum, the two newly synthesized heavy and light chains are linked 

together and translated creating a functional IgM, which remains fused to the B cell plasma 

membrane. Although B lymphocytes are diploid cells, a fine regulatory mechanism which 

allows the expression of the rearranged genes encoded by one of the two chromosomes 

(allelic exclusion), ensures that each B cell will present one single specific 

immunoglobulin. The generation of the highly variable repertoire of immunoglobulins 

relies not only on the contribution of the combinatorial diversity, which takes place during 

somatic recombination of the different encoding genetic segments, but also of the 

junctional diversity, due to the introduction of DNA sequence variations (insertion and 

deletions of nucleotides) by a mechanism of improper joining of the gene segments. 

2.3 B lymphocytes differentiation 

Mature B cells leave the bone marrow expressing on their membrane IgM or IgD with a 

single antigenic specificity and circulate in the blood and lymph, which transport them to 

the secondary lymphoid organs. After antigen recognition, they start proliferating (clonal 

expansion), differentiating and creating a population of plasma cells, which secretes 

antibodies and memory B cells. In the germinal centers, actively proliferating B cells 

undergo a further process of immunoglobulin differentiation (somatic hypermutation) in 

the variable heavy and light chains, expecially in the residues located in the CDRs. 

Successively, new intrachromosomal recombination events in the heavy chain constant 

genes generate a change into the immunoglobulin class (class switching), while antigen 

specificity is preserved. Recently, it has been found that, although very different, these two 

molecular events are linked by the intervention of the AID (activation-induced deaminase) 

enzyme, which causes localized DNA deaminations. Based on the DNA damage repair 

pathway activated, cells undergo one of the two processes [20-22]. 
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2.4 The antigen-antibody binding  

The hypervariable regions of the heavy and light chains of immunoglobulins create a cleft 

where the antigenic determinants perfectly adapt in a sort of key-lock mechanism. The 

bonds that hold the antigen linked to the antibody are multiple and reversible, because of 

their non covalent nature. They consist of: hydrogen bonds, electrostatic bonds, Van der 

Waals forces and hydrophobic bonds. Some distinctive properties of the immunoglobulins 

have to be considered when analyzing antigen-antibody interactions: 

• Affinity: antibody affinity defines the strength of the interaction between a single 

antigenic determinant (epitope) and a single combining site of the antibody. It is 

given by the sum of the attractive and repulsive forces at the antigen-antibody 

interface. 

• Valency: antibody valency is the number of binding sites per antibody molecule. 

IgGs, for example, have two identical antigen binding sites (valency = 2).  

• Avidity: antibody avidity is a measure of the overall strength of binding between 

an antigen and an antibody. For example, a multimeric antibody (like a pentameric 

IgM, which presents ten binding sites) may display a stronger avidity than that of a 

conventional IgG (which presents two binding sites) for the same polyvalent 

antigen. 

• Specificity: antibody specificity refers to the ability of an individual antibody 

combining site or of a population of antibody molecules to react only with a distinct 

antigen or with a definite epitope on a macromolecular antigen. Antibodies can 

distinguish differences between i) the primary structure of an antigen, ii) the 

isomeric forms of an antigen and iii) the secondary and tertiary structures of an 

antigen.  
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• Cross-reactivity: antibody cross-reactivity refers to the ability of an individual 

antibody combining site to react with more than one antigenic determinant, or the 

ability of a population of antibody molecules to react with more than one antigen. 

Cross-reactions arise because the cross-reacting antigen shares an epitope with the 

immunizing antigen or because it presents an epitope which is structurally similar 

to one of the immunizing antigen (multispecificity).  

3. The antibody-mediated immune response 

The fraction of immunoglobulins present in a serum upon stimulation by an antigen is very 

heterogeneous due to the fact that, different plasma cells start to secrete different classes of 

antibodies, each recognizing specific epitopes present on the surface of the same antigen. 

This “polyclonal” response is primarily responsible for the protection of an organism 

against pathogens. Typically, it is possible to induce a polyclonal antibody response in vivo 

by immunizing an animal (usually a mouse) with the desired antigen. After the immune 

response has taken place and B lymphocytes have proliferated and differentiated, 

polyclonal IgGs can be separated from the animal serum by purification against their 

target. On the other hand, in order to obtain monospecific antibodies against a particular 

epitope, it is possible to select in vitro the single clone of plasma cells from which they are 

secreted: this is called “monoclonal” antibody (mAb) isolation. 

3.1 Monoclonal antibodies and their therapeutic applications  

Due to their unique properties, immunoglobulins have also been employed for many years 

now as valid tools in basic research, diagnostic and therapy. Therapeutic antibodies can be 

provided in vivo to i) specifically block the activity of a particular molecule, by binding its 

target (for example, they can prevent cell growth, by blocking specific cell surface 

receptors) or ii) they can be modified in vitro to obtain specialized carriers for the delivery 
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of radionuclides, toxins, drugs and enzymes. Monoclonal antibodies (mAbs) were firstly 

introduced to detect and purify their target antigen. In 1975, Kohler and Milstein ([23], 

Nobel Prize in 1984) revolutionized the field of immunology by providing the feasibility to 

fuse a myeloma cell line that had lost the ability to secrete antibodies, with healthy plasma 

cells obtained from spleens of immunized mice. This was the start of hybridoma fusion 

technology. The resulting hybridoma contains both the genes that control the specific 

antibody production, inherited from the spleen cells, and the genes that allow unlimited 

proliferation, inherited from the myeloma cells. Serial dilutions facilitate the separation of 

single clones secreting antibodies that can be grown in microtitre plates and screened by 

ELISA in order to select those suitable for large-scale production (Figure 5A). In a few 

years, the exciting possibility of raising unique antibodies against almost any epitope and, 

in particular, against tumor-specific antigens has led to the development of 

immunotherapy. Throughout the progression of monoclonal drug development, different 

formats of antibodies have been created: murine, chimeric, humanized and human (Figure 

5B). Initially, therapeutic antibodies were murine, but their use was limited by many side-

effects: i) short serum half-life in vivo, ii) limited penetration into tumor sites, iii) reduced 

stimulation of cytotoxicity, iv) induced immunogenicity with possible onset of allergic 

reactions in treated patients, v) unwanted Fc-induced effector functions (cytokine 

activation, receptor blockade [24]). To overcome some of these drawbacks, chimeric 

(murine variable regions fused with human constant regions [25, 26]) and humanized 

antibodies, obtained by grafting murine hypervariable domains into human antibodies, 

were developed [27]. However, it was observed that humanized antibodies bound the 

antigen with much lower affinities than their parent murine monoclonal antibody [28, 29]. 

Fully human antibodies were obtained after the introduction of large scale E. coli 

expression [30, 31] and phage display technology [32]. Currently, hundreds of monoclonal 

antibodies are employed in clinical trials and the U.S. FDA has approved many of them for 
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cancer treatment [33, 34], transplant rejection [35], reumathoid arthritis [36] and several 

other diseases (Table 1). Therapeutic application of monoclonal antibodies is defined as 

“passive immunotherapy” and relies on the repeated administration of antigen-specific 

antibodies obtained outside the body of the patients, in order to try to “immunize” them 

against a disease. In this case, the host’s immune system is not directly stimulated to react. 

In contrast, the “active immunotherapy” approach aims at the long-term induction of a 

disease-specific immune response and tries to train up the host’s immune system to 

recognize and destroy specific cells. This is achieved by administering i) vaccines created 

using malignant cells isolated from the patient, that have been presented to and cultured in 

vitro with the patient’s own immune system cells or ii) vector-based vaccines, through 

which a virus or another vector is exploited to introduce disease specific proteins together 

with other molecules that can stimulate the patient’s immune system to react specifically 

against them. 

         

Figure 5. Monoclonal antibodies and their formats. A) Simplified representation of the main 

steps necessary to obtain monoclonal antibodies by the hybridoma fusion technology (from “After 

C. Milstein. Monoclonal antibodies”. Copyright © 1980 by Scientific American, Inc.). B) Different 

formats of monoclonal antibodies engineered for immunotherapeutic applications (from[37]) 
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4. Passive cancer immunotherapy 

Nowadays, the most widely diffused cancer immunotherapy approach relies on the 

targeting by the antibody of a protein or receptor specifically expressed on transformed 

cells (targeted therapy), in order to try to induce tumor cells death. In fact, even though 

malignant cells are basically recognized by the immune system as the patient’s own cells, 

in many cases they display particular antigens that are inappropriate for the cell type or the 

stage of development, or they overexpress surface receptors which are rare or absent in 

healthy cells. The biological effects upon clinical administration of antibodies are multiple 

and include neutralization of signaling proteins or specific blocking of receptor binding 

sites [38]. Typically, cancer cells growth can be inhibited employing mAbs which are able 

to prevent the interaction between growth factors and their receptors. mAbs can also mark 

tumor cells in order to elicit an immune response that can destroy them by antibody-

mediated effector functions. Moreover, antibodies can also be used as carriers for the 

targeted delivery to the tumor sites of covalently linked cytotoxic agents. Even if passive 

cancer immunotherapy often requires high doses of tumor antigen specific mAbs and is of 

limited duration, antibody-based therapies have shown significant results in both the 

treatment of solid tumors and hematological malignancies. Nevertheless, this approach 

presents some limitations due to the complexity of a disorder such as cancer. In fact, 

therapy performed with mAbs has be proven to be not always successful because: i) 

antibodies are not used as a first-line therapy and often in patients already weakened and 

subjected to chemotherapy or surgery, ii) they are targeted against antigens that, even if 

present in a specific type of cancer, can vary between different individuals, iii) they can 

become ineffective due to the intrinsic high rate of mutations of tumor cells (tumor escape) 

and finally, iv) they can often show remarkable toxicity, especially when administered at 

high doses. 
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Trade name Target Source Year Indication 
Orthoclone®  CD3 murine 1986 Transplant rejection 

ReoProTM CD41 chimeric 1994 Cardiovascular disease 

RituxanTM CD20 chimeric 1994 Non-Hodgkin’s lymphoma 
Zenapax®  CD25 humanized 1997 Transplant rejection 
REMICADE®  TNF-α chimeric 1998 Rheumatoid arthritis 
Simulect®  CD25 chimeric 1998 Transplant rejection 
SynagisTM RSV F-protein chimeric 1998 RSV infection 
Herceptin®   Her-2 humanized 1998 Breast cancer 
MylotargTM CD33 humanized 

conjugated with 
ozogamicin 

2000 Acute Myeloid Leukemia 

Campath®  CD52 humanized 2001 Chronic lymphocytic leukemia  
Zevalin®  
 

CD20 murine conjugated 
with Yttrium- 90  

2002 Non-Hodgkin's lymphoma 

HUMIRATM TNF-α human 2003 Rheumatoid arthritis 
Bexxar®  
 

CD20 murine conjugated 
with Iodine 131 

2003 Non-Hodgkin’s lymphoma 

Xolair®  IgE  humanized 2003 Severe (allergic) asthma 
ErbituxTM EGFR chimeric 2003 Colorectal cancer 
TYSABRI®  VLA4 humanized 2004 Multiple Sclerosis 

AvastinTM 
 

VEGF humanized 2004 Metastatic colorectal cancer, non-
small cell lung cancer 

Vectibix™   EGFR human 2006 Metastatic colorectal cancer 
LUCENTIS™  VEGF-A humanized 2006 Wet Macular Degeneration 
Soliris®  CD59 humanized 2007 Paroxysomal nocturnal 

hemoglobinuria 
CIMZIA ®  TNF-α PEGylated 

fragment 
2008 Rheumatoid arthritis 

SimponiTM  TNFα  human 2009 Rheumatoid & psoriasic arthritis, 
active ankylosing spondylitis 

 

Table 1. List of the U.S. FDA approved mAbs for therapy in humans (updated from 

http://tbiweb.org/tbi/file_dir/TBI2008/TBI2008_2_24.pdf) 
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CHAPTER 2 

 

1. The phage display technology 

Phage display was introduced in 1985 by George Smith, who created a vector for the 

expression of an exogenous peptide on the surface of filamentous phages [39]. Since then, 

different kinds of libraries exposing a large variety of peptides and proteins have been 

generated and, in the last decades, these tools have given important contributions to many 

scientific discoveries. The main advantage of the use of phage display libraries is that they 

comprehend billions of unique clones that can be simultaneously screened against almost 

any target of interest. The principle of phage display relies on the fact that the exposed 

molecules are genetically fused to a phage coat protein in a way that each phage expresses 

only one single clone. In this manner, a straight link is established between the displayed 

phenotype and the corresponding genotype carried by the bacteriophage [40].  

1.1 Filamentous bacteriophages 

Filamentous phages are the type of bacteriophages most commonly employed to expose 

biological molecules. They are single-stranded DNA (ssDNA) viruses that infect gram-

negative bacteria. Their structure is similar to a filament, with a length of about 900 nm 

and a diameter of 6-10 nm. Filamentous phages are known as Ff and include strains M13, 

fl, Fd and ft. A shell (capsid) protects the ssDNA molecule that has a length of 

approximately 6400 bp. The capsid is constituted by several oligomeric coat proteins: 

pVIII, which is the most abundant and is present in about 2700 copies, pVII and pIX, 

present on one side of the phage in three to five copies, and pIII and pVI located on the 
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other side and present in three to five copies as well (Figure 6A and B). In most cases, pIII 

is the protein fused to the displayed polypeptide: it has a N-terminal domain, that binds the 

E. coli F pilus and a C-terminal domain, that is anchored inside the particle and is 

constitutive part of the capsid structure. Filamentous phages infect bacteria by exploiting 

as a receptor the F pilus present in “male” E. coli cells; they do not induce host cell lysis, 

but instead they induce them to produce and secrete new viruses. A viral life cycle (Figure 

7) can be subdivided into three main steps: i) infection (attachment and penetration), ii) 

replication of the genome and iii) maturation (assembly and release) of the new phages. 

The process starts with the interaction between the pIII protein and the end of the E. coli F 

pilus: the pVIII protein undergoes a conformational change and shortens allowing the 

phage DNA to be exposed and then included into the host cell cytoplasm. Later, pVIII is 

stripped off and ends up in the inner cell membrane, where it may be stored and re-used to 

produce new particles. The circular single-stranded DNA (+ strand) is converted into a 

double-stranded replicative form (RF) and at this point, two proteins play a critical role: pII 

and pV. The first one, pII, nicks the double stranded form of the genome to initiate the 

rolling-circle replication of the + strand and the synthesis of a new helix together with the 

templates encoding for the pIII and pVIII proteins. The second, pV, competes with double 

stranded DNA formation by sequestering copies of the + strand DNA and creating a 

protein/DNA complex that can be packaged into new phages. The number of double 

stranded genomes in the bacterial host is regulated by pX. Assembly occurs at the inner 

cell membrane and new single-stranded DNA is packaged into protein coats and released 

through the bacterial membrane. It is thought that, before phage secretion starts, two of the 

minor phage coat proteins, pIX and pVII, interact with the pV/single-stranded DNA 

complex in a specific region called packaging sequence. Finally, the pV proteins covering 

the single-stranded DNA are replaced by the pVIII proteins embedded in the bacterial 

membrane and the growing phage filament is threaded through the membrane. Once the 
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phage DNA has been fully coated by pVIII, the release terminates by adding the pIII/pVI 

cap and the new particle can be finally released from the bacterial surface [41]. 

  

Figure 6. Structure of filamentous bacteriophages. A) Representation of a typical bacteriophage: 

coat proteins are indicated (from http://www.scielo.br/pdf/gmb/v28n1/a01v28n1.pdf). B) Electron 

micrograph of the filamentous phage fd (from [42]) 

 

 

Figure 7. Life cycle of filamentous bacteriophages. Scheme of the bacteriophage life cycle and the 

main steps of the replication process (graphics from S. Dübel) 
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1.2 The antibody phage display 

Antibody phage display relies on the principle that genes encoding for one or more 

variable domains of an immunoglobulin can be cloned in frame with the phage minor coat 

protein pIII into a selectable “phagemid” vector [43, 44]. A phagemid is a plasmid that 

presents both an E.coli and a phage derived (M13) replication origin, a signal sequence for 

the periplasmic secretion, the phage pIII gene and an antibiotic resistance marker, while it 

lacks the genes encoding for the phage structural proteins (Figure 8). Indeed, to assemble 

new phages and properly package the DNA, it is necessary to superinfect the cells 

containing the vector with a helper phage (M13K07), whose genome carries an 

autonomous replication origin, a kanamycin resistance, and encodes for all the capsid 

proteins. The system is very powerful because i) the M13K07 genome is designed with a 

modified intergenic region (that encompasses a packaging signal sequence and the origins 

of replication of the two strands, IG), which causes it to be replicated and packaged less 

easily than the phagemid vector (that carries a wild type IG) and ii) the wild type pIII 

protein (3-5 copies per phage), that competes with the pIII fused to the antibody (encoded 

by the phagemid) for the incorporation into the phage particle, is translated more 

efficiently from the phage genome and inserted into the new particles. At the end of the 

packaging process, most of the phages that expose an antibody show a monovalent display. 

This gives the chance to select and enrich antibodies with high affinity, since avidity 

effects, which would decrease the dissociation rate from the target antigen, are avoided. A 

phagemid vector allows both the antibody display on the phage particle and its soluble 

secretion in the periplasmic space. This is possible because of the presence of an Amber 

codon, that is located between the antibody gene and that of pIII protein. This codon 

functions as a transcription end point when using bacterial “non suppressor” strains (like 

HB2151), while it is not recognized by bacterial “suppressor strains” (like TG1). The 
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system allows to obtain respectively soluble antibodies or displayed antibodies fused to the 

phage surface (Fig. 8). The fusion protein expression is regulated by the lacZ promoter. 

Glucose in the growth medium represses the lacZ promoter preventing the production of 

the pIII-antibody fusion and favouring F pilus generation, which in turn enables helper 

phage infection. Once the helper phage genome is incorporated into the cell, then glucose 

is removed and phage-antibody expression starts. 

 

 

 

 

 

 

 

Figure 8. Schematic representation of displayed antibody expression (suppressor strain) or 

soluble antibody expression (non suppressor strain). (adapted from [44]) 

1.3 The (bio)-panning procedure 

The phage selection procedure (bio-panning) can be subdivided into four main steps: i) 

exposure of the phage particles to the target antigen (immobilized protein, cell, tissue) in 

order to identify specific ligands, ii) removal of non specifically bound phages, iii) elution 

and recovery of the phages specifically bound to the antigen, iv) bacterial infection and 

amplification of the specific phages (Figure 9). Several rounds of selection and 

amplification, at different stringency conditions, are performed to enrich the population in 
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high affinity binders. The putative positive antibody clones are produced as soluble 

proteins from single colonies grown in microtitre plates and then tested by ELISA on their 

target. Each binder can be identified by DNA sequencing and unique sequences can be 

sub-cloned and produced in large scale for biochemical characterization.  

 

Figure 9. Antibody phage display. Flowchart of the antibody selection procedure from phage 

display libraries (bio-panning), showing the enrichment of an antigen specific phage-antibody 

(circle) from a background of non specific phage-antibodies (from [45]) 

2. Recombinant antibodies and their clinical applications 

The first antibody fragments without Fc regions were generated by proteolytic treatment 

with papain or pepsin, that yield Fab and (Fab)2 fragments, respectively (Figure 10, [46]). 

However, proteolysis is generally not absolutely specific and does not produce molecules 

smaller than Fab portions. In contrast, the process of in vitro selection using phage display 

libraries allows obtaining high affinity binders against almost any target antigen in a 

relatively easy way. Engineered recombinant antibodies have been successfully selected 

from immunized mice [47, 48], macaques [49], sheeps [50] and chickens [51], as well as 

from naïve phage display libraries [52-56]. Two kinds of antibody repertoires can be 

created in vitro: i) synthetic libraries comprehend collections of antibodies built by in vitro 
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assembly of VDJ gene segments [16, 57-60]; in this case, a predetermined level of 

randomization of the CDR regions can be introduced, during assembly, into the germline  

V gene segments [61, 62]; ii) semi-synthetic libraries present combinations of natural and 

synthetic diversity; they can be engineered by shuffling natural CDR regions [63] or by 

mixing naturally rearranged and highly functional CDR3 sequences with synthetic CDR1 

and CDR2 diversity [64]. Recombinant antibody fragments present many advantages in 

respect to the conventional monoclonal antibodies: i) they can be selected in a shorter time 

ii) they can be in vitro manipulated to enhance their specificity and affinity properties 

(affinity maturation), and iii) they can be produced in large scale at relatively low costs. 

Depending on the purpose to be achieved, different molecular formats have been generated 

by engineering antibody sequences (Figure 10). The structure of recombinant antibodies 

has been modified in order to reduce the portion responsible for the effector functions, 

while retaining only one or two domains that are dedicated to antigen binding. The most 

diffused recombinant antibodies are Fab and single-chain variable fragment (scFv) 

formats. A scFv antibody is constituted by a single polypeptide chain encoding for the 

light-chain (VL) and heavy-chain variable (VH) domains covalently connected by a short 

flexible polypeptide [65-67]. This linker must not interfere with the tridimensional 

conformation of the antibody, it has to be resistant to proteolysis and it must not contain 

charged residues, in order to reduce unwanted interactions between the surfaces of the VH 

and VL regions [66], [68]. scFvs show a monovalent antigen binding affinity and can be 

easily manipulated and modified by conjugation to drugs, toxins, radionuclides, viruses, 

and enzymes both for diagnostic and therapeutic applications [24, 69, 70]. Multimeric scFv 

fragments such as diabodies, triabodies and similar molecules have been designed because 

of i) their multivalency, that should increase their avidity slowing their dissociation rates 

from the cell surface or multimeric antigens [71] and ii) their longer persistence in vivo 

[72, 73]. Moreover, combining two different scFvs, each with an antigenic specificity, it 
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has been possible to create bispecific antibodies that can direct effector functions towards 

two independent therapeutic targets and limit complement activation [74]. As an 

alternative, minibodies have been engineered by covalently linking bi/multivalent scFv 

fragments to other kinds of proteins that tend to self-associate, obtaining molecules with 

longer serum half-lives [75-77].  

 

 

Figure 10. Molecular formats of recombinant antibodies. Scheme of different recombinant 

antibody formats (from [24]) 

Recently, the discovery of the presence in Camelids and sharks immune systems [78, 79] 

of heavy chain antibodies (HCAb) constituted by a single variable domain bound to a 

conventional constant domain, has led to the intriguing opportunity to exploit them for 

biotechnological applications. In fact, they show an elevated germline complexity [80, 81] 

and their variable domains (referred to as VHH in Camelids and V-NAR in sharks) are the 

smallest naturally occurring antigen-binding molecules known to date. VHHs show high 

stability and solubility and, due to their peculiar paratope conformation (a convex and 

protruding H3 loop, [82]), they preferentially bind hidden epitopes and clefts, like the 

active sites of enzymes [83, 84]. It has been demonstrated that isolated VHH domains 

exhibit a strong antigen binding activity, perfectly compensating the lack of the VL 

domains [85]. The increasing availability of recombinant antibodies has led to the 
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development of therapeutically relevant molecules, in particular for cancer treatment. In 

many cases, antibodies are responsible for the delivery of concentrated and specific 

“loads” to a desired tissue or cell type (targeted therapy, [86]). They can be employed as 

carriers for toxic cargoes [87-89] or as mediators to release enzyme prodrugs into tumor 

sites [90, 91]. This approach relies on pre-targeting a tumor with an antibody-coupled 

enzyme, then the antibody is removed and the enzyme converts an administered non toxic 

precursor into a drug that blocks cell growth. Furthermore, innovative affinity maturation 

methods have been developed in order to improve the binding properties of the selected 

binders [92-97]. Much work has been done in the diagnostic field, in particular in tumor 

imaging, by radiolabelling antibody molecules [98-101] and by creating fluorescent 

nanobodies [102].  

3. The “intrabodies” (intracellular antibodies) and their applications 

The term “intrabody” indicates an antibody molecule that is expressed intracellularly and 

directed to a defined subcellular compartment [103]. The potential of this technology relies 

on the fact that intrabodies can induce the phenotypic knockout of intracellular target 

molecules i) by directly blocking the antigen and its function, ii) by re-directing it to a 

specific intracellular location or iii) by inhibiting its translocation from the ER to the cell 

surface. Fusions with signal sequences allow for antibody localization in the nucleus, 

endoplasmic reticulum, Golgi apparatus, mitochondria or cell membrane, while their 

absence leads to its retention in the cell cytoplasm (Figure 11). The intrabodies’ technology 

is a very promising therapeutic tool because it may help to solve some of the problems 

linked to current antibody treatments, like tumor penetration, short serum-half life and 

even poor specificity.  
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Figure 11. Intracellular antibodies and their localization. Subcellular localization of intracellular 

antibodies. Intrabodies can be directed to the cytoplasm (1), mitochondria (2), nucleus (3), 

endoplasmic reticulum (ER) (4), trans-Golgi network (TGN) (5), plasma membrane (6) or secreted 

in the extracellular space (7), adapted from [104] 

The first successful application of intracellular antibodies to block a complex biological 

process in the cytosol of vertebrate cells was the expression of an scFv fragment directed 

against the GTPase p21Ras in the cytoplasm of Xenopus laevis oocytes that caused the 

inhibition of their insulin-induced meiotic maturation [105]. When the same antibody was 

expressed in mammalian cells cytoplasm, it was observed that p21Ras was sequestered 

into aggregates in an scFv-dependent manner leading to efficient inhibition of DNA 

synthesis [106]. Intrabodies have been used as means to inhibit tumor growth. Blocking 

VEGF-R2 and Tie2 pathways by using specific intra-diabodies, resulted in a 92% 

inhibition of tumor growth and angiogenesis in a human melanoma xenograft model [107]. 

In situ expression and secretion of a bispecific diabody in vivo reduced tumor growth by 

activating tumor-resident human T lymphocytes citotoxicity [108]. The use of lentiviral 

vectors for its expression was demonstrated to be feasible in human primary peripheral 

blood lymphocytes and has opened a promising avenue for gene therapy of human solid 

tumors [109]. Interesting results have been obtained in targeting receptor tyrosine kinases 

like EGFR or ErbB2, which are overexpressed in a variety of tumors including breast and 
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ovarian cancers. Intrabodies equipped with an ER localization signal, that specifically 

retains receptor molecules, generated a phenotypic knock out. Cells proliferation was 

inhibited in vitro and in vivo in ErbB2 overexpressing cancer cell lines, and human ovarian 

tumor cells underwent apoptosis [110-114]. Intrabodies have also been employed for the 

functional inhibition of some viral envelope proteins and host cells receptors. These 

viruses include human papilloma virus (HPV) [115], Kaposi Sarcoma-associated 

Herpesvirus (KSHV) [116], Human Immunodeficiency Virus (HIV) [117], and Hepatitis B 

Virus (HBV) [118]. Intrabodies targeting nuclear antigens have been shown to induce 

growth arrest and cell death. These targets include cell cycle regulators, transcription 

factors, viral and cellular oncogenic proteins and structural components of chromatin. 

Intracellular antibodies which are able to restore the DNA-binding and transcriptional 

activity of certain p53 mutants have been described [119]. Recently, researches have 

focused on neurodegenerative disorders like Huntington’s (HD) [120], Parkinson’s [121], 

Alzheimer’s [122] and prion diseases [123], characterized by the accumulation of 

intracellular proteins. Intrabody-mediated in vivo suppression of the neuropathology using 

a Drosophila model of HD, resulted in an increase in the proportion of HD flies surviving 

to adulthood [120]. However, when trying to develop intrabody-based drugs, the main 

challenge is the delivery of their coding sequences to the specific target cells. Intrabodies 

need to be functional within the cell and, therefore, they require a vehicle which is able to 

deliver them inside target cell populations. A possible solution is to directly deliver the 

antibody cDNA through viruses (gene therapy) [124]. Retroviral and adenoviral gene 

transfer systems have been already developed to carry intrabody genes into target cells ex 

vivo or in vivo [125, 126]. In a Phase1 trial for the treatment of ovarian cancer, 

adenoviruses have been used to deliver an anti-ErbB2 retained antibody [127-129]. 

Nowadays, technical alternatives are in development in order to avoid the use of viral 

vector transduction technologies. One approach is to target molecules through liposomes or 
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encapsulating them with cationic lipids or peptides [130]. Another option would be to 

exploit peptide transduction domains (PTDs), which have the natural capacity to cross the 

cell membrane and can ferry linked polypeptides [131, 132]. 

4. The Cogentech1 VHH antibody phage display library 

Most of the VHHs recovered so far have been isolated from immunized camels or llamas; 

in fact, recombinant VHH phage display libraries created from immunized animals have 

been the preferred tools for the isolation of high-affinity specific binders [84, 133, 134]. 

More recently, several synthetic and naïve VHH libraries have been constructed from 

llamas and sharks [54-56, 135-137], and the feasibility of selecting specific antibodies has 

been shown using a relatively small naïve shark library (107) [55]. Cogentech1 is a naïve 

VHH library prepared starting from 109 lymphocytes collected and isolated from one liter 

of blood of non-immunized llamas (Llama glama) [56]. The heavy chains of the 

immunoglobulins were first amplified from a retro-transcribed cDNA template, then VHHs 

were separated from VHs and reamplified using degenerate primers. VHHs were cloned 

into the phagemid vector pHEN4 (Figure 12, [133]). The total diversity of the library is in 

the order of 5x107 different clones. 

 

Figure 12. Schematic representation of the pHEN4 phagemid vector. The pIII gene, the antibiotic 

resistance (ampicillin), the bacterial replication origin (colE1), the phage replication origin (M13 

ori) and the pelB leader sequence (which directs the protein to the periplasmic space of E. coli) are 

indicated. VHHs were cloned between NcoI-NotI restriction sites as fusions with HA tag 
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5. The ETH-2 Gold scFv antibody phage display library 

The ETH-2 Gold library is a modified version of the synthetic antibody library of Pini et 

al., [57]. The library was improved by Viti et al., [58] and, finally, by Silacci et al., [16]. 

This phage display library of human recombinant antibodies in scFv format comprehends 

3x109 different clones. Human antibodies were assembled from approximately 50 different 

VH and 70 VL germline genes. The ETH-2Gold library was built using three antibody 

germline gene segments: DP-47 for the VH, DPK-22 and DPL-16 for the VL [138], and a 

large repertoire was created by appending short variable complementarity determining 

region 3 (CDR3). Sequence variability was introduced by PCR (using partially degenerate 

primers) into the CDR3 loops, which are known to largely contribute to antigen 

recognition, while the remaining parts of the antibody molecule were kept constant. A 

completely randomized sequence of four, five, or six amino acid residues was appended to 

the VH germline segment, thus forming short CDR3 loops, whereas a partially randomized 

sequence of six amino acid residues was appended in the VL (Figure 13A, [139]). After 

this amplification step, the resulting VH and VL segments were assembled by PCR and the 

library was cloned into the phagemid vector pHEN1 (Figure 13B, [140]). 
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A)

B)
 

Figure 13. Design of the ETH-2 Gold antibody phage display library. A) The sequence of the 

relevant amino acid residues of the variable heavy and light chains are represented together with 

the human antibody germline segments from which they were derived. Antibody residues are 

numbered according to [141]. B) Schematic representation of the pHEN1 phagemid vector. The 

pIII gene, the antibiotic resistance (ampicillin), the bacterial replication origin (colE1), the phage 

replication origin (M13 ori) and the pelB leader sequence (which directs the protein to the 

periplasmic space of E. coli) are indicated. scFvs were cloned between NcoI-NotI restriction sites 

as fusions with myc tag (adapted from [16]) 
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CHAPTER THREE  

 

1. Acute myeloid leukemia 

Acute myeloid leukemia (AML) is a cancer of the myeloid cell line, characterized by rapid 

growth of abnormal white blood cells that accumulate in the bone marrow and interfere 

with the production of normal cells. AML is the most common acute leukemia affecting 

adults and its incidence increases with age. The symptoms of AML are caused by 

replacement of normal bone marrow with leukemic cells, which causes a drop in red blood 

cells, platelets, and normal white blood cells. Although several risk factors for AML have 

been identified, the specific cause of the disease remains unclear. As an acute leukemia, 

AML progresses rapidly and is typically fatal within weeks or months if left untreated. 

AML presents several subtypes, and treatment and prognosis differ among them. Five-year 

survival varies from 15% to 70% and relapse rate varies from 33% to 78% depending on 

the subgroup. Initially, AML is treated with chemotherapy to induce a remission; then 

patients may receive additional chemotherapy or a hematopoietic stem cell transplant. 

Recent research into the genetics of AML has succeeded in generating tests that can predict 

which drug or drugs may work better for a particular patient, as well as how long that 

patient is likely to survive. The single most important prognostic factor in AML is the 

cytogenetic status: different cytogenetic abnormalities are associated with different 

outcomes. For example, the t(15;17) translocation (PML/RARα, promyelocytic 

leukemia/retinoic acid receptor alpha) that is found in acute promyelocytic leukemia 

patients is associated with good prognosis, while a number of other genetic aberrations 

(e.g. FLT3 internal tandem duplication, ITD) are related to poor prognosis and a high risk 
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of relapse after treatment [142-144]. The proteins involved in this translocation are PML, a 

matrix-associated nuclear phosphoprotein which regulates senescence and apoptosis and 

functions as a growth suppressor [145] and RARα, a nuclear receptor involved in retinoid 

signaling [146]. Many genes are under investigation as prognostic factors or as possible 

therapeutic targets, including CEBPA (CCAAT Enhancer Binding Protein Alpha), BAALC 

(Brain and Acute Leukemia, Cytoplasmic), ERG (ETS Related Gene) and NPM1 

(Nucleophosmin 1). CEBPA encodes for a bZIP transcription factor, which plays important 

roles in lineage determination and gene activation in a variety of cell types. In 

hematopoiesis, CEBPA is a key factor in driving the development of myeloid cells and 

mutations in CEBPA occur in approximately 10% of all acute myeloid leukemias (AMLs) 

[147]. BAALC is a highly conserved gene among mammals and it is implicated in acute 

myeloid leukemia. Its overexpression has been demonstrated to be strictly related to poor 

prognosis in AML patients [148]. ERG is a member of the ETS family of transcription 

factors; it is a transcriptional regulator expressed in early myeolcytes at higher levels than 

in mature lymphocytes and therefore, it may act as a regulator of differentiation of early 

hematopoietic cells [149]. Genetic abnormalities related to NPM1 (see paragraph 2. for a 

detailed description of protein functions) have been described in different types of 

hematological malignancies [150] and three chromosomal translocations involving this 

gene have been identified so far. The t(2;5) translocation involves the N-terminal portion 

of NPM1 and leads to a fusion with the catalytic domain of the membrane-associated 

receptor tyrosine kinase ALK (anaplastic lymphoma kinase), that renders it constitutively 

active. This aberration is present in about 30% of Anaplastic Large Cell Lymphomas 

(ALCL, [151]).  The t(5;17) (q35;q21) is a rare variant found in some cases of Acute 

Promyelocitic Leukemias (APL, [152]). Also in this case, the N-terminal end of NPM1 is 

fused to the RARα C-terminal portion, leading to the recruitment of co-repressor proteins 

that interfere with RARα-dependent transcriptional activities [153]. As a consequence, 
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myeloid differentiation is stopped; patients that present this genetic abnormality can be 

treated with super-physiological doses of ATRA (all-trans retinoic acid) that release the 

block [154]. The third translocation t(3;5)(q25;q35) is found in less than 1% of AML cases 

[155]. In this case, NPM1 is fused to MLF1 (myelodisplasia/myeloid leukemia factor 1, a 

cytoplasmic protein that has a putative role in normal hematopoietic differentiation) and it 

has been shown to be able, together with the oncogene RASV12, of transforming Mouse 

Embryonic Fibroblasts (MEFs) [156]. Recently, NPM1 mutations, which lead to the 

cytoplasmic delocalization of the protein (NPMc+), have been found in about 35% of acute 

myeloid leukemia patients that present a normal karyotype, suggesting a relevant role for 

NPM1 in AML onset. AML with NPMc+ mutations probably represent a new distinct 

group of AML and it has been included as a provisional entity in the 2008 revision of the 

WHO classification of myeloid neoplasms and acute leukemia [157]. Due to the stability of 

this mutation, many different diagnostic techniques have been already developed for its 

identification and for the detection of NPMc+ localization [158-165]. Interestingly, some 

of the most recurrent AML genomic aberrations, like t(15;17), t(8;21) and inv(16) are 

mutually exclusive with NPM1 mutations [166], while a significant correlation has been 

reported between NPM1 mutation and mutations in FLT3-ITD [12]. NPMc+ AML that are 

FLT3-ITD negative have a general better prognosis, due to the higher remission rate after 

chemotherapy [12, 167-171]. Although the mechanism has not been completely elucidated, 

it was observed that NF-kB, that is involved in pharmacological resistance [172] and is 

frequently upregulated in AML patients [173], results delocalized and inactivated by 

NPMc+, therefore increasing cell chemosensitivity [174]. 
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2. Nucleophosmin (NPM): a multifunctional protein 

Nucleophosmin (NPM; also known as B23, NO38, or numatrin) is a nuclear-cytoplasmic 

shuttling protein that is involved in different cellular processes such as centrosome 

duplication, cell cycle progression and stress response [1-4]. NPM is present within the cell 

in two isoforms which are generated from a single gene via alternative splicing: the longer 

and most abundant B23.1 (294 residues), and the shorter and less abundant B23.2 (259 

residues) [175]. NPM normally localizes in the nucleus and the B23.1 isoform accumulates 

in the granular region of the nucleolus. Most NPM published data regard the B23.1 longer 

isoform, normally referred to as NPM1. NPM1 contains distinct functional domains that 

are responsible for its multiple biochemical functions (Figure 14, [176]). NPM1 belongs to 

the family of nucleoplasmins proteins (Np) which share a conserved N-terminal acidic 

portion involved in oligomerization and chaperone activity. Nucleophosmin functions as a 

molecular chaperone for proteins: in vitro studies have demonstrated that it prevents 

protein aggregation and promotes renaturation of chemically denatured proteins [177]. 

Moreover, in vitro assays have shown that NPM1 favors replication from adenovirus 

chromatin [178] and behaves like a histone chaperone, able to assemble/disassemble 

histones and nucleosomes [179]. Moreover, NPM1 is able to enhance, at least in vitro, 

acetylation-dependent transcription [180]. The central portion of the protein is required for 

ribonuclease activity, together with the C-terminal domain, which contains basic clusters 

of amino acids involved in nucleic acid binding [176]. NPM1 associates both with DNA         

[181] and RNA [182] and it has been reported to have endoribonuclease activity on 

ribosomal RNA (rRNA, [183]). At the end of the NPM1 C-terminal portion, it is located an 

aromatic stretch that contains two tryptophan residues responsible for its nucleolar 

localization (NuLS, [184]). In addition, NPM1 includes a bipartite nuclear localization 

signal (NLS, [176]) and two nuclear export signals (NES, [185],[186]) which are essential 
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for its shuttling activity. Native NPM1 exists as an oligomer [187] and it has been shown 

that Xenopus laevis NO38, that is highly homologous to human nucleophosmin, can form 

pentamers and decamers [188]. The recent definition of the crystal structure of the human 

NPM1 core (amino acids 9-122) demonstrated that it forms decamers with structural 

plasticity at the pentamer-pentamer interface [189]. NPM1 physically interacts with many 

nuclear proteins, such as nucleolin [5], p120 [6], p53 [7] and Mdm2 [8]. Recently, it has 

been demonstrated that NPM1 forms a stable complex with the tumor suppressor p19/Arf 

[9, 11], and that it is absolutely required for its correct localization and stabilization in the 

nucleolus [10]. 

 

 

 

Figure 14. NPM1 protein structure. NPM1 motifs and functional domains (from [190]) 
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2.1 Nucleophosmin and cancer 

   NPM1 is essential during mouse embryonic development. It has been demonstrated that 

inactivation of the NPM1 locus in mice causes embryonic lethality at mid-gestation, and 

embryonic cells show unrestricted centrosome duplication and enhanced genomic 

instability [11, 191]. Mice heterozygous for NPM1 inactivation (NPM+/-) rapidly develop a 

hematologic syndrome similar to human myelodysplastic syndromes (MDS). Moreover, 

these mice frequently present hematologic tumors, with higher incidence of myeloid 

cancers [192]. Nucleophosmin is directly involved in the pathogenesis of different human 

malignancies. Overexpression of NPM1 has been reported in solid tumors of diverse 

cellular origin, including gastric [193], colon [194], prostate [195], bladder [196] and 

ovarian carcinomas [197], as well as during melanoma progression [198]. Chromosomal 

translocations of the NPM1 gene have been observed in human hematopoietic cancers, and 

it has been suggested that NPM1 contributes to tumor development by activating the 

oncogenic potential of the fused protein partners. All NPM1 translocations characterized so 

far involve the 5’ region of the NPM1 gene (oligomerization domain of NPM1), which is 

fused to three different partner genes: the anaplastic lymphoma kinase (ALK) [199], the 

retinoic acid receptor α (RARα) [152], and the myeloid leukemia factor 1 (MLF1) [155]. 

Recently, it has been demonstrated that about one-third of primary adult AML patients’ 

cells with normal karyotype bear mutations in the last coding exon of the NPM1 gene 

(exon 12, [12]). Mutations in the NPM1 gene are heterozygous and are characterized by the 

insertion of short nucleotides stretches, leading to a reading frameshift and to a de novo 

formation of a CRM1/Exportin 1-dependent nuclear export signal (NES, [13]). More than 

40 different mutations have been described: the most frequent one (mutation A) 

encompasses 75-80% of cases and consists of the duplication of the TCTG tetranucleotide 

(Figure 15, [200]). Loss of the two tryptophan residues (that are located in the C-terminal 
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portion of the protein and are necessary for nucleolar localization [201]) and the insertion 

of a new sequence of eleven amino acids contribute to the generation of a supplementary 

novel NES responsible for mutant NPM1 cytoplasmic delocalization (NPMc+) (Figure 15, 

[13, 201]). The abnormal accumulation of mutated NPM1 in the cytoplasm leads to the 

cytoplasmic delocalization of proteins that in normal conditions are localized to the 

nucleus and interact with NPM1 wild type protein. In particular, NPMc+ binds, delocalizes 

and inactivates, inducing their degradation, the tumor suppressor proteins p19/Arf and 

Fbw7γ. Fbw7γ is part of a E3 ubiquitin ligase complex involved in the degradation of c-

Myc and, therefore, in cells expressing NPMc+ its inactivation causes increased levels of 

this oncogene [15]. In normal cells, c-Myc overexpression leads to p19/Arf upregulation, 

p53 stabilization and apoptosis. This is an important mechanism evolved to prevent c-Myc 

induced tumorigenesis [202]. However, in presence of NPMc+, p19/Arf is translocated to 

the cytoplasm too, it is rapidly degraded and, as a consequence, the p19/Arf-dependent p53 

stabilization induced by c-Myc overexpression is lost [14]. Based on these data, NPMc+ is 

a bona fide oncogenic mutant that once expressed in a cell leads to c-myc oncogene 

activation and, at the same time, blocks the corresponding tumor suppressor mechanism 

deactivating p19/Arf. This strongly suggests that NPMc+ can contribute to the initiation 

and progression of leukemia. Thus, NPMc+ may represent an ideal molecular target for 

specific therapeutic intervention in these types of leukemia. One major problem is the high 

similarity between the NPMc+ and NPM1 wild type proteins; indeed, they differ only for 

the last C-terminal eleven amino acids and they are both present in leukemic cells, since 

NPM1 mutations always occur only in one of the two NPM1 alleles [12]. Interestingly, the 

tridimensional structure of the NPMc+ C-terminal region seems to be unfolded as 

compared to the wild type [203], although it is not yet clear if this region could influence 

the overall structure of NPM1, and in particular the interaction between NPMc+ and other 

proteins like p19/Arf.  
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A    I    Q  D   L  W             Q   W   R   K   S   L   *
GCT ATT CAA GAT CTC TG              G CAG TGG AGG AAG TCT CTT TAA  

A    I   Q   D   L C    L     A   V E    E V S   L R   K   *
GCT ATT CAA GAT CTC TG T CTG GCA  GTG GAG GAA GTC TCT TTA AGA AAA TAG

NPM1 (283)

NPMc+ mut A (283)
(847)

(847)

N- -C
2941

NuLSNES

NES

N- -C
2981

NES

NPM1

NPMc+ mutA 

NES consensus Φ X    X X Φ X    X Φ X   Φ

 

Figure 15. NPMc+ protein structure. Amino acid sequence and schematic representation of the 

wild type NPM1 and NPMc+ mutation A proteins [200], showing the residues involved in the 

mutation and the novel nuclear export signal (NES, [13, 201]) created at the C-terminal end of the 

protein; (*) indicates stop codons. The NPMc+ amino acid residues that match the generic NES 

consensus (indicated below the alignment) are indicated in bold letters. X: any amino acid residue; 

Φ: Leucine, Valine, Isoleucine, Phenylalanine or Methionine residues 
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RELEVANCE OF THE PROJECT  

Nucleophosmin (NPM) is involved in human oncogenesis and, in particular, mutations in 

its coding sequence are the most frequent aberrations found in AML. About one-third of 

adult Acute Myeloid Leukaemia (AML) patients bear reading frameshift mutations 

occurring at the exon 12 of NPM1. As a consequence, the nucleolar localization signal 

(NuLS) present at the NPM1 C-terminal end is substituted by a de novo nuclear export 

signal (NES), which causes its cytoplasmic localization (NPMc+). Accumulation of 

mutated NPM1 is responsible for the delocalization of proteins that, in normal conditions, 

interact in the nucleus with wild type NPM1. Interestingly, it has been shown that NPMc+ 

binds, delocalizes and inactivates the tumor suppressor proteins p19/Arf and Fbw7γ, 

leading to the uncontrolled c-Myc overexpression. These data point out a central role of 

NPMc+ in leukemia pathogenesis and thus, it may represent an ideal molecular target for 

specific therapeutic intervention. In the last years, it has been already proven the possibility 

to raise antibodies that specifically recognize only the mutated form of NPM1, making the 

antibody-based therapy an appealing opportunity. I decided to perform a high-throughput 

selection, from non-immune phage display libraries, of recombinant antibodies directed 

against NPMc+ mutation A. This approach has many advantages: i) it could provide 

suitable tools able to act in vivo as competitors of the natural NPM1 interactors (as p19/Arf 

and Fbw7γ), due to steric hindrance, ii) the specific antibody sequences could be cloned 

into appropriate vectors to allow their expression as intrabodies, in order to investigate 

their biological effects in vivo and iii) the specific binders could be modified in vitro by 

fusing them to nuclear localization signals (NLSs), with the purpose to obtain molecules 

able to re-localize NPMc+ to the nucleus.  
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1. Recombinant proteins: expression, purification and biophysical characterization 

1.1 Expression and purification of recombinant NPMc+ and wild type NPM1   

Recombinant NPMc+, wild type NPM1 proteins and wild type NPM1 fragments 1-117, 1-

186, 186-294 were produced as GST fusions from pGEX4T vector (Amersham, Figure 16) 

using BL21 competent cells (Novagen). Cultures were grown at 37°C up to an OD600 of 

0.4 in LB medium supplemented with 0.1 mg/mL ampicillin, induced with 0.1mM IPTG 

and incubated overnight at 20°C, 220rpm. Next day, cells were centrifuged, washed in PBS 

and subjected to total cell lysis [204]. Purification was performed by affinity 

chromatography on GSTrap FF column (5 mL, GE Healthcare) using ÄKTA FPLC 

Explorer. Eluted samples were dialyzed against PBS and protein purity was evaluated by 

colloidal blue (Instant Blue, Novexin) stained 12% SDS-PAGE gels. Yields were 

calculated by measuring the absorbance at 280 nm and applying the protein extinction 

coefficients. 

Ptac

 

Figure 16. Map of the pGEX4T vector. Sequence of the multi-cloning site (MCS) is reported in 

detail; red circles indicate the restriction sites used for cloning. The thrombin protease cleavage 

site, the ampicillin resistance (Ampr), the origin of replication (ori), the lacIq repressor gene, the 

Ptac promoter and the GST protein are indicated (Amersham).   
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1.2 Determination of the aggregation rate  

The presence of aggregates in the purified and dyalized NPMc+-GST were evaluated by 

measuring intrinsic fluorescence using a spectropolarimeter Jasco J-810 (JASCO). Samples 

at a concentration of about 250 µg/mL were excited by a monochromatic light (280 nm). 

An emission spectrum was recorded in the range 265 nm - 410 nm under the following 

conditions: 5 nm bandwidth, 2 nm datapitch and 1 accumulation. A spectrum recorded for 

the buffer alone (PBS) served as a subtraction baseline for all samples measured. A first 

maximum intensity at 280 nm (scattered light) and a second maximum intensity at 340 nm 

(the fluorescence signal from the protein) were recorded. From these two values an 

“Aggregation Index” [205] was calculated using the equation: A.I.= I 280/I 340, where I 

280 and I 340 represent the intensity of emitted light at 280 nm and 340 nm, respectively.  

1.3 FAR-UV CD (peptide bond circular dichroism) spectra measurement 

Protein secondary structure was investigated by FAR-UV (200 nm – 250 nm) CD 

spectroscopy. 150 µg/mL of protein dialyzed against PBS, was measured using a cuvette 

with optical path 1 mm (HELLMA). CD spectra were recorded with a JASCO J-810 

spectropolarimeter (JASCO) under the following conditions: 20 nm/min scan speed, 5 nm 

bandwidth, 0.2 nm datapitch and 1 accumulation.  

1.4 Generation, expression and purification of recombinant NPMc+ fragment C-

terminal  

NPMc+ fragment C-terminal was designed as a 45 amino acids long peptide (NPMc+ 

amino acids from 255 to 298). It was synthesized by PCR amplification using primers 

NPMc+Forward:  5’-TAATGCCATGGATATAGAAAAAGGTG-3’ and NPMc+Reverse: 

5’-GTCTCTTTAAGAAAATAGGCGGCCGCTAAGAAT-3’ using NPMc+ cDNA 

(cloned in pcDNA3) as a template. PCR reaction was performed following this protocol: 
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94°C-6 min; (94°C-40 sec, 55°C-40 sec, 72°C-50 sec) for 30 cycles; 72°C-10 min; 4°C. 

Insert was digested with NcoI-NotI restriction enzymes, cloned in pETM44 vector (Figure 

17, [206] as MBP (Maltose Binding Protein)-6xHis tag fusion and transformed in 

BL21(DE3) competent cells (Novagen), following standard methods for bacterial 

transformation. Cultures were grown at 37°C up to an OD600 of 0.4 in ZYP-5052 medium, 

supplemented with 0.05 mg/mL kanamycin and then they were incubated overnight at 

20°C, 220rpm. ZYP-5052 is a specific medium developed to allow for auto-induction of 

the expression as the culture approaches saturation [207]. Next day, cells were centrifuged, 

washed in PBS and subjected to total cell lysis. Purification was performed by affinity 

chromatography on HisTrap HP column (1 mL, GE Healthcare) using ÄKTA FPLC 

Explorer. Eluted samples were dialyzed against PBS and protein purity was evaluated by 

colloidal blue staining (Instant Blue, Novexin) of pre-casted 12% NuPAGE® Novex® Bis-

Tris Gels (Invitrogen). Yields were calculated by measuring the absorbance at 280 nm and 

applying the protein extinction coefficient. Identity of the purified scFv-MutMyc was 

assessed by western immuno-blot analysis incubating the membranes with the mouse 

monoclonal antibody anti-Myc 9E10 (5 ug/mL) for 2 hours. After three washes in PBST 

(PBS added with 0.1% Tween-20), anti-mouse HRP conjugated (Bio-Rad) was added for 

40 min at room temperature. Finally, membranes were washed three times in PBST and 

peroxidase activity was detected with a light sensitive film using an ECL Plus kit (Pierce) 

by mixing equal amounts of reagent 1 with reagent 2.  
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Figure 17. Map of the pETM44 vector. Sequence of the multi-cloning site (MCS) is reported in 

detail on the left; red circles indicate the restriction sites used for cloning. The 3C protease 

cleavage site, the MBP protein, the T7 promoter, the lacI repressor gene, the origin of replication 

(ori) and the kanamycin resistance (Kan) are indicated [206] 

2. Selection and production of phage displayed recombinant antibodies 

2.1 Selection of phage displayed VHHs  

An aliquot of 5x1010 bacterial cells, harbouring phagemid vector pHEN4 [145], was grown 

in 2xTY medium [208] containing 0.1 mg/mL ampicillin and 1% glucose at 37°C up to an 

OD600 of 0.4 and infected with 20-fold excess of KM13 helper phage for 30 min at 37°C. 

Infected cells were harvested by centrifugation, resuspended in 2xTY 0.1 mg/mL 

ampicillin, 0.05 mg/mL kanamycin and 0.1% glucose and incubated overnight at 30°C, 

150 rpm. Phage particles were precipitated from culture supernatant with 4% PEG 6000, 

0.5 M NaCl, resuspended in sterile PBS, titrated and used for panning against the purified 

soluble NPMc+ protein. Phage library aliquots used for panning fusion protein were 

previously depleted from binders recognizing the fusion tag, by pre-panning them against 

GST coated on 4 mL Nunc-ImmunoTM MaxisorpTM tubes (100 µg/mL). Unbound phages 

after the pre-panning incubation step (30 min rocking and 90 min standing upright at room 
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temperature) were recovered. NPMc+ was directly coated overnight at 4°C on the surface 

of 4 mL immunotubes at a concentration of 100 µg/mL using 50 mM sodium carbonate 

buffer, pH 9.6 [209]. Tubes were blocked with 3% BSA in PBST at room temperature for 

2 hours, washed three times with PBS before the addition of 3x1015 phages for the first 

round of panning. After 30 min rocking and 90 min standing upright at room temperature, 

tubes were washed 10 times with PBST and 10 times with PBS, bound phages were eluted 

with 0.1M triethylamine, pH 11.0. Eluted phages were titrated, used to infect TG1 cells 

(Stratagene) and plated on 2xTY ampicillin, glucose large square plates. Colonies were 

scraped, infected with 1010 KM13 helper phages, grown overnight and phage particles 

precipitated from culture supernatant with 4% PEG 6000, 0.5M NaCl. The new sublibrary 

of phages was resuspended in sterile PBS, titrated, depleted against fusion tag (GST) and 

used in the second round of panning. The same complete procedure was repeated for the 

third round of panning alternating 3% BSA in PBST and 2% skimmed Milk in PBS as 

blocking agents.  

2.2 Screening and production of VHHs  

Ninety-six single colonies from the third round of panning were grown at 37°C in 2xTY 

supplemented with 0.1 mg/mL ampicillin, 0.1% glucose for 3-4 hours, induced with 1mM 

IPTG and incubated overnight at 28°C. Cultures were harvested, washed in PBS and 

subjected to three cycles of rapid freeze/thaw. Cultures were then centrifuged and the 

periplasmic extracts (supernatants) containing soluble HA-tagged VHHs were diluted 1:3 

and incubated with the mouse monoclonal antibody anti-HA 12CA5 (10 µg/mL) for being 

used in ELISA. Maxisorp 96-well plates (Nunc) were coated with either the fusion protein 

alone or the fusion tag in 50 mM sodium carbonate buffer, pH 9,6 overnight at 4°C. 

NPMc+ was coated at a concentration of 1 µg/mL. Plates were blocked with 2% BSA for 2 

hours, washed three times with PBS and incubated 1 hour with periplasmic extracts. Plates 
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were washed three times with PBS plus 0.1% Tween and incubated with anti-mouse HRP 

conjugated (Bio-Rad) for 1 hour at room temperature. Finally, plates were washed three 

times with PBST and the reaction was developed by adding ABTS. The absorbance at 405 

nm was measured after 30 min incubation. Clones with an absorbance value higher than 

0.25 and that recognized exclusively the recombinant protein and not the fusion tag were 

considered positives. Their cDNAs were sequenced using the primers: M13Forward 5’-

CAGGAAACAGCTATGACC-3’, pHEN4reverse 5’-CAACTTTCAACAGTCTATGC-3’ 

and then analyzed to identify unique binders. 

2.3 Epitope mapping of the selected VHHs 

Maxisorp 96-well plates (Nunc) were coated with either the fusion proteins NPMc+, wild 

type NPM1 and NPM1 fragments 1-117, 1-186, 186-294 or the fusion tag (GST) in 50mM 

sodium carbonate buffer, pH 9.6 overnight at 4°C. All antigens were coated at a 

concentration of 1 µg/mL. Periplasmic extracts of the selected five different VHH clones 

were obtained and a standard ELISA procedure was followed as in 2.2. 

2.4 Selection of phage displayed scFvs   

The ETH-2 Gold phage display library was purchased from Philotec s.r.l. (Siena). The 

general procedure of antibody selection was performed following the ETH-2 Gold phage 

display library manual (September 2005 version). A bacterial colony (E. coli TG1) was 

transferred from a minimal plate (M9) into 5 mL of 2xTY medium and grown overnight at 

37°C at 200 rpm. Next day, it was subcultured by diluting 1:100 (OD600 of 0.1) into fresh 

2xTY medium, grown until OD600 of 0.4 and then infected with 1012 KM13 helper phages 

for 40 min at 37°C. Infected cells were harvested by centrifugation, resuspended in 2xTY 

0.1 mg/mL ampicillin, 0.05 mg/mL kanamycin and 0.1% glucose and incubated overnight 

at 30°C, 150 rpm. Phage particles were precipitated from culture supernatant with 4% PEG 
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6000, 0.5M NaCl, resuspended in sterile PBS, titrated and used for panning against the 

purified soluble antigen NPMc+ fragment C-terminal. Phage library aliquots used for 

panning fusion proteins were previously depleted from binders recognizing the fusion tag, 

by panning them against MBP coated on 4 mL immunotubes at a concentration of 100 

µg/mL. 1013 t.u. phage library (mixing the 4 phage library sub-aliquots) in 1 mL PBS were 

added to immunotubes containing 2 mL of 4% skimmed Milk in PBS (to give a final 

concentration of 2% MPBS) and put 30 min rocking and 90 min standing upright at room 

temperature. After the pre-panning incubation step, unbound phages were recovered and 

left at 4°C to be used the next day for the panning procedure. NPMc+ fragment C-terminal 

was directly coated on the surface of 4 mL immunotubes (overnight at 4°C) at a 

concentration of  25 µg/mL in 50 mM sodium carbonate buffer, pH 9.6. Tubes were rinsed 

3 times with PBS and then blocked with 2% skimmed Milk in PBS at room temperature for 

2 hours. After three washes in PBS 1013 t.u. phages were added for the first round of 

panning. After 30 min rocking and 90 min standing upright at room temperature, tubes 

were rinsed 10 times with PBST and 10 times with PBS, bound phages were eluted with 

0.1M triethylamine, pH 11.0 for 5 min rocking. Eluted phages were poured in a microfuge 

tube with 50mM TrisHCl ph7.4 + 1mM CaCl2 and vortexed. Trypsin (Sigma) at a 

concentration of 10 mg/mL was added in order to eliminate the background given by 

helper phages and samples were left in rotation for 15 min. Phages were titrated, used to 

infect TG1 cells and plated on 2xTY 0.1 mg/mL ampicillin and 1% glucose large square 

plates at 30°C. Colonies were scraped, infected with 1012 KM13 helper phages and grown 

overnight at 30°C, 150rpm. Phage particles were then precipitated from culture supernatant 

with 4% PEG 6000, 0.5M NaCl. The new sublibrary of phages was resuspended in sterile 

PBS, titrated, depleted against fusion tag (MBP) and used in the second round of panning. 

The same complete procedure was repeated for the third round of panning. 
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2.5 Screening, production and purification of scFvs  

Ninety-six single colonies from the third panning of each antigen were grown at 37°C in 

2xTY supplemented with 0.1 mg/mL ampicillin, 0.1% glucose for 3-4 hours, induced with 

1mM IPTG and incubated overnight at 30°C. Cultures were harvested, supernatants 

containing soluble Myc-tagged scFvs were filtered through disposable 0.45 µm filters and 

added with 0.02% Sodium Azide with Complete Protease Inhibitor Cocktail (Roche). 

Supernatants were diluted 1:3 and incubated with the mouse monoclonal antibody anti-

Myc 9E10 (8 µg/mL) for being used in ELISA. Maxisorp 96-well plates (Nunc) were 

coated with either the fusion protein alone or the fusion tag in 50mM sodium carbonate 

buffer, pH 9.6 (overnight at 4°C). NPMc+ fragment C-terminal was coated at a 

concentration of 1 µg/mL. Plates were blocked with 2% BSA 2 hours, washed three times 

with PBS and incubated 1 hour with the supernatants. Plates were washed three times with 

PBST and incubated with anti-mouse HRP conjugated (Bio-Rad) for 1 hour at room 

temperature. Plates were washed three times with PBST, the reaction was developed by 

adding ABTS and the absorbance at 40 nm was measured after 30 min incubation. Clones 

with an absorbance value higher than 0.49 and that recognized exclusively the recombinant 

protein and not the fusion tag were considered positives. Their cDNAs were sequenced 

using the primers: Fdseq1 5’-GAATTTTCTGTATGAGG-3’ and PelbBack 5’-

AGCCGCTGGATTGTTATTAC-3’ and then analyzed to identify unique binders. Clones 

with unique sequence were chosen to be produced in large scale. Antibody fragments were 

purified from culture supernatant by affinity chromatography on HiTrap MabSelect SuRE 

(5 mL) Protein A-derived ligand column (GE Healthcare) using ÄKTA FPLC Explorer. 

Protein A-Sepharose is normally used to purify antibodies encoded by VH segments from 

the VH3 family [62]. Size-exclusion chromatography of the purified samples was 

performed on HiLoad 16/60 Superdex 200 (GE Healthcare). Protein purity was evaluated 
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by colloidal blue (Instant Blue, Novexin) stained 12% SDS-PAGE gels and the 

correspondence of the identified bands to scFv proteins was verified by western immuno-

blot analysis using the mouse monoclonal antibody anti-Myc 9E10 (5 µg/mL) as primary 

antibody. Yields were calculated by measuring the absorbance at 280 nm and applying the 

protein extinction coefficient.  

3. Cloning of the scFv-Mut antibody in mammalian expression vectors 

The selected scFv-Mut was cloned in pEGFP-C1 (Clontech, Figure 18A) as a GFP fusion. 

Its cDNA was amplified by PCR using the following primers: 

- FW: 5’-CCAAGCTTCCATAGAGGTGCAG-3’  

- REV: 5’-GGGGCCGCATAGTCTAGACTAGAT-3’; 

scFv-Mut was cloned in pcDNA3.1 (Invitrogen, Figure 18B) as a Flag fusion. Its cDNA 

was amplified by PCR using the following primers: 

- FW: 5’-CCAAGCTTCCATGGAGGTGCAGCTGTTGGAGTCTGGG-3’  

- REV: 5’-CTGACCGTCCTAGGCGCGGCCGCAGACTACAAGGACGACGATG 

           ACAAG-3’; 

scFv-Mut was cloned in pcDNA3.1 (Invitrogen) as a SV40 NLS-HA fusion. Its cDNA was 

amplified by PCR using the following primers: 

- FW: 5’-CCAAGCTTCCATGGAGGTGCAGCTGTTGGAGTCTGGG-3’  

- REV:     
5’CTAGGCGCGGCCGCATACCCCTACGACGTGCCCGACTACCCCAAAAA
GAAACGAAAAGTATAGTCTAGACTAG-3’; 

The same primers were used to amplify by PCR the cDNA of an unrelated scFv antibody. 

scFv-Mut was cloned in pcDNA3.1 (Invitrogen) as a SV40 4xNLS-HA fusion. Its cDNA 

was amplified by PCR using the following primers: 
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-  FW: 
5’CCAAGCTTCCATGCCCAAAAAGAAACGAAAAGTACCCAAAAAGAAAC
GAAAAGTAATGGAGGTGCAGCTGT-3’ 

- REV: 
5’CGACGTGCCCGACTACCCCAAAAAGAAACGAAAAGTACCCAAAAAG
AAACGAAAAGTATAGTCTAGACTAG-3’ 

All inserts were cloned using HindIII-XbaI restriction sites. Positive clones were verified 

by colony PCR, analytical digestion and DNA sequencing. 

B)

A)

MCS

pUC ori

MCS

 

Figure 18. Maps of the pcDNA3.1 and the pEGFP-C1 vectors. A) Sequence of the multi-cloning 

site (MCS) is reported in detail on the left; red circles indicate the restriction sites used for cloning 

(Invitrogen). The Pcmv promoter, the neomycin resistance, the ampicillin resistance (Ampr) and the 

origin of replication (pUC ori) are indicated. B) Sequence of the multi-cloning site (MCS) is 

reported in detail on the left; red circles indicate the restriction sites used for cloning (Clontech). 

The Pcmv promoter, the EGFP protein, the kanamycin/neomycin resistance (Kanr/Neor) and the 

origin of replication (pUC ori) are indicated 
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4. Cell lines: culture conditions, transfections and infections 

4.1 Sf9 insect cells: culture conditions  

Sf9 insect cells were cultured at 27°C in Sf 900 II SMF medium (Gibco). 

4.2 Sf9 insect cells: transfection, infection and protein production 

Sf9 (Spodoptera frugiperda) insect cells were transfected with the pFastBacDual plasmids 

(Invitrogen) expressing either wild type NPM1 or NPMc+. This vector displays two 

expression cassettes: one, where the gene of interest is cloned and the other, where the 

GFP gene is cloned. Each cassette is controlled by an independent promoter. For Sf9 cells 

transfection, 2 mL of cells at a density of 0.5x106 cells/mL were seeded in a 6-wells plate. 

Plates were gently rocked and cells were let attach for 15-30 min. The transfection mix was 

prepared by adding the following reagents in the indicated order: 10µl sterile water, 6µg 

PCR-verified bacmide and 18µl transfection reagent (Insectogene T030-1.0, Biontex).  The 

solution was mixed, left at room temperature for 10 min and then added to the cells. After 

24 hours, the medium was replaced with fresh medium and cells were incubated at 27°C 

for 96 hours. Then, 100µl of the baculoviral supernatant were harvested and used for 

infection of 5 mL cells, seeded at a density of 0.8x106 cells/mL. GFP fluorescence was 

monitored at the microscope. When 80-90% of cells resulted GFP positive, 100 µl of their 

baculoviral supernatant were harvested and used to infect new cells. Two cycles of the 

infection procedure were performed. For protein expression, 5 mL of cells at a density of 

1.2x106 cells/mL were infected with 500µl of baculoviral supernatant obtained as 

described before. After incubation at 27°C for 96 hours, cells were harvested, washed and 

subjected to three cycles of sonication. Then centrifuged and resuspended in 500µl of 

2xPBS. 
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4.3 Mammalian cell lines: culture conditions 

HeLa, OCI-AML2 and OCI-AML3, MEFs NPM1-/-p53-/- cells were cultured at 37°C, 5% 

CO2 and 20% O2. HeLa cells were grown in Dulbecco’s modified Eagle Medium (DMEM-

BioWhittaker, Lonza) supplemented with 10% of fetal bovine serum of Southern American 

origin, L-glutamine (2 mM), penicillin (100 U/mL), streptomycin (100 mg/mL). OCI-

AML2 and OCI-AML3 cell lines were grown in MEM Alpha + GlutaMAXTM-I medium 

(Gibco) supplemented with 20% of fetal bovine serum of Southern American origin, 

glutamine and antibiotics. MEFs NPM1-/-p53-/- were grown in DMEM supplemented with 

10% of fetal bovine serum of Northern American origin, glutamine and antibiotics.  

4.4 Mammalian cell lines: transfection 

HeLa and MEFs NPM1-/-p53-/- cells were transfected using LipofectamineTM 2000 

(Invitrogen). For transfection of 10cm plates, 24µg of DNA were diluted in 1.5 mL 

OptiMEM® medium (Invitrogen). In a separate tube, 60µl of LipofectamineTM 2000 

reagent were mixed with 1.5 mL of OptiMEM® medium (Invitrogen). Each tube was 

incubated 5 min at room temperature and then the two solutions were mixed and incubated 

together 15 min at room temperature, in order to allow liposome-DNA complexes to form. 

Lipofectamine-DNA mixture was directly added to the plates that were incubated at 37°C, 

5%CO2 and 20% O2. For transfections in smaller or bigger plates, scaling-down or scaling-

up of doses was done. Expression of the transfected construct was detectable after 24-48 

hours post-transfection. For co-transfection, a sequential procedure using the same 

LipofectamineTM 2000 (Invitrogen) method was set up: first, the scFv-Mut plasmid was 

transfected then, after 24 hours, the plasmid encoding for NPMc+ was added with a second 

transfection. In this way, I reasoned that the scFv-Mut would have had the time to produce 

and fold before NPMc+ and therefore it would have been able to bind it as soon as it was 

synthesized in the cells. 
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5. Biochemical methods  

5.1 Western immuno-blot analysis 

For western immuno-blot analysis, total cell lysates were clarified by centrifugation and 

quantified using the Bio-Rad protein assay (BIO-RAD), according to the manifacturer’s 

instructions. Recombinant purified proteins and cell lysates (1-50µg per gel lane) in 2xSDS 

Laemmli buffer were boiled 5 min at 95°C and separated on a SDS-PAGE gel, using an 

appropriate acrylamide concentration (stock 40%, 37:1 mix of acrylamide:bisacrylamide) 

to resolve the molecular weight of the targeted proteins. Proteins were transferred onto a 

nitrocellulose membrane (0.45µm pore; Whatman Group). After blocking with 5% 

skimmed Milk in PBST for 2hours at room temperature, proteins of interest were detected 

by specific antibodies at the optimal dilution in 5% skimmed Milk in PBST (overnight, at 

4°C). After three washes in PBST, appropriate HRP conjugated secondary antibodies (Bio-

Rad) were added (40 min at room temperature). Finally, membranes were washed three 

times in PBST and peroxidase activity was detected with a light sensitive film using an 

ECL Plus kit (Pierce) by mixing equal amounts of reagent 1 with reagent 2.  

5.2 Immunoprecipitation assay 

HeLa cells were seeded in 10 cm2 plates and cultured in standard culture medium, before 

being transiently transfected using LipofectamineTM 2000 (Invitrogen), as described in 4.4. 

After 24 hours, transfected HeLa cells were washed and lysed in Mild Lysis Buffer (50mM 

TrisHCl at pH 8, 150mM NaCl, 0.5% NP40 added with protease inhibitors) on ice. Lysates 

concentrations were determined using the Bio-Rad Protein Assay (BIO-RAD), according 

to the manifacturer’s instructions. For immunoprecipitations, 100µg of HeLa cell lysates 

transiently transfected with NPMc+-GFP and NPMc+ expression vectors or 300µg of OCI-

AML2 and OCI-AML3 patients’ cell lysates were incubated with the scFv-MutMyc (10µg) 
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in rotation overnight at 4°C. Samples were extensively washed with ice-cold lysis buffer 

and finally, precipitated proteins were detached from protein A-sepharose (GE Healthcare) 

by dissolving the pellet in 2xSDS Laemmli buffer, denatured by boiling and run onto a 

10% SDS-PAGE gel. The T26 home-made mouse monoclonal antibody anti-NPMc+ 

[217], was used to detect the immunoprecipitated NPMc+ by western immuno-blot 

analysis as described in 5.1. 

5.3 Co-immunoprecipitation assay 

For immunoprecipitations on HeLa cell lysates transiently co-transfected (as in 4.4) with 

scFv-MutFlag and NPMc+-GFP expressing vectors, 400µg of total lysate (obtained as 

described in 5.2) were incubated with mouse M2 anti-Flag agarose beads from mouse 

(Sigma) and with mouse IgG agarose beads as control (Sigma) in rotation overnight at 4°C. 

Samples were extensively washed with ice-cold lysis buffer and finally, precipitated 

proteins were detached from the beads by dissolving the pellet in 2x SDS Laemmli buffer, 

denatured by boiling and run onto a 10% SDS-PAGE gel. The T26 home-made mouse 

monoclonal antibody anti-NPMc+ [217] was used to detect the immunoprecipitated 

NPMc+ and mouse M2 anti-Flag antibody (Sigma) was used to detect the presence of the 

scFv-MutFlag by western immuno-blot analysis as described in 5.1. 

5.4 Immunofluorescence assay   

HeLa cells were grown on 0.2% gelatin-coated coverslips and transiently transfected using 

LipofectamineTM 2000. After 24 hours, transfected Hela cells were rinsed twice with PBS 

and fixed in 4% Paraformaldehyde in PBS at room temperature for 10 min. After two 

washes in PBS, cells were permeabilized 5 min with 0.2% Triton X-100, washed in PBS 

and blocked in BSA 2% in PBS for 30 min at room temperature. Then, the blocking 

solution was removed and the slides were stained with primary antibodies diluted at the 
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appropriate concentrations in blocking solution, for 1hour at room temperature. After two 

washes in PBS, secondary antibodies were added and the slides incubated for 30 min at 

room temperature. The secondary antibodies were CY3-labeled donkey anti-mouse, or 

CY5-labeled goat anti-rabbit IgG (Jackson Immuno Research Laboratoires), diluted in 

blocking solution as following: CY3-labelled antibodies 1:400, CY5-labelled antibodies 

1:50. After two washes in PBS slides were counterstained with DAPI for 5 min, rinsed in 

distilled water, to eliminate salts and mounted with mounting solution (Mowiol). Stained 

cells were assessed by fluorescence microscopy at the DAPI, GFP, CY3 and CY5 

channels. Images were acquired using an Olympus AX70 microscope equipped with a 

CoolSNAP EZ Turbo 1394 (Photometrics®) camera, and the MetaMorph® software 

(Molecular Devices inc.) was used. Images were then processed using ImageJ 1.43 

software, freely available at http://rsbweb.nih.gov/ij/index.html. 

6. Antibodies used in this study 

- Anti-Myc 9E10. Mouse monoclonal antibody home-made. Used 5 µg/mL in western 

immuno-blot, 8 µg/mL in ELISA, 2 µg/mL in immunofluorescence  

- Anti-HA 12CA5. Mouse monoclonal antibody home-made. Used 10 µg/mL in ELISA 

- Anti-HA (HA.11, Covance). Mouse monoclonal antibody. Used 1:200 in 

immunofluorescence  

- Anti-Flag M2 (Sigma). Mouse monoclonal antibody. Used 1:6000 in western immuno-

blot  

- Anti-NPMc+ T26. Mouse monoclonal antibody home-made. Used 1:1000 in western 

immuno-blot, 1:100 in immunofluorescence, 10 µg in immunoprecipitation  
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- Anti-NPM1 clone 338. Mouse monoclonal antibody home-made. It recognizes the C-

terminal end of NPM1. Used 1:5 in western immuno-blot  

- Anti-NPM clone 376. Mouse monoclonal antibody home made. It recognizes the N-

terminal end of NPM protein. Used 1:10 in western immuno-blot 

- Anti-NPM1 (Zymed). Mouse monoclonal antibody. Used 1:1000 in western immuno-blot  

- Anti-nucleolin (Abcam, ab50279). Rabbit polyclonal antibody. Used 1:800 in 

immunofluorescence  

- scFv-MutMyc. Human recombinant antibody isolated in this study from the ETH2-Gold 

library (Silacci et al., 2005). Used 1:3 as supernatant (in combination with mouse 

monoclonal antibody α-Myc 9E10) in western immuno-blot, 2 µg/mL in 

immunofluorescence, 10 µg in immunoprecipitation 
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1. Expression and purification of recombinant mutated NPMc+ protein and of 

recombinant wild type NPM1 fragments 

My first step was to produce all the reagents necessary for the isolation of the antibodies. 

Among the different NPM1 mutations, I decided to focus on mutation A ([200], Figure 15) 

since it is the most frequent (80% of the NPMc+ AML cases display this variant). 

Recombinant NPMc+ full length fused to Glutathione S-transferase (GST) tag (NPMc+-

GST) was produced in E. coli and the total cell lysate was purified by affinity 

chromatography (Figure 19A). The fraction containing eluted NPMc+-GST was dialyzed 

against PBS and run on a 12% SDS-PAGE gel to evaluate protein purity. Upon colloidal 

blue staining (Instant Blue, Novexin), some bands were visible, which ran at lower 

molecular weight than the fusion protein, indicating a slight protein degradation (Figure 

19B, lane 3). The presence of aggregates was assessed by measuring the intrinsic 

fluorescence of the protein (Aggregation Index, A.I. [205]). The A.I. was calculated using 

the following equation (λexc 280 nm): I 280 nm (scattered light) / I 340 nm (max. emitted 

light), and the sample showed a value of 1.7, indicating a significant degree of aggregation 

(Figure 20A). The GST tag promotes protein dimerization and can contribute to bind 

together partially misfolded  monomers of nucleophosmin, a protein that forms oligomers 

in its native conformation [189]. Consequently, even a limited percentage of misfolded 

proteins can contribute to the accumulation of large aggregates. The secondary structure 

composition of NPMc+-GST was analyzed by Circular Dicroism in the Far-UV region: the 

purified protein showed a spectrum compatible with the expected one, namely mainly 

composed by α-helices (GST tag component) and β-sheets (nucleophosmin component, 

Figure 20C, [210]). In parallel, a set of partially overlapping recombinant NPM1 fragments 

was designed that covered the entire wild type protein sequence. Such fragments were 

produced as GST fusions and purified by affinity chromatography. The quality of the 

eluted samples was evaluated after protein separation on 12% SDS-PAGE gels and 
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successive staining with colloidal blue (Instant Blue, Novexin): some bands were visible, 

which ran at lower molecular weight than the fusion proteins, indicating a slight protein 

degradation (Figure 21A and B). This strategy was conceived for identifying which regions 

of the wild type NPM1 in common with the NPMc+ were recognized by the selected 

antibodies.  
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Figure 19. Purification of recombinant NPMc+-GST protein. A) Affinity purification 

chromatogram of the recombinant NPMc+-GST protein. The elution peak is indicated by a blue 

line (UV absorbance at 280 nm). B) Colloidal Blue stained 12% SDS-PAGE gel loaded with 3 µg 

of the purified recombinant GST (lane 2) and NPMc+-GST (lane 3) samples. Protein molecular 

weight (lane 1) is indicated in KDa (Prestained Protein Marker, Cell Signaling) 
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Figure 20. Biophysical characterization of the purified recombinant NPMc+-GST protein. A) 

Emission spectrum of the purified recombinant NPMc+-GST protein in PBS (green line) excited at 

λ=280 nm. The spectrum obtained after buffer (red line) subtraction (sNPMc+) corresponds to the 

blue line. B) Far-UV CD spectra associated with different types of secondary structures: solid 

curve, α-helix; long dashes, anti-parallel β-sheet; dots, type 1 β turn; dots and short dashes, 

irregular structure [211]. C) Far-UV CD spectrum of the purified recombinant NPMc+-GST 

protein. The red arrow indicates the typical minimum of α-helices, while the blue arrow indicates 

the minimum of β-sheets 
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Figure 21. Purification of recombinant wild type NPM1 fragments. A) Colloidal Blue stained 

12% SDS-PAGE gel loaded with 500 ng-1 µg of the purified recombinant NPM1 fragment 1-117 

fused to GST (lanes 2-4), 5 µg of the GST protein (lane 5) and 2-3 µg of the NPM1 fragment 186-

294 fused to GST (lanes 6-7). Protein molecular weight (lane 1) is indicated in KDa (Novex® Sharp 

Protein Standard, Invitrogen). B) Colloidal Blue stained 12% SDS-PAGE gel loaded with 3 µg of 

the purified recombinant NPM1 fragment 1-186 fused to GST (lane 2). Protein molecular weight 

(lane 1) is indicated in KDa (Prestained Protein Marker, Cell Signaling) 
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2. Selection of phage displayed VHHs, production and epitope mapping 

I recovered a first panel of antibodies from a llama naïve phage display library created in 

our laboratory (Cogentech 1, [56]). In the framework of the library validation, I used the 

soluble purified recombinant NPMc+-GST full length protein as target for the isolation of 

specific binders. Panning procedure was optimized introducing a pre-panning step, in order 

to eliminate binders that specifically recognized the GST tag fused to the target protein. 

Three rounds of selection and amplification were carried out and, after the third one, 

periplasmic extracts recovered from 96 induced single colonies expressing HA-tagged 

VHHs, were tested by ELISA on the recombinant NPMc+-GST and GST proteins (Figure 

22A and B). 33 clones specifically recognizing only the target antigen (the percentage of 

positive binders on the total binders screened was 34%), were obtained; the number of 

diverse VHHs selected was successively determined by DNA sequencing and resulted in 

five different clones. Protein sequences, aligned using the AlignX software program 

(VectorNTI Advance 9, Invitrogen), are reported in Figure 22C. In order to check if the 

selected antibodies specifically recognized the C-terminal epitope of the NPMc+ protein, I 

performed an epitope mapping by ELISA test using the bacterial periplasmic extracts of 

the five positive VHHs. A first ELISA test on the purified NPMc+-GST and wild type 

NPM1-GST full length proteins showed that the binders gave positive signals on both 

proteins, indicating that the binders recognized common epitopes. A second ELISA test 

carried out on the three NPM1 fragments (1-117, 1-186 and 186-294 fused to GST) that 

covered the entire wild type NPM1 sequence, revealed that the VHH clones bound to the 

N-terminal portion of nucleophosmin (Figure 23A). In particular, the mapped minimal 

interaction region corresponded to the first 117 amino acids (Figure 23B).  



74 

 

NPMc+-GST

0.930 0.620 0.010 0.000 0.490 0.030 0.780 0.750 0.780 0.760 0.420 0.530

0.640 0.000 0.860 0.000 0.880 0.890 0.640 0.050 0.440 0.810 0.580 0.710

0.670 0.000 0.660 0.020 0.450 0.520 0.880 0,020 0.000 0.000 0.690 0.030
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0.790 0.460 0.540 0.040 0.010 0.010 -0.010 0.010 0.010 0.000 0.460 0.200

0.790 0.010 0.000 0.000 0.220 0.070 0.170 0.010 0.000 -0.010 0.000 0.000

0.810 0.050 0.000 0.020 0.000 0.480 0.340 0.020 0.020 0.520 0.010 0.120
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C)

CLONE 21A   MADVQLQASGGGLVQPGGSLRLSCAAS GFTFSIYT MSWVRQAPGKGLEWVSI INSSGGTT RYADSVKGRFTISRDNAKNTLYLHMNSLKPEDTAVYYC KIGRPNEN—-G-----L QGQGT QVTVSSGRYPYDVPDYGSGRA*
CLONE 210F  MADVQLQASGGGLVQAGGSLRLSCAAS GRTFSSYT MGWFRQAPGEEREFVAA ISWSGGKT YYADSVKGRFTISRDNANNTVYLQMNSLKPEDTAVYYC AATKRGSGRFG---VDY WGQGT LVTVSSGRYPYDVPDYGSGRA*
CLONE 13B   MADVQLQASGGGLVQTGGSLRLSCAAS GSTFSINV MGWYRQTPGKERELVAS ITG-RGIT NYADSVRGRFTISRDNAKNTVYLQMNSLKPEDTAVYYC NADMSTTG-WGKSFYRF WGQGT QVTVSSGRYPYDVPDYGSGRA*
CLONE 17H   MAEVQLQASGGGLVQPGGSLRLSCAAS GSIFSINA MGWYRQAPGKQRELVAA ITS-GGST NYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYC NAQLRVDHPPGYYEYNY WGQGT LVTVSSGRYPYDVPDYGSGRA*
CLONE 23H   MADVQLQASGGGLVKAGGSLRLSCAAS GSGGSINR MGWYRQAPGKQRELVAT ITG-GGST NYADSAKGRFTISRDNAKSTVYLQMNSLKPEDTAVYYC NADLSSGR-YG--TYRY WGQGT LVTVSSGRYPYDVPDYGSGRA*

CDR3

 

Figure 22. Selection, production and sequence analysis of phage displayed VHHs.                                   

A) Absorbance values at 405 nm from the ELISA test performed on the recombinant NPMc+-GST 

protein, using bacterial periplasmic extracts containing VHHs selected after the third round of 

panning. Clones with an absorbance value higher than 0.25, and that recognized exclusively the 

recombinant protein and not the fusion tag, were considered positive and are colored in blue. B) 

Absorbance values at 405 nm from the ELISA test performed on the recombinant GST protein, 

using bacterial periplasmic extracts containing VHHs selected after the third round of panning; 

values corresponding to those also positive on the NPMc+-GST protein are colored in yellow. C) 

Protein sequence alignment of the selected five different VHH clones obtained using the AlignX 

software program (VectorNTI Advance 9, Invitrogen); dashes indicate gaps introduced in order to 

optimize sequence alignment. CDR3 residues are indicated (as determined by IMGT annotation 

[212], www.imgt.org), (*) indicates stop codons 
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A)

B)

GST 1-117 1-186 186-294

- + + - clone 17H

- + + - clone 13B

- + + - clone 210F

- + + - clone 21A

- + + - clone 23H

GST 1-117 1-186 186-294 BLANK

0.058 1.032 0.381 0.063 0.051 clone 17H

0.057 0.912 0.512 0.069 0.051 clone 13B

0.082 0.745 0.330 0.086 0.051 clone210F

0.071 0.940 0.429 0.079 0.051 clone 21A

0.062 0.619 0.319 0.059 0.051 clone 23H

 

Figure 23.  Epitope mapping of the selected VHHs by ELISA test. A) Absorbance values at 405 

nm from the ELISA test performed on the purified recombinant NPM1 fragments 1-117, 1-186, 

186-294 fused to GST and on the purified recombinant GST protein, using bacterial periplasmic 

extracts containing the five selected VHH clones. B) Summary of the results obtained from the 

ELISA test in Figure 23A 
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3. Generation, expression and purification of the recombinant NPMc+ fragment C-

terminal 

A recent finding showed that the NPMc+ C-terminal region lacks a secondary structure 

and this results in a completely unfolded domain [203]. The results obtained by panning 

the VHH library suggested me that the poorly structured NPMc+ C-terminal end, could 

represent an epitope scarcely recognizable by the peculiar extruding VHH paratope (Figure 

24A). Therefore, I decided to address the problem by using the ETH2-Gold scFv library 

and perform a new selection of binders. scFv paratopes are constituted by two flexible 

variable domains, which preferentially recognize protruding and planar epitopes (Figure 

24B). A peptide covering the last 45 amino acids of the NPMc+ protein (amino acids 255-

298), where mutation A is located, was synthesized by PCR (Figure 25A) and expressed in 

bacteria as a fusion with the Maltose Binding Protein (MBP), a conventional stabilizing 

tag. The construct was purified by affinity chromatography (Figure 25B) and dialyzed 

against PBS. Protein purity was evaluated after having separated the protein sample in a 

pre-casted 12% NuPAGE® Novex® Bis-Tris Gel (Invitrogen), that allows for optimal band 

resolution (Figure 25C). 

CDR3

VHH

A) B)  

Figure 24. VHH and scFv antigen binding domains. A) Tridimensional structure of a VHH 

antibody; the red circle indicates the extruding CDR3 domain (modified from [83]). B) 

Tridimensional structure of a scFv antibody (graphics from S. Dübel) 
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Figure 25. Generation, expression and purification of the recombinant NPMc+ fragment C-

terminal. A) 50 ng (lane 2) - 100 ng (lane 3) of PCR product corresponding to the 5’-term NPMc+ 

fragment separated by electrophoresis on a 1% agarose gel. DNA molecular weight was 

determined by running, in parallel with the samples, a 50 base pairs DNA ladder (lane1, NEB). B) 

Affinity purification chromatogram of the recombinant NPMc+ fragment fused at the C-terminal of 

the MBP tag. The elution peak is indicated by a blue line (UV absorbance at 280 nm). C) Colloidal 

Blue stained 12% NuPAGE® Novex® Bis-Tris Gel loaded with 5 µg of the purified recombinant 

MBP protein (lane 1) and 1-5 µg of NPMc+ fragment C-terminal-MBP (lane 2-3). Protein 

molecular weight (lane 1) is indicated in KDa (Novex® Sharp Protein Standard, Invitrogen) 
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4. Selection of phage displayed scFvs, production and purification  

Three rounds of panning using the ETH2-Gold library against the NPMc+ fragment C-

terminal were performed at high-stringency conditions, after a pre-panning step carried out 

against the fused tag (MBP). This procedure caused an almost complete depletion of the 

aspecific phages that recognized only MBP. Supernatants containing soluble recombinant 

Myc-tagged scFvs produced from 96 induced single colonies, were tested by ELISA on the 

recombinant NPMc+ fragment C-terminal in parallel with the MBP protein (Figure 26A 

and B). Six clones specifically recognized the target antigen and DNA sequencing 

indicated that all the six clones shared the same sequence, suggesting a high selective 

pressure toward this specific binder (Figure 26C). The scFv selected (thereafter indicated 

as scFv-MutMyc) was then produced in large scale and purified from culture supernatant 

by affinity chromatography. Protein purity was evaluated by separating the sample on a 

12% SDS-PAGE gel stained with colloidal blue (Instant Blue, Novexin; Figure 27A). The 

identification of the band corresponding to the scFv was verified by western immuno-blot 

analysis using an antibody specific for the Myc tag (Figure 27B).  
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NPMc+ fragment

0.179 0.249 0.246 0.421 0.417 0.352 0.252 0.314 0.429 0.490 0.448 0.320
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Figure 26. Selection, production and sequence analysis of phage displayed scFvs. A) Absorbance 

values at 405 nm from the ELISA test performed using coated NPMc+-MBP fusion fragment and 

bacterial supernatants produced by clones expressing scFvs selected after three rounds of panning. 

Clones with an absorbance value higher than 0.49, and that recognized the recombinant protein 

but not the fusion tag, were considered positive and are colored in blue. B) Absorbance values at 

405 nm from the ELISA test performed using coated MBP protein and bacterial supernatants 

produced by clones expressing scFvs selected after three rounds of panning. The wells 

corresponding to those positive for the fusion protein are colored in yellow. C) Sequence of the VH 

and VL domains of the selected scFv-Mut antibody; red arrows indicate VH and VL CDR3 amino 

acid residues subjected to random mutations during library construction [16]. 



80 

 

sc
F

v-
M

ut
M

yc

sc
F

v-
M

ut
M

yc

A)

B)

30

40

20

15

1        2       

3

WB:
Anti-Myc (9E10)

 

Figure 27. Purification of the selected scFv-MutMyc. A) Colloidal Blue stained 12% SDS-PAGE 

gel loaded with 3 µg  of purified recombinant scFv-MutMyc (lane 2). Protein molecular weight 

(lane 1) is indicated in KDa (Novex® Sharp Protein Standard, Invitrogen). B) Western immuno-

blot analysis on purified recombinant scFv-MutMyc (lane 3) was performed using 9E10 mouse 

anti-Myc antibody (5 µg/mL) 
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5. In vitro biochemical characterization of the scFv-MutMyc antibody selected against 

the NPMc+ fragment C-terminal 

After the expression and purification of the anti-NPMc+ scFv-MutMyc, I began its 

functional characterization in vitro. In particular, I wished to confirm that scFv-MutMyc 

could univocally recognize the mutated region specific of NPMc+. To address this 

question, I performed different analyses: i) western immuno-blot analysis on purified 

recombinant NPMc+-GST and on NPMc+ fragment C-terminal; ii) western immuno-blot 

analysis on insect cell lysates overexpressing wild type NPM1 and NPMc+; iii) 

immunoprecipitation assay on transiently transfected HeLa cells overexpressing NPMc+; 

iv) immunoprecipitation assay on AML patients’ cell lines that express endogenous 

NPMc+; v) immunofluorescence analysis on transiently transfected HeLa cells 

overexpressing NPMc+.  

5.1 Western immuno-blot analysis 

The western immuno-blot analysis was performed on both affinity purified recombinant 

proteins and insect cell lysates expressing either NPMc+ or wild type NPM1. As shown in 

Figure 28A, the scFv-MutMyc antibody specifically recognized only the mutated NPMc+, 

without reacting with the wild type NPM1 protein, neither with the purified recombinant 

MBP and GST tags nor an endogenous insect cell lysate, used as negative control. As a 

further control, two immuno-blot analyses were performed on wild type NPM1 and 

NPMc+ insect cell lysates, using either a mouse monoclonal antibody specific for the wild 

type NPM1 C-terminal end (Figure 28B) or a mouse monoclonal antibody that recognizes 

the N-terminal portion common to both proteins (Figure 28C, both antibodies are home-

made). 
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Figure 28. Western immuno-blot analysis on purified recombinant proteins and on insect cell 

lysates. A) 1 µg of NPMc+-GST and C-terminal NPMc+ fragment (lanes 6 and 2) were run on a 

12% SDS-PAGE gel in parallel with 50 µg of insect cell lysates overexpressing NPMc+ (lane 7), 

wild-type NPM1 (lane 8) and GFP (lane 4). The membrane was incubated with scFvMut-Myc 

supernatant diluted 1:3 together with the mouse anti-Myc antibody 9E10 (5 µg/mL) that recognizes 

the Myc tag fused to the scFv. 1 µg of GST (lane 5) and MBP (lane 1) and 50 µg of an irrelevant 

insect cell lysate (lane 3) were used as controls. B) 50 µg of insect cell lysates overexpressing 

either NPMc+ (lane 1) or wild type NPM1 (lane 2) were run on a 12% SDS-PAGE gel. The 

membrane was incubated with a mouse monoclonal antibody supernatant specific for the C-

terminal end of the wild type NPM1 (clone 338, diluted 1:5). C) 50 µg of insect cell lysates 

overexpressing NPMc+ (lane 1) and wild type NPM1 (lane 2) were run on a 12% SDS-PAGE gel. 

The membrane was incubated with a mouse monoclonal antibody specific for the N-terminal region 

of NPM, which is common to NPMc+ and wild type NPM1 proteins (clone 376, diluted 1:10) 
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5.2 Immunoprecipitation and immunofluorescence assays 

In order to understand wether the scFv-MutMyc antibody was able to bind the native 

protein expressed in mammalian cells, I performed immunoprecipitation experiments using 

cellular lysates obtained from HeLa cells transiently transfected with a plasmid (pEGFP-

C1, Clontech) expressing the NPMc+-GFP fusion protein. As shown in Figure 29A (lanes 

3 and 6), scFv-MutMyc immunoprecipitated NPMc+ with the same efficiency as the 

home-made anti-NPMc+ mouse monoclonal antibody used as control (clone T26, [213]); a 

band was visible, which ran at lower molecular weight than the NPMc+-GFP, indicating 

the presence of a protein degradation product. Similar results were observed using cell 

lysates obtained from HeLa cells transiently transfected with a plasmid (pcDNA5/FRT/TO, 

Invitrogen) expressing not tagged NPMc+ (Figure 29B). I then asked if our antibody could 

also recognize the endogenous NPMc+ and I performed an immunoprecipitation assay on 

cell lines derived from AML patients and either expressing (OCI-AML3) or not expressing 

(OCI-AML2) the NPMc+ allele [214]. As shown in Figure 30, the endogenous mutated 

NPMc+ present in the OCI-AML3 cell line was specifically immunoprecipitated by scFv-

MutMyc. For unknown reasons, the binding efficiency was not as elevated as in the case of 

the overexpressed NPMc+-GFP and NPMc+ proteins. Immunofluorescence experiments 

were then performed on HeLa cells transiently transfected with a NPMc+-FlagHA 

expression vector. As shown in Figure 31A, the scFv-MutMyc antibody specifically 

recognized NPMc+ in the cytoplasm. The signal was similar to the one I obtained in the 

same cells with the mouse monoclonal antibody T26 used as control. The two antibodies 

did not give any aspecific signal on not transfected Hela cells (Figure 31B). As expected, 

immunofluorescence on HeLa cells transiently expressing NPMc+-GFP showed 

overlapping of the GFP signal with that of scFv-MutMyc in the cell cytoplasm (Figure 

32A). The mouse monoclonal antibody T26 was used as control. As shown in Figure 32B, 
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the two antibodies did not give any aspecific signal on HeLa cells transiently expressing 

wild type NPM1-GFP protein (that localized in the nucleoli). Moreover, the scFv-MutMyc 

did not aspecifically recognize the EGFP protein, which showed a diffused staining in 

transiently expressing HeLa cells (Figure 32C).  
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Figure 29. scFv-MutMyc immunoprecipitates the transiently transfected NPMc+ protein. A) 100 

µg of immunoprecipitated HeLa cell lysate transiently expressing NPMc+-GFP was run on a 10% 

SDS-PAGE gel (lanes 3 and 6). The experiment was performed in parallel with 10 µg of scFv-

MutMyc (lanes 1-3) and 10 µg of anti-NPMc+ mouse monoclonal antibody T26 (lanes 4-6). Lanes 

2 and 5: control experiment performed with protein A-sepharose (GE Healthcare). The input is 

10% of the total immunoprecipitated lysate (lanes 1-4). Membranes were probed with the mouse 

monoclonal antibody T26, diluted 1:1000. B) 100 µg of immunoprecipitated HeLa cell lysate 

transiently expressing not tagged NPMc+ was run on a 10% SDS-PAGE gel (lane 3). The 

experiment was performed with 10 µg of the scFv-MutMyc. Lane 2: control experiment performed 

with protein A-sepharose (GE Healthcare). The input is 10% of the total immunoprecipitated lysate 

(lane 1). Membranes were probed with the mouse monoclonal antibody T26, diluted 1:1000 
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Figure 30. scFv-MutMyc immunoprecipitates the endogenous NPMc+ protein. The 

immunoprecipitation performed with 10 µg of scFv-MutMyc on 300 µg of OCI-AML3 cell lysate 

expressing NPMc+ was run on a 10% SDS-PAGE gel (lane 8). A parallel experiment was 

performed on 300µg of OCI-AML2 cell lysate, which do not express NPMc+ (lane 7). Lanes 5-6: 

control experiment performed with protein A-sepharose (GE Healthcare) both on OCI-AML2 (lane 

5) and OCI-AML3 cell lysate (lane 6). Inputs are 10% of the total immunoprecipitated lysates 

(lanes 1-2, OCI-AML2 cell lysate, and lanes 3-4, OCI-AML 3 cell lysate). The membrane was 

probed with the mouse monoclonal antibody T26 diluted 1:1000 
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Figure 31. ScFv-MutMyc recognizes the NPMc+ protein in transiently transfected HeLa cells. 

A) Immunofluorescence analysis on HeLa cells transiently expressing NPMc+-FlagHA was 

performed in parallel using purified scFv-MutMyc (2 µg/mL) detected with the mouse anti-Myc 

antibody 9E10 (2 µg/mL) or the mouse monoclonal antibody T26 diluted 1:100. Signals were 

detected by a cy3 conjugated anti-mouse secondary antibody. B) Immunofluorescence analysis on 

not transfected HeLa cells performed in parallel using purified scFv-MutMyc (2µg/mL) detected 

with the mouse anti-Myc antibody 9E10 (2 µg/mL) or the mouse monoclonal antibody T26 diluted 

1:100. Signals were detected by a cy3 conjugated anti-mouse secondary antibody 
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Figure 32. ScFv-MutMyc recognizes the NPMc+-GFP protein in transiently transfected HeLa 

cells. A) Immunofluorescence analysis on HeLa cells transiently expressing NPMc+-GFP. The 

experiments were performed in parallel using purified scFv-MutMyc (2 µg/mL) detected with the 

mouse anti-Myc antibody 9E10 (2 µg/mL) or the mouse monoclonal antibody T26 diluted 1:100. 

Signals were detected by a cy3 conjugated anti-mouse secondary antibody. B) Immunofluorescence 

analysis on HeLa cells transiently expressing wild type NPM1-GFP. The experiments were 

performed in parallel using purified scFv-MutMyc (2 µg/mL) detected with the mouse anti-Myc 

antibody 9E10 (2 µg/mL) or the mouse monoclonal antibody T26 diluted 1:100. Signals were 

detected by a cy3 conjugated anti-mouse secondary antibody. C) Immunofluorescence analysis on 

HeLa cells transiently expressing EGFP. The experiment was performed using purified scFv-

MutMyc (2 µg/mL) detected with mouse anti-Myc antibody 9E10 (2 µg /mL). Signals were detected 

by cy3 conjugated anti-mouse secondary antibody 
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6. In vivo biochemical characterization of the scFv-Mut antibody selected against the 

NPMc+ fragment C-terminal 

The in vitro biochemical characterization of scFv-MutMyc allowed us to conclude that the 

purified antibody recognized, specifically and efficiently, both the bacteria and insect cells 

derived recombinant NPMc+ protein. Furthermore, scFv-MutMyc bound to and 

immunoprecipitated NPMc+ as transiently expressed in Hela cells and as native protein 

present in a primary cell line derived from AML patients. Given these findings, I decided 

to try to express the scFv-Mut antibody directly inside the cells as an intrabody. Although 

this approach is very challenging due to the difficulties related to the cytoplasmic 

environment that is extremely unfavorable to the scFv-Mut proper folding, if successful, I 

reckoned I could obtain a cellular system where to study any biological effect related to the 

presence of the antibody in vivo. 

6.1 Expression of the scFv-Mut as an intracellular antibody: immunofluorescence 

The scFv cDNA was fused either with GFP or Flag tag in mammalian expression vectors. 

The antibody was efficiently produced in the intracellular environment of HeLa cells 

transiently transfected with the scFv-MutGFP expression plasmid. The cells showed a 

diffused staining and, in some cases, accumulation of the antibody in dense aggregates was 

visible (white arrows, Figure 33). This is compatible with the fact that the eukaryotic cell 

cytoplasm prevents the antibody from folding correctly and promotes its oligomerization. 

Moreover, the extremely crowded intracellular environment and an unfavorable redox 

potential contributes to  the formation of detergent-insoluble aggregates [215, 216].  

 



89 

 

scFv-MutGFP scFv-MutGFP

scFv-MutGFP
 

 

Figure 33. scFv-MutGFP expresses as an intracellular antibody in transiently transfected HeLa 

cells. HeLa cells transiently transfected with the scFv-MutGFP expression vector 

 

Immunofluorescence on HeLa cells transiently co-transfected with both scFv-MutGFP and 

NPMc+ expression vectors showed that the two proteins localized in the same cell 

compartment (Figure 34, panel a). As shown in Figure 34 panel b, T26 antibody, specific 

for NPMc+ (Figure 34 panel c), did not recognize aspecifically scFv-MutGFP in 

transiently expressing Hela cells. 
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Figure 34. scFv-MutGFP and NPMc+ localize in the same cell compartment upon co-

transfection in HeLa cells. Panel a) Immunofluorescence on HeLa cells transiently co-transfected 

with scFv-MutGFP and NPMc+ expression vectors at a stoichiometric ratio of 1:1. The expression 

of NPMc+ was detected by the mouse monoclonal antibody T26, diluted 1:100. Signals were 

detected by an anti-mouse cy3 conjugated secondary antibody. Panel b) Immunofluorescence on 

HeLa cells transiently transfected with the scFv-MutGFP expression vector. Cells were stained 

with the mouse monoclonal antibody T26, diluted 1:100. Signals were detected by an anti-mouse 

cy3 conjugated secondary antibody. Panel c) Immunofluorescence on HeLa cells transiently 

transfected with NPMc+ detected by the mouse monoclonal antibody T26, diluted 1:100, followed 

by an anti-mouse cy3 conjugated secondary antibody 
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6.2 Expression of the scFv-Mut as an intracellular antibody: co-immunoprecipitation 

assay 

In order to investigate if the antibody was properly folded in the cells and it was able to 

recognize and bind NPMc+ in the cytoplasm, I conducted an immunoprecipitation 

experiment on lysates obtained from HeLa cells transiently co-transfected with scFv-

MutFlag and NPMc+-GFP expression vectors. As shown in Figure 35A, the antibody was 

able to immunoprecipitate NPMc+-GFP, even though the binding efficiency was not 

elevated. The bands visible at a lower molecular weight than the immunoprecipitated 

NPMc+-GFP (lanes 5-8) corresponded to the immunoglobulins’ heavy chains. As negative 

control, the same experiment was performed using unconjugated mouse IgG-agarose beads 

(Figure 35B); the bands corresponding to the immunoglobulins’ heavy and light chains 

were visible (lanes 5-8). The results confirmed that, at least to some extent, scFv-MutFlag 

was functionally folded, and that the two proteins interacted in the intracellular milieu 

upon co-expression. Co-immunoprecipitation experiments performed on lysates obtained 

from HeLa cells transiently co-transfected with plasmids expressing scFv-MutFlag and 

wild type NPM1-GFP, and, in parallel, on anti-Flag M2 agarose beads (Figure 36A) and on 

mouse IgG-agarose beads (Figure 36B), further demonstrated that scFv-MutFlag bound 

specifically and exclusively to the mutant NPMc+ protein in the cells; the bands 

corresponding to the immunoglobulins’ heavy and light chains were visible (lanes 4-6). 
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Figure 35. scFv-MutFlag co-immunoprecipitates with the NPMc+-GFP in transiently co-

transfected HeLa cells. Immunoprecipitation assay was performed using 400 µg of HeLa cell 

lysates transiently co-transfected with scFv-MutFlag and NPMc+-GFP expression vectors. The 

immunoprecipitated material was analyzed by western mmune-blotting. The experiment was 

performed using anti-Flag M2 agarose beads (Panel A) in parallel with mouse IgG-agarose beads 

as negative control (Panel B). Membranes were probed with the mouse monoclonal antibody T26, 

diluted 1:1000, and a mouse anti-Flag M2 antibody (diluted 1:6000, Sigma). Lanes 1-2: inputs of 

HeLa cells transiently transfected with NPMc+-GFP (lane 1) or scFv-MutFlag (lane 2). Lanes 3-

4: inputs of HeLa cells transiently co-transfected with scFv-MutFlag and NPMc+-GFP at different 

stoichiometric ratios [lane 3, 20:1 (scFv-MutFlag : NPMc+-GFP); lane 4, 3:1 (scFv-MutFlag: 

NPMc+-GFP)]. Lanes 5-8: corresponding immunoprecipitations 
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Figure 36. scFv-MutFlag does not co-immunoprecipitate with the wild type NPM1-GFP in 

transiently co-transfected HeLa cells. Immunoprecipitation assay was performed using 400 µg of 

cell lysates from HeLa cells transiently co-transfected with scFv-MutFlag and wild type NPM1-

GFP expression vectors. The immunoprecipitated material was analyzed by western mmune-

blotting. The experiment was performed using anti-Flag M2 agarose beads (Panel A) in parallel 

with mouse IgG-agarose beads as negative control (Panel B). Membranes were probed with mouse 

monoclonal antibody anti-wild type NPM1, (diluted 1:1000, Zymed) and a mouse anti-Flag M2 

antibody (diluted 1:6000, Sigma). Lanes 1-2: inputs of HeLa cells transiently transfected with wild 

type NPM1-GFP (lane 1) or scFv-MutFlag (lane 2). Lane 3: inputs of HeLa cells transiently co-

transfected with scFv-MutFlag and wild type NPM1-GFP (at the stoichiometric ratio of 3:1). 

Lanes 4-6: corresponding immunoprecipitations 
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7. Expression of scFv-Mut as an intracellular antibody fused to a nuclear localization 

signal (NLS) 

Considering the capability of the intrabodies to interact with NPMc+, I then decided to 

explore the possibility to relocate NPMc+ to the nucleus by means of expressing the scFv-

Mut intrabody fused to a nuclear localization signal [217, 218]. I subcloned the scFv 

cDNA fused to the simian virus  (SV) 40 large T-antigen NLS [219] in tandem with the 

hemagglutinin epitope sequence (HA tag) in a mammalian expression vector. 

Immunofluorescence on HeLa cells transiently transfected with the plasmid expressing 

scFv-MutNLS showed a clear accumulation of the intrabody in the nucleus (Figure 37, 

panel a). However, when I conducted the same immunofluorescence experiment on HeLa 

cells transiently co-expressing both the scFv-MutNLS and NPMc+-GFP, I observed their 

almost complete co-localization in the cytoplasm (Figure 37, panel c), where NPMc+-GFP 

normally localizes (Figure 37, panel b), strongly suggesting that the majority of the 

antibody expressed in the cells was functional and efficiently bound to NPMc+. This 

observation could be explained by the strength of the additional NES present in the 

NPMc+: recent findings have demonstrated that such NES motif is more efficient in 

mediating nuclear export compared to other physiological NES [220]. The specificity of 

the binding between scFv-MutNLS and NPMc+ was further supported by 

immunofluorescence experiments performed on HeLa cells transiently co-expressing the 

antibody and wild type NPM1-GFP. As expected, scFv-MutNLS localized to the nucleus, 

but did not co-localize with the wild type NPM1-GFP nucleolar staining (Figure 37, panel 

d).  

 



95 

 

DAPI Merge with DAPIscFv-MutNLS (anti-HA)

anti-HA Merge with DAPINPMc+-GFP

NPMc+-GFP Merge with DAPI

a)

b)

c)
scFv-MutNLS (anti-HA)

Merge with DAPIscFv-MutNLS (anti-HA)wild type NPM1-GFP
d)

 
 

Figure 37. scFv-MutNLS co-localizes with NPMc+-GFP in the cytoplasm of transiently co-

transfected HeLa cells. Panel a) Immunofluorescence on HeLa cells transiently transfected with 

the scFv-MutNLS expression vector. Cells were stained with a mouse monoclonal antibody anti-HA 

(diluted 1:200, Covance), followed by an anti-mouse cy3 conjugated secondary antibody. Panel b) 

Immunofluorescence on HeLa cells transiently transfected with the NPMc+-GFP expression 

vector. Cells were stained with a mouse monoclonal antibody anti-HA (diluted 1:200, Covance), 

followed by an anti-mouse cy3 conjugated secondary antibody. Panel c) Immunofluorescence on 

HeLa cells transiently co-transfected with scFv-MutNLS and NPMc+-GFP expression vectors at a 

stoichiometric ratio of 1:1. The expression of scFv-MutNLS was detected by a mouse antibody anti-

HA (diluted 1:200, Covance), followed by an anti-mouse cy3 conjugated secondary antibody. 

Panel d) Immunofluorescence on HeLa cells transiently co-transfected with scFv-MutNLS and wild 

type NPM1-GFP expression vectors at a stoichiometric ratio of 1:1. The expression of scFv-

MutNLS was detected by a mouse antibody anti-HA (diluted 1:200, Covance), followed by an anti-

mouse cy3 conjugated secondary antibody  
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Finally, a mammalian vector expressing an unrelated scFv cDNA fused to a nuclear 

localization signal (NLS) in tandem with the hemagglutinin epitope (HA tag) was 

transiently transfected in HeLa cells. Immunofluorescence experiments showed that the 

antibody accumulated in the nucleus (Figure 38, panel a) and its localization remained 

unaltered also in the presence of NPMc+-GFP (Figure 38, panel b). 

Merge with DAPIunrelated scFv-NLS (anti-HA)
a)

DAPI

Merge with DAPIunrelated scFv-NLS (anti-HA)
b)

NPMc+-GFP  

Figure 38. An unrelated scFv-NLS does not co-localize with NPMc+-GFP in the cytoplasm of 

transiently co-transfected Hela cells. Panel a) Immunofluorescence on HeLa cells transiently 

transfected with an unrelated scFv-NLS expression vector. Cells were stained with a mouse 

monoclonal antibody anti-HA (diluted 1:200, Covance), followed by an anti-mouse cy3 conjugated 

secondary antibody. Panel b) Immunofluorescence on HeLa cells transiently co-transfected with an 

unrelated scFv-NLS and NPMc+-GFP expression vectors at a stoichiometric ratio of 1:1. The 

expression of scFv-NLS was detected by a mouse antibody anti-HA (diluted 1:200, Covance), 

followed by an anti-mouse cy3 conjugated secondary antibody 
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Based on these data, I speculated that adding multiple NLS sequences to the scFv-Mut 

antibody could counteract the effects of the aberrant export signal that is present in the 

mutated NPMc+. I created a new cassette constituted by two NLSs at the N-terminus end 

and two NLSs plus an HA tag at the C-terminus end: between them, I inserted the scFv-

Mut cDNA (scFv-Mut4xNLS, Figure 39, panel a). Immunofluorescence performed on 

HeLa cells transiently transfected with the plasmid expressing scFv-Mut4xNLS showed 

that it accumulated in the nucleus, as expected (Figure 39, panel b) and in some cases in 

the nucleolus as well (yellow arrows, Figure 39, panel c). This result might indicate that 

this antibody cross-reacted with wild type NPM1, which normally localizes in the 

nucleolus and interacts with NPMc+ through their homodimerization interface, 

contributing to its partial localization into the nucleus [201, 220]. In order to understand 

whether this was the case, I transiently expressed the antibody in Mouse Embryonic 

Fibroblasts (MEF) knockout for both NPM1 and p53 [11]. As shown in Figure 40, panels 

a-b, immunofluorescence on these cells confirmed the nucleolar staining, excluding the 

previous hypothesis. Then I tried to co-express the antibody and NPMc+ in HeLa cells in 

order to evaluate its ability to re-locate NPMc+ to the nucleus. Unfortunately, using 

transient transfection, I routinely obtained a very low efficiency of co-expression (Figure 

42). Moreover, although the staining was mainly nuclear, when cells expressed only the 

scFv-Mut (Figure 39) and cytoplasmic, when cells expressed only the NPMc+ (Figure 41), 

in the rare co-transfected cells it was very heterogeneous both for localization and 

expression levels (Figure 42). In particular, in Figure 42 panel d, the scFv-Mut4xNLS 

(yellow arrows) was predominantly nuclear and only partially delocalized to the 

cytoplasm, where most of NPMc+-GFP (panel a, white arrows) localized. In Figure 42 

panel b, NPMc+ partially localized in the nucleus (red and white arrows) also in the 

absence of the scFv-Mut4xNLS expression (panel e, red arrow) or when the scFv was 

partially delocalized to the cytoplasm (panel e, yellow arrow), maybe indicating that only 
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when the expression levels of the antibody were very high, it was possible to observe a 

partial re-localizing effect on NPMc+. In other cells, NPMc+-GFP was predominantly 

cytoplasmic (panel b, blue arrow and panel c, white arrow) even though the antibody was 

clearly nuclear (panel e, pink arrow and panel f, yellow arrow). In conclusion, these results 

made it difficult to understand whether the antibody had had any clear effect on NPMc+ 

localization. Further experiments are now in progress in order to obtain retrovirally 

infected AML cell lines (derived from patients and that express endogenous NPMc+) 

stably expressing the scFv-Mut4xNLS, to test whether it has any effect on NPMc+ cellular 

localization or whether it contributes to p19/Arf relocalization, by interfering with the 

binding between NPMc+ and p19/Arf. In both cases, it will be investigated whether the 

antibody has any direct influence on cell growth and viability. 
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DAPI Merge with DAPIscFv-Mut4xNLS (anti-HA)

a)

DAPI Merge with DAPI

b)

scFv HA 2XNLS2XNLS

c)
scFv-Mut4xNLS (anti-HA)

 

Figure 39. scFv-Mut4xNLS localizes to the nucleus in transiently transfected HeLa cells.      

Panel a) Scheme of the cassette created for the expression of the scFv-Mut4xNLS. Panel b) and 

Panel c) Immunofluorescence on HeLa cells transiently transfected with the plasmid expressing 

scFv-Mut4xNLS. Cells were stained with a mouse monoclonal antibody anti-HA (diluted 1:200, 

Covance), followed by an anti-mouse cy3 conjugated secondary antibody. Yellow arrows indicate 

scFv-Mut4xNLS nucleolar staining 
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DAPI Merge with DAPIscFv-Mut4xNLS (anti-HA)
a)

Merge with DAPI
b)

scFv-Mut4xNLS (anti-HA) anti-nucleolin
 

Figure 40. scFv-Mut4xNLS localizes to the nucleus and gives a distinctive nucleolar staining in 

MEFs NPM1-/-p53-/-. Panel a) Immunofluorescence on MEFs NPM1-/-p53-/- cells transiently 

transfected with the scFv-Mut4xNLS expression vector. Cells were stained with a mouse 

monoclonal antibody anti-HA (diluted 1:200, Covance), followed by an anti-mouse cy3 conjugated 

secondary antibody. Panel b) Immunofluorescence on MEFs NPM1-/-p53-/- cells transiently 

transfected with scFv-Mut4xNLS expression vector. Antibody was detected by using a mouse 

monoclonal antibody anti-HA (diluted 1:200, Covance), followed by an anti-mouse cy3 conjugated 

secondary antibody. Nucleoli were stained with a rabbit anti-nucleolin antibody (diluted 1:800 

Abcam), followed by an anti-rabbit cy5 conjugated secondary antibody 
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DAPI Merge with DAPINPMc+-GFP
 

Figure 41. NPMc+-GFP localizes to the cytoplasm in transiently transfected HeLa cells. 

Immunofluorescence on HeLa cells transiently transfected with the NPMc+-GFP expression 

vector. 
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b) e)

c) f)

a) d)

Merge with DAPIscFv-Mut4xNLS (anti-HA)NPMc+-GFP
 

Figure 42. scFv-Mut4xNLS partially co-localizes with the NPMc+-GFP protein in transiently 

co-transfected HeLa cells. Immunofluorescence on HeLa cells transiently co-transfected with 

NPMc+-GFP (Panels a, b, c) and scFv-Mut4xNLS (Panels d, e, f) expression vectors. The 

expression of scFv-Mut4xNLS was detected with a mouse antibody anti-HA (diluted 1:200, 

Covance), followed by an anti-mouse cy3 conjugated secondary antibody 
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1. Mutated nucleophosmin (NPMc+) is a potential therapeutic target in AML 

Mutation of NPM1 has been demonstrated to be the most frequent genetic alteration 

present in adult AML patients with normal karyotype (about 35% of the cases, [11]). 

Different sequence variants have been observed, all characterized by a reading frameshift 

in the C-terminal portion of NPM1, that leads to the creation of a de novo nuclear export 

signal (NES, [185],[186]) and to the abnormal accumulation of the mutated protein in the 

cytoplasm. Mutation A (Figure 15) is the most recurrent and it is found in 75-80% of AML 

patients characterized by mutated NPM1 (NPMc+, [200]). NPMc+ is responsible for the 

delocalization of proteins normally localized into the nucleolus thanks to their interaction 

with wild type NPM1. NPMc+ binds, delocalizes and inactivates the F-box protein Fbw7γ 

and the tumor suppressor p19/Arf [14, 15]. Based on these data, NPMc+ may be 

considered a bona fide onco-protein whose activity can initiate the tumorigenic program at 

least through two different, but strictly connected, pathways: 1. Delocalization and 

destabilization of Fbw7γ (a ubiquitin ligase involved in proteasome-dependent degradation 

of c-Myc), leading to c-Myc overexpression; 2. Delocalization and destabilization of 

p19/Arf, thus impairing its ability to activate p53 and induce cell cycle arrest in response to 

c-Myc overexpression. Even though other molecular mechanisms and biological effects 

derived by the altered expression of the mutated NPMc+ remain to be further elucidated in 

vivo, the available data strongly support the appealing idea that NPMc+ can be a good 

target for therapy. Considering that NPMc+ activity depends on the ability to export its 

intracellular interactors from the nucleus to the cytoplasm inducing their degradation, one 

option for intervention might be to target downstream of NPMc+, by mimicking p19/Arf 

activity and trying to reactivate p53. For this purpose, a new class of compounds called 

nutlins, which act as Mdm2 antagonists inhibiting Mdm2-p53 interaction, have been 

recently demonstrated to be effective as antitumor molecules both in vitro and in vivo 
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[221]. Nevertheless, this approach recovers only one specific NPMc+ function, which may 

be not the most important in determining tumor development. Moreover, the success of 

this strategy essentially relies on the functionality of the p53 pathway in human tumors, but 

the presence of a single cell clone with a new p53 mutation might be sufficient to induce 

the relapse of the disease. An alternative therapeutic strategy should consider blocking the 

NPMc+ degradation activity. In this regard, a new anticancer therapy, based on proteasome 

inhibitors, has been recently introduced [222]. In preclinical and clinical trials, the 

compound Bortezomib was shown to give significant results in several cancers [223, 224]. 

Moreover, there are reports of its effectiveness in the treatment of myeloproliferative 

disorders [225-228] and of anti-proliferative and pro-apoptotic [229-231] effects on human 

acute myeloid leukemia blasts. Interestingly, it has been shown that all the AML blasts 

carrying FLT3 mutations (associated with NPMc+, [11]) are sensitive to Bortezomib, 

therefore this molecule may be considered a potential therapeutic agent in this type of 

leukemia. However, the administration of Bortezomib could only block the NPMc+-

dependent degradation of p19/Arf and Fbw7γ, but not relocate them into the nucleus where 

they carry out their physiological functions. Therefore, a better strategy is to directly target 

the whole NPMc+ molecule with the aim to interfere with its pathological activities i) by 

re-localizing it to the nucleus, or ii) by preventing NPMc+ binding to its interactors. For 

this purpose, highly specific molecules able of univocally target NPMc+ in the cells, are 

necessary. Indeed, one major problem is the high similarity between wild type NPM1 and 

NPMc+ proteins: they differ only in the last eleven C-terminal amino acids and they are 

both present in the leukemic cells, since NPM1 mutations always occur in one of the two 

NPM1 alleles [11]. Recently, it has been isolated a monoclonal antibody that specifically 

recognizes only the mutated form of NPM1 [232], making the antibody-based therapy an 

attractive possibility. Monoclonal antibodies (mAbs) are amongst the most widely used 

molecules in both basic research and clinics, and several of them are now currently 
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employed in cancer therapy (Table 1). Although important results have been achieved in 

the treatment of solid tumors and hematological malignancies, the application of mAbs 

presents some drawbacks: their large dimensions prevent efficient tissue penetration and 

result in dishomogeneous distribution. Furthermore, they can often elicit adverse 

immunological reactions. In the last years, the introduction of recombinant antibodies, 

together with phage display technology [32], has opened new frontiers in the field of 

immunotherapy. The selection of high-affinity and low immunogenicity reagents that can 

be easily manipulated, has led to the in vitro engineering of recombinant antibodies with 

different formats designed for a wide range of applications. In particular, expression of 

intrabodies in the cells (intracellular antibodies) was successful i) in inhibiting specific 

functions of intracellular antigens, ii) in disrupting intracellular protein-protein interactions 

by competitive inhibition and iii) in diverting antigens from their usual compartment. To 

date only one monoclonal antibody has been approved for the treatment of patients with 

relapsed AML [233, 234]. It is a humanized anti-CD33 IgG, chemically coupled to the 

cytotoxic agent calicheamicin (Gemtuzumab Ozogamicin, GO). CD33 is a surface receptor 

expressed during myeloid differentiation and present on leukemic blast cells in 90% of 

AML patients, but neither on normal hematopoietic stem cells nor in non-hematopoietic 

tissues [235]. However, in June 2010 it was withdrawn from the market because a post-

approval clinical trial raised new questions about its safety and effectiveness. Very 

recently, a scFv isolated against CD33 and fused to soluble tumor necrosis factor-related 

apoptosis-inducing ligand (sTRAIL) has been demonstrated to perform better than GO in 

terms of tumor selectivity, activity and stability, opening new possibilities in the treatment 

of AML [236] and confirming the in vivo efficacy of recombinant antibodies.  
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2. Recombinant mutated NPMc+ can be used as target for specific antibody selection 

from phage display libraries 

In my work I focused on the selection of specific recombinant antibodies targeted against 

the NPMc+ epitope, starting from two non-immune phage display libraries. In order to 

perform an efficient selection of specific binders, it is essential that the protein used for 

bio-panning is properly folded. For this reason, prior to proceeding with my experiments, I 

investigated the biophysical properties of the purified NPMc+-GST protein. Although the 

Aggregation Index measure resulted in a significant degree of aggregation (Figure 20A, 

[205]), Far-UV CD spectra measurement showed that the purified NPMc+-GST conserved 

at least its secondary structure (Figure 20C). Therefore, I designed a high-throughput 

selection procedure, starting from the llama naïve phage display library in VHH format. 

Such library has been developed in our institute and has already demonstrated to be 

functional, enabling the isolation of several high-affinity antibodies targeted against 

different recombinant antigens [56, 85]. It is well known that, in spite of their small 

dimensions, VHHs can have a strong binding activity [81] and display unique molecular 

and structural features [82-84] which render them suitable for many applications in the 

therapeutic [89, 237-239] and diagnostic fields [240-242], [102, 243]. The results obtained 

in the ELISA test performed with the soluble periplasmic extracts of the five selected 

VHHs showed that they all recognized the N-terminal NPM1 region, common to the wild 

type NPM1 and the mutated NPMc+ (Figure 23). Even though they were not useful for my 

initial purpose, however I wanted to evaluate their ability to recognize the native NPMc+ 

protein. In vitro characterization of the selected VHH binders is now in progress: 

immunofluorescence experiments using clone 23H conjugated to a rabbit Fc domain have 

shown that it efficiently recognizes both the endogenous wild type NPM1 and NPMc+ in 

AML-derived cell lines and in patients’ samples. When used in combination with the T26 
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mouse monoclonal antibody specific for NPMc+ [232], a double staining is obtained: 

nucleolar, corresponding to wild type NPM1 and cytoplasmic, corresponding to NPMc+ 

(not shown). Experiments performed so far are limited by the fact that all the results 

obtained are derived from single-antibody staining as, all of antibodies available that work 

in immunofluorescence are of murine origin. For this reason, it is difficult to design co-

staining experiments, necessary for achieving a complete picture of NPM1 cellular 

distribution. Our preliminary data underline the potential application of the VHH-rabbit Fc 

antibody as an helpful diagnostic tool. In view of the results obtained from the VHHs 

selection, I reasoned that the extruding VHH paratope might not be able to target the 

almost completely unfolded NPMc+ C-terminal domain [203]. Therefore, I decided to 

perform a new selection by panning the human synthetic ETH2-Gold scFv library [16] 

against a PCR synthesized small peptide covering the last 45 C-terminal amino acids 

(NPMc+ mutation-specific epitope). This procedure allowed the selection of a single scFv 

positive clone (scFv-Mut), which specifically targeted the mutated C-terminal region of 

NPMc+. Due to its potential therapeutic relevance, I decided to further characterize the 

antibody using the full length NPMc+ in native conditions.  

3. The scFv-Mut antibody univocally targets the C-terminal epitope of NPMc+  

The scFv-Mut antibody was purified by affinity chromatography and then subjected to gel- 

filtration chromatography, in order to separate between the monomeric and the polymeric 

forms (not shown). Western immuno-blot analysis demonstrated that scFv-Mut specifically 

recognized both the full length recombinant NPMc+ protein and the C-terminal peptide 

used for bio-panning. I could also confirm its ability to discriminate between the NPMc+ 

and the wild type NPM1 proteins overexpressed in Sf9 insect cells (Figure 28A). 

Successful immunoprecipitation experiments on lysates obtained from HeLa cells 

transiently transfected with a plasmid for the expression of NPMc+, confirmed that the 
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selected binder was functional and specifically interacted only with the mutation-specific 

NPMc+ epitope (Figure 29). Moreover, scFv-Mut was able to immunoprecipitate the 

endogenous NPMc+ expressed in OCI-AML3 primary cells derived from AML patients 

(Figure 30), and to bind the overexpressed NPMc+, as shown by immunofluorescence 

assays (Figure 31 and 32). This set of data clearly showed that my selected scFv-Mut 

antibody univocally targeted the native NPMc+ protein and, more importantly, it was able 

to recognize NPMc+ in its native conformation inside the cells. This was a crucial result, 

because my specific aim was to obtain an antibody able to functionally interact with the 

endogenous NPMc+ expressed in AML patient’s cells. The antibody binding affinity 

toward its antigen is difficult to determine since NPM forms oligomers of variable 

complexity and the scFv itself tends to dimerize. However, although antibody specificity 

and antigen-binding affinity in vitro are two key factors for the functional evaluation of a 

scFv, over the years many studies have pointed out that extended half-life (that is an index 

of the overall intracellular stability) and elevated steady state expression levels in the cells 

may be more critical parameters in predicting the effectiveness of an intrabody in vivo 

[244-246]. Furthermore, the affinity of an intrabody for its target in the intracellular milieu 

depends on several factors, such as the concentrations of the different species present 

during the expression of the antibody or its folding efficiency [247]. I decided to proceed 

in the attempt to express the scFv-Mut antibody as an intrabody in order to evaluate 

whether it was able to target the endogenous NPMc+ in vivo. To assess whether the scFv-

Mut could be expressed as an intrabody, I prepared different mammalian expression 

vectors for the transient transfection of Hela cells. 
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4. The scFv-Mut antibody can be expressed as an intracellular antibody 

The limiting step in order to achieve efficient expression of an intrabody is its ability to 

fold in the mammalian cytoplasmic environment. First attempts to express intrabodies in 

eukaryotic cells showed that they often failed to bind their target under physiological 

conditions [248-250]. Normally, immunoglobulins are secreted into the body’s 

extracellular space, where they exploit their functions. The requirement for high stability 

has kept a selective pressure to retain both the inter- and intra-chain disulfide bridges 

localized in each domain and formed into the oxidizing endoplasmic reticulum before 

secretion. In particular, scFvs need their two intra-chain stabilizing disulfide bridges for 

proper folding, solubility, and stability [251], but they are unlikely to form them in the 

unfavourable reducing eukaryotic cell cytoplasm [252]. Therefore, it may happen that even 

though successfully expressed, scFvs may undergo to rapid intracellular degradation. 

Accordingly, the expression of intrabodies in the eukaryotic cytoplasm often results 

impaired because of i) reducing environment, which prevents the formation of disulfide 

bridges, ii) absence of accessory factors, like chaperones, that facilitate their proper folding 

and iii) intracellular macromolecular crowding. Usually, recombinant antibodies are 

produced in the bacterial periplasmic space where disulfide bridges are allowed. Very few 

antibodies, obtained by hybridomas or selected by phage display, have revealed to be 

functional and soluble when expressed in the eukaryotic cell cytoplasm. However, it has 

been demonstrated that reduced intracellular stability does not necessarily mean lack of 

functionality [253, 254]. Some scFvs have been shown to tolerate the absence of these 

bonds in vitro [255-258]. The intracellular behaviour of an intrabody is almost 

unpredictable and it has been reported that each scFv shows a distinct propensity to 

aggregate, depending on different factors ranging from the intrinsic stability of its primary 

sequence to the specific cellular milieu in which it is synthesized [215] and it is not easily 
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predictable a priori [259]. A recent work has compared the cytoplasmic expression of 

several related scFvs and VHHs in mammalian cells, showing that their solubility is highly 

influenced by the CDR amino acid content and can be enhanced by overall negative charge 

at cytoplasmic pH and by reduction of hydrophilicity. The working hypothesis is that ionic 

repulsion and weak hydrophobic interactions could compensate, to different extent, for 

impaired disulfide bond formation in the cytoplasm, thereby decreasing the risk for 

intrabody aggregation [260]. Some efforts have been made to generate functional 

molecules i) by systematically mutating the framework residues to create an optimized one 

to be used for the construction of dedicated libraries [261-263], ii) by fusing the antibody 

coding sequence to a tag protein that can help to enhance its solubility [264] and iii) by 

trying to isolate functional intrabodies from large phage display libraries using both in 

vitro and in vivo suitable selection strategies [265-267]. I started the intrabody 

characterization by checking for the expression of the scFv-MutGFP in the cell cytoplasm 

of HeLa cells and I observed a diffused cytoplasmic staining with the occasional presence 

of visible insoluble granules, indicating a modest propensity of the antibody to aggregate 

(Figure 33). Considering these positive premises, I co-expressed both scFv-MutGFP and 

NPMc+ proteins in HeLa cells, showing by immunofluorescence experiments that they 

localize in the same cell compartment (Figure 34). A confocal microscopy analysis would 

be necessary to understand whether the two proteins co-localize in the cell cytoplasm. A 

co-immunoprecipitation assay was then essential to confirm that the intrabody could 

recognize NPMc+ inside the cells (Figure 35). scFv-MutFlag immunoprecipitated NPMc+ 

in vivo, although the binding efficiency was not elevated. Different problems might have 

contributed to this result: i) the stoichiometry of the scFv-Mut versus NPMc+ molecules in 

the cells was apparently too low, ii) only a fraction of the recombinant antibody was 

properly folded and functional, iii) the affinity of the antibody for its substrate was too low. 

As I mentioned before regarding this last point, although I did not evaluate the binding 
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affinity of the recombinant antibody, recent studies have revealed that in vitro 

characteristics, such as affinity, may not be adequate indicators of intrabody activity in the 

cytoplasm [268, 269] and many scFvs that display high affinity in cell-free systems behave 

poorly as intracellular antibodies [247, 270, 271]. In any case, the data show the successful 

binding between at least part of the intrabody and the target NPMc+. Thefore, I asked 

whether the successfully expressed scFv-Mut would be able not only to interact with 

NPMc+, but could also interfere with its pathological activities. In particular, I wondered 

whether I could try exploiting the scFv-Mut antibody to re-locate NPMc+ to the nucleus: I 

decided to further investigate this possibility.  

5. The scFv-Mut intrabody can be targeted to the nucleus 

It has been already shown in vitro that, using inhibitors of the CRM1/Exportin1-dependent 

nuclear export machinery (like leptomycin B, that targets CRM1/Exportin1) responsible 

for the delocalization of NPMc+, it is possible to relocate NPMc+ and its interactors 

(p19/Arf and Fbw7γ) into the nucleus [272], [14]. However, these molecules cannot be 

used in vivo due to their extreme cellular toxicity [273]. One of the advantages of the 

intrabody technology is that the intracellular antibodies may be directed and restricted to 

different cellular compartments, like the endoplasmic reticulum (ER), the Golgi apparatus 

or the mitochondria, by creating fusions with proper intracellular trafficking sequences. 

Alternatively, intrabodies can be expressed and targeted to the nucleus, by fusing them to 

nuclear localization signals (NLSs). It is indeed possible to re-target and sequester cellular 

proteins into the nucleus by fusing intrabodies with the SV40 NLS (PKKKRKV), which 

has been demonstrated to direct very efficiently heterologous proteins into the nucleus 

[121, 217, 218, 244, 245, 274]. Therefore, I prepared a dedicated vector for the fusion of 

scFv-Mut to the SV40 NLS, and used it to transfect HeLa cells. Immunofluorescence 

experiments showed that the antibody clearly accumulated into the nucleus (Figure 37, 
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panel a) but, upon transient co-transfection with the NPMc+ expression plasmid, the two 

proteins co-localized in the cytoplasm (Figure 37, panel c), where NPMc+-GFP normally 

localizes. Although these results confirmed that the antibody and NPMc+ bound each other 

in the cellular environment, unfortunately demonstrated that the NLS that I fused to the 

scFv-Mut was not enough to counteract the effect of the additional NES present in 

NPMc+. Indeed, recent findings have demonstrated that such NES motif is more efficient 

in mediating nuclear export than other physiological NES [220]. Based on these data, I 

prepared a new construct with the recombinant antibody fused to four NLSs (scFv4xNLS). 

However, immunofluorescence experiments on HeLa cells co-transfected with the NPMc+ 

and scFv4xNLS plasmids did not allow to draw any definitive conclusion about its ability 

to relocate NPMc+ to the nucleus due to the high variability in the levels of expression and 

in the localization of the two proteins (Figure 42). Moreover, though preliminary, these 

data suggested that a very high expression level of the scFv might be required, in order to 

observe an effect on NPMc+ localization. This can be related to the fact that the intrabody 

was unstable and partially unfolded in the cytoplasmic environment and therefore, only a 

small fraction was able to bind NPMc+ and exert its biological effect. 

6. Conclusions and future remarks 

In summary, I reported here the successful selection from the ETH2-Gold library of a scFv 

antibody specific for the NPMc+ mutation. Furthermore, I demonstrated that the scFv-Mut 

could be expressed into mammalian cells as an intrabody, retaining its ability to interact 

with native NPMc+. Importantly, fusion to a NLS led to the antibody nuclear 

accumulation; however, in the presence of NPMc+, the two proteins co-localized into the 

cytoplasm. Addition of multiple NLSs to scFv-Mut did not clearly result in re-localization 

of NPMc+ to the nucleus, likely because of the difficulties linked to co-transfection 

experiments and problems related to the high variability in the expression levels obtained 
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with transient transfections. Experiments are now in progress in order to set up a system 

for stable expression of the antibody, by retrovirally infecting leukemic patients’ cell lines. 

This approach would allow working with a population of cells expressing endogenous 

NPMc+ and that might be sorted for scFv-Mut expression by FACS analysis. In such a 

way, it would be possible to standardize the intrabody levels and investigate whether the 

scFv-Mut4xNLS might compete for the binding between NPMc+ and p19/Arf, 

contributing to p19/Arf nuclear re-localization or whether it could have any direct effect on 

NPMc+ localization. In both cases, cell growth and viability will be evaluated. A further 

possibility that can be explored is the direct delivery of the purified antibody to the cells by 

encapsulating it into liposomes, avoiding the problems related to the low intracellular 

expression levels and to the instability due to the unfavourable eukaryotic cell cytoplasm 

[137, 138, 142, 253]. Lipid-based carriers have attractive biological properties, including 

general biocompatibility, biodegradability and high versatility. Today, some liposomes 

have been approved by regulatory agencies as agents employed in targeted therapy of 

cancer and are employed to carry a range of chemotherapeutics, like Doxorubicin (Doxil®, 

[275]), Camptothecin and Daunorubicin (Daunoxome®). Furthermore, recent advances in 

liposome research enabled liposomes to prevent immune reactions, making them very 

promising tools for targeted therapy. 
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