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Abstract

Soft computing is a group of methodologies that works synergisti-

cally to provide flexible information processing capability for han-
dling real-life ambiguous situations. Its aim is to exploit the toler-

ance for imprecision, uncertainty, approximate reasoning, and partial
truth in order to achieve tractability, robustness, and low-cost solu-

tions. Soft computing methodologies (involving fuzzy sets, neural
networks, genetic algorithms, and rough sets) have been successfully
employed in various image processing tasks including image segmen-

tation, enhancement and classification, both individually or in com-
bination with other soft computing techniques. The reason of such

success has its motivation in the fact that soft computing techniques
provide a powerful tools to describe uncertainty, naturally embedded

in images, which can be exploited in various image processing tasks.
The main contribution of this thesis is to present tools for handling

uncertainty by means of a rough-fuzzy framework for exploiting fea-
ture level uncertainty.

The first contribution is the definition of a general framework based

on the hybridization of rough and fuzzy sets, along with a new oper-
ator called RF -product, as an effective solution to some problems in

image analysis. The second and third contributions are devoted to
prove the effectiveness of the proposed framework, by presenting a

compression method based on vector quantization and its compres-
sion capabilities and an HSV color image segmentation technique.
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1 Introduction

1.1 Soft Computing

The digital revolution, with the consequent development of computer

hardware and software, has made available a huge amount of data.
As a result, traditional statistical data summarization and database

management techniques are just not adequate for handling data on
this scale, and for extracting information or, rather, knowledge that
may be useful for mining the domain in question and supporting

the decision-making processes. The massive amount of data is gen-
erally characterized by the presence of not just numeric, but also

textual, symbolic, pictorial and other type of data and may contain
redundancy, errors, imprecision, and so on. In this scenario, soft

computing provides a group of methodologies that works synergisti-
cally for handling real-life ambiguous situations. Its aim is to exploit
imprecision, uncertainty, approximate reasoning, and partial truth in

order to achieve tractability, robustness, and low-cost solutions. The
guiding principle is to devise methods of computation that lead to an

acceptable solution at low cost by seeking for an approximate solu-
tion to an imprecisely/precisely formulated problem. Soft computing

methodologies (involving fuzzy sets, neural networks, genetic algo-
rithms, and rough sets) are most widely applied in the data mining

process. Possibility Theory provides a natural framework for dealing
with uncertainty. Neural networks and rough sets are widely used
for classification and rule generation. Genetic algorithms (GAs) are

involved in various optimization and search processes[68].
Each soft computing methodology has its own powerful properties

and offer different advantages. For example, Fuzzy Logic is often

1



CHAPTER 1. INTRODUCTION 2

used to model human reasoning and provide a natural mechanism
for dealing with uncertainty. Neural networks are robust to noise

and have a good ability to model highly non-linear relationships.
Genetic algorithm is particularly useful for optimal search. Rough

sets are very efficient in attribute reduction and rule extraction. On
the other hand, these soft computing techniques also have some re-

strictions that do not allow their individual application in some cases.
Fuzzy sets are dependent on expert knowledge. The training time
of neural networks can be long when the input data are large and

most neural network systems lack explanation facilities. The the-
oretical basis of genetic algorithm is weak, especially on algorithm

convergence. Rough sets are sensitive to noise and present the NP
problems on the choice of optimal attribute reduct and optimal rules.

In order to cope with the drawbacks of individual approaches and
leverage performance of data mining system, it is natural to develop
hybrid systems by integrating two or more soft computing technolo-

gies. Each of them contributes a distinct methodology for addressing
problems in its domain, in a cooperative, rather than a competitive,

manner. The result is a more intelligent and robust system providing
a human-interpretable, low cost, approximate solution, as compared

to traditional techniques.

1.2 Neural Networks

Neural networks have proved to be a powerful tool for mining data,

although they were earlier thought to be unsuitable for this task
because of the lack of information suitable for verification or inter-
pretation by humans. This has not prevented neural networks from

being used, and sometimes abused, for a nearly every classification
and regression tasks, both in supervised and unsupervised version.

Recently there has been a growing interest aimed at filling this hole
of knowledge, by extracting it from the trained networks in the form

of symbolic rules [123]. In this way it is possible to identify the at-



CHAPTER 1. INTRODUCTION 3

tributes that are the most significant determinants of the decision
or classification. The main contribution of neural nets in the field

of data mining is for rule extraction, classification and clustering.
In general, the first step to extract knowledge from a connectionist

model is to provide a representation of the trained neural network,
in terms of its nodes and links. One or more hidden and output

units are automatically selected to derive the rules, which can be
combined to gain a more comprehensible rule set. Neural nets then
provide high parallelism and optimization capability in the data do-

main. First a network is trained to achieve the required accuracy and
then redundant connections pruned. Classification rules are gener-

ated by analyzing the network in terms of link weights and activation
values of the hidden units[60].

1.3 Fuzzy Sets

The development of fuzzy logic has led to the rise of soft computing,
becoming the earliest and most widely reported constituent of this
field. Its aim is the modeling of imprecise and qualitative knowl-

edge, as well the handling of uncertainty at various stages. Fuzzy
logic is capable of encoding, to a certain extent, human reasoning

in natural form. Despite a growing versatility of knowledge discov-
ery systems, there is an important component of human interaction

that is inherent to any process of knowledge representation, manip-
ulation, and processing. Fuzzy sets are inherently inclined to cope

with linguistic domain knowledge and produce more interpretable
solutions. Fuzzy logic has been extensively used in many application
fields to exploit its characteristic features, for instance, knowledge

discovery in databases [24], clustering [126] [106] [95], web mining
[78] and image retrieval [80] [28].



CHAPTER 1. INTRODUCTION 4

1.4 Rough Sets

Rough sets theory [92] has emerged as a major mathematical tool for
handling uncertainty that arises from granularity in the domain of

discourse, this is done by managing indiscernibility between objects
in a set. It offers powerful tools to extract hidden patterns from data
and therefore it is becoming very important in various application

fields. A fundamental characteristic of a rough set-based learning
system is to discover redundancies and dependencies between the

given features of a problem to be classified. This is done by char-
acterizing a given concept from below and from above, using lower

and upper approximations. Recently rough sets theory has been ex-
tensively employed in various applications fields, although its use

generally proceeds along two main directions:

1. Decision rule induction based on generation of discernibility ma-

trices and reducts [74] [112].

2. Data filtration [102] by extracting elementary blocks from data

based on equivalence relation.

1.5 Genetic Algorithm

Genetic Algorithms (GAs) are adaptive, robust, efficient, optimiza-

tion methodologies based on principles of nature. They can also
be viewed as searching algorithms, suitable in situations where the

search space is large, because they explore a space using heuristics
inspired by nature.

Any optimization problem has to be represented by using chromo-

somes, which are a codified representation of the real values of the
variables in the problem. Then GAs optimize a fitness function to

arrive at an optimal solution using certain genetic operators. Basi-
cally, a genetic algorithm uses a population of individuals, which are

modified by using genetic operators in such a way as to eventually
obtain the best individual.
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GAs do not require or use derivative information and hence the
most appropriate applications are problems where gradient informa-

tion is unavailable or costly to obtain. Reinforcement learning is
an example of such domain.In GAs, the only feedback used by the

algorithm is information about the relative performance of different
individuals.

1.6 Soft Computing in Image Analysis

Soft computing offers a novel approach to manage uncertainty in dis-
covering data dependencies, relevance of features, mining of patterns,
feature space dimensionality reduction, and classification of objects.

Consequently, these techniques have been successfully employed for
various image processing tasks including image segmentation, en-

hancement and classification, both individually or in combination
with other soft computing techniques. Just to show some examples

of such combinations, rough sets have been successfully combined
with fuzzy sets, other than with neural networks, genetic algorithms,
support vector machines for image segmentation, feature extraction,

classification and enhancement, and many other tasks. Over the
years the combination of two or more techniques has been proved

to be effective in image processing, yielding algorithms which have
overcome classical approaches. The reason of such success has its mo-

tivation in the fact that soft computing techniques provide a powerful
tools to describe uncertainty, naturally embedded in images, which

can be exploited in various image processing tasks.

1.7 Contributions

Many basic concepts of image analysis do not lend themselves well
to precise definition. Uncertainties arise from deficiencies which can

result from incomplete, imprecise and vague information in various
stages of a image processing tasks. Classical image processing ap-
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proaches do not consider image content as uncertain and hence tend
to discard important, even though incomplete, parts of information.

As stated above, soft computing techniques try to exploit uncertainty
embedded in image, on the consideration that an incomplete or vague

information can help the final task. Obviously different kind of un-
certainties may be faced in image processing, and hence different

techniques have to be employed to capture and elaborate them. In
particular uncertainty can be exploited at lower level, i.e. at feature
level, or at higher level, i.e. at semantic level. The aim of this thesis

is to present three contributions for handling uncertainty by means
of a rough-fuzzy framework for exploiting feature level uncertainty.

1.7.1 Rough Fuzzy Framework for Image Processing

The intrinsic presence of uncertainty when dealing with digital im-

ages processing and analysis, is the reason of the growing interest
for the use of rough and fuzzy based techniques which have proved

to be effective in this field. Moreover, the definition of combined
frameworks of both theories has given more powerful tools to exploit

their own characteristics.
The first contribution is the definition of a general framework based

on the hybridization of rough and fuzzy sets as an effective solution
to some problems in image analysis. In the contest of this frame-
work, a new operator to compose rough fuzzy sets along with the

proofs of its basics properties is presented. This new operator, called
RF -product, can be viewed as a multiresolution approach, i.e. as a

sequence of composition of rough fuzzy sets.

1.7.2 Rough Fuzzy Vector Quantization

The second contribution is a compression method based on vector
quantization. Feature extraction is based on the given definition of

rough fuzzy sets and performed by partitioning each block in multiple
rough fuzzy sets which are characterized by two approximation sets,
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containing inf and sup values over small portions within the block.
Reconstruction of compressed images is performed exploiting RF -

product operator. The method is shown to efficiently encode images
in terms of high peak signal to noise ratio (PSNR) values, while

alleviating the blocking effect problem.

1.7.3 Rough Fuzzy Color Image Segmentation

The third contribution is a color image segmentation technique which
exploits the given definition of rough fuzzy sets. The segmentation

is performed by partitioning each block in multiple rough fuzzy sets
that are used to build a lower and a upper histogram in the HSV

color space. For each bin of the lower and upper histograms some
measures are computed to find the best segmentation of the image.
It is shown that the proposed method retains the structure of the

color images leading to an effective segmentation.

1.8 How to read the thesis

The first part is devoted to the presentation of the rough-fuzzy frame-

work for handling uncertainty at feature level. This part is composed
by three chapters. Chapter two presents the mathematical founda-

tions of rough sets, fuzzy sets and their hybridization. Also in this
chapter a brief survey of applications of the hybridized rough and

fuzzy sets is presented. The third chapter is a survey of techniques
which employ rough sets and fuzzy sets theories in image analysis.
The survey will be carried out following two points of view: the first

one will illustrate methods where rough and fuzzy theories are em-
ployed separately; the second one will show techniques which exploit

hybridization of rough and fuzzy theories. Chapter four presents the
first contribution of this dissertation. First the rough fuzzy frame-

work for the hybridization of rough sets and fuzzy sets theories is
presented, followed by the definition of RF -product along with the
proof of its basic properties. Chapter five presents the second contri-
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bution, i.e. a compression algorithm which exploits the peculiarities
of the proposed framework and the comparison with other compres-

sions scheme. Chapter six presents the third contribution, that is the
presentation of a segmentation algorithm based on the rough fuzzy

framework exposed in Chapter three. The seventh chapter resumes
the main results obtained in the thesis and proposes possible themes

that could be further investigated in future.



2 Rough Sets and Fuzzy Sets

2.1 Introduction

An important issue, recently discussed with respect to the notion of

a set, is vagueness. From a mathematical stand point, it is required
that all the concepts must be exact. Although in computer science a
growing interested is devoted to handle real life vague concepts just

like humans do. Fuzzy set, proposed by Lofti Zadeh, is one of the first
approach to handle vagueness by means of partial membership to a

set. A different approach try to handle the vagueness introducing the
concept of boundary of a set that represents the amount of knowledge

about a set. An empty boundary region means that the set is crisp,
otherwise the set is rough, i.e., the knowledge about the set is not

sufficient to precisely define the set.

2.2 Fuzzy Sets theory

2.2.1 Fuzzy Logic

Since Zadeh firstly proposed the concept of “Fuzzy Sets” in 1965

[142], fuzzy set theory and its applications have been developed
quickly and widely [61], [71]. Mainly in fields as control and arti-
ficial intelligence, it has been proved that fuzzy logic is a powerful

mathematical tool for dealing with modeling and control aspects of
complex processes, which transparently express the conflicting char-

acter of the precision of the model and the degree of its generality,
i.e. the principle of incompatibility [94], [143].

Fuzzy sets was specifically designed to mathematically represent un-
certainty and vagueness and to provide formalized tools for dealing

9
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with the imprecision intrinsic to many problems. The notion of an
infinite-valued logic was introduced in Zadeh seminal work “Fuzzy

Set” where he described the mathematics foundation of fuzzy set
theory, and by extension fuzzy logic. This theory considered the

membership function to operate over the range of real numbers [0
, 1]. New operations for the calculus of logic were proposed, and

showed to be in principle at least a generalization of classic logic.
Fuzzy logic provides an inference morphology that enables approxi-
mate human reasoning capabilities to be applied to knowledge-based

systems. The theory of fuzzy logic provides a mathematical tool to
capture the uncertainties associated with human cognitive processes,

such as thinking and reasoning. The conventional approaches to
knowledge representation lack the means for representing the mean-

ing of fuzzy concepts. As a consequence, the approaches based on
first order logic and classical probability theory do not provide an ap-
propriate conceptual framework for dealing with the representation

of commonsense knowledge, since such knowledge is by its nature
both lexically imprecise and non-categorical. The development of

fuzzy logic was motivated in large measure by the need for a concep-
tual framework which can address the issue of uncertainty and lexical

imprecision. Some of the essential characteristics of fuzzy logic relate
to the following sentences [144]:

• exact reasoning is viewed as a limiting case of approximate rea-

soning

• everything is a matter of degree

• knowledge is interpreted as fuzzy constraints on a collection of
variables

• inference is viewed as a process of propagation of elastic con-
straints

• any logical system can be fuzzified
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2.2.2 Fuzzy Sets

A classical “crisp” set is a collection of distinct objects. It is defined
in such a way as to dichotomize the elements of a given universe of
discourse into two groups: members and non-members. A crisp set

can be defined by the so-called characteristic function. Let U be a
universe of discourse, the characteristic function µA(x) of a crisp set

A in U takes its values in {0, 1} and is defined such that

µA(x) =

{

1 iff x ∈ A

0 iff x /∈ A
(2.1)

We note that the boundary of a set A is rigid and sharp and per-

forms a two-class dichotomization (i.e. x ∈ Aorx /∈ A) of the uni-
verse. A Fuzzy Set, on the other hand, introduces vagueness by elim-
inating the sharp boundary that divides members from non members

in the group. Thus the transition between full membership and non-
membership is gradual rather than crisp. Hence, fuzzy sets may be

viewed as an extension and generalization of the basic concepts of
crisp set [58]. A fuzzy set A in the universe of the discourse U can

be defined as a set of ordered pairs

A = {(x, µA(x))|x ∈ U} (2.2)

where µA(·) is called the membership function of A and µA(x) is
the degree of membership of x in A.

Definition 1. Fuzzy Set. Let U be a nonempty set. A Fuzzy Set A

in U is characterized by its membership function

µA : U →M (2.3)

where µA(x) is interpreted as a the degree of membership of element

x in fuzzy set A for each x ∈ U .
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When M = {0, 1} set A is nonfuzzy and µA(·) is the characteristic
function of the crisp set A. For fuzzy sets, the range of the mem-

bership function is a subset of the non-negative real numbers whose
supremum is finite. In most general cases, M is a set on the unit

interval [0 , 1]. We note that µA(x) ∈ [0, 1] indicates the membership
grade of an element x ∈ U in fuzzy set A and that it is not a prob-

ability because
∑

µA(x) 6= 1. Another way of representing a fuzzy
set is through use of support of a fuzzy set. The support of a fuzzy
set A is the crisp set of all x ∈ U such that µA(x) > 0. That is

Supp(A) = {x ∈ U |µA(x) > 0} (2.4)

A fuzzy set A whose support is a single point in U with µA(x) = 1
is referred to as a fuzzy singleton. The height of a fuzzy set A is the
supremum of µA(x) over U . That is

Height(A) = sup
x

µA(x) (2.5)

A fuzzy set is normalized when the height of the fuzzy set is unity
(i.e. Height(A) = 1); otherwise it is subnormal. A nonempty fuzzy

set A can always be normalized by dividing µA(x) by the height of A.
Using the support of a fuzzy set A, we can simplify the representation

of a fuzzy set A as

A =
n

∑

i=1

µi/xi (2.6)

where the summation indicates the union of the elements and µi is
the grade of the membership of xi.

Definition 2. α-cut. An α-level set of a fuzzy set A of U is a non-

fuzzy set denoted by Aα and is defined by

Aα =

{

{x ∈ U |µA(x) ≥ α} if α ≥ 0

cl(Supp(A)) if α = 0
(2.7)
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where cl(Supp(A)) denotes the closure of the support of A.
Now we introduce the resolution principle which indicates that a

fuzzy set A can be expanded in terms of its α-cuts.

Theorem 1. Let A be a fuzzy set in the universe of the discourse U .
Then the membership function of A can be expressed in terms of the
characteristic functions of its α-cuts according to

µA(x) = sup
α∈(0,1]

[α ∧ µAα
(x)] (2.8)

where ∧ denotes the min operation and µAα
is the characteristic func-

tion of the crisp set Aα,

µAα
=

{

1 iff x ∈ Aα

0 otherwise
(2.9)

Theorem 3 leads to the following representation of a fuzzy set A

using the resolution principle. Let A be a fuzzy set in the universe of
discourse U . Let αAα denotes a fuzzy set with membership function

A =
⋃

α∈ΛA

αAα (2.10)

The resolution principle states that a fuzzy set A can be decom-
posed into αAα, α ∈ (0, 1]. On the other hand, a fuzzy set A can

be retrieved as union of its αAα, which is called the representation
theorem.

A fuzzy set A of U is called convex if Aα is a convex subset of U ,
∀α ∈ (0, 1]. From this we define a fuzzy number

Definition 3. A fuzzy number A is a fuzzy set of the real line with a
normal, fuzzy convex and continuous membership function of bounded

support. The family of fuzzy numbers will be denoted by ℑ.

A fuzzy set A is called triangular fuzzy number with center a, left
width α > 0 and right width β > 0 if its membership function has
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the following form

A(t) =











1− a−t
α

if a− α ≤ t ≤ a

1− t−a
β if a ≤ t ≤ a + β

0 otherwise

(2.11)

We use the notation A = (a, α, β). The support of A is (a−α, b+β).
A fuzzy set A is called trapezoid fuzzy number with tolerance interval

[a, b], left width β if its membership function has the following form

A(t) =























1− a−t
α if a− α ≤ t ≤ a

1 if a ≤ t ≤ b

1− t−b
β if a ≤ t ≤ a + β

0 otherwise

(2.12)

We use the notation A = (a, b, α, β). The support of A is (a−α, b+β).
A fuzzy set A is called Gaussian fuzzy number with tolerance interval

[a, b] if its membership function has the following form

G(t) = e−
1

2
( t−c

σ
)2 (2.13)

A fuzzy set A is called Generalized-Bell fuzzy number with toler-

ance interval [a, b] if its membership function has the following form
depending by the parameters a, b, c

GB(t) =
1

1 + | t−c
a |

2b
(2.14)

Definition 4. Any fuzzy number A ∈ ℑ can be described as

A(t) =























L(a−t
α ) if t ∈ [a− α, a]

1 if t ∈ [a, b]

R( t−b
β

) if t ∈ [b, b + β]

0 otherwise

(2.15)

where [a, b] is the core of A, and R, L : [0, 1]→ [0, 1] are continuous
and non-increasing shape functions with L(0) = R(0) = 1 and L(1) =
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R(1) = 0. We call this fuzzy interval of LR−type and refer to it by
A = (a, b, α, β)RL. The supports of A is (a − α, b + β). Let A be a

fuzzy number. If Supp(A) = {x0} then A is called a fuzzy point and
we use the notation A = x0.

2.2.3 t-norm, t-conorm and complement

A complement of a fuzzy set A, denoted as A, is specified by a

function c : [0, 1] → [0, 1] such that µA(x) = c(µA(x)) where the
function c(·) satisfies the following conditions:

1. Boundary conditions: c(0) = 1 and c(1) = 0

2. Monotonic properties: for any x1, x2 ∈ U , if µa(x1) < µa(x2)
then c(µa(x1)) ≥ c(µa(x2))

3. Continuity: c(·) is a continuous function

4. Involution: c(·) is involutive, which means c(c(µA(x))) = µA(x)∀x ∈
U

Next, let us discuss the intersection and union operations on fuzzy
sets, which are often referred as triangular norms (or t-norms) and
triangular conorms (or t-conorms), respectively [50] [21] [22].

T-norms are two parameters functions of the form t : [0, 1]× [0, 1]→
[0, 1] such that

µA
⋂

B(x) = t[µA(x), µB(x)] (2.16)

where the function t(·) satisfies the following conditions:

1. Boundary conditions: t(0, 0) = 0, t(µA(x), 1) = t(1, µA(x)) =

µA(x)

2. Commutativity: t(µA(x), µB(x)) = t(µB(x), µA(x))

3. Monotonicity: if µA(x) ≤ µC(x) and µB(x) ≤ µD(x) then t(µA(x), µB(x)) ≤
t(µC(x), µD(x))

4. Associativity: t(µA(x), t(µB(x), µC(x))) = t(t(µA(x), µB(x)), µC(x))
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Typical t-norms are (a ≡ µA(x) and b ≡ µB(x))

1. Intersection: a ∧ b = min(a, b)

2. Algebraic product: a · b = ab

3. Lukasiewicz: a⊙ b = max(0, a + b− 1)

4. Drastic product:

â·b =











a b = 1

b a = 1

0 a, b < 1

T-conorms (also called s-norms) are two parameters functions of the
form s : [0, 1]× [0, 1]→ [0, 1] such that

µA
⋃

B(x) = s[µA(x), µB(x)] (2.17)

where the function s(·) satisfies the following conditions:

1. Boundary conditions: s(1, 1) = 1, s(µA(x), 0) = s(0, µA(x)) =

µA(x)

2. Commutativity: s(µA(x), µB(x)) = s(µB(x), µA(x))

3. Monotonicity: if µA(x) ≤ µC(x) and µB(x) ≤ µD(x) then s(µA(x), µB(x)) ≤
s(µC(x), µD(x))

4. Associativity: s(µA(x), s(µB(x), µC(x))) = s(s(µA(x), µB(x)), µC(x))

Typical t-conorms are (a ≡ µA(x) and b ≡ µB(x))

1. Union: a ∨ b = max(a, b)

2. Algebraic sum: a+̂b = a + b− ab

3. Lukasiewicz: a⊕ b = min(1, a + b)

4. Disjoint sum: a△ b = max{min(a, 1− b), min(1− a, b)}
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5. Drastic sum:

â·b =











a b = 0

b a = 0

0 a, b > 1

The relations among various t-norms and t-conorms are described by
the following Theorem

Theorem 2. Let A and B to be fuzzy sets in the universe of discourse

U . The t-norms are bounded by the inequality

tdp(a, b) = tmin(a, b) ≤ t(a, b) ≤ tmax(a, b) = min(a, b) (2.18)

where tdp(a, b) is the drastic product. Similarly, the t-conorms are

bounded by the inequalities

max(a, b) = smin(a, b) ≤ s(a, b) ≤ smax(a, b) = sds(a, b) (2.19)

where sds(a, b) is the drastic sum.

Based on t-norms and t-conorms, we shall further introduce some
operations of fuzzy sets that are central to fuzzy logic and fuzzy

reasoning. Let A and B fuzzy sets in the universal sets U and V ,
respectively, we have

1. Fuzzy conjunction: the fuzzy conjunction of A and B is denoted
as A ∧ B and defined

µA∧B(x, y) , t(µA(x), µB(y)) (2.20)

where t is a t-norm

2. Fuzzy disjunction: the fuzzy disjunction of A and B is denoted

as A ∨ B and defined by

µA∨B(x, y) , s(µA(x), µB(y)) (2.21)

where s is a t-conorm
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3. Fuzzy implication: the fuzzy implication of A and B is denoted
as A → B and has five different definitions. In the following, t

is a t-norm, s is a t-conorm, and the complement is the standard
complement

• Material implication: A→ B = s(A, B)

• Propositional calculus: A→ B = s(A, t(A, B))

• Extended propositional calculus: A→ B = s(A× B, B)

• Generalized of modus ponens: A→ B = sup{k ∈ [0, 1], t(A, k) ≤
B}

• Generalized of modus tollens: A→ B = inf{k ∈ [0, 1], s(B, k) ≤
A}

2.2.4 Extension Principle

The extension principle introduced by Zadeh [145], is one of the most

important tool of fuzzy sets theory. This principle allows the gen-
eralization of crisp mathematical concepts to the fuzzy set frame-

work and extends point-to-point mappings to mappings for fuzzy
sets. It provides a means for any function f that maps an n-tuple
(x1, . . . , xn) in the crisp set U to a point in the crisp set V to be

generalized to mapping n fuzzy subsets in U to a fuzzy subset in V .
Hence, any mathematical relationship between non fuzzy elements

can be extended to deal with fuzzy entities. Furthermore, the exten-
sion principle is very useful for dealing with set-theoretic operations

for high-order fuzzy sets.
Given a function F : U → V and a fuzzy set A in U , where

A =
∑n

i=1 µi/xi, the extension principle states that

f(A) = f(
n

∑

i=1

µi/xi) =
n

∑

i=1

µi/f(xi) (2.22)

If more than one element of U is mapped to the same element of y

in V by f , then the maximum among their membership grades is
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taken, that is,

µf(A)(y) = max
xi∈U :f(xi)=y

[µA(xi)] (2.23)

where xi represents the elements that are mapped to the same y.

Quite often the function f that is of interest maps n-tuple in U to
a point V . The extension principle allows the function f(x1, . . . , xn)
with (x1, . . . , xn) be an n-tuple to act on the n fuzzy subsets of U .

2.3 Rough Sets theory

2.3.1 Rough Sets

Rough set theory, introduced by Pawlak [90] in the early 1980s, is
a mathematical approach that can be employed to handle impreci-

sion, vagueness and uncertainty. Rough sets have many important
advantages for data mining, such as providing efficient algorithms

for finding hidden patterns in data, finding minimal sets of data,
generating sets of decision rules from data, and offering straight-

forward interpretation of obtained results. In the last two decades,
rough sets have widely been applied to data mining and rapidly es-
tablished themselves in many real-life applications such as medical

diagnosis, control algorithm acquisition and process control and im-
age processing. The main advantage of rough set theory is that it

needs no apriori knowledge or additional information about data,
like, for instance, membership functions in fuzzy set theory.

The basic concept for data representation in the rough set frame-
work is an information system. An information system I can be

defined in terms of a pair (U, A)

I = (U, A) (2.24)

where U is a non-empty finite set of objects and A is a non-empty
finite set of attributes. Each attribute a ∈ A can be viewed as a

function that maps elements of U into a set Va

a : U → Va (2.25)
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The set Va is called the value set of attribute a. The value of attribute
a for object x is said to be missing if a(x) has not been observed.

Values may be missing for a variety of reasons. How missing val-
ues should be interpreted and subsequently treated depends on the

application domain. In the following, “⊤” will be used to denote a
missing value, and is assumed to be a member of every value set. An

information I defines a matrix MtextitI, of dimensions |U |×|U |, called
discernibility matrix. Each entry MtextitI(x, y) ⊆ A consists of the set
of attributes that can be used to discern between objects x, y ∈ U

MtextitI(x, y) = {a ∈ A|discerns(a, x, y)} (2.26)

where discerns(a, x, y) is defined as

discerns(a, x, y)⇔ a(x) 6= a(y) (2.27)

A discernibility matrix MA defines a binary relation RA ⊆ U 2, called
indiscernibility relation with respect to A

xRAy ⇔MA(a, y) = ∅ (2.28)

which expresses the pairs of objects that cannot be discerned be-

tween. A generalization of 2.28 would allow to include in the relation
RA all those objects that do not differ “enough”. The properties of

RA vary according to how the discernibility function is defined. If
it is defined as in 2.27, RA is an equivalence relation, i.e. it shows

three properties

1. Reflexivity : xRAx, ∀x ∈ U

2. Symmetry : if xRAy then yRAx, ∀x, y ∈ U

3. Transitivity : if xRAy and yRAz then xRAz, ∀x, y, z ∈ U

Relations that are reflexive and symmetric but not transitive are
sometimes referred to as similarity relations or tolerance relations.

In standard rough set theory the indiscernibility relation is required
to be an equivalence relation, but less restrictive extensions of rough
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set theory do not require the transitivity condition to hold.
The indiscernibility set of an object x ∈ U is denoted by RA(x), and

consists of those objects that stand in relation to object x by RA,
that is

RA(x) = {y ∈ U |xR|y} (2.29)

If RA is an equivalence relation, then the indiscernibility sets are

called equivalence classes. Equivalence relations induce a partition
of the universe, meaning that all equivalence classes are disjoint and

their union equals the full universe U . Vice versa, a partition also
induces an equivalence relation. In the more general case of tolerance
relations, the indiscernibility sets form a covering of U , meaning that

the indiscernibility sets are allowed to overlap.
The basic idea behind rough sets is to construct approximations of

sets using the binary relation RA. The indiscernibility sets RA(x),
also called granules, form basic building blocks from which subsets

X ⊂ U can be defined.
Let U be a finite set of objects and R ⊆ U ×U be a binary relation.

The sets U, R are the universe of discourse and an indiscernibility
relation, respectively. The discernibility relation represents our lack
of knowledge about elements of U . For simplicity, we assume that R

is an equivalence relation. A pair (U, R) is called an approximation
space, where U is the universe and R is an equivalence relation on

U . Let X be a subset of U , i.e. X ⊆ U . Our goal is to characterize
the set X with respect to R. Using only the indiscernibility relation,

in general, we are not able to observe individual objects from U but
only the accessible granules of knowledge described by this relation.

• The set of all objects which can be with certainty classified as
members of X with respect to R is called the R-lower approx-

imation of a set X with respect to R, and denoted by R(X),
i.e.

R(X) = {x|R(x) ⊆ X} (2.30)
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• The set of all objects which can be only classified as possible
members of X with respect to R is called the R-upper approx-

imation of a set X with respect to R, and denoted by R(X),
i.e.

R(X) = {x|R(x) ∩X 6= ∅} (2.31)

• The set of all objects which can be decisively classified neither

as members of X nor as members of −X with respect to R is
called the boundary region of a set X with respect to R, and
denoted by RNR(X), i.e.

RNR(X) = R(X)−R(X) (2.32)

Definition 5. A set X is called crisp (exact) with respect to R if and

only if the boundary region of X is empty. A set X is called rough
(inexact) with respect to R if and only if the boundary region of X

is nonempty.

The definitions of set approximations presented above can be ex-
pressed in terms of granules of knowledge in the following way. The

lower approximation of a set is the union of all granules which are
entirely included in the set; the upper approximation of a set is the

union of all granules which have non-empty intersection with the set;
the boundary region of a set is the difference between the upper and
the lower approximation of the set. It is interesting to compare def-

initions of classical sets, fuzzy sets and rough sets. Classical set is
a primitive notion and is defined intuitively or axiomatically. Fuzzy

sets are defined by employing the fuzzy membership function, which
involves advanced mathematical structures, numbers and functions.

Rough sets are defined by approximations. Thus this definition also
requires advanced mathematical concepts. The previous definitions

of approximations respect the following properties:

1. R(X) ⊆ X ⊆ R(X)
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2. R(∅) = R(∅) = ∅; R(U) = R(U) = U

3. R(X ∪ Y ) = R(X) ∪R(Y )

4. R(X ∩ Y ) = R(X) ∪R(Y )

5. R(X ∪ Y ) ⊇ R(X) ∪ R(Y )

6. R(X ∩ Y ) ⊆ R(X) ∩ R(Y )

7. X ⊆ Y → R(X) ⊆ R(Y ) and R(X) ⊆ R(Y )

8. R(−X) = −R(X)

9. R(−X) = −R(X)

10. R(R(X)) = R(R(X)) = R(X)

11. R(R(X)) = R(R(X)) = R(X)

It is easily seen that the lower and the upper approximations of a set

are, respectively the interior and closure of this set in the topology
generated by the indiscernibility relation. One can define the follow-

ing four basic classes of rough sets, i.e., four categories of vagueness:

1. A set X is roughly R-definable, iff R(X) 6= ∅ and R(X) 6= U

2. A set X is internally R-undefinable, iff R(X) = ∅ and R(X) 6= U

3. A set X is externally R-undefinable, iff R(X) 6= ∅ and R(X) = U

4. A set X is totally R-undefinable, iff R(X) = ∅ and R(X) = U

The intuitive meaning of this classification is the following. A roughly
R-definable set X means that with respect to R we are able to decide

for some elements of U that they belong to X and for some elements
of U that they belong to −X. An internally R-undefinable set X

means with respect to R we are able to decide for some elements
of U that they belong to −X, but we are unable to decide for any

element of U whether it belongs to X. An externally R-undefinable
set X means that with respect to R we are able to decide for some
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elements of U that they belong to X, but we are unable to decide for
any element of U whether it belongs to −X. A totally R-undefinable

set X means that with respect to R we are unable to decide for any
element of U whether it belongs to X or −X. In [90], Pawlack dis-

cusses two numerical characterization of imprecision of a subset X in
the approximation space 〈U, R〉: accuracy and roughness. Accuracy

of X, which is denoted by αR(X), is the ratio of the number of ob-
jects on its lower approximation to that on its upper approximation,
namely

αR(X) =
|R(X)|

|R(X)|
(2.33)

The roughness of X, which is denoted by ρR(X), is defined as ρR(X) =
1 − αR(X). Note that the lower the roughness of a subset, the bet-
ter is its approximation. Furthermore, the following conditions are

noted

1. 0 ≤ ρR(X) ≤ 1

2. X = ∅ → R(X) = R(X) = ∅ → ρR(X) = 0

3. ρR(X) = 0 iff X is definable in 〈U, R〉

2.3.2 Rough Membership Function

Rough sets can be also defined by using, instead of approximations, a
rough membership function proposed in [91][132]. This view is called

set-oriented as opposed to the above formulation called operator-
oriented[136][137]. In classical set theory, either an element belongs

to a set or it does not. The corresponding membership function is the
characteristic function for the set, i.e. the function takes values 1 and
0, respectively. In the case of rough sets, the notion of membership

is different. The rough membership function quantifies the degree of
relative overlap between the set X and the equivalence class R(x) to

which x belongs. It is defined as follows:

µR
X : U →< 0, 1 > (2.34)
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where

µR
X =

|X ∩R(x)|

|R(x)|
(2.35)

and |X| denotes the cardinality of X. The rough membership func-

tion expresses conditional probability that x belongs to X given R
and can be interpreted as a degree that x belongs to X in view of

information about x expressed by R. The rough membership func-
tion can be used to define approximations and the boundary region

of a set as

µR
X = 1 iff x ∈ R(X) (2.36)

µR
X = 0 iff x ∈ U − R(X) (2.37)

0 < µR
X(x) < 1 iff x ∈ RNR(X) (2.38)

µR
U−X = 1− µR

X , ∀x ∈ U (2.39)

µR
X∪Y ≥ max (µR

X(x), µR
Y (x)), ∀x ∈ U (2.40)

µR
X∩Y ≤ min (µR

X(x), µR
Y (x)), ∀x ∈ U (2.41)

2.4 Rough and Fuzzy Hybridization

2.4.1 Rough Sets and Fuzzy Sets

The set-oriented view of rough sets is defined over a classical set al-
gebra and associates a fuzzy set with each subset of the universe.
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Vagueness arises in concept representation from the lack of informa-
tion when defining a precise concept. In this view, rough membership

functions can be thought as a special type of fuzzy membership func-
tions, defined as probabilities simply derived by cardinality of sets.

In fact one can use a probability function on the universe to define
rough membership functions[152]. From a fuzzy logic point of view,

lower and upper approximations can be defined with respect to a
fuzzy set µA as

A = {x|µA(x) = 1} (2.42)

A = {x|µA(x) > 0} (2.43)

i.e., A and A are the core and the support of the fuzzy set µA,
respectively. Although, in the theory of fuzzy sets, the membership

value of an element does not depend on other elements, where in
the theory of rough sets, with respect to an equivalence relation, the
membership value of an element depends on other elements [12]. In

the study of fuzzy sets, many types of fuzzy membership functions
have been proposed so to implicitly specify the membership value of

one element with respect to other elements [51].
It is clear that both theories provide means to handle vague concepts,

even if from different points of view, and hence it is not surprising
that many efforts have been performed to combine rough and fuzzy

approach to obtain more general and powerful tools.
The two theories seem to complement each other and hence re-

searchers have explored a variety of different ways in which these

two theories interact with each other. The origins of both theories
were essentially logical and hence, much of the hybridization between

fuzzy and rough set theory is logically based. Moreover, rough set
theory was proposed both for supervised and unsupervised learning.

Two combinations of rough set theory and fuzzy set theory lead
to distinct generalization of classical set theory. By using an equiv-
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alence relation on the universe of discourse, one can introduce lower
and upper approximations in fuzzy set theory to obtain an extended

notion called rough fuzzy sets [23]. Alternatively, a fuzzy similarity
relation can be used to replace an equivalence relation, that result

in another notion called fuzzy rough sets [23].
The expressions for the lower and upper approximations of a set X

depend on the type of relation R and whether X is a crisp or a fuzzy
set. When X is a crisp or a fuzzy set and the relation R is a crisp or
a fuzzy equivalence relation, the expressions for the lower and upper

approximations of the set X are given by

RX = {(u, M(u))|u ∈ U} (2.44)

RX = {(u, M(u))|u ∈ U} (2.45)

where

M(u) =
∑

Y ∈U/R

mY (u)× inf
ϕ∈U

max(1−mY (ϕ), µX(ϕ)) (2.46)

M(u) =
∑

Y ∈U/R

mY (u)× sup
ϕ∈U

min(mY (ϕ), µX(ϕ)) (2.47)

where the membership function mY is the membership degree of each
element u ∈ U to a granule Y ∈ U/R and takes values in [0, 1], and

µX is the membership function associated with X and takes values in
[0, 1]. When X is a crisp set, µX would take values only from the set

{0, 1}. Similarly, when R is a crisp equivalence relation, mY would
take values only from the set {0, 1}. Fuzzy union and intersection

are chosen based on their suitability with respect to the underlying
application of measuring ambiguity. The pair of sets 〈RX, RX〉 and
the approximation space U/R are referred to differently, depending

on whether X is a crisp or a fuzzy set and the relation R is a crisp
or a fuzzy equivalence relation. The different combinations are listed

in Table 2.1[109].
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Table 2.1: Different combinations of rough and fuzzy sets.

X R 〈RX,RX〉 U/R

Crisp crisp equivalence relation rough set of X crisp equiv-
alence
approx-
imation
space

Fuzzy crisp equivalence relation rough fuzzy set of X crisp equiv-
alence
approx-
imation
space

Crisp fuzzy equivalence relation fuzzy rough set of X fuzzy
equivalence
approx-
imation
space

Fuzzy fuzzy equivalence relation fuzzy rough fuzzy set of X fuzzy
equivalence
approx-
imation
space
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Hence the approximation of a crisp set in a fuzzy approximation
space is called a fuzzy-rough set, and the approximation of a fuzzy

set in a crisp approximation space is called a rough-fuzzy set, making
the two models complementary [138]. In this framework, the approx-

imation of a fuzzy set in a fuzzy approximation space is considered to
be a more general model, unifying the two theories. In [104] a broad

family of fuzzy-rough sets is constructed substituting min and max
operators by different implicators and t-norms, and the properties of
three well-known classes of implicators (S-, R- and QL-implicators)

are investigated. Further research in the area of rough and fuzzy
hybridization from different perspectives, can be found in [18], [122],

[134], [140]. In [133] the properties of generalized fuzzy-rough sets
are investigated, defining a pair of dual generalized fuzzy approxima-

tion operators based on arbitrary fuzzy relations, while in [67] a new
approach introduces definitions for generalized fuzzy lower and upper
approximation operators determined by a residual implication. As-

sumptions are found that allow a given fuzzy set-theoretic operator
to represent a lower or upper approximation from a fuzzy relation.

Different types of fuzzy relations produce different classes of fuzzy
rough set algebras.

Other generalizations are possible in addition to the previous hy-
bridization approaches. One of the first attempts at hybridizing the

two theories is reported in [134], where the negative, boundary and
positive regions of a rough set are expressed by means of a fuzzy
membership function. All objects in the positive region have a mem-

bership of one, those belonging to the boundary region have a mem-
bership of 0.5, while those contained in the negative region have

zero membership (i.e., they do not belong to the rough set). This
construction leads to express a rough set as a fuzzy set, with suit-

able modifications to the rough union and intersection operators.
Another approach that exploits the similarities between rough and

fuzzy sets has been proposed in [96] where the author introduces the
concept of shadowed set. The main idea comes from the considera-
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tion that a numeric fuzzy set representation may be too precise, and
that is because a concept can be described only once its membership

function has been defined. It is like requiring excessive precision in
order to describe imprecise concepts. Shadowed set does not use

exact membership values but adopts basic truth values and a zone
of uncertainty (the unit interval), where elements may belong with

certainty (membership of 1), possibility (unit interval) or not at all
(membership of 0). This can be seen to be analogous to the rough
set definitions for the positive, boundary and negative regions.

2.4.2 Applications of Hybridized Rough and Fuzzy Sets

Hybridized versions of rough and fuzzy sets have been employed in
many applications fields to solve a huge variety of problems. The
ratio of the use of these techniques is that of exploiting both uncer-

tainty and indiscernibility deeply embedded in real life data.
In the field of supervised learning, many extensions to classical

approaches have been propose. In [107] a fuzzy-rough nearest neigh-
bor classification approach is presented, that employs a fuzzy-rough

ownership function to incorporate fuzzy uncertainty, caused by over-
lapping classes, and rough uncertainty, through insufficient features.

An extended version is presented in [129]. In [4] fuzzy upper and
lower approximations are used to model rough uncertainty into the
fuzzy K-NN classifier. In particular, the k nearest neighbors of the

test pattern are used to compute its membership degree to the fuzzy
lower and upper approximations for every class.

Another field in which theories of rough sets and fuzzy sets have

found natural application is that of neural computation. Such hy-
bridization has encountered increasing popularity because of the var-
ious aspects which could exploit its characteristics. Here we show a

brief survey of different kind of hybridizations that have been pro-
posed in literature. Lingras [55], [56] [57] showed how the use of

upper and lower approximations of ranges of numbers may reduce
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training time and improve performance. Also he showed a way to
combine rough neurons with fuzzy neurons. Different approach to

the hybridization of rough and fuzzy in knowledge based networks
are reported in [82]. In particular, Pal et al. [83] used an innova-

tive combination of multiple technologies including rough sets, fuzzy
sets, neurocomputing, and genetic algorithms that provided acceler-

ated training and a compact network suitable for generating a min-
imum number of rules with high certainty values. The combination
of rough and fuzzy neural computing is presented in [32] for classi-

fying faults in high voltage power systems. They also showed how
the combination of rough and fuzzy sets compares favorably with

fuzzy neural computing. A different approach is employed by Zhang
in [146], where the author combined the logical view of rough set

theory with fuzzy neurocomputing. Rough set theory was used to
eliminate inconsistent and redundant rules from the rule set of the
fuzzy system, which is then used to create and train a simple fuzzy

neural network. Other examples of rough fuzzy neurocomputing can
be found in [25] and [15].

Combination of rough and fuzzy theories has made substantial
progress also as extension of unsupervised learning techniques. Asharaf

and Murty [2] describe a hybridized fuzzy-rough approach to cluster-
ing. Chimphlee, et al. [17] described how feature selection based on

independent component analysis can be used for hybridized rough-
fuzzy clustering of web user sessions. There are a number of ap-
proaches that combine the traditional supervised classification from

rough set theory with unsupervised fuzzy clustering. For example,
[150] uses a rough set-based fuzzy clustering algorithm in which the

objects of fuzzy clustering are initial clusters obtained in terms of
equivalence relations. The preponderance of many small classes is

countered through secondary clustering on the basis of defining fuzzy
similarity between two initial clusters. Wang, et al. [130] integrated

fuzzy clustering and variable precision rough set theory. This ap-
proach was used to effectively discover association rules in process
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planning. Traditional hybridization of fuzzy and rough sets can also
be seen in [98], where a texture segmentation algorithm is proposed

to solve the problem of unsupervised boundary localization in tex-
tured images using rough fuzzy sets and hierarchical clustering. Pal

[84] describes how rough-fuzzy initialization can be used for cluster-
ing with the example of multi-spectral image segmentation. Also he

describes how rough set-based rule extraction can be combined with
self-organizing maps. In [62] a generalized hybrid unsupervised learn-
ing algorithm which integrates both principles of rough and fuzzy

sets is proposed. In [69] a novel clustering architecture is presented,
by integrating the advantages of both fuzzy sets and rough sets, in

which several subsets of patterns can be processed to find a common
structure.

Rough and fuzzy hybridization has been also employed in the area
of feature selection [41][121], one of the most successful applications
of rough set theory. In [38][39][40], a method which employs fuzzy-

rough sets to handle uncertainty in website classification is presented.
This is a fuzzy extension of the rough set attribute reduction method

(RSAR) [115] which only exploits indiscernibility relations by means
of rough sets. The use of fuzzy equivalence classes allows the concept

of crisp equivalence classes to be extended by the inclusion of a fuzzy
similarity relation R on the universe, which determines the extent to

which two elements are similar in R, resulting in fuzzy decision and
conditional values. Another approach employs a greedy hill-climber
to perform subset search, using a fuzzy dependency function both

for subset evaluation and as a stopping criterion [42]. In [37] authors
presented a new information measure for fuzzy equivalence relations

which is used to redefine the dependency of a hybrid attribute set.
This entropy based measure is useful to quantify the discernibility

power of a fuzzy equivalence relation.
In [125], the concept of attributes reduction with fuzzy rough sets

is proposed after a critical analysis of the algorithm in [38]. Authors
pointed how the mathematical foundations of various aspects of the
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proposed approach are missing. For this reason a solid mathematical
foundation is set up for attributes reduction with fuzzy rough sets,

the structure of reduction is completely studied and an algorithm
using discernibility matrix to compute all the attributes reductions

is developed.
In [43] three new techniques for fuzzy rough features selection based

on the use of fuzzy T-transitive similarity relations have been pre-
sented. In the first one, based on fuzzy lower approximations, simi-
larity relations are used to construct approximations of decision con-

cepts which are then evaluated through a new measure of depen-
dency. The second one exploit information in the fuzzy boundary

region to guide feature selection so to obtain a fuzzy-rough reduct.
The last method represents a fuzzy extension of the discernibility

matrix so that features have a certain degree of belongingness to
each entry.



3 Rough and Fuzzy Sets in Image Analysis

This chapter presents an overview of rough and fuzzy set theories

in the field of image processing [4]. Various methods have been
proposed over the years as long as the theories developed and gained

more solid theoretical foundation, with the aim of exploiting their
fundamental characteristics: vagueness and indiscernibility handling.

That is of particular interest if we consider the intrinsic presence of
uncertainty when dealing with digital images processing and analysis.

Concepts represented in an image, e.g. a region, are not always

crisply defined, hence uncertainty can arise within any processing
phase and any decision made at a particular level will have an im-

pact on all higher level activities. A recognition or vision system
should have sufficient provision for representing and manipulating

the uncertainties involved at every processing stage, so that the sys-
tem can retain as much information content of the data as possible.

The output of the system will then possess minimal uncertainty and,
unlike conventional systems, will not be biased/affected much by
lower level decisions. For instance, a gray tone image possesses am-

biguity within pixels because of the possible multi-valued levels of
brightness in the image. This indeterminacy, both in grayness and

spatially, is due to inherent vagueness rather than randomness and
hence many basic concepts of image analysis (e.g., edges, corners,

boundary regions Fig. 3.1) do not lend themselves well to precise
definition.

Over the years, many algorithms have been proposed to cope with
intrinsic uncertainty in image analysis by exploiting either fuzzy or
rough theory. Just to cite two examples, Bezdek [6] presented the

famous Fuzzy C–Means often used in image segmentation, while in

34
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Figure 3.1: Example of uncertainty in texture segmentation.

[76] authors presented an image segmentation technique based on

rough set theory. Nevertheless, these kind of approaches only ad-
dress vagueness or uncertainty present in an image. In the recent
years a new trend emerged to try to exploit both theories at the

same time. This new approaches evolved along two distinct research
lines. Techniques belonging to the first one try to combine the two

theories in different steps of the algorithm, thus exploiting fuzziness
and roughness separately. The second one, which can be considered

a more general approach, aims to hybridize both theories, thus ex-
ploiting at the same time fuzziness and roughness. As it will be clear
at end of the chapter, rough and fuzzy based techniques have proved

to be effective in the field of image analysis, as well as in other fields
of pattern recognition¡.

3.1 Combined use of rough and fuzzy sets

In this section an overview of methods that combine rough and fuzzy

theories is presented, with regard to different tasks in image process-
ing. As stated above, these techniques try to exploit both theories

separately but in a coordinated way.
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3.1.1 Image Segmentation

In [72][73], the fusion of rough set theory and fuzzy c-means is used
for color image segmentation. The technique aims to segment natural
images characterized by regions with gradual color variations. Core

centers are evaluated through approximations obtained by rough set
theoretic, so to reduce the computational complexity required by

standard fuzzy c-means (FCM). FCM based segmentation strategies
requires a–priori information about the number of clusters and their

means as initialization points. The proposed technique extracts color
information from the image employing rough set approximations on

the segments and presents it as input to FCM for the soft evalua-
tion of the segments. The advantage of the proposed technique is
to analyze colors utilizing all the 3-dimension (RGB) as one entity,

where many algorithms works on single bands. However, employing
FCM requires the definition of a distance between colors that, due

to non perceptive uniformity of the RGB color space, can lead to
inconsistencies.

In [5] authors propose a color fuzzy decision algorithm to face seg-
mentation in a color image. Main characteristic of the proposed algo-
rithm is the use of fuzzy decision marking to segment image without

user interaction, while rough sets are adopted to merge segments and
choose the face region in each image. Use of different color quantiza-

tion in YCbCr color space and fuzzy decision algorithm allows rough
sets to correctly merge face skin regions, but only partially address-

ing the problem of detection in bigger images.

3.1.2 Features Selection

A method to select an optimal group of bands in hyperspectral im-
ages based on rough sets and Fuzzy C-Means clustering is proposed

in [116]. First Fuzzy C-Means clustering algorithm is used to classify
the original bands into equivalent band groups since adjacent bands

in hyperspectral image always show strong correlation. The concept
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of attribute dependency in Rough Sets is used to define the distance
between a group and the cluster center. Then data are reduced by

selecting only the band with maximum grade of fuzzy membership
from each of the groups. In this way the number of bands is de-

creased while preserving most useful information. Last step consists
in either selecting only one from each of the groups or composing the

images in each group linearly. The proposed technique exploits one
of the most usefull characteristic of rough sets, i.e. attribute depen-
dency, but employs a clustering algorithm which needs the number

of clusters to be a–priori known.
Hassanien [34] introduced a hybrid scheme that combines the ad-

vantages of fuzzy sets and rough sets in conjunction with statistical
feature extraction techniques. First step consists in a fuzzy image

processing as pre-processing technique to enhance the contrast of the
whole image, to extracts the region of interest and then to enhance
the edges surrounding the region of interest. Next, features from

the segmented regions of the interested regions are extracted using
the grey-level co-occurrence matrix. Rough set is used for genera-

tion of all reducts, that contains minimal number of features, and
hence rules. Although rough set rules generation allow to identify

significant attributes very accurately, the major drawback of this
technique is the number of clusters to segment the image which can

vary depending on the image.

3.1.3 Image Evaluation

Due to the complexity of fused image quality evaluation, in [135]
a hybrid model of knowledge reduction is constructed by means of

rough set theory and Fuzzy Support Vector Machine (FSVM). The
proposed model combines the reduction ability of rough sets with
the classification ability of the FSVM. A reduced information table

is obtained by reducing the number of evaluation criteria, without
information loss, through rough set method. The reduced informa-

tion is used to develop classification rules and train fuzzy support
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vector machine. The proposed approach needs a sufficient number
of training samples to overcome FSVM and SVM due to the reduced

number of attributes considered during the training phase.

3.1.4 Detection

Gao et al. [29] present a feature reduction method based on rough
set theory and fuzzy c-means, to extract rules for shot boundary

detection. Based on the characteristics of differences from the classi-
fication capability of various features to different shot transition, the

correlation between features can be defined using the classification
ability of attributes (or dependence between attributes) in rough set

theory. Then, by employing fuzzy c-means algorithm, the optimal
feature reduction can be obtained. The first step consists in extract-
ing conditional attributes from video sequences. Then, by calculat-

ing their correlation, the importance of conditional attributes can
be computed. Selected features are obtained by clustering feature

attributes with fuzzy c-means. For each class, the fuzzy if-then rule
is generated for decision with fuzzy inference. Also this technique

presents the same limits of the other approaches based on Fuzzy
C-Means, that is the number of clusters.

In [52] two combined classifiers have been discussed in the field
of landmines detection. In the first classifier Hebb Net learning is
used with rough set theory and in the second one fuzzy filter neural

network is used with the rough set theory. Rough sets have been
applied to classify the landmine data because in this theory no prior

knowledge of rules are needed, hence these rules are automatically
discovered from the database. The rough logic classifier uses lower

and upper approximations for determining the class of the objects.
The neural network is for training the data, and has been used es-
pecially to avoid the boundary rules given by the rough sets that

do not classify the data with cent percentage probability. Although
the combined use of rough set and fuzzy filter classifier gives good

results, it can partially reduce the problem of ambiguous patterns
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belonging to the boundary region.
In [3] a method for object labeling, based on the uncertainty mea-

surement of a fuzzy similarity is presented. The labeling is performed
on objects detected in a scene, based on information provided by a set

of different sensors. First the fuzzy similarity is computed between
the detected object and a rough set of possible prototypes, followed

by a measurement of the uncertainty induced by the observation.
For all results obtained from each sensor, the global uncertainty,
corresponding to the most likely label, is computed. The proposed

technique aims to improve the labeling process by suppressing the
inconsistent observations and making new labeling determinations.

Different prototypes are used in this process, corresponding to dif-
ferent observation distances and positions. Also, from this observa-

tions, uncertainty variation can be analyzed, as determined by the
switch from one prototype to another. Problems may arise in com-
plex scenes where inconsistencies can be faced at different resolutions,

resulting in erroneous labels assignments.

3.2 Hybridization of rough and fuzzy sets

In this section techniques that exploit a different approach to combi-

nation of rough and fuzzy theories are summarized. These methods
mainly employ the concept of rough-fuzzy sets and fuzzy-rough sets

as generalization of their constituent theories. The aim of rough and
fuzzy hybridization is to exploit, at the same time, uncertainty and

vagueness as a whole, thus leading to better results.

3.2.1 Image Segmentation

Pal [84] describes how rough-fuzzy initialization can be used for clus-
tering with the example of multi-spectral image segmentation.

Mitra et al. [69] introduced a hybrid clustering architecture, in
which several subsets of patterns can be processed together with an
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objective of finding a common structure. A detailed clustering al-
gorithm is developed by integrating the advantages of both fuzzy

sets and rough sets, and a measure of quantitative analysis of the
experimental results is provided for synthetic and real-world data.

Rough sets are used to model clusters in terms of upper and lower
approximations, which are weighted by a pair of parameters while

computing cluster prototypes. The use of rough sets help to control
uncertainty among patterns in the boundary region, during collabo-
ration between the modules. Memberships are used to enhance the

robustness of clustering as well as collaboration. The main limitation
of the proposed rough fuzzy c-means relies on the optimal selection

of the parameters which can vary among different datasets.
In [62] the development of a generalized methodology, which in-

tegrates c-means algorithm, rough sets, and probabilistic and possi-
bilistic memberships of fuzzy sets is presented. This formulation is
geared toward maximizing the utility of both rough and fuzzy sets

with respect to knowledge-discovery tasks. Several measures are de-
fined based on rough sets to evaluate the performance of rough-fuzzy

clustering algorithms. The effectiveness of the proposed algorithm
is demonstrated, along with a comparison with other related algo-

rithms, in the task of image segmentation. Also in this case, as in
the previous technique, the main drawback is the optimal selection

of the parameters.
In [110] the combined use of rough and fuzzy set theory to mea-

sure the ambiguities in images is proposed. Rough set theory is used

to capture the indiscernibility among nearby gray values, whereas
fuzzy set theory is used to capture the vagueness in the boundaries

of the various regions. A measure called rough-fuzzy entropy of sets
is proposed to quantify image ambiguity. By using this measure, a

characteristic measure of an image called the average image ambigu-
ity (AIA) is presented. The rough-fuzzy entropy measure is used to

perform various image processing tasks such as object / background
separation, multiple region segmentation and edge extraction. The
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performance are compared to those obtained using existing fuzzy
and rough set theory based image ambiguity measures. Although

the results are very promising, finding the optimal values of the in-
put parameters can be a tricky task.

In [70] an application of rough-fuzzy clustering is presented for
synthetic as well as CT scan images of the brain. The algorithm

generates good prototypes even in the presence of outliers. The
rough-fuzzy clustering simultaneously handles overlap of clusters and
uncertainty involved in class boundary, hence yielding the best ap-

proximation of a given structure in unlabeled data. The number of
clusters is automatically optimized in terms of various validity in-

dexes. Comparison with other partitive algorithms is also presented.
Experimental results demonstrate the effectiveness of the proposed

method in CT scan images, and is validated by medical experts.
The hybrid approach proposed in this paper aims to maximize the
utility of both fuzzy and rough sets so to improve the performance

of fuzzy c–means and rough c–means. Nevertheless the computation
complexity is increased due to the simultaneous us of the two models.

In [63] a comprehensive investigation into rough set entropy based
thresholding image segmentation techniques has been performed. Si-

multaneous combining entropy based thresholding with rough sets
results in rough entropy thresholding algorithm. Standard RECA

(Rough Entropy Clustering Algorithm) and Fuzzy RECA combined
with rough entropy based partitioning routines have been proposed.
Rough entropy clustering incorporates the notion of rough entropy

into clustering model taking advantage of uncertainty in analyzed
data. Based on the test reported in the article, Standard and Fuzzy

RECA seem to have similar performance. This result could be deeper
investigated because the fuzzy version, at least in principle, should

better capture uncertainty in data and hence lead to a better seg-
mentation.

In [148] an improved hybrid algorithm called rough-enhanced fuzzy
c-means (REnFCM) algorithm is presented for segmentation of brain
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MR images. The enhanced fuzzy c-means algorithm can speed up
the segmentation process for gray-level image, especially for MR im-

age segmentation. Experimental results indicate that the proposed
algorithm is more robust to the noises and faster than many other

segmentation algorithms, although at the cost of higher computation
complexity.

Jiangping et al. [44] propose a fuzzy-rough approximation method
for image segmentation. Based on the graph theory combined with
the shortest path algorithm of watershed transformation, the pa-

per presents a shortest path segmentation algorithm based on rough
fuzzy grid, where to each fuzzy rough grid of the digital image is

assigned a shortest path. The proposed method was applied in Tra-
ditional Chinese Medicine (TCM) tongue image segmentation exper-

iment, where the algorithm has proved to avoid oversegmentation of
the image.

In [45] a method to segment tongue image based on the theory of

fuzzy rough sets is presented. The proposed method called Fuzzy
Rough Clustering Based on Grid, extracts condensation points by

means of fuzzy rough sets, and quarters the data space layer by
layer. The algorithm has been used in tongue image segmentation

of Traditional Chinese Medicine (TCM). Results indicate that the
algorithm avoids oversegmentation of the image.

A multithresholding algorithm for color image segmentation is pre-
sented [75] using the concept of A-IFS histon obtained from Atanassov’s
Intuitionistic Fuzzy Set (A-IFS) representation of the image. A-IFS

histon, an encrustation of the histogram, consists of the pixels that
belong to the set of similar color pixels. In a rough set theoretic sense,

A-IFS histon and the histogram can be correlated to upper and lower
approximations, respectively. A multithresholding algorithm, using

roughness index, is then employed to get optimum threshold values
for color image segmentation. The qualitative and quantitative com-

parison of the proposed method against the histogram based and
the conventional histon-based segmentations proves its superiority.
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Performance of the proposed algorithm also proves that exploiting
uncertainty and vagueness in color images can lead to good results

when dealing with difficult concept like colors.

3.2.2 Edge Detection

Petrosino et al. [99] presented a multi-scale method based on the hy-
brid notion of rough fuzzy sets, coming from the combination of two

models of uncertainty rough sets and fuzzy sets. Marrying both no-
tions lead to consider, as instance, approximation of sets by means of

similarity relations or fuzzy partitions. The most important features
are extracted from the scale spaces by unsupervised cluster analy-

sis, to successfully tackle image processing tasks. [100] describes a
feed-forward layered ANN, whose operations are based on those of
C-calculus [23], able to operate on a single image at a time. Within

this framework C-calculus born as a method of representing fuzzy
image subsets [7]. Its applications to shrinking, expanding and fil-

tering [8] naturally lead to use it as a mathematical framework for
designing a hierarchical neural network to deal with image analy-

sis. The employed ANN is provided with a feedback mechanism and
is structured in a hierarchical architecture. Application of the pro-

posed network to edge detection is reported. The advantage of the
proposed framework relies on the possibility of building a hierarchy
of rough fuzzy sets, i.e., the possibility of exploiting uncertainty and

vagueness at different resolutions.
In [131], image processing based on rough sets theory is discussed in

detail. The paper presents a binary fuzzy rough set model based on
triangle modulus, which describes binary relationship by upper ap-

proximation and lower approximation. Given an image described by
binary relationship, the upper approximation and lower approxima-
tion can be used to represent the image. An edge detection algorithm

by the upper approximation and the lower approximation of image
is presented, and image denoising also is discussed. The proposed

model is well fit for processing image that have gentle gray change.
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3.2.3 Texture Segmentation

Traditional hybridization of fuzzy and rough sets can be found in
[98], where a texture segmentation algorithm is proposed to solve the
problem of unsupervised boundary localization in textured images

using rough fuzzy sets and hierarchical clustering.
In [149], rough set theory is applied to multiple scale texture-shape

recognition. Multiple-scale texture-shape recognition approach tries
to cluster textures and shapes. In a multi resolution approach, tex-

ture and shape should be analyzed at different level. It becomes
evident that an exact representation is not a feasible option (both

practically and conceptually) therefore one needs to look at some
viable approximation. This is realized by means of rough sets to
construct the generalized approximate space by employing its fuzzy

function and rough inclusion function. In this paper, according to
the data set extracted from images, the fuzzy function and rough

inclusion function of generalized approximate space is defined. Also
statistical measures to denote the threshold of the fuzzy function and

the importance degree of each extracted feature is used. A rough set
based image texture recognition algorithm is proposed and compared
with many other methods.

In [20], authors propose a rough content-based image quality mea-
sure. The image is partitioned into three parts: edges, textures and

flat regions according to their gradient. In each part, the rough fuzzy
integral is applied as the fuzzy measure of the similarity. The overall

image quality metric is calculated based on the different importance
of each part.

Based on FRM model, in [147] a rough neural network suitable for
decision system modeling is proposed. It can implement smooth
fuzzy partition of universe space by adaptive G-K (Gaustafason-

Kessel) clustering algorithm, which overcomes the defect of tradi-
tional reduct calculation based on rough data analysis method. By

making advantage of characteristics of fuzzy clusters obtained by
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adaptive G-K clustering algorithm, significant generalization ability
enhancement is achieved. By making full use of learning ability of

neural network, FRM RNN M improve the adaptability and achieve
comprehensive soft decision-making ability. The experiment results

of classifying Brodatz texture image indicate that FRM RNN M is
superior to traditional Bayesian and learning vector quantization

(LVQ) methods.

3.2.4 Image Classification

Mao et al. [64] proposed a fuzzy Hopfield net model based on rough-
set reasoning for the classification of multispectral images. The main

purpose is to embed a rough-set learning scheme into the fuzzy Hop-
field network to construct a classification system called a rough-fuzzy
Hopfield net (RFHN). The classification system is a paradigm for the

implementation of fuzzy logic and rough systems in neural network
architecture. Instead of all the information in the image being fed

into the neural network, the upper- and lower-bound grey levels, cap-
tured from a training vector in a multispectral image, are fed into

a rough-fuzzy neuron in the RFHN. Therefore, only 2/N pixels are
selected as the training samples if an N-dimensional multispectral

image was used.
Wang et al. [129] proposed a nearest neighbor classification algo-

rithm based on fuzzy-rough set theory (FRNNC). First, they make

every training sample fuzzy rough and use nearest neighbor algo-
rithm to remove training sample points in class boundary or over-

lapping regions. Then mountain clustering method is used to select
representative cluster center points, and finally Fuzzy-Rough Nearest

neighbor algorithm (FRNN) is applied to classify the test data. The
proposed method is applied to hand gesture image recognition and
the results show that it is more effective and performs better than

other nearest neighbor methods.
In [113] presents a combined approach of neural network classifica-

tion systems with a fuzzy-rough set-based feature reduction method
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is presented. Unlike transformation-based dimensionality reduction
techniques, this approach retains the underlying semantics of the se-

lected feature subset. This is very important to help ensure that
classification results are understandable by the user. Following this

approach, the conventional multi-layer feedforward networks, which
are sensitive to the dimensionality of feature patterns, can be ex-

pected to become effective on classification of images whose pattern
representation may otherwise involve a large number of features. The
proposed scheme has been applied to the real problem of normal

and abnormal blood vessel image classification involving different
cell types.

Authors in [13] present a study of the classification of large-scale
Mars McMurdo panorama image. Three dimensionality reduction

techniques, based on fuzzy-rough sets, information gain ranking,
and principal component analysis respectively, are each applied to
this complicated image data set to support learning effective clas-

sifiers. The work allows the induction of low-dimensional feature
subsets from feature patterns of a much higher dimensionality. To

facilitate comparative investigations, two types of image classifier
are employed, namely multi-layer perceptrons and K-nearest neigh-

bors. Experimental results demonstrate that feature selection helps
to increase the classification efficiency by requiring considerably less

features, while improving the classification accuracy by minimizing
redundant and noisy features.

The focus of the study in [46] is an analysis of the effect of the

granularity on indiscernability relation of objects. In this study, au-
thors have applied the Rough Set Theory, to handle the imprecision

due to granularity of the structure of the satellite image.Rough set
and rough-fuzzy theory offer a better and transparent choice to have

faster, comparable and effective results.
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3.2.5 Detection

Han et al. [33] present a feature reduction method based on Rough-
Fuzzy Set, by which the dissimilarity function for shot boundary
detection is obtained. By calculating the correlation between con-

ditional attributes, the importance of conditional attributes in the
rough set can be obtained. Due to the ambiguity of the set of feature,

the class precision of rough-fuzzy is given. Then, the importance of
conditional attributes is defined as the rough-fuzzy operator by the

product of the importance of conditional attributes in the rough set
and the class precision of rough-fuzzy. According to the proportion

of each feature, the top k features can be obtained. The dissimilarity
function is generated by weighting these important features.

Human face detection plays an important role in application such as

video surveillance, human computer interface, face recognition, and
face image database management. In [151] an attribute reduction

method based on fuzzy rough set is applied for face recognition. This
paper mainly quotes attribute reduction of fuzzy rough sets to deal

with the face data, while the recognition process uses neural network
ensemble. The method avoids losing of information caused by rough
set attribute reduction. A fuzzy similarity relation is used to replace

an equivalence relation so that the dispersing of data is canceled. As
a result, the recognition accuracy is improved.

In [101] authors presents a scheme for human faces detection in
color images under unconstrained scene conditions, such as the pres-

ence of a complex background and uncontrolled illumination. The
proposed method adopts a specialized unsupervised neural network,

to extract skin colour regions in the Lab colour space, obtained from
the integration of the rough fuzzy set based scale space trans- form
and neural clustering. A correlation-based method is then applied

for the detection of ellipse regions. Experiments on three benchmark
face databases demonstrate the ability of the proposed algorithm in

detecting faces also in difficult conditions.



4 Rough Fuzzy Product

Granular computing is based on the concept of information granule,

that is a collection of similar objects which can be considered as in-
distinguishable. Partition of an universe into granules offers a coarse

view of the universe where concepts, represented as subsets, can be
approximated by means of granules. In this framework, rough set

theory can be regarded to as a family of methodologies and tech-
niques that make use of granules [90]. The focus of rough set theory
is on the ambiguity caused by limited discernibility of objects in the

domain of discourse. Granules are formed as objects and are drawn
together by the limited discernibility among them. Granulation is of

particular interest when a problem involves incomplete, uncertain or
vague information. In such cases, precise solutions can be difficult to

obtain and hence the use of techniques based on granules can lead
to a simplification of the problem at hand.

At the same time, multivalued logic can be applied to handle uncer-
tainty and vagueness present in information system, the most visible
of which is the theory of fuzzy sets [142]. In this framework, un-

certainty is modelled by means of functions that define the degree
of belongingness of an object to a given concept. Hence member-

ship functions of fuzzy sets enable efficient handling of overlapping
classes.

The hybrid notion of rough fuzzy sets comes from the combination
of these two models of uncertainty to exploit, at the same time, prop-

erties like coarseness, by handling rough sets [93], and vagueness, by
handling fuzzy sets. In this combined framework, rough sets embody
the idea of indiscernibility between objects in a set, while fuzzy sets

model the ill-definition of the boundary of a subclass of this set.

48
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Combining both notions leads to consider, as instance, approxima-
tion of sets by means of similarity relations or fuzzy partitions. The

rough fuzzy synergy is hence adopted to better represent the uncer-
tainty in granular computation.

Nevertheless, some considerations are in order. Classical rough set
theory is defined over a given partition, although several equivalence

relations, and hence partitions, can be defined over the universe of
discourse. Different partitions correspond to a coarser or finer view of
the universe, because of different information granules, thus leading

to coarser or finer definition of the concept to be provided. Then a
substantial interest arises about the possibility of exploiting different

partitions and, possibly, rough sets of higher order. Some approaches
have been presented to exploit hierarchical granulation [139] where

various approximations are obtained with respect to different levels
of granulation. Considered as a nested sequence of granulations by
a nested sequence of equivalence relations, this procedure leads to a

nested sequence of rough set approximations and to a more general
approximation structure. Hierarchical representation of the knowl-

edge is also used in [141] to build a sequence of finer reducts so to
obtain multiple granularities at multiple layers. The hierarchical re-

duction can handle problem with coarser granularity at lower level
so to avoid incompleteness of data present in finer granularity at

deeper layer. A different approach is presented in [103] where au-
thors report a Multi-Granulation model of Rough-Set (MGRS) as an
extension of Pawlak’s rough set model. Moreover, this new model is

used to define the concept of approximation reduct as the smallest
attribute subset that preserves the lower approximation and upper

approximation of all decision classes in MGRS.
The hybridization of rough and fuzzy sets reported here has been

observed to possess a viable and effective solution to some of the most
difficult problems in image analysis. The model exhibits a certain

advantage of having a new operator to compose rough fuzzy sets,
called RF -product, able to produce a sequence of composition of
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rough fuzzy sets in a hierarchical manner. Theoretical foundations
and properties, together with an example of application for image

compression are described in the following sections.

4.1 Rough fuzzy sets: a background

Let us start from the definition of a rough fuzzy set given by Dubois

and Prade [23]. Let U be the universe of discourse, X a fuzzy subset
of U , such that µX(u) represents the fuzzy membership function of

X over U , and R an equivalence relation that induces the partition
U/R = {Y1, . . . , Yp} ( from now on denoted as Y ) over U in p disjoint
sets, i.e. Yi

⋂

Yj = ∅ ∀i, j = 1, . . . , p and
⋃p

i=1 Yi = U . The lower and

upper approximation of X by R, i.e. R(X) and R(X) respectively,
are fuzzy sets defined as

µR(X)(Yi) = inf{µX(u)|Yi = [u]R} (4.1)

µR(X)(Yi) = sup{µX(u)|Yi = [u]R} (4.2)

i.e. [u]R is a set such that (4.1) and (4.2) represent the degrees of

membership of Yi in R(X) and R(X), respectively. The couple of sets
< R(X), R(X) > is called rough-fuzzy set denoting a fuzzy concept
(X) defined in a crisp approximation space (U/R) by means of two

fuzzy sets (R(X) and R(X)). Specifically, identifying πi(u) as the
function that returns 1 if u ∈ Yi and 0 if u 6∈ Yi, and considering

Yi = [u]R and πi(u) = 1, the following relationships hold:

µR(X)(Yi) = inf
u

max{1− πi(u), µX(u)} (4.3)

µR(X)(Yi) = sup
u

min{πi(u), µX(u)} (4.4)

To emphasize that the lower and upper approximations of the fuzzy
subset X are, respectively, the infimum and the supremum of the

membership functions of the elements of a class Yi to the fuzzy set
X, we can define a rough-fuzzy set as a triple
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RFX = (Y , I,S) (4.5)

where Y = {Y1, . . . , Yp} is a partition of U in p disjoint subsets

Y1, . . . , Yp, and I,S are mappings of kind U → [0, 1] such that ∀u ∈
U ,

I(u) =

p
∑

i=1

νi × µYi
(u) (4.6)

S(u) =

p
∑

i=1

νi × µYi
(u) (4.7)

where

νi = inf{µX(u)|u ∈ Yi} (4.8)

νi = sup{µX(u)|u ∈ Yi} (4.9)

for the given subsets Y = {Y1, . . . , Yp} and for every choice of
function µ : U → [0, 1]. Y and µ uniquely define a rough-fuzzy set

as stated below

Definition 6. Given a subset X ⊆ U , if µ is the membership func-

tion µX defined on X and the partition Y is made with respect to an
equivalence relation R, i.e. Y = U/R, then X is a fuzzy set with

two approximations R(X) and R(X), which are again fuzzy sets with
membership functions defined as (4.8) and (4.9), i.e. νi = µR(X) and
νi = µR(X). The pair of sets < R(X), R(X) > is then a rough fuzzy

set.

Let us recall the generalized definition of rough set given in [109].
Expressions for the lower and upper approximations of a given set
X are

R(X) = {(u, I(u))|u ∈ U} (4.10)

R(X) = {(u,S(u))|u ∈ U} (4.11)
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I and S are defined as:

I(u) =

p
∑

i=1

µYi
(u)× inf

ϕ∈U
max(1− µYi

(ϕ), µX(ϕ)) (4.12)

S(u) =

p
∑

i=1

µYi
(u)× sup

ϕ∈U
min(µYi

(ϕ), µX(ϕ)) (4.13)

where µYi
is the membership degree of each element u ∈ U to a

granule Yi ∈ U/R and µX is the membership function associated
with X.

If we rewrite (4.8) and (4.9) as

νi = µR(X)(Yi) = inf
ϕ∈U

max(1− µYi
(ϕ), µX(ϕ)) (4.14)

νi = µR(X)(Yi) = sup
ϕ∈U

min(µYi
(ϕ), µX(ϕ)) (4.15)

and considering a Boolean equivalence relation R, we arrive at

the same definition of rough fuzzy set as given in (4.3) and (4.4).
Indeed, considering (4.14) and the equivalence relation R, µY (ϕ)

takes values in {0, 1} hence the expression 1 − µY (ϕ) equals 0 if
ϕ ∈ Y or 1 if ϕ 6∈ Y . Furthermore the max operation returns 1 or

µX(ϕ) depending on the fact that ϕ ∈ Y or ϕ 6∈ Y . The operation
inf then returns the infimum of such values, that is the minimum
value of µX(ϕ). The same applies to (4.15).

4.2 Hierarchical refinement of Rough-fuzzy sets

Rough set theory allows to partition the given data into equivalence
classes. Nevertheless, given a set U , it is possible to employ different

equivalence relations and hence produce different data partitions.
This leads to a choice of the partition that represents the data in the

best manner. For example, let us consider N -dimensional patterns,
with N = 4 as in Table 4.1
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Table 4.1: Example of data

A1 A2 A3 A4

u1 a a b c

u2 b c c c

u3 a b c a

u4 c b a b

Let Yi be the partition obtained applying the equivalence relation
RAi

on the attribute Ai. We may get from Table 4.1 the following

four partitions

Y1 = {{u1, u3}, {u2}, {u4}}

Y2 = {{u1}, {u2}, {u3, u4}}

Y3 = {{u1}, {u2, u3}, {u4}}

Y4 = {{u1, u2}, {u3}, {u4}}

(4.16)

that, without any apriori knowledge, have potentially the same
representation data power. To exploit all the possible partitions by
means of simple operations, we propose to refine them in a hierar-

chical manner, so that partitions at each level of the hierarchy retain
all the important informations contained into the partitions of the

lower levels. The operation employed to perform the hierarchical re-
finement is called Rough–Fuzzy product (RF-product) and is defined

by:

Definition 7. Let RF i = (Y i, I i,Si) and RF j = (Yj, Ij,Sj) be two
rough fuzzy sets defined, respectively, over partitions Y i = (Y i

1 , . . . , Y i
p )

and Yj = (Y j
1 , . . . , Y j

p ) with I i ( resp. Ij) and Si (resp. Sj) indicat-

ing the measures expressed in Eqs. (4.6) and (4.7). TheRF–product

between two rough-fuzzy sets, denoted by ⊗, is defined as a new rough

fuzzy set
RF i,j = RF i ⊗ RF j = (Y i,j, I i,j,Si,j)
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where Y i,j = (Y i,j
1 , . . . , Y i,j

2p−1) is a new partition whose equivalence
classes are

Y ij
k =



















































s=h
q=1
⋃

s=1
q=h

Y i
q ∩ Y j

s h = k, k ≤ p

s=p
q=h
⋃

s=h
q=p

Y i
q ∩ Y j

s h = k − p + 1, k > p

(4.17)

and I i,j and Si,j are

I i,j(u) =

2p−1
∑

k=1

νi,j
k × µi,j

k (u) (4.18)

Si,j(u) =

2p−1
∑

k=1

νi,j
k × µi,j

k (u) (4.19)

and
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νij
k =



























sup
s=1,...,h
q=h,...,1

{νi
q, ν

i
s} h = k, k ≤ p

sup
s=h,...,p
q=p,...,h

{νi
q, ν

i
s} h = k − p + 1, k > p

(4.20)

νij
k =



























inf
s=1,...,h
q=h,...,1

{νi
q, ν

i
s} h = k, k ≤ p

inf
s=h,...,p
q=p,...,h

{νi
q, ν

i
s} h = k − p + 1, k > p

(4.21)

Let us pick up the example shown in Table 4.1, and consider parti-

tions Y1 and Y2 obtained from equivalence relations RA1
and RA2

de-
fined on U by attributes A1 and A2, respectively. In terms of rough–

fuzzy sets they are RF 1 = (Y1, I1,S1) and RF 2 = (Y2, I2,S2). Par-
titions Y1 and Y2 are defined as follows

{u4} = Y 1
1 {u3, u4} = Y 2

1

{u2} = Y 1
2 {u2} = Y 2

2

{u1, u3} = Y 1
3 {u1} = Y 2

3

The refined partition Y1,2 defined on U by both attributes, corre-
sponds to the partition obtained by RF -producting RF 1 and RF 2.

The new partition Y1,2 is obtained by (in matrix notation)

– – (Y 1

3
∩ Y 2

1
) (Y 1

2
∩ Y 2

1
) (Y 1

1
∩ Y 2

1
)

– (Y 1

3
∩ Y 2

2
) (Y 1

2
∩ Y 2

2
) (Y 1

1
∩ Y 2

2
) –

(Y 1
3
∩ Y 2

3
) (Y 1

2
∩ Y 2

3
) (Y 1

1
∩ Y 2

3
) – –

The final partition is obtained by joining sets by column as ex-
plained in Eq. 4.17
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Y 1,2
1 = {(Y 1

1 ∩ Y 2
1 )}

Y 1,2
2 = {(Y 1

2 ∩ Y 2
1 ) ∪ (Y 1

1 ∩ Y 2
2 )}

Y 1,2
3 = {(Y 1

3 ∩ Y 2
1 ) ∪ (Y 1

2 ∩ Y 2
2 ) ∪ (Y 1

1 ∩ Y 2
3 )}

Y 1,2
4 = {(Y 1

3 ∩ Y 2
2 ) ∪ (Y 1

2 ∩ Y 2
3 )}

Y 1,2
5 = {(Y 1

3 ∩ Y 2
3 )}

Hence

Y1,2 = {Y 1,2
1 , Y 1,2

2 , Y 1,2
3 , Y 1,2

4 , Y 1,2
5 }

and I and S of the new rough–fuzzy set, computed as in (4.18)

and (4.19), are

ν1,2
1 = sup{inf{ν1

1, ν
2
1}}

ν1,2
1 = inf{sup{ν1

1, ν
2
1}}

ν1,2
2 = sup{inf{ν1

2, ν
2
1}, inf{ν1

1, ν
2
2}}

ν1,2
2 = inf{sup{ν1

2, ν
2
1}, sup{ν1

1, ν
2
2}}

ν1,2
3 = sup{inf{ν1

3, ν
2
1}, inf{ν1

2, ν
2
2}, inf{ν1

1, ν
2
3}}

ν1,2
3 = inf{sup{ν1

3, ν
2
1}, sup{ν1

2, ν
2
2}, sup{ν1

1, ν
2
3}}

ν1,2
4 = sup{inf{ν1

3, ν
2
2}, inf{ν1

2, ν
2
3}}

ν1,2
4 = inf{sup{ν1

3, ν
2
2}, sup{ν1

2, ν
2
3}}

ν1,2
5 = sup{inf{ν3

1, ν
3
2}}

ν1,2
5 = inf{sup{ν3

1, ν
3
2}}

(4.22)

The rough–fuzzy set obtained by RF 1 ⊗ RF 2 is thus defined by

RF 1,2 = (Y1,2, I1,2,S1,2)
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where

I1,2(u) =

5
∑

i=1

ν1,2
i × µY 1,2

i
(u)

S1,2(u) =
5

∑

i=1

ν1,2
i × µY 1,2

i
(u)

(4.23)

In case of partitions of different cardinalities, it is sufficient to add

empty sets to have partitions of the same size.

4.3 Characterization of RF–product

Let us recall that a partition Y of a finite set U is a collection

{Y1, Y2, . . . , Yp} of nonempty subsets (equivalence classes) such that

Yi ∩ Yj = ∅ ∀i, j = 1, . . . , p (4.24)
⋃

i

Yi = U (4.25)

Hence, each partition defines an equivalence relation and, con-

versely, an equivalence relation defines a partition, such that the
classes of the partition correspond to the equivalence classes of the

relation.
Partitions are partially ordered by reverse refinement Y i ⊆ Yj. We

say that Y i is finer than Yj if every equivalence class of Y i is con-
tained in some equivalence class of Yj, that is, for each equivalence

class Y j
h of Yj, there are equivalence classes Y i

1 , . . . , Y i
p of Y i such

that Y j
h = Y i

1 , . . . , Y i
p . If E(Y i) is the equivalence relation defined

by the partition Y i, then Y i ⊆ Yj iff ∀u, u′ ∈ U, (u, u′) ∈ E(Y i) =⇒
(u, u′) ∈ E(Yj), that is, E(Y i) ⊆ E(Yj).



CHAPTER 4. ROUGH FUZZY PRODUCT 58

The set Π(U) of partitions of a set U forms a lattice under the par-
tial order of reverse refinement. The minimum is the partition where

an equivalence relation is a singleton, while the maximum is the
partition composed by one single equivalence relation. The meet

Y i ∧ Yj ∈ Π(U) is the partition whose equivalence classes are given
by Y i

k ∩ Y j
h 6= ∅, where Y i

k and Y j
h are equivalence classes of Y i and

Yj, respectively. In terms of equivalence relations

RYi∧Yj = RYi ∩ RYj (4.26)

is the largest equivalence relation contained in both RYi and RYj . The
join Y i∨Yj is a partition composed by the equivalence classes of the

transitive closure of the union of the equivalence relations defined by
Y i and Yj. In terms of equivalence relations

RYi∨Yj =RYi ∪ RYi ◦ RYj ∪RYi ◦RYj ◦ RYi ∪ . . . (4.27)

∪RYj ∪ RYj ◦RYi ∪RYj ◦ RYi ◦ RYj ∪ . . .

where Rx ◦ Ry denotes the composition of the equivalence relations
Rx and Ry and is the smallest equivalence relation containing both

RYi and RYj . I and S are defined in (4.6) and (4.7). Firstly, we
prove that the RF -product yields an equivalence relation

Theorem 3. Let RYi and RYj be equivalence relations on a set U .

Then E = RYi ⊗RYj is an equivalence relation on U .
Proof. E is an equivalence relation iff (1) ∀Ei, Ej ∈ E, Ei ∩Ej = ∅
and (2) ∪E = U .

1. Given that RYi and RYj are equivalence relations, Y i and Yj ∈
Π(U). ∀u ∈ U, ∃R ∈ Y i and ∃T ∈ Yj such that u ∈ R and

u ∈ T . Then u ∈ R ∩ T . If u ∈ R ∩ T then u 6∈ P ∩ Q, ∀P ∈
Y i(P 6= R) and ∀Q ∈ Y i(Q 6= T ). The union of the intersections

in the RF-product ensure that u belongs to a single equivalence
class Ei ∈ E and hence ∀EiEj ∈ E, Ei ∩ Ej = ∅.

2. Given that ∀u ∈ U, ∃Ei ∈ E such that u ∈ Ei. Then ∪Ei = U .
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The operation RF -product is commutative:

Theorem 4. Let RYi and RYj be equivalence relations on a set U .
Then RYi ⊗RYj = RYj ⊗ RYi.

Proof. The property can be easily proved by first noting that in-
tersection is a commutative operation. The matrix representing the

RF–product is built row-wise in RYi ⊗ RYj (that is each row is the
refinement of an equivalence class of RYj by all equivalence classes of

RYi), while it is built column-wise in RYj ⊗RYi (that is each column
is the refinement of an equivalence class of RYj by all equivalence

classes of RYi). In both cases the positions considered at the union
step are the same, thus yielding the same result.

Next we prove two theorems which bound the level of refinement

of the partitions induced by the RF -product.

Theorem 5. Let RYi and RYj be equivalence relations on a set U .
It holds that RYi ∩RYj ⊆ RYi ⊗RYj .

Proof. From Eq. 4.17 it can be easily seen that each equivalence
class of RYi ⊗RYj is the union of some equivalence classes of RYi ∩
RYj . Then each equivalence class of RYi ∩ RYj is contained in an
equivalence class of RYi ⊗ RYj . Hence RYi ∩ RYj ⊆ RYi ⊗ RYj .

Theorem 6. Let RYi and RYj be equivalence relations on a set U .

It holds that (RYi ⊗ RYj)⊗ (RYi ⊗ RYj) = RYi ⊗ RYj .
Proof. From Theorem 3 RYi⊗RYj is an equivalence relation. Then
(RYi ⊗ RYj) ∩ (RYi ⊗ RYj) = RYi ⊗ RYj and from Eq. 4.17 it de-

rives that each equivalence relation of RYi ⊗RYj is equal to only one
equivalence relation of (RYi ⊗RYj) ∩ (RYi ⊗ RYj).

Another interesting property of the RF -product is that partition

E = RYi ⊗RYj can be seen as the coarsest partition with respect to
the sequence of operations
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E = RYi ⊗ RYj

E ′ = E ⊗RYj = (RYi ⊗RYj)⊗RYj ⊆ E

E ′′ = E ⊗RYi = (RYi ⊗ RYj)⊗ RYi ⊆ E

In other words, at each iteration, the RF -product produces a finer
partition with respect to the initial partition. It is worth noting that,
at each iteration

E = E ′ ⊗E ′′

(4.28)

Viewed from another perspective, the RF -product can be seen as
a rule generation mechanism. Suppose that it is possible to assign

a label to each equivalence class of a partition. Then RYi ⊗ RYj

represents a partition whose equivalence classes are consistent with

the labels of the operands. Consider the following partitions on a set
U

Y1 = {Y 1
low, Y 1

medium, Y 1
high}

Y2 = {Y 2
low, Y 2

medium, Y 2
high}

(4.29)

where low = 1 medium = 2 high = 3 and

{u4} = Y 1
low {u3, u4} = Y 2

low

{u2} = Y 1
medium {u2} = Y 2

medium

{u1, u3} = Y 1
high {u1} = Y 2

high

Applying RF -product we get

Y1,2 = {Y 1,2
low, Y 1,2

medium/low, Y 1,2
medium, Y 1,2

medium/high, Y
1,2
high} (4.30)
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where

Y 1,2
low = {(Y 1

low ∩ Y 2
low)}

Y 1,2
medium/low = {(Y 1

medium ∩ Y 2
low) ∪ (Y 1

low ∩ Y 2
medium)}

Y 1,2
medium = {(Y 1

high ∩ Y 2
low) ∪ (Y 1

medium ∩ Y 2
medium) ∪ (Y 1

low ∩ Y 2
high)}

Y 1,2
medium/high = {(Y 1

high ∩ Y 2
medium) ∪ (Y 1

medium ∩ Y 2
high)}

Y 1,2
high = {(Y 1

high ∩ Y 2
high)}

(4.31)

Analyzing the new partition we note how the equivalence classes
are consistent with the composition of the original ones, i.e.:

a) u ∈ U belongs to “low” class in Y 1,2 if it belongs to “low” class
in Y 1 and “low” class in Y 2;

b) u ∈ U belongs to “medium/low” class in Y 1,2 if it belongs to “low”

class in Y 1 and “medium” class in Y 2 or to “medium” class in Y 1

and “low” class in Y 2;

c) u ∈ U belongs to “medium” class in Y1,2 if it belongs to “medium”

class in Y 1 and Y 2 or to “high” class in Y 1 and to “low” class in
Y 2 or to “high” class in Y 2 and to “low” class in Y 1;

d) u ∈ U belongs to “medium/high” class in Y 1,2 if it belongs to

“high” class in Y 1 and “medium” class in Y 2 or to “medium”
class in Y 1 and “low” class in Y 2;

e) u ∈ U belongs to “high” class in Y 1,2 if it belongs to “high” class

in Y 1 and Y 2.



5 Rough Fuzzy Vector Quantization

Vector quantization has been extensively investigated to reduce trans-

mission bit rate or storage space for speech and image signals and
for image coding [30], [77]. In image coding, block coding methods

involve the partition of the image into small rectangular blocks and
the extraction of a set of features from an image block to be arranged

in a single vector. Each vector is then compared to a set of standard
vector prototypes in a codebook and the codeword index, identifying
the best match to the input vector, is transmitted as the correspond-

ing reproduction vector. The receiver reconstructs the image using
the codewords corresponding to the indexes sent in place of the orig-

inal vectors. The same is done if the aim of the vector quantization
is to save storage space. Due to the independent processing of each

block, coding loss can produce discontinuities in the image, since the
reconstructed pixels of one block will, most likely, not match with

the pixels of the next one; this problem is commonly named block-

ing effect. This phenomenon is especially apparent when very low
numbers of coefficients are retained in the coding, i.e. in low bit

rate systems. In some applications, like medical and remote sensing
imaging, the visual annoyance due to the blocking effect becomes

critical, since fundamental information may be lost.
There are two approaches in literature to tackle this kind of prob-

lem: (i) the design of block coding methods that capture information
between blocks and(ii) the application of post-processing methods

to reduce the introduced noise between blocks.We propose a method
that belongs to the first class of approaches,taking inspiration from
the consideration that border pixels, responsible for the blocking ef-

fect, could be seen as pixels with a certain degree of uncertainty

62
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to belong to a block of an other adjacent one. Within this frame-
work, two problems are to be faced: the codebook design, based on

a particular measure, and the choice of vectors to be quantized in
order to retain as much as possible information, saving space but

also image quality over the block borders, where uncertainty usually
appears. The rise of several major seminal theories including fuzzy

logic, rough sets, neural networks and their combination (the soft-
computing paradigm in brief) allows to incorporate imprecision and
incomplete information, and to model very complex systems, making

them a useful tool in many scientific areas. In particular, the notions
of rough fuzzy sets and learning may offer viable and effective solu-

tions to some of the most difficult problems in image analysis [99].
The hybrid notion of rough fuzzy sets comes from the combination

of two models of uncertainty like coarseness by handling rough sets
[?] and vagueness by handling fuzzy sets [142]. Rough sets embody
the idea of indiscernibility between objects in a set, while fuzzy sets

model the ill-definition of the boundary of a sub class of this set.
Marrying both notions leads to consider, as instance, approximation

of sets by means of similarity relations or fuzzy partitions. The rough
fuzzy synergy is hence adopted to better represent the uncertainty

in block coding methods. The fuzzy logic is not new to image cod-
ing problems: some approaches based on fuzzy relation equation and

fuzzy transforms have been recently reported in literature [35][97].
The synergy of fuzzy and rough sets we propose should, in principle,
better tackle the problem. Specifically, in this section we discuss an

original method [3] that exploits the uncertainty of data structure
to deal with the above mentioned problems [47]. Feature extraction

is based upon rough fuzzy sets and performed by partitioning each
block in multiple rough fuzzy sets which are characterized by two ap-

proximation sets, containing inf and sup values over small portions
within the block. The method is shown to efficiently encode images

in terms of high peak signal to noise ratio(PSNR)values, while alle-
viating the blocking problem. A comparison with other fuzzy-based
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coding/decoding methods and with the DCT and JPEG methods is
performed to show the performance of the proposed method with

respect to the PSNR values. By using approximately the same com-
pression rates, the proposed method performs very well for low com-

pression rates and, in some cases, the achieved PSNR values result
to be quite similar to those obtained by JPEG compression.

5.1 Feature Discovery

Let us consider an image I defined over a set U = [0, ..., H − 1] ×
[0, ...W − 1] of picture elements, i.e. I : u ∈ U → [0, 1]. Let us also
consider a grid, superimposed on the image, whose cells Yi are of

dimension w × w, such that all Yi constitute a partition over I, i.e.
eqs (4.24) and (4.25) hold and each Y 1

i , for i = 1 . . . p, has dimension

w × w and p = H/w + W/w. The size w of each equivalence class
will be referred to as scale.

Each cell of the grid can be seen as an equivalence class induced
by an equivalence relation R that assigns each pixel of the image
to a single cell. Given a pixel u, whose coordinates are ux and uy,

and a cell Yi of the grid, whose coordinates of its upper left point
are x(Yi) and y(Yi), u belongs to Yi if x(Yi) ≤ ux ≤ x(Yi) + w − 1

and y(Yi) ≤ uy ≤ y(Yi) + w − 1. In other words, we are defining
a partition U/R of the image induced by the relation R, in which

each cell represents an equivalence class [u]R. Also suppose that
equivalence classes can be ordered in some way, for instance, from

left to right.
Moreover, given a subset X of the image, not necessarily included

or equal to any [u]R, we define the membership degree µX(u) of a

pixel u to X as the normalized gray level value of the pixel.
If we consider different scales, the partitioning scheme yields many

partitions of the same image and hence various approximations R(X)
and R(X) of the subset X. For instance, other partitions can be

obtained by a rigid translation of Y1 in the directions of 0o, 45o and



CHAPTER 5. ROUGH FUZZY VECTOR QUANTIZATION 65

90o of w − 1 pixels, so that for each partition a pixel belongs to a
shifted version of the same equivalence class Y i

j .

If we consider four equivalence classes, Y 1
j Y 2

j Y 3
j Y 4

j as belonging
to these four different partitions, then there exists a pixel u with

coordinates ux, uy such that u belongs to the intersection of Y 1
j Y 2

j

Y 3
j Y 4

j . Hence each pixel can be seen as belonging to the equivalence

class

Y 1,2,3,4
j = Y 1

j ∩ Y 2
j ∩ Y 3

j ∩ Y 4
j (5.1)

of the partition obtained by RF -producting the four rough fuzzy
set to which Y i

j , with i = 1, . . . , 4, belongs, i.e.

RF 1,2,3,4
X = RF 1

X ⊗ RF 2
X ⊗RF 3

X ⊗ RF 4
X (5.2)

The RF -product behaves as a filtering process according to which
the image is filtered by a minimum operator over a window w × w

producing I and by a maximum operator producing S. Iterative
application of this procedure consists in applying the same operator

to both results I and S obtained at the previous iteration.
As instance, X defines the contour or uniform regions in the image.

On the contrary, regions appear rather like fuzzy sets of grey levels
and their comparison or combination generates more or less uniform
partitions of the image. Rough fuzzy sets, as defined in (4.5), seem

to capture these aspects together, trying to extract different kinds of
knowledge in data.

This procedure can be efficiently applied to image coding/decoding,
getting rise to the method rough fuzzy vector quantization (RFVQ)[?].

The image is firstly partitioned in non–overlapping k blocks Xh of
dimension m×m, such that m ≥ w, that is X = {X1, . . . , Xk} and

k = H/m + K/m.
Considering each image block Xh, a pixel in the block can be char-

acterized by two values that are the membership degrees to the lower
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and upper approximation of the set Xh. Hence, the feature extraction
process provides two approximations R(Xh) and R(Xh) characterized

by I and S as defined in (4.6) and (4.7) where

νi = µR(Xh)(Yi) = inf{µXh
(u)|Yi = [u]R}

(5.3)

νi = µR(Xh)(Yi) = sup{µXh
(u)|Yi = [u]R}

and [u]R is the granule that defines the resolution at which we

are observing the block Xh. For a generic pixel u = (ux, uy) we can
compute the coordinates of the upper left pixel of the four equivalence

classes containing u, as shown in Fig. 5.2:

ux = x1 + w − 1⇒ x1 = ux − w + 1

uy = y1 + w − 1⇒ y1 = uy − w + 1

ux = x2 ⇒ x2 = ux

uy = y2 + w − 1⇒ y2 = uy − w + 1

ux = x3 + w − 1⇒ x3 = ux − w + 1

uy = y3 ⇒ y3 = uy

ux = x4 ⇒ x4 = ux

uy = y4 ⇒ y4 = uy

where the four equivalence classes for pixel u are

Y 1
j = (x1, y1, ν

1
j , ν

1
j)

Y 2
j = (x2, y2, ν

2
j , ν

2
j)

Y 3
j = (x3, y3, ν

3
j , ν

3
j)

Y 4
j = (x4, y4, ν

4
j , ν

4
j)

For instance, if we choose a granule of dimension w = 2 for a generic
j − th granule of the i− th partition, equations in (6.3) become:
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Figure 5.1: Schematic of the proposed method

νi
j = inf{(ux + a, uy + b)|a, b = 0, 1}

νi
j = sup{(ux + a, uy + b)|a, b = 0, 1}

The compression method performed on each block Xh is composed
of three phases: codebook design, coding and decoding. The entire
process can be schematized as shown in Figure 5.1.

A vector is constructed by retaining the values νi
j and νi

j at posi-
tions u and u + (w− 1, w− 1) in a generic block Xh, or equivalently

ν1
j , ν

1
j , ν

3
j , ν

3
j . The vector has hence dimension m2 consisting of m2/2

inf values and m2/2 sup values. The vectors so constructed and

extracted from a training image set are then fed to a quantizer in
order to construct the codebook. The aim of vector quantization is

the representation of a set of vectors u ∈ X ⊆ Rm2

by a set of C
prototypes (or codevectors) V = {v1, v2, ..., vC} ⊆ Rm2

. Thus, vector
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quantization can also be seen as a mapping from an m2-dimensional

Euclidean space into the finite set V ⊆ Rm2

, also referred to as the
codebook. Codebook design can be performed by clustering algo-

rithms, but it is worth noting that the proposed method relies on
the representation capabilities of the vector to be quantized and not

on the quantization algorithm, to determine optimal codevectors,
i.e. Fuzzy C-Means, Generalized Fuzzy C-Means or any analogous

clustering algorithms can be adopted. Pseudocode of the codebook
design procedure follows.

Algorithm 1 CODEBOOK DESIGN

1: Given N IMAGES of dimension H ×W
2: for i = 1 to n do

3: for h = 0 to H -1 do

4: for k = 0 to W - 1 do

5: save INF and SUP pixel values from a block of dimension HB ×WB located
at coordinates h,k of IMAGES(i), by sliding a window of dimension 2× 2.

6: VECTOR ← arrange a one-dimensional array using INF and SUP values
k ← k + HB

7: end forh← h + WB

8: end for

9: save VECTOR
10: i← i + 1
11: end for

12: apply a quantization algorithm to the data read from IMAGES
13: save codebook for compression/decompression

5.1.1 Coding

The process of coding a new image proceeds as follows. For each
block Xh the features extracted are arranged in a vector, following

the same scheme used for designing the codebook, and compared
with the codewords in the codebook to find the best match, i.e.
the closest codeword to the block. In particular, for each block, inf

and sup values are extracted from a window of size 2 × 2 shifted
by one pixel into the block. All the extracted values are arranged

in a one-dimensional array, i.e. for block dimension m × m and a
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window dimension 2 × 2 the array is represented by m2 elements

consisting of m2/2 inf values and m2/2 sup values. Doing so, the
identificative number (out of C) of the winning codeword, i.e. the

best match to the coded block, is saved in place of the generic block
Xh. Pseudocode of the coding procedure follows.

Algorithm 2 CODING

1: Given the IMAGE of dimension H ×W to be compressed
2: for h = 0 to H - 1 do

3: for k = 0 to W - 1 do

4: INF, SUP ← extract inf and sup values of pixels by sliding a window of dimen-
sion 2× 2 inside a block of dimension HB ×WB

5: VECTOR ← arrange a one-dimensional array using INF and SUP values
6: CODEWORD NUMBER ← find the closest codeword to VECTOR
7: BLOCK(h,k) ← CODEWORD NUMBER
8: end for

9: end for

5.1.2 Decoding

Given a coded image, the decoding step firstly consists in the sub-
stitution of the identificative codeword number with the codeword

itself, as reported in the codebook. The codeword consists of m2/2
inf and m2/2 sup values, instead of the original m2 values of the
block. To proceed to the original block construction, we apply the

theory as follows. As stated above, each pixel can be seen as be-
longing to the block of the partition obtained by RF -producting the

four equivalence classes (6.1) and (6.2). Specifically, the blocks con-
tained into the codeword are not the original ones, but those chosen

to represent the block, i.e.

Y 1,2,3,4
j = Y 1

j ∩ Y 2
j ∩ Y 3

j ∩ Y 4
j (5.4)

where Y i
j is a set of the partition of the rough-fuzzy set intersecting

the generic block of the image Xh. The result of the RF -product
operation, with respect to a single block, is represented by another
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rough fuzzy set, characterized by lower and upper approximations.
These values are used to fill the missing values into the decoded

block.
In detail, being qr the codeword corresponding to a generic block,

the decoded block Xdecoded is constructed by filling the missing values,
i.e. the original ν2

j , ν
2
j , ν

4
j , ν

4
j as combination of them, like average,

median, etc., yielding ν̃2
j , ν̃

2
j , ν̃

4
j , ν̃

4
j

The reconstructed block Xdecoded, again a rough fuzzy set, is ob-

tained by RF -producting the four equivalence classes Y 1
j Y 2

j Y 3
j Y 4

j ,
yielding the following

Y 1,2,3,4
j = Y 1

j ∩ Y 2
j ∩ Y 3

j ∩ Y 4
j

Ĩ1,2,3,4(u) =
∑

j

ν̃1,2,3,4
j × µ1,2,3,4

Yj
(u)

S̃1,2,3,4(u) =
∑

j

ν̃
1,2,3,4
j × µ1,2,3,4

Yj
(u)

where

ν̃1,2,3,4
j = sup{ν1

j , ν̃
2
j, ν

3
j , ν̃

4
j} ν̃

1,2,3,4
j = inf{ν1

j , ν̃
2
j , ν

3
j , ν̃

4
j}

(5.5)

Lastly, under the assumption of local smoothness an estimate of
the original grey values at the generic position u can be computed

composing ν̃1,2,3,4
j and ν̃

1,2,3,4
j , as instance averaging or simply using

only one of them. Pseudocode of the decoding procedure follows.

5.2 Related works

The section describes related works with the aim to highlight the

differences with the proposed method and to give evidence of their
functionalities with regards to the performance evaluation made and
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Figure 5.2: Equivalence classes coordinates.

Algorithm 3 DECODING

1: Given COMPRESSED IMAGE and the CODEBOOK
2: Output decompressed IMAGE
3: for h = 0 to H - 1 do

4: for k = 0 to W - 1 do

5: CODE ← read from COMPRESSED IMAGE the number of the codeword cor-
responding to the block at position (h,k)

6: INF, SUP ← CODEBOOK(CODE)
7: fill the missing pixels by averaging INF and SUP values
8: end for

9: end for

10: IMAGE ← apply the product operation
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described in Section6. Specifically, we shall describe the approaches
based on fuzzy relational equations [35] and fuzzy transforms [97].

5.2.1 Fuzzy relation equation

The main idea of the approach reported in [35] is based on the con-
sideration that an H ×W gray scale image, whose values have been
normalized, could be seen as a fuzzy relation R over discrete interval

[0, ..., H − 1] and [0, ..., W − 1]:

R : (i, j) ∈ [0, ..., H − 1]× [0, ..., W − 1]→ [0, 1]

such that R(i, j) = P (i, j)/255 where P (i, j) is the gray level of pixel

(i,j).
Once matrix R is created, it is divided in blocks of dimension hB×wB

that are compressed in blocks of dimension kB × lB, where kB ≤ hB

and lB ≤ wB. Compression is performed using a fuzzy relation equa-
tions system of the max-t type (Lukasiewicz t-norm). Recomposing

compressed blocks leads to another fuzzy relation G : (p, q)→ [0, 1]
that represents the compression of the fuzzy relation R.

Decompression of each block to the original size is performed us-
ing a fuzzy relation equations system of the type min− → t, where

→ t represents the Lukasiewicz “residuum” operator. Recompos-
ing decompressed blocks leads to another fuzzy relation D : (i, j) ∈
[0, ..., H − 1]× [0, ..., W − 1] → [0, 1] whose values can be shown to

be very similar to the original ones.
The key elements for solving fuzzy equations system are the code-

books employed in compression and decompression. Codebooks are
two matrices of dimension h×H and w ×W , respectively, in which

each row is a fuzzy set characterized by Gaussian membership func-
tion:

Api = exp

[

−α
(

p
m

k
− i

)2
]
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Bqj = exp

[

−α
(

q
n

h
− j

)2
]

Parameter α takes values in [0.1, 0.2, ..., 1.0] and it is optimized to
minimize RMSE for each decompressed block.
Let R : (i, j) ∈ [0, ..., H−1]×[0, ..., W−1]→ [0, 1] be a fuzzy relation,

A1...Ah : [0, ..., H − 1] → [0, 1] and B1...Bw : [0, ..., W − 1] → [0, 1]
fuzzy sets and G : (p.q) ∈ [0, ..., H − 1] × [0, ..., W − 1] → [0, 1] a

fuzzy relation, then

Gpq =
⋃H−1

i=0

⋃W−1
j=0 [(ApitBqj)tRij]

can be seen as a system of h × w fuzzy equations, where G is said

compression of R with respect to codebooks A e B.
The solution of the same system in the unknown R, given by:

Dij =
⋂h−1

p=0

⋂w−1
q=0 [(ApitBqj)→ tGpq]

is said decompression of R with respect to codebooks A e B. It can
be shown that the fuzzy relation D is a solution of the previous

system, such that D ≥ R for each solution R, i.e. Dij ≥ Rij∀(i, j) ∈
[0, ..., H − 1]× [0, ..., W − 1].
As stated above, this technique is applied to blocks RB (submatrices)

of dimension HB ×WB that are compressed to blocks of dimension
hB × wB, where hB ≤ HB and WB ≤WB, so:

GB(p, q) =
⋃HB−1

i=0

⋃WB−1
j=0 [(ApitBqj)tRB(i, j)] : p = 0..hB − 1, q =

0..wB − 1

DB(i, j) =
⋂hB−1

k=0

⋂wB−1
h=0 [(ApitBqj)→ tGB(p, q)] : i = 1..HB − 1, j =

0..WB

Recomposing single blocks leads to the fuzzy relation D.

5.2.2 Fuzzy transform

A fuzzy transform (F-transform) [97]is a function in one variable that
associates a suitable n-dimensional vector to a continuous function
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f over the interval [a, b] by using the fuzzy sets A1, ..., An forming a
fuzzy partition of [a,b]. An inverse F-transform is used to convert the

n-dimensional output vector to a continuous function, which equals f
within an arbitrary ǫ. The same process can be applied to functions

in two variables continuous in th Cartesian product [a, b]× [c, d]. An
image, whose values has been normalized with respect to the length

of the gray scale, can be considered as fuzzy matrix R. It is divided
in blocks that are compressed using the discrete F-transform of the
membership function f of R. These block are decompressed with the

inverse discrete F-transform and recomposed to give a new image.
The idea is to consider an H ×W gray scale image, whose values

has been normalized, as a fuzzy relation R over discrete intervals
[0, ..., H − 1] and [0, ..., W − 1]:

R : (i, j) ∈ [0, ..., H − 1]× [0, ..., W − 1]→ [0, 1]

such that R(i, j) = P (i, j)/255 where P (i, j) is the gray level of pixel

(i,j).
Let the fuzzy sets A1, ..., Ah and B1, ..., Bw, with h < H and w < W ,

form a fuzzy partition of the real intervals [0, H − 1] and [0,W-1].
Once a matrix R is created, it is divided in blocks (RB) of dimension
HB×WB that are compressed to blocks of dimension hB×wB, where

hB < HB and wB < Wb, using the discrete fuzzy transform

FB
kl =

∑WB−1

j=0

∑HB−1

i=0
Rb(i,j)Ak(i)Bl(j)

∑WB−1

j=0

∑HB−1

i=0
Ak(i)Bl(j)

, ∀k = 0...hB − 1, l = 0...wB.

Each compressed block is decompressed with the discrete inverse F-

transform

RF
hBwB

(i, j) =
∑hB−1

k=0

∑wB−1
l=0 FB

klAk(i)Bl(j), defined in
{0, ..., HB − 1} × {0, ..., WB − 1}.

5.3 Examples and Performance Analysis

To test the performances of the proposed coding scheme, the method
has been applied to a set of test images of size 256 × 256 with 8
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Compression Uncompressed block Compressed block

0.03 16 X 16 3 X 3
0.06 8 X 8 2 X 2
0.14 8 X 8 3 X 3
0.25 8 X 8 4 X 4

Table 5.1: Compression rates for fuzzy relation equations and fuzzy transforms methods.

Compression Number of clusters Block dimension

0.03 16 4 X 4
0.06 256 4 X 4
0.14 32 2 X 2
0.25 256 2 X 2
0.44 16384 2 X 2

Table 5.2: Compression rates for Composite Fuzzy Vector Quantization

bits/pixel and, among others, results for four test images: Bridge,
Camera, Lena and House (Figs. 9,11,13,15) in terms of compression

rates, MSE and PSNR values are reported. Tables 5.1 and 5.2
summarize compression rates adopted during the test.

The ISODATA quatizer has been trained on a set of images of size
256×256 with 8 bits/pixel: Baboon, Bird, Bridge, Building, Camera,
City, Hat, House, Lena, Mona, Salesman (Fig. 8). The adopted sets

were composed of 10 images, that is the image to be compressed was
never considered in the construction of the codebook.

The results include also those achieved by the methods based on
fuzzy relation equations and fuzzy transforms, as long as the DCT

and JPEG methods [19].

For each images, PSNR values of the proposed method is com-
pared with PSNR values achieved by other methods. In the follow-
ing tables, FTR stands for fuzzy transforms and FEQ stands for

fuzzy relation equations. As can be seen in Tables 5.3 - 5.5, RFVQ
outperforms FTR, FEQ and DCT methods, while RFVQ’s PSNR is

lower than JPEG’s one. For image “House” (see Table 5.6), a slightly
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Compression RFVQ FTR FEQ DCT JPEG

0.03 21.8205 20.7262 11.0283 18.6115 22.6985
0.06 23.7830 21.4833 14.2812 19.4849 24.7253
0.14 25.0959 23.2101 16.4632 20.8430 28.1149
0.25 26.2261 24.6975 19.7759 22.5470 31.2148
0.44 26.8410 27.0960 23.7349 26.1490 37.2367

Table 5.3: PSNR values for image Bridge

Compression RFVQ FTR FEQ DCT JPEG

0.03 21.0179 20.6304 11.8273 18.1489 25.5207
0.06 23.8881 21.5427 15.4535 19.4447 28.4293
0.14 24.4189 23.5428 17.4869 22.1506 33.4379
0.25 26.0532 25.0676 20.5530 24.0288 38.8007
0.44 26.7560 27.4264 23.7706 25.5431 45.5878

Table 5.4: PSNR values for image Camera

lower PSNR than the one obtained by FTR may be observed. For

image “Bridge” (see Table 5.3) the proposed method gains results
quite close to JPEG when considering lower compression rate. Ana-
lyzing results shown in Tables refBridge-5.6, we can observe that the

proposed method performs well for higher compression rates while
it looses efficiency for lower compression rates. The reason for that

resides in the quantization algorithm. Indeed, in order to obtain a
compression rate of 0.44 a large number of clusters has to be com-

puted (precisely 16384), but in this situation the quantity of centroids
does not assure that the optimal choice will be done when selecting

the most approximating codeword.
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Compression RFVQ FTR FEQ DCT JPEG

0.03 23.6305 23.5685 12.5959 18.1489 29.8727
0.06 26.0631 24.5514 17.1275 23.0445 32.4369
0.14 27.0874 26.8100 19.7528 24.8803 35.7345
0.25 28.5235 28.4310 23.2983 27.4874 37.5461
0.44 29.1465 30.8003 26.9285 29.7911 38.4881

Table 5.5: PSNR values for image Lena

Compression RFVQ FTR FEQ DCT JPEG

0.03 22.3483 22.9525 11.8965 20.2155 30.0249
0.06 24.9479 23.8517 16.5426 21.2327 32.0180
0.14 25.9605 26.4038 19.9876 23.2612 34.2460
0.25 27.0839 28.1763 23.8031 26.5368 35.1001
0.44 27.6749 31.5114 28.7464 30.7693 35.7719

Table 5.6: PSNR values for image House

From the visual quality standpoint, we may observe a higher quality

of RFVQ with respect to the images obtained by FEQ and FTR,
while JPEG quality still remains not comparable. In particular FEQ
produces images with a marked blocking effect (see Figures 5.4(d),

5.6(d), 5.8(d) and 5.10(d)) and, while FTR eliminates blocking
effect, images appear too blurred with a consequent loss of details

(see Figures 5.4(c), 5.6(c), 5.8(c) and 5.10(c)). The results of RFVQ
are remarkable: it does not suffer a lot of the blocking effect, while

loosing only a small amount of details (see Figures 5.4(b), 5.6(b),
5.8(b) and 5.10(b)).

To furthermore confirm these conclusion, Figs. 5.12 - 5.18 show

images obtained applying RFVQ with various compression rates.
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Figure 5.3: Bridge original

a) b)

c) d)

Figure 5.4: Bridge compression rate 0.25. a) JPEG, b) RFVQ, c) FTR, d) FEQ
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Figure 5.5: Camera original

a) b)

c) d)

Figure 5.6: Camera compression rate 0.25. a) JPEG, b) RFVQ, c) FTR, d) FEQ
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Figure 5.7: Lena original

a) b)

c) d)

Figure 5.8: Lena compression rate 0.25. a) JPEG, b) RFVQ, c) FTR, d) FEQ
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Figure 5.9: House original

a) b)

c) d)

Figure 5.10: House compression rate 0.25. a) JPEG, b) RFVQ, c) FTR, d) FEQ
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Figure 5.11: Bridge original

a) b)

c) d)

Figure 5.12: Bridge compression rate a) 0.03, b) 0.06, c) 0.14, d) 0.25
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Figure 5.13: Camera original

a) b)

c) d)

Figure 5.14: Camera compression rate a) 0.03, b) 0.06, c) 0.14, d) 0.25
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Figure 5.15: Lena original

a) b)

c) d)

Figure 5.16: Lena compression rate a) 0.03, b) 0.06, c) 0.14, d) 0.25
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Figure 5.17: House original

a) b)

c) d)

Figure 5.18: House compression rate a) 0.03, b) 0.06, c) 0.14, d) 0.25



6 Rough Fuzzy Color Image Segmentation

Image segmentation is one of the most challenging tasks in image pro-

cessing, being the basic pre-processing step of many computer vision
and pattern recognition problems [88]. Image segmentation consists

in partitioning an image into different non-overlapping regions, where
each region is characterized by homogeneity of gray levels, colors,

texture or other criteria. From the computation point of view, color
image segmentation is of particular interest because the huge amount
of information held by colors can make the task very difficult to per-

form; although it can give fundamental information about the image
to be analyzed. Different techniques have been reported over the

years which can be classified [118] in: a) pixel based, which comprise
histogram based algorithms [111] and clustering algorithms [127]; b)

region based, which comprise region growing algorithms [124] and
split and merge algorithms [89]; c) edge based, which comprise lo-

cal [14] and global [53] algorithms to find region contours. Among
them, one of the most used is represented by histogram based tech-
niques because it needs no a–priori information about the image. The

task consists in finding clusters corresponding to regions of uniform
colors, identified by peaks in the histogram. Color images, being

characterized by three dimensional scatterograms, make more diffi-
cult the search for peaks, either in the whole histogram or in each

color channel independently. The major drawback of these methods
is that they do not take into account the spatial correlation between

adjacent pixels, while images usually show this property. Cheng et
al. [16] employed a fuzzy homogeneity approach to extract homoge-
neous regions in a color image. The proposed method introduces the

concept of homogram build considering intensity variation in pixels

86
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neighborhood. In [72] the concept of encrustation of the histogram
(histon), which is a contour plotted on the top of each primary color

histogram, is presented. In a rough-set theoretic sense, the histon
represents the upper approximation of the color regions, that is a

collection of pixels possibly belonging to the same region, while the
histogram represents the lower approximation. An histogram-based

technique is employed on the histon to obtain the final segmentation.
Mushrif and Ray [76] presented a segmentation scheme, based on the
concept of histon, which employs the roughness index. Roughness is

large when the boundary contains a large number of elements, hence
it will be small in the boundary between two objects and it will be

large in region with uniform color. In this chapter a histogram based
technique which exploits a generalized definition of rough–fuzzy sets

and a particular operation called rough–fuzzy product in the HSV
color space is presented [1].

6.1 HSV color space

Color models can be classified in two groups:

• Hardware-oriented which are designed considering device prop-
erties. Examples are RGB, CMY, YUV.

• User-oriented color models which are based on human percep-

tion. In these models, colors are represented by hue, satura-
tion and value, where hue indicates the wavelength of the color,

saturation measures the amount of white in a color, and value
measures the color intensity. Examples are HLS, HSV and HSB.

The first user-oriented color model was proposed by Munsell, specif-
ically designed for artists. Several approximations of the Munsell

color model have been developed which separate luminance from
hue and saturation. Among these models, one of the most popular

is HSV (hue, saturation, value). The HSV model can be represented
by a cone, where the cone axis represents the gray values while hue
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and saturation are represented, respectively, by the angle around the
vertical axis and the distance from the central axis. Here we propose

to employ the HSV color space because it allows to specify colors in
a way similar to the human perception of colors. Moreover, the light

intensity is explicit and separated from chromaticity, and this allows
change detection invariant to modifications of illumination strength.

6.2 Rough Fuzzy Color Histogram

In this section we introduce the Rough Fuzzy Color Histogram that
will be used to segment color images. Although the procedure is very
similar to that employed in the RFVQ (presented in the previous

chapter), here we repeat the the main ideas to highlight the necesary
modifications needed to build the histogram.

Let us consider an image I defined over a set
U = [0, ..., H − 1]× [0, ...W − 1] of picture elements, i.e.

I : u = (ux, uy) ∈ U → [h(u), s(u), v(u)]. Let us also consider a
grid, superimposed on the image, whose cells Yi are of dimension
w × w, such that all Yi constitute a partition over I, i.e. eqs (4.24)

and (4.25) hold and each Y 1
i , for i = 1 . . . p, has dimension w × w

and p = H/w + W/w. The size w of each equivalence class will be

referred to as scale.
Each cell of the grid can be seen as an equivalence class induced

by an equivalence relation R that assigns each pixel of the image
to a single cell. Given a pixel u, whose coordinates are ux and uy,

and a cell Yi of the grid, whose coordinates of its upper left point
are x(Yi) and y(Yi), u belongs to Yi if x(Yi) ≤ ux ≤ x(Yi) + w − 1
and y(Yi) ≤ uy ≤ y(Yi) + w − 1. In other words, we are defining

a partition U/R of the image induced by the relation R, in which
each cell represents an equivalence class [u]R. Also suppose that

equivalence classes can be ordered in some way, for instance, from
left to right.

Moreover, given a subset X of the image, not necessarily included
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or equal to any [u]R, we define the membership degree µX(u) of a
pixel u to X as the normalized hue component of the pixel.

If we consider different scales, the partitioning scheme yields many
partitions Y of the same image and hence various approximations

R(X) and R(X) of the subset X. For instance, given a partition
Y i, other partitions can be obtained by a rigid translation in the

directions of 0o, 45o and 90o of w−1 pixels, so that for each partition
a pixel belongs to a shifted version of the same equivalence class Y i

j .
If we consider four equivalence classes, Y 1

j , Y 2
j , Y 3

j and Y 4
j belonging

to four partitions Y1 Y2 Y3 Y4, then there exists a pixel u with
coordinates (ux, uy) such that u belongs to the intersection of Y 1

j ,

Y 2
j , Y 3

j and Y 4
j . Hence each pixel can be seen as belonging to the

equivalence class

Y 1,2,3,4
j = Y 1

j ∩ Y 2
j ∩ Y 3

j ∩ Y 4
j (6.1)

of the partition obtained by RF -producting the four rough fuzzy
set to which Y i

j , with i = 1, . . . , 4, belongs, i.e.

RF 1,2,3,4
X = RF 1

X ⊗ RF 2
X ⊗RF 3

X ⊗ RF 4
X (6.2)

The RF -product behaves as a filtering process according to which
the image is filtered by a minimum operator over a window w × w

producing I (4.18) and by a maximum operator producing S (4.19).
Iterative application of this procedure consists in applying the same

operator to both results I and S obtained at the previous iteration.
As instance, X defines the contour or uniform regions in the image.

On the contrary, regions appear rather like fuzzy sets of hue values

and their comparison or combination generates more or less uniform
partitions of the image. Rough fuzzy sets, as defined in (4.5), seem

to capture these aspects together, trying to extract different kinds of
knowledge in data.

The image is firstly partitioned in non–overlapping k blocks Xh of
dimension m×m, such that m ≥ w, that is X = {X1, . . . , Xk} and
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k = H/m + K/m. Considering each image block Xh, a pixel in the
block can be characterized by two values that are the membership

degrees to the lower and upper approximation of the set Xh. Hence,
the feature extraction process provides two approximations R(Xh)

and R(Xh) characterized by I and S as defined in (4.6) and (4.7)
where

νi = µR(Xh)(Yi) = inf{µXh
(u)|Yi = [u]R}

(6.3)

νi = µR(Xh)(Yi) = sup{µXh
(u)|Yi = [u]R}

and [u]R is the granule that defines the resolution at which we
are observing the block Xh. For a generic pixel u = (ux, uy) we can
compute the coordinates of the upper left pixel of the four equivalence

classes containing u, as shown in Fig. 5.2:

ux = x1 + w − 1⇒ x1 = ux − w + 1

uy = y1 + w − 1⇒ y1 = uy − w + 1

ux = x2 ⇒ x2 = ux

uy = y2 + w − 1⇒ y2 = uy − w + 1

ux = x3 + w − 1⇒ x3 = ux − w + 1

uy = y3 ⇒ y3 = uy

ux = x4 ⇒ x4 = ux

uy = y4 ⇒ y4 = uy

where the four equivalence classes for pixel u are

Y 1
j = (x1, y1, ν

1
j , ν

1
j)

Y 2
j = (x2, y2, ν

2
j , ν

2
j)

Y 3
j = (x3, y3, ν

3
j , ν

3
j)

Y 4
j = (x4, y4, ν

4
j , ν

4
j)
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Figure 6.1: A wedge of the HSV color space.

For instance, if we choose a granule of dimension w = 2 for a generic
j − th granule of the i− th partition, equations in (6.3) become:

νi
j = inf{(ux + a, uy + b)|a, b = 0, 1}

νi
j = sup{(ux + a, uy + b)|a, b = 0, 1}

Let us now consider the HSV color space represented by a cone

and a segment [q, q + qt− 1] on the maximum circumference, where
0 ≤ q ≤ 359 and [qtmin ≤ qt ≤ qtmax] is the wedge dimension. This

interval contains a certain amount of colors. In particular, if we
imagine to cut the HSV cone in wedges, each one contains all the
possible combination of saturation and value given a portion of hue

(fig. 6.1).
Our goal is to describe each wedge using the blocks of the image,

under the assumption that blocks with similar colors will fall in the
same wedge. Each block, of dimension w × w, characterized by a

minimum (hm = I) and a maximun (hM = S) hue value, can be (fig.
6.2) : i) totally contained into a wedge of dimension qt

(i.e. q ≤ hm ≤ hM < qt + q), ii) partially contained into a wedge
(i.e. q ≤ hm or hM < qt + q), iii) not contained at all.

Hence, we can consider the set of blocks whose hm and hM are
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Figure 6.2: Block contained into the wedge (A), block partially contained into the wedge
(B), block not contained into the wedge (C).

Figure 6.3: Shifting wedge over the hue circle.

contained into the wedge as the lower approximation of the object
represented by the wedge itself, while the set of blocks whose hm and

hM are partially contained into the wedge as its upper approximation.
Clearly, it is very unlikely that all the colors into the wedge are

represented into the image, i.e., the lower and upper approximation
are the rough–fuzzy representation, induced by the partition of the

image and hence by the equivalence relation, of an implicit object
contained into the wedge.

Now consider a wedge of dimension [qi, qi + qt − 1], i = 0, . . . , 359

moving on the hue circle towards increasing hue values, starting from
q1 = 0. At each step the wedge is shifted of an offset x, i.e. qi+1 = qi+

x, and the cardinality of the lower and upper approximation of the
wedge is computed (with respect to the number of blocks). This pro-
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Figure 6.4: Example image.

(a) (b)

Figure 6.5: a) Lower histogram and b) Upper histogram.

cedure yields the Rough Fuzzy Color Histogram, composed by the

Lower Histogram (H) and the Upper Histogram (H) of the image.
Repeating the same procedure for each wedge dimension

qtmin ≤ qt ≤ qtmax, many Rough Fuzzy Color Histrograms are pro-
duced according to the possible values of qt. Figure 6.4 and 6.5 depict
the lower and upper histograms of Figure 6.4.

It should be remainded that, if for a given pixel the saturation
equals 0, the hue component is undefined and the pixel is character-

ized only by the value component, i.e. only by its gray level intensity.
To overcome this problem, it is possible to exclude all the pixels with

a saturation value lower than a given threshold ǫ and segment them
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Figure 6.6: Distribution of the pixels in the HSV cone and saturation threshold ǫ = 0.2.

separately (for instance employing a segmentation algorithm for gray

scale images). Figure 6.6 shows the distribution of the pixels and a
cylinder centered on the axis of the HSV cone, used to cut off the
pixels characterized by saturation values ≤ 0.2.

6.3 Image segmentation by Rough Fuzzy Color Histogram

The goal of the proposed method is to find regions characterized by
uniform colors. The segmentation of a color image is performed in the

HSV color space by choosing the wedges that are better represented
in a rough–fuzzy sense. The choice is guided by the rough accuracy

of the wedge, i.e. each wedge si has an accuracy computed by means
of the corresponding bin in the lower and upper histogram

αi =
H(i)

H(i)
(6.4)

The wedge with highest accuracy is the wedge that is better repre-

sented with respect to the number of blocks belonging to lower and
upper approximations of the wedge. Clearly, this can not be the

only discriminant index to obtain a good segmentation. First of all
because the accuracy, as computed in eq. 6.4, does not take into
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account the number of blocks, and hence the number of pixels con-
tained into the wedge, but only their ratio. For instance, consider

two wedges si and sj and their lower and upper bins H(i) = 10,
H(i) = 20, H(j) = 20 and H(i) = 40, respectively. The accuracies

are

αi =
H(i)

H(i)
= 0.5

αj =
H(j)

H(j)
= 0.5 (6.5)

Hence it is not possible to discriminate between wedges si and sj.
Moreover using only the accuracy does not take into account satura-

tion and value of each pixel. To overcome both problems, it is also
necessary to consider the number of pixels belonging to the wedge

and their saturations and values. The first problem is tackled by
weighting the accuracy of each wedge by the fraction of pixels whose

hue value belongs to the wedge, i.e.

γ̃ =
Nwedge(si)

Ntot(I)
(6.6)

where Nwedge(si) represents the number of pixels whose hue value

belongs to the wedge and Ntot(I) represents the number of pixels of
the image I. More precisely, we use the following index

γ = 1− γ̃ (6.7)

to limit the uncontrolled growth of the wedge, which otherwise would
tend to include many pixels with very different hue values. Provided
that regions of uniform colors are searched into the image, we need

an index to measure the color uniformity of the pixels belonging to
the the wedge and then use this index to weight the accuracy. To

this aim we propose to employ a measure of the dispersion of the
pixels falling into a wedge with respect to saturation and value. The

main idea is that for a given hue q different shades are determined
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by saturation and value of each pixel. Hence a region characterized
by uniform color will present a narrow scatter, while a region charac-

terized by non uniform colors will have a sparse scatter. To compute
the compactness of saturation and value into a wedge si, we propose

the following index

δ̃ =
1

Nwedge(si)
×

√

∑

x∈si

(x− µsi
)T (x− µsi

) (6.8)

where x = [xsaturation, xvalue]. This index can be considered as the
weighted squared root of the track of the covariance matrix. Also in

this case we use the form

δ = 1− δ̃ (6.9)

which yields higher values whenever the dispersion index is low (i.e.
whenever the color is uniform). The final index, τ , is computed by
composing α, γ and δ indeces (eqs. 6.4, 6.7 and 6.9)

τ = α× (w1 × γ + w2 × δ) (6.10)

where w1 and w2, with w1 + w2 = 1, are parameters used to weight

the fraction of pixels falling into a wedge and the saturation–value
dispersion, respectively. A higher value for w1 will lead to wedges

comprising few pixels characterized by a low saturation–value dis-
persion, whilst a higher value for w2 will produce wider wedges, with

a larger number of pixels presenting a lower saturation–value disper-
sion. The index τ , computed for all the wedges, is used to segment

the image. Firstly, the wedge with the highest τ value is selected as
the region which is better represented into the image. Next all the
wedges that intersect the first one are removed to avoid overlapping

regions. For instance, consider si the wedge with the highest τ value
corresponding to the hue segment qsi

, qsi
+qt−1, then all the wedges

sj such that qsi
≤ qsj

+ q̃t − 1 < qsi
+ qt − 1, with q̃t varying in

[qtmin, qtmax], are removed. Next the wedge with the highest τ value,

among those not removed in the previous step, is selected, and so on
until no more wedges are left.
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6.4 Experimental results

Quantifying the performance of a segmentation algorithm is a chal-
lenging task. Since image segmentation is an ill-defined problem,

no single ground truth segmentation is available against which the
output of an algorithm may be compared. Rather the comparison
is to be made against the set of all possible perceptually consistent

interpretations of the image, of which only a small fraction is usually
available. Over the years different approaches have been proposed

to evaluate the segmentation quality, as instance:

1. The Variation of Information (VoI) metric [66] defines the dis-
tance between two segmentations as the average conditional en-

tropy of a segmentation with respect to the other, and thus
roughly measures the amount of randomness in one segmenta-

tion which cannot be explained by the other.

2. The Global Consistency Error (GCE) [65] measures the extent

to which one segmentation can be viewed as a refinement of the
other. Segmentations related in this manner are considered to

be consistent, since they could represent the same natural image
segmented at different scales.

3. The Boundary Displacement Error (BDE) [27] measures the av-
erage displacement error of boundary pixels between two seg-

mented images. Particularly, it defines the error of one bound-
ary pixel as the distance between the pixel and the closest pixel
in the other boundary image.

Here we employ the Probabilistic Rand Index (PRI) [128] that counts

the fraction of pairs of pixels whose labellings are consistent between
the computed segmentation and the ground truth, averaging across

multiple ground truth segmentations to account for scale variation in
human perception. For each image, the quality of the segmentation

is evaluated by comparing it with all the available segmentations of
the same image.
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The performance of the proposed algorithm were tested using “The
Berkeley Segmentation Dataset” [65], a dataset composed of 12,000

hand-labeled segmentations, from 30 human subjects, of 300 gray
scale and color images of dimension 481 × 321 and 321 × 481. The

tests were performed on the 100 color test images, out of the 300.
Threshold has been fixed to ǫ = 0.2; all the pixels presenting a

saturation value lower than ǫ have been segmented by employing
another threshold η = 0.5, i.e., pixels are labelled as “white” if their
value component is greater than η, as “black” otherwise. For each

image, the original image, the segmented image and the edges of the
regions are showed. The first test aims to show how the dimension of

the granules can affect the segmentation process. Analyzing Figures
6.7 and 6.9 it is possible to note how a larger granule dimension

allows to produce wedges able to enclose more similar hues (see the
green segment in the background of Fig. 6.7 (b) and 6.7 (c)) so to
suppress small hue variations, while smaller granule dimension tends

to beeter differentiate between similar hues. A larger granule size
can be useful to segment images that show larger hue variance and

hence obtain better PRI (Fig. 6.9 (b) and 6.9 (c)).
The aim of the second test is to show how the parameters w1 and w2

can be used to obtain different kinds of segmentation by weighting
the importance of the number of pixels into the wedge with respect

to the saturation–value dispersion. Higher values of w1 mean that
wedges enclosing few pixels are privileged, while higher value of w2

privilege wedges characterized by higher saturation–value dispersion.

Figure 6.11 shows results for image 6.11 using weights (a) w1 = 0.8
and w2 = 0.2 (b) w1 = 0.6 and w2 = 0.4 (c) w1 = 0.5 and w2 = 0.5

and granule dimension w = 2. Using parameters (a), the algorithm is
able to discriminate between the mountain and the sky (Fig. 6.11),

while with parameters (b) and (c) the algorithm yields a segment
composed by both the mountain and sky thus producing a lower

PRI (Fig. 6.11 (b) and 6.11 (c)).
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Figure 6.7: Image 62096.

(a)

(b)

Figure 6.8: Segmented image a) w1 = 0.8 w2 = 0.2 w = 4 PRI = 0.829390; b) w1 = 0.8
w2 = 0.2 w = 2 PRI = 0.804270.
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Figure 6.9: Image 189080.

(a)

(b)

Figure 6.10: Segmented image a) w1 = 0.8 w2 = 0.2 w = 4 PRI = 0.818182 ; b) w1 = 0.8
w2 = 0.2 w = 4 PRI = 0.847405.



CHAPTER 6. ROUGH FUZZY COLOR IMAGE SEGMENTATION 101

Figure 6.11: Image 126007.

(a)

(b)

(c)

Figure 6.12: Segmented image a) w1 = 0.8 w2 = 0.2 w = 2 PRI = 0.846230 ; b)
w1 = 0.6 w2 = 0.4 w = 2 PRI = 0.719006; c) w1 = 0.5 w2 = 0.5 w = 2
PRI = 0.719006.
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Granule dimension w w1 = 0.8, w2 = 0.2 w1 = 0.6, w2 = 0.4 w1 = 0.5, w2 = 0.5

w = 2 0.678028 0.663410 0.654179

w = 4 0.661959 0.636016 0.624948

w = 8 0.640885 0.621997 0.619233

w = 16 0.623986 0.613345 0.609314

w = 32 0.618413 0.601521 0.590546

Table 6.1: PRI values for the 100 test images of the BSD.

Table 6.1 summarizes results obtained with different parameter
configurations in terms of mean PRI computed over the 100 color
images used for testing the algorithm. As can be seen, best results

are obtained using small granule dimension and giving importance
to the number of pixels over the saturation–value dispersion. Here

we want to point out that, altough this configuration gives the best
results on average, this does not imply that good results could not

be obtained for single images employing different values (as reported
in the previous examples).

Figure 6.13 show results for images 113044, 118020, 118035 and

361010 of the BSD.
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(a)

(b)

(c)

(d)

Figure 6.13: Segmented image a) Image 113044 w1 = 0.6 w2 = 0.4 w = 2 PRI =
0.774117, b) Image 118020 w1 = 0.6 w2 = 0.4 w = 2 PRI = 0.826157, c)
Image 118035 w1 = 0.7 w2 = 0.3 w = 2 PRI = 0.870635, d) Image 361010
w1 = 0.8 w2 = 0.2 w = 2 PRI = 0.86228.



7 Conclusions

Soft computing methodologies have been successfully employed in

various image processing tasks including image segmentation, en-
hancement and classification, both individually or in combination

with other soft computing techniques. In this thesis we have pre-
sented a model to manage uncertainty by means of a rough-fuzzy

framework for exploiting feature level uncertainty.

7.1 Rough Fuzzy Product in Image Processing

The hybrid notion of rough fuzzy sets comes from the combination of
rough and fuzzy models of uncertainty to exploit, at the same time,

properties like coarseness, by handling rough sets , and vagueness, by
handling fuzzy sets. In this combined framework, rough sets embody

the idea of indiscernibility between objects in a set, while fuzzy sets
model the ill-definition of the boundary of a sub class of this set.

Marrying both notions leads to consider, as instance, approximation
of sets by means of similarity relations or fuzzy partitions. The rough

fuzzy synergy is hence adopted to better represent the uncertainty
in granular computation. We have described a general framework
based on the hybridization of rough and fuzzy sets and propose it as

a viable and effective solution to some of the most difficult problems
in image analysis. Also a new operator to compose rough fuzzy sets

along with the proofs of its basics properties has been presented. This
new operator, calledRF -product, can be viewed as a multiresolution

approach, i.e. as a sequence of composition of rough fuzzy sets. We
have presented a compression method, based on vector quantization,
which employs the proposed rough-fuzzy framework. Feature extrac-

104
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tion is based on the given definition of rough fuzzy sets while recon-
struction of compressed images is performed exploiting RF -product

operator. Coding and decoding images by means of the proposed
method gives good results when compared with other fuzzy-based

methods, not only in terms of lower PSNR values but also, from a
visual quality standpoint, remarkably reducing the blocking effect

typical of block-based schemes. A color image segmentation tech-
nique, which exploits the given definition of rough fuzzy sets, has
been also presented. The segmentation is performed by employing

the definitions of lower and a upper histogram in the HSV color space
build upon blocks of the image defined as rough fuzzy sets. Each bin

of the lower and upper histograms presents some characteristic mea-
sures used to find the best segmentation of the image. It is shown

that the proposed method is able to retain the structure of the color
images leading to an effective segmentation.

7.2 Future Works

In this section we present possible evolutions of this thesis. With

respect to the proposed compression algorithm, it can be noted that
for lower compression rates performances are comparable with those

of JPEG, although for higher compression rates it doesn’t seem to
perform at its best. Although the cause of this behaviour has been

found in the quantization procedure, studies are necessary to further
investigate other quantization algorithms. Further studies will be

also directed to exploit the proposed method for coding and decod-
ing color images. Concerning the presented segmentation technique,
ongoing work is devoted to automatically select the best parame-

ters. Also the algorithm relies only on color distribution without
considering any spatial information. This can be a limitation for

cluttered scenes where the color based segmentation could lead to
oversegmentation. Another line of research is devoted to embed spa-

tial relationships between image blocks to prevent oversgmentation
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and obtain more stable results.
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