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Abstract

Spatio-temporal data mining is a growing research area dedicated to the development

of algorithms and computational techniques for the analysis of large spatio-temporal

databases and the disclosure of interesting and hidden knowledge in these data, mainly

in terms of periodic hidden patterns and outlier detection. In this thesis, the attention

has been focalized on outlier detection in spatio-temporal data. Indeed, detecting outliers

which are grossly different from or inconsistent with remaining data is a major challenge

in real-world knowledge discovery and data mining applications.

Nowadays, the high availability of data gathered from wireless sensor networks and

telecommunication systems (such as GPS, GSM), that daily generate terabytes of data,

has focalized the research attention on the interesting knowledge that can be gained

from the analysis of spatio-temporal data. Spatio-temporal data are constituted by sam-

pled locations at specific timestamps, tipically this kind of data deal with trajectory of

moving objects that change their locations over time. The management and analysis of

these data is interesting because undetected correlations between phenomena could be

discovered and adequate improvements could be taken in many different fields, such as

problem prevention, traffic management, discovery of meaningful behaviour pattern or

accessibility of restricted areas and so on.

In this thesis, we face an unsupervised outlier detection problem in an unlabeled

spatio-temporal data. Two main research contributions are reported in the following

two main parts of this thesis.

In the first part of this thesis, we describe the first research contribution that con-

sists of two non parametric methods. Most current methods for outlier detection give a

binary classification of objects: is or is not an outlier or, but for many scenarios, it is

more meaningful to assign to each object a degree of being an outlier (degree of outlier-
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ness), that can be based on different rules, well known in literature. In both methods,

the degree of outlierness of each object is based on the sum of the distances among the

object itself and its k-nearest neighbours. The choice of developing a nearest neighbor

based technique is that it is unsupervised in nature and does not make any assumptions

regarding the generative distribution for the data. It is purely data driven. The former

outlier detection method, called a two step approach, considers the spatial weight (com-

ponent) in order to identify the spatial outliers, and, in a second time, considers also

the temporal weight but only as a more refined level of anomaly detection. The latter

outlier detection method, called ST-OutlierDetector, is a non parametric outlier detec-

tion approach that finds the top outliers in an unlabeled spatio-temporal data set. Our

proposed method relies on a new fusion approach able to discover outliers according to

the spatial and temporal features, at the same time: the user can decide the importance

to give to both components (spatial and temporal) depending upon the kind of data to

be analyzed and/or the kind of analysis to be performed.

Based on ST-OutlierDetector method, another contribution has been proposed. This

contribution, the spatio-temporal outlierness degree map, is a visualization tool aimed

at visualize the dataset structure with respect to the spatio-temporal outlier presence. It

allows to make a 3D-plot (space and time) of the dataset by drawing them with different

colors and also different color nuance based upon their outlierness degree. The map is

built without setting, a-priori, the input parameter: outlier number to be found.

In the second part of this thesis, we describe the second research contribution that

consists of a new outlier detection method, called ROSE (Rough Outlier Set Extrac-

tion). The attention has been focalized on outlier detection in spatio-temporal data

using rough set theory. Most current methods for outlier detection exploit rough theory

to define new rough weights as degree of outlierness. Our goal is representing the Outlier

Set such as a Rough Outlier Set through its lower, upper approximation, remarking the

benefits of keeping into account the objects belonging to the boundary. Moreover, we

introduce a new set, called Kernel Set. This set is a selected subset of elements that is

able to maintain the original data set both in terms of data structure and in terms of

obtained results. In particular, we want to show the advantages of considering this new

set. Indeed, we compare the Rough Outlier Set extracted by the entire data set (our

Universe of the discourse) and the Rough Outlier Set extracted by the Kernel Set.
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”Nature has perfection, in order to show that she is the image of God

and defects, to show that she is only his image”.

Blaise Pascal.



1 Introduction

This thesis is aimed at identify, efficiently, meaningful outliers in large unlabeled spatio-

temporal datasets. In this first chapter, we begin by defining outlier detection as a

significant task of data mining and by providing some motivation for our work. Then,

the problem statement, the outline and the main contributions of the thesis are provided.

1.1 Data Mining

Many definitions of data mining have been provided: data mining has been defined

as ”The nontrivial extraction of implicit, previously unknown, and potentially useful

information from data” by Frawley et al. [34] while Hand and al. [41] define it as: ”The

science of extracting useful information from large data sets or databases”. However,

data mining is an umbrella term used with varied meaning in a wide range of contexts.

Data Mining is viewed as an interdisciplinary area focusing upon methodologies for

extracting useful knowledge from data. The ongoing rapid growth of online data due

to the Internet and the widespread use of databases have created an immense need for

data mining methodologies. Data mining involves the use of sophisticated data analysis

tools to nontrivial extraction of unknown knowledge such as valid patterns and rela-

tionships in large data sets. The adjective non trivial underlines that data mining tools

are tasks more complex than the sql-queries. These tools include the use of statistical

models, mathematical algorithms, and machine learning methods. Consequently, data

mining consists of more than collecting and managing data, it also includes analysis and

prediction. Some of the most important technique are shown in Figure 1.2. Data mining

is generally considered to be just one step in a larger process known as knowledge dis-

covery in databases (KDD), a concept emerged in 1989 by Gregory Piatetsky-Shapiro to

3



1. Introduction 4

refer to the broad process of finding knowledge in data. Other steps in the KDD process

include steps of pre-processing, such as data cleaning and data transformation, before

the core step (data mining), and steps of post-processing (interpretation and validation

of the results) such as: pattern evaluation and knowledge presentation as shown in Figure

1.1. In order to attest the interest of scientific community and industry, annually, the

Figure 1.1: KDD Process

Association for Computing Machinery’s Special Interest Group on Knowledge Discovery

and Data Mining (SIGKDD) holds a conference meeting to establish standards to define

the parameters of the use of data mining tools. The Association is also responsible for

assessing the ethical implications of the analysis of data from individuals and companies.

A biannual journal is published by the group entitled SIGKDD Explorations.

The interest of data mining communities has attested also by the several commercial

software for data mining, supercomputing data mining, text mining, and web mining.

Moreover, some open-source projects have become an informal standard for defining

data-mining processes. Just to name a few: Weka that stands for Waikato Environment

for Knowledge Analysis, is free software available under the GNU General Public License.

Weka is a popular suite of machine learning software written in Java, developed at

the University of Waikato (New Zealand). RapidMiner, formerly YALE (Yet Another

Learning Environment) is another open-source machine learning framework implemented

in Java fully integrating Weka.
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Figure 1.2: Data Mining Techniques (taken by Kurt Thearling - An Introduction to Data Mining)

1.1.1 Data Mining Application

Data mining has become increasingly common both in the public and private sectors.

Organizations use data mining as a tool to survey customer information, reduce fraud

and waste, and assist in medical research.

Several examples can be given; the insurance and banking industries use data mining

applications to detect fraud and assist in risk assessment. Companies develop models

that predict whether a customer is a good credit risk, or whether an accident claim may

be fraudulent and should be further investigated, using customer data collected over

several years.

The medical community sometimes uses data mining to help predict the effectiveness

of a procedure or medicine. Pharmaceutical firms use data mining of chemical com-

pounds and genetic material to help guide research on new treatments for diseases. In

particular, in last years, this discipline has been widely used in the area of study on

human genetics, in which, an important goal is to understand how the changes in an
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individual’s DNA sequence affect the risk of developing common diseases. This is very

important to help improve the diagnosis and the prevention of the diseases.

Retailers can use information collected through affinity programs i.e., shoppers’ club

cards or frequent flyer points, to assess the effectiveness of product selection and place-

ment decisions, coupon offers, and which products are often purchased together. This

last is a data mining application, known as ”market basket analysis”, which received

very much attention in the literature, in which retailers seek to understand the pur-

chase behavior of customers. A legend tells that a famous supermarket chain did a study

about customers’ buying habits, discovering that beer and diapers were often purchased

together. As a result of this, the retailers can decide to have the diapers next to the beer

or to make a promotion involving just one of the two items, because it would likely drive

to an increase in profit, rather than putting both items on promotion at the same time.

Private companies, such as telephone service providers, that have made a huge in-

vestment to acquire their customers, use data mining to create a ”churn analysis”, to

assess which customers are likely to remain as subscribers and which ones have potential

for defection but have not been contacted for retention purposes in recent times. Pre-

ventive actions can be followed for customers who have been identified as potential risky.

In the public sector, data mining applications were initially used as a means to detect

fraud and waste, but they have grown also to be used for purposes such as measuring

and improving program performance.

An important project, known as the National Security Analysis Center (NSAC), has

the mission of bringing together ”hundreds of millions of electronic records created or

collected by the FBI and other government agencies” and of using that ”vast ocean of

data to predict who might be a potential terrorist, in the absence of intelligence linking

the man or woman to any radical or extremist group” ([83]).

Moreover, in [83]: it has been reported that: ”the federal government recovers millions

of dollars in fraudulent medicare payments and the Justice Department has been able

to assess crime patterns, by means of data mining tools”.

Similarly, in [83] another example is in the aviation field: ”data mining is used to review

plane crash data to recognize common defects and recommend precautionary measures ”.
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Recently, particularly in United States, after the devastating events of 11 September

2001, data mining has been increasingly used in national security mission areas, to iden-

tify terrorist activities, and as crime-fighting technologies ([83]).

1.2 Outlier Detection

As early as 1620, Sir Francis Bacon wrote: ”Whoever knows the ways of Nature will

more easily notice her deviations; and, on the other hand, whoever knows her deviations

will more accurately describe her ways”. This mention attests that the awareness of

outliers, in some form or another, has existed for at least several hundred years; also the

awareness of the importance of studying and understanding the anomalies. The problem

of outlier detection is a key problem in data mining. Let us introduce the concept of

outliers.

1.2.1 Outlier Definitions

Coming across various definitions of an outlier, it seems that no universally accepted

definition exists. Two classical definitions of an outlier include Hawkins and Barnett [42]

and Lewis [16].

According to the former, ”an outlier is an observation, which deviates so much from other

observations as to arouse suspicions that it was generated by a different mechanism”,

where as the latter defines ”an outlier is an observation (or subset of observations) which

appears to be inconsistent with the remainder of that set of data”.

The term ”outlier” can generally be defined as an observation that is significantly dif-

ferent from the other values in a data set.

Outliers often occur due to the following reasons, which make occurrence of an outlier

typically being an indication of an error (anomalies, noise) or an event, not conform to

normal behavior, that may include interesting information to be further investigated.

In the figure 1.3, taken by [26], a 2D plotting shows N1 and N2 two regions of normal

behavior; points o1 and o2 are anomalies and points in region O3 are also anomalies.

It is very critical to design an appropriate outlier detection approach for a given
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Figure 1.3: Synthetic Data set 2D

data set. There is no single universally applicable or generic outlier detection approach,

specific application domains and type of data sets should be taken into account.

1.2.2 Outlier Detection as a Data Mining Task

While the field of data mining has been studied extensively, most of the work has con-

centrated on discovery of patterns. Outlier detection, as a branch of data mining, has

many important applications and deserves more attention from data mining community.

Most methods in the early work that detects outliers independently have been devel-

oped in field of statistics. Detecting and/or removing outliers is a very important task

in data mining, for example error in large databases can be extremely common, so an

important property of a data mining algorithm is robustness with respect to outliers in

the database. Most sophisticated methods in data mining address this problem to some

extent, but not fully, and can be improved by addressing the problem more directly.
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1.2.3 Outlier Detection Applications

Over the years, outlier detection has been widely applied for the discovery of unexpected

knowledge in different applications domains such as credit card fraud detection, discov-

ering criminal behaviours, discovering computer intrusion, etc. As reported above, many

interesting examples are reported below:

Fraud detection - Credit card transaction actually are the de facto standard per e-

commerce. The growing number of transactions sometimes became an opportunity for

thieves to steal credit card information in order to commit fraud. The credit card fraud

detection domain presents a number of challenging issues for data mining and outlier

detection: the detection and prediction of such buying pattern changes, could prevent

thieves from fraud activity.

Intrusion detection - The task of anti-intruder detection represents one of the most

important requirements in security network control of any critical infrastructure. Fre-

quent attacks on computer systems may cause systems being disabled or completely

collapsed. In this case, the identification of abnormal behaviour can find out malicious

programs and identify unauthorized use, misuse by intruders with malicious intentions

to computer network systems and keep out hackers.

Environmental monitoring - Many extreme weather events that occur in the natural

environment such as a typhoon, hurricanes, drought and fire, often became a disaster for

the human beings. The identification of certain atypical behaviors can accurately predict

the probability of these phenomena and allow people to take appropriate measures on

time.

Localization and tracking - Localization refers to the determination of the location of

a set of objects. The collection of data can be used to localize the nodes of a network

while simultaneously tracking a moving target. The data can be affected by errors, which

make localization results not accurate. Detecting and removing these kind of abnormal

data could improve the estimation of the location of objects and make tracking easier.

Logistics and transportation - Logistics is focused on the flow of materials and goods
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from suppliers, through the organization and to the customers. Hence, it is essential to

ensure product safety and product reliability issues during this process. Tracking and

tracing infromation could find out exceptions such as, inappropriate quantity and/or

quality of the product, and notify all trading partners in time.

1.2.4 Spatio-Temporal Data

Spatio-temporal data may arise in many contexts and areas like hydrology, ecology, geol-

ogy, social sciences, brain imaging, wildlife population monitoring, tracking wild animals,

tree defoliation in space and time, river flows, disease epidemic and also sociological and

socio-economic phenomena. A particular application area of spatio-temporal data is in

archaeology and palaeontology research that cannot be tackled readily using standard

models because of the presence of uncertainty on both the temporal and the spatial

scales. For example, the temporal information arises from chronometric dating meth-

ods, such as radiocarbon or uranium-series dating, which lead to estimated rather than

exactly known calendar dates.

The spatio-temporal data sets are very large data set which are used to detect recog-

nizable and meaningful patterns as well as to make predictions. In order to obtain a high

degree of accuracy in analysis and predictions of a response variable, mathematical mod-

els are employed which explicitly include the underlying uncertainty in the data. Such

models are statistical in nature and, if appropriately chosen, allow accurate forecasting

in future time periods and interpolation over the entire spatial region of interest.

In order to model spatio-temporal data there is an obvious need to keep track of the

spatial location, denoted by s in a region D, and the time point t. Different data types

arise by the ways in which the points s are observed in D. Typical point reference data

arise when s varies continuously over a fixed study region D. The set of spatial locations

can either be fixed monitoring stations, like in an air pollution example, or can vary with

time for example data obtained from a research ship measuring ocean characteristics as

it moves about in the ocean. Discuss now two important and often used data types:

AREAL DATA The data are often called areal or block level data where the fixed

region D is partitioned into a finite number of areal units with well defined boundaries,

e.g. postcodes, counties or districts etc. Here an observation is thought to be associated

with an areal unit of non-zero volume rather than a particular location point, e.g. a
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latitude-longitude pair on the map. Typical areal data are represented by a choropleth

map which uses shades of color or grey scale to classify values into a few broad classes,

like a histogram. Such a map provides adjacency information of the areal units (blocks

or regions). Some statistical issues here are spatio-temporal smoothing, inference and

predictions for new areal units.

POINT DATA Spatial point pattern data arise when an event of interest, e.g. outbreak

of a disease, occurs at random locations, that is, D is random and its index set gives

the spatial point pattern; the notion of a response variable is not meaningful here, but

there can be additional covariate information at the event locations. Spatio-temporal

point are naturally found in a number of disciplines, including (human or veterinary)

epidemiology where extensive data-sets are also becoming more common. One important

distinction in practice is between processes defined as a discrete-time sequence of spatial

point processes, or as a spatially and temporally continuous point process. On this second

kind, the attention has been focalized. Tipically, this kind of data deal with trajectory

of moving objects that change their locations over time. So, they are constituted by

sampled locations at specific timestamps.

Spatio-Temporal Outlier Detection

Spatio-Temporal Outlier detection is an important research area due to the increas-

ing amount of spatio-temporal data available and the need to understand and interpret

them. Outlier detection refers to the problem of finding those patterns in data that do

not conform to the expected behavior. Generally some techniques have been proposed

for outlier detection in spatio-temporal data and overview of the research on spatio-

temporal outlier detection. We can distinguish three main different categories: the first

category considers that an outlier is a spatio-temporal outlier whose other attributes are

significantly different from their spatial and temporal neighborhoods. In this category,

there are works that deals with examining particular kind of data such as meteorolog-

ical data and climatological data that describe natural phenomenon evolving in space

and time. The second category is different from other approaches because it takes into

account the influence of the underlying spatial objects that might be different at differ-

ent spatial locations despite close proximity. This approach takes into consideration not

only the spatial relationships but also the semantic relationships between spatial objects
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and their respective areas of influence. The third category deals with flow anomaly; for

particular kind of data coming from sensor networks, this category identifies, for pair

of sensors, significantly mis-matched sensor readings (exceeding a given threshold) as a

flow anomaly.

1.3 Thesis Contribution and Outline

In this section, the two main research contributions and the thesis outline have been

reported.

1.3.1 Thesis Contribution

In the first major part of this thesis, we focus on outlier individuation problem in spatio-

temporal data sets and we propose a non parametric approach, called ST-Outlier De-

tector; in the second major part of this thesis we focus our attention on the benefits

coming from rough set theory applied to outlier detection in spatio-temporal data and

we propose a rough set based approach called ROSE, that stands for Rough Outlier Set

Extraction. Both our approaches belong to the first category.

A Non-Parametric Approach ST-Outlier Detector

Two distance-based outlier detection methods that find the top outliers in unlabeled

spatio-temporal data sets are proposed. In contrast to the existing outlier detection

methods that mainly consider only spatial component, the former proposed method is

a two step approach that find spatial top outliers and spatio-temporal top outliers as

a more refined level of anomaly detection; the latter proposed method is a combined

approach that is able to discover outliers according to the spatial and temporal features,

at the same time. The user can decide the importance to give to both components

(spatial and temporal) depending upon the kind of data to be analyzed, by setting an

input parameter. This approach has been already published [69].
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A Rough-Set Approach ROSE

In contrast to the existing outlier detection methods that define the outlier set as a crisp

set or as a ranked list of patterns, the proposed method rely on a rough set approach

able to represent the outlier set according to the rough set approximations, i.e. as lower,

upper approximations and relative boundary. The Rough Outlier Set Extraction (ROSE)

manages the uncertainty of this kind of problems.

This approach is under review for publication.

1.3.2 Thesis Outline

In Chapter 1 and at various places throughout this thesis, we argue that outlier detection

is a meaningful and important knowledge discovery task.

Chapter 2 describes aspects and characteristics of outlier detection problem giving the

appropriate definitions.

Chapter 3 provides background and related works from the analysis of the existing

literature on outlier detection problem. Particular attention has paid to outlier detection

in spatio-temporal data and rough set-based techniques being two main relevant subjects

of the following discussion.

In Chapter 4, we present two novel algorithms to identify outliers in spatio-temporal

data. These algorithms have been tested on synthetic and real data sets.

In Chapter 5, we present a novel approach to identify outliers in spatio-temporal data

from a rough set point of view.

In Chapter 6, we provide conclusions, possibilities for future work and a summary of

this thesis.



2 Data Mining for Outlier Detection

In this chapter, aspects and characteristics of outlier detection problem have been de-

scribed, giving the appropriate definitions.

2.1 Outlier Detection Problem

From a machine learning perspective, outlier detection can be categorized into a missing

label problem or a one-class learning problem, depending on the way in which the normal

samples are defined in a training data set [29] (see figure 2.1 taken by [26]).

Figure 2.1: Comparison between missing label problem and one-class learning problem

14
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2.1.1 Outlier Detection as Missing Label Problem

In a missing label problem, the data of interest consist of a mixture of normal samples

and outliers, in which the labels are missing. The goal there is to identify outliers from

the data and, in some applications, to predict outliers from an unseen data.

2.1.2 Outlier Detection as One-Class Learning Problem

In a one-class learning problem, normal samples are given as the training data. An outlier

detector is built upon the normal samples to detect samples that deviate markedly from

the normal samples, i.e., outliers. This is closely related to the standard supervised

learning problem except that all the training samples have the same normal label.

2.2 Aspects of Outlier Detection Problem

It is very critical to design an appropriate outlier detection approach for a given data set.

There is no single universally applicable or generic outlier detection approach, specific

application domains and type of data sets should be taken into account. In Figure 2.2,

taken by [26], a simple schema of the principal involved elements has been shown. The

kind of available input and one of outlier required play an important role in designing

a method (as described later), but also the specific application domain and semantic

concepts influence the choices.

2.2.1 Nature of input data

A key component of any outlier detection technique is the nature of the input data.

Input is generally a collection, called dataset, of data samples or data instances. Each

data instance is described using a set of attributes, also named characteristics, features.

The attributes can be of different types such as binary, categorical or continuous. In the

simplest case, there is only one feature for each data instance (univariate) and otherwise

multiple features (multivariate). The nature of attributes plays an important role in de-

signing an outlier detection technique. For example, when applying statistical techniques,

different statistical models have to be applied for continuous data and for categorical
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Figure 2.2: Anomaly Detection Process

data. Similarly, for techniques based on distance measures between data instances, the

nature of attributes would determine the distance measure to be used. Input data can

also be categorized based on the relationship present among data instances. Most of the

existing outlier detection techniques deal with record data, in which no relationship is

assumed among the data instances, even if, in some cases, such as spatial data, data

instances can be related to each other.

2.2.2 Availability of supervision

As previously said, each data sample is described by a set of features and optionally

could be associated by a class label to say that it belongs to a certain class. This is an

important aspect: the availability of labeled data. In this case, we deal with supervised

anomaly detection: labels are available for both normal data and anomalies.

Supervised approaches to anomaly detection have two major drawbacks: is not easy to

obtain labelled data in many real-life applications, and moreover new types of rare events

may not be included in the labelled data.

The category of unsupervised anomaly detection in which no labels are assumed, only

take use of unlabeled data so, of course, are more general and based on the assumption
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that anomalies are very rare compared to normal data.

Semi-supervised approaches to anomaly detection is when labels are available only for

normal data. This kind of learning approaches improve the accuracy using supervision

of some labeled data compared with that of unsupervised learning and, in the meantime,

reduce the need for expensive labeled data which is required in supervised learning.

2.2.3 Type of anomaly: point, contextual, collective

The simplest type of anomaly, which is also the focus of the majority of research, is to

detect an individual behavior instance that is considered as anomalous with respect to

the rest of behaviors. This type of anomaly is called point anomaly. An example is shown

in figure 2.3.

Figure 2.3: Example of point Anomaly

On the contrary, sometimes the individual behavior itself has similar features with

others but it is anomalous in a specific context (e.g., neighborhood); then it is termed

as a contextual anomaly. In the following figure 2.4 an example of contextual anomaly

is shown, because the red highlighted values t2 are normal values (the same of the green

highlighted values t1) but does not conform to the specified context (a such temperature

value is normal is winter and may be not is summer. Another example of application

of contextual anomaly is detecting individual anomalies in crowd scenes, i.e., human

behaviors that are themselves normal but anomalous with respect to the rest of the
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behaviors and so in a specific context.

In order to establish the context, it is necessary to distinguish between contextual and

behavioral attributes. The contextual attributes are used to determine the context while

the behavioral attributes define the non-contextual characteristics of an instance.

If a collection of related data instances is anomalous with respect to the entire data set,

Figure 2.4: Example of contextual Anomaly

this is called a collective anomaly. The individual data instances in a collective anomaly

may not be anomalies by themselves, but their occurrence together as a collection is

anomalous. In the following figure 2.5 illustrates an example which shows a human

electrocardiogram output with a collective anomaly highlighted in bold.

Figure 2.5: Example of collective Anomaly
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2.2.4 Output of Outlier detection

An important aspect for any anomaly detection technique is the manner in which the

anomalies are reported. Typically, the outputs, produced by anomaly detection tech-

niques, are one of the following two types:

Labels: Label techniques assign a label (normal or anomalous) to each test instance.

Scores: Scoring techniques assign an anomaly score to each instance in the test data

depending on the degree to which that instance is considered an anomaly. Thus, the

output of such techniques is a ranked list of anomalies. An analyst may choose to either

analyze the top few anomalies or use a cutoff threshold to select the anomalies.

Scoring-based anomaly detection techniques allow the analyst to use a domain–specific

threshold to select the most relevant anomalies. Techniques that provide binary labels

to the test instances do not directly allow the analysts to make such a choice, though

this can be controlled indirectly through parameter choices within each technique.

2.3 Outlier Detection Taxonomy

Consider whether an outlier detection technique is suitable for a data set depending on

several important aspects:

• the use of labelled data,

• the use of parameters of data distribution,

• the type and dimension of detected outliers,

• the degree of being outliers,

• the number of detected outliers at once.

We try now to schematize the elements that manage these choices:

• Use of labelled data

– Supervised learning approach (labelled data)

– UnSupervised learning approach (labelled data not necessary)

– Semi-Supervised learning approach (labelled data only for training)
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• Use of Parameters of data distribution

– Parametric

∗ Distribution-based techniques

∗ Depth-based techniques

∗ Graph-based techniques

– Non-Parametric

∗ Clustering-based techniques

∗ Distance-based techniques

∗ Density-based techniques

– Semi-Parametric Method

∗ Neural network-based techniques

∗ Support vector machine-based techniques.

Supervised learning approaches employ a large amount of labeled data to train the

model, but in practical learning scenarios, labeled data are expensive and difficult to be

found, as they require the experienced human effort. Moreover, some rare events might

not be included in labeled data. Unsupervised learning approaches are more general

because the unlabeled data is relative easy to collect.

Parametric methods assume that the whole data can be modeled by one standard

statistical distribution and then directly calculate the parameters of this distribution

based on means and covariance of the original data. Hence, a point that deviates signif-

icantly from the data model is declared as an outlier. Non-parametric methods make no

assumption on the statistic properties of data and instead identify outliers based on the

fully dimensional distance measure between instances. Semi parametric methods map

the data into a trained network model or a feature space to identify, as outliers, those

instances that deviate from the trained network model or that are distant from other

instances in the feature space, on the basis of some classification techniques.

Various outlier detection approaches work differently for different sets of data types.

Based on the characteristics and attributes of data, data sets are divided into:

• simple

• complex
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– High dimensional

– Mixed-type attributes

– Sequence

– Spatial

– Streaming

– Spatio-Temporal

where the complexity is referred to the semantic of data. Combining together a specific

kind of dataset and a kind of approach we can obtain this subdivision:

• Simple Dataset

– Parametric

∗ Distribution-based technique

∗ depth-based technique

∗ graph-based technique.

– Non-parametric

∗ Clustering-based technique

∗ Distance-based technique

∗ Density-based technique.

– Semi-parametric method

∗ Neural network-based technique

∗ Support vector machine-based technique.

• Complex Dataset

– High dimensional

∗ Distance-based technique

∗ Subspace-based technique.

– Mixed-type attributes

∗ Graph-based technique.

– Sequence
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∗ Clustering-based technique

∗ Tree-based technique

– Spatial

∗ Distribution-based technique

∗ Graph-based technique

– Streaming

∗ Graph-based technique

∗ Model-based technique

∗ Density-based technique

– Spatio-Temporal

∗ Clustering-based technique

∗ Distance-based technique

∗ Distribution-based technique

2.4 Summary

In this chapter, the general definition of Outlier Detection Problem from a machine

learning point of view has been introduced and some different factors, that play a role in

the specific formulation of the problem, such as the input data, the availability of labels

as well as the specific application domain, have been analyzed. At the end, a taxonomy-

like list, combining together the more common kind of data set and the various kind of

approaches, has been provided.



3 Outlier Detection: Background and

Related works

3.1 Introduction

Nowadays, the high availability of data gathered from wireless sensor networks and

telecommunication systems, has focalized the research attention on the knowledge that

can be gained from the analysis of a particular kind of data, spatio-temporal data. More-

over, new interesting research fields are coming up due to high availability of these data.

The Moving Object Databases store geographical positions of moving objects at dif-

ferent times; these information typically represent moving object trajectories. In some

application areas, such as GIS, computer vision, mobile computing and traffic analy-

sis, huge amounts of data are generated and stored, explicitly or implicitly containing

spatio-temporal information. Moreover, the proliferation of location-aware devices, such

as wireless sensor networks or GPS devices, generate terabytes of data daily. These

collections of spatio-temporal data contain interesting information and knowledge. The

management and analysis of moving object trajectories is interesting because can provide

benefits in many different fields: for example, problem prevention, discovery of meaning-

ful behaviour pattern or accessibility of restricted areas and so on. In this way, unde-

tected correlations between phenomena and rare event could be discovered so adequate

improvements could be taken or new traffic policies could be defined to reduce traffic or

the number of accidents. Here, the context is spatio-temporal data mining, i.e. a growing

research area dedicated to the development of algorithms and computational techniques

for the analysis of large spatio-temporal databases and the disclosure of interesting and

23
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hidden knowledge in these data, in terms of periodic hidden patterns and outlier/novelty

detection. Obviously, the topics of interest related to spatio-temporal data mining are

several; the attention has been focalized on outlier detection in spatio-temporal data.

In this chapter, a brief overview of the most interesting outlier detection methods pro-

posed in literature and then, in particular, for spatio-temporal data analysis, has been

provided.

3.2 Outlier Detection Methods

In literature, the principal kinds of outlier detection approaches are the following:

1. Distribution-based approaches that use standard statistical distribution. They de-

ploy some standard distribution model and recognize as outliers those points which

deviate from the model. A large number of tests are required in order to decide

which distribution model fits the arbitrary data set best. Fitting the data with

standard distributions is quite costly.

2. Clustering-based approaches that have, as main objective, to discover clusters, and

so they are not developed to detect outliers.

Clustering is a technique aimed at grouping similar data instances in groups or

clusters [47]. Although the main objective of clustering is to discover clusters, it

has become an important tool for outlier detection and analysis. Indeed, several

clustering-based outlier detection techniques have been developed. Most of these

techniques rely on the key assumption that normal data instances belong to large

and dense clusters, while outliers form very small clusters or are isolated elements.

3. Depth-based approaches are based on computational geometry and compute dif-

ferent layers of k-dimensional convex hulls. Outliers are more likely to be data

objects with smaller depths. Depth-based approach is also applied for spatial out-

lier detection.

4. Distance-based methods use a distance metric to measure the distances among the

data instances. Problems may occur if the parameters of the data are very different

from each other in different regions of the data set.
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5. Density-based approaches apply a local cluster criterion. Clusters are regarded as

regions in the data space in which the objects are dense, and which are separated

by regions of low object density (outlier). These regions may have an arbitrary

shape and the objects inside a region may be arbitrarily distributed.

3.2.1 Distribution-based methods

Distribution-based methods rely on assumptions that the data follow a statistical distri-

bution model e.g., Normal, Poisson, Binomial. Hence, a point that deviates significantly

from the data model is declared as an outlier.

Distribution-based methods are the earliest parametric methods to face the outlier de-

tection problem. As Parametric methods, they directly calculate the parameters of this

distribution based on means and covariance of the original data. Then, they employ

statistical tests to determine a point as an outlier depending on whether it deviates

significantly from the data model [26].

Gaussian Model

This kind of technique assumes that the data is generated by a Gaussian distribution.

The parameters are estimated using Maximum Likelihood Estimates (MLE). The dis-

tance of a data instance to the estimated mean is the anomaly score for that instance.

A threshold is applied to the anomaly scores to determine the anomalies. Different tech-

niques in this category calculate the distance to the mean and the threshold in different

ways. A simple outlier detection technique (Shewhart [86]), is to declare all data in-

stances that are more than 3σ distance away from the distribution mean µ, where σ is

the standard deviation for the distribution. More sophisticated statistical tests have also

been used to detect anomalies, as discussed in Barnett and Lewis [16], Barnett [15], and

Beckman and Cook [18]. The most common outlier tests for normal distributions are: the

Box-plot rule (Laurikkala et al. [56]), the Grubb’s test (maximum normed residual test)

used to detect anomalies in a univariate data set (Grubbs [39], Stefansky [89], Anscombe

and Guttman [13]) and several other variants of Grubb’s test, proposed to handle mul-

tivariate data sets (Aggarwal and Yu 2001 [6], 2008 [9]). Another variant of Grubb’s

test that uses the Mahalanobis distance is due to Laurikkala et al. [56], while another

is due to Shekhar et al. [85] to handle graph structured data. The student’s t-test has

also been applied for anomaly detection in Surace and Worden [92] to detect damages in
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structural beams. The multivariate version of students’t-test called the Hotelling t2-test

is also used as an anomaly detection test statistic in Liu and Weng [58] to detect anoma-

lies. Ye and Chen [108] use a χ2 statistic to determine anomalies in operating system

call data. The training phase assumes that the normal data has a multivariate normal

distribution. Several other statistical anomaly detection techniques that assume that the

data follows a Gaussian distribution have been proposed, but use other statistical tests,

such as: Rosner test [78], Dixon test [38], Slippage Detection test [42], and so on.

Regression Model

Anomaly detection using regression has been extensively investigated for time-series data

(Abraham and Chuang [2], Abraham and Box [1], Fox [33]). This kind of anomaly detec-

tion technique consists of two steps: in the first step, a regression model is fitted on the

data, while in the second step, for each test instance, the magnitude of the residual (part

of the instance which is not explained by the regression model) for the test instance is

used to determine the anomaly score. A technique, called robust regression (Rousseeuw

and Leroy [80]), solves the problem that the presence of outliers in the training data

could influence the regression model parameters and consequently the result accuracy. A

similar robust anomaly detection approach has been applied in Autoregressive Integrated

Moving Average models (Bianco et al. [20], Ye and Chen [108]). Variants of the basic

regression model-based technique have been proposed to handle multivariate time-series

data (Tsay et al. [99]). Another variant that detects anomalies in multivariate time-series

data generated by an Autoregressive Moving Average model, was proposed by Galeano

et al. [36].

Mixture of Parametric Distributions

A kind of technique that uses a mixture of parametric statistical distributions to model

the data. This category of techniques can be subdivided into two categories: the first

subcategory models the normal instances and anomalies as separate parametric distri-

butions, while the second sub-category of techniques models only the normal instances

as a mixture of parametric distributions. For the first subcategory, the testing phase

involves determining which distribution, normal or anomalous, the test instance belongs

to. Abraham and Box [1] assume that the normal data is generated from a Gaussian dis-

tribution (N(0, σ2)) and the anomalies are also generated from a Gaussian distribution

with same mean but with larger variance. A test instance is tested using the Grubb’s

test on both distributions, and accordingly labeled as normal or anomalous. Similar

techniques have been proposed in Lauer [57], Eskin [30], Abraham and Box [1], Box and
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Tiao [23], and Agarwal [4]. The second subcategory of techniques models the normal

instances as a mixture of parametric distributions. A test instance that does not belong

to any of the learned models is declared to be an anomaly. Gaussian mixture models

have been mostly used for such techniques Agarwal [5], to detect anomalies in mammo-

graphic image analysis (Spence et al. [88], Tarassenko [95]), and for network intrusion

detection (Yamanishi and Takeuchi [106], Yamanishi et al. [107]. Similar techniques have

been applied to detecting anomalies in biomedical signal data (Roberts and Tarassenko

[74], Roberts 1999 [75] and 2002 [76]), where extreme value statistics (Extreme Value

Theory - Pickands 1975) are used to determine if a test point is an anomaly with respect

to the learned mixture of models or not. Byers and Raftery [25] use a mixture of Poisson

distributions to model the normal data and then detect anomalies.

3.2.2 Depth-based methods

Outlier detection methods that are based on statistical depths have been studied in statis-

tics and computational geometry. These methods provide a center-outward ordering of

observations. Each data point is assigned by a depth [100] and outliers are expected to

appear more likely in outer layers with small depth values than in inner layers with large

depth values as shown in Figure 3.1. Depth–based methods are completely data–driven

Figure 3.1: Figure taken by Preparata and Shamos 1988 [68]

and avoid strong distributional assumption. Moreover, they provide intuitive visualiza-

tion of the data set via depth contours for a low–dimensional input space. Of the various
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depths, spatial depth is especially appealing because of its computational efficiency and

mathematical tractability. Spatial depth has been applied in clustering and classification

problems [52], [37]. Because each observation from a data set contributes equally to the

value of depth function, spatial depth takes a global view of the data set.

Rousseeuw and Leroy [80] describe two basic depth–based outlier detection techniques

for low dimensional data sets, i.e., minimum volume ellipsoid (MVE) and convex peeling.

MVE uses the smallest permissible ellipsoid volume to define a boundary around the

majority of data and outliers are not in the densely populated normal boundary. Convex

peeling maps data points into convex hull layers in data space according to peeling depth.

Outliers are those points in the shallow convex hull layers with the lowest depth. Ruts

and Rousseeuw [82] present an outlier detection approach using the concept of depth

contour to compute the depth of points in a two–dimensional data set. Johnson et al.

[51] propose a faster outlier detection approach based on computing two–dimensional

depth contours in convex hull layers (Figure 3.2).

Figure 3.2: Figure taken by Johnson et al. 1998

3.2.3 Graph-based methods

Graph-based methods make use of a powerful tool data image and map the data into a

graph to visualize the single or multi-dimensional data spaces. Outliers are those points
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that are present in particular positions of the graph. These methods are suitable to

identify outliers in real-valued and categorical data.

Laurikkala et al. [56] propose an outlier detection approach for univariate data based on

box plot in figure 3.3 (a) which is a simple single-dimensional graphical representation.

Using box plot, points that lie outside the lower and upper threshold are identified as

(a) (b)

Figure 3.3: An example: (a) Boxplot (b) Scatterplot

outliers. Also, these detected outliers can be ranked by the occurrence frequencies of

outliers. Scatter plot [65] is a graphical technique to detect outliers in two-dimensional

data sets (see figure 3.3 (b)). It reveals a basic linear relationship between the axis X and

Y for most of the data. An outlier is defined as a data point that deviates significantly

from a linear model. Moreover, spin plot [101] can be used for detecting outliers in 3-D

data sets.

3.2.4 Clustering methods

Traditional clustering–based methods are developed to optimize the process of clustering

of data, where outlier detection is only by–product of no interest. The novel clustering–

based outlier detection methods can effectively identify outliers as points that do not
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belong to clusters of a data set or as clusters that are significantly smaller than other

clusters.

Clustering–based methods consider a cluster of small sizes, including the size of one

observation, as clustered outliers. Some examples for such methods are the partitioning

around medoids (PAM) and the clustering large applications (CLARA) [73]; a modified

version of the latter for spatial outliers called CLARANS [72]; and a fractal dimension

based method [14]. Note that since their main objective is clustering, these methods are

not always optimized for outlier detection. In most cases, the outlier detection criteria

are implicit and cannot easily be inferred from the clustering procedures. Other data

mining algorithms in the literature find outliers as a side-product of clustering algo-

rithms [7], [8], [10], [40]. However, these techniques define outliers as points which do

not lie in clusters. Thus, the techniques implicitly define outliers as the background noise

in which the clusters are embedded. A recent Density-Based Clustering and Outlier De-

tection algorithm (DBCOD in [109]) for discovering clusters and detecting outliers in

a multidimensional database, solves clustering and outlier detection at the same time

without losing the quality of clustering and outlier detection. It uses a novel concept

called neighborhood–based local density factor (NLDF).

3.2.5 Distance-based methods

Distance-based methods are used to identify outliers based on the measure of full di-

mensional distance between a point and its nearest neighbors in a data set. Outliers

are points that are distant from the neighbors in the data set. These methods generally

define outliers based on a global view of the data set.

Knorr and Ng [54] introduced the notion of distance-based outliers, theDB(p, d)-Outlier.

Definition 1. A data point x in a given data set is a DB(p, d)-Outlier if at least p

fraction of the data points in the data set lies more than d distance away from x.

The parameters p and d are to be specified by a user. So different choices of p and/or

d lead to different observations being declared outliers. The authors of this definition

proposed also some efficient algorithms for finding distance–based outliers. One algo-
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rithm is a block nested–loop algorithm that has running time quadratic in the input

size. Another algorithm is based on dividing the space into a uniform grid of cells and

then using these cells to compute outliers. This algorithm is linear in the size of the

database but exponential in the number of dimensions.

Outlier detection method based on Mahalanobis distance (MD) has been extensively

studied in the statistics literature [77], [81], [79]. A fast algorithm provided by Rousseeuw

and Van Driessen [81] makes robust version MD-based methods feasible for large sample

size data. But the use of Euclidean rather than Mahalanobis distance speeds up the cal-

culations considerably because computing and inverting covariance matrices, which are

normally time consuming are not needed. However, relying exclusively on the Euclidean

metric is equivalent to assuming that all variables are independent and have equal vari-

ances, a condition that is rarely observed in practice. Ignoring the dependence among

variables will lead to inaccurate results in the majority of cases. Moreover, calculating

the inter–point distances for all points in a dataset transforms an exploratory problem

into a computational problem. The brute force method (exhaustive search) is clearly

infeasible for most datasets, so algorithms have been proposed that are based on intelli-

gent pruning.

Ramaswamy et al. [70] extended the notion of distance–based outliers by ranking each

point on the basis of its distance to its k-th nearest neighbor and declaring the top n

points as outliers.

Definition 2. Given an input data set with N points, parameters n and k, a point p

is Dk
n outlier if there are no more than n–1 other points p′ such that Dk(p′) > Dk(p),

where Dk(p) is the distance between the object p and its k-th nearest neighbors.

The authors of this definition develop a highly efficient partition–based algorithm for

mining outliers. This algorithm first partitions the input data set into disjoint subsets,

and then prunes entire partitions as soon as it is determined that cannot contain outliers.

Sun and Chawla [91] introduced a measure for spatial local outliers, which takes into

account both spatial autocorrelation and spatially non-uniform variance of the data.

Angiulli et al. [11] designed a distance-based method to find outliers from a given data

set and to predict if an unseen data point is an outlier based on a carefully selected
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subset of the given data.

Aggarwal and Yu [6] investigated the influence of high dimensionality on distance-based

outlier detection algorithms.

An analogous definition of outlier based on the k-nearest neighbors has been used in [31]

for unsupervised anomaly detection to detect intrusions in unlabeled data. Data elements

are mapped in a feature space and anomalies are detected by determining which points

lie in sparse regions of the feature space.

More recently, Bay and Schwabacher [17], in order to find the top n distance based

outliers of an input data set, augmented the naive distance–based nested loop algorithm,

which finds the k-nearest neighbors of each data set point, with a simple pruning rule

and randomization obtaining a near linear scaling on real, large, and high-dimensional

data sets.

Ren et al. [73] present a faster way to implement the above outlier definition, utilizing

their concept of P-trees, which examine the data ’vertically’ rather than ’horizontally’,

that is, analyzing the data via its components rather than the individual observations.

3.2.6 Density-based methods

Density-based methods are proposed to take the local density into account when search-

ing for outliers. These methods define outliers based on the local structure of the data

set. Density-based algorithms: DBSCAN [32] is a widely known density-based clustering

algorithm. The key idea in DBSCAN is that for each object in a cluster, the neighborhood

of a given radius ε has to contain at least a minimum number MinPts of objects, where

ε and MinPts are input parameters. GDBSCAN [84] extends the famous algorithm DB-

SCAN to apply to spatial database. OPTICS [12] has been devised to reduce the burden

of determining parameter values in DBSCAN. IDBSCAN is an improved sampling-based

DBSCAN which can cluster large-scale spatial databases effectively. Since DBSCAN uses

global parameters, it can not distinguish small, close and dense clusters from large and

sparse clusters.

To solve this problem, a neighborhood based clustering algorithm named NBC [114] is

proposed. It uses the neighborhood relationship among objects to build a neighborhood

based clustering model to discover clusters.

LOF [24] is a representative density-based outlier detection algorithm. An outlier is de-
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Figure 3.4: DBSCAN

Figure 3.5: GDBSCAN

fined using the local outlier factor (LOF) of the current object, which depends on the

local density of its neighborhood. LOF assign to each object a degree of being an outlier,

objects with high LOF value are detected as outlier. Unfortunately, the work done in [24]

requires the computation of LOF value for all objects which is rather expensive because

it requires a large number of k-nearest neighbors query.

Similar to LOF, Zhang et al. [111] propose two novel algorithms LDBOD and LDBOD+

for outlier detection from the viewpoint of local distribution, which is characterized

through three proposed measurements, local-average-distance, local-density, and local-

asymmetry-degree. Many other extensions to LOF have been proposed, as aLOCI [66],

Local Distance–based Outlier Factor (LDOF) for scattered real-world datasets [112].

Tang et al. [94] present an outlier detection approach based on a connectivity–based out-

lier factor (COF) that results more effective, especially for sparse data sets. The degree

of outlierness COF is calculated using the ratio of the average distance from the point
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Figure 3.6: OPTICS

to its k–distance neighbors and the average distance from its k–distance neighbors to

their own k–distance neighbors. Points that have the largest COF values are declared as

outliers.

3.2.7 Classification techniques

Some classification techniques have been applied to outlier detection.

Classification-based anomaly detection techniques operate in a two-phase fashion. The

training phase learns a classifier using the available labeled training data. The testing

phase classifies a test instance as normal or anomalous, using the classifier.

Neural networks based methods can autonomously model the underlying data distri-

bution and distinguish between the normal and abnormal classes. Those data points that

are not reproduced well at the output layer are considered as outliers.

A basic multi-class anomaly detection technique using neural networks operates in two

steps. First step: a neural network is trained on the normal training data to learn the

different normal classes, second step: each test instance is provided as an input to the

neural network. If the network accepts the test input, it is normal and if the network re-

jects a test input, it is an anomaly [90], [62]. Several variants of the basic neural network

technique have been proposed in literature that use different types of neural networks.

Replicator Neural Networks 3.7 have been used for one-class anomaly detection [43],

[104]. A multi-layer feed forward neural network is constructed that has the same num-

ber of input and output neurons (corresponding to the features in the data). Also Support
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Figure 3.7: Replicator Neural Networks

Vector Machines [102] have been applied to anomaly detection in the one-class setting.

Such techniques use one class learning techniques for SVM [71] and learn a region that

contains the training data instances (a boundary). Kernels, such as radial basis function

(RBF) kernel, can be used to learn complex regions. For each test instance, the basic

technique determines if the test instance falls within the learned region. If a test instance

falls within the learned region, it is declared as normal, else it is declared as anomalous.

The basic technique has also been extended to detect anomalies in several fields, i.e. in

temporal sequences [59], [60]. A variant of the basic technique [96], [97], [98] finds the

smallest hypersphere in the kernel space that contains all training instances, and then

determines on which side of that hypersphere a test instance lies. If a test instance lies

outside the hypersphere, it is declared to be anomalous. Song et al. [87] use Robust

Support Vector Machines (RSVM), which are robust to the presence of anomalies in the

training data.

3.2.8 Other techniques

Being concerned with the complex data sets, several novel outlier detection methods

have been proposed to deal with data with specific semantic.

Subspace-based methods project the data into a low-dimensional subspace and declare

a point as an outlier if this point lies in an abnormal lower-dimensional projection, where

the density of the data is exceptionally lower than the average. These methods reduce



3. Outlier Detection: Background and Related works 36

the dimensions of data and efficiently identify outliers in high dimensional data sets [6] .

Tree-based methods construct a specific tree as index to decompose data structure

and use an efficient similarity measure for the sequence data to distinguish outliers from

non-outliers. These methods efficiently identify outliers only by examining nodes near

the root of tree [91].

Model-based methods detect outliers by the construction of a model, which can rep-

resent the statistical behaviour of data stream. Outliers are those points that deviate

significantly from the learned model. These methods can efficiently deal with the stream-

ing data in an online fashion [44].

3.3 Outlier Detection Methods on spatio-temporal data

Most existing spatio-temporal outlier detection techniques focus on detecting spatial

outliers, which only considers the spatial attributes of data or the spatial relationships

among neighbors. However, in all geographic phenomena evolving over time, temporal

aspects and spatio-temporal relationships existing among spatial data points also need to

be considered in detecting outliers. Currently, some works have addressed the detection

of spatio-temporal outliers in data sets on the basis of clustering concepts and statistical

tests.

Cheng and Li [27] introduce a formal definition of ST (spatio-temporal) outliers:

Definition 3. A spatio-temporal object (ST -Outlier) whose thematic attribute values

are significantly different from those of other spatially and temporally referenced objects

in its spatial or/and temporal neighborhoods.

The definition indicates that ST-outliers are identified by comparing the spatio-temporal

points with their spatio-temporal neighbors. Considering the temporal aspects, the au-

thors declare a point as a ST-Outlier by checking if the point’s attribute value at time

T is significantly different from the statistical attribute values of its neighbors at time
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T-1 and T+1.

Cheng and Li [27] further propose a four-step approach to detect ST-outliers, i.e., clas-

sification, aggregation, comparison and verification. In particular, the classification step

aims at finding out the spatio-temporal points of interest by clustering the input data,

which can be achieved by either supervised classification based on priori knowledge of

the data or unsupervised classification if prior knowledge of data is not available. The

aggregation step uses different spatial scales of the data to generate different clusters and

effectively filter the noises. In comparison step, potential spatial outliers can be identified

by comparing the results obtained from the classification step with the results obtained

from the aggregation step. The verification step further compares these potential spatial

outliers with their temporal neighbors in a continuous pattern. If the difference value is

greater than a statistical threshold, these outliers will be considered as true ST-Outliers.

Derya Birant, Alp Kut [21] define a similar definition of ST-Outlier as [27]:

Definition 4. A Spatial Outlier (S-Outlier) is an object whose non-spatial attribute

value is significantly different from the values of its spatial neighbors.

Definition 5. A Temporal Outlier (T -Outlier) is an object whose non-spatial attribute

value is significantly different from those of other objects in its temporal neighborhood.

Derya Birant, Alp Kut [21] present a ST-outlier detection approach based on cluster-

ing concepts called ST-DBSCAN. In particular, this approach consists of three steps,

clustering, checking spatial neighbors, and checking temporal neighbors. In the cluster-

ing step, an efficient clustering technique DBSCAN [32] has been improved in supporting

temporal aspects and detecting outliers in clusters with different densities. As a result,

potential outliers are those points which do not belong to any of clusters. The follow-

ing two steps further verify these potential outliers. In the checking spatial neighbors

step, a potential outlier is labelled as a spatial outlier if its statistic value is outside a

user-specified confidence interval. In the checking temporal neighbors step, if this spatial

outlier is significantly different from its temporal neighbors in consecutive time units, it

is labelled as a true ST-outlier. This approach uses several pre-defined parameters and

some of them are very sensitive for the performance of outlier detection.
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Wu, et al. [105] propose a spatio-temporal outlier detection algorithm called Outstretch,

which discovers the outlier movement patterns of the top-k spatial outliers over sev-

eral time periods. The top-k spatial outliers are found using the Exact-Grid Top-k

and Approx-Grid Top-k algorithms, which are an extension of algorithms developed by

Aggarwal et al.

3.4 RST-based Outlier Detection Methods

Granular Computing and Rough Set theory provide excellent methods and frameworks

for Outlier Detection tasks.

Let us introduce the main aspects of classical rough set theory.

3.4.1 Rough Set Theory

Rough-set theory is a new and highly accepted paradigm that is used to deal with uncer-

tainty, vagueness, and incompleteness. Rough set theory, proposed by Zdzislaw Pawlak

[67], is a model of approximate reasoning. The main idea is based on the indiscernibility

relation that describes indistinguishability of objects. Concepts are represented by lower

and upper approximations. In applications, rough set methodology focuses on approx-

imate representation of knowledge derivable from data. Rough Set Theory (RST) can

be approached as an extension of the Classical Set Theory, for use when representing

incomplete knowledge. The theory of rough sets begins with the notion of an approxi-

mation space, which is a pair 〈U,R〉, where U is a non–empty set, called the universe

of discourse, and R is an equivalence relation on U , i.e., R is reflexive, symmetric and

transitive. The relation R decomposes the set U into disjoint classes in such a way that

two elements x and y are in the same class if and only if (iff)(x, y) ∈ R.

Let U/R denote the quotient set of U by the relation R, and

U/R = {X1, X2, ..., Xm}

where Xi is an equivalence class of R, i = 1, 2, ...,m. If the two elements x and y in

U belong to the same equivalence class Xi ∈ U/R, then we can say that x and y are

indistinguishable. The equivalence classes of R and the empty set ∅ are the elementary

sets in the approximation space 〈U,R〉. Given an arbitrary set X ∈ {2U}, in general, it
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may not be possible to precisely describe X ∈ 〈U,R〉. X can be characterized by a pair

of lower and upper approximations defined as

R(X) =
⋃

Xi⊆X

Xi and R(X) =
⋃

Xi∩X 6=∅

Xi.

That is, the lower approximation R(X) is the union of all the elementary sets which

are subsets of X, and the upper approximation R(X) is the union of all the elementary

sets which have a non–empty intersection with X. The interval [R(X), R(X)] is the rep-

resentation of an ordinary set X in the approximation space 〈U,R〉 or is simply called

the rough set of X. The lower (respectively, upper) approximation R(X) [respectively,

R(X)] is interpreted as the collection of those elements of U , which definitely (respec-

tively, possibly) belong to X. Furthermore, a set of X is said to be definable (or exact)

in 〈U,R〉 iff R(X) = R(X). Two numerical characterizations of imprecision of a subset

X in the approximation space 〈U,R〉 ha been defined: accuracy and roughness.

Accuracy of X, which is denoted by αR(X), is the ratio of the number of objects on its

lower approximation to that on its upper approximation, namely

αR(X) = |R(X)|
|R(X)| .

The roughness of X, which is denoted by ρR(X), is defined as ρR(X) = 1−αR(X). Note

that the lower the roughness of a subset, the better is its approximation. Furthermore,

the following conditions are valid.

1. As R(X) ⊆ X ⊆ R(X), 0 ≤ ρR(X) ≤ 1

2. By convention, when X = ∅, R(X) = R(X) = ∅ and ρR(X) = 0

3. ρR(X) = 0 iff X is definable in 〈U,R〉

3.4.2 Outlier Detections Methods using Rough Set Theory

Granular Computing and Rough Set theories seem to provide excellent methods and

frameworks for such tasks. Some outlier detection techniques, that are exploring this

area, are reported in the following. Nguyen in [61] discusses methods for the detection

and evaluation of outliers, as well as how to elicit background domain knowledge from

outliers using multi-level approximate reasoning schemes.
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Y. Chen, D. Miao, and R. Wang in [28] demonstrate the application of granular com-

puting model using information tables for the outlier detection. They proposes a novel

definition of outliers - GrC (granular computing)- based outliers. A definition of gran-

ular outlier factor (GOF) based on the distance between granules is given, which can

indicate the degree of outlierness for every granule in the granular computing model. An

algorithm to find such outliers is also given.

F. Jiang, Y. Sui and C. Cao in [49] propose a new definition for outliers in rough set the-

ory which exploits the rough membership function. In this approach, similar to Breunig’s

method LOF, a rough outlier factor (ROF), which indicates the degree of outlierness for

every object with respect to a given subset of universe is defined. An algorithm to find

such outliers in rough set theory is also given.

3.4.3 Spatio-temporal data using Rough Set

Bittner in [22] represents spatio temporal data using rough set. Spatio-temporal regions

are defined as pairs consisting of a spatial and a temporal component and topological

relations between them are also defined. Using the notion of rough sets, Bittner de-

fines approximations of spatio-temporal regions and relations between those approxima-

tions. Based on relations between approximated spatio-temporal regions, configurations

of spatio-temporal objects can be characterized even if only approximate descriptions of

the objects forming them are available.

3.5 Summary

An overview of outlier detection methods and in particular outlier detection methods

in spatio-temporal data has been provided. A quick look to rough set based outlier

detection methods has also been provided.



4 A Non Parametric Approach: ST-Oulier

Detector

4.1 Introduction

In this chapter, we are going to introduce two new non parametric approaches: a two

step approach and ST-Oulier Detector.

At this aim, the outlier detection problem can be defined as follows: given a set of

N data objects and an expected number of outliers, n, find the top n objects that are

considerably dissimilar, exceptional, or inconsistent with respect to the remaining data.

One of the most popular kind of approaches for detecting outliers is the distance-based

approach, in which the distance of a object from its k nearest neighbors is calculated.

The rationale behind this approaches is that: if the neighboring objects are relatively

close, then the point is considered normal; otherwise, if the neighboring objects are far

away, then the object is considered outlier. The advantages of this kind of approaches are

that no explicit distribution needs to be defined to detect outliers and can be applied

to any feature space for which a distance measure can be defined. It is an approach

unsupervised in nature and purely data driven.

Given a distance measure on a feature space, there are many different definitions for

the distance-based outliers, we mention two of them that are more relevant for our work.

One is due to Ramaswami et al. [70], and other, most recently, is due to Angiulli and

Pizzuti [11]. Given a k and n, an object p is an outlier if no more than n-1 other objects

in the dataset have a higher value for Dk than p where Dk is a degree of outlierness, com-

puted on the basis of the full distances among the object p and its k-nearest neighbors.

41
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This means that the top n points, having the maximum Dk values, are considered out-

liers.

For Angiulli and Pizzuti, the sum of the distances from the object itself and its k-

nearest neighbors is assigned, as a weight, to each object of the dataset. In this way,

each object is assigned by a degree of outlierness, accordingly to outlier detection scor-

ing techniques. The disadvantage of distance-based approaches is its high computational

complexity. The computational complexity is directly proportional to both the dimen-

sionality of the data and the number of objects. In this direction, many different pruning

strategies have been proposed in literature to find these outliers efficiently.

4.2 The proposed solutions

With recent advances in sensory and mobile computing technology, enormous amounts

of data about moving objects are being collected. With such data, it becomes possible

to automatically identify suspicious behavior in object movements. Anomaly detection

in massive moving objects has many important applications, especially in surveillance

and homeland security. Due to the sheer volume of spatiotemporal data associated with

moving objects, it is challenging to develop a method that can efficiently and effectively

detect anomalies of object movements in complex scenarios. The problem is further com-

plicated by the fact that anomalies may occur at various levels of abstraction and be

associated with different time and location granularities. In this chapter, we analyze

the problem of anomaly detection in moving objects and propose an efficient and scal-

able non parametric method, called ST -Outlier Detector, which faces an unsupervised

anomaly/outlier detection in spatio-temporal data. Accordingly to the taxonomy shown

in the previous chapter, a distance/clustering approach has been chosen.

Our prospected solution is a non parametric approach because we make no assumption

about the underlying distribution. In particular, we search for neighbors based on full

distances. Shall we start to explain the two phases approach that has been the starting

point of our research.
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4.2.1 An initial two phases approach

Many applications track the movement of mobile objects, which can be represented as

sequences of time-stamped locations. The movement of an object is tracked as a n-length

sequence S of spatial locations, one for each timestamp in the history (the locations are

sampled over a long history), of the form:

D = {(l0, t0), (l1, t1), ...., (lN−1, tN−1)}

where li is the object location (expressed in terms of spatial coordinates) at time ti.

Given a long history of such spatio-temporal data D and a distance measure, the

solution proposed here consists in a two-step approach to detect spatio-temporal outliers

in large databases:

• the first phase is spatial outlier detection,

• the second phase is temporal outlier detection as a more refined level of anomaly

detection.

The solution uses a well-known distance-based approach, using Euclidean distance;

in particular, the outlier definition is based on the k-nearest neighbors. The idea is as

follows: assign to each point a weight based on the sum of all the distances between

the point itself and some k (input parameter) nearest neighbors, before among a small

outlier candidate set and then, iteration by iteration, in a more precise way, therefore:

ωk(p,D) =
∑k

i dist(p, nni(p,D)), ∀p ∈ D

where ωk(p,D) is the weight of p with regard to k in D, nni(p,D) is the i–th nearest

neighbor of p in D, dist is the Euclidean distance and D is the original dataset. In this

context, the outlier detection problem can be formalized as follows: find out n points

that score the greatest weights. The result set will be:

{S1,k, S2,k, ......., Sn,k}

where Si,k is the object having the i-th greatest weights with regard to k, i = 1, ..., n

and n represents the number of top outliers required.

Intuitively, the notion of weight captures the degree of dissimilarity of a point or, more

in general, of an object with respect to its neighbors. The weight is used to assign a

degree of outlierness to each point, outliers are those points that have the highest ranks.
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This definition has been used in several works on outlier detection topic.

Now, we want to apply it to spatio-temporal context.

The first phase works only on spatial components. The second phase works on temporal

attributes (timestamp), using again a distance-based approach in order to refine the

solution set obtained in the previous phase. The aim is to use also temporal features

in order to find out two separate subsets: spatial outliers subset and spatio-temporal

outliers subset. Firstly, it is necessary to fix a temporal criterion that allows to establish

who is the temporal neighbor of another point. For example, two events can be defined

”near in time” if they happen every day at the same time. The Euclidean distance is

used two times to calculate two different weights: the former computation takes into

account spatial values (cartesian coordinates xi and yi) and the latter uses non-spatial

values, i.e. temporal components ti. Given a point p, the Euclidean distance on temporal

component, indicated by distt, will be based on the chosen criterion, such as:

distt(p, nni(p,D)) = |t− ti| ∀i = 1, ..., k

where t and ti are temporal attributes of p and of nni(p,D) respectively. In this way, the

temporal value of an object is compared with the temporal values of spatial neighbors

in order to find out the spatio-temporal neighbors (such as previous day, next day in the

same year or the same day in other years and so on). Now, for each point, the nearest

spatial k-neighbors will be iteratively picked up, and among these, also the temporal

component will be checked and the spatial neighbors will be labelled as nearest temporal

neighbor or not in case of the criterion will be respected or not. At the end of this process,

for each outlier a structure will keep the k nearest spatial neighbors and eventually also

spatio-temporal neighbors.

The rationale behind this approach is that a point is a spatio-temporal outlier whenever

none among its k spatial nearest neighbors is also a temporal neighbor; and, vice versa,

if a point owns temporal neighbors it will be only a spatial outlier.

4.2.2 A combined approach

Let us consider the movement of an object as a N -length sequence

D = {(l0, t0), (l1, t1), ...., (lN−1, tN−1)} (4.1)
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where li is the object location (expressed in terms of spatial coordinates) at time ti.

This assumpion fully agrees with many applications that track the movement of mo-

bile objects, represented as sequences of time-stamped locations. Our non-parametric

approach, called ST -Outlier Detector Algorithm (Spatio-Temporal Outlier Detector Al-

gorithm), relies on the consideration that, in the parametric approaches, the choice of

distribution parameters, to be estimated, is not always a simple task because of the poor

knowledge about the data to be analyzed.

The rationale is to use the relative location of an object to its neighbours to determine

the degree to which the object deviates from its neighbourhood.

The proposed outlier detection algorithm is characterized by two main contributions:

1. it allows to find the spatio-temporal outliers in a combined way: each point will have

an unique attribute depending both from spatial distance measure and temporal

distance one in an user stated percentage.

2. it allows to find only the spatial outliers or the temporal ones (limit cases).

The approach presented faces the spatio-temporal outlier detection problem from a new

perspective, that is considering a mixture of spatial and temporal features. Let us con-

sider that dataset features are only space and time, some definitions have to be provided:

Definition 6. A Spatial Outlier (S-Outlier) is an object whose spatial attribute value

is significantly different from those of its closer objects.

Definition 7. A Temporal Outlier ( T-Outlier) is an object whose temporal attribute

value is significantly different from those of its closer objects.

The definition 6 states that a spatial outlier has no objects or a small group of objects

in its spatial neighborhood. The definition 7 states that a temporal outlier has no objects

or a small group of objects in its temporal neighborhood. According to them, a Spatio-

Temporal Outlier (ST-Outlier) is an object which respects both the definitions 6 and

7 above.

Given a dataset D as in 4.1 and a distance measure dist, the proposed solution adopts

a distance-based approach and, in particular, the outlier definition based on the k-nearest
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neighbors (KNN) method. The main idea of this method is to assign to each point a

weight based on the sum of all the distances between the point itself and the k (input

parameter) nearest neighbors

ωk(p,D) =
k∑
i

dist(p, nni(p,D)) ∀p ∈ D (4.2)

where ωk(p,D) is the weight of p with regard to k in D, nni(p,D) is the i–th nearest

neighbor of p in D, dist is the Euclidean distance and D is the original dataset. The

outlier detection problem can be formalized as follows: find the set of n objects that

score the greater weights. The outlier set, the result set, is:

O = {S1,k, S2,k, . . . , Sn,k} (4.3)

where Si,k is the object having the i-th greatest weight with respect to k, i = 1, . . . , n

and n represents the number of outliers required.

Intuitively, the notion of weight captures the degree of dissimilarity of an object with re-

spect to its neighbors and hence outliers are those objects that have the largest weights.

The new approach takes into account both spatial and temporal components at same

time in detecting spatio-temporal outliers. Each component is weighted by a parameter

that determines how the spatial distance weights and how the temporal distance weights

letting each point to be uniquely weighted. In a more precise way, a parameter α defined

by the user in the interval [0, 1] is used to determine the influence of the spatial compo-

nent in the final weight; consequently, β = 1−α is the influence of temporal component.

So, this approach allows to work with different kinds of datasets (both those in which the

temporal aspects are more relevant and, on the contrary, those in which the spatial one

are more important) providing the possibility of managing the weights in an articulated

way. The eventual knowledge of the data to be processed will be thus better used.

As said above, the aim is to assign one weight as the linear combination of the spatial

weight and the temporal weight.

Firstly the vectors are normalized to obtain data (spatial coordinates and temporal com-

ponent) in [0, 1] (normalized spatio-temporal representation).

The second step consists of computing a spatio-temporal weight as a weighted linear

combination of normalized spatial and temporal weights.

Consider ωs,k(q,D) the normalized spatial weight of an object q in D computed as the

sum of spatial distances, dists, from its k-nearest spatial neighbors nns,i(q,D), where
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the subscript s indicates spatial dependance and k indicates the numbers of neighbors.

Normalized temporal weight given to an object q in D is the sum of temporal distances,

distt, from the k-nearest temporal neighbors nnt,i(q,D), indicated by ωt,k(q,D), where

the subscript t stands for temporal and k stands for user input parameter k dependance.

Hence, for each object q, a spatio-temporal weight is assigned as follows

ωs,t,k(q,D) = α · ωs,k(q,D) + β · ωt,k(q,D) (4.4)

where

ωs,k(q,D) =
k∑
i

dists(q, nns,i(q,D)) ∀q ∈ D (4.5)

and

ωt,k(q,D) =
k∑
i

distt(q, nnt,i(q,D)) ∀q ∈ D (4.6)

having α+ β = 1.

We would remark that limit cases are

• Spatial Outlier Detection

α = 1 and β = 0⇒ ωs,t,k(q,D) = ωs,k(q,D) ∀q ∈ D

• Temporal Outlier Detection

α = 0 and β = 1⇒ ωs,t,k(q,D) = ωt,k(q,D) ∀q ∈ D
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ST–Outlier Detector Algorithm

1: begin ST -OutlierDetector(D, dists, distt, n, k, α)

2: OutlierStack = null

3: WorkingSet = ExtractElements(D)

4: while (WorkingSet! = null) do

5: D = D −WorkingSet

6: for p ∈ D do

7: for q ∈WorkingSet do

8: if (OutlierStack == null or ws,t,k(q) ≥ LowerWeight(OutlierStack))

then

9: ds(p, q) = CalculateSpDistance(p, q, dists)

10: dt(p, q) = CalculateTempDistance(p, q, distt)

11: BuildTreeKNN(p, q, ds, dt, k)

12: end if

13: end for

14: end for

15: for q ∈WorkingSet do

16: ws,k(q) = CalculateWeight(q)

17: wt,k(q) = CalculateWeight(q)

18: ws,t,k(q) = CalculateCombinedWeight(ws,k(q), wt,k(q), α)

19: PushMaxWeights(OutlierStack, ws,t,k(q))

20: end for

21: WorkingSet = ExtractElements(D)

22: end while

23: return OutlierStack

24: end STOutlierDetector()

The algorithm ST–Outlier Detector receives in input the dataset D, containing N ob-

jects, the distances dists, distt, the number k of neighbors to consider for the weight

computation, the number n of outliers to find, the described parameter α. The algo-

rithm computes the weights of the dataset objects by comparing each object with a

small subset of the overall dataset, called Working Set, and storing, for each object, its

k-nearest neighbors found in the Working Set. At each step, the weight of an object is

thus an upper bound to its true weight because it is the real weight only among the ob-
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jects belonging to the Working Set. The objects having a weight lower than the smallest

among the n greater weights so far computed will not be considered in future because

this condition is sufficient to classify these objects as inliers. At each step, Working Set

contains some objects randomly selected from D, among the points of the dataset not

processed yet. As the algorithm processes new objects, more accurate weights are com-

puted, because more objects have been taken into account. The algorithm stops when

there are no more objects to be processed.

The pseudocode of the ST–OutlierDetector algorithm is shown in the following 24. The

BuildTreeK–NN function stores, for each object p of the datasetD, a structure containing

the associated spatial k-NNs and the temporal k-NNs. The ExtractElements function

randomly selects a group of objects that will be the next items to be processed. At

each iteration, the number of selected objects is a dataset cardinality percentage (about

the 4-5 % ) experimentally determined. The ComputeSpDistance and ComputeTempDis-

tance functions compute the spatial and temporal distances respectively, as indicated in

equations 4.4 and 4.5, by which the algorithm selects the spatial k-NNs and the tem-

poral k-NNs. The ComputeCombinedWeight function computes the combined weight

for each object upon the two spatial and temporal weights as indicated in equation 4.6.

The PushMaxWeights function marks, as outliers, those objects, belonging to the Work-

ingSet, having the n maximum weights among those computed. The function stores at

the first iteration and updates, at each step, in a stack, named OutlierStack, the objects

marked as outliers; the LowerWeight function computes the minimum weight among the

n maximum weights stored in the OutlierStack.

Complexity

The ST–Outlier Detector Algorithm has worst-case time complexity O(N2) with N =

|D|, whenever the real weights have been computed for every object of the overall dataset.

Practical complexity is O(N ∗ (N −M)) with M represents the number of points for

which the real weight has not been computed.

4.3 Experimental Results and Discussion

The proposed approach faces the spatio-temporal outlier detection problem from a new

perspective, i.e. considering a mixture of spatial and temporal features like a single

feature.
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The testing phases on both synthetic and real datasets have been provided interesting

results that respect the data characteristics. The tests have been executed on many kind

of datasets, of various dimensions. Also many other synthetic datasets generated by the

data generator [46] have been used in order to achieve a scaling analysis by growing

the volumes of the datasets. Moreover, both trajectory and synthetic example datasets

that simulate periodic movements, have been used to evaluate the effectiveness of the

proposed approach.

At the best of our knowledge, several real spatial datasets are around for experimental

purposes, this is not true in the Trajectory Database domain. There is no available real

dataset already explored by a domain expert in order to be used as ground truth for

benchmarking. Nevertheless, we have exploited on two synthetic datasets and also on

one real–world dataset. Precisely:

1. a small synthetic dataset, named Tracking, collected by us in our laboratory in

order to manually inject every kinds of outliers, such as only spatial, only temporal

and spatio-temporal outliers;

2. a dataset, named Complex9, [103] that is a benchmarking synthetic dataset, widely

used in test phases and publicly available at web site http://www.cs.uh.edu/ su-

jingwa/PKDD05;

3. a real–world dataset, named School Buses, [35] and publicly available at web site

http://www.rtreeportal.org.

4.3.1 Tracking dataset

The Tracking dataset is a synthetic dataset that simulates same periodic trajectories

with some added outliers. Tracking dataset consists of 9 trajectories of 2 moving objects

for 2 distinct days. The structure of each pattern is as follows:

{obj id, traj id, date, time, x, y}

where obj id is a numeric identification of the moving object, traj id is a unique trajec-

tory identification, (x, y) is the position of moving object in a cartesian reference system,

the date is expressed in dd/mm/yyyy format and the time is expressed in hh:mm:ss for-

mat. The obj id and traj id are not considered, while the two fields date and time are
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converted in an only one field t consisting of the serial date number for the correspond-

ing elements year, month, day, hour, minute and second. Hence, the dataset is shown in

(a)

(b)

Figure 4.1: Tracking dataset: (a) Normalized representation (b) Outliers marked with different colors

figure 4.1(a), in a 3D cartesian reference system, in which x and y are spatial coordinates
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Dataset Entry Attrib. ST-O S-O T-O # Inliers # Outliers

Tracking 602 6 18 30(12+18) 28(10+18) 562 40(18+12+10)

Table 4.1: Tracking dataset: Details

and the third dimension is the time t. In the figure 4.1(b) the objects have been drawn

with different colors: inlier data are blue marked points, spatio-temporal outliers are red

marked points, only spatial outliers are yellow marked points, only temporal outliers are

green marked points.

As shown in table 4.1, the number of added outliers is 40. So, as in our approach, the

required outlier number, indicated by n, is an input parameter, we can set it to:

• n = 30 in case of spatial outlier detection

• n = 28 in case of temporal outlier detection

• n = 40 in case of spatio-temporal outlier detection

to keep into account, in this last case, all the outlier objects.

Limit case: Spatial Outlier Detection

Spatial Outlier Detection Parameter Settings

• OutlierNumber = 30

• NearestNeighborNumber = 10

• α = 1

• β = 0

The detection of 30 objects has been obtained as result in this case. These objects are

the more distant (spatially) from the rest of the data, those red circled in figure 4.2(a).
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A 2D-plotting of the dataset visualizes better the meaning of the obtained result: indeed,

in this test case, only spatial coordinates are involved (figure 4.2(b)).

(a)

(b)

Figure 4.2: Tracking dataset: (a) Detected Spatial Outliers (b) 2D-plotting
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(a)

(b)

Figure 4.3: Tracking dataset: (a) Detected Temporal Outliers (b) Detected Spatio-Temporal Outliers

Limit case: Temporal Outlier Detection

Temporal Outlier Detection Parameter Settings
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• OutlierNumber = 28

• NearestNeighborNumber = 10

• α = 0

• β = 1

The obtained result is very complaisant with dataset analysis reported in the table 4.1

above: the result correctness can be verified from the figure 4.3(a) where the detected

temporal outliers have been red circled.

Spatio-Temporal Outlier Detection

Spatio-Temporal Outlier Detection Parameter Settings

• OutlierNumber = 40

• NearestNeighborNumber = 10

• α = 0.5

• β = 0.5

The obtained result is shown in the figure 4.3(b) where the detected spatio-temporal

outliers (the first 18 having the higher weights among the 40 required) have been red

circled.
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Dataset Entry Attributes ST-O S-O T-O # Inliers # Outliers

School Buses subset 30000 8 N.A. 800 100 29100 900

Table 4.2: School Buses Subset: Details

4.3.2 School Buses dataset

The real-world dataset, named School Buses, consists of 145 trajectories of 2 school buses

collecting and delivering students around Athens metropolitan area in Greece for 108

distinct days.

This real dataset are publicly available at web site: http://www.rtreeportal.org and con-

tains about 69000 entries.

The structure of each record is as follows:

{obj id, traj id, date, time, lat, lon, x, y}

where obj id is the school bus identification, traj id is the unique trajectory identifi-

cation, the date and time are the sampling timestamp (every 30 seconds), the date in

dd/mm/yyyy format and the time in hh:mm:ss format, the (lat, lon) and (x, y) are the

bus location, in WGS84 reference system and in GGRS87 reference system, respectively.

The obj id and traj id are not considered, the two fields date and time are converted in

an only one field t consisting of the serial date number for the corresponding elements

year, month, day, hour, minute and second. Moreover, the lat and lon are redundant

and so are not considered too; indeed x and y give the same information. Hence, the

normalized representation of the dataset is illustrated in figure 4.4(b): in a 3D cartesian

reference system, x and y are the spatial coordinates and the third dimension is the time

t. In figure 4.4(a) the trajectory map of School Buses is shown.

The outlier detection is devoted to spatial and temporal outlier detection, because

each point has a unique weight depending on both components. If the parameter α

grows hence the goal is to give major weight to spatial outliers, if the parameter α is

kept lower (and consequently the parameter β grows), hence the goal is to give major
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(a)

(b)

Figure 4.4: School Buses dataset: (a) Map (b) Normalized representation

weight to temporal outliers.

As said before, this real dataset is not analyzed and labeled by a domain expert; hence, in

order to understand better the obtained results, we have selected a data subset from the

original dataset, consisting of about 30000 entries, and a dataset analysis, particularly

about temporal feature, in order to understand better the obtained results, has been

conducted and provided in the appendix. Some only temporal outliers have been also

injected. The data subset, to be used during the tests, is shown in the following figure 4.5,
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Figure 4.5: School Buses Subset: a subset with added temporal outliers

and is also reported in table 4.2.

In the following, significative test cases have been executed in order to detect Spatial

and/or Temporal Outliers. The required outlier number, indicated by n, is an input

parameter, so it will be set to:

• n = 800 in case of spatial outlier detection

• n = 100 in case of temporal outlier detection

• n = 800 in case of spatio-temporal outlier detection.

Limit case: Spatial Outlier Detection

Spatial Outlier Detection Parameter Settings

• OutlierNumber = 800

• NearestNeighborNumber = 300

• α = 1
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• β = 0

The expected result of this test case is 800 objects detection - spatial outliers - the more

distant (spatially) from the distribution.

(a)

(b)

Figure 4.6: School Buses subset: Detected Spatial Outliers (a) 3D plotting (b) 2D plotting

The detection of 800 objects, those red circled in figure 4.6(a), has been obtained as

result. A 2D-plotting of the dataset visualizes better the meaning of the obtained result:
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indeed, in this test case, only spatial coordinates are involved. The objects, drawn in

red, are really the spatially farther than the rest of the data as shown in figure 4.6(b).

Limit case: Temporal Outlier Detection

Temporal Outlier Detection consists of object detection that have not enough temporal

neighbors. The neighbor number is an input parameter, that has been set by a very low

value in order to work like a filter, dropping out isolated objects.

Temporal Outlier Detection Parameter Settings

• OutlierNumber = 100

• NearestNeighborNumber = 300

• α = 0

• β = 1

The obtained result is very complaisant with dataset analysis reported in the table

below: as the first 100 top outliers, the added outliers (12 objects in total) plus 88

objects belonging to sample groups of days 24/10 and 26/10 will be detected. The result

correctness can be verified both from table and from the following figure 4.7(a). Indeed,

the detected dates have no enough (less than 300) neighbors, respectively 78 and 94.

Temporal outliers are the red circled among the dataset, as shown in figure 4.7(b).

General case: Spatio-Temporal Outlier Detection

This test case is the combined case with both parameters α e β different from zero.

Spatio-Temporal Outlier Detection Parameter Settings

• OutlierNumber = 800

• NearestNeighborNumber = 300

• α = 0.5

• β = 0.5
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(a)

(b)

Figure 4.7: School Buses subset: (a) Temporal Spatial Outliers (b) The subset with temporal outliers

The result will be shown in figure 4.8. We would remark that the required outlier number

is still 800 such as the spatial case, so we do not keep into account all outliers detected

in only spatial case and in only temporal one. The right outlier number should be 900.
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Figure 4.8: School Buses subset with detected spatio-temporal outliers

So, as expected, we loose same objects from temporal outliers and some from spatial

ones, detecting the more relevant of both.

Other test cases have been executed: we report some considerations about obtained

results.

Keeping fixed the other parameters (outlier and nearest neighbor number), the parameter

α has been set to many values, so we can distinguish some two ranges: the former is

[1, 0.8] in which the result is almost similar to only spatial case, the latter is [0, 0.2] in

which the result is almost similar to only temporal case; on the contrary, in the middle

interval [0.2, 0.8], it is possible to taste the effect of mixed weights.

4.3.3 Complex9 dataset

The dataset, called Complex9 [103], that is a benchmarking synthetic dataset widely used

in test phases and publicily available. Complex9 has two attribute values and nine classes,

as shown in figure 4.9(a). Six different versions of the Complex9 dataset are available by

adding noise examples with different size and type. The first three, Complex9 RN8, Com-

plex9 RN16, and Complex9 RN32, were created by adding 8%, 16%, 32% random noise
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examples to Complex9 dataset. The second three, Complex9 GN8, Complex9 GN16,

and Complex9 GN32, were created by adding 8%, 16%, 32% gaussian noise examples to

Complex9 dataset. The Complex9 RN8 dataset is a spatial dataset that has been used

(a) (b)

Figure 4.9: (a) Normal Complex9 dataset version (b) Normalized noise version: Complex9 RN8.

to test spatial outlier detection (a limit case). Then, we added the temporal compo-

nent in order to obtain a synthetic spatio-temporal dataset called Complex9 RN8 time,

shown in figure 4.10 that is used to test temporal outlier detection (other limit case) and

spatio-temporal outlier detection.

The test phase foresees also the comparison, in terms of accuracy, with two other tech-

niques:

DBScan, [32], a clustering density based technique resistant to noise, on which is based

a spatio temporal outlier detection technique ST-DBScan [21] and LDBOD (Local dis-

tribution based outlier detector) [111] a very recent outlier detection technique chosen

among the others proposed in literature because based on LOF (Local Outlier Factor)

[114] and k-nearest neighbors techniques.

As shown in table 4.3, the number of added outliers is 242, so, as in our approach, the

required outlier number is an input parameter, we set it to: 242 first, then to 200 and

to 136. In the table 4.4 the obtained results have been shown. The results have shown

an high accuracy, that is better as the outlier number required is going down. Indeed,

the random noise injected sometimes is not real noise due to its random nature; so the
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Dataset Entry Attribute Class Added Outliers

Complex9 3031 2 9 0

Complex9 RN8 3273 2 9 242 (spatial outliers)

Complex9 RN8 Time 3273 3 9 26 (temporal outliers)

Table 4.3: 2D and 3D-dataset used: Details

effective noisy data are less than 242, as we can observe in figure 4.9(b), some red cir-

cles fall inside the inlier data. Now, we want to compare with DBScan and LDBOD.

Figure 4.10: Complex9 RN8 Time dataset

Unlike ST-Outlier Detector and LDBOD, DBScan doesn’t require as input parameter

the number of outlier, so we execute DBScan on Complex9 RN8 dataset and tuning its

input parameters (minPts = 11 and ε = 0.025) in order to obtain 9 clusters (as nine
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Dataset K-NN/ Required Outliers/ ST-Outlier DBScan

MinPts Obtained Outliers Detector

Complex9 RN8 11 242 0.941320 N.A.

Complex9 RN8 11 200 0.951711 N.A.

Complex9 RN8 11 136 0.959658 0.953545

Table 4.4: Spatial Outlier Detection: Classification Accuracy of ST-Outlier Detector and

DBScan
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Dataset Name K-NN/ Outlier ST-Outlier DBScan

MinPts Req./Obt. Detector

Complex9 RN8 Time 11 26 1.000000 1.000000

Table 4.5: Temporal Outlier Detection: Classification Accuracy of ST-Outlier Detection

and DBScan

classes), the number of obtained outliers is 136. So, now, we set as required outlier num-

ber (input parameters for ST-Outlier Detector and LDBOD) to 136 and we can compare

the accuracy. As shown in the last row, the accuracy of ST-Outlier Detector is higher

than DBScan.

In the following cases, Complex9 RN8 Time dataset is used in which temporal compo-

nent and 26 temporal outliers have been added.

Similarly, in table 4.5 we list the obtained results, in terms of accuracy for Temporal

Outlier Detection for ST-Outlier Detector and DBScan. Both methods report the same

maximum accuracy.

In table 4.6, we list the obtained results, in terms of accuracy for Spatio-Temporal Out-

lier Detection, also for LDBOD. The true outlier number is 17, so we compare ST-Outlier

Detector and LDBOD setting as spatio–temporal outlier number, input parameter, to

17. As shown in the table, ST-Outlier Detector reports a better accuracy than LDBOD.

In order to compare these two methods also with DBScan,we made another running

of ST-Outlier Detector and LDBOD setting as spatio–temporal outlier number (input

parameter) to 243. ST-Outlier Detector reports a little bit better accuracy respect to

DBScan and LDBOD, and DBScan reports a better accuracy respect to LDBOD.
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Dataset name K-NN/ Out. ST-Outlier DBScan LDBOD

MinPts Req./Obt. Detector

Complex9 RN8 Time 11 17 0.991443 N.A. 0.990220

Complex9 RN8 Time 11 243 0.931235 0.930929 0.929401

Table 4.6: Spatio-Temporal Outlier Detection: Classification Accuracy of ST-Outlier De-

tection, DBScan and LDBOD

4.4 Outlierness Degree Mapping

As previously described, the input parameter determination can be a non trivial task, but

the quality of the results depends on an appropriate choice of the parameters. So, in this

section, another contribution, called the outlierness degree map, has been proposed.

This is a visualization tool that allows to make a 3D-plot of the points belonging to

dataset by drawing them with different colors and also different color nuance based

upon their outlierness degree. The map is built without setting, a-priori, outlier number

to be found. The main goal of this kind of analysis is to visualize the dataset structure

with respect to outlier presence. Starting from blue color, used for the inliers, i.e. the

object with minimum outlierness degree, passing through cyan, green, yellow, until red

color that represents the outliers, i.e. the objects with maximum outlierness degree. Also

the same color can have different nuances with the same meaning. Based upon α and

Nearest Neighbor Number parameter values, different mappings have been obtained. The

same test cases, such as the experimental tests proposed for the school buses dataset in

section 4.3.2, are proposed again here.
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Spatial Outlierness Degree Mapping

Configuration settings for spatial outlierness degree map

• Nearest Neighbor Number = 300

• α = 1

• β = 0

The result has been visualized in the following figure 4.11.

Figure 4.11: School Buses dataset: Spatial Outlierness Mapping

The dark red, light red, yellow and light green colors represent the two trajectories

that are spatially abnormal respect to the rest of data. The light blue and light green

colors represent the trajectory queues, the dark blue color is used for the central data

(spatial inliers) and also for added temporal outliers, because in this case time is not

relevant. The blue color became darker going closer to the center of the distribution.

Temporal Outlierness Degree Mapping

Configuration settings for temporal outlierness degree map

• Nearest Neighbor Number = 100
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• α = 0

• β = 1

The result has been visualized in the following figure 4.12.

Figure 4.12: School Buses dataset: Temporal Outlierness Mapping

The red, light green and cyan colors represent the three added temporal outlier groups.

The cyan color also represents the other objects that have less than 100 neighbors; the

rest of dataset are drawn by blue color (also only spatial outliers).

Spatio-Temporal Outlierness Degree Mapping

Case 1

Configuration settings for spatio-temporal outlierness degree map

• Nearest Neighbor Number = 300

• α = 0.5
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• β = 0.5

The result has been visualized in the following figure 4.13.

Figure 4.13: School Buses dataset: Spatio-Temporal Outlierness Mapping α = 0.5

The light red, light green and yellow colors represent the two trajectories that are

spatially abnormal respect to the rest of data and also the three added temporal outlier

groups. The dark red is used for the top group of added temporal outliers. The cyan

color also represents the other objects that have less than 100 neighbors; the rest of

dataset are drawn by blue color.

Case 2

Configuration settings for spatio-temporal outlierness degree map

• Nearest Neighbor Number = 300

• α = 0.8

• β = 0.2
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The result has been visualized in the following figure 4.14.

Figure 4.14: School Buses dataset: Spatio-Temporal Outlierness Mapping α = 0.8

This test case (α = 0.8 ) is similar to only spatial outliers detection with α = 1. The

red color, light green and yellow colors represent the two trajectories that are spatially

abnormal respect to the rest of data while the three added temporal outlier groups are

drawn by cyan or light blue colors, they have a small degree of outlierness.

If we compare this result with the previous one, we can observe that giving a major

importance to spatial weight, the color nuances change: the light red became dark red,

and light blue became dark blue changing from α = 0.5 to α = 0.8.
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4.5 Summary

A novel non parametric approach to face the outlier detection problem in an unlabeled

spatio-temporal dataset has been presented. It combines spatial and temporal attributes

in order to find out a user-defined number of top spatio-temporal outliers.

The method has been proved on synthetic and real datasets to be efficient in space and

time to detect the spatio-temporal outliers.

The strenght of this approach is to combine two different features, depending on differ-

ent aspects, without fixing any spatial and/or temporal criterion. As shown above, the

weakness is about the choice of input parameter α in the general case and the number of

outliers required. To partially address to this problem, the development of a framework

in which, without fixing the number of outliers required, we are able to plot the entire

description map of the analyzed dataset have been illustrated. The map is a visual an-

alytics tool that provide a user supporting tool to better choose the number of outliers

required.

Examples of application fields of this work are:

• a filter to pre-process with respect to spatial and/or temporal features high dimen-

sionality datasets in order to eliminate inconsistent ST-data.

• an anomaly detection process for objects belonging to trajectory datasets or other

kind of spatio-temporal datasets.



5 A Rough Set Approach to ST-Outlier

Detection

5.1 Introduction

Spatio-temporal data mining is a growing research area dedicated to the development

of algorithms and computational techniques for the analysis of large spatio-temporal

databases and the disclosure of interesting and hidden knowledge in these data, mainly

in terms of periodic hidden patterns and outlier detection.

In the meantime, an emerging conceptual and computing paradigm of information pro-

cessing, granular computing has received much attention recently. Many models and

methods of granular computing have been proposed and studied. In this chapter, we are

going to introduce a new approach to spatio-temporal outlier detection, which exploits

granular computing potentialities. There are several types of granularity encountered in

data mining and machine learning: from a concept granulation point of view, the origins

of the granular computing ideology are to be found in the rough set literature. Hence,

the attention of this novel approach has been focalized on outlier detection in spatio-

temporal data using rough set theory.

Rough set theory introduced by Z. Pawlak, as an extension of naive set theory, is for the

study of intelligent systems characterized by insufficient and incomplete information. It

is motivated by practical needs in classification and concept formation. In recent years,

there has been a fast growing interest in rough set theory.

Unlike most current methods for outlier detection exploit rough set theory to define

new rough weights as degree of outlierness, as described in the section 3.4. our goal is

73



5. A Rough Set Approach to ST-Outlier Detection 74

to represent the Outlier Set such as a rough set through its lower, upper approximation,

remarking the benefits of keeping into account the objects belonging to the boundary.

Moreover, we introduce a new set, called Kernel Set. This set is a selected subset of

elements that is able to describe the original dataset both in terms of data structure and

in terms of obtained results. In particular, we want to show the advantages of considering

the Kernel Set. Indeed, we compare the Rough Outlier Set extracted by the entire Data

Set and the Rough Outlier Set extracted by the simple Kernel Set.

With this aim, this chapter is organized as follows.

In the next section, some preliminaries about rough set theory that are relevant to our

approach are reported.

Then, the new rough set approach, called ROSE (Rough Outlier Set Extraction), to

detect spatio-temporal rough outlier set is described.

Executed tests on real world datasets and performance evaluation of the algorithm are

shown and finally, conclusion remarks are given in the last section about ongoing and

future work.
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5.2 Rough Set Theory

In this section some basic elements of Rough set Theory, relevant for our scope.

5.2.1 Indiscernibility and Set Approximation

Let U the universe of the discourse and A the finite and non empty set of attributes,

then S = 〈U,A〉 is an information system.

Let B a proper subset of A. With every subset of attributes B ⊆ A, one can easily

associate an equivalence relation IB on U :

IB = {(p, q) ∈ U × U / ∀a ∈ B, a(p) = a(q)} (5.1)

IB is called B-indiscernibility relation.

If (p, q) ∈ IB, then objects p and q are indiscernible from each other by attributes B.

The equivalence classes of the partition induced by the B-indiscernibility relation are

denoted by [p]B. These are also known as granules.

We can approximate any subset X of U using only the information contained in B by

constructing the lower and upper approximations of X.

The sets {p ∈ U : [p]B ⊆ X} and {p ∈ U : [p]B ∩ X 6= ∅}, where [p]B denotes the

equivalence class of the object p ∈ U relative to IB , are called the B-lower and B-upper

approximation of X in S as shown in Figure 5.1, taken by [63], and respectively denoted

by B(X), B(X). The objects in B(X) can be certainly classified as members of X on

the basis of knowledge in B, while objects in B(X) can only be classified as possible

members of X on the basis of B.

5.2.2 Dependency Rule Generation

Reducts

Indiscernibility relation reduces the data by identifying equivalence classes (objects that

are indiscernible), using the available attributes. Only one element of the equivalence
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Figure 5.1: Lower and Upper Approximation

class is needed to represent the entire class. Reduction can also be done by keeping only

those attributes that preserve the indiscernibility relation and, consequently, set approx-

imation. The above sets of attributes are called reducts as reported in [63]. Reducts have

been characterized by discernibility matrices and discernibility functions.

Let us consider an information system S =< U,A > with U = {p1, ..., pn} our universe

of the discourse and A = {a1, ..., am} the set of attributes. Then, pi is a m-dimensional

feature vector and aj , j = 1, ...,m the attributes.

The discernibility matrix M(S) of S is meant as an n × n (symmetrical with empty

diagonal) matrix with entries cij :

cij = {a ∈ A / a(pi) 6= a(pj)}

A discernibility function fS is a function of m Boolean variables a1, ..., am corresponding

to the attributes {a1, ..., am}, and defined as follows:

fS(a1, ..., am) = ∧{∨(cij) : 1 ≤ i, j ≤ n, j < i, cij 6= ∅} (5.2)

where ∨cij is the disjunction of all variables a with a ∈ cij . It is seen that {ai1, ..., aip}
is a reduct in S if and only if ai1 ∧ ... ∧ aip is a prime implicant (constituent of the

disjunctive normal form) of fS .

Methodology

A principal task in the method of rule generation is to compute reducts and discernibility

matrix relative to a particular kind of information system, i.e. the decision system,
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getting, respectively, names d–reducts and d–discernibility matrix. The methodology is

described below.

A decision system is an information system S =< U,A > with A = C ∪ {d}, where C

and {d} are respectively sets of condition attributes and of decision.

Let the value set of d be of cardinality l, i.e.,

Vd = {d1, d2, ..., dl},

where l represents the number of classes. The decision system S =< U,A > may be

divided into l tables:

Si =< Ui, Ai >, i = 1, ..., l,

corresponding to the l decision attributes d1, ..., dl, where U = U1 ∪ ... ∪ Ul and Ai =

C ∪ {di}.
Let {pi1 , ..., pip} be the set of those objects of Ui that occur in Si, i = 1, ..., l.

Now, for each di-reduct B = {b1, ..., bk}, a di-discernibility matrix, denoted by Mdi
(B),

can be derived as follows:

cij = {a ∈ B : a(pi) 6= a(pj)}, ∀i, j = 1, ..., n.

For each object pj ∈ pi1 , ..., pip , the discernibility function f
pj

di
is defined as

f
pj

di
= ∧{∨(cij) : 1 ≤ i, j ≤ n, j ≤ i, cij 6= ∅}

where ∨cij is the disjunction of all members of cij . Then, fpj

di
is brought to its disjunctive

normal form (d.n.f).

A dependency rule ri : di ← Pi has been obtained, where Pi is the disjunctive normal

form (d.n.f) of fpj

di
, j ∈ i1, ..., ip.

Let Bi be the set of condition attributes occurring in the rule ri, so the dependency

factor dfi for ri is defined as:

dfi =
card(POSBi(di))

card(Ui)
(5.3)

where POSBi(di) is the positive region of class di with respect to attributes Bi, given

by: POSBi(di) =
⋃

X∈Idi
Bi(X), where Bi(X) is the lower approximation of X with

respect to Bi.

The dependency factor dfi gets values in the interval [0, 1], with the maximum and

minimum values corresponding, respectively, to complete dependence and independence

of di on Bi.
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5.3 Spatio-Temporal Outlier Detection Problem

5.3.1 Theory

Let us consider an information system S =< U,A > with U a spatio-temporal normalized

dataset and A its set of attributes. U can be written as follows:

U = {pi ≡ (zi1, zi2, ..., zim) ∈ [0, 1]m, i = 1, ..., N}

where pi, i = 1, ..., N is a m-dimensional feature vector.

A = {a1, a2, a3, ..., am} is the attribute set: a1, a2 are the spatial attributes, a3 is the tem-

poral one and a4, ..., am are other attributes. Hence, a spatio-temporal dataset possesses,

at least, three attributes as follows:

U = {pi ≡ (zi1, zi2, zi3) ∈ [0, 1]3, i = 1, ..., N}

where pi, i = 1, ..., N is a 3-dimensional feature vector and A = {a1, a2, a3} is the

minimum attribute set.

Given U , an integer n > 0 and a measure dpi(U), over every pi ∈ U , the formal definition

of the Outlier Detection Problem is the following:

Definition 8. The Outlier Detection Problem consists of finding the n ≥ n objects

p1, p2, ..., pn, pn+1, ..., pn ∈ U such that

dp1(U) ≥ dp2(U) ≥ ... ≥ dpn(U) = dpn+1(U)... = dpn(U) > dpj (U) ∀j = n+ 1, ..., N

According to this definition, the concept of measure is used to determine the degree

of dissimilarity of each object with respect to all others. Then, the n-Outlier Set can be

formally defined as:

Definition 9. A n-Outlier Set O ⊆ U is the set of n ≥ n objects:

O = {p1, ..., pn, pn+1, ..., pn ∈ U : dp1(U) ≥ ... ≥ dpn(U) = dpn+1(U).. = dpn(U) >

dpj (U) ∀j = n+ 1, ..., N}
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where dpi(U), ∀i = 1, ..., N is a measure defined and computed on U.

From the definition 9 it follows that

τ = dpn(U) (5.4)

is the outlierness threshold, i.e. the minimum value among the n maximum values of

measures computed in U (associated to objects belonging to the n-Outlier Set) i.e.

τ = min{max1(dp(U), dq(U)), ...,maxn(dp(U), dq(U))} ∀ p, q ∈ U (5.5)

Starting from the definition of spatial outlier and temporal outlier due to Birant and

Alp [21] that says:

”a spatial outlier is a spatial referenced object whose non-spatial attribute values are

significantly different from those of other spatially referenced objects in its spatial neigh-

borhood”, and

”a temporal outlier is an object whose non-spatial attribute value is significantly differ-

ent from those of other objects in its temporal neighborhood”, we propose the following

definitions applied only to spatio-temporal data:

Definition 10. A Spatial Outlier (S-Outlier) is an object whose spatial attribute value

is significantly different from those of its closer objects (spatial neighborhood).

In this framework, the Spatial Outlier definition corresponds to:

Definition 11. Given U , an integer n > 0 and a measure on spatial component ds
pi

(U),

defined over every pi ∈ U , an object p ∈ U is a S-Outlier iff ds
p(U) ≥ τ where τ is

defined in (5.5).

Following definition 11, it holds that:

Proposition 1. A Spatial Outlier (S-Outlier) is an object that belongs to the spatial

n-Outlier Set indicated by Os.
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Similarly, we propose the following definition of Temporal Outlier, applied to only

spatio-temporal data:

Definition 12. A Temporal Outlier (T-Outlier) is an object whose temporal attribute

value is significantly different from those of its closer objects (temporal neighborhood).

In this framework, the Temporal Outlier definition corresponds to:

Definition 13. Given U , an integer n > 0 and a measure on temporal component dt
pi

(U),

defined over every pi ∈ U defined on U , an object p ∈ U is a T-Outlier iff dt
p(U) ≥ τ

where τ is defined in (5.5).

Equality, following definition 13 it holds that:

Proposition 2. A Temporal Outlier ( T-Outlier) is an object that belongs to the tem-

poral n-Outlier Set indicated by Ot.

Definition 10 states that a spatial outlier has no objects or a small group of objects

in its spatial neighborhood.

The same is valid for a temporal outlier according to Definition 12. Following both

definitions the following holds:

Definition 14. A Spatio-Temporal Outlier ( ST-Outlier) is an object which respects

both the definitions above.

To obtain a real degree of outlierness, an appropriate measure should be associated

to each object; i.e. the Euclidean distance computed between each object and all the

other objects belonging to U . In real applications, with huge amount of data, this idea

is unfeasible due to its high computational complexity (O(N2)) where N = |U |.
In this approach, we preserve two aims: on one hand, we exploit the well-known outlier
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definition based on k-nearest neighbors [70], in order to associate to each object, a

measure based on the distances among the object itself and its k-nearest neighbors

rather than from all N objects with k � N . On the other hand, we make use of a

pruning strategy that discards objects that surely cannot belong to the n-Outlier Set,

in order to address the problem of alleviating the computational cost.

In a Spatio–Temporal context, the measure associated to each object is based upon the

distances from its spatial k-nearest neighbors and its temporal k-nearest neighbors [69].

Precisely:

ds,t
p (U) = α · ds

p(U) + β · dt
p(U) (5.6)

where:

ds
p(U) =

k∑
j=1

ds(p,N s(p, pj)), ∀p ∈ U (5.7)

dt
p(U) =

k∑
j=1

dt(p,N t(p, pj)), ∀p ∈ U (5.8)

k > 0 is the number of nearest neighbors to keep into account, N s(p, pj) and N t(p, pj)

are, respectively, the j-th spatial nearest neighbor and the j-th temporal nearest neighbor

of p, and α, β weight such that α+ β = 1. The Definition 8, that introduces the Outlier

Detection Problem, defines the Spatio-Temporal Outlier Detection Problem, by selecting

a measure as in 5.6.

To better illustrate the ideas, the previous and the following definitions, let us introduce

a spatio-temporal dataset, called Example and indicated by E:

E = {pi ≡ (zi1, zi2, zi3) ∈ [0, 1]3, i = 1, ..., 18}

where pi is a 3-dimensional feature vector and A = {a1, a2, a3} is the essential attribute

set, i.e. a1, a2 are the spatial attributes and a3 is the temporal attribute.

E is a labeled dataset, containing 18 elements, as reported in table 6.2 in the appendix

and plotted in the Figure 5.2.

By fixing k = 3 and n = 4, the outlier sets (spatial, temporal outlier sets), on the

basis of the previous definitions, are computed in the examples 1, 2 respectively.

A 4-Spatial Outlier Set Os ⊆ E is the set of objects p ∈ E that significantly deviate

from the rest of data with respect to the spatial component, i.e.
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Figure 5.2: Example dataset

Example 1. Os = {(0.95, 0.55, 0.50), (1, 0.60, 0.50),

(0.01, 0.01, 0.1), (0.9, 0.9, 0.95)}

Os set is shown in the Figure 5.3. A 4-Temporal Outlier Set Ot ⊆ E is the set of

objects p ∈ E that significantly deviate from the rest of data with respect to the temporal

component, i.e.

Example 2. Ot = {(0.01, 0.01, 0.1), (0.20, 0.21, 0.3),

(0.30, 0.22, 0.3), (0.9, 0.9, 0.95)}

Ot set is shown in the Figure 5.4.

If n = 2, a 2-Spatio-Temporal Outlier Set Os,t ⊆ E is the set of objects p ∈ E that

significantly deviate from the rest of data with respect to the spatial and the temporal

component, i.e.
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Figure 5.3: Example dataset: 4-Spatial Outlier Set

Figure 5.4: Example dataset: 4-Temporal Outlier Set
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Example 3. Os,t = {(0.01, 0.01, 0.1), (0.9, 0.9, 0.95)}

Os,t set is shown in the Figure 5.5.

Figure 5.5: Example dataset: 2-Spatio-Temporal Outlier Set

5.3.2 Kernel Set

Let us now define Kernel Set K ⊆ U as a selected subset of the universe U , containing

the Outlier Set, that characterizes the overall dataset. Intuitively, this set is a subset of

objects of U that maintains the general structure of the universe U . The Kernel Set is

built by construction, in an iterative way, adding each object having specific properties.

Definition 15. Given U and two integers n > 0, k > 0 (number of nearest neighbors),

d(U) a measure defined on U , the Kernel Set K is built by adding each object p ∈ U

such that one of the following properties holds:
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1. dp(U) ≥ τ

2. if dp(U) < τ then ∃q ∈ Usuch that p ∈ NNk(q) and dq(U) < τ and dq(K−{p}) ≥

τ

where NNk(q) is the set of k-nearest neighbors of q and d(K) is the restriction of d(U)

on K ⊆ U .

The definition 15 states that the objects that belong to the Kernel Set are:

1. object p for which dp(U) ≥ τ and hence belongs to n-Outlier Set.

2. object p that, even if dp(U) < τ , is one of the nearest neighbors of an object q for

which dq(U) < τ and dq(K − {p}) ≥ τ .

The second property states that, once these objects p have been added to K, the

measure of the object q became smaller than τ both in U and in K. Otherwise, the

global structure of the dataset should be altered.

The measure of a given object computed inK is an upper bound of the measure computed

in U because some objects belonging to U and not to K could be close to the given object.

Also the kernel Set is built for the Example dataset in the Example 4:

Example 4. K = {(0.01, 0.01, 0.1), (0.9, 0.9, 0.95),

(0.95, 0.55, 0.5), (1.0, 0.6, 0.5), (0.2, 0.21, 0.3), (0.3, 0.22, 0.3),

(0.3, 0.16, 0.55), (0.35, 0.15, 0.6), (0.15, 0.26, 0.76), (0.16, 0.34, 0.77)}

This set is also reported in Figure 5.6. As shown, the Kernel Set contains all the

elements of the Outlier Set.

The following proposition holds:

Proposition 3. The measure computed in K is an upper bound of the measure computed

in U such that:
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Figure 5.6: Example dataset: Kernel Set

dp(U) ≤ dp(K), ∀p ∈ U

where dp(U) =
∑k

j=1 d(p,N(p, pj)) and N(p, pj) is the j-nearest neighbor of p.

Proof.

Let be N(p, pj), the j-nearest neighbor of p in U.

Two cases should be highlighted:

Case 1:

If N(p, pj) ∈ U and N(p, pj) ∈ K, ∀j = 1, ..., k then dp(U) = dp(K)

Case 2:

It exists an index i such that N(p, pi) ∈ U and N(p, pi) /∈ K
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In this case

dp(U) =
∑k

j=1,j 6=i d(p,N(p, pj)) + d(p,N(p, pi))

dp(K) =
∑k

j=1,j 6=i d(p,N(p, pj)) + d(p,N(p, p))

where p ∈ K is the k-th nearest neighbor of p in K to keep into account since pi /∈ K.

As pi is one of k-nearest neighbor of p in U , the following inequality holds:

d(p,N(p, pi)) < d(p,N(p, p)) ⇒ dp(U) < dp(K)

The following proposition is valid:

Proposition 4. A Kernel Set contains the n-Outlier Set: K ⊇ O.

Proof.

∀p ∈ O : dp(U) > τ ⇒ p ∈ K

The proof is simple since it clearly follows from definition of K.

5.3.3 Our approach ROSE - Rough Outlier Set Extraction

The pursued approach uses a well-known outlier definition based on k-nearest neighbors

[70] to detect the Outlier Set and exploits rough set theory to define this set such as a

Rough Outlier Set.

Theory

For simplicity, let us consider that dataset features are only space and time and let U

denote our universe (a normalized spatio-temporal dataset), i.e.
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U = {pi ≡ (zi,1, zi,2, zi,3) ∈ [0, 1]3, i=1, ..., N}

The (zi,1, zi,2) are spatial components of the i-th object, zi,3 is its relative time-stamp.

In this case, the attribute set is A = {x, y, t}, i.e. x and y are cartesian coordinates and

t is the temporal component.

Now, we want to describe O ⊆ U (n-Outlier Subset) such as

< B(O), B(O) > (Rough n-Outlier Set)

where B(O) is the B-Lower approximation and B(O) is the B-Upper approximation

of n-Outlier Set with respect to an attribute subset B ⊆ A.

Let us IB consider the B-indiscernibility relation on the universe U :

IB = {(pi, pj) ∈ U × U : a(pi) = a(pj), ∀a ∈ B}

The equivalence classes [pj ]B or granules Gj of the partition induced by IB on U are

such that:

U =
⋃N

j=1Gj .

and

Gj ∩Gj = ∅, i 6= j.

Example

As instance, let us consider the labeled Example dataset.

Spatial Outliers

In this case, we can reduce by means of temporal component, i.e. B = {t}, then we have

the following partition of the universe:

IB = I{t} = {{p1, p2}, {p3, p9}, {p4}, {p5}, {p6}, {p7, p8}, {p10}, (5.9)

{p11}, {p12}, {p13}, {p14}, {p15}, {p16}, {p17}, {p18}}

In the 5.9, the equivalence classes or granules, induced by relation I{t}, have been re-

ported.

The concept of Spatial Outlier can be defined on the basis of knowledge in B = {t}.
Specifically, the B-lower approximation of the Spatial OutlierSet Os, is composed by

the granules completely included into Os, i.e.
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B(Os) = {{p7, p8}, {p17}, {p18}}

and the B-upper approximation is composed by the granules that have non trivial

intersection with Os, i.e.

B(Os) = {{p7, p8}, {p17}, {p18}}

In this case, we do not have any added information by the upper approximation.

Temporal Outliers

In this case, we can reduce by spatial components, i.e. B = {x, y}, getting:

IB = I{x,y} = {{p1, p12}, {p2, p13}, {p3}, {p4}, {p5}, {p6}, {p7}, (5.10)

{p8}, {p9}, {p10}, {p11}, {p14}, {p15}, {p16}, {p17}, {p18}}

In the 5.10, the equivalence classes or granules, induced by relation I{x,y}, have been

reported.

The concept of Temporal Outlier can be equivalently gets on the basis of knowledge in

B = {x, y}. The B-lower approximation of the Temporal Outlier Set Ot, is composed

by the granules completely included into Ot, i.e.

B(Ot) = {{p17}, {p18}}

and the B-upper approximation is composed by the granules that have non trivial

intersection with Ot, i.e.

B(Ot) = {{p1, p12}, {p2, p13}, {p17}, {p18}}

In this case, the notion of rough set arises; indeed we have some added information by

the upper approximation.

Now, coming back to theory for an unlabeled spatio temporal dataset, we use the measure

defined in 5.6 as a weight ωGj (s, t, i), to be assigned to each granule Gj , depending on

space, indicated by s, and/or on time, indicated by t and on iteration, indicated by i.

The assigned weights are refined, step by step, keeping into account an higher number

of objects of the universe.

The B-Lower approximation B(O) is defined as the set of objects that can be certainly

classified as members of the set O on the basis of the knowledge in B, while the objects

in the B-Upper approximation B(O) can only be classified as possible members of O

on the basis of the knowledge in B.

In our framework, the B-Lower approximation can be defined as follows:
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Definition 16. The B-Lower approximation Bi(O) of n-Outlier Set O, at iteration

i, is:

Bi(O) = {Gj ⊆ U : ωGj > τi} (5.11)

where τi is a threshold, at iteration i, as

τi = inf {maxi
1 (ωGj , ωGk

), ...,maxi
n (ωGj , ωGk

)}, ∀ Gj , Gk ⊆ U (5.12)

Similarly, the following definition holds:

Definition 17. The B-Upper approximation Bi(O) of n-Outlier Set O, at iteration

i, is:

Bi(O) = {Gj ⊆ U : ωGj > τ i} (5.13)

where τ i is

τ i = τi−1, ∀ i >= 2 (5.14)

The threshold τ1 is computed as the minimum value among the n higher values of

weights assigned to the granules at first iteration, then, at second iteration, τ2 will be

the new minimum value among the new n higher values of weights re-assigned to the

granules at second iteration and τ2 = τ1.

The iterative procedure will stop when the following convergence criterion will be satis-

fied:

Lemma 1. The construction of the B-Lower approximation B(O) or the B-Upper ap-

proximation B(O) of an n-Outlier Set O converges if it exists an index k such that the
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threshold does not vary anymore then the lower and upper approximations have been

reached, i.e.

if τk = τk then Bk(O) = Bk(O) (5.15)

Proof.

Since Bk(O) = {Gj ⊆ U : ωGj > τi} and Bk(O) = {Gj ⊆ U : ωGj > τ i},

we would to prove that:

Bk(O) = Bk(O) iff 1) Bk(O) ⊆ Bk(O) and 2) Bk(O) ⊆ Bk(O) (5.16)

By definition

∀Gj ⊆ Bk(O) : ωGj > τk

and by hypothesis, ∃ k : τk = τk, then:

∀Gj ⊆ Bk(O) : ωGj > τk =⇒ Gj ⊆ Bk(O)

Thus Bk(O) ⊆ Bk(O).

Similarly, by definition,

∀Gj ⊆ Bk(O) : ωGj > τk

and by hypothesis, ∃ k : τk = τk, then:

∀Gj ⊆ Bk(O) : ωGj > τk =⇒ Gj ⊆ Bk(O)
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and thus Bk(O) ⊆ Bk(O) as required.

Hence, the Rough n-Outlier Set is represented by:

< Bk−1(O), Bk−1(O) > (5.17)

In case of B = A, (every attribute is considered), the granules are:

∀pj ∈ U : {pj} ≡ Gj ∀j = 1, ...., N (5.18)

so both spatial and temporal components are taken into account.

ROSE Algorithm

The Rough Outlier Set Extraction (ROSE) Algorithm is designed to receive in input

the universe U , the number k of nearest neighbors and the number n of outliers to

find. The output of the (iterative) procedure is the Rough Outlier Set (Upper, Lower

Approximation and Negative Region).

The algorithm selects, at each step, a small subset of objects, called WorkingSet, from

the overall dataset U . At this aim, ExtractElements extracts a number of elements equal

to a fixed percentage of the cardinality of U that has to be greater than k.

The following main computations are executed. For all selected objects, the procedure

computes the Euclidean distances among the objects in the WorkingSet and all the

objects of U , considering the spatial components, the temporal components or both

of them (general case B = A) depending upon the chosen attribute subset B with

respect to the Rough Outlier Set has been calculating. In the following pseudocode,

algorithm ROSE related to the general case has been shown. UpdateUpperApprox and

UpdateLowerApprox at first iteration, create the same set of n top outliers at that step,

i.e. the n objects that have an associated measure higher than the others. Then, at

next iterations, UpdateUpperApprox and UpdateLowerApprox compute the Lower and

Upper approximation of Rough Outlier Set, using the τ (computed by LowerWeight)

and τ prev thresholds as respectively defined in 5.12 and 5.14. At each iteration i, the

pruning strategy selects objects from U that have their measure under the computed

threshold in order to build the Negative Region.
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1: begin ROSExtraction (U, n, k)

2: UpperOutlierSet = null

3: LowerOutlierSet = null

4: ws,t,k(q) = 0

5: τ prev = 0

6: τ = 0

7: WorkingSet = ExtractElements(U)

8: while (WorkingSet! = null) do

9: for p ∈ U do

10: for q ∈WorkingSet do

11: if (LowerOutlierSet == null and UpperOutlierSet == null) or (ws,t,k(q) ≥
τ prev)) then

12: ds(p, q) = CalculateSpDistance(p, q)

13: dt(p, q) = CalculateTempDistance(p, q)

14: BuildTreeKNN(p, q, ds, dt, k)

15: else

16: AddNegativeRegion(p)

17: end if

18: end for

19: end for

20: for q ∈WorkingSet do

21: ws,t,k(q) = CalculateWeight(q)

22: UpperOutlierSet = UpdateUpperApprox(τ prev, n, ws,t,k(q))

23: LowerOutlierSet = UpdateLowerApprox(τ, n, ws,t,k(q))

24: end for

25: τ = LowerWeight(UpperOutlierSet)

26: if (τ ! = 0) then

27: τ prev = τ

28: end if

29: U = U −WorkingSet

30: WorkingSet = ExtractElements(U)

31: end while

32: return Rough Outlier Set

33: end ROSExtraction ()
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KSE - kernel Set Extraction

Another procedure allows to build also the kernel Set, that is a selected subset of objects

belonging to the universe U that preserves the general data structure of the universe.

The advantage of working with kernel Set instead of original universe U is related to

the set cardinality. To this aim, in this section, we propose the comparison between the

obtained results, in terms of Rough Outlier Set, once computed from the entire universe

U and another time computed from the Kernel Set K.

The kernel Set is a significative subset of the universe U with the following properties:

• computational benefits: Kernel Set is a subset with lower cardinality than U

• the ”same results” in terms of Rough Outlier Set can be obtained using kernel Set

instead of U

• kernel Set can be considered as the model learned during a training phase.

Let us start to prove the following Proposition:

Proposition 5. The Outlier Set OK , computed starting from kernel Set K is a superset

of O computed from U :

OK ⊇ O

Proof.

Let be O the n-Outlier Set computed from U :

O = {p1, ..., pn, pn+1, ..., pn ∈ U / dp1(U) ≥ ... ≥ dpn(U) = dpn+1(U).. = dpn(U) >

dpj (U) ∀j = n+ 1, ..., N}

where dpi(U) =
∑k

j=1 d(pi, N(pi, pj)) ∀i = 1, ..., N is defined and computed on U.
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We want to prove that:

{p1, ..., pn, pn+1, ..., pn} ∈ O implies that {p1, ..., pn, pn+1, ..., pn} ∈ Ok (5.19)

By Proposition 3, the following inequality holds:

dp(U) ≤ dp(K), ∀p ∈ U

and in particular:

dpi(U) ≤ dpi(K), ∀i = 1, ..., n

By definition of n-Outlier Set

dpi(U) ≥ τ, ∀i = 1, ..., n

Thus:

dpi(K) ≥ τ ∀i = 1, ..., n implies {p1, ..., pn, pn+1, ..., pn} ∈ Ok,

letting the thesis to hold.

5.3.4 Dependency Rule Generation

In this section, we want to demonstrate how dependency rules can support the user

to select a significative subset of attributes that play a significative role describing a

concept.

To this aim, we are going to face our unsupervised problem, as follows:

• subdividing our dataset in training and test set;
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• running our detection method on training set;

• applying the general methodology for Rough Set Rule Generation to the targeted

data;

• using the extracted Rules to classify an unseen object in the test set.

Let us the general problem ST-Outlier Detection and let us consider

S =< U,A >

our information system, where U is our universe of the discourse and A is our attribute

set.

As example, let us consider

U = {p1, p2, ...., p16}

a dataset that consists of 16 samples coming from a video tracking with the attribute

set

A = {x, y, t, p, a, d}

where x, y are the spatial coordinates of moving centroids (a man walking), t is the

temporal component, p and a are the perimeter and the area of minimum bounding box

surrounding the tracked object, respectively.

In the figure 5.7, the 3D-projection (x, y, t) of the dataset has been shown.

The ST-Outliers are the red circled positions in the figure.

First of all, we want to identify the d-reducts for our case. As described above, the d-

reducts are the minimal set of attributes able to induce the same partition on the domain

as done by A, the entire set of attributes.

To this aim, our attribute set A = {x, y, t, p, a, d} could be written as A = C
⋃
{d} where

C = {x, y, t, p, a} is the subset of condition attributes and {d} is our decision attribute.

The value set Vd of {d} is the following:

Vd = {d1, d2},

i.e. Inlier and Spatio-Temporal Outlier respectively.

U may be consequently partitioned as:

U = U1
⋃
U2
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Figure 5.7: dataset Video Tracking

and

A = C
⋃
{di}, i = 1, 2

in order to obtain two different decision tables:

Si =< Ui, Ai >, i = 1, 2

as depicted in table 5.1.

The discernibility matrix for each decision table can be computed according to (5.2.2).

Table 5.2 show the discernibility matrix MST−Outlier(C) and table 5.3 show the discerni-

bility matrix MInlier(C), for the condition attribute set C.

The discernibility function for the concept ”ST-Outlier” is:

fST−Outlier = (x ∨ y ∨ t) ∧ (x ∨ y ∨ t) ∧ (x ∨ y ∨ t)
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x y t p a Decision

p1 1.00000000 0.08264463 0.00000000 0.00578035 0.00000000 Inlier

p2 0.73457944 0.11570248 0.05047319 0.32947977 0.19261948 Inlier

p3 0.59626168 0.23966942 0.10094637 0.42774566 0.27876588 Inlier

p4 0.80747664 0.01652893 0.35331230 0.40462428 0.22940109 Inlier

p5 0.80934579 0.26446281 0.40378549 0.23699422 0.13067151 Inlier

p6 0.80934579 0.44628099 0.45425868 0.12138728 0.07065941 Inlier

p7 0.81121495 0.11570248 0.50473186 0.34682081 0.20859044 Inlier

p8 0.79439252 0.01652893 0.55205047 0.68786127 0.75111918 Inlier

p9 0.80560748 0.00000000 0.60252366 0.61849711 0.61705989 Inlier

p10 0.80747664 0.00000000 0.65299685 0.41618497 0.23593466 Inlier

p11 0.79065421 0.04132231 0.70347003 0.40462428 0.25045372 Inlier

p12 0.66355140 0.23966942 0.75394322 0.60115607 0.45226860 Inlier

p13 0.00000000 0.50413223 0.85488959 1.00000000 1.00000000 Inlier

x y t p a Decision

p14 0.33831776 0.98347107 0.90536278 0.00000000 0.00290381 ST-Outlier

p15 0.34018692 0.97520661 0.95268139 0.00000000 0.00290381 ST-Outlier

p16 0.34392523 1.00000000 1.00000000 0.00000000 0.00290381 ST-Outlier

Table 5.1: Spatio-Temporal Outlier Detection: Decision Tables by Different Decision At-

tribute Values
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p14 p15 p16

p14 x, y, t x, y, t

p15 x, y, t

p16

Table 5.2: Spatio-Temporal Outlier Detection: Discernibility matrix MST−Outlier(C)

The dependency rules extracted by its disjunctive normal form represent the concept of

”ST-Outlier”.

fST−Outlier ← x ∧ y
fST−Outlier ← x ∧ t
fST−Outlier ← y ∧ t

Similarly, we can find the disjunctive normal form by which the dependency rules are

extracted and that represent the concept of ”Inlier”.
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5.4 Experimental Results and Discussion

The testing phase on real and synthetic datasets provided interesting results. In this

section, the tests are primarily based on the School Buses dataset [35], described in

the Section 4.3.2. Indeed, it is a real dataset that, unlike Tracking and Complex that

are small and synthetic datasets, possesses a quite large data amount that allows to

appreciate better the usefulness of boundary. However, for completeness’ sake, we also

report the test results on Complex9 RN8 time Dataset, described in the Section 4.3.3.

5.4.1 School Buses dataset: S-Rough representation of Outlier Set

Let U denote the spatio-temporal normalized School Buses dataset

U = {pi ≡ (zi1, zi2, zi3) ∈ [0, 1]3, i = 1, ..., N}

where (zi,1, zi,2) are cartesian coordinates of the i–th object, zi,3 is the relative time-

stamp. Let < U,A > be the information system, with the attribute set A = {x, y, t}, i.e.

x and y are the spatial components and t is the temporal component.

We want to describe O ⊆ U (Outlier Subset) such as

< B(O), B(O) > (Rough Outlier Subset)

where B ⊆ A is constituted by the spatial attributes, (x, y). Selecting only spatial

components, in the following, the results of selected iterations, an intermediate step,

the last-1 and the last one have been shown.

S-Rough Outlier Set: Intermediate Iteration

In this section, we show the Lower, Upper Approximation and Boundary at an interme-

diate step.

In Figure 5.8 the lower approximation has been shown. In Figure 5.9 the upper approx-

imation has been shown, while in Figure 5.10 the lower approximation with boundary

in red color have been shown.
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Figure 5.8: Rough Outlier Set: Lower Approximation

Figure 5.9: Rough Outlier Set: Upper Approximation
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Figure 5.10: Rough Outlier Set: Lower Approximation U Boundary

S-Rough Outlier Set: Last-1 Iteration

In this section, we show the Lower, Upper Approximation and Boundary at last-1 step.

In Figure 5.11 the lower approximation has been shown. In Figure 5.12 the upper ap-

proximation has been shown and in Figure 5.13 the lower approximation with boundary

in red color have been shown.

S-Rough Outlier Set: Last Iteration

In this section, we show the Lower, Upper Approximation and Boundary at last step.

In Figure 5.14 the lower approximation has been shown. In Figure 5.15 the upper approx-

imation has been shown and in Figure 5.16 the lower approximation with boundary in

red color have been shown. In this last figure, we can see the advantages of keeping into

account the boundary. Otherwise, many interesting objects (belonging to the boundary

region) should be missed.
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Figure 5.11: Rough Outlier Set: Lower Approximation

Figure 5.12: Rough Outlier Set: Upper Approximation
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Figure 5.13: Rough Outlier Set: Lower Approximation U Boundary

Figure 5.14: Rough Outlier Set: Lower Approximation
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Figure 5.15: Rough Outlier Set: Upper Approximation

Figure 5.16: Rough Outlier Set: Lower Approximation U Boundary
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5.4.2 School Buses Dataset: ST-Rough representation of Outlier Set

Let U denote the spatio-temporal normalized School Buses dataset

U = {pi ≡ (zi1, zi2, zi3) ∈ [0, 1]3, i = 1, ..., N}

where (zi,1, zi,2) are cartesian coordinates of the i–th object, zi,3 is the relative time-

stamp. Let < U,A > be the information system, with the attribute set A = {x, y, t}, i.e.

x and y are the spatial components and t is the temporal component.

Now we are considering B=A, so we are looking for spatio-temporal Rough Outlier Set.

In the following, the results of last iteration have been shown.

ST-Rough Outlier Set: Last Iteration

In this section, we show the Lower, Upper Approximation and Boundary at last step.

The spatio-temporal outliers will be more relevant of spatial and temporal outliers (see

temporal outliers injected in the Figure 5.17). Hence, the lower approximation includes

the most part of spatial and temporal outliers, while the upper approximation includes

the remaining part of temporal outliers and some other spatial outliers.

Figure 5.17: Injected Temporal Outliers
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In Figure 5.18 the lower approximation has been shown. In Figure 5.19 the upper ap-

Figure 5.18: ST-Rough Outlier Set: Lower Approximation

proximation has been shown and in Figure 5.20 the lower approximation with boundary

in red color have been shown.

5.4.3 School Buses Dataset: Representation of Kernel Set

In this section, we report the tests aimed at demonstrate the use of the Kernel Set.

This set is a selected subset, able to describe the original dataset both in terms of data

structure and in terms of obtained results. In particular, in the following sections, we

want to show the advantages of using this set and the benefits of considering it. At this

aim, we show the Rough Outlier Set extracted by the universe U and the Rough Outlier

Set extracted by the Kernel Set. The results will show the advantages of considering this

set. Figure 5.21 shows the kernel set of School Buses dataset.

Let be B ⊆ A constituted by the spatial attributes, i.e. (x, y). Selecting only spatial

components, in the next subsection, the results of last iteration of the test of Rough

Outlier Set Extraction from the Kernel Set have been reported. Thus, we compare these
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Figure 5.19: ST-Rough Outlier Set: Upper Approximation

Figure 5.20: ST-Rough Outlier Set: Lower Approximation U Boundary
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Figure 5.21: School Buses dataset: the Kernel Set

results with the last test of Rough Outlier Set Extraction from the entire universe U ,

shown in Figure 5.16.

Kernel based - ROSE: Rough Outlier Set from the Kernel Set

Starting from the Kernel S et, the Rough Outlier Set is built by our approach ROSE.

Figure 5.22 shows the lower approximation at last iteration, while Figure 5.23 shows the

upper approximation, and Figure 5.24 shows the lower approximation with boundary

in red color. If we compare Figure 5.16 and Figure 5.24, we can appreciate that the

results seem to be quite similar with an interesting computational benefit coming from

considering the Kernel set instead of the entire universe U .
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Figure 5.22: Rough Outlier Set: Lower Approximation

Figure 5.23: Rough Outlier Set: Upper Approximation
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Figure 5.24: Rough Outlier Set: Lower Approximation U Boundary

5.4.4 Complex9 RN8 time Dataset: S-Rough representation of Outlier Set

Let U denote the spatio-temporal normalized Complex9 RN8 time dataset

U = {pi ≡ (zi1, zi2, zi3) ∈ [0, 1]3, i = 1, ..., N}

where (zi,1, zi,2) are cartesian coordinates of the i–th object, zi,3 is the relative time-

stamp. Let < U,A > be the information system, with the attribute set A = {x, y, t}, i.e.

x and y are the spatial components and t is the temporal component.

Also, in this case, we want to describe O ⊆ U (Outlier Subset) such as

< B(O), B(O) > (Rough Outlier Set)

where B ⊆ A is constituted by the spatial attributes, i.e. (x, y). Selecting only spatial

components, in the following, the results of last iteration have been shown.

S-Rough Outlier Set: Last Iteration

Specifically, the Lower, Upper Approximation and Boundary at last step of Spatial Rough

Outlier Set are represented and shown in Figure 5.25 where the dataset is shown in light
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green color, lower approximation is in blue color and boundaries are shown in red color.

As shown, the objects belonging to the boundary (in red color) represent an uncertainty

region.

Figure 5.25: Complex9 RN8 time dataset: Last Step - Lower Approximation in blue color and Bound-

ary in red color

5.4.5 Complex9 RN8 time dataset: ST-Rough representation of Outlier Set

Let < U,A > be the information system, with the attribute set A = {x, y, t}, i.e. x and

y are the spatial components and t is the temporal component. Now we are considering

B=A, so we are looking for spatio–temporal Rough Outlier Set.

In the following section, the results of last iteration have been shown.

ST-Rough Outlier Set: Last Iteration

The spatio-temporal outliers will be more relevant of spatial and temporal outliers. In

this section, we show the Lower, Upper Approximation and Boundary of ST-Rough
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Outlier Set, at last step.

(a) (b)

(c)

Figure 5.26: Complex9 RN8 time dataset: Last Step (a) Lower Approximation in blue color and

Boundary in red color (b) A 2D-plotting (c) A different perspective

In Figure 5.26(a) the dataset is shown in light green color, lower approximation is

in blue color and boundaries are shown in red color; in Figure 5.26(b) a 2D plotting is

reported to verify the spatial detection and in Figure 5.26(c) the figure has been rotated

to verify the behaviour with respect to t-component.
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5.5 Quantitative Measures and Indices

In this section, we use the performance indeces as introduced by Maji and Pal in [64] such

as α index, ρ index and γ index, as well as some measures like the Davies–Bouldin(DB)

[19] in order to evaluate the performance of our algorithm compared with some other

rough–fuzzy clustering algorithms, incorporating the concepts of rough sets. The algo-

rithms [64] are as follows:

• RFCM - Rough Fuzzy C-Means

• RPCM - Rough Possibilistic C-Means

• RFPCM = Rough Fuzzy Possibilistic C-Means.

Let us quickly remind the indices indicated above.

α−Index

α =
1
c

c∑
i=1

ωAi

ωAi + ω̃Bi
(5.20)

where Ai is the cardinality of i-th cluster lower approximation and Bi is the cardinality of

i-th cluster boundary, c is the number of clusters, while parameters ω and ω̃ correspond

to the relative importance of lower and boundary regions. The α index represents the

average accuracy of c clusters. It represents the average of the ratio of the number of

objects in lower approximation to that in upper approximation of each cluster. Indeed,

it captures the average degree of completeness of knowledge about all clusters. A good

clustering procedure should make all objects as similar to their centroids as possible.

The α index increases with an increase in similarity within a cluster, i.e. 0 ≤ α ≤ 1.

ρ−Index

The ρ index represents the average roughness of c clusters and is defined as follows:

ρ = 1− α = 1− 1
c

c∑
i=1

ωAi

ωAi + ω̃Bi
(5.21)

We should remark that the lower is the value of ρ, the better is the over all cluster

approximations. As α, 0 ≤ ρ ≤ 1. Basically, ρ index represents the average degree of

incompleteness of knowledge about all clusters.

γ−Index
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The γ−Index is the ratio of the total number of objects in the lower approximations of

all clusters to the cardinality of the universe of discourse U and is given by:

γ =
R

|U |
=

∑c
i=1Ai

|U |
(5.22)

where Ai is the cardinality of i-th cluster lower approximation and U is the universe

of our discourse. The γ index basically represents the quality of approximation of a

clustering algorithm. To analyze the performance of our proposed algorithm, tests have

been done on the School Buses dataset. Figures 5.27 - 5.29 show the results of each

algorithm in spatial outlier detection. In the figures (a), the two clusters are drawn in

red and blue color after the assignment of the boundary to clusters; while, in the figures

(b) the boundary (before the assignment) is drawn in green.

(a) (b)

Figure 5.27: Buses dataset: (a) RPCM Cluster Result (b) RPCM Cluster Result with Boundary

Figures 5.30 - 5.32 show the results of each algorithm in spatio-temporal outlier de-

tection.

The parameters have been set as follows: c = 2 (Inlier Cluster and Outlier Cluster),

the parameters ω and ω̃ are equal to 0.5 in order to give the same importance to the

lower approximation and to the boundary. Several runs have been made with different

initializations and different parameter choices, related to initial centroid choice.These

parameters are held constant across all runs. The test shows that the best results are
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(a) (b)

Figure 5.28: Buses dataset: (a) RFCM Cluster Result (b) RFCM Cluster Result with Boundary

(a) (b)

Figure 5.29: Buses dataset: (a) RFPCM Cluster Result (b) RFPCM Cluster Result with Boundary

obtained for particular choices of initial centroids rather than for random choices of

initial centroids. So, we report only the final prototypes of the best solution. Table 5.4

and Table 5.5 report the best results obtained using different algorithms for c = 2 in

case of the same choice of initial centroids for RFCM, RPCM and RFPCM.
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(a) (b)

Figure 5.30: Buses dataset: (a) RPCM Cluster Result (b) RPCM Cluster Result with Boundary

(a) (b)

Figure 5.31: Buses dataset: (a) RFCM Cluster Result (b) RFCM Cluster Result with Boundary

Table 5.4 and Table 5.5 compare the performance of these different hybridization

rough–fuzzy clustering algorithms with respect to α, ρ, γ and DB index in Spatial and

Spatio-Temporal Outlier Detection respectively. The results reported in Table 5.4 and

Table 5.5 establish the fact that, although these hybridization versions of c−means al-
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(a) (b)

Figure 5.32: Buses dataset: (a) RFPCM Cluster Result (b) RFPCM Cluster Result with Boundary

gorithm were not designed as outlier detectors, generate good prototypes for c = 2.

In Spatial Outlier Detection, the RFPCM provides the best result as shown in Figure

5.29; the results of other two versions of rough clustering are quite similar to that of the

RFPCM, while in Spatio-Temporal Outlier Detection, the RPCM outperform them as

shown in Figure 5.30.

The proposed ROSE algorithm performs better than RFCM, RPCM and RFPCM algo-

rithms, both in terms of qualitative measure and in terms of outliers detected, as shown

in figures 5.18 and 5.20.

5.6 Summary

In this chapter, a definition of Outlier Set as Rough Set and a definition of a new set,

called Kernel Set, have been provided.

On these two definitions, a Rough Set Based Outlier Detection Method has been devel-

oped in order to:

• compute, at each iteration, the lower approximation, upper approximation (and a

relative boundary) of the n top outlier set we are looking for;
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• exploit the Kernel Set to generate the ”same” output results in terms of Rough

Outlier Set with computational benefits.

The proposed method has also been compared with some other rough-fuzzy clustering

algorithms, incorporating the concepts of rough sets.
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p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13

p1 x, y, t, x, y, t, x, y, t, x, y, t, x, y, t, x, y, t, x, y, t, x, y, t, x, y, t, x, y, t, x, y, t, x, y, t,

p, a p, a p, a p, a p, a p, a p, a p, a p, a p, a p, a p, a

p2 x, y, t, x, y, t, x, y, t, x, y, t, x, t, x, y, t, x, y, t, x, y, t, x, y, t, x, y, t, x, y, t,

p, a p, a p, a p, a p, a p, a p, a p, a p, a p, a p, a

p3 x, y, t, x, y, t, x, y, t, x, y, t, x, y, t, x, y, t, x, y, t, x, y, t, x, t, x, y, t,

p, a p, a p, a p, a p, a p, a p, a p, a p, a p, a

p4 x, y, t, x, y, t, x, y, t, x, t, x, y, t, y, t, x, y, t, x, y, t, x, y, t,

p, a p, a p, a p, a p, a p, a a p, a p, a

p5 y, t, x, y, t, x, y, t, x, y, t, x, y, t, x, y, t, x, y, t, x, y, t,

p, a p, a p, a p, a p, a p, a p, a p, a

p6 x, y, t, x, y, t, x, y, t, x, y, t, x, y, t, x, y, t, x, y, t,

p, a p, a p, a p, a p, a p, a p, a

p7 x, y, t, x, y, t, x, y, t, x, y, t, x, y, t, x, y, t,

p, a p, a p, a p, a p, a p, a

p8 x, y, t, x, y, t, x, y, t, x, y, t, x, y, t,

p, a p, a p, a p, a p, a

p9 x, t, x, y, t, x, y, t, x, y, t,

p, a p, a p, a p, a

p10 x, y, t, x, y, t, x, y, t,

p, a p, a p, a

p11 x, y, t x, y, t

p, a p, a

p12 x, y, t

p, a

p13

Table 5.3: Spatio-Temporal Outlier Detection: Discernibility matrix MInlier(C)
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Methods α Index ρ Index γ Index DB Index

ROSE 0.9836 0.0164 0.9987 N.A.

RFCM 0.5448 0.4551 0.9250 0.0736

RPCM 0.4725 0.5274 0.7919 1.1077

RFPCM 0.5645 0.4354 0.9007 0.8983

Legenda:

ROSE = Rough Outlier Set Extraction;

RFCM = Rough Fuzzy C-Means;

RPCM = Rough Possibilistic C-Means;

RFPCM = Rough Fuzzy Possibilistic C-Means.

Table 5.4: Spatial Outlier Detection - Quantitative Evaluation of Algorithms - Chosen

Initial Centroids

Methods α Index ρ Index γ Index DB Index

ROSE 0.8941 0.1059 0.9514 N.A.

RFCM 0.3549 0.6450 0.6444 1.8066

RPCM 0.3283 0.6716 0.5914 1.1077

RFPCM 0.3651 0.6348 0.6618 1.3299

Table 5.5: Spatio-Temporal Outlier Detection - Quantitative Evaluation of Algorithms -

Chosen Initial Centroids



6 Conclusion, Ongoing and Future Works

6.1 Conclusion

In this thesis, the outlier detection problem in an unlabeled spatio-temporal dataset, i.e.

an unsupervised classification problem that do not require targeted data has been faced.

In this last chapter, we list the main contributions of this thesis. In this thesis we have

tackled this kind of problem from a two different perspectives: the first is a perspective

that does not make any assumption on the statistical properties of the data but identify

the outliers on the basis of the computation of fully dimensional distances, a data driven

approach; the second perspective focuses on approximate representation of knowledge

derivable from data by making use of Rough Set Theory, the framework for the con-

struction of approximations of concepts when only incomplete information is available.

The first contribution is a novel Non Parametric Approach, called ST-OutlierDetector,

to face the outlier detection problem in an unlabeled spatio-temporal dataset has been

presented. It combines spatial and temporal attributes in order to find out the top out-

liers. The method has been proved on synthetic and real dataset to be efficient in space

and time to detect the spatio-temporal outliers. The strength of this approach is to

combine two different features space and time (depending on different aspects) without

fixing any spatial and/or temporal criterion. As shown above, the choice of input pa-

rameter α is a tricky problem in the general case and the number of outliers required.

ST-OutlierDetector reports a better classification accuracy respect to the chosen com-

paring methods.

The second contribution is a Rough Set Approach to Outlier Detection, called ROSE

(Rough Outlier Set Extraction). This approach is aimed at the representation of the

output, the Outlier Set as a Rough Set, i.e. as an imprecise representation of a crisp

122
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set in terms of two subsets, a lower approximation and upper approximation in order to

keep into account a level of vagueness that is typical of this kind of problem. The results

show that the proposed ROSE algorithm performs better than hybridization rough–

fuzzy clustering algorithms: RFCM, RPCM and RFPCM, both in terms of qualitative

measure and in terms of outliers detected.

Summarizing, the following contributions have been illustrated:

• a Non Parametric Method (also called Combined Approach) ”STOutlierDetector”

– the outlierness degrees highlight spatial and/or temporal aspects depending

on the problem to be faced

– the method is parametric in α letting to give more importance to space or

time

• a Rough Set Approach to Outlier Detection ”ROSE”

– the method provides a Rough representation of the Outlier Set

– the method defines a new set, Kernel Set

∗ computational benefits of using Kernel Set

∗ the ”same results” in terms of Rough Outlier Set can be obtained using

Kernel Set instead of U

∗ Kernel Set can be used as the learned model in a training phase

– a Kernel based - ROSE Approach.

6.2 Ongoing and Future Works

Future works will explore:

• the applicability of learning strategies for setting input parameter α of Non Para-

metric Method STOutlierDetector.

• the possibility of extend our approach to the outlier prediction problem

• the applicability of soft computing techniques (such as fuzzy logic) in the spatio-

temporal context, in order to define new fuzzy weights as degree of outlierness
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• the possibility of define Kernel set as a Rough Set

• the results can be extended for other distance measures, different from Euclidean

distance.



Appendix

School Buses Dataset information

The temporal range of School Buses Data set is from 17/10/2000 to 29/10/2001 with

many missing dates (also entire months such as: May, July and August of 2001). More-

over, a very different number of entries is provided for each date; it could range from

same tens to same thousands. For these tests, we selected from this data set, only the

entries dated 2000 as year, i.e. spanning from 24/10/2000 to 14/12/2000. The data set

cardinality is about 30000 (about an half of the original one). In the tables 6.2 and 6.2,

the entry number of each date, approximatively computed, has been reported. The data

set has been shown in figure 4.5 in the chapter 4. Some added temporal outliers can

be easily found both for number of neighbors and for the particular date (22/10/2000,

12/11/2000, 22/12/2000). Unlike temporal outliers, no spatial outliers will be added

because there are already present several enough evident (ones).

125
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Date Entry Number Remarks

22/10/2000 4 Added Outliers

24/10/2000 78

26/10/2000 94

27/10/2000 500 (approx.)

30/10/2000 800 (approx.)

01/11/2000 450 (approx.)

02/11/2000 800 (approx.)

03/11/2000 800 (approx.)

06/11/2000 600 (approx.)

07/11/2000 700 (approx.)

08/11/2000 500 (approx.)

09/11/2000 600 (approx.)

10/11/2000 1000 (approx.)

12/11/2000 4 Added Outliers

13/11/2000 600 (approx.)

14/11/2000 1000 (approx.)

15/11/2000 900 (approx.)

16/11/2000 600 (approx.)

18/11/2000 400 (approx.)

19/11/2000 500 (approx.)

Table .1: Data set: Entry Details by date



6. Conclusion, Ongoing and Future Works 127

Date Entry Number Remarks

20/11/2000 600 (approx.)

21/11/2000 245

22/11/2000 500 (approx.)

23/11/2000 1000 (approx.)

24/11/2000 800 (approx.)

27/11/2000 800 (approx.)

28/11/2000 320

29/11/2000 700 (approx.)

30/11/2000 700 (approx.)

01/12/2000 300

04/12/2000 450 (approx.)

05/12/2000 1000 (approx.)

06/12/2000 500 (approx.)

07/12/2000 800 (approx.)

08/12/2000 1000 (approx.)

11/12/2000 700 (approx.)

12/12/2000 264

13/12/2000 261

14/12/2000 169

22/12/2000 4 Added Outliers

Table .2: Data set: Entry Details by date
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zi,1 zi,2 zi,3 Label

z1,j 0.20 0.21 0.3 2

z2,j 0.30 0.22 0.3 2

z3,j 0.30 0.16 0.55 0

z4,j 0.35 0.15 0.60 0

z5,j 0.40 0.14 0.65 0

z6,j 0.40 0.16 0.70 0

z7,j 0.95 0.55 0.50 1

z8,j 1 0.60 0.50 1

z9,j 0.35 0.18 0.55 0

z10,j 0.50 0.19 0.56 0

z11,j 0.25 0.21 0.72 0

z12,j 0.20 0.21 0.73 0

z13,j 0.30 0.22 0.74 0

z14,j 0.34 0.29 0.75 0

z15,j 0.15 0.26 0.76 0

z16,j 0.16 0.34 0.77 0

z17,j 0.01 0.01 0.1 3

z18,j 0.9 0.9 0.95 3

Legenda:

0= Inlier 1= Spatial Outlier 2= Temporal Outlier 3= Spatio-Temporal Outlier

Table .3: Example Data set
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