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Abstract 

In this study we have worked on the classification of EEG signals produced by the exposure of 

primary colours (RGB). The main goal of this study was to perform an offline analysis and 

classification of color information obtained from EEG signals recorded in response to individual 

RGB colours presentation in order to verify our hypothesis, if the observation of different colors 

can be detected or not by selecting different frequency bands. We have also performed an 

offline analysis of EEG signals produced by the colour imagination to observe similarities in EEG 

signals between actual color exposure and their corresponding imagination in order to find a 

Way-In to further establish our argument for developing future BCI applications that utilizes 

colour information from EEG signals unlike the Wadsworth and Graz noninvasive BCI 

applications that utilizes sensory motor rhythm. It was seen that it is possible to detect the 

information, not only of actual colour exposure but also the information of colours imagination, 

from EEG signals. It was also seen that the colour information obtained through the imagination 

of colours was similar to the actual colour exposure in some subjects. The experiment was 

designed in a way to expose the colours to the subjects in random order of presentation and 

also their corresponding imaginations. Different features are extracted and analyzed. The EEG 

signals have to be classified into Red, Green and Blue classes.  

We have used Support Vector Machines with event-related spectral perturbation as features 

for the classification task using three different kernels, linear, polynomial and RBF which came 

out with the average classification accuracy of 84% with linear, 89% with polynomial and 97% 

with RBF kernel for real exposure of colors whereas for imagination of colors accuracy was 64%, 

70% and 76% respectively. As an alternative, we have also performed extreme energy ratio 

(EER) and extreme energy difference (EED) criterions to extract energy features using only 

linear kernel with SVM. The classification was performed on three different groups of colors i.e. 

(Blue, Green), (Red, Green) and (Red, Blue). The accuracies found with both of EER and EED are 

(79%, 78% and 80%) and (82%, 83% and 84%) respectively for real exposure of colors and for 

imagination of colors are (72%, 70% and 73%) and (73%, 75% and 72%) respectively. EED 

performed better than EER.  

Another experiment was performed with different shapes of colors and the EEG data was 

categorized as four different groups for classification. In group1, the classification accuracies for 

circle, square and triangle are found to be (88%, 52%, 94%), (84%, 47%, 89%) and (84%, 49%, 

94%) respectively as triplet (linear, polynomial, RBF). In group 2, 3 and 4 classification 

accuracies achieved are (71%, 50%, 94%), (60%, 48%, 92%) and (57%, 29%, 94%) respectively as 

triplet of (linear, polynomial, RBF) kernels.   
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After the successful classification of colour information from EEG signals we are planning to 

work for online classification in order to implement with any possible future Brain-Computer 

Interface applications. We believe that this study could further be extended to find out the 

possibilities for e.g. simulating a scenario of traffic light signals in virtual environment or to 

identify and explore any possibility of analyzing the EEG signals and developing BCI applications 

for color blind and/or blind people. Since such applications are quite novel in their fields of BCI 

therefore requires extensive collaborative research work in different domains. 
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Visual information is distributed to several brain structures in the form of action potentials by 

the axons of retinal neurons which are bundled into optic nerves. Different brain structures 

perform different functions. As an example, visual information is processed in occipital and 

parietal lobe of the brain. In the visual cortex, it appears that parallel paths may process 

different visual attributes. For example, the distinction in the retina between neurons that do 

and do not convey certain stimuli can be found mapped in the visual cortex. In general, each 

one of the more than two dozen visual cortical areas may be specialized for the analysis of 

different types of retinal output. Visual phototransduction is a process by which light is 

converted into action potential in the rod cells, cone cells and photosensitive ganglion cells of 

the retina of the eye. This continuous process of signal generation result in a change in the 

action potential firing frequency of the ganglion cells whose receptive field centers receive 

input from long, middle and short wave sensitive cones (briefly: red, green and blue). In 

general, color sensation derives from the spectrum of light interacting with the spectral 

sensitivities of the light receptors. These signals are carried to the human brain, that forms 

color sensation by the comparison of the readout of three cone types, e.g. upon equal 

activation of all types of cones (red, green and blue), white color sensation derives.  

One of the senses in humans is vision. Vision actually involves numerous different properties of 

objects i.e. color, form, movement and different cells of visual system are responsible for 

concurrent processing of these properties. There are approximately 1 million axons in the optic 

nerve, constituting almost 40% of the total number of axons in the cranial nerves. The visual 

system begins with the eye and retina lies at the back of the eye. The retina contains 

photoreceptors which are specialized to transform the light energy into neural activity. The 

receptors for sight, photoreceptors, are the rods and cones of the retina. Their adequate 

stimulus is electromagnetic waves with a wavelength between 400 and 700 nm. The 

photoreceptors do not react to light with shorter (ultraviolet light) or longer (infrared light) 

wavelengths. The rods are responsible for vision in dim light, whereas the cones are responsible 

for vision in daylight and for color vision. Visual information is distributed in the form of action 

potentials, to other parts of the brain through axons of retinal neurons which are bundled into 

optic nerves. Optic nerves are involved in regulating biological rhythms and controlling eye 

position and optics. However, the first synaptic relay in the pathway that serves visual 

perception occurs in a cell group of the dorsal thalamus called the lateral geniculate nucleus or 

LGN. From the LGN, visual information ascends to the cerebral cortex where it is interpreted 

and remembered. Conscious use of visual information and many reflex effects elicited by visual 
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stimuli are necessary and sufficient conditions to completely understand the visual system. The 

visual information that arrives in different parts of the brain in the form potential can be 

recorded fortunately from the scalp by placing electrodes. This potential is known as 

electroencephalography or EEG.  

In this thesis we shall discuss about the analysis and classification of EEG signals recorded from 

the scalp by exposing visual RGB colors. We also know that several applications of Brain-

Computer Interaction (BCI) like P300 Speller application or mu rhythm cursor movement have 

been developed but regarding colors different types of other studies are done, for example, a 

similar work was done by a Japanese researcher A. Yoto (2007) in which he has used only RGB 

colored sheets of paper to examine the arousal-calming effects, using each EEG band power 

and the total band power (beta+alpha+theta) and the alpha attenuation test as standard 

indices of arousal and to analyze the human brain activities in perception and attention 

referred to EEG alpha band response but not particularly related to BCI application’s point of 

view. As we know that normally people use speech, gestures or writing to communicate with 

other people. Imagine if somebody is not able to communicate with other people through these 

channels but he/she is aware of the environment. Such a condition is called locked-in 

syndrome. Indeed the patients are truly locked in their bodies and remain unable to express 

themselves. There are some neurological diseases that may cause the body towards paralyses 

of the motor system restricting both verbal and nonverbal communication. Locked-in means 

that the people are conscious and alert but not able to utilize their muscles that cause them to 

restrict the communication of their needs, wishes and emotions therefore, our main aim is to 

extend our future work for BCI applications in order to facilitate such patients.  

Although we are not going to develop a BCI application here but for the sake of comprehensive 

understanding we shall prepare ourselves for necessary background required to understand the 

basic principles and underlying theory involved in developing brain-computer interfaces. It is 

necessary for the onwards implementation of our results based on our hypothesis. The ultimate 

task of any BCI system is the classification of EEG signals which reflects the growing interest of 

researchers in EEG-based BCI. For any successful BCI application, it is necessary to implement 

online classification in order to see real time execution which is a challenging task for signal 

processing and machine learning experts. However, an earlier offline analysis of EEG signals 

helps us in improving our classification accuracies. Once the brain signal is classified, it is fed to 

the outer world application to perform the desired operation.  

In this study, we have presented and discussed the results for offline spectral analysis and 

classification (using three different kernels, linear, polynomial and RBF) of EEG signals recorded 

from the scalp, produced by primary colours stimuli, red, green and blue presented at random. 

To the best of our knowledge, we did not find any brain-computer interface system that relies 
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only on color information because all the BCI systems we have studied during this course are 

based on EEG signals produced either by motor execution or its imagination, visual or auditory 

stimulation in terms of instructions given to the subjects in order to perform the required tasks. 

Our main focus and goal in the experiment is on the offline analysis and classification of color 

information into red, green and blue classes using Support Vector Machine (SVM), obtained 

from EEG signals produced by the uniform primary colors stimulation in order to be utilized for 

future BCI applications. In this context we have used only three colors, Red, Green and Blue for 

our experiments in order to avoid expected complications and to achieve more precise results. 

We believe that the results we obtained and presented in the next chapters, would serve as 

necessary means to develop future BCI applications. To explore the dynamics of brain in 

response to presentation of primary colors, i.e. red, green and blue, we performed an 

experiment in which subjects were exposed to random occurring of RGB colors and instructed 

to imagine the same color that was exposed most recently while keeping the eyes closed, in a 

Virtual Reality set to provide an immersive experience on a large screen keeping the luminance 

of colors constant. Frequency bands that would be investigated are delta (0.1 – 4 Hz), theta (4 – 

8 Hz), alpha (8 – 12 Hz) and beta (12 – 30 Hz).  

The purpose of the experiment is to verify, if either the observation of different real colours or 

their corresponding imagination of colours can be detected in the selected EEG frequency 

combination, and to select best frequency combination to maximize differences through colour 

signals in order to find a Way-In to further establish our argument and to provide a baseline to 

be compared with more complex visual stimuli to evaluate the effects of colours to navigate in 

an immersive VR environment. For example, we can develop a virtual reality (VR) application in 

which first and preliminary version will exhibit the traffic light signals. A moving vehicle is 

expected to stop when turning ON the Red light, upon recognition of red colour through EEG 

signals. Similarly, upon recognition of the green light, a stopped vehicle is expected to start 

moving. We suggest that this method would be faster and provide more effective 

communication channel than those BCI applications that based on motor imagery because 

colors deliver fastest information and help greatly in making decision immediately. As a simple 

example, in real life traffic signal light colors let us decide in a fraction of second either to keep 

going or slowdown or stop even while driving at the farther distance. Moreover, on several 

other public places different colors are used for recognition of terminals for services quickly and 

easy to understand, react immediately and greatly affects human emotional status.  

This way we may use colours as controllable parameter in VR environments. Another 

application of such colour recognition system could be for colour blind and/or blind people. 

These applications are quite novel in their fields and needs extensive collaborative research 

work in different domains. We shall extend this study to further investigate the dynamics of 

brain activities to provide feedback for BCI systems to navigate into virtual environments to 
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control motion, referring to consider the effects of color stimuli in VR environment. The results 

obtained and presented in the next chapters are not used yet for online BCI system but we 

believe that this would be a useful first step towards contribution to provide a base for BCI 

applications based on uniform color stimuli. 

In chapter 1 we shall discuss about the human brain and functional properties of neuron and 

the concepts regarding visual system and color perception will be presented in Chapter 2. In 

chapter 3 we shall discuss about the Interpretation and Basic Principles of EEG and Event-

Related Potentials (ERPs) whereas detailed description of classifier (SVM) used in this study is 

given in chapter 4. Chapter 5 explains how to develop Noninvasive EEG-based Brain-Computer 

Interfaces. This chapter makes an overview of BCI that could give back the basic communication 

abilities and some degree of autonomy to the individuals in locked-in condition, and that could 

augment the human capabilities and enables them to interact with computers or other 

technological devices. A partial state of the art of well-known Brain-Computer Interfaces is 

provided and different applications are quickly listed. In chapters 6 and 7 we have described 

our experiment in detail and presented and analyzed their results and all the work is 

summarized and concluded in chapter 8. 
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1.1 Introduction 

The center of the human nervous system is the brain that is considered to be very complex 

organ. There are two main divisions of the nervous system i.e. central nervous system (CNS) 

and the peripheral nervous system (PNS). The CNS consists of the brain and the spinal cord. 

The major parts of the brain are the cerebrum, the cerebellum and the brain stem. 

However, PNS consists of the nerves and nerve cells that lie outside the brain and spinal 

cord. The nerves are used by the brain for communication with the body. Different functions 

in the human body are performed by the different identifiable parts of the brain. These 

parts of the brain or cortical divisions that constitute the cerebrum are shown in figure 1. 

 

Figure 1 The lobes of the cerebrum from lateral view 

The deeper part that separates the frontal lobe from the temporal lobe is called sylvian 

fissure and the central sulcus divides the frontal and parietal lobes of the cerebrum whereas 

occipital lobe lies at the back of the brain. All the actions and corresponding reactions are 

monitored as well as regulated by the brain upon receiving the sensory information and 

rapid analyzes of the data. Breathing, heart rate, and other autonomic processes that are 

independent of conscious brain functions are controlled by the brainstem. The cerebellum is 

responsible for the body's balance, posture, and the coordination of movement. 

1.1.1 Frontal lobe 

This part of the brain is located at front of cerebral hemisphere and posed anterior to 

parietal lobe and above the temporal lobe as shown in figure 1. Frontal lobe is considered 
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responsible for planning and recognizing future outcomes, differentiating between good 

and bad and identifying similarities and differences between things. 

1.1.2 Parietal lobe 

This part of the brain is positioned posterior to the frontal lobe and superior to occipital 

lobe and above the temporal lobe as shown in figure 1. The sensory information that is 

sensed by the different parts of the body is integrated by the parietal lobe and is also 

responsible for manipulating the objects. 

1.1.3 Occipital lobe 

This is the smallest part in the cerebral cortex and located in the rearmost side of the skull 

and posterior to all parts of the brain as shown in figure 1. This part contains the primary 

visual cortex and is responsible for processing of visual information. According to 

Brodmann’s area 17 as shown in figure 2, also called V1, primary visual cortex is located on 

medial side of the occipital lobe. 

1.1.4 Temporal lobe 

This part of the brain is positioned below the sylvian fissure on both sides of the 

hemispheres of the brain as shown in figure 1. The main responsibility of this lobe is to 

process the auditory information and to understand the semantics of speech. It contains the 

hippocampus and plays important role in the formulation of long-term memory. 

 

Figure 2 Brodmann’s divisions of cerebral cortex 

1.1.5 Neurons and Glia 

All the tissues and organs in the body consist of cells. The functions of these organs are 

determined by the specialized functions of cells and their interaction. There are different 

types of cells in the nervous system i.e. neurons and glia. It is important to know the 
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distinction between neurons and glia. There exist 100 billion neurons in the human brain 

but the glia outnumbers the neurons by tenfold. However, neurons are the most important 

cells and considered to be the basic unit of brain because neurons sense changes in the 

environment and communicate these changes to other neurons and command the body’s 

responses to these sensations. A neuron has different parts, cell body, dendrites and an 

axon. Multiple dendrites grow up from the cell body of a neuron but only one axon at a site 

called the axon hillock. Dendrites or nerve endings, branch-like projections of the cell make 

connections called synapses, to other cells as well as to other dendrite and axons. Axon is a 

cable-like projection of the cell that carries the electrochemical message (nerve impulse or 

action potential) along the length of the cell. Signals travel from an axon of one neuron to a 

dendrite of another. Cell body has the nucleus, endoplasmic reticulum, ribosomes (for 

building proteins) and mitochondria (for making energy). If the cell body dies, the neuron 

dies. A typical neuron structure is shown in figure 3. 

 

Figure 3 Neuron Structure 

A neuron processes and transmits information by electrical and chemical signals. Chemical 

signals are produced at synapses and specialized connections with other cells. Networks are 

formed by connecting different neurons and considered to be the core components of the 

nervous system, which includes the brain, spinal cord, and peripheral ganglia. There exist 

different types of neurons, sensory neurons, motor neurons and interneurons. Sensory 

neurons respond to outer world affecting cells of the sensory organs which send signals to 

the central nervous system. Motor neurons carry signals from the central nervous system 

and cause muscle movements and affect glands. Interneurons act as bridge to connect 

neurons to other neurons within the same region of the brain. 

On the other side, glial cells are thought to contribute to brain function mainly by insulating, 

supporting and nourishing neighboring neurons. Astrocytes are the most numerous glia in 

the brain and fill the spaces between the neurons to provide support and protection to 

neurons. It probably influences the space, about 20 nm that remains between neurons and 

astrocytes, causes a neurite can grow or retract. Synaptic junctions are enveloped by the 
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astrocytes, therefore the neurotransmitter molecules which are released during 

transmission of neuronal signals, are restricted from spreading, thereby regulating the 

chemical content of extracellular space. Astrocytes also regulate the concentration of 

potassium ions in the extracellular fluid. 

Myelinating glia is another type of glial cells that provide layer of membrane to insulate 

axons, called myelin, spirals around axons in the brain. Axon fits inside the spiral wrapping 

named as myelin sheath and axonal membrane is exposed periodically after a short length 

where the sheath is interrupted. This point is called node of Ranvier as shown in figure 3. 

Myelin serves to speed the propagation of nerve impulses down the axon. There are also 

other non-neuronal cells, ependymal cells that provide the lining of fluid filled ventricles 

within the brain. Another type of non-neuronal cells called microglia function as phagocytes 

to remove debris left by dead or degenerating neurons and glia. 

 

Figure 4 Glial cells: Astrocytes 

1.2 The Neuronal Membrane at Rest 

You might have heard about reflex action phenomena. Striking lightly the right spot on the 

knee with a rubber hammer, sensory neurons are activated and generates signal and send it 

to spinal cord. Interneurons carry that signal in the spinal cord. These neurons connect with 

other parts of your brain that interpret the signals as being painful. This information is 

handed over to the motor neurons which controls the movement of your leg. This reflex 

action requires the nervous system to collect, distribute and integrate information. 

Conduction of information over a distance is done by neuron using electrical signals that 

sweep along the axon. Within the cytosol, electrical charge is transferred by electrically 

charged atoms (ions) instead of free electrons, making cytosol far less conductive. Thus the 

electrical current passively conducting down the axon would not go very far before it would 

leak out.  
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There are some properties that enable the axonal membrane to conduct a special type of 

signal i.e. the nerve impulse or action potential. Individual neurons have encoded 

information not only in the frequency of their action potentials but also in the distribution 

and number of neurons firing action potentials in a given nerve. Those cells which are 

capable of generating and conducting action potentials are said to have excitable 

membrane. Sometimes cells having excitable membrane do not generate impulses then the 

cells are said to be at rest. During this resting state, the cytosol is charged with negative 

electrical charge within the surface of the membrane compared to outside. The difference 

in electrical charge across the membrane is known as the resting membrane potential.  

1.2.1 Distribution of Ions across the Membrane 

Neuronal membrane potential depends on the ionic concentrations on either side of the 

membrane. These concentrations are estimated in table 1. Importantly, it should be noted 

that K is more concentrated on the inside whereas on the outside, Na and 2
Ca are more 

concentrated.  

Table 1 Ionic concentration on both sides of the neuronal membrane 

Ion Concentration 
outside (mM) 

Concentration 
Inside (mM) 

Ratio 
Out : In 

Eion (at 37oC) 
(membrane 
potential) 

K+ 5 100 1 : 20 -80 mV 

Na+ 150 15 10 : 1 62 mV 

Ca2+ 2 0.0002 10,000 : 1 123 mV 

Cl- 150 13 11.5 : 1 -65 mV 

 

These ionic concentration gradients are based on the actions of the ion pumps in the 

neuronal membrane. The sodium-potassium pump and the calcium pump are very 

important in the distribution of ions. The sodium-potassium pump is an enzyme that breaks 

down ATP in the presence of internal Na+. This reaction releases the chemical energy and 

drives the pump to exchange internal Na+ for external K+. The actions of this pump ensure 

that K+ is concentrated inside the neuron and that Na+ is concentrated outside. These ions 

are pushed by the pumps, which are membrane-associated protein, against their 

concentration gradients across the membrane at the expense of metabolic energy. The 

calcium pump is also an enzyme that actively carries Ca2+ out of the cytosol across the cell 

membrane. The main objective of these ion pumps is to ensure that the ionic concentration 

gradients are established and maintained. The sodium-potassium pump is illustrated in 

figure 5.  
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Figure 5 The sodium-potassium pump: Source (2) 

1.2.2 Relative Ion Permeability of the Membrane at Rest 

Equilibrium potential for an ion is the membrane potential that results if a membrane is 

selectively permeable to that ion alone. However, in reality neurons are permeable to more 

than one type of ion. Taking into account, Na+ and K+, if only K+ is allowed to be permeable 

through membrane of neuron then according to table 1, membrane potential Ek is -80 mV 

and in case if only Na+ is allowed then its membrane potential ENa would be 62 mV. 

However, if both are allowed to be permeable equally then resulting membrane potential 

would probably be some average of Ek and ENa. Moreover, if the membrane were 40 times 

more permeable to K+ than it is to Na+ then the membrane potential would again be 

between Na+ and K+ but much closer to Ek than to ENa. To calculate resting membrane 

potential Goldman equation, given in (1), is used which is a mathematical formula that 

considers the relative permeability of the membrane to different ions. 

iNaik

Nak
m

NaPKP

NaPKP
V log54.61      (1) 

1.3 Action Potential 

An action potential is generated when a stimulus is received by the dendrites of nerve cell of 

another neuron. It opens the Na+ channels and if there is sufficient potential is produced to 

drive from -70 mV up to -55 mV then the process for generation of action potential 

continues. If the potential reaches the threshold of -55 mV then more Na+ channels are 

open. These channels are also known as voltage-gated channels. The influx of Na+ drives the 

potential up to about +30 mV. This phase of the action potential is known as rising phase 

and called depolarization phase. In other words, depolarization of the membrane beyond 
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threshold produces an action potential. How the action potential looks like is shown in 

figure 6. 

 

Figure 6 An action potential and its parts 

The part of the action potential where the inside of the neuron is positively charged with 

respect to the outside is called overshoot. After reaching the peak point the action potential 

starts falling down which closes the Na+ channels and opens K+ channels. However, K+ 

channels are slower to open so a point comes when both Na+ and K+ channels are open that 

causes the system to be neutral and prevent the creation of the action potential. After Na+ 

channels are closed and K+ channels are opened, the membrane begins to repolarize back 

towards its resting state. This phase of the action potential is known as falling phase and 

called repolarization phase. During the falling phase potential typically undershoots to about 

-90 mV before coming back to resting potential of -70 mV. This is called hyperpolarization 

phase. This phase either prevents receiving another stimulus during or at least raises the 

critical threshold for any new stimulus. Finally, after hyperpolarization the Na+ and K+ 

channels are closed and bring the membrane back to its resting state of -70 mV. From 

beginning to end, an action potential lasts about 2 milliseconds. 

Action potential must be conducted down the axon in order to transfer information from 

one point to another in the nervous system. Once an action potential is generated at one 

end of an axon, it propagates only in one direction and does not turn back in the opposite 

direction. This is because the Na+ channels are closed therefore the membrane behind it 

becomes refractory. However, an action potential is generated at either end of an axon by 

depolarization, hence can propagate in either direction. 

1.4 Synaptic Transmission 

A synapse is a specialized junction where a part of neuron contacts and transfers 

information to another neuron or cell type. Information flows in one direction from a 
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neuron to its target cell. First neuron is said to be presynaptic and the target cell is said to be 

postsynaptic. Synaptic transmission is the process of information transfer from one neuron 

to another at the synapse. 

1.4.1 Types of Synapses 

There are two different types of synapses. Electrical synapses and chemical synapses. 

Electrical Synapses 

These synapses consist of relatively simple structure and function and allow the ionic 

current to be transferred directly from one cell to the next. These particular types of 

synapses occur at specialized sites called gap junctions. There is a distance of about only 3 

nm between the membranes of two cells to separate them from each other at the junction 

gaps. Such narrow gaps are spanned by the clusters of special proteins called connexins. A 

channel called connexon is formed by the combination of six connexins and two connexons, 

one from each cell membrane combine together to form a gap junction. These channels are 

used to pass the ions directly from the cytoplasm of one cell to the cytoplasm of other cell. 

Almost all the gap junctions have relatively large pore of about 1-2 nm in diameter that is 

big enough for all the major cellular ions and several small organic molecules to pass 

through. Gap junction channels and electrical synapses are shown in figure 7. 

Electrical synapses are bidirectional because the ionic current pass uniformly well in both 

directions through these gap junctions and the cells connected by gap junctions are said to 

be electronically coupled. A post synaptic potential (PSP) is produced in the postsynaptic 

(second) neuron due to action potential in presynaptic (first) neuron that causes flow of 

small amount of ionic current across the gap junction channels. Similarly, a PSP is produced 

in the first neuron due to flow of ionic current from second neuron.  

Chemical Synapses 

The main components of chemical synapses are shown in figure 8. There are synaptic clefts 

between the membranes of presynaptic and post synaptic neurons to keep them separated 

that are 20 – 50 nm wide. Matrix of fibrous extracellular protein fills up these clefts. One of 

the objectives of this matrix is to adhere, the pre and post synaptic membranes with each 

other. It is the axon terminal also known as presynaptic element as shown in figure 8. This 

terminal contains synaptic vesicles each having a diameter of about 50 nm. These synaptic 

vesicles are dozens in number and enclosed in small membrane spheres. These vesicles 

store a chemical used to communicate with postsynaptic neuron. Such chemicals are known 

as neurotransmitters. Secretory granules are the larger vesicles having diameter of about 

100 nm found on many axon terminals. These granules are sometimes called dense-core 

vesicles due to dark appearance of soluble proteins in secretory granules. 
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(a) 

 

(b) 

Figure 7 (a) Gap junction channels (b) electrical synapse: Source (2) 



1. Human Brain and Functional Properties of Neuron 
 

14 
 

 

Figure 8 Chemical synapse and its components Source (2) 

Active proteins on the presynaptic side transferring into the cytoplasm of the terminal along 

the intracellular face of the membrane sometimes look like a face of tiny pyramids. The 

pyramids and the membranes associated with them are the actual sites of neurotransmitter 

release, called active zones. Synaptic vesicles are clustered in the cytoplasm adjacent to the 

active zones. The protein thickly accumulated in and just under the postsynaptic membrane 

is called the postsynaptic density. The postsynaptic density contains the neurotransmitter 

receptor, which convert the intercellular chemical signal into an intracellular signal in the 

postsynaptic cell. 

Moreover, CNS synapses may be distinguished depending on their synaptic arrangements in 

the CNS i.e. which part of the neuron is post synaptic to the axon terminal. The synapse is 

said to be axodendritic, if the postsynaptic membrane is on a dendrite. The synapse is said 

to be axosomatic, if the post synaptic membrane is on a cell body. The synapse is said to be 

axoaxonic, if the postsynaptic membrane is on another axon. CNS synapses may generally 

be classified into Gray’s type I synapses and Gray’s type II synapses. In Gray’s type I synapse, 

postsynaptic membrane is thicker than that on the presynaptic membrane. Such synapses 

are also known as asymmetrical synapses. Where as in Gray’s type II synapse membrane 

differentiation are of similar thickness, also known as symmetrical synapses.  
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1.4.2 Principles of Chemical Synaptic Transmission and Integration 

To understand the principles of chemical synaptic transmission and its integration we must 

understand the mechanisms, how the neurotransmitters are synthesized and how it is 

packed into synaptic vesicles, how the vesicles pour out their contents into the synaptic 

cleft, how the electrical or biochemical response to neurotransmitter is produced in the 

postsynaptic neuron and how the neurotransmitters are removed from the synaptic cleft. 

Neurotransmitters 

Transmission of signals from a neuron to a target cell across a synapse is done by 

neurotransmitters which are packed into synaptic vesicles clustered on presynaptic 

membrane and released into the synaptic cleft where they are received by receptors on the 

postsynaptic membrane. Arrival of action potential at the synapse releases 

neurotransmitters. Neurotransmitters have three main chemical categories, amino acids, 

amines and peptides. Amino acids and amines are all small organic molecules and are stored 

in and released from synaptic vesicles. Whereas peptides are large molecules stored in and 

released from secretory granules. Glutamate, acetylcholine and cholecystokinin are the 

examples for each neurotransmitter group amino acids, amines and peptides respectively. 

Synthesis and Storage of Neurotransmitter 

For chemical synaptic transmission it is necessary for the neurotransmitter to be 

synthesized and ready for release. To synthesize different neurotransmitters there exist 

different ways. For instance, glutamate and glycine are the building blocks of protein 

therefore they are present in great quantity in all cells of the body including neurons. 

However, GABA and the amines are made only by the neurons that release them. A specific 

enzyme is contained in these neurons that synthesize neurotransmitters from various 

metabolic precursors. Peptides are synthesized with entirely a different mechanism. 

Synthesizing is done in the rough ER for a precursor peptide and an active neurotransmitter 

is yielded by splitting into the Golgi apparatus. Secretory vesicles containing the peptide bud 

off from the Golgi apparatus and the secretory granules are transported down the axon to 

the terminal where the peptide is stored. 

Neurotransmitter Release 

Arrival of an action potential in the axon terminal triggers the release of neurotransmitters. 

Voltage-gated calcium channels in the active zones are opened due to the depolarization of 

the terminal membrane. Due to very low concentration of calcium ion about 0.0002 mM, 

Ca2+ will flood the cytoplasm of the axon terminal as long as the calcium channels are open. 

Exocytosis is a process by which vesicles release their contents. Synaptic vesicles spill out 

their contents into the synaptic cleft by fusing their membrane to the presynaptic 

membrane at the active zone. The point at which the synaptic vesicles get ready and wait to 

release their contents, Ca2+ enters exactly at the same point making the exocytosis process 
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very quick. Endocytosis is a process that recovers the vesicle membrane and refills the 

recycled vesicle by neurotransmitter. Figure 9 illustrates how the neurotransmitters are 

released by the process exocytosis. 

 

Figure 9 Process of exocytosis: Source (2) 

Neurotransmitter Receptors 

Although there are 100 different receptors but can broadly be classified into two types, 

transmitter-gated ion channels and G-protein-coupled receptors. The release of 

neurotransmitter binds to specific receptor proteins and affects the postsynaptic 

membrane. Four or five subunits of membrane spanning proteins combines together to 

form a structure of transmitter-gated ion channels and keeps a pore between them. The 

pore remains closed in the absence of neurotransmitter. Neurotransmitter induces a 

conformational change upon binding to particular sites on the extracellular region of the 

channel. Like the voltage-gated channels, in general, transmitter-gated channels do not 

show the same degree of ion selectivity. The net effect will be to depolarize the 

postsynaptic cell from the resting membrane potential, if the open channels are permeable 

to Na+. This effect is known as excitatory as it brings the membrane potential toward 

threshold for generation of action potentials. A transient postsynaptic membrane 

depolarization caused by the presynaptic release of neurotransmitter is called an excitatory 

postsynaptic potential (EPSP). However, a transient hyperpolarization of the postsynaptic 

membrane potential caused by the presynaptic release of neurotransmitter is called an 

inhibitory postsynaptic potential (IPSP). Transmitter-gated ion channels along with EPSP and 

IPSP are shown in figure 10. 
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Figure 10 Transmitter-gated ion channels, EPSP and IPSP: Source (2) 

Synaptic Integration 

The process that combines multiple synaptic potentials into one postsynaptic neuron is 

known as synaptic integration. To determine, how many vesicles release neurotransmitter 

into the synaptic cleft during normal transmission, a method can be used that can compare 
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the amplitudes of miniature and evoked postsynaptic potentials. Such a method is known as 

quantal analysis. This analysis reveals that during transmission of neurotransmitter, about 

200 synaptic vesicles are triggered through exocytosis upon arrival of a single action 

potential at the presynaptic terminal, resulting in an EPSP of 40 mV or plus. In contrast, by 

the release of single vesicle causes an EPSP of only a few tenths of a millivolt. The difference 

between excitatory transmission at neuromuscular junctions and CNS synapses is not 

surprising. A significant postsynaptic depolarization is produced by the addition of many 

EPSPs i.e. integration of EPSPs. EPSP summation represents the simplest form of synaptic 

integration in the CNS. There are two types of summation: spatial and temporal. In spatial 

sum, EPSPs are added together, generated at many different synapses on a single dendrite 

whereas in temporal summation EPSPs are added together generated at the same synapse 

occurred in succession of about 1-15 msec. The stronger the sum of excitatory effects, the 

shorter the time necessary to depolarize the cell to the threshold for eliciting another action 

potential. This means that the frequency of action potentials, or firing frequency, is an 

expression of the total synaptic input to a neuron. Figure 11 shows, how the integration of 

EPSPs take place. 

 

Figure 11 Integration of EPSP: Source (2) 

In this chapter we have given an introduction to human and functional properties of 

neurons, i.e. how the processes take place from one neuron to another. In the next chapter 

we will discuss about the human visual system and color perception as these are important 

factors of our study and involves extensive understanding of the concepts in our study. 
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2.1 The Visual System 

One of the senses in humans is vision. There are approximately 1 million axons in the optic 

nerve, constituting almost 40% of the total number of axons in the cranial nerves. The visual 

system begins with the eye and retina lies at the back of the eye. The retina contains 

photoreceptors which are specialized to transform the light energy into neural activity. The 

receptors for sight, photoreceptors, are the rods and cones of the retina. Their adequate 

stimulus is electromagnetic waves with a wavelength between 400 and 700 nm. The 

photoreceptors do not react to light with shorter (ultraviolet light) or longer (infrared light) 

wavelengths. The rods are responsible for vision in dim light, whereas the cones are 

responsible for vision in daylight and for color vision. Visual information is distributed in the 

form of action potentials, to other parts of the brain through axons of retinal neurons which 

are bundled into optic nerves. Optic nerves are involved in regulating biological rhythms and 

controlling eye position and optics. However, the first synaptic relay in the pathway that 

serves visual perception occurs in a cell group of the dorsal thalamus called the lateral 

geniculate nucleus or LGN. From the LGN, visual information ascends to the cerebral cortex 

where it is interpreted and remembered. Conscious use of visual information and many 

reflex effects elicited by visual stimuli are necessary and sufficient conditions to completely 

understand the visual system. 

2.1.1 The Eyeball and the Retina 

The Eyeball 

The eyeball is contained in an orbit of dense connective tissues which are covered by the 

light sensitive retina from the inside. Six small striated muscles or extraocular muscles move 

the eyeball inside the orbit. The muscles originate in the wall of the orbit, and their tendons 

insert in the sclera. The choroid is highly pigmented vascular layer that exists between 

connective tissues and retina. This layer allows the light to enter only through the pupil and 

also prevents the reflection of light. The amount of light is controlled by the diameter of the 

pupil that acts as shutter in camera. Cornea and lens are used for refraction of the light. In 

order to focus the image sharply, ciliary muscles are used that can vary the curvature of the 

lens. To control and coordinate the position of eyeballs extraocular muscles are attached to 

the eyeballs externally so that the visual images are formed at corresponding points of the 

two retinas. Figure 2.1 shows the left eye that is divided in two and horizontal cross section 

of eye. The space inside the eye in front of the lens and the iris is called the anterior 

chamber. Small processes of ciliary body produce a clear watery fluid that fills up anterior 
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chamber. The space behind the lens is filled with a clear jellylike substance called the 

vitreous body.  

 

Figure 2.1 left) half part of the left eye divided along the visual axis. Right) Horizontal cross 

section viewed from above: Source (1) 

The light, an eye perceives from our surroundings without moving the eyes and head spans 

the visual field around us. Obviously the two eyes cover a larger area than a single eye. The 

visual field of the human eye is shown in figure 2.2. When the light passes through the 

cornea and lens from a particular point in the visual field, it is refracted to form the inverted 

image on the retina at a particular point. The visual area covered by single eye is called 

monocular zone and the visual area covered by both eyes is called binocular zone. 

The Retina 

The innermost layer of the eye is retina. It forms a very complex structure of layers which 

are interconnected with several other layers of neurons by synapses. Those neurons 

sensitive to light are said to be photoreceptor cells. The volume of the retina is spanned by 

approximately 72% of a sphere about 22 mm in diameter among adult humans. A layered 

structure of retinal cell types is shown in figure 2.3. Pigmented epithelium that adjoins the 

choroid is the outer part of the retina. It consists of one layer of cuboid cells with huge 

amount of granules in their cytoplasm. A layer with photoreceptors and two layers of 

neurons come after the pigmented epithelium on the internal side of the retina. Next come, 

the bipolar cells from which retinal ganglion cells receive the transmitted signals. When the 

light on small circular spots on the retina shines, it excites the retinal ganglion cells most 

effectively and it is common among all the retinal ganglion cells. These small circular spots 

are known as receptive fields of the ganglion cells. The axons of the ganglion cells further 

transmit the signals out of the eye towards the optic nerve that ends up in the diencephalon 

and mesencephalon. Retina contains photoreceptors, bipolar and ganglion cells only in 
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those parts which are positioned at the back of the ciliary body. The photoreceptors belong 

to the central nervous system, unlike other receptors. 

 

Figure 2.2 The visual field for both eyes. Source (1) 

There are two different types of photoreceptors, the rods and the cones which are 

distinguishable from each other because the outer segments of the cones are tapering and 

usually somewhat shorter than those of the rods with fewer membranous disks. Rods 

enable us to see in low light (scotopic vision) whereas cones make our vision possible in 

daylight (photopic vision). Functional differences between rods and cones are correlated 
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with structural differences. For instance, as the rods have more number of disks and higher 

concentration of photopigment which makes them more sensitive to light than cones over 

one thousand times. 

 

Figure 2.3 Layered structure of retina. Source (1) 

All the rods have same distribution of light sensitivity which makes the rods having no 

discrimination among the light of different wavelengths which is a requirement for color 

vision. The light sensitivity to different wavelengths is maximum in cones. There are three 

different types of cones out of which one is more reactive to the light having wavelengths in 

blue part of the spectrum. Second is more reactive to red part and third type is more 

reactive to green part of the spectrum. Only one type of cone is not sufficient to convey the 

color information which is possible when all the three types of cones become reactive to 

color information.  The cones are not very sensitive to light, so a strong light is required to 

perceive the color of objects whereas in the times of dim light objects appeared to be 

grayish. 

Rods and cones also differentiate each other with respect to their connections with other 

neurons in the retina. There are many connections of rods with each bipolar cell that tends 

to high degree of convergence. In contrast, there are few connections of cones with one 

bipolar cell that makes the cones to be much less convergent. Such a difference in 

convergence shows that the information provided by the cones has higher spatial resolution 
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than the rods i.e. two points must be farther apart sufficient enough that these are 

perceived as two but not one, when rods transmit information than when the cones. 

Therefore, these are the cones that are not only responsible for color vision but also for the 

perception of patterns and form. 

2.1.2  Visual Pathways 

The first connection in the visual pathways is established by the axons of the retinal ganglion 

cells. The ganglion cells move to the back of the eye where they constitute the optic nerve 

and pass through the orbit to enter the cranial cavity. Here the optic chiasm is formed by 

combining two optic nerves. Figure 2.5 shows the visual pathways for both the eyes. Some 

of the axons meet and pass in the optic chiasm and continue to arrive in lateral geniculate 

body of the thalamus. Here the synaptic contacts are formed between the axon terminals of 

the retinal ganglion cells and with those neurons which further transmit the signals 

posterior to the occipital lobe of the brain to establish the optic radiations by the 

nerve fibers that carry signals from the lateral geniculate body. Figure 2.4 illustrates the 

optic radiation which show that how the fibers turn around the lateral ventricle and spread 

partly into the temporal lobe and also show the flow of fibers from the lateral geniculate 

body to the striate area. 

 

Figure 2.4 Optic radiation. Source (1) 

The radiation move towards front from its origin and then laterally towards the back side of 

the lateral ventricle where it ends up in primary visual cortical area that is present near the 

calcarine sulcus. Primary visual cortex is also known as striate area or area 17 according to 

Brodmann’s divisions of the brain. Figure 2.5 shows the arrangement of fibers in the optic 

chiasm. The fibers generated from nasal halves enter into the contralateral sides of the 

brain and the fibers coming from temporal halves remain on the ipsilateral sides, therefore  



2. The Visual System and Color Perception 
 

26 
 

 

Figure 2.5 Visual pathways with a visual field for each eye. Source (1) 

the fibers from nasal half of the right eye joins the left lateral geniculate body and nasal half 

of the left eye joins the right lateral geniculate body. However, temporal halves of both 
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sides join the lateral geniculate body on the same side. As we already know that lateral 

geniculate body has six layers so half of them are devoted to the fibers from opposite side 

and half of the layers are devoted to the fibers from the same side which means the fibers 

generated from the optic nerve are kept separate in order to connect with different layers 

of lateral geniculate body. Usually, two images are formed on the retina and perceived as 

one through the phenomenon known as fusion, for which the visual axes must be aligned 

properly. Lower part of the striate area below the calcarine sulcus receive the information 

coming from upper half of the visual field whereas the area above the calcarine sulcus 

receive the information coming from the lower half of the visual field.  In retinotopic 

localization, posterior parts of the striate area are associated with central parts of the visual 

field and anterior parts of the striate area represent the peripheral parts of the visual field. 

2.1.3 The Visual Cortex and Processing of Visual Information 

In 1962, two Nobel laureate, Hubel and Wiesel discovered that elongated fields of light with 

contrast between darkness and light affect many cells in the striate area. Moreover, it was 

shown that a property known as orientation selectivity, requires the light stimulus to be 

oriented in a specific direction by turning a bar of light to some degrees reduces the 

response in a clear noticeable manner. Some of other properties were also discovered 

about the cells in the striate area. The response to moving stimulus is better than the 

response to stationary stimulus because a moving line or moving contour in a particular 

direction receives preferable response by many cells. In this way, orientation of the contour 

is detected along with the direction in which it is moving by the direction-selective cells. 

The regions surrounding the striate area are called extrastriate visual areas which are mainly 

consist of areas 18 and 19 according to Brodmann’s subdivisions, where the further 

processing of visual information take place. Therefore, the visual cortex is not only 

constituted by the primary visual cortex (V1) but also by the regions surrounding it and parts 

of extrastriate areas are known as V2 to V5. Normally, the signal arrive the striate area first 

and later sent to other cortical areas. Different subdivisions of extrastriate area are 

responsible for different visual processing, like analysis of color, form and movement. This 

may produce blindness in a part of the visual field if striate area is damaged. The neurons in 

the striate area provide the basis for cortical analysis of form, movement, depth and color 

which means that initial analysis and sorting of raw data is done in the striate area and then 

processed further somewhere else to provide the basis for conscious visual experiences. 

There are numerous but reciprocal interconnections between the striate and extrastriate 

areas. However, these interconnections are extremely complex in order to identify and 

determine the role of each individual area for processing of visual information. 

It is clear that visual information in the striate and extrastriate areas is segregated to some 

extent. Striate area give rise to the bands of projections onto other visual areas and the 

termination of patches defines the anatomical segregation. It was revealed that there also 

exist pathways between the cells in the striate area that are influenced by the magnocellular 
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layers of lateral geniculate. These pathways control the signals for movement and depth 

cues. Second type of pathways from the striate cells which are influenced by the 

parvocellular layers of the lateral geniculate have small receptive fields and are orientation-

selective and signaling information about forms and patterns. Third type of pathways signals 

information about color and are originated from striate neurons which are wavelength 

specific to a large extent. These pathways are considered to be kept partly separate. From 

striate area (V1) there is an adjacent area V2 through which the information about 

movement is sent to area V5 whereas the information about color is sent to area V4. From 

V5 the outflow goes to posterior parietal cortex and from V2 signals about forms and 

patterns are channeled into inferotemporal visual areas which are present inferiorly in the 

temporal lobe. 

2.2 Color Perception 

Strictly speaking, color is not considered to be the characteristic of an object but an 

experience of the subject while seeing it, which is based on how the information of light 

reflected from object, having different composition of wavelengths, is processed by the 

brain. An obvious question about colors is that where and how these are represented in our 

memory. Although there are some fragmentary answers to such questions, however it is 

seen that the relationships are reasonably constant between the patterns of stimuli and 

outside events which strongly motivate us to firmly rely on our brain’s interpretation, 

carried out after processing of stimuli in a certain part of our brain i.e. traffic light colors, 

forms and movement of objects etc. Color vision is possible with three different kinds of 

cones which are sensitive to light having different wavelengths as shown in figure 2.6. 

 

Figure 2.6 Three different kinds of visual pigments. Source (1) 
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It shows the spectrum of cones sensitive to red, green and blue colors. It is necessary for the 

brain to measure the degree of stimulation of three kinds of cones in order to assess the 

composition of wavelengths of light to recognize the color of an object. Figure 2.6 shows the 

large overlap between the curves, especially between red and green which raises an obvious 

question of discrimination of each color being critical. To better discriminate colors, these 

cones are linked to the next pathway to cortex where exist narrower sensitivity curves than 

cones in retinal ganglion cells and neurons in the lateral geniculate body. Color opponency is 

a phenomenon in which many ganglion and lateral geniculate cells react with opposite signs 

to light having different wavelengths where one wavelength excites the cell and other 

inhibits the cell. For example, red light in the central zone of the receptive field turns ON the 

response i.e. excites the cell and green light in the peripheral zone turns OFF the response 

i.e. inhibits the cell. However sometimes blue and yellow light which is a combination of red 

and green, exhibit the color opponency in some neurons as well as white light that is 

possible only when all three kinds of cones are stimulated, and darkness. Color constancy is 

a property of visual system in which, for instance, a banana is identified consistently as 

yellow, an apple as red and grass as green and so forth even when the differences are 

perceived. Therefore the composition of wavelength depends on the physical properties of 

the surface and the light shining on the object. Humans are normally referred to as 

trichromats because they use three-color system. However, colors perceived by all the 

trichromats are not necessarily the same. Those who lack either the red or the green 

pigment caused them to be red-green color blind because only two-color system left with 

them and it is known as dichromats. 

To visualize the spectral information, trichromatic and color-opponent theories are used 

and differences in spectral properties are used in discriminating two lights. To fit wavelength 

discrimination data, Helmholtz used a model that measures difference in stimulation of 

three types of photoreceptors to quantify the two lights. The aim of color opponent theory 

is again to find discrimination in data by determining color appearance that also determines 

discriminability. To isolate color detection mechanism, a habituation technique was used by 

the Krauskopf and colleagues. They exposed their observers to high contrast modulations of 

chromaticity during their experiments for a lengthy time and identified that it desensitizes 

observers in a color-selective way. It was revealed in the results that both red-green and 

yellow-blue opponent mechanisms were possessed by the observers and can be 

desensitized independently of one another. However the results also suggested that there 

exist hue sensitivities along with color opponent mechanisms in observers. 
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3.1 What is EEG and ERP? 

In 1929, Hans Berger discovered that it is possible to measure the electrical activity from the 

human brain by connecting electrodes to the scalp. The activity recorded has very low voltage, 

therefore amplified its signal to plot the changes in voltage over time (1). Such an electrical 

activity is known as electroencephalogram or EEG. After its discovery, its usage started 

increasing in both scientific and clinical applications. Due to the coarse measurement of the 

brain activity, it is difficult to assess neuronal processes that focus the cognitive neuroscience. 

One of the draw backs of EEG is that it is mixed up from hundreds of different sources of 

neuronal activity, due to which it makes it difficult to isolate individual neurocognitive 

processes. However, there are other responses associated with sensory, motor and cognitive 

events, embedded within the EEG and it is possible to extract these responses out of EEG by 

using many available sophisticated mathematical techniques. These extracted responses or 

electrical potentials associated with specific event are called event-related potentials or ERP. 

In 1964, Walter and his colleagues reported an ERP component known as contingent negative 

variation or CNV (2). In the trial study, a warning signal was exposed after 500 or 1000 ms of the 

target stimulus. When the subjects were supposed to press a button upon the target exposure, 

a large negative voltage was found in the frontal region of the brain. Researchers observed that 

this negative peak reflects the subject preparation for the upcoming target that separated the 

response of a warning signal and target stimuli. This discovery motivated many researchers to 

explore further cognitive ERP components which led to the discovery of P3 component by 

Sutton et al. (3) that peaked around 300 ms of post-stimulus. An example experiment is shown 

in figure 3.1 in two different stimuli were presented to the subject i.e. frequent stimuli X’s and 

infrequent stimuli O’s, on the screen and the EEG was recorded form Pz electrode site, filtered 

and amplified. The rectangles in the figure 3.1 show an 800 ms epoch after the onset of stimuli. 

Although there is much larger variability in each trial, however averaged ERPs for the X’s and 

O’s are shown in figure 3.2 and a large peak i.e. P3 is visible around 300 to 400 ms after the 

stimulus was presented, during the infrequent O’s. Note that positive side is shown downward. 

There is a sequence of positive and negative peaks or waves or components. These peaks are 

labeled as P1, N1, P2, N2 and P3 in which P and N represent positive and negative deflections 

and the number represent peak’s position with respect to time. Furthermore, these peaks 

represent flow of information through the brain. Regardless of what task the subject is doing, 

P1 is elicited as an obligatory sensory response and P1 amplitude may be influenced with task 
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variations, whereas the stimulus parameters such as luminance may strongly influence the P1 

wave.  

 

Figure 3.1 Presentation of Stimulus: Odd-ball paradigm 

 

Figure 3.2 Average of frequent stimuli X’s and infrequent stimuli O’s. Source (11) 

P3 wave do not depend on the physical properties of the presented stimulus but may vary 

depending on the task performed by the subject. Although there are distinctive scalp 
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distributions of each ERP component that shows the location of patch of cortex where it was 

actually produced even then the neural source generator of ERP is not easy to determine simply 

by analyzing the distribution of voltage over the scalp. Here the following steps to conduct such 

type of experiment and to analyze the results. After designing a suitable protocol for the 

experiment that devise the order and sequence of different stimuli to be elicited, an EEG is 

recorded by placing electrodes on the subject’s scalp. Since the EEG recorded on the scalp has 

very low voltage, therefore it is amplified and digitized in order to see the visual output on the 

monitor screen. Various artifacts like EMG/EOG are embedded in the EEG. To remove these 

artifacts, some trials are dropped from the EEG manually and some are subtracted using 

mathematical algorithms like independent component analysis and various other signal 

processing techniques. Once the artifacts are eliminated and the noise is removed, an averaging 

is performed to extract the epochs. The size of ERP and the exact time at which the event is 

occurred are measured to perform statistical analyses. After all the necessary preprocessing, 

different features are extracted to visualize and analyze the ERP components for further 

interaction with other modalities. There exist very huge versatility and different techniques in 

this regard and require practical experience to understand the EEG/ERP study. 

3.1.1 Reliability of ERP Waveforms 

In most of the published work grand average ERP waveforms are presented which are produced 

by averaging all the waveforms of the individual subjects. Grand averaged ERPS could both be 

good and bad, good in a sense that it hides the large variability in waveforms which makes 

things difficult to find similarities and bad in a sense that it loses the accurate information for 

individual subjects. Figure 3.3 shows different waveforms in different subjects chosen randomly 

from an experiment, e.g. left column  shows three waveforms from three individual subjects 

and right column shows three waveforms from the same subjects recorded in different 

sessions. We can observe a large variation in ERP waveforms among different subjects and very 

small variation within the same subject in different sessions. Note that every waveform has P1 

and N1 peaks having different amplitudes from subject to subject. The lower part in figure 3.3 

shows a time line and average of all subjects. 

An obvious question arises, what are the possible causes for such variability. As the variability 

within a subject is very small from session to session, this may be influenced by the number of 

hours of sleep taken in the last night, time since the last meal, body temperature (4). On the 

other hand, the variability is very large from subject to subject and this may be influenced by 

location and orientation of the cortical generator source of an ERP component due to unique 

cortical pattern for each individual subjects. Moreover, shape of the ERP waveforms be 

certainly affected by the number of other factors, like drugs, age, psychopathology and even 

personality. We can notice one attribute in grand average ERP that its peaks are neither high as 
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Figure 3.3 Variability in ERP waveforms Source (11) 
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in the individual waveforms from subject to subject nor lower as in individual waveforms from 

subject to subject. Furthermore, the time points at which peak value for one subject are not the 

same as for another subject and if the voltage is positive at some time points in one subject, it 

may be negative in another subject at the same time points. Grand average looks quite 

attractive than any other average of different subjects, however the waveforms looks different 

and odd if the stimulus and corresponding task are different between the experiments. 

3.1.2 Visual Sensory Responses 

C1 Wave 

C1 wave is the first major visual ERP component that is largest at midline electrode sites in 

posterior region. Due to its polarity variation, it is not labeled as P or N and it is generated in 

area V1 i.e. primary visual cortex. The information coming from the lower visual field is 

decoded above the calcarine fissure and the information coming from the upper visual field is 

decoded below the calcarine fissure, therefore the scalp above the calcarine fissure generates a 

positive voltage for stimuli in the lower visual field and the scalp below the calcarine fissure 

generates a negative voltage for stimuli in the upper visual field (5) (6). C1 wave is very sensitive 

to stimulus parameters e.g. contrast and spatial frequency and typically onsets 40-60 ms post-

stimulus and peaks at 80-100 ms post-stimulus. 

P1 Wave 

P1 wave starts after the C1 wave and it is largest at lateral occipital electrode sites. P1 wave’s 

onset time is around 60-90 ms post-stimulus and peaks between 100-130 ms, however it is 

difficult to accurately assess the onset time for this wave due to overlap with the C1 wave. P1 

latency also varies because of stimulus contrast. Studies suggest that beginning of P1 wave is 

localized in dorsal extrastriate cortex and later segment of P1 wave is localized ventrally in the 

fusiform gyrus (7). This wave is also sensitive to stimulus parameters and to the direction of 

spatial attention (8). 

N1 Wave 

N1 wave starts after the P1 wave and it has several visual subcomponents. First peak of N1 

comes at 100-150 ms post-stimulus at anterior electrode sites and two other posterior N1 

components peaks around 150-200 ms post-stimulus, one of them arising from parietal cortex 

and the other from lateral occipital cortex. When subjects perform discriminative task, lateral 

occipital N1 subcomponent appears to be larger than when subjects perform detection tasks 

(9). 

P2 Wave 
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N1 wave is followed by distinct P2 wave at anterior and central scalp sites. N1 wave depends on 

stimuli that contains target features and is enhanced whenever there are infrequent target 

stimuli (10) which makes P2 wave similar to P3 wave. If the target is defined by simple stimulus 

features then P2 effects occur, however P3 effects occur for complex target stimuli. Posterior 

P2 wave is not much known to the researcher’s community because it is difficult to distinguish 

from the overlapping N1, N2 and P3 waves. 

3.2 Designing ERP Experiments 

Experimental design is one of the important elements of an ERP experiment for further analysis 

and processing which if in the beginning is over looked, it may cause to produce unreliable 

results. Literature suggests some rules and strategies to be carefully observed while performing 

experiments and later offline analysis and processing. As we know there exist series of peaks 

and valleys in an ERP waveform that show voltage deflections acquired by the sum of several 

relatively independent and latent components. One of tedious problems in designing and 

interpreting ERP experiments is to isolate such latent components in order to measure them 

independently. One of very important aspects is to distinguish between the observable peaks 

and the latent components. However some rules and strategies (11) are described below. 

Rule 1. Peaks and components should not be considered same because the point at which the 

voltage arrives a local maximum, do not contain anything special. 

Rule 2. Just a single ERP waveform cannot be effective and supposed to be impossible in 

estimating the peak latency and time course. 

Rule 3. It is not considered to be appropriate to compare raw ERP waveforms with an 

experimental effect. 

Rule 4. Differences in peak amplitude and latency do not necessarily correspond with 

differences in size and timing of latent components, respectively. 

Rule 5. Averaged ERP waveforms do not represent accurately the individual waveforms; 

however the earlier onsets and latest offsets from individual trial are reflected in onset and 

offset of averaged waveform. 

Rule 6. Try to avoid same physical stimuli across different psychological conditions. 

Rule 7. If it is not possible to avoid the physical stimulus confounds, a controlled experiment is 

conducted to evaluate their validity because an ERP may be affected by a small physical 

stimulus difference. 
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Rule 8. While comparing averaged ERPs which are based on different number of trials, be 

careful and informed e.g. if averaged ERP1 is obtained using 20 trials and an averaged ERP2 is 

obtained using 40 trials then both ERPs are expected to have differences that cannot be 

ignored. 

Rule 9. Be cautious when the presence or timing of motor responses differs between 

conditions. 

Rule 10. Whenever possible, experimental conditions should be varied within trial blocks rather 

than between trial blocks. 

Rule 11. Never assume that the amplitude and latency of an ERP component are linearly or 

even monotonically related to the quality and timing of a cognitive process. This can be tested, 

but it should not be assumed. 

The Hillyard Principle. 

Always compare ERPs elicited by the same physical stimuli, varying only the psychological 

conditions.  

3.2.1 Avoiding Ambiguities in Interpreting ERP components 

Apparently it seems that there exists no general approach to determine the latent components 

from observed ERP waveforms, however researchers are encouraged to follow some 

strategically approach that should minimize the factors leading to ambiguous relationship 

between the latent components and the observed ERP waveforms. For example, if two 

different ERP waveforms are obtained from two sets of words then it is important to know 

which set of words has elicited larger effect in N400 or P3. Here  we present some strategies 

that should be carefully observed. 

Strategy 1. Focus on a specific component. It is better to focus on one or two components to 

keep the things simpler to have more reliable and precise results because the more the 

components the larger mess will be created during analysis. 

Strategy 2. Use well-studied experimental manipulations. It is sometimes good to analyze the 

well-characterized component under nearly the same conditions which were used to study the 

same component. 

Strategy 3. Focus on large components. It is better to focus on larger components like P3 and 

N400 because such components dominate the observed ERP waveform and become relatively 

insensitive to interference from other components. 
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Strategy 4. Isolate components with difference waves. The difference waves are used 

sometimes to isolate the components. For instance, if you are interested in some particular 

component like P3 or N400 for two different conditions 1 and 2 then each trial should contain a 

sequence of two conditions in order to see any differences observed between condition 1 and 

condition 2. 

Strategy 5. Focus on components that are easily isolated. The strategy of isolating components 

may be refined by focusing on those ERP components which are relatively easy to isolate. For 

example, movement preparation which is reflected by lateralized readiness potential and is 

distinguished by its contralateral scalp distribution. 

Strategy 6. Use component-independent experimental designs. One of the good approaches is 

to design a component independent experiment which means that the changes observed in 

ERP waveforms do not consider which latent ERP component is responsible for that change. 

3.3 ERP Recording 

In this section we will discuss the basic principles of ERP recording to make sure the importance 

of clean data. Having low level of noise increases the likelihood of obtaining statistically 

significant results. It is difficult to view the ERPs individual trial in EEG and using signal averaging 

it is possible to isolate ERPs from the EEG noise. The more the number of trials, the smaller the 

amount of residual EEG noise therefore it is very crucial to decide the number of trials sufficient 

for ERP averages to minimize the noise. However, 30 percent noise may be decreased by 

doubling the number of trials and 50 percent reduction in noise requires four times the number 

of trials (11).  

3.3.1 Active and Reference Electrodes 

A certain number of voltages are recorded using two terminals, positive and negative and 

current flows from positive to negative terminals. EEG is also recorded as potential between 

two electrodes mounted on the scalp. If we measured the electrical potential between an 

electrode on a subject’s scalp and a stake driven into the ground, the voltage would reflect any 

surplus of electrical charges that had built up in the subject (assuming the subject was not 

touching a conductor that was connected to earth), and this static electricity would obscure any 

neural signals. We could put an electrode somewhere on the subject’s body that was connected 

to earth, and this would cause any static electricity in the subject to discharge into the earth, 

eliminating static differences and making it easier to measure changes in neural signals over 

time. However, it is dangerous to directly connect a subject to earth, because the subject might 

receive a dangerous shock if touched by an improperly grounded electrical device (such as a 

button box used for recording responses). It is possible to create a virtual ground in the 

amplifier’s circuitry that is isolated from earth and connect this ground to a ground electrode 
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somewhere on the subject. You could then record the voltage between a scalp electrode and 

this ground electrode. However, voltages recorded in this way would still reflect electrical 

activity at both the scalp electrode and the ground electrode, so it would not provide some sort 

of absolute measure of electrical activity at the scalp electrode. Moreover, any environmental 

electrical noise that the amplifier’s ground circuit picks up would influence the measured 

voltage, leading to a great deal of noise in the recording. 

The ground circuit that picks up the noise creates problem and this problem is solved using 

differential amplifiers in EEG amplification system. For this purpose, three electrodes are used 

to record EEG activity i.e. active electrode (A), reference electrode (R) and ground electrode (G). 

Active electrode is place on the scalp at desired site; whereas reference electrode is placed 

elsewhere on the body e.g. ear lobe and ground electrode is located at some convenient 

location on subject’s head or body. The difference between AG and RG is amplified and since 

ground activity is same for AG and RG therefore it is eliminated by the subtraction.  

An ERP waveform reflects the difference of electrical properties at the active and reference 

electrodes sites. If a potential could be measured for charges to move from one point to the 

average of the rest of the surface of the body then we can reasonably say that the voltage is 

recorded at a single site. Naturally, the active electrodes are placed near the active tissues and 

the reference electrode is kept at a distance assuming the site to be neutral. As the activity near 

the active electrode changed, researchers assumed that this would influence the voltage at the 

active site but not at the reference site. When obtaining recordings from several active sites, 

the same reference electrode is typically used for all of them.  

3.3.2 Electrical Noise and Electrode Impedance 

Scalp EEG has tiny voltage fluctuations which are typically less than 1/100,000th of a volt and 

must be amplified by 10,000 – 50,000 times to measure accurately. A typical laboratory 

contains many other sources of electrical activity which are quite larger in voltage than EEG 

that could cause to produce small voltage fluctuations in the subject, in the electrodes and in 

the wires connected to subject and amplifier. These induced voltages may be eliminated using 

filters and by other post-processing techniques, however it is always good to eliminate the 

noise at the source. As we already know that voltage oscillations in a conductor induce small 

voltage oscillations in the nearby conductors so it also shows up in the EEG. We may consider 

two sources of noise in an ERP lab i.e. AC line current and video monitors. AC line current has 

sinusoidal oscillations and operates at 50 or 60 Hz and it may induce a line noise in EEG 

recording whereas video monitors operate at a refresh rate between 50 – 120 Hz and induces 

spiky noise rather being sinusoidal and remains unable to reduce by the averaging process 

because such noise is time-locked. 
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These sources of noise may be controlled using several approaches. Using amplifier’s filter to 

attenuate the noise is considered to be the most common approach. Usually in cognitive 

experiments, the meaningful information is contained in 0.1 – 30 Hz band so the noise can 

easily be filtered out by eliminating everything above 30 Hz that includes line noise and video 

noise with attenuating the actual ERPs. Moreover, line filter is embedded in many amplifiers to 

specifically eliminate 50 or 60 Hz noise. Another approach is adopted by placing the subject in 

an electrically shielded chamber to minimize the noise. If still there are noise sources inside the 

chamber then this approach could not be effective. However, two common approaches are 

used to solve this problem. First, the video monitor can be placed just outside the window in 

the chamber provided the window is made up of treated shielded glass. Secondly, the monitor 

can be placed inside the Faraday cage as shown in figure 3.4, that is cheaper to build for just a 

200 – 400 €. 

 

Figure 3.4 Faraday cage 

Faraday cage has copper screen shielding which is surrounded by wooden exterior having 

ventilation holes. To make the monitor visible to the subject, a shielded piece of glass having 

ground wire along with a shielded AC power cord is placed at the front. Electrical noise in the 

EEG may dramatically be reduced using a well shielded Faraday cage. Ideally, it is important to 

make sure that there is nothing that could create electrical noise inside the chamber. It is also 

noticed that the cables leading from amplifier inside the chamber create significant electrical 

noise. Such noise may be eliminated by encasing these wires. Furthermore an online frequency 

spectrum module can be developed to see what frequency bands are involved in the recorded 



3. Interpretation and Basic Principles of EEG and Event-Related Potentials 
 

42 
 

EEG data and this will help in getting immediate noise effects that can be further removed by 

modifying and/or controlling the physical parameters which are responsible for inducing 

electrical noise.  

Having discussed the nature of voltages recorded at the scalp leads us to further discussion 

about electrodes. An electrode is just a conductive material (some metal) placed on the scalp 

through the wire. Since some metals corrode quickly and loose the conductance so it is 

important to take care of the metal choice.  The electrodes covered with thin coating of silver-

chloride (Ag/AgCl) have nice properties but difficult to maintain had been used by most 

researchers until 1980s. Theoretically, tin electrodes were supposed to attenuate low 

frequencies more than Ag/AgCl electrodes (12) but Polich et al. found no differences in using 

both electrode types (13) and both of them should be adequate for most purposes unless you 

are interested in DC potentials. The term resistance is used when the voltage does not change 

over the time and should be low between the scalp and the electrode whereas the term 

impedance is used when the voltage varies over the time i.e. alternating current or AC. Since 

the voltage fluctuates in the context of ERP recordings therefore it is more appropriate to use 

the term impedance rather than resistance. Impedance is denoted by the letter Z and measured 

in units of Ohms (Ω) or thousands of Ohms (kΩ). It is important to keep the impedances below 

5kΩ for each electrode before EEG recording in order the EEG signals to be more meaningful. 

To keep the impedance of electrode lower, researchers follow usually two different methods 

depending on the type of electrode being used. If you are using electrodes without an electrode 

cap to place the electrode on the scalp using some adhesive, the skin is cleaned first at each 

with alcohol and then rubbed with an abrasive gel. On the other hand, if you are using an 

electrode cap to place the electrode on the scalp then use the abrasive gel to rub the 

underlying skin through the holes in cap after putting the cap ON. For rubbing purpose, any 

cotton-tipped needle made of plastic or wood may be used. 

If the amplifier is capable of subtracting away environmental noise accurately then it is known 

as common-mode rejection and mostly measured in decibels (dB). This is one of the main 

problems that can generate high impedances and considered to be less effective if the 

impedance is higher. The higher the impedance, the worst the common-mode rejection, 

therefore low electrode impedance causes to avoid picking up environmental noise.  The 

surface of the skin and deep layers of the skin contains a tonic potential in between them and 

whenever skin’s impedance changes, this potential voltage also changes. These changes in 

voltage are called skin potentials and this potential could be a major source of low frequency 

noise in ERP recording due to its large variation. Picton et al. had shown that if the impedance 

of the skin is decreased, it reduces dramatically the skin potentials and it becomes the sufficient 

reason to decrease the impedance before recording ERPs (14). 
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3.4 Artifact Rejection and Correction 

EEG is contaminated with different types of artifacts like eye blinks, eye movements, muscle 

activity and skin potentials which create problems in ERP studies leading to misinterpretation of 

EEG signals. During EEG recording the subjects are instructed however, to minimize these 

artifacts but it is not possible to completely avoid them, therefore we use some techniques to 

remove them to make EEG artifact free. There are two ways that these artifacts could be 

problematic. Firstly, S/N ratio may greatly decrease for averaged waveform because these 

artifacts are very large compared to ERP signal. Secondly, these artifacts are time-locked due to 

which averaging process does not remove them. However, there are two main techniques 

which help us in eliminating these artifacts. First, we can possibly identify the contaminated 

trials with in a single-trial EEG epochs and simply remove them from the averages ERP 

waveforms which is known as artifact rejection whereas in the second technique, we can 

possibly estimate the influence of artifacts by means of some mathematical algorithms and 

then subtract away these estimated artifacts from the contaminated EEG, which is known as 

artifact correction. Eye blink produces a large deflection in voltage as compare to normal EEG 

so the presence of eye blink in a given EEG segment is detected by measuring the largest 

voltage deflection i.e. If the deflection crosses a certain threshold in a given EEG segment or 

trial then we can simply discard that trial assuming the presence of eye blink otherwise that 

trial is included in the averaged ERP waveform. Setting low threshold will cause to reject also 

those trials which do not have eye blinks and it will decrease the signal-to noise ratio whereas 

setting high threshold will overlook those trials which may contain eye blinks so only changing 

threshold will not work properly and we will need other procedures for measuring artifacts. 

Figure 3.5 shows an absolute voltage threshold for artifact rejection. 

 

Figure 3.5 Absolute rejection of eye blinks using threshold value. 
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We can see in figure 3.5 that wherever voltage deflection crosses a certain threshold of ±75µV, 

the trial is discarded by the visual inspection or by automated routine.  

Similarly, eye movements also produce voltage deflection in the EEG recording, assuming the 

dipole with its positive end pointing toward the front of the eye. A constant DC voltage gradient 

is produced when the eyes are in stationary position whereas the voltage gradient changes 

across the scalp when the eyes move. It is noticed that if the eyes move toward left side then 

the left side of the scalp appeared to have positive voltage deflection and negative on the 

opposite side of the scalp. With bipolar recordings, it becomes easier to monitor these 

deflections having one active electrode lateral on one side of eye and a reference electrode 

lateral to the other side of eye. Eye movement may be detected as small as 1 to 2 degrees on 

individual trials using step function but signal-to-noise ratio of the EOG signal makes it 

impossible to detect smaller eye movements without an unacceptably large number of false 

alarms. However, averaged EOG waveforms may be used to show that the ERP waveform is not 

contaminated by small eye movements. Different types of artifacts including eye movements 

are shown in figure 3.6, positive are plotted downwards. 

 

Figure 3.6 Several artifacts include Saccades, EMG, EKG, Blocking and Skin Potentials. Source 

(11) 



3. Interpretation and Basic Principles of EEG and Event-Related Potentials 
 

45 
 

The majority of eye movements are mostly saccades when the subject is being exposed some 

moving objects or having gradual head movements. We can see the top three recordings in 

figure 3.6 to be saccades having sudden transition from the zero voltage level to a non-zero 

voltage level followed by a gradual return toward zero caused by the amplifier’s high pass filter. 

It makes the saccades boxcar-shaped like function. Small eye movement can be distinguished 

from the normal EEG deflections using boxcar characteristic by the visual inspection of 

individual trials which may be discarded if a certain threshold is exceeded. 

EMG signals or electromyogram as shown in figure 3.6 are produced when the muscles are 

contracted. These signals have high frequency and are eliminated using low pass filter. To 

reduce the efforts of filtering the subjects may be instructed to try to minimize the eye blinks, 

eye movement and also the muscle movements. EMG signals are sometimes not required to 

eliminate unless you have taken all appropriate precautions to minimize EMG. However, if in 

some cases it is required to eliminate then the best way is to perform a Fourier transform on 

each trial and calculate the amount of high frequency power whereas alternatively every 

consecutive pairs of points are used to compute difference and if it exceeds a particular 

threshold then it is rejected. Moreover the heat beat (EKG) signal, again shown in figure 3.6 is 

sometimes recorded along with EEG. It is picked up from mastoid or ear lobe used as a 

reference which may be reduced by shifting lightly position of reference electrode. It is 

recorded almost every one second during entire recording session so it may lead to 

unacceptable number of rejection of trials. 

As we have discussed that artifact rejection eliminates a subset of trials from the ERP 

waveforms and is a process that leads to some problems (15). 1) After rejection of trials 

contaminated with eye blinks and eye movements may leave behind unrepresentative sample 

of trials. 2) It is not possible for every subject to control eye blinks and eye movements causing 

very less number of artifact free trials. 3) Sometimes eye blinks and eye movements are the 

integral to experimental paradigm so rejection of trials would be counterproductive. Having 

these problems in mind researchers better preferred to correct the ocular artifacts rather being 

rejected simply by subtracting away the voltages due to eye blinks and eye movements and 

therefore developed artifact correction procedures (16), (17), (18), (19), (20) and (21) in order 

to keep the maximum number of trials which contains meaningful information. Since there are 

different methods available to correct EOG artifacts but one of the most popular method is to 

separate the blind sources (BSS) using independent component analysis (ICA). 

3.4.1 Independent Component Analysis 

ICA is a method that provides us the capability to solve the problem of Blind Source Separation. 

It can identify N independent source signals, xsxsxsS N,, 21  (e.g. different voices, 
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music or other sound sources) from N linear mixtures matrix xmxmxmM N,, 21
, that 

can be modeled by multiplying the source matrix S by an unknown square matrixT such that 

TSM . In order to discriminate the source signals from mixtures, it is assumed that sources 
i

s  

are independent and their mixtures are not. Having no prior knowledge of source signals or 

about the process, how the signals were mixed, the objective is to approximate another matrix 

xuxuxuU
N

,,
21

, identical to source signals by specifying the filter to linearly invert 

the mixing process such that VMU  where V is a square matrix. 

 

 

 

 

 

 

 

Figure 3.7 The general process of ICA. 

The general overview of process of ICA is shown in figure 3. Electrode measurements 
im are 

assumed to be composed of a linear mixture of independent sources i
s

. Un-mixing matrix V is 

produced using ICA, which decompose i
m

to estimate the independent sources i
u

. After 

identification of components, the one that contains EOG/EMG artifacts is subtracted and 

artifact free EEG is obtained for further feature extraction and classification. Software routines 

are available to the researcher’s community for detection of artifacts based on ICA, however 

marking and rejection of artifacts is done manually as we have discussed earlier. 

3.5 Plotting, Measurement and Analysis 

It is very important to visualize actual shape of ERPs before validating any results. The Society 

for Psychophysiological Research (SPR) has presented some guidelines to represent the ERPs 

data. 1) The data should be presented from maximum number of electrodes placed on the scalp 

however it is not that much important because the different components involved in EEG can 

be isolated using different methods like ICA. 2) ERP waveforms should be plotted on time 

versus voltage scale in order to see the latencies and amplitudes involved and electrode sites 

should be labeled in the figure as shown in figure 3.8 illustrating the good way and bad way to 
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plot ERPs data. It is not possible from figure 3.8(A) to determine the exact pattern of effects i.e. 

when the polarities are switched between rare and frequent, because there is no overlapped 

shown, however in figure 3.8 (B) it is easily possible to distinguish the rare and frequent 

waveforms without any confusion in mind. Another important thing to be considered while the 

presentation of ERP data is to reflect the pre-stimulus time period of about 200 ms which will 

help us in our analysis and to decide how much the ERP is affected after the stimulus onset. 

Also keep in mind the factor of overlapping the waveforms as in figure 3.8 (B) i.e. not more than 

three otherwise it will become very difficult to assess and distinguish the individual ERPs. 

 

Figure 3.8 A) Bad way B) Good way. Positive is shown downward. 

Regarding the question of how many electrode sites should be presented. It depends on the 

how many electrode sites you are using because it is better to show some representative sites 

rather presenting all of them. 

3.5.1 Measuring ERP Amplitudes and Latencies 

Let us first discuss ERP amplitudes. Most of the ERP studies rely on amplitudes and there exist 

two common methods to measure amplitudes. 1) Define a time window and find the maximum 

voltage in that time window. This is known as peak amplitude measure. 2) Define a time 

window and calculate average amplitude at all-time points within that time window. This is 

known as mean amplitude measure. Another approach is to calculate the sum of all voltages 

within the time window, multiplied by the number of points in that time window. This is known 

as area amplitude measure. We can use the peak amplitude measure for some reasons but 
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there are several other reasons that convince us not to use peak amplitude, at least without 

having basic procedure to be modified. 

 

Figure 3.9 ERP waveforms A) with several peaks B) with time window and several measures C) 

Filtered ERP. Positive is plotted downward. Source (11) 

In figure 3.9 (A), suppose you want to measure the P2 wave then you would be required to 

define a time window for measuring voltage at all points e.g. a window of 150 – 300 ms as 

shown in figure 3.9 (B), gives the peak voltage at the end of this time window due to onset of 

P3 wave but this point is far from actual P2 wave which is not a good estimate however this 

problem can be resolved by narrow downing the time window even then peak latencies needs 

to be taken care while defining the time window. Another good way to measure P2 wave is to 

find a point which has smaller points on each side, it is known as local peak amplitude. Figure 

3.9 (B) shows that peak amplitude of P2 wave is not in the center of the time window but 

shifted towards right due to noise deflection. It should be kept in mind that the peak amplitude 

at a single time point would be used to identify a component that lasts for around 150 – 300 
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milliseconds which may increase the likelihood of occurrence of large noise deflection that 

causes the peak amplitude measurement to be larger for noisy data and wider measurements 

window. Filter the waveform could be one solution to high frequency noise as shown in figure 

3.9 (C) which is obtained after low-pass filtering. In this waveform local peak amplitude 

provides a good measure of P2 wave but the simple peak amplitude still gives the distorted 

measure. Having the filtered waveform means that voltage at each point reflects the weighted 

contribution of the voltages from the nearby time points which solves the problem of using the 

voltage at single time point to represent a component that lasts around hundreds of 

milliseconds. 

Now we discuss the mean amplitude which has some advantages over peak amplitude. 1) A 

narrower measurement time window can be used because it is ignorable even if the maximum 

amplitude lies outside the window for some electrode sites or subjects. Indeed, the narrower 

the window, the lesser the influence of overlapping component will be contributed to the 

measurement. Looking at figure 3.9 (C), it is understandable that a window of 200 – 250 ms 

would be suitable to use rather using a window of 150 – 300 ms. 2) While measuring the mean 

amplitude, there is no need to use the narrower measurement window because mean 

amplitude is less sensitive to high frequency noise than peak amplitude and the mean 

amplitude uses the range of time points as compare to peak amplitude that uses only a single 

time point. Also note that filtering is not required when you intend to calculate the mean 

amplitude because by definition mean amplitude include the voltages from multiple nearby 

points which is same thing as done in filtering so no filtering is needed before measuring the 

mean amplitude. 3) In any case, either using a longer measurement time window or when the 

noise level increases, mean amplitude do not become biased which means that variance may 

change but these factors of time window or noise level do not depend on the expected value. 

Thus, it is appropriate to compare the mean amplitude from waveforms based on different 

numbers of trials and peak amplitude does not comply with this condition. 4) Mean amplitude 

is a linear measure i.e. the mean of the mean amplitude of a component from each subject is 

equal to the mean of the same component from the grand average waveform which makes it 

possible to compare directly your grand average waveforms with the means from your 

statistical analyses. It is also applicable to averaging of single-trial EEG data.  

Mean amplitude may lead to spurious results being sensitive to the overlapping problem if the 

latency of a component varies across conditions. Moreover, there is no particular reason for 

selecting a particular measurement time window and it is encouraged by fishing by trying 

different windows. 

To measure the ERP latencies, peak latency measures are usually used in order to find the 

maximum amplitude within a time window and latency of this peak is used as a measure of the 
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latency of the underlying component. Where we discussed earlier the peak amplitude 

measures, there also comes few shortcomings on peak latency measures. 1) The problem of 

maximum voltage within a time window is solved using a local peak latency measure in which 

peak exists only if there are some smaller point values on each side of it. 2) Peak latency 

measures are also sensitive to high frequency noise like peak amplitude measures and as we 

know that high frequency may cause the peak to be far from the middle of the time window 

which is even more significant problem for peak latency than for peak amplitude. 3)  Due to 

increase in noise the average peak latency appears to be closer to the middle of time window 

e.g. consider measuring the peak latency between 200 – 400 ms of an ERP waveform full of 

random noise, the peak latency is expected to be at any value within this range. The average 

will tend to be somewhere between the actual peak and the center of the range, if there is a 

signal as well as noise. 4) Peak latency is non-linear i.e. peak latency measured from the single 

subject waveforms would not be the same as peak latency measured from the grand average. 

One must be careful when measuring the peak latencies. To filter out high frequency noise, to 

use local peak measure, to make sure the waveforms being compared have similar noise levels 

and be well aware that peak latency is a coarse and non-linear measure of a component’s 

timing. 

3.5.2 Statistical Analysis 

After recording the ERP waveforms from multiple subjects and finding amplitude and latency 

measures we need to analyze the significance of effects by performing some statistical 

analyses. Analyses of variance (ANOVA) (22) (23) is one of the most commonly used and 

dominant approach than several other approaches. In many of the cognitive ERP experiments, 

main effects or an interaction in a completely crossed factorial design is followed for which 

ANOVA is most suitably suggested. For this purpose, we need a criterion either to accept or 

reject while examining the experimental effects. An alpha value of .05 has come up to be very 

tricky. It is better advised to design the experiment first in order to have experimental effects 

quite large relative to the noise level and p-values to be very low i.e. .01 or better. To focus our 

attention, we will have to decide which of component of the waveform should be considered 

for analyses, e.g. P3 wave. ANOVA is performed for a number of factors, for example, stimulus 

probability to be either frequent or rare, stimulus brightness to be either bright or dim, 

anterior-posterior electrode position either to be frontal, central or parietal and left-right 

electrode position either to be left hemisphere, midline or right hemisphere. It should be 

noticed that the more the number of factors, the more the number of p-values will be 

calculated. However, a separate ANOVA may be performed for each electrode site instead of 

performing a single ANOVA assuming electrode as a factor. This approach may increase 

probability of type I error (false rejecting) and type II error (false accepting). Performing ANOVA 
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for each electrode site would require more p-values to be computed causing the type I error to 

increase leading to a greater probability that a spurious effect will reach .05 level. Moreover, 

type II error will be increased because a small effect may fail to reach significance at any 

individual site. 
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4.1 Introduction to Support Vector Machines 

Support Vector Machines (SVMs) were developed in the reverse order to the development of 

Neural Networks (NNs) which followed more heuristic path. SVM has proved to be very 

successful in classification tasks as many examples are available in the literature (1) (2) (3) (4) 

(5). SVM constructs a hyperplane in the simplest case that is used for classification to separate 

the data points belonging to two different classes. This hyperplane is chosen in such a way to 

maximize the distance margin , as shown in figure 4.1 and 4.2, to the closest training data 

points of any class. In general, the larger the margin is, the higher is the classification accuracy. 

SVM may broadly be categorized as hard margin and soft margin in (6). However, the SVM 

theory was developed by Vapnik in (7) and a good review on classification algorithms for BCI 

research is presented in (8).  

4.1.1 Two-Class SVM with hard and soft margins 

To classify  m dimensional training data points ix ( Mi ,,1 ) which either belong to class 

1 or class 2 and the associated labels be 1iy  for class 1 or 1iy  for class 2. A decision 

function is defined as bxwxF
T

)( , where w  is an m dimensional vector and b  is the bias 

term. If the data is linearly separable then no data points will satisfy 

0 bxw
T         (1) 

So, for Mi ,,1  










1

1
bxw i

T  for  
1

1





i

i

y

y
      (2) 

Equation (2) may be written as 

1)(  bxwy i
T

i  for Mi ,,1 .     (3) 

The function, 

cbxwxF
T

)(  for 11  c      (4) 
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Optimized hyperplane 

defines the hyperplane that separates the data points ix ( Mi ,,1 ). For 0c , the 

separating hyperplane lies in the middle of two hyperplanes with 1c and 1 . Pictorial 

representation of SVM in case of two class problem for hard margin is shown in figure 4.1. The 

optimal separating hyperplane can be obtained by solving the optimization problem, 

Minimize,    

2

2

1
)( wwZ          (5) 

subject to the constraints,  

1)(  bxwy i
T

i  for Mi ,,1       (6) 

Figure 4.1 A separating hyperplane in two class problem for hard margin case. Source (6) 

Equation (5) forms a quadratic optimization problem with inequality constraints expressed by 

equation (6). This constrained optimization problem can be solved by solving its equivalent 

unconstrained problem using the saddle points of the Lagrangian functional, 

 




M

i

i
T

ii
T

bxwywwbwZ

1

1)(
2

1
),,(       (7) 
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Where  TM ,,1  and i are the non-negative Lagrange multipliers. Lagrangian must be 

minimized with respect to w and b , and needs to be maximized w.r.t 0i . This problem can 

be solved into its primal space of parameters w and b and also in dual space of Lagrange 

multipliers i . The approach of dual space gives us insightful results as it has the number of 

variable as the number of training data. Equation (7) is manipulated with Karush-Kuhn-Tucker 

(KKT) conditions in (6) to get the dual problem, 

 Maximize, 






M

ji

j
T
ijiji

M

i

i xxyyZ

1,1 2

1
)(        (8) 

with respect to i subject to the constraints 






M

i

iiy

1

0  and oi   for Mi ,,1     (9) 

which is a hard margin SVM. Using Lagrangian functional in equation (7) with KKT conditions we 

obtain  






M

i

iii xyw

1

          (10) 

And 






M

i

ii y

1

0          (11) 

to finally get the decision function as 






Si

T
iii bxxyxF )(        (12) 

where S is the set of support vector indices along with  

 




Si

i
T

i xwy
S

b
1

        (13) 

Hence the unknown datum x belongs to either class 1 if 0)( xF , or class 2 if 0)( xF and 

remains unclassifiable if .0)( xF  



4. Support Vector Machines for Pattern Classification 
 

57 
 

Now SVM introduces slack variables 0i in case of soft margins and the optimization problem 

turned into, 

Minimizing 




M

i

l
iCwbwZ

1

2

2

1
),,(      (14) 

subject to the constraints 

ii
T

i bxwy  1)(  for Mi ,,1 .    (15) 

Where T
M ),,( 1   and C is the margin parameter that determines the trade-off between 

the maximization of the margin and minimization of the classification error. The values for l are 

either 1 or 2 calling SVM either L1 soft margin SVM (L1SVM) or L2 soft margin SVM (L2SVM) 

respectively. Pictorial representation of SVM in case of two class problem for soft margin is 

shown in figure 4.2. Considering L1SVM, Lagrangian multipliers i and i are introduced 

likewise linearly separable case and we get, 

 
 



M

i

M

i

iiii
T

ii

M

i

i bxwyCwbwZ

1 11

2
)1)((

2

1
),,,,(   (16) 

where  TM ,,1  and  TM ,,1  with Cii   . 

Figure 4.2 A separating hyperplane in two class problem for soft margin case. 

Optimized hyperplane 
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 The Dual problem for L1SVM is the same as dual problem for hard margin SVM described in 

equations (8) and (9). The only difference is that i cannot exceed C  i.e. causing an extension 

in one of the constraints in equation (9) is 0 iC  for Mi ,,1 .  

If the data is not linearly separable then we can define a function that map the original input 

lower dimensional data into higher dimensional feature space also called dot-product space in 

order to enhance the linear separability. Such functions that perform mapping from lower to 

higher dimensional feature space are called Kernels which give us the advantage of not treating 

the higher dimensional feature space explicitly. This approach is also known as kernel trick. 

Given that the non-linear vector function 

T
n xqxqxq ))(,),(()( 1         (17) 

maps the m dimensional input vector x into the n dimensional feature space and the linear 

decision function in the feature space is defined as 

bxqwxF
T

 )()(         (18) 

where w is an n dimensional vector and b is a bias term. Hilbert-Schmidt theory says that if a 

function ),( xxK  is symmetric and satisfies 

0),(

1,




ji

M

ji

ji xxKkk         (19) 

then there exists a function )( xq that maps x into the dot product feature space and satisfies 

)()(),( xqxqxxK
T

         (20) 

This ),( xxK  is used in training and classification instead of )( xq . The dual problem in the 

feature space using kernel is as follows  

Maximize, 






M

ji

jijiji

M

i

i xxKyyZ

1,1

),(
2

1
)(       (21) 

subject to the constraints 






M

i

iiy

1

0  and 0 iC   for Mi ,,1    (22) 
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The decision function that contain kernel expression becomes 






Si

iii bxxKyxF ),()(         (23) 

where b is given by  

 
 



Uj

ji

Si

iij xxKyy
U

b )),((
1

       (24) 

Here U is the set of unbounded support vector indices. 

Generally used kernels in SVM are linear kernel, polynomial kernel and Radial Basis Function 

(RBF) kernel. However, three-Layer Neural Network Kernels and some other kernels are briefly 

discussed in (6) and (9). Most commonly used kernel in BCI community is RBF or Gaussian 

kernel. The mathematical expression for linear, polynomial of degree d and RBF kernels are 

given in equations (25), (26) and (27) respectively. 

xxxxK
T

),(         (25) 

dT
xxxxK )1(),(          (26) 

)exp(),(
2

xxxxK          (27) 

Here  is a parameter for controlling the radius. 

SVM that uses RBF kernel is known as Gaussian SVM or RBF-SVM. RBF converts the data space 

to higher dimensional feature space making separation much more likely for nonlinear cases. 

An SVM with linear kernel, called linear SVM is also used widely. 

4.1.2 Multiclass SVM 

There exist almost several different types of SVMs which are capable of dealing with multiclass 

problems e.g. One-against-all SVM, pairwise SVM, error-correcting output code and all-at-Once 

SVM. In this section, we will discuss only first two approaches. Let’s first discuss One-against-all 

SVM with discrete decision function. In this type of SVM, n direct decision functions are 

determined to separate one class from the remaining assuming n - class problem. Let the class 

i be separated from the remaining classes by the ith decision function having maximum margin, 

given as follows, 

i
T
ii bxgwxD  )()(         (28) 
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where iw is the l dimensional vector, )( xg is the mapping function that maps x into the l

dimensional feature space and ib  is the bias term. The optimal separating hyperplane is defined 

by 0)( xDi , separates the class i which satisfy 1)( xDi  from the remaining classes, all of 

which satisfy 1)( xDi  and the support vectors satisfy 1)( xDy ii . In classification, if for the 

input vector x , 

0)( xDi          (29) 

is satisfied for one i , x  is classified into class i because only the sign of the decision function is 

used, the decision is discrete. If equation (29) is satisfied for plural i or if there is no i that 

satisfies equation (29) then x is unclassifiable. Now for example, considering three class 

problem as shown in figure 4.3, we can see that the data points 1 and 2 belong to the 

unclassifiable shaded regions because for data point 1 the decision functions are ,0)( 11 xD  

0)( 22 xD  and 0)( 33 xD which means that data point 1 belongs to both classes 1 and 2 and 

remains unclassifiable. Similarly data point 2 belongs to no class and also remains unclassifiable 

due to 0)( ii xD  for 3,2,1i . 

 

Figure 4.3 Unclassifiable shaded regions by the One-against-all approach. Source (6) 
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In (6), Abe has discussed three solutions to avoid this problem of unclassifiable regions i.e. One-

against-all with continuous decision functions, fuzzy SVM and decision-tree-based SVM. In the 

first case a continuous decision function is proposed instead of discrete decision function for 

classification as follows: 

)(maxarg
,1

xDi
ni 

        (30) 

So the data point 1 in figure 4.3 is classified into class 1 because )( 11 xD is the maximum among 

the three. Similarly, data point 2 is also classified into class 1. In second case of fuzzy SVM, one 

dimensional membership function )( xm ij in the directions orthogonal to the optimal separating 

hyperplanes 0)( xD j , is introduced for class i  to resolve the problem of unclassified regions, 

defined as follows: 

For ji  , 


 


otherwisexD

xforD
xm

i

i

ii
)(

1)(1
)(      (31) 

For ji  , 












otherwisexD

xforD
xm

j

j

ij
)(

1)(1
)(      (32) 

To define the membership function of classes, two operators, minimum and average are 

defined for the class i membership function of x for )( xm ij  ),1( nj  as follows, respectively: 

)(min)(
,,1

xmxm ij
nj

i


         (33) 






nj

iji xm
n

xm

,,1

)(
1

)(



        (34) 

The data point x is classified into the class,  

)(maxarg
,1

xm i
ni 

        (35) 

According to this formulation based on the membership functions, the unclassifiable regions in 

figure 4.3 are resolved as shown in figure 4.4 which has the similar class boundaries produced 

in (10). In the third approach, a decision-tree-based SVM (11) is used to resolve the unclassified 

regions shown in figure 4.3. In this type of SVM, 1n support vector machines are trained. To 

separate the class i data from data belonging to one of classes nii ,,2,1  , the ith SVM is 

trained and then classification is performed from first to the stn )1(  support vector machines. 
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Classification is terminated upon the classification of data point into class i , otherwise it is 

repeated until the data point goes into the definite class. 

 

Figure 4.4 Unclassifiable regions are resolved by membership functions. 

Class boundaries for four classes are shown in figure 4.5 based on decision-tree classification 

using linear kernels. In this case, it should be noticed that the processing order affects the 

generalization ability because the classes with smaller class numbers have larger class regions. 

Now we will discuss the second type of support vector machines that can handle the multiclass 

problem i.e. Pairwise SVM. Using pairwise SVM, unclassifiable region reduces but is not reduced 

completely so to resolve unclassifiable regions fuzzy SVM and decision-tree-based SVM 

approaches are used. In this type of SVM, all combinations of class pairs are made to determine 

the decision functions for a class pair and the data corresponding to those two classes is used 

which reduces the training data considerably in comparison with One-against-all which uses all 

the training data. For pairwise approach, the number of decision functions is 2/)1( nn as 

compared to n decision functions for one-against-all SVM, where n is the number of classes. To 

define decision function of class i against class j with the maximum margin, )( xDij is written as 

ij
T
ijij bxgwxD  )()(          (36) 
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Figure 4.5 Decision-tree based formulation to resolve the unclassifiable regions. Source (6) 

Where ijw  is the l dimensional vector, )( xg is a mapping function that maps x into the l

dimensional feature space, ijb  is the bias term and )()( xDxD jiij  . The regions iR do not 

overlap, which contain those data points x for which ijnjxDij  ,,,1,0)(   and it means 

that x is classified into class i . If any x is not contained in iR  then x  is classified by voting. To 

classify the input vector x , )( xDi is calculated as follows, 






n

jij

iji xDsignxD

1,

))(()(         (37) 

where 1)( xsign  for 0x and 1)( xsign  for 0x . So x is classified into the class 

)(maxarg
,,1

xD i
ni 

         (38) 

Figure 4.6 illustrates the pairwise SVM approach in which the shaded region is unclassifiable but 

much less than shown in figure 4.3 for One-against-all SVM approach. 
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Figure 4.6 Unclassifiable shaded region with pairwise formulation. 

Once again to resolve the shaded unclassifiable region, a similar approach that was followed in 

one-against-all is adopted by introducing the membership functions while realizing the same 

classification results. For other types of support vector machines and further details that deals 

with multiclass problems and to resolve the corresponding unclassifiable regions, please refer 

to (6). 

4.2 Training Methods 

A quadratic programming problem needs to be solved while training L1 or L2 support vector 

machines having the number of variables equal to the number of training data. Thus training 

takes time when the number of variables is large or the training data is large. Osuna et al. 

proposed in (12) , decomposing the problem into two to reduce the number of variables in 

training. Suppose the index set  M,,1   is divided into two sets W  and N such that 

 MNW ,,1   and  NW . Then decomposing  Mii ,,1|   into 

 WiiW  |  and  NiiN  | . Fixing N , maximize 
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            (39) 

subject to the constraints, 






Ni

ii

Wi

ii yy  ,  Ci  0  for Wi        (40) 

Since the constraint in equation (40) is satisfied for 2W , so the minimum number of W  is 

two. Such decomposition technique is usually known as chunking. A fixed size chunking and 

variable size chunking is given in (13) and (12).  

4.3 Generalized Error Estimate and Model Selection for Support Vector Classifiers 

This is one of the important issues to discuss the estimation of generalized error or in other 

words, how to estimate the probability of misclassification of new patterns by the learned 

machine assuming that the new data derives from the same (unknown) distribution underlying 

the original training set. Unknown generalization error is represented by   and its estimate by



 . Here it is desired for the worst case probability to find an upper bound of the true 

generalization error for which few methods are discussed below (14) i.e. 

 


            (41) 

which holds with probability 1 , where  is a user defined value usually equals 0.05 or less. 

The empirical error is defined by, 








l

i

ii yyI
l

v

1

),(
1

        (42) 

Where 1),( 



ii yyI  if 


 ii yy  and zero otherwise. 

Generalization estimate and model selection are closely related because it allows to choose the 

optimal hyperparameters of the SVM i.e. C ,   or P .  The value 


  is computed for several 

hyperparameter values and the optimal SVM is selected as the one for which the minimum is 

attained and this minimum can be used for model selection, if not for estimating the true 

generalization error as described in (15), (16) and (17).  
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4.3.1 Training Set 

In this case the generalization error is estimated by the following formula but it not 

recommended in general because there is a strong dependency between errors as all the data 

is used for training SVM. 

)1(
1




 





F
l

vtrain         (43) 

choosing SVM with Gaussian kernel having large   results in 0v even though 0 . 

4.3.2 Test Set 

In this case generalization error is estimated with the following formula that also contains the 

term testv  used for error performed on the test set. 

m
vtesttest

2

ln 







         (44) 

Due to partitioning of the data in two parts, some information goes useless because the test 

data does not contribute to the learning process that could be managed by retraining the new 

SVM on the entire data set without changing the hyperparameters with the training-test data 

partition. 

4.3.3 K-fold Cross Validation 

This technique is similar to the technique described in 4.3.2 with minor difference. Here the 

training data is partitioned into k  subsets consisting of lk /  patterns each out of which 1k  

are used for training and the one is used for testing, so the generalization estimate is given by 

the following formula: 

l

k
v

k
testkcv

2

ln)( 







        (45) 

Unlike Test Set technique, the procedure is repeated for k  times using each one of the k  

subsets as test set exactly once. In this approach all the data is used for training and also for 

model selection. The most commonly used value for k  are 5 or 10. Moreover, foldk   

procedure could be iterated 













k

l
 many times without repeating the same training-test set 

partitioning but this approach is infeasible (9).  One problem with this technique is that it finds 

k different SVMs, each one is trained on a set of klk /)1(   samples. 
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4.3.4 Bootstrap 

This technique (18) is similar to k -fold cross validation with different approach for splitting 

training-testing data. For training, l patterns are extracted with replacement from the original 

training set in which some patterns are included multiple times into new set and some others 

are left out. On average, one-third of the patterns are left for the test set. If the training set is 

created with this procedure that is known as bootstrap replicate and the maximum number of 

replicate that can be generate are












 


l

l
N B

12
. To perform a good error estimate 1000 

replicates are usually sufficient. 

The following average test error performed on each bootstrap replicate determines the 

estimate of generalized error: 
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And the bound is given by 
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Where boot



  is the standard error, assuming the distribution is Gaussian and can be found with 

the following formula: 
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Avoiding Gaussian assumption and computing th  percentile point of the test error results in 

more accurate estimate and also by making use of nested bootstrap replicates (19).   

There are also other methods that can be used for generalized error estimate, e.g. Leave-one-

out (20), VC-Bound (21), Margin Bound, Maximal Discrepancy and Compression Bound. For 

details to see these methods, see (9). 

4.4 Support Vector Machines for EEG Signals 

In this section an application of fuzzy support vector machine (FSVM) is discussed for the 

classification of EEG signals based on wavelet features (22).  Radial basis function kernel was 

used for the classification of motor imagery tasks and to choose the kernel parameter along 
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with the trade-off parameter, a low fraction of support vectors was used as a criterion, together 

with the membership parameter based solely on training data and it was proven that FSVM 

classifier performed better than the normal SVM approach. The optimal hyperplane could be 

sensitive to noise and outliers in the training set due to its dependency on the small part of data 

points. This problem was solved by introducing the fuzzy memberships of data points by the 

FSVM. The FSVM classifier was also intended to maximize the margin similar to normal SVM 

classifier. To find the optimal hyperplane, problem for FSVM classifier was defined as follows: 

Minimize 




l

i

iisCww

1

.
2

1
        (49) 

Subject to the constraint, 

iii bxwy  1).( , for li ,,1  and 0i      (50)  

Where C is a constant,  1,is  is fuzzy membership with sufficiently small 0 . The term 

iis   is considered to be the measure of error with different weighting. 

While designing the FSVM classifier, selection of appropriate fuzzy memberships is very 

important and relative importance of data points to their own classes could serve as a rule 

during the assignment of membership values to data points. For efficient training of data set S , 

it is divided into two sets 
S with 1iy  and 

S  with 1iy . The density function )( ix for 

the point ix  being the number of data points in its neighborhood is divided into two groups, 

positive and negative, given by, 
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Where . denotes the Euclidean distance and (.)N  denotes the cardinality of the set containing 

the data points. The distance between the two classes 
S and 

S  is denoted by d and r is a 

fractional multiplier. Using equations (51) and (52), membership function is formulated as 

follows: 
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where 
max is the maximum of )( ix


 for all training data points. 

Parameter selection for FSVM classifier with RBF kernel was predetermined by the kernel 

parameter   and the trade-off parameter C  (23). However, the optimal values for these 

parameters were found first firstly for normal SVM algorithm using two dimensional grid by 

)1000,100,50,10,2,1(C  and  with 100 equidistant values between 1 and 5. The general flow 

chart for the classification of EEG signals is shown in the figure 4.7 
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Figure 4.7 Flow chart of the FSVM application on EEG signals. 
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5.1 Introduction 

In this chapter we shall discuss the brief overview of brain-computer interfaces (BCI) in 

order to understand its objectives, background and the phases involved in this BCI projects. 

Normally people use speech, gestures or writing to communicate with other people. 

Imagine if somebody is not able to communicate with other people through these channels 

but he/she is aware of the environment. Such a condition is called locked-in syndrome. 

Indeed the patients are truly locked in their bodies and remain unable to express 

themselves. There are some neurological diseases that may cause the body towards 

paralyses of the motor system restricting both verbal and nonverbal communication. 

Locked-in means that the people are conscious and alert but not able to utilize their muscles 

causing them to restrict the communication of their needs, wishes and emotions: keeping 

the healthy brain locked into a paralyzed body. Amyotrophic lateral sclerosis (ALS) (1) is such 

a disease that causes the patients to go into locked-in syndrome. It is a progressive, 

neurodegenerative disease and is characterized by the death of motor neurons which in 

turn leads to the loss of control over voluntary muscles. This situation motivates us to 

restore their communication of those individuals who have lost the ability to communicate 

by speech or other muscular activities. 

Brain-computer interfaces (BCI) are a new means of channels that could give back the basic 

communication abilities and some degree of autonomy to the individuals in locked-in 

condition. BCI technology augments the human capabilities and enables them to interact 

with computers and other physical devices through brainwaves after a short training period. 

So the underlying idea to develop BCI technology is to record the electric or magnetic signals 

from the human brain through invasive or non-invasive approaches. A BCI establishes a 

communication channel between the human brain and the computer. It translates the 

human brain activity into messages or commands after necessary signal processing, feature 

extraction and classification which means that the idea is to detect the patterns of brain 

activities and then these patterns are translated into commands to interact with computer 

or other physical devices e.g. wheelchairs. There are several ways to record human brain 

signals e.g. EEG, fMRI etc. but here we will discuss brain-computer interfaces based on EEG 

signals and non-invasive approach. Applications for BCI may be developed either in physical 

or virtual world (2) (3) so an individual can control the devices such as movement of cursor 

on monitor screen, typing using virtual keyboard and controlling wheelchair using EEG-

based non-invasive BCI. The electrical activity produced by the brain is recorded using 

electrodes placed over the scalp. The experiments are usually designed to record EEG 

signals such as P300, or mu rhythm. Event-related potentials (ERPs) that can more precisely 
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describe the dynamics of brain related activities are extracted from the recorded EEG 

signals. For instance, BCI users concentrate on imagination of hand or foot movement (4) or 

fixate their gaze on monitor screen to interact with speller applications (5). These mental 

activities are selected in such a way to activate the related brain area and may vary widely 

across different experiments, subjects and the related application. Such BCI systems 

performances may be improved with the help of feedback.  

Wolpaw in (6) has presented an overall generic review of brain-computer interface systems 

that provide comprehensive detail on fundamental studies. He categorizes the BCI into 

dependent and independent classes. In dependent BCI brain’s normal output pathways are 

not used to carry the message but activity in these pathways is required to generate the 

brain activity that does carry it. For instance, a matrix of letters is presented to the user with 

flashing one letter at a time or a complete row/column of letters in an odd-ball paradigm 

manner and users intension is to select the letter by fixing its gaze on it in order to generate 

visual evoked potential (VEP) recorded from the scalp preferably over the visual cortex (7). 

Here the brain’s output channel is EEG whose generation depends on gaze direction which 

turns on the extraocular muscles and the cranial nerves that activate them. Whereas an 

independent BCI does not depend in any way on brain’s normal output pathways. The 

message is not carried by the peripheral nerves and muscles and the activity in these 

pathways is not required to generate the brain activity that does carry the message. In this 

case, the brain’s output channel is EEG, and the generation of the EEG signal depends 

mainly on the user’s intent, not on the precise orientation of the eyes (8) (9) (10). 

In BCI applications, the movements and their associated the nerves and muscles are 

replaced with electrophysiological signals and the hardware and software which translate 

these signals into commands to initiate actions. It should be kept in mind that user’s specific 

skills are required to perform successful BCI operation because the users require a skill not 

only to control the muscles but also require how to produce and control specific 

electrophysiological signals in order to accomplish the user’s intent so BCI use is a skill. Such 

skills are also required even when the initial training is not needed e.g. BCI based on P300 

potential that is generated in response to the desired letter without training and 

successfully implemented in speller application. Basic research on BCI systems commenced 

in the early 1970’s and has seen renewed interest in recent years. While increases in 

computing power and advances in measurement technology have led to a large variety of 

proof-of-concept systems, none of the systems described in the scientific literature is suited 

for daily use by disabled persons. This is due to the fact that the technology underlying BCIs 

is not yet mature enough for usage out of the laboratory. 

5.2 Main Components of BCIs 

In general, any BCI system consists of these components. 1) Signal acquisition, 

preprocessing, feature extraction, classification and application interface. General model 

architecture of a BCI system is shown in figure 5.1 with respect to offline and online or real 
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time methods. The electrophysiological signals are recorded and stored with signal 

acquisition component and the electrodes are placed over the scalp according to 10-20 

electrode placement system as shown in figure 5.1.  

 

Figure 5.1 10-20 International electrode placement system. Source (Wikipedia) 

Once the signals are acquired, preprocessing component performs artifact reduction in 

terms of removal of electrooculogram (EOG) and electromyogram (EMG) signals. This 

component is also responsible for the application of low pass and/or high pass filters in 

order to remove the influence of noise e.g. line frequency, and to perform spatial filtering in 

case of multichannel data. After the signals are preprocessed, it is assumed to have EEG 

signals in hand which are subjected to further signal processing algorithms for feature 

extraction. It is assumed that the extracted feature must be suitable for subsequent 

classification of specific brain patterns. A variety of feature extraction methods exists that 

can be used with BCI systems e.g. amplitude and latency measures (already discussed in 

chapter 3), band power, Hjorth parameters, autoregressive parameters and wavelets. 

Features may be extracted both in time and frequency domain depending on the 

application. To assign the recorded samples of the signal to a particular category or class, 

classification component is activated that receive the input from feature extractor. There is 

variety of linear and non-linear classification methods available e.g. linear discriminant 

analysis, neural networks and support vector machines. After the signal is classified into a 

particular class, the output of the classifier that could simply be an on/off signal is 

transformed into a control signal in order to interact with application interface to control 
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the physical device or to navigate in the virtual environment as shown in figure 5.2. Once 

the device attached to the BCI system is started controlling, the feedback of the 

application’s output could be used to improve the performance of a BCI system. For further 

literature on BCI systems readers may find useful (11) (12) (13). 

 

Figure 5.2 Generic model architecture for a brain-computer interface. Source (2) 

5.3 Types of EEG signals used for Noninvasive BCI Systems 

BCI communication systems are based on a variety of EEG signals being currently used for 

the demonstration of proof of concept. These are P300 potentials (5), steady-state evoked 

potentials (14), motor potentials (15), event-related synchronizations/desynchronizations 

(16) and slow cortical potentials (17) (18).  These are the potentials generally recorded over 

the surface of the brain and provide safer way to invasive approaches and provide useful BCI 

communication devices for individuals with disabilities. Here we shall discuss BCI based on 

P300 potentials and motor potentials due to limited scope of the chapter. 

5.3.1 BCI based on P300 Potentials 

P300 has been extensively studied within the context of oddball paradigm. It is a large 

positive potential over the midline areas and appears around 300 ms after the onset of 

stimulus and in response to target stimuli that occur infrequently to which the subject is 

supposed to respond to in some manner. Farwell and Donchin et al. (5) (19) were the first 

who reported the use of P300 potential for BCI communication system. The paradigm they 

used consists of a 6 × 6 matrix of grey symbols on a dark background. The rows and columns 

were randomly intensified and the subjects were supposed to respond in terms of counting 
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(by heart) the letter being attended. The P300 was elicited when the attended row or 

column flashed. The symbol was selected by averaging the certain number of trials. 

Hardware and software setup for P300-based BCI is shown in figure 5.3. 

 

Figure 5.3 The hardware for P300-based BCI for home. 

The users with and without disabilities showed accurate performance however the users 

performance varies depending on the size of matrix and inter-stimulus interval (20). In (21), 

Krusienski et al. have shown that the online performance of a P300 based BCI is significantly 

improved when the midline electrodes are supplemented with posterior locations. Serby et 

al. (22) have shown that the offline performance is improved by using 6 × 6 matrix with 

independent component analysis and a matched filter. A P300-based BCI system is being 

used in-home by a patient with ALS (23). This system has reduced set of electrodes, portable 

amplifier and a laptop computer with a specific instance of BCI2000 (24). Literature suggests 

that if the subjects are visually impaired then auditory stimuli (25) may be used to elicit 

P300 potential and is quite successful for BCI use (26). An apparent advantage of P300-

based BCI is that it does not require initial training. Bayliss (27) recorded P300s in a virtual 

environment and suggested during the offline analyses that single-trial P300 amplitudes 

might be used for environmental control. A typical P300 potential is shown in figure 5.4 
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Figure 5.4 P300 evoked potential. Positive is plotted downward. Source (6) 

5.3.2 BCI based on Motor Potentials 

When primary sensory or motor cortical areas are not engaged in processing sensory input 

or producing motor output, EEG activity is produced among 8 – 12 Hz band (28). This idling 

EEG activity is known as my rhythm when it is recorded over the somatosensory or motor 

cortex and alpha rhythm when recorded over the visual cortex (29). Until 1976, mu rhythm 

was mostly seen in minority, however Pfurtscheller reveal that my rhythm is found mostly in 

adults (30). Some mu rhythms lies between 18 – 26 Hz beta rhythms and some beta 

rhythms happens to be the harmonics of mu rhythms. Since the mu and beta rhythms are 

generated from those cortical areas of the brain which are connected to brain’s normal 

motor output channels, therefore, these signals could be good features for EEG based BCI 

communication. Mu and beta rhythms usually decrease when the subject is moving or 

preparing for movement. Such decrease is known as even-related desynchronization. 

Whereas when the subject comes to rest after movement, rhythm starts increasing and is 

known as even-related synchronization (31).  Moreover, to produce these EEG activities, 

actual movements are not required because only imagination of movements (32) is 

sufficient to produce these activities which might be the cause for a BCI system to be 

independent BCI. One example of application of such imaginations of movements is 

successfully implemented in (2). Figure 5.5 illustrates how sensory motor rhythms produced 

by recording over the sensorimotor cortex during the control of a cursor movement towards 

the target at the top of the screen and towards the bottom of the screen. Frequency 

spectrum clearly shows that the EEG activity lies between 8 – 12 Hz mu rhythm and slight 

activity is also found in beta rhythm 18 – 28 Hz. 
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Figure 5.5 Sensorimotor Rhythms. Source (6) 

These motor-related potentials are also used in (33) in context with BCI communication 

system but the authors emphasized on self-paced or user initiated BCI paradigms unlike 

Graz-BCI (2) which depends on auditory external cue. For self-paced BCI either the actual 

movements are necessary or some other means to verify the user’s intension therefore 

training of classifier for such BCI system is a challenging task because the observable 

movements are not feasible with severely motor impaired users whereas Mason et al (15) 

have used sip-and-puff switch to verify the intent in paralyzed users. Among other 

applications of motor-related potentials Blankerts et al. (34) have used left and right key 

strokes and in (35) they have demonstrated the existence of detectable motor potentials 

from limb commands recorded from patients with amputations. 

5.3.3 Slow Cortical Potentials 

Slow Cortical Potentials (SCPs) are the scalp recorded EEG features that occur within 0.5 – 

10 s having the lowest frequency and slow voltage changes generated in cortex. Increased 

cortical activation is associated with scalp negativity and decreased activation is associated 

with positivity (17). It is possible to learn how to control SCPs and therefore an object may 

be controlled on a computer screen using SCPs in (36) which is known as thought translation 

device (TTD). The patients with late stage ALS are also able to produce SCP and have the 

capability of using such communication capability (37).  Figure 5.6 illustrates the variation is 

SCPs, for which EEG was recorded at the vertex linked to mastoids. The subject was 

supposed to select the target at the top and bottom of the screen. It took 4 s to select the 

object. The main disadvantage of such BCI systems is that it took long training time.  
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Figure 5.6 Slow cortical potential. Positive is plotted downward. 

It requires 1 – 2 h per week over weeks or even months to train the users. After the users 

achieve 75% of consistent accuracies, they are switched to language support program (LSP) 

that enables the user to choose a letter or combination of letters (38). 

5.4 Well Known Brain-Computer Interfaces 

There are several BCIs which provide state of the art. For example, Wadsworth’s BCI, Graz’s 

BCI and Berlin’s BCI and there might be other systems but we shall describe here only 

couple of BCI systems. 

5.4.1 Noninvasive BCI at Wadsworth Center 

At Wadsworth center the objective was to develop a BCI that could be used in a daily life by 

severely disabled people at their homes. Firstly, researchers developed a BCI that controls a 

cursor in one or two dimension using mu and/or beta rhythms recorded over the 

sensorimotor cortex. They further extended their BCI to include the use of P300 response 

and additionally developed general purpose software (BCI2000) for BCI research (24).  

Wadsworth’s Mu Rhythm Based Communication 

In order to utilize sensorimotor rhythm (SMR) amplitudes in mu (8 – 12 Hz) and/or beta (18 

– 26 Hz) bands, users require a series of training sessions to learn to move a cursor on a 

video screen in one or two dimensions. The more the practice the user does, the more the 

improvement of user performance comes out. They demonstrated that they used two 

channels of EEG to control cursor movement independently in two dimensions so users 
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could hit targets located at one of the four corners of the monitor (39). They also 

demonstrated using one-dimensional cursor control with two to five targets arranged along 

the right edge of the monitor (40).  Figure 5.7 illustrates the visual application design of the 

experiment in five steps for one dimension and two dimension cursor movement. 1) Trial 

begins and it lasts 1 s for the target and cursor to be present on the screen. 2a) The cursor 

moves steadily across the screen for 2 s with its vertical movement controlled by the user. 

2b) The cursor moves in two dimensions with direction and velocity controlled by the user 

until the user hits the target or 10 s have elapsed. 3) The target flashes for 1.5 s when it is 

hit by the cursor. If the cursor misses the target, the screen is blank for 1.5 s. 4) The screen is 

blank for a 1-s interval. 5) The next trial begins. 

 

Figure 5.7 a) SMR task for one dimensional four target b) SMR task for two dimensional 

eight targets. Source (11) 

To control each dimension, weighted sum of one or two spectral features was used. For 

example, an increase in the amplitude of 10Hz mu rhythm was used to move the target up 

and a decrease for moving the target down. Users initially learned cursor control in one 

dimension (i.e., horizontal) based on a regression function. Next they were trained on a 

second dimension (i.e., vertical) using a different regression function. Finally the two 

functions were used simultaneously for full two-dimensional control. Various regression 

models were evaluated for controlling cursor movement acquired from a four-choice, one-

dimensional cursor movement task and it was also shown that using more than one EEG 

feature improved performance was found. Moreover, they evaluated nonlinear models with 

linear regression by including cross-product (i.e., interaction) terms in the regression 

function. Topographies of Pearson’s r correlation values for one user are shown in figure 

5.8, where it can be seen that two distinct patterns of activity controlled cursor movement. 

Horizontal movement was controlled by a weighted difference of 12-Hz mu rhythm activity 

between the left and right sensorimotor cortex (see figure 5.8, left topography). Vertical 

movement was controlled by a weighted sum of activity located over left and right 
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sensorimotor cortex in the 24-Hz beta rhythm (see figure 5.8, right topography). This study 

illustrated the generalizability of regression functions to varying target configurations. In 

addition, they conducted a study according to which users are also able to control a robotic 

arm in two dimensions by applying the same techniques which were already used for cursor 

control. They have also shown that users are able to select or reject the target by 

performing or withholding hand-grasp imagery (41).  

 

Figure 5.8 Scalp topographies (nose at top) of Pearson’s r values for horizontal (x) and 

vertical (y) target positions. Source (11) 

Wadsworth’s P300 Based Communication 

They also developed a BCI based on P300 feature of the EEG signal whose objective was to 

type letters without using hands with brainwaves, commonly known as Speller application. 

The subjects were presented a matrix paradigm described by (5) i.e. 6 × 6 matrix containing 

36 symbols. The user focuses attention on the desired symbol in the matrix while the rows 

and columns of the matrix are highlighted in a random sequence of flashes. A P300 response 

occurs when the desired symbol is highlighted. To identify the desired symbol, the classifier 

determines the row and the column that the user is attending to (i.e., the symbol that 

elicited a P300) by weighting specific spatiotemporal features that are time-locked to the 

stimulus. The intersection of this row and column defines the selected symbol. Figure 5.9 

shows a typical P300 matrix display and the averaged event-related potential responses to 

the intensification of each cell. The cell containing the letter “O” was the target cell and 

elicited the largest P300 response when highlighted. To a lesser extent the other characters 

in the row or the column containing the O also elicited a P300 because these cells are 

simultaneously highlighted with the target cell. 

They evaluated the classification accuracy based on several variables e.g. channel set, 

channel reference, decimation factor and the number of model features using the stepwise 
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discriminant analysis (SWDA) method. They used different channel sets in order to have 

statistically significant effects on classification accuracy. Set 1 comprised of Fz, Cz and Pz. Set 

2 contains PO7, PO8 and Oz. Set 3 contains both set 1 and set 2. Set 4 contains set 1, 2 and 3 

with 19 electrodes in total. They showed that set 1 and set 2 were equal in performance but 

worse than set 3 whereas set 4 was no better than set 3. 

 

Figure 5.9 a) 6 × 6 matrix display b) average waveform of each cell. 

From these results, one thing was clear that set 3 which contained 6 electrodes was suitable 

for this application rather using set 4 that contained 19 electrodes with excess of 

information to be processed.  

5.4.2 Noninvasive Graz BCI 

Graz BCI is based mainly on synchronous mode (which means that the time windows are 

limited for mental activities and therefore the signal has to be analyzed in epochs), two 

types of event-related potentials, the visual and somatosensory steady-state potentials 

(SSVEP, SSSEP) were used as input signal for the Graz-BCI and uses motor imagery and 

associated oscillatory EEG signals from the sensorimotor cortex for device control. Mu (8–12 

Hz), sensorimotor rhythm (12–15 Hz) and beta (15 – 30 Hz) frequency bands were 

considered. To control an external device based on brain signals, it is essential that imagery 

related brain activity can be detected in real time from the ongoing EEG. They studied the 

effects of kinesthetic and visual representation of actions so the two actions, kinesthetic 

motor imagery (first person, MIK, in which the subjects were supposed to imagine self-

performed action) and visual motor imagery (third person, MIV, in which the subjects were 

supposed to imagine a previously viewed ‘actor’) were instructed to the subjects to 

perform. Moreover, two other actions were also given to the subjects i.e. real movements 

(motor execution, ME) and visual observation of physical hand movement (OOM). Figure 

5.10 show the experimental task and timing. Separate runs were executed consisting of 

each forty trials for the four tasks (OOM, MIV, ME and MIK). Each started with the 
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presentation of a fixation cross at the center of the monitor (0 s). A beep tone (2 s) indicated 

the beginning of the respective task: Subjects should either watch the movements of the 

animated hand, or perform movements themselves, or imagine hand movements until a 

double beep tone marked the end of the trial (7 s). A blank screen was shown during the 

inter-trial period varying randomly between 0.5 and 2.5 s. 

 

Figure 5.10 Experimental tasks and timing. 

 

Figure 5.11 Topographical maps of grand average classification accuracies. Source (11) 

The distinction-sensitive learning vector quantization (DSLVQ) (42) method was used as 

learning classifier to feed the results of fourteen right-handed participants based on 
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multichannel EEG recordings. Electrode locations and reactive frequency components were 

used as features for the classifier to recognize the respective mental states. Real conditions 

(ME and OOM) showed the highest classification accuracy of about 80% on average which is 

also visible in figure 5.11 that the corresponding representation areas for both conditions 

were mostly active i.e. occi-parietal cortical area for visual observation and motor area for 

ME near electrode C3. It is also clear from the figure that classification for MIK is also 

localized on left side of the brain similar to ME for right hand movement whereas MIV was 

not able to localize clearly thereby resulted in unsatisfactory single-trial EEG classification. 

5.5 Applications 

In theory any device that can be connected to a computer or to a microcontroller could be 

controlled with a BCI. In practice however, the set of devices and applications that can be 

controlled with a BCI is limited. To understand this, one has to consider that the amount of 

information which can be transmitted with present day BCI systems is limited. The typical 

information transfer rate achievable with an EEG based BCI is about 20 to 40 bits/min. As an 

additional obstacle most present day BCI systems function only in synchronous mode. In 

synchronous mode, communication is possible only during predefined time intervals. This 

means the system tells the user when it is ready to receive the next command and limits 

severely the possible type of applications. In asynchronous mode users can send commands 

whenever they want. Some of the applications possible with current BCIs are described 

below. 

5.5.1 Spelling Devices 

Spelling devices allow severely disabled users to communicate with their environment by 

sequentially selecting symbols from the alphabet. One of the first spelling devices 

mentioned in the BCI literature is the P300 speller (5). A system based on SCPs was 

described by (43). In their system the alphabet is split into two halves and subjects can 

select one halve by producing positive or negative SCPs. The selected halve is then again 

split into two halves and this process is repeated recursively until only one symbol remains. 

An advanced version of this system in which the relative frequency of letters in natural 

language is taken into account is presented by (38). System based on sensorimotor rhythms 

is described by (44). 

5.5.2 Environment Control 

Environment control systems allow controlling electrical appliances with a BCI. Gao in (45) 

has described a proof-of-concept environment control system based on SSVEPs and Bayliss 

in (46) described the control of a virtual apartment based on the P300. 
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5.5.3 Wheelchair Control 

Disabled subjects are almost always bound to wheelchairs. If control over some muscles 

remains, these can be used to steer a wheelchair. For example systems exist that allow to 

steer a wheelchair with only a joystick or with head movements. If no control over muscles 

remains, a BCI can potentially be used to steer a wheelchair. Because steering a wheelchair 

is a complex task and because wheelchair control has to be extremely reliable, the possible 

movements of the wheelchair are strongly constrained in current prototype systems. In the 

system presented by (47) the wheelchair is constrained to move along paths predefined in 

software joining registered locations and a P300-based interface is used to select the 

desired location. Millan et al. has described in (48) that a miniature robot can be guided 

through a labyrinth, based on oscillatory brain activity recorded with the EEG. Control of the 

robot is simplified by implementing a wall following behavior on the robot and allowing for 

turns only if there is an open doorway. 

5.5.4  Neuromotor Prostheses 

The idea underlying research on neuromotor prostheses is to use a BCI for controlling 

movement of limbs and to restore motor function in tetraplegics or amputees. Different 

types of neuromotor prostheses can be envisioned depending on the information transfer 

rate a BCI provides. If neuronal ensemble activity is used as control signal, high information 

transfer rates are achieved and 3D robotic arms can be controlled (49). If an EEG based BCI 

is used, only simple control tasks can be accomplished. For example in the system described 

by Pfurtscheller (50) sensorimotor rhythms were used to control functional electric 

stimulation of hand muscles and so to restore grasp function in a tetraplegic patients. 

5.5.5 Gaming and Virtual Reality 

Besides the applications targeted towards disabled subjects, prototypes of gaming and 

virtual reality applications have been described in the literature. Examples for such 

applications are the control of a spaceship with oscillatory brain activity (51), the control of 

an animated character in an immersive 3D gaming environment with SSVEPs (52) and the 

control of walking in a virtual reality environment with sensorimotor rhythms (2). 
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6.1 Introduction 

Visual information is distributed to several brain structures in the form of action potentials 

by the axons of retinal neurons which are bundled into optic nerves. Different brain 

structures perform different functions. As an example, visual information is processed in 

occipital and parietal lobe of the brain. In the visual cortex, it appears that parallel paths 

may process different visual attributes. For example, the distinction in the retina between 

neurons that do and do not convey certain stimuli can be found mapped in the visual cortex. 

In general, each one of the more than two dozen visual cortical areas may be specialized for 

the analysis of different types of retinal output. Visual phototransduction is a process by 

which light is converted into action potential in the rod cells, cone cells and photosensitive 

ganglion cells of the retina of the eye. This continuous process of signal generation result in 

a change in the action potential firing frequency of the ganglion cells whose receptive field 

centers receive input from long, middle and short wave sensitive cones (briefly: red, green 

and blue). In general, color sensation derives from the spectrum of light interacting with the 

spectral sensitivities of the light receptors. These signals are carried to the human brain, 

that forms color sensation by the comparison of the readout of three cone types, e.g. upon 

equal activation of all types of cones (red, green and blue), white color sensation derives. 

Vision actually involves numerous different properties of objects i.e. color, form, movement 

and different cells of visual system are responsible for concurrent processing of these 

properties. 

In this chapter we shall discuss about our experiment and the results obtained. Up till this 

chapter we have prepared the grounds for necessary background required to understand 

the basic principles and underlying theory involved in developing brain-computer interfaces. 

It was necessary for the onwards implementation of our results based on our hypothesis. To 

the best of our knowledge, we did not find any brain-computer interface system that relies 

only on color information because all the BCI systems we have studied during this course 

are based on EEG signals produced either by motor execution or its imagination, visual or 

auditory stimulation in terms of instructions given to the subjects in order to perform the 

required tasks. Our main focus and goal in the experiment is on the offline analysis and 

classification of color information into red, green and blue classes using Support Vector 

Machine (SVM), obtained from EEG signals produced by the uniform primary colors 

stimulation in order to be utilized for future BCI applications. In this context we have used 

only three colors, Red, Green and Blue for our experiment in order to avoid expected 

complications and to achieve more precise results. We believe that the results we obtained 

and presented here would serve as necessary means to develop future BCI applications. 
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Since several applications for Brain-Computer Interaction (BCI) like P300 Speller application 

or mu rhythm cursor movement have been developed but regarding colors different types 

of other studies are done, for example, a similar work was done in (1) in which authors have 

used only RGB colored sheets of paper to examine the arousal-calming effects, using each 

EEG band power and the total band power (beta+alpha+theta) and the alpha attenuation 

test as standard indices of arousal and to analyze the human brain activities in perception 

and attention referred to EEG alpha band response but not particularly related to BCI 

application’s point of view. The ultimate task of any BCI system is the classification of EEG 

signals which reflects the growing interest of researchers in EEG-based BCI. For any 

successful BCI application, it is necessary to implement online classification in order to see 

real time execution which is a challenging task for signal processing and machine learning 

experts. However, an earlier offline analysis of EEG signals helps us in improving our 

classification accuracies. Once the brain signal is classified, it is fed to the outer world 

application to perform the desired operation. In this study, we have presented the results 

for offline spectral analysis and classification (using three different kernels, linear, 

polynomial and RBF) of EEG signals recorded from the scalp, produced by primary colours 

stimuli, red, green and blue, presented at random.  

To explore the dynamics of brain in response to presentation of primary colors, i.e. red, 

green and blue, we performed an experiment in which subjects were exposed to random 

occurring of RGB colors and instructed to imagine the same color that was exposed most 

recently while keeping the eyes closed, in a Virtual Reality set to provide an immersive 

experience on a large screen keeping the luminance of colors constant. Frequency bands 

under investigation are delta (0.1 – 4 Hz), theta (4 – 8 Hz), alpha (8 – 12 Hz) and beta (12 – 

30 Hz). The purpose of the experiment is to verify, if either the observation of different real 

colours or their corresponding imagination of colours can be detected in the selected EEG 

frequency combination, and to select best frequency combination to maximize differences 

through colour signals in order to find a Way-In to further establish our argument and to 

provide a baseline to be compared with more complex visual stimuli to evaluate the effects 

of colours to navigate in an immersive VR environment. For example, we can develop a 

virtual reality (VR) application in which first and preliminary version will exhibit the traffic 

light signals. A moving vehicle is expected to stop when turning ON the Red light, upon 

recognition of red colour through EEG signals. Similarly, upon recognition of the green light, 

a stopped vehicle is expected to start moving. We suggest that this method would be faster 

and provide more effective communication channel than those based on motor imagery 

described in (2) because colors deliver fastest information and help greatly in making 

decision immediately. As a simple example, in real life traffic signal light colors let us decide 

in a fraction of second either to keep going or slowdown or stop even while driving at the 

farther distance. Moreover, on several other public places different colors are used for 

recognition of terminals for services quickly and easy to understand, react immediately and 

greatly affects human emotional status. This way we may use colours as controllable 

parameter in VR environments. Another application of such colour recognition system could 
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be for colour blind and/or blind people (3). These applications are quite novel in their fields 

and needs extensive collaborative research work in different domains. We shall extend this 

study to further investigate the dynamics of brain activities to provide feedback for BCI 

systems to navigate into virtual environments to control motion, referring to consider the 

effects of color stimuli in VR environment. The results obtained and presented here are not 

used yet for online BCI system. 

6.2 Experimental Design and Methods 

Concerning the experimental settings, seven subjects have under gone the experiment, age 

ranging from 20 to 36 years. All subjects were free of neurological and psychiatric disorders 

and have normal colour vision. Experiment was performed in a dark room in front of a large 

curved screen (see figure 6.1) on which the colour was presented as a square with size of 10 

degree angle on a much wider gray background. The subjects were seated on a comfortable 

chair. Distance between the subjects and the screen was 3.5 meters and 1.5 meters high 

from the ground. The luminosity of each colour was kept constant at about 4.5 cd/m2 and 

measured using the device Minolta SPOTMETER F. Screw-able gold EEG electrodes were 

used on the subject’s scalp at P3, P4, O1 and O2 sites and referenced to right ear lobe and 

grounded at site AFz as shown in figure 6.2. 

 

 

Figure 6.1 Experimental environment: Virtual Theater with large curved screen along with 

presented stimuli. 
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Figure 6.2 International 10-20 electrode placement layout and subject with mounted cap. 

Experiment protocol is shown in figure 6.3 that depicts the duration of one sequence. In this 

protocol, each colour was presented for three seconds, twice in one sequence and the 

subject was instructed to imagine also the same colour for three seconds in the same 

sequence twice to analyze the spectrum of color imagination, in order to see any differences 

between real color and imagined color. There are eight events in one sequence. Only one 

colour is presented in one sequence. After all the events are occurred in a sequence then 

the next sequence is started and another colour is presented. When all the 3 colors are 

presented at random, the subjects were given a rest for 9 seconds after every 3 sequences 

while keeping eyes closed. Uniform gray background colour was displayed before and after 

every real colour to reduce and balance the possible after-effects of the RGB stimuli (1). All 

impedances were kept below 5kΩ. EEG signals were recorded using BCI2000 (4) with g.tec’s 

( http://www.gtec.at ) g.MOBIlab+ portable device sampled at 256 Hz, processed and 

analyzed offline using EEGLAB (5) that runs with MATLAB. Signals were band pass filtered 

from 0.1 Hz to 30 Hz. Each colour was presented 60 times randomly, resulting in 60 trials of 

each colour from each subject. Each trial contains 768 data points after the onset of 

stimulus. Once, all the EEG signals were recorded they were brought into EEGLAB for offline 

processing and analysis. EEGLAB has a vast compatibility to import EEG signals into 

MATLAB’s workspace which are recorded with different devices using BCI2000. Epochs were 

extracted from continuous data for each colour and their corresponding imagination 

individually. Each epoch is extracted in way that it lasts for three seconds i.e. one second 

before the event occurred and two seconds afterwards. To reduce the effects of abnormal 

values, those trials for which EEG signals crossed ± 60 µV were rejected and some segments 

were also dropped by visual inspection that did not cross ± 60 µV but were unreliable in 

further computations. During recording of EEG signals, some other artifacts like EOG/EMG 

signals interfere with EEGs which produces unwanted neuronal activities due to volume 

conduction in the brain which may be dropped by the visual inspection. However, if 

http://www.gtec.at/
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distributions of potential values are further away from a Gaussian distribution compared to 

the other scalp channels then data statistics may be used to drop empirically bad channels. 

For the moment, we do not need to drop any such bad channel because the methods are 

available for separating eye or muscle artifacts from neuronal activities. 

 

Figure 6.3 Experiment protocol 

We have used a method based on blind source separation by independent component 

analysis decomposition (ICA) to remove such artifacts, because it has the capability to 

preserve contribution of ERP from different scalp locations even when there is no single trial 

without these artifacts. It uses spatial filters derived by ICA, which does not necessarily 

require us to record separate channels for these artifact sources (6). In figure 6.4 (a), we can 

see two different EEG signals before and after application of ICA decomposition because the 

EEG signals were decomposed into four independent components derived from EEG signals 

recorded from four different channels. 

 

Figure 6.4 (a) Raw EEG signals (in black) and Artifact free EEG signals (in red) 

After the application of ICA, EEG signal trials were subjected to create a STUDY structure 

within the EEGLAB for multiple subjects to compute and analyze the ERP waveforms, power 

1. Gray colour with 
voice prompt   

(3 sec) 

2. One of RGB 
colours   

(3 sec) 

3. Gray colour           

(3 sec) 

4. Same RGB colour  
as in step 2    

(3 sec) 

5. Gray colour           

(3 sec) 

6. Eyes Closed 
Colour imagine         

(3 sec) 

7. Gray colour with 
voice prompt        

(3 sec) 

8. Eyes Closed Colour 
imagine       

 (3 sec) 
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spectrum, event-related spectral perturbation and inter-trial coherence for the real color 

exposure as well as for the imagination of colors. So here we present these results. 

6.3. Results and Discussion 

6.3.1 ERP Waveforms 

Across varying scalp locations, averaged ERPs are evoked by sudden onsets of visual stimuli 

that contain a prominent negative peak (N1) around 150 to 200 ms and a positive peak (P3) 

around 300ms, which are quite visible in figure 6.4. 

(a) 

(b) 

(c) 

Figure 6.4 Averaged ERP waveforms for each color exposure on left and corresponding 

imagination on right. Red is shown in (a), Green in (b) and Blue in (c). 
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In figure 6.4, X-axis represents time in milliseconds (ms) and Y-axis represents potential 

values in microvolts (µV). Latencies and amplitudes of these peaks may vary among 

different scalp locations and different subjects. In (7), Makeig and his colleagues reported 

that many ERP features are mainly generated by partial stimulus induced phase resetting of 

multiple EEG processes. In order to compare event-related EEG dynamics for a subject in 

two or more conditions from the same experiment, we created datasets containing epochs 

for each condition i.e. red, green and blue for color exposure and as well as for color 

imagination among all subjects. Figure 5 shows the grand mean ERP waveforms generated 

by the exposure of red, green and blue colors in each subject at scalp electrode P4 in the 

right parietal region. Average event-related potentials (ERPs) are shown among 7 subjects; 

each trial contains samples from -1s before to 2s after the time locking event of the onset of 

color stimulus. Although no significant response is visible in ERPs of red, green and blue 

color, however, positive peaks around 300 ms are almost equivalent in red and blue and 

relatively higher than in green. A significant negative peak centered at 800 ms is visible in 

green color but not in its imagination.  Usually data averaging collapses the dynamic 

information in the data so it might not be effective in the analysis. In color imagination 

waveforms, a positive peak centered around 500 ms is visible unlike real color exposure. 

This peak drops down zero around 800 ms and remains negative until the end of epoch 

extracted whereas it becomes positive in the real exposure around 1000 ms in all the colors. 

These variations in the waveforms reflect how the event-related synchronization and 

desynchronization occurs in response to visual stimulus. Please note that, the potential level 

remains almost same in the baseline segment with no high variability among the real color 

exposure and in their corresponding imaginations. The peaks and valleys in these ERP 

waveforms could serve as possible features for the classifier but may not provide 

satisfactory results because Makeig in (8)  reported that according to several studies, event-

related potentials (ERPs) are not capable of capturing maximum brain’s response to events 

due to their instability and not being fully independent of EEG. This reason lacks our interest 

in analyzing ERP waveforms in more depth. 

6.3.2 Spectral Plots 

Figure 6.5 shows the frequency versus power (10*log10(µV2/Hz)) spectrum plots for the 

seven subjects in blue traces across three different conditions each for red, green and blue, 

along with their average spectrum in black traces. Spectrum is shown for channel P4 from 

the right parietal region. In figure 6.5 (a) significant activity is found in alpha frequency (8 - 

12 Hz) band and higher theta frequency (6 – 8 Hz) band with lower power than alpha band, 

in all the subjects for each color. Spectrum shows some insignificant activities in the beta 

frequency (13 – 30 Hz) band with slight variations in power increases and/or decreases in all 

the subjects however power in the beta band was found below level zero. Imagination of 

colors show similar frequency spectrum with higher power values in the alpha band, as 

figure 6.5 (b) shows that the average power in black trace is close to 4, where as in real 

colors average power is close to zero. A sudden decrease in power is seen in delta band (0.1 
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– 4 Hz). Upon having more close observation in all cases, one subject is found that has 

highest power value in the higher beta band (25 – 30 Hz) and lowest power value in alpha 

band than other subjects. However, its power spectrum oscillations are relatively same in 

alpha and beta bands. 

 

(a) 

 

(b) 

Figure 6.5 Power spectrum of each real color exposure in figure (a) and its corresponding 

imagination in figure (b). Red’s response is on left, Green’s in the middle and Blue’s in right. 

X-axis represents Frequency (Hz); Y-axis represents Power. 

Highest power spectrum value in real colors exposure is found to be 7 in alpha band where 

as in imagination of colors it is 10. Spectrum was computed using FFT algorithm. Since there 

is no time information in these plots so it would not serve us to make analyses on event-

related response. That’s why we do not prefer to use these features for the classifier 
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because overall there is not much discrimination between the colors and also their 

imagination. 

6.3.3 Event-related Spectral Perturbation 

This is something where we are most interested in the results. Event-related Spectral 

Perturbation (ERSP) is a measure to study the event-related brain dynamics. It reflects the 

information about variation in power at different frequencies at a certain time point. 

Calculating an ERSP requires computing the power spectrum over a sliding latency window 

then averaging across data trials. Narrow band event-related desynchronization and 

synchronization is generalized by the ERSP measures. As we have discussed earlier that 

event-related potential (ERPs) are not capable of capturing maximum brain’s response so 

due to this limitation of ERPs we have used event-related spectral perturbation (ERSP) (9) 

(10) values in terms of time-frequency measurements as features for the classifier and the 

classification results dramatically improved as compared to when ERP waveforms were used 

as features for the classifier. ERSP is computed by calculating baseline spectra from the EEG 

immediately preceding each event. Overlapping data windows are created by splitting the 

epoch to create the moving average of the amplitude spectra. Normalization is performed 

on individual response epochs for each spectral transforms by dividing by their respective 

mean baseline spectra. An ERSP is produced by taking average of normalized response for 

many trials. For n trials, if ( , )kF f t  is the spectral estimate of trial k  at frequency f and 

time t , then ERSP is computed using following formula, 

2

1

1
( , ) ( , )

n

k

k

ERSP f t F f t
n

 

Here ( , )kF f t  is computed using sinusoidal wavelet transform in which the number of cycles 

is increased slowly with frequency and provides better frequency resolution at higher 

frequencies than a conventional wavelet approach that uses constant cycle length. 

Figure 6.6 represents averaged event-related spectral perturbation (ERSP) plots among all 

the subjects from electrode position P4, distributed in time-frequency frame. The color at 

each image pixel indicates power (in dB) at a given frequency and latency relative to the 

time locking event. As we can see in figure 6.6 (a), response for red color exposure, ERSP is 

more concentrated (yellow color) around 300 ms in delta (1 – 4 Hz) and theta (4 – 8 Hz) 

frequency bands than green and blue which means there is an increase in power in this time 

span and frequency bands. Green color has lowest positive activity in delta and theta bands 

around 300 ms. In alpha frequency band (8 – 12 Hz) and lower beta frequency band (13 – 18 

Hz), responses for all the colors are relatively the same, centered around 600 ms, starting 

from 400 ms until 1000 ms that shows significant decrease in power with lowest value in 

red. In higher beta band, evidences of slight increase in power are found around 1500ms. 

Figure 6.6 (b) shows ERSP responses for all the color imaginations in which a similar pattern 

of distribution of power is seen. In delta and theta band, from 200 ms to 500 ms, increase in 
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power is higher than in real color exposure whereas decrease in upper theta band, alpha 

band and lower beta band from 300 to 800 ms is relatively less than found in real color 

exposure. However, more significant increase in power is found from 9 Hz to 18 Hz starting 

from 800 ms until the end of epoch extracted. 

(a) 

(b) 

Figure 6.6 Averaged ERSP plots of each real color exposure in (a) and corresponding 

imagination in (b). Red’s response is on right, Green’s in the middle and Blue’s is on the left. 

X-axis represents time (ms) and Y-axis represents frequency (Hz). 

Now we will also present ERSP plots for each individual subjects from the same electrode P4 

in order to better analyze the responses and also because we have used these features in 

our classifier and sooner we will present the results of our classifier.  
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(a)

(b) 

Figure 6.7 Subject ‘01’: ERSP plots of each real color exposure in (a) and corresponding 

imaginations in (b). Red’s response is on right, Green’s in the middle and Blue’s is on the 

left. X-axis represents time (ms) and Y-axis represents frequency (Hz). 

Figure 6.7 shows the variation in power distribution for subject 1 in time-frequency domain. 

Among the real color exposure, red color has higher power i.e. event related 

synchronization, than green and blue in delta band at around 300ms. In Green color’s 

exposure EEG activity is greatly desynchronized in alpha band and relatively less 

desynchronized in delta and theta bands starting from 400 ms until 1000ms, however this 

desynchronization in alpha band lasts until 1500 ms. In green color exposure, an increase in 

power is seen in lower beta band after one second of onset of stimulus where as in beta 

band red and blue colors exposure have slight variations in power increase at variable 

latencies. Among the imagination of colors, red color has increase in power in delta, theta 

and alpha band starting after 100 ms of onset of stimulus and lasts until 800 ms in delta 

band and lasts until 400 ms in theta and alpha band. Green color’s imagination has increase 

in power in theta band and lower beta band whereas alpha band has decrease in power 
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around 400 ms until 800 ms in all the color’s imagination. It is also clear that blue color’s 

imagination is increased in power within delta and theta bands around 100 to 400 ms. 

Overall, event-related synchronization and desynchronization is scattered in all frequency 

bands among variable latencies both in real color exposure and their corresponding 

imaginations. 

(a)

(b) 

Figure 6.8 Subject ‘02’: ERSP plots of each real color exposure in (a) and corresponding 

imaginations in (b). Red’s response is on right, Green’s in the middle and Blue’s is on the 

left. X-axis represents time (ms) and Y-axis represents frequency (Hz). 

Figure 6.8 illustrates the even-related synchronization and desynchronization for subject 2, 

both in real color exposure and their corresponding imaginations. We can see that subject 

2’s response is nicely distributed and do not have scattered variations like in subject 1’s 

response. An increase in power is seen in delta and theta bands around a fixed latency of 

100 to 400 ms, not only in all the real colors exposure but also in the imagination of colors, 

i.e. subject 2’s colors exposure response for distribution of power in time frequency domain 
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is well synchronized with the distribution of power in their corresponding imaginations. This 

increase in power is highest in blue and lowest in green, among the real colors exposure and 

highest in green with lowest in blue among the imaginations of colors. Moreover, a 

decrease in power is visible in all cases within higher theta band, alpha band and lower beta 

bands during 300 ms onwards until 800 ms to 1000 ms. In addition, a slight increase in 

power is seen in beta band after one second of onset of stimulus among the imaginations. 

(a) 

(b) 

Figure 6.9 Subject ‘03’: ERSP plots of each real color exposure in (a) and corresponding 

imaginations in (b). Red’s response is on right, Green’s in the middle and Blue’s is on the 

left. X-axis represents time (ms) and Y-axis represents frequency (Hz). 

Figure 6.9 shows the ERSP response for subject 3. Increase in power in delta and theta 

bands is very low whereas decrease in power is significant in red and blue colors exposure 

but not in green starting from 200 ms after the onset of stimulus and desynchronization 

lasts until 700 ms in blue exposure and until 1000 ms in red exposure. Among imagination of 
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colors, an increase in power is seen in alpha band during 1000 to 1500 ms in blue colors 

whereas this increase is not significant in green and red. 

 

(a) 

 

(b) 

Figure 6.10 Subject ‘04’: ERSP plots of each real color exposure in (a) and corresponding 

imaginations in (b). Red’s response is on right, Green’s in the middle and Blue’s is on the 

left. X-axis represents time (ms) and Y-axis represents frequency (Hz). 

Figure 6.10 reflects ERSP plots for subject 4. Event-related desynchronization is significant in 

alpha band starting from 300 ms until 800 to 1200 ms among the color exposure along with 

a slight increase in power in theta band during100 to 400 ms only in red color exposure. This 

event-related desynchronization is also seen in imagination of all colors for lesser time spans 

in alpha band with highest increase in power in green color imagination in upper theta band, 

alpha band and lower beta band during 800 ms until 1500 ms. 
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(a) 

(b) 

Figure 6.11 Subject ‘05’: ERSP plots of each real color exposure in (a) and corresponding 

imaginations in (b). Red’s response is on right, Green’s in the middle and Blue’s is on the 

left. X-axis represents time (ms) and Y-axis represents frequency (Hz). 

Figure 6.11 show the ERSP plots for subject 5. Variation in power distribution for real colors 

exposure is nicely synchronized with variation in power distribution for colors imagination 

which means that subject was trained enough to start imagine the exposed color well in a 

given time at synchronized latency measures. Red exposure has the greatest increase in 

delta and theta bands during 100 to 500 ms. Among the imaginations of colors, event-

related synchronization is visible in delta and theta bands whereas event-related 

desynchronization is also seen in alpha band during 300 ms to 100 ms similar to real color 

exposure. An important observation is that in the lower beta and higher beta bands increase 

in power is significant after the one second of onset of stimulus. This increase is higher in 

blue and lower in red among imaginations. Please note that the distribution of power is not 

scattered in subject 5, both for real color exposure and their corresponding imaginations, 
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like the distribution of power is scattered in subject 1’s and subject 3’s imagination of colors 

in figures 6.7 (b) and 6.9 (b) respectively. Similar behavior about the distribution of power is 

also seen in subject 2 and 4 like it is seen in subject 5. However the intensity of distribution 

of power was greater in subject 5 than in subject 2 and 4. 

(a) 

(b) 

Figure 6.12 Subject ‘06’: ERSP plots of each real color exposure in (a) and corresponding 

imaginations in (b). Red’s response is on right, Green’s in the middle and Blue’s is on the 

left. X-axis represents time (ms) and Y-axis represents frequency (Hz). 

Figure 6.12 illustrates the distribution of power in time-frequency domain for subject 6 and 

we can see that event-related synchronization and desynchronization is highly scattered in 

all frequency bands during the whole time span of epoch among all the real colors exposure. 

Whereas such desynchronization and synchronization of powers are nicely distributed and 

symmetric among all the colors imaginations i.e. an increase in power is seen in delta band 

during 200 ms to 800 ms along with an increase in power in alpha band starting after the 

one second of onset of stimulus among all the colors imaginations. Another observation in 

Time (ms)

S06 ERSP, P4, 1, B

Fr
eq

ue
nc

y (
Hz

)

0 500 1000
 3

 5

 7

 9

11

13

15

17

19

21

23

25

28

Time (ms)

S06 ERSP, P4, 1, G

0 500 1000
 3

 5

 7

 9

11

13

15

17

19

21

23

25

28

Time (ms)

S06 ERSP, P4, 1, R

0 500 1000
 3

 5

 7

 9

11

13

15

17

19

21

23

25

28
dB

-2.8

-1.4

0

1.4

2.8

Time (ms)

sm3 ERSP, P4, G1, B

Fr
eq

ue
nc

y (
Hz

)

0 500 1000
 3

 5

 7

 9

11

13

15

17

19

21

23

25

28

Time (ms)

sm3 ERSP, P4, G1, G

0 500 1000
 3

 5

 7

 9

11

13

15

17

19

21

23

25

28

Time (ms)

sm3 ERSP, P4, G1, R

0 500 1000
 3

 5

 7

 9

11

13

15

17

19

21

23

25

28
dB

-11.2

-5.6

0

5.6

11.2



6. Experimental Design with Single Shape 
 

106 
 

this case is that a slight decrease in power is seen within alpha band during 200 ms to 800 

ms on average as this decrease in power is very common in all other cases of real color 

exposure and also in imaginations of colors but in this subject decrease is lower than other 

subjects. 

(a) 

(b) 

Figure 6.13 Subject ‘07’: ERSP plots of each real color exposure in (a) and corresponding 

imaginations in (b). Red’s response is on right, Green’s in the middle and Blue’s is on the 

left. X-axis represents time (ms) and Y-axis represents frequency (Hz). 

Figure 6.13 reflects the ERSP plots for subject 7 and we can see in this case, that an activity 

corresponding to event-related desynchronization is quite significant as compare to an 

activity corresponding to event-related synchronization and similar behavior is also visible in 

in imaginations of colors. Please note one of the observation that among all the subjects 

whenever there is non-scattered distribution of power is seen in imaginations of colors then 

the corresponding real color exposures also have the non-scattered distribution of power in 

a symmetric manner, whereas in the case of subject 6, figure 6.12, the distribution of power 
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is seen non-scattered among the colors imagination but seen highly scattered in real colors 

exposure. However, if the distribution of power is seen as non-scattered in real colors 

exposure then the distribution of power may or may not be scattered among colors 

imaginations. 

6.3.4 Inter-Trial Coherence 

Inter-Trial Coherence (ITC) is a frequency domain measure of the partial or exact 

synchronization of activity at a particular latency and frequency to a set of experimental 

events to which EEG data trials are time locked. The measure was introduced by Tallon-

Baudry et al. (11) and termed a ‘phase locking factor.’ The term ‘inter-trial coherence’ refers 

to its interpretation between recorded EEG activity and an event-phase indicator function 

(e.g. a Dirac or cosine function centered on the time locking event). ITC is defined by the 

following formula, 

1

( , )1
( , )

( , )

n
k

kk

F f t
ITC f t

n F f t
 

Here  represents the complex norm.  

ITC values lies between zero and 1. If the ITC value is zero then it shows that there is no 

synchronization between the EEG data and time locking events whereas the value of 1 

reflects the perfect synchronization. The spectral estimates are returned as complex vectors 

in 2-D phase space. The norm and phase angle of each vector are represented by the 

magnitude and phase of the spectral estimate. To compute (ITC), the lengths of each of the 

trial activity are normalized to 1 and then complex average is computed. ITC significance 

levels are assessed using surrogate data by randomly shuffling the single-trial spectral 

estimates from different latency windows during the baseline period. 

Figure 6.14, shows inter-trial coherence (ITC) that measures the degree of phase consistency 

or phase synchronization. It should be kept in mind while assessing the ITC data that 

frequency bands under considerations are delta (0.1 – 4 Hz), theta (4 – 8 Hz), alpha (8 – 12 

Hz) and beta (13 – 30 Hz). Figure 6.14 (a) reflects significant ITC in delta (0.1 – 4 Hz), theta (4 

– 8 Hz), relatively less in alpha (8 – 12 Hz) and lower beta (13 – 22 Hz) bands starting from 

100 ms of the onset of stimuli and lasts until 400 ms with highest concentration in red than  

in green and blue. Also, green has higher concentration than blue which force the blue color 

to be lowest synchronized than red and green. To some extent, a synchronized activity is 

found in upper beta (22 – 30 Hz) band in red color which is relatively darker than green. A 

similar pattern is exhibited in figure 6.14 (b) for imagination of colors. We can see during the 

same time period there are significant ITC values in delta, theta and partially in alpha band 

where as in beta band occurrence of synchronization between EEG data and time locking 

events is very rare. Partial spreads of synchronization are seen at variable times and 

frequencies mostly in imaginations and highly synchronized signal is found in blue in delta 
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band (0.1 – 4 Hz) around 200 to 400 ms in imaginations of colors. Overall synchronized 

activity was found in red color exposure. 

(a) 

(b) 

Figure 6.14 Averaged ITC plots of each real color exposure in (a) and its corresponding 

imagination in (b). Red’s response is on left, Green’s in the middle and Blue’s is on the right. 

X-axis represents time (ms) and Y-axis represents frequency (Hz). 

Let us now analyze the individual activity of each subject and see how well synchronized the 

EEG data is with the time locking events. 
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(a) 

(b) 

Figure 6.15 Subject ‘01’ ITC plots of each real color exposure in (a) and its corresponding 

imagination in (b). Red’s response is on right, Green’s in the middle and Blue’s is on the left. 

X-axis represents time (ms) and Y-axis represents frequency (Hz). 

Figure 6.15 shows the ITC values for Subject 01 where EEG data is the better synchronized 

with time locking events in delta band among red and green colors exposure whereas blue 

has relatively less synchronized data in all frequency bands throughout its latency times. 

However the synchronization is scattered in the beta frequency bands in all the color 

imaginations of subject 1. 
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(a) 

(b) 

Figure 6.16 Subject ‘02’ ITC plots of each real color exposure in (a) and its corresponding 

imagination in (b). Red’s response is on right, Green’s in the middle and Blue’s is on the left. 

X-axis represents time (ms) and Y-axis represents frequency (Hz). 

Figure 6.16 shows the ITC response of subject 02. We can see that subject 2’s EEG data is 

very nicely synchronized both in real colors exposure and their corresponding imaginations 

only in delta and theta bands. Among the real colors exposure red has the highest 

synchronized data and green has the lowest synchronized data whereas among the 

imaginations of colors, red and blue have probably the same synchronization in delta bands. 

One thing is common in both subject 01 and 02 that higher the frequency band, the lesser 

the synchronization is, and it is expected to be common also in other subjects. Another 

thing is that, subject 1 is able to imagine the color well in almost all the trials i.e. starts 

imagination in given time well before it ends. 
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(a) 

(b) 

Figure 6.17 Subject ‘03’ ITC plots of each real color exposure in (a) and its corresponding 

imagination in (b). Red’s response is on right, Green’s in the middle and Blue’s is on the left. 

X-axis represents time (ms) and Y-axis represents frequency (Hz). 

Figure 6.17 reflects the synchronization of subject 3’s EEG activities. We can see that among 

all the real color exposures, once again the delta band is better synchronized than other 

frequency bands whereas in imaginations of colors the synchronization of EEG data with 

time locking events is highly scattered and relatively less than real exposures in all the 

frequency bands and at all latencies measures which means that the subjects 3’s response 

to real color exposures is well but not able to imagine the colors well in a given time of 3 

seconds and starts imaging at variable latencies in all the trials. 
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(a) 

(b) 

Figure 6.18 Subject ‘04’ ITC plots of each real color exposure in (a) and its corresponding 

imagination in (b). Red’s response is on right, Green’s in the middle and Blue’s is on the left. 

X-axis represents time (ms) and Y-axis represents frequency (Hz). 

Figure 6.18 shows the ITC values of subject 4, according to which red has the highest 

synchronization activity in theta (4 – 8 Hz) frequency band among the real colors exposure 

whereas EEG activities for green and blue color’s response is less synchronized not only in 

theta but also in delta band. However, green and blue colors response is relatively better 

synchronized than red in beta band at variable latencies. Among the imaginations of subject 

4, synchronization of EEG data with the time locking event is almost similar to subject 3 

which means that subject 3 and 4 both were not good in imaginations of colors. Moreover, 

subject 3 and 4 have the EEG activity synchronized to some extent in the baseline latency. 
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(a) 

(b) 

Figure 6.19 Subject ‘05’ ITC plots of each real color exposure in (a) and its corresponding 

imagination in (b). Red’s response is on right, Green’s in the middle and Blue’s is on the left. 

X-axis represents time (ms) and Y-axis represents frequency (Hz). 

Figure 6.19 illustrates the synchronization of its EEG activities with the experimental events 

very nicely in three frequency bands i.e. delta, theta and alpha but not in beta band among 

the real colors exposure with highest synchronization in red whereas among the imagination 

of colors EEG data is only synchronized in delta and theta band but not in alpha band with 

highest ITC value in green and lowest in blue keeping the red in the middle which means 

that subject 5’s imagination of colors is better than the subjects 1, 3 and 4 but more or less 

same as subject 2’s imaginations of colors. One more thing is visible in figure 6.19 that all 

the EEG activities are synchronized in same latencies from the onset of stimulus until 500 

ms, not only color exposure but also for imagination of colors. 
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(a) 

(b) 

Figure 6.20 Subject ‘06’ ITC plots of each real color exposure in (a) and its corresponding 

imagination in (b). Red’s response is on right, Green’s in the middle and Blue’s is on the left. 

X-axis represents time (ms) and Y-axis represents frequency (Hz). 

Figure 6.20 shows the ITC data for subject 6. Among the real colors exposure, red has higher 

synchronized activity than both the green and blue in alpha band but having relatively less 

synchronized activity in its delta and theta bands in comparison with its own alpha band at 

around 200 to 400 ms of time. Whereas among the imagination, all the colors are 

synchronized in delta and lower theta bands with blue color has the highest synchronization 

activity within 100 to 400 ms of latencies having very less synchronized activity in alpha and 

beta bands. Moreover, the subject 6 is good at imagination of colors but not better than 

subject 5. 
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(a) 

(b) 

Figure 6.21 Subject ‘07’ ITC plots of each real color exposure in (a) and its corresponding 

imagination in (b). Red’s response is on right, Green’s in the middle and Blue’s is on the left. 

X-axis represents time (ms) and Y-axis represents frequency (Hz). 

Figure 6.21 illustrates the synchronization activity of subject 7 which is quite visible that all 

the activities are scattered with respect to frequency bands and variable latencies, not only 

in real color exposure but also in imagination of colors. In this case, EEG activities are 

synchronized in all the frequency bands. 

One thing is very clear from the ITC responses that not all the subject are able to imagine 

the colors in a given time of 3 seconds that caused them to produce non synchronized EEG 

activity. Subjects 2, 5 and 6 all are better than subjects 1, 3, 4 and 7 both in real color 

exposure and imaginations. So the inter-trial coherence varies greatly depending on the 

subjects mental condition i.e. if he is relaxed or confused or tensed due to environmental 

setup during the experiment and also if the subject is seated in a comfortable positions. All 

these conditions may greatly affect the subject’s perception to colors. 
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6.3.5 ERP Image Plots 

In order to better understand electrophysiological data analysis we used ERP image plots 

that are 2-D transforms of epoched data expressed as rectangular colored image, where 

every horizontal line represents activity occurring in a single experimental trial; data epochs 

are first sorted along some relevant dimension, for example, latency or phase-sorted trials 

at stimulus onset. ERP image provide more effective analysis than one dimensional ERP 

waveforms. Please note that like earlier plots, here also the data is considered from 

electrode position P4. 

Figure 6.22 represents ERP image plot for red color exposure in (a) and its imagination in (b). 

In Figure 6.22 (a), first row shows head plot, top left containing a red dot indicates the 

position of the electrode in the montage i.e. in this case P4 and on the top right, frequency 

spectrum is shown up to beta band where a significant peak is found in the alpha band 

(already shown in figure 6.5). In the second row, ERP image is presented with respect to 

phase-sorted trials. It is produced by stimulus induced phase resetting of ongoing EEG 

activity. The sigmoidal shape of the phase-sorted post stimulus alpha wave fronts (red and 

blue) indicate the uneven distribution of post stimulus alpha phase (7) that starts around 

150 ms before stimulus onset. An ERP alpha phase time series is shown in the third row. We 

can see a negative peak N1 around 250 ms in ERP waveform that is sum of more negative 

than positive single-trial values, evidently visible in ERP image at the same latency in the 

second row. Event-related spectral power (ERSP) waveform in time domain is reflected in 

the fourth row that shows a significant power decrease in alpha band after 200 ms of the 

onset of stimulus which is compatible with the average ERSP plots for red color in figure 6.6 

(a) right most plot i.e. blue concentrated area in the alpha band (8 – 12 Hz) along with upper 

theta (6 – 8 Hz) and lower beta (13 – 22 Hz) bands. The number 10.78 dB (visible by zooming 

the image) in the baseline (i.e. left side of vertical bar) indicates the absolute baseline power 

level. Fifth row represents inter-trial coherence (ITC), having significant increase in ITC in 

alpha band with highest value at a single frequency of 9.75 Hz which is selected as analysis 

frequency in the alpha band together with (p=0.05) ITC significance level, centered from 100 

to 400 ms which is also evident in figure 6.14 (a). As we can see, phase synchronization gets 

stronger than our specified p=0.05 significance cutoff at about 250 ms in figure 6.14 (a) and 

6.14 (b). A significant difference of increase in power is found in all ERSP waveforms of all 

the color imaginations unlike real color exposure in the last one second of epoched data 

which could be due to delay in starting imagination of colors. Figures 6.23 and 6.24, show 

ERP image plots for green and blue colors respectively. In figure 6.23 (a) and 6.24 (a), 

negative peak occurs at 250 ms and a positive peak occurs at 400 ms visible in ERP alpha 

waveforms. ERSP waveforms show more decrease in power starting from 200 ms while 

exposure of real colors than imagination of colors in both figures 6.23 and 6.24. 
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(a) 

(b) 

Figure 6.22 ERP Image plots of Red color in (a) and its corresponding imagination in (b). First 

row – Head plot and Frequency Spectrum. Second row – ERP image. Third row – ERP 

waveform. Fourth row – ERSP in waveform. Fifth row – ITC waveform. 
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(a) 

(b) 

Figure 6.23 ERP Image plots of Green color in (a) and its corresponding imagination in (b). 

First row – Head plot and Frequency Spectrum. Second row – ERP image. Third row – ERP 

waveform. Fourth row – ERSP in waveform. Fifth row – ITC waveform. 
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(a) 

(b) 

Figure 6.24 ERP Image plots of Blue color in (a) and its corresponding imagination in (b). 

First row – Head plot and Frequency Spectrum. Second row – ERP image. Third row – ERP 

waveform. Fourth row – ERSP in waveform. Fifth row – ITC waveform. 
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about 200 ms to 300 ms in both green and blue color exposure and their corresponding 

imaginations like red colors. During real color exposure, phase synchronization remains 

within our specified significance except in real blue exposure, slightly around 500 ms as 

depicted in figure 6.24 (a). 

6.4 Classification using SVM with ERSP as Features for Real Exposure of Colors 

In this section we will not discuss the theoretical parts of classification using support vector 

machines because we have already discussed SVM in detail in chapter 4. In this section we 

will describe the results for classification of EEG signals produced by real colors exposure 

only whereas the classification results for the imagination of colors are presented in the 

next section. As you know that we have EEG signals belonging to three classes in our 

experiment to be classified as Red, Green and Blue and as you also know that ERSP data that 

was computed using EEGLAB (5) Toolbox. We have ERSP datasets for each colour i.e. red, 

green and blue, for each subject. To acquire these datasets, ERSP was calculated for each 

trial in terms of time-frequency framework, for each colour among all the subjects. An 

average ERSP was taken across the trials for each colour as shown in figure 6.25 which 

represents the ERSP response for electrode position O2 across all the subjects for the real 

colours exposed to the subjects. It is clearly visible in all the colours that distribution of 

power in a specific frequency band at a certain time point is quite discriminative and 

remains discriminative for individual subjects for each colour. After the onset of stimuli, the 

highest increase in power is seen in red and lowest in blue during an interval from 100 to 

400ms within delta and theta band. However, the lowest decrease in power is seen in blue 

and highest in green during an interval from 250 to 1000ms within the alpha frequency 

band. These features were fed into SVM classifier. 

 

Figure 6.25 Averaged ERSP shown for electrode position O2. Right (Red), Middle (Green) 

and Left (Blue). 

To classify EEG signals into red, green and blue classes, LIBSVM (12) Toolbox was used which 

requires a specific format of data as follows in general, 
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 <Label Class1>   <index1> : <feature1> <index2> : <feature2> <index3> : <feature3> … 

<Label Class2>   <index1> : <feature1> <index2> : <feature2> <index3> : <feature3> … 

<Label Class3>   <index1> : <feature1> <index2> : <feature2> <index3> : <feature3> … 

             

Each row represents an instance or observation and each column represents the feature 

after the label column. Data was labeled before feeding to the classifier i.e. red labeled as 1, 

green labeled as 2 and blue labeled as 3. Numerically, ERSP data is present in two 

dimensional dataset of 100*200 values which indicate that there are 100 frequency points 

along rows and 200 time points along columns. For instance, to convert the data of subject 1 

for channel P3, all the subject 1’s colours i.e. red, green and blue are taken into account and 

each time point along its frequency points is chosen randomly within a single colour and 

placed according to above format into the target dataset which will be used for training and 

testing of classifier. Once a time point is chosen from red class then a time point is chosen 

from green and finally from blue. This sequence continues until all the time points are 

chosen randomly within a single colour. Since there are 100 frequency points indicating 100 

feature values in the target dataset against each label. Having three classes in hand, there 

would be 600 instances for data coming from channel P3, in the target dataset as each class 

contains 200 instances of time points i.e. each time point becomes an instance along the 

row in the target dataset with the corresponding label. After conversion, target dataset is 

divided into two subsets, one for training of classifier and the other is used for testing the 

classifier. As we have used four channels, two from parietal lobe and two from occipital lobe 

i.e. P3, P4, O1 and O2, the data was fed into the classifier not only as an individual channel 

but also in combination of different channels i.e. P3, P4, O1, O2, P3P4 (parietal region), 

O1O2(occipital region), P4O2(right occi-parietal), P3O1(left occi-parietal) and P3P4O1O2 

(All). We have used C-SVC with linear kernel, polynomial kernel and RBF kernel where

1.0 and degree of polynomial kernel is 3 along with default parameters. Tables 1, 2 and 3 

present classification accuracies for linear, polynomial and RBF kernels respectively, for all 

the groups of data within all the subjects.  
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Table 1 presents the classification accuracies with an average accuracy of 84% for seven 

subjects among different groups of data which were used with linear kernel, for real 

exposure of colors. (ERSP features) 

 S1 S2 S3 S4 S5 S6 S7 

P3 90.74 83.7 85.19 85.93 84.82 84.82 81.85 

P4 81.11 83.7 84.44 84.07 87.78 84.07 84.82 

O1 81.11 86.3 81.85 84.82 88.15 82.96 87.78 

O2 82.22 84.07 82.22 87.04 84.44 87.04 84.44 

P3P4 83.7 85.93 83.89 87.41 88.15 84.63 84.44 

O1O2 85 84.26 83.89 84.63 83.15 85.56 82.59 

P4O2 85 82.78 83.89 84.26 85.93 85.93 82.59 

P3O1 85 85.37 85.74 84.63 84.82 86.67 82.59 

All 84.63 84.17 85 84.17 84.85 83.98 80.83 

 

Table 2 presents classification accuracies with an average accuracy of 89% for seven 

subjects among different groups of data which were used with polynomial kernel of degree 

3, for real exposure of colors. (ERSP features) 

 S1 S2 S3 S4 S5 S6 S7 

P3 90 85.93 84.07 88.52 85.56 93.7 90.37 

P4 83.7 86.67 86.3 89.63 91.11 89.63 91.85 

O1 85.56 87.41 86.67 90.37 87.78 91.11 92.22 

O2 83.7 86.67 89.25 87.04 86.3 87.78 88.15 

P3P4 88.7 87.22 92.96 91.85 96.3 93.15 89.82 

O1O2 85.74 82.59 81.48 88.33 90.56 87.41 89.07 

P4O2 90.19 87.96 87.41 88.7 86.48 82.96 87.96 

P3O1 87.41 84.63 84.26 92.22 90.56 92.96 87.78 

All 92.59 90.74 88.89 91.57 95.56 89.17 87.41 
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Table 3 presents the classification accuracies with an average accuracy of 98% for seven 

subjects among different groups of data which were used with RBF kernel, for real exposure 

of colors. (ERSP features) 

 S1 S2 S3 S4 S5 S6 S7 

P3 99.63 96.3 99.26 96.67 97.04 97.41 99.63 

P4 96.3 95.56 97.78 100 97.78 97.04 98.89 

O1 94.82 96.3 95.93 99.63 97.04 96.67 98.15 

O2 95.56 97.04 99.26 100 93.7 92.22 98.15 

P3P4 97.78 94.63 99.63 99.82 100 99.44 97.78 

O1O2 97.41 95 99.96 99.44 97.59 90.37 97.04 

P4O2 98.33 93.7 99.3 99.3 96.85 95.93 97.59 

P3O1 98.52 97.04 98.7 98.33 97.41 98.7 98.89 

All 99.26 95.37 98.8 99.72 98.43 96.11 97.87 

 

Classification accuracies for the data from all the channels (P3P4O1O2) with in all the 

subjects is shown in figure 7 for the three kernels used. Linear kernel has come up with 

lowest accuracy and RBF with highest accuracy in all the subjects. Similar results for the rest 

of the groups of data were also seen with an ascending order from lower to higher accuracy 

for linear, polynomial and RBF kernels in all the subjects. However, in some cases linear 

kernel has proven to be slightly better than polynomial in occipital region. Results regarding 

linear, polynomial and RBF kernels performances are shown in figures 6.26, 6.27 and 6.28 

for data groups ‘All’, ‘parietal’ and ‘occipital’ channels respectively. However, the results for 

individual channels and right and left occi-parietal channels are similar. Tools used in this 

study are BCI2000 (4), EEGLAB (5) and LIBSVM (12) (13). 
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Figure 6.26 Classification accuracies in comparison among linear, polynomial and RBF 

kernels for data from all channels (P3P4O1O2). X-axis shows the number of subjects and Y-

axis show the classification accuracy in (%). 

 

 

Figure 6.27 Classification accuracies in comparison among linear, polynomial and RBF 

kernels for data from parietal channels (P3P4). X-axis shows the number of subjects and Y-

axis show the classification accuracy in (%). 
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Figure 6.28 Classification accuracies in comparison among linear, polynomial and RBF 

kernels for data from occipital channels (O1O2). X-axis shows the number of subjects and Y-

axis shows the classification accuracy in (%). 

6.5 Classification using SVM with ERSP as Features for Imagination of Colors 

Since our experimental protocol has two parts, one is exposure of real colors and the other 

is imagination of colors so in this section we have presented the classification results for 

imagination of colors. We have found several studies like described in (2), that discuss BCI 

application based on imagination of hands movement and foot movement. Literature show 

that EEG signals produced by imagination of limbs movement can be successfully classified 

with high accuracy and utilized with BCI applications. The study on imagination of colors is 

not found in literature in context with BCI applications. We have classified the color signals 

with a very good accuracy but did not use the classified signal with BCI applications; 

however we have plans in future to implement the classified signals. Tables 4, 5 and 6 

present classification results for linear, polynomial and RBF kernels respectively, for all the 

groups of data within all the subjects. As we can see from tables 4, 5 and 6 that classification 

accuracies on average for imagination of colors are 64%, 70% and 76% respectively which 

are quite below as compare to exposure of real colors. It is clear that classification accuracy 

for imagination of colors is not as good as it was in real exposure of colors. However, results 

produced with linear kernel are lowest likewise classification results with linear kernel in 

case of real color exposure and highest with RBF kernel. Focusing on the classification 

results with linear kernel, the highest accuracy is seen in subject 1 at electrode position P3 

with 70.51% whereas the lowest is seen in subject 7 at ‘All’ channels with 60.6%. Polynomial 

kernel produced highest accuracy in subject 5 at electrode positions P3P4 with 77.61% and 

lowest is seen in subject 3 at electrode positions O1O2 with 62.79% whereas RBF kernel 

produced highest accuracy in subject 4 at electrode positions P4 and O2 with 78.44% and 

lowest accuracy was produced in subject 6 at electrode position O1O2 with 68.81%. 

0

20

40

60

80

100

S1 S2 S3 S4 S5 S6 S7

Linear

Polynomial

RBF



6. Experimental Design with Single Shape 
 

126 
 

Table 4 presents the classification accuracies with an average accuracy of 64% for seven 

subjects among different groups of data which were used with linear kernel, for imagination 

of colors. (ERSP features) 

 S1 S2 S3 S4 S5 S6 S7 

P3 70.51 63.47 64.96 65.7 64.59 64.59 61.62 

P4 60.88 63.47 64.21 63.84 67.55 63.84 64.59 

O1 60.88 66.07 61.62 64.59 67.92 62.73 67.55 

O2 61.99 63.84 61.99 66.81 64.21 66.81 64.21 

P3P4 63.47 65.7 63.66 67.18 67.92 64.4 64.21 

O1O2 64.77 64.03 63.66 64.4 62.92 65.33 62.36 

P4O2 64.77 62.55 63.66 64.03 65.7 65.7 62.36 

P3O1 64.77 65.14 65.51 64.4 64.59 66.44 62.36 

All 64.4 63.94 64.77 63.94 64.62 63.75 60.6 

 

Table 5 presents classification accuracies with an average accuracy of 70% for seven 

subjects among different groups of data which were used with polynomial kernel of degree 

3, for imagination of colors. (ERSP features) 

 S1 S2 S3 S4 S5 S6 S7 

P3 71.31 67.24 65.38 69.83 66.87 75.01 71.68 

P4 65.01 67.98 67.61 70.94 72.42 70.94 73.16 

O1 66.87 68.72 67.98 71.68 69.09 72.42 73.53 

O2 65.01 67.98 70.56 68.35 67.61 69.09 69.46 

P3P4 70.01 68.53 74.27 73.16 77.61 74.46 71.13 

O1O2 67.05 63.9 62.79 69.64 71.87 68.72 70.38 

P4O2 71.5 69.27 68.72 70.01 67.79 64.27 69.27 

P3O1 68.72 65.94 65.57 73.53 71.87 74.27 69.09 

All 73.9 72.05 70.2 72.88 76.87 70.48 68.72 
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Table 6 presents the classification accuracies with an average accuracy of 76% for seven 

subjects among different groups of data which were used with RBF kernel, for imagination 

of colors. (ERSP features) 

 S1 S2 S3 S4 S5 S6 S7 

P3 78.07 74.74 77.7 75.11 75.48 75.85 78.07 

P4 74.74 74 76.22 78.44 76.22 75.48 77.33 

O1 73.26 74.74 74.37 78.07 75.48 75.11 76.59 

O2 74 75.48 77.7 78.44 72.14 70.66 76.59 

P3P4 76.22 73.07 78.07 78.26 78.44 77.88 76.22 

O1O2 75.85 73.44 78.4 77.88 76.03 68.81 75.48 

P4O2 76.77 72.14 77.74 77.74 75.29 74.37 76.03 

P3O1 76.96 75.48 77.14 76.77 75.85 77.14 77.33 

All 77.7 73.81 77.24 78.16 76.87 74.55 76.31 

 

Tables 4, 5 and 6 are summarized in figure 6.29 in order to see the performance of all the 

three kernels within all the groups of data among all the 7 subjects through visual 

inspection. As we can see that none of kernels have produced more than 80% of accuracy at 

all electrode locations in any subject. This accuracy may be increased by better training of 

the subjects to imagine the colors and also by changing the different experimental 

conditions during recording of EEG data and/or by better removing artifacts from EEG data. 

The more the cleaner data is, the more the better and reliable results may be achieved. 

However, keeping in mind all the classification results for real color exposure and their 

corresponding imaginations, it is observed that RBF kernel always produced most of the 

times best results so we suggest to always use RBF kernel in such kind of studies. Please 

note that the complexity and online performance still needs to be addressed. 
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Figure 6.29 Classification accuracies altogether in linear (on left), polynomial (in center) and 

RBF (on right) kernels for data from all the groups of channels. X-axis shows the groups of 

channels of data and Y-axis shows the classification accuracy in (%) and each group of 

vertical bars shows the number of 7 subjects for imagination of colors. (ERSP features, 

imagination) 

6.6 Classification using SVM with Extreme Energy Ratio and Difference Criterions 

In this section, we have presented the classification results for real exposure of colors using 

Extreme Energy Ratio (14) and Extreme Energy Difference (15) features as suggested by 

Prof. Shiliang Sun in order to see if colors information in EEG is classifiable using features 

other than ERSP. We have seen that EEG signals can be successfully classified with EER and 

EED features and accuracy obtained with EED is better than EER. For this purpose we have 

used ERP signals as shown in figure 6.4 instead of using ERSP which is already a transformed 

form of ERPs into time-frequency domain. It is commonly known that EEG signals are the 

neuronal brain activities generated from different underlying sources beneath the cortex. 

For complimentary reasons, we first present here theoretical aspects of EER and EED for a 

single source and then for multiple sources. For complete details, please see (14) and (15). 

6.6.1 Extreme Energy Ratio Criterion 

Extreme Energy Ratio Criterion for Single Source 

This method of feature extraction is based on EEG covariances of two different classes of 

brain activity and suppose the two different classes are A and B e.g. imagery of right hand 

movement and foot movement and having some EEG samples must belong to one of these 

two classes. Assume that there are N number of electrodes and T be the number of total 

points in the EEG trial of recording period then a raw matrix raw
X of order N T can 
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represent an EEG sample. In this matrix, single observation is a vector that consists of N

dimensional Euclidean space and thus an EEG sample makes a distribution of T such 

vectors. Usually, a normalization process is performed before any other processing in order 

to eliminate the energy difference caused by the varying recording time. So the 

normalization process is defined as follows 

/
raw raw

F
X X X       (1) 

Where 

2

1 1

N T
raw raw

ij
F

i j

X X  is the Frobenius norm. 

The covariance of an EEG sample is computed as in the equation (2), 

T
C XX        (2) 

To compute the covariances of the two classes A and B, usually an average is taken for the 

covariances of all the samples belonging to that particular class so the covariances for 

classes A and B are represented as AC  and BC . If ( 1)N denotes the spatial filter for the 

EEG sample X then the spatially filtered signal is defined as T
X and the signal energy is 

defined as T T T
XX C . So the discriminative criterion of EER for binary classification 

task is defined as follows in equation (3), indicating the energy ratio after spatial filtering for 

two classes A and B, also known as generalized Rayleigh quotient. 

( )

T
A

T
B

C
R

C
      (3) 

To compute the extreme energy ratio we need to find the filter, say * which maximizes or 

minimizes the ratio so there exist two optimal spatial filters *

max  and *
min to be sought 

which satisfy, 

*
max

*
min

arg max ( ) arg max

arg min ( ) arg min

T
A

T
B

T
A

T
B

C
R

C

C
R

C

   (4) 

Maximum and minimum Rayleigh quotients are represented as follows in equation (5) 

max max

min min

( )

( )

R

R
 max

min

A B

A B

if C C

if C C
   (5) 
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Where 1 2 1 maxmin N N  are the eigenvalues of matrix 1
B AC C , that is, 

the generalized eigenvalues of the matrix pair ( , )A BC C . The corresponding eigenvectors 

represent the optimal filters as defined in equation (4), so finally for a new EEG sample, its 

energy feature will be a vector consisting of two entries which are the energy values of the 

sample respectively filtered by *

max  and *
min . Until now we have discussed EER criterion for 

a single source and now we shall present the criterion for multiple sources. 

Extreme Energy Ratio Criterion for Multiple Sources 

In case of one dimensional signal, the variance actually reflects the energy value where EER 

criterion searches for a direction so that the variance of the EEG signal projected to this 

direction is maximized or minimized. However, in case of multidimensional signals, it is 

important to understand the following lemma (16) which indicates that the determinant is 

closely related to the concept of energy. 

Lemma: For any matrix n nU  , denote its eigenvalues as ( 1, , )i i n . The determinant of 

U is equal to the product of its all eigenvalues, that is 

1

n

i

i

U      (6) 

This lemma manifests that the determinant of covariance matrix represents the product of 

signal energy from all the principal directions. 

Now suppose having m sources, EER will seek totally 2m sources, half of which maximizes 

the objective criterion and the other half minimizes the objective criterion. So a spatial filter 

bank 1 2, , m will be constituted for m spatial filters to extract m sources. 

Therefore the discriminative criterion can be rewritten as follows in equation (7) 

( )

T
A

T
B

C

R

C

     (7) 

Where ( )R shows the energy ratio after spatial filtering for two classes A and B. This 

process continues to find filter bank * which maximizes or minimizes the ratio as follows in 

equation (8). 

*
max

*
min

arg max ( ) arg max

arg min ( ) arg min

T
A
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B

T
A

T
B

C
R

C

C
R

C

   (8) 
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Here, *
max consists of m generalized eigenvectors of the matrix pair ( , )A BC C which 

correspond to the m maximal eigenvalues while *
min consists of other m generalized 

eigenvectors whose corresponding eigenvalues are minimal. Therefore, an energy feature 

for a new EEG sample will be a vector consisting of 2 m entries which are the energy values 

of the sample respectively filtered by 2 m  spatial filters coming from two filter banks *
max

and *
min . Until now we have discussed the theoretical aspects of EER criterion and now we 

present here the classification results for exposure of real colors. We have three classes Red 

(XR), Green (XG) and Blue (XB). Unlike the ERSP features, here we have considered the binary 

classification problem having three groups of classification (Blue, Green), (Red, Green) and 

(Red, Blue). Moreover, EER features are applied on ERP data which is available in a matrix, 

‘X’ of order 4 768 = N T which means there are 4 electrodes and 768 time points as we 

already know that our ERP starts at -1 sec and ends at 2 sec, where zero second is time point 

of event occurrence and data was recorded at 256 Hz. Therefore, each trial was 768 data 

points long. We used Matlab for this job, and the data was placed in a three dimensional 

matrix. We already know about the two dimensions as we described earlier but the third 

dimension contains the number of trials so we have computed separate features for all the 

trials of both the classes. Taking into account the pair (Blue, Green) first of all computing 

covariances (CB, CG) of each trial belonging to both the classes. These covariances are also 

stored into three dimensional matrixes i.e. one for CB and one for CG and then computed

1
G BC C  which was again stored into three dimensional matrix, likewise third dimension for 

number of trials. The resultant of 
1

G BC C  was used to find the eigenvalues and eigenvectors. 

These eigenvectors are considered to be the spatial filters and applied over the Green (XG) 

and Blue (XB) data. So we have now spatially filtered data for both the classes so the 

features for the matrixes XB and XG are simply the variances of these spatially filtered data in 

order to produce a four dimensional feature vector for a single matrix. Similarly the 

procedures are done with other two groups of classification. We have used only linear 

kernel SVM with EER features and achieved average accuracy of 79%, 78% and 80% for the 

classification groups (Blue, Green), (Red, Green) and (Red, Blue) respectivley, presented in 

tables 7, 8 and 9. Figure 6.30 summarized all the results for EER on a single plane for all the 

three groups of binary classification at all the electrode positions among all the subjects. The 

ERP data was taken from the same experiment as with ERSP features. It is clear that the 

accuracy achieved with EER features is good with an overall average of 78% but there 

appears to be quite varying accuracy as compare to the previous accuracy results for real 

exposure of colors and imaginations of colors with ERSP features. Therefore ERSP features 

seem to be more consistent in producing accuracy with less deviation among all the subjects 

at all the groups of data channels.  
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Table 7 shows classification results with an average accuracy of 79% for seven subjects 

among different groups of electrodes data used with linear kernel for the classification 

group (Blue, Green), for real exposure of colors (EER features) 

 S1 S2 S3 S4 S5 S6 S7 

P3 92.593 77.778 79.31 98.214 95 64.286 85.185 

P4 83.333 77.778 72.414 96.429 91.667 66.071 90.741 

O1 83.333 75.926 77.586 69.643 86.667 66.071 90.741 

O2 83.333 79.63 77.586 55.357 86.667 66.071 96.296 

P3P4 88.889 75.926 74.138 71.429 81.667 67.857 88.889 

O1O2 81.481 83.333 79.31 78.571 86.667 76.786 87.037 

P4O2 61.111 77.778 75.862 83.929 95 64.286 88.889 

P3O1 87.037 75.926 81.034 87.5 95 66.071 83.333 

All 75.926 59.259 70.69 71.429 73.333 58.929 64.815 

 

Table 8 shows classification results with an average accuracy of 78% for seven subjects 

among different groups of electrodes data used with linear kernel for the classification 

group (Red, Green), for real exposure of colors (EER features) 

 S1 S2 S3 S4 S5 S6 S7 

P3 88.889 76.923 82.759 91.071 90 70.69 83.333 

P4 88.889 75 87.931 89.286 90 72.414 85.185 

O1 90.741 78.846 56.897 62.5 85 65.517 88.889 

O2 83.333 78.846 56.897 58.929 86.667 58.621 96.296 

P3P4 83.333 73.077 72.414 73.214 81.667 62.069 85.185 

O1O2 81.481 76.923 79.31 69.643 80 65.517 92.593 

P4O2 75.926 73.077 81.034 91.071 86.667 74.138 83.333 

P3O1 87.037 76.923 81.034 83.929 100 65.517 85.185 

All 59.259 63.462 75.862 57.143 68.333 55.172 61.111 
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Table 9 shows classification results with an average accuracy of 80% for seven subjects 

among different groups of electrodes data used with linear kernel for the classification 

group (Red, Blue), for real exposure of colors (EER features) 

 S1 S2 S3 S4 S5 S6 S7 

P3 89.286 73.077 91.379 87.5 88.333 69.643 82.759 

P4 85.714 76.923 89.655 87.5 83.333 71.429 86.207 

O1 91.071 86.538 94.828 66.071 80 73.214 87.931 

O2 87.5 75 94.828 66.071 80 58.929 93.103 

P3P4 83.929 76.923 70.69 82.143 75 67.857 91.379 

O1O2 83.929 80.769 98.276 73.214 76.667 67.857 89.655 

P4O2 73.214 78.846 91.379 91.071 81.667 71.429 82.759 

P3O1 91.071 80.769 93.103 91.071 85 75 82.759 

All 71.429 67.308 70.69 73.214 65 55.357 70.69 

 

 

Figure 6.30 Classification accuracies altogether for the group (Blue, Green) on left, for the 

group (Red, Green) in center and for the group (Red, Blue) on right. for data from all the 

groups of electrodes. X-axis shows the groups of electrodes and Y-axis shows the 

classification accuracy in (%) and each group of vertical bars shows the number of 7 subjects 

for real exposure of colors. (EER features, real exposure of colors) 
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Table 10 shows classification results with an average accuracy of 72% for seven subjects 

among different groups of electrodes data used with linear kernel for the classification 

group (Blue, Green), for imagination of colors, (EER features) 

 S1 S2 S3 S4 S5 S6 S7 

P3 85.223 70.408 71.94 90.844 87.63 56.916 77.815 

P4 75.963 70.408 65.044 89.059 84.297 58.701 83.371 

O1 75.963 68.556 70.216 62.273 79.297 58.701 83.371 

O2 75.963 72.26 70.216 47.987 79.297 58.701 88.926 

P3P4 81.519 68.556 66.768 64.059 74.297 60.487 81.519 

O1O2 74.111 75.963 71.94 71.201 79.297 69.416 79.667 

P4O2 53.741 70.408 68.492 76.559 87.63 56.916 81.519 

P3O1 79.667 68.556 73.664 80.13 87.63 58.701 75.963 

All 68.556 51.889 63.32 64.059 65.963 51.559 57.445 

 

Table 11 shows classification results with an average accuracy of 70% for seven subjects 

among different groups of electrodes data used with linear kernel for the classification 

group (Red, Green), for imagination of colors, (EER features) 

 S1 S2 S3 S4 S5 S6 S7 

P3 81.849 69.883 75.719 84.031 82.96 63.65 76.293 

P4 81.849 67.96 80.891 82.246 82.96 65.374 78.145 

O1 83.701 71.806 49.857 55.46 77.96 58.477 81.849 

O2 76.293 71.806 49.857 51.889 79.627 51.581 89.256 

P3P4 76.293 66.037 65.374 66.174 74.627 55.029 78.145 

O1O2 74.441 69.883 72.27 62.603 72.96 58.477 85.553 

P4O2 68.886 66.037 73.994 84.031 79.627 67.098 76.293 

P3O1 79.997 69.883 73.994 76.889 92.96 58.477 78.145 

All 52.219 56.422 68.822 50.103 61.293 48.132 54.071 
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Table 12 shows classification results with an average accuracy of 73% for seven subjects 

among different groups of electrodes data used with linear kernel for the classification 

group (Red, Blue), for imagination of colors. (EER features) 

 S1 S2 S3 S4 S5 S6 S7 

P3 81.726 65.517 83.819 79.94 80.773 62.083 75.199 

P4 78.154 69.363 82.095 79.94 75.773 63.869 78.647 

O1 83.511 78.978 87.268 58.511 72.44 65.654 80.371 

O2 79.94 67.44 87.268 58.511 72.44 51.369 85.543 

P3P4 76.369 69.363 63.13 74.583 67.44 60.297 83.819 

O1O2 76.369 73.209 90.716 65.654 69.107 60.297 82.095 

P4O2 65.654 71.286 83.819 83.511 74.107 63.869 75.199 

P3O1 83.511 73.209 85.543 83.511 77.44 67.44 75.199 

All 63.869 59.748 63.13 65.654 57.44 47.797 63.13 

 

 

Figure 6.31 Classification accuracies altogether for the group (Blue, Green) on left, for the 

group (Red, Green) in center and for the group (Red, Blue) on right for data from all the 

groups of electrodes. X-axis shows the groups of electrodes and Y-axis shows the 

classification accuracy in (%) and each group of vertical bars shows the number of 7 subjects 

for imagination of colors. (EER features, imagination of colors) 
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For imagination of colors, we have again used only linear kernel SVM with EER features and 

achieved average accuracy of 72%, 70% and 73% for the classification groups (Blue, Green), 

(Red, Green) and (Red, Blue) respectivley, presented in tables 10, 11 and 12. Figure 6.31 

summarized all the results for EER on a single plane for all the three groups of binary 

classification at all the electrode positions among all the subjects. The ERP data was taken 

from the same experiment as with ERSP features. It is clear that the accuracy achieved with 

EER features is good with an overall average of 72% but again there appears to be quite 

varying accuracy as compare to the previous accuracy results for real exposure of colors and 

imaginations of colors with ERSP features. Therefore ERSP features again seem to be more 

consistent in producing accuracy with less deviation among all the subjects at all the groups 

of data channels. 

6.6.2 Extreme Energy Difference Criterion 

In this criterion definitions for normalization of EEG sample, covariance, spatially filtered 

signal and signal energy will remain same as described in the previous section. The 

discriminative criterion EED, with feature extraction for binary classification, is defined as 

follows in equation (9) for a single source, 

( ) , . . 1
T T T

A BD C C s t     (9) 

Where ( )D indicates the energy disparity after spatial filtering for two classes A and B. To 

optimize ( )D , the method of Lagrange multipliers is used in conjunction with the 

constraint 1
T , so the Lagrange function is defined as 

  ( , ) ( ) ( 1)
T

L D      (10) 

Where is a Lagrange multiplier. This optimization problem is transformed into following 

equations (11) and (12) by taking derivatives of equation (10) with respect to its inputs, 

( , )
2( ) 2 0A B

L
C C     (11) 

( , )
( 1) 0

TL
     (12) 

From equation (11), we get 

  ( )A BC C       (13) 

Using equation (13), the EED criterion can be rewritten as 

  ( )
T

D       (14) 
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Now to optimize ( )D , two spatial filters *

max and *
min are required in order to have the 

following conclusions, 

  *
max max( )D       (15) 

*
min min( )D       (16) 

where 1 2 1 maxmin N N are eigenvalues of matrix A BC C according 

to equation (13) and *

max and *
min  are the corresponding eigenvectors or spatial filters. So 

the energy feature for a new EEG sample will be a vector consisting of two entries which are 

respectively the energy values of the sample spatially filtered by *

max and *
min . For EED 

criterions of multiple sources please refer to (15). Until now we have presented theoretical 

aspects of EED and now we present here its classification results for real exposure of colors 

along with their corresponding imaginations of colors. In EED features the procedure 

remains almost same, the only difference for computing EED features is to compute the 

difference of covariance matrices as G BC C  and then continue to construct the feature 

matrix the same way we have done with EER. The tool used for this job in addition to 

LIBSVM was MatLab’s Bioinformatics Toolbox which provides ‘smvtrain’ and ‘svmclassify’ 

functions to facilitate the computations. The classification results for real exposure of colors 

are presented in tables 13, 14 and 15 for all the three groups of classification (Blue, Green), 

(Red, Green) and (Red, Blue) respectively with in average accuracy of 82%, 83% and 84% 

which I believe is more than a good accuracy. Moreover, the results for imagination of 

colors are presented in tables 16, 17 and 18, also figure 6.33 summarized all the results on a 

single plane. 

EED in comparison with EER has proved to be relatively better features in case of real 

exposure of colors, e.g. taking into account figures 6.32 and 6.30 and having visual 

inspection and counting it is clearly visible that majority of subjects having accuracy above 

80% are seen in EED features while considering all the three groups of classification and all 

the groups of data channels. Another observation is seen in EER that none of the subjects 

have achieved 80% of accuracy among ‘All’ group of data channels whereas in EED several 

subjects achieved 80% of accuracy. Moreover, the average accuracies for (EER, EED) pair are 

found as (79%, 82%) for (Blue, Green) group, (78%, 83%) for (Red, Green) group and (80%, 

84%) for (Red, Blue) classification group, respectively which proved EED to be relatively 

better than EER. A similar performance of EED is also visible in case of imagination of colors 

where EED has again appeared to be better than EER however, the overall average 

accuracies in imagination of colors appear to be less accurate as compare to real exposure 

of colors, likewise it appeared in ERSP features. 
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Table 13 shows classification results with an average accuracy of 82% for seven subjects 

among different groups of electrodes data used with linear kernel for the classification 

group (Blue, Green), for real exposure of colors (EED features) 

 S1 S2 S3 S4 S5 S6 S7 

P3 94.444 77.778 79.31 94.643 95 55.357 87.037 

P4 90.741 79.63 77.586 94.643 95 66.071 90.741 

O1 83.333 79.63 46.552 66.071 86.667 64.286 88.889 

O2 75.926 75.926 72.414 66.071 88.333 60.714 96.296 

P3P4 92.593 75.926 72.414 92.857 93.333 67.857 94.444 

O1O2 83.333 81.481 81.034 96.429 88.333 60.714 94.444 

P4O2 81.481 75.926 74.138 91.071 93.333 69.643 92.593 

P3O1 90.741 81.481 89.655 92.857 95 64.286 79.63 

All 87.037 83.333 72.414 82.143 93.333 58.929 88.889 

 

Table 14 shows classification results with an average accuracy of 83% for seven subjects 

among different groups of electrodes data used with linear kernel for the classification 

group (Red, Green), for real exposure of colors (EED features) 

 S1 S2 S3 S4 S5 S6 S7 

P3 92.593 80.769 84.483 85.714 90 65.517 87.037 

P4 87.037 82.692 77.586 92.857 90 68.966 85.185 

O1 83.333 80.769 68.966 64.286 81.667 65.517 92.593 

O2 77.778 71.154 70.69 67.857 85 55.172 92.593 

P3P4 90.741 80.769 84.483 89.286 90 70.69 90.741 

O1O2 81.481 78.846 98.276 92.857 88.333 68.966 96.296 

P4O2 81.481 78.846 84.483 92.857 93.333 75.862 90.741 

P3O1 87.037 80.769 89.655 89.286 93.333 70.69 83.333 

All 96.296 75 82.759 83.929 91.667 68.966 87.037 
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Table 15 shows classification results with an average accuracy of 84% for seven subjects 

among different groups of electrodes data used with linear kernel for the classification 

group (Red, Blue), for real exposure of colors (EED features) 

 S1 S2 S3 S4 S5 S6 S7 

P3 94.643 75 86.207 87.5 86.667 64.286 86.207 

P4 89.286 80.769 86.207 87.5 90 75 86.207 

O1 85.714 82.692 93.103 69.643 85 73.214 86.207 

O2 87.5 78.846 96.552 58.929 78.333 64.286 93.103 

P3P4 92.857 76.923 86.207 92.857 86.667 73.214 84.483 

O1O2 92.857 86.538 100 80.357 85 71.429 96.552 

P4O2 87.5 80.769 87.931 87.5 86.667 67.857 84.483 

P3O1 92.857 75 98.276 91.071 86.667 73.214 84.483 

All 92.857 78.846 91.379 73.214 86.667 69.643 86.207 

 

 

Figure 6.32 Classification accuracies altogether for the group (Blue, Green) on left, for the 

group (Red, Green) in center and for the group (Red, Blue) on right. for data from all the 

groups of electrodes. X-axis shows the groups of electrodes and Y-axis shows the 

classification accuracy in (%) and each group of vertical bars shows the number of 7 subjects 

for real exposure of colors. (EED features, real exposure of colors) 
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Table 16 shows classification results with an average accuracy of 73% for seven subjects 

among different groups of electrodes data used with linear kernel for the classification 

group (Blue, Green), for imagination of colors, (EED features) 

 S1 S2 S3 S4 S5 S6 S7 

P3 85.954 69.288 70.82 86.153 86.51 46.867 78.547 

P4 82.251 71.14 69.096 86.153 86.51 57.581 82.251 

O1 74.843 71.14 38.062 57.581 78.177 55.796 80.399 

O2 67.436 67.436 63.924 57.581 79.843 52.224 87.806 

P3P4 84.103 67.436 63.924 84.367 84.843 59.367 85.954 

O1O2 74.843 72.991 72.544 87.939 79.843 52.224 85.954 

P4O2 72.991 67.436 65.648 82.581 84.843 61.153 84.103 

P3O1 82.251 72.991 81.165 84.367 86.51 55.796 71.14 

All 78.547 74.843 63.924 73.653 84.843 50.439 80.399 

 

Table 17 shows classification results with an average accuracy of 75% for seven subjects 

among different groups of electrodes data used with linear kernel for the classification 

group (Red, Green), for imagination of colors, (EED features) 

 S1 S2 S3 S4 S5 S6 S7 

P3 84.833 73.009 76.723 77.954 82.24 57.757 79.277 

P4 79.277 74.932 69.826 85.097 82.24 61.206 77.425 

O1 75.573 73.009 61.206 56.526 73.907 57.757 84.833 

O2 70.018 63.394 62.93 60.097 77.24 47.412 84.833 

P3P4 82.981 73.009 76.723 81.526 82.24 62.93 82.981 

O1O2 73.721 71.086 90.516 85.097 80.573 61.206 88.536 

P4O2 73.721 71.086 76.723 85.097 85.573 68.102 82.981 

P3O1 79.277 73.009 81.895 81.526 85.573 62.93 75.573 

All 88.536 67.24 74.999 76.169 83.907 61.206 79.277 
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Table 18 shows classification results with an average accuracy of 72% for seven subjects 

among different groups of electrodes data used with linear kernel for the classification 

group (Red, Blue), for imagination of colors. (EED features) 

 S1 S2 S3 S4 S5 S6 S7 

P3 82.973 63.33 74.537 75.83 74.997 52.616 74.537 

P4 77.616 69.099 74.537 75.83 78.33 63.33 74.537 

O1 74.044 71.022 81.433 57.973 73.33 61.544 74.537 

O2 75.83 67.176 84.882 47.259 66.663 52.616 81.433 

P3P4 81.187 65.253 74.537 81.187 74.997 61.544 72.813 

O1O2 81.187 74.868 88.33 68.687 73.33 59.759 84.882 

P4O2 75.83 69.099 76.261 75.83 74.997 56.187 72.813 

P3O1 81.187 63.33 86.606 79.401 74.997 61.544 72.813 

All 81.187 67.176 79.709 61.544 74.997 57.973 74.537 

 

 

Figure 6.33 Classification accuracies altogether for the group (Blue, Green) on left, for the 

group (Red, Green) in center and for the group (Red, Blue) on right for data from all the 

groups of electrodes. X-axis shows the groups of electrodes and Y-axis shows the 

classification accuracy in (%) and each group of vertical bars shows the number of 7 subjects 

for imagination of colors. (EED features, imagination of colors) 
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Table 19, 20 and 21 present the averaged classification results of ERSP, EER and EED 

features for real exposure of colors and imaginations. 

Table 19 classification results of ERSP 

ERSP features Linear Polynomial RBF 

Real exposure 84 89 98 

Imagination 64 70 76 

 

Table 20 classification results of EER with only linear kernel 

EER features BG RG RB 

Real exposure 79 78 80 

Imagination 72 70 73 

 

Table 21 classification results of EED with only linear kernel 

EED features BG RG RB 

Real exposure 82 83 84 

Imagination 73 75 72 
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7.1 Introduction 

In our earlier experiment the colors were exposed in a single shape i.e. square and in this 

chapter we have discussed about another experiment performed with multiple shapes i.e. 

Square, Circle and Triangle. The colors presented were again the Red, Green and Blue so we 

have the same colors but with different shapes. In this new experiment we have made the 

changes as follows. 1) Imagination part is removed and all the concentration is devoted to the 

real exposure of colors. 2) We have again used the four electrodes but this time electrode were 

placed on TP7 and TP8 instead of using P3 and P4, however the electrodes at the occipital 

region remained same like earlier experiment i.e. O1 and O2. 3) We have reduced the stimulus 

time from three seconds to one second after the onset of stimulus because of three reasons. 

Firstly, Most of the meaningful information lies in the first second after the onset of stimulus 

that could give us most relevant features for classification. Secondly, to reduce the 

computational time i.e. lesser the number of features, lesser will be the time. Thirdly, to reduce 

the experimental time in order to keep the subjects feeling comfortable during the experiment. 

4) The experiment was performed on 5 subjects. Rest of all the parameters, experimental setup 

and environment remained same as already discussed in section 6.2 in the previous chapter. 

In the previous experiment we had only three conditions to analyze and classify our data i.e. 

(Red Square, Green Square and Blue Square) but in this experiment we have nine different 

conditions to analyze and classify our data i.e.  

(Red Square, Green Square and Blue Square) 

(Red Circle, Green Circle and Blue Circle) 

(Red Square, Green Square and Blue Square) 

This means we have RGB colors within each shape and different shapes within each color. 

Therefore, we have the following study regarding all the nine conditions. 1) ERP waveforms. 2) 

ERSP information 3) Classification of RGB colors within each shape i.e. within Square we have 

three different classes of RGB colors, similarly, for circle and triangle which creates three 

classification problem and each problem will have three classes. 4) Classification of RGB colors 

after combining data of similar colors from all different shapes i.e. Red square, Red circle and 

Red triangle’s data will be combined together to produce data of Red class. Similarly, the data 

will be produced for Green and Blue classes, so finally we will have three classes. 5) 
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Classification of different shapes after combining data of RGB colors within a shape in order to 

produce data of three different classes i.e. Square, Circle and Triangle. 6) Classification of all the 

nine different conditions at once. 

7.2 Experimental Protocol 

In this section, we shall discuss our experimental protocol following which the colors were 

exposed to the subjects. After the subject is prepared with all the electrodes montage and gets 

ready, the experiment runs in the following sequence of events as shown in figure 7.1. This is a 

part of a sequence that is repeated several times in order to produce sufficient number of trials 

to have sufficient data for analysis and classification. Almost 72 trials are acquired for each 

color of all the shapes i.e. 72 trials for all the 9 conditions each. Almost 5 to 10% of trials are 

dropped due to rejected artifacts. 

 
Figure 7.1 Experiment protocol for multiple shapes 

In the figure 7.1, we can see six events of interest, three of which are the gray exposures and 

three are RGB colors. The experiment starts with eyes closing instruction and then the subject is 

prompted by voice to open the eyes after 7 seconds and then event 1 is occurred e.g. Gray 

square is exposed and then in event 2 any of RGB color is exposed in a square shape. Similarly, 

in event 3 again the gray color is exposed followed by one of RGB colors in event 4, keeping the 

shape same from event 3 to event 4. Events 5 and 6 occur in the same way. The shapes in event 

1, 3 and 5 are adopted randomly and also the colors in events 2, 4 and 6 are exposed randomly. 

Subjects are also given rest for few seconds randomly after several repetitions of above 

sequence so the all the trials of particular conditions are not recorded continuously but with 

short breaks for the subjects to keep feeling comfortable and to adjust their positions while 

they are seated. After all the trials are recorded, epochs were extracted from continuous data 

for each colour and shape resulting 9 different epochs for each of the 9 different conditions. 

Each epoch is extracted in a way that it lasts for 1.5 seconds i.e. 0.5 second before the event 

occurred and one second afterwards. 

1. Gray color of particular 
shape. 

(1 sec) 

2. One of RGB colors, with 
same shape as in 1.  

(1 sec) 

3. Gray color of particular 
shape. 

(1 sec) 

4. One of RGB colors, with 
same shape as in 3.  

(1 sec) 

5. Gray color of particular 
shape. 

(1 sec) 

6. One of RGB colors, with 
same shape as in 5.  

(1 sec) 
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7.3 Analysis of ERP and ERSP Results 

7.3.1 ERP Waveforms 

In this section we have presented ERP waveforms of RGB colors for all the conditions in figures 

7.2, 7.3 and 7.4 for circle, square and triangle respectively. Like ERPs of previous experiment X-

axis represents time in milliseconds (ms) and Y-axis represents potential values in microvolts 

(µV). Latencies and amplitudes of these peaks may vary among different scalp locations and 

different subjects. Here the ERPs are presented for all the electrode positions. These ERP 

waveforms start at -500 ms and ends at 1000 ms, we can clearly see the P300 component 

centered at 400 ms starting from 300 ms to 600 ms having higher amplitudes in blue colors as 

compare to red and green colors in all the shapes, however considering only the blue colors, 

blue circle has the higher amplitude as compare to blue square and triangle. Moreover a 

negative component is also visible around 200 ms which has deeper amplitude in all shapes of 

red color and square and triangle of green color as compare to circle in green color and all the 

shapes in blue color. All the ERP waveforms are quite varying depending on the color and shape 

among all the subjects. Change of stimulus occurs at zero second from gray (also known as 

baseline) to RGB colors and it is seen that starting potential of baseline at -500 ms remains 

mostly in between 1 to 2 microvolts and ending potential at 1000 ms remains mostly in 

between -1 to 0 microvolts. Highest potential of 5.8 microvolts is seen in blue circle at a latency 

of 406 ms and lowest potential of 3.4 microvolts is seen in Green Square at a latency of 375 ms. 

Usually data averaging collapses the dynamic information in the data so it might not be 

effective in the analysis.  

In ERPs of circle among all the colors, since P300 wave drops down zero a bit earlier than 600 

ms and then it remains negative until the end of waveform. This behavior is also seen in green 

triangle along with red circle and square however, couple of times positive peaks are seen in 

green circle and square after 800 ms along with red triangle at about 700 ms. Focusing our 

attention in between 0 to 200 ms after the onset of stimulus, fluctuation in potential is seen in 

all the conditions however, another small positive prominent peak is seen in red color of all 

shapes at latency of almost 150 ms also known as P100 wave which is not prominent in blue 

and green colors of all shapes. These variations in the waveforms reflect how the event-related 

synchronization and desynchronization occurs in response to visual stimulus. Please note that, 

the potential in the baseline fluctuates in between -1 and 1 microvolt in almost all the 

conditions after the epoch is started. The peaks and valleys in these ERP waveforms could serve 

as possible features for the classifier but may not provide satisfactory results because Makeig in 

(8)  reported that according to several studies, event-related potentials (ERPs) are not capable 

of capturing maximum brain’s response to events due to their instability and not being fully 

independent of EEG. This reason lacks our interest in analyzing ERP waveforms in more depth.  
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Figure 7.2 ERP waveforms: Red Circle (Top), Green Circle (Middle) and Blue Circle (Bottom). All 

channels averaged ERP over all the trials. 
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Figure 7.3 ERP waveforms: Red Square (Top), Green Square (Middle) and Blue Square (Bottom). 

All channels averaged ERP over all the trials. 
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Figure 7.4 ERP waveforms: Red Triangle (Top), Green Triangle (Middle) and Blue Triangle 

(Bottom). All channels averaged ERP over all the trials. 
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7.3.2 Event-Related Spectral Perturbation 

In this section, we have presented ERSP plots in which we are most interested because we have 

used ERSP features with SVM for classification likewise we used it in our earlier experiment in 

chapter 6. Figures 7.5, 7.6 and 7.7 reflect the ERSP plots of RGB colors for circle, square and 

triangle respectively. ERSP plots give us the distribution of power (dB) in time-frequency frame 

which means it defines the patterns of event related synchronization and de-synchronization. 

As we can see in figure 7.4 (ERP wave bottom plot), a window starting from 50 ms to 450 ms 

includes the most influential part of ERP waveforms in all the colors of all the shapes, therefore 

we decided to reduce the timing to compute ERSP in order to save the computational time and 

also because SVM classifier needs these features for classification so feeding the classifier with 

less number of features again reduced the computational time while keeping the classification 

accuracy at very good rate which we will discuss in the next section. This will also help us in 

online classification because in the previous experiment we had computed ERSP features for -

500 to 1500 ms which were obviously very large number of features so can’t be sued for online 

classification, however the classification was very good in the earlier experiment. Whereas the 

frequency axis kept the same range of frequency bands i.e. from 1 Hz to 30Hz Please also note 

that online classification is not a part of this thesis, which would be done later. 

An ERSP is produced by taking average of normalized response for many trials. For n trials, if 

( , )kF f t  is the spectral estimate of trial k  at frequency f and time t , then ERSP is computed 

using following formula, 

2

1

1
( , ) ( , )

n

k

k

ERSP f t F f t
n

 

Here ( , )kF f t  is computed using sinusoidal wavelet transform in which the number of cycles is 

increased slowly with frequency and provides better frequency resolution at higher frequencies 

than a conventional wavelet approach that uses constant cycle length.  

Let us now examine the ERSP plots in order to analyze the distribution of power in the specified 

time and frequency range. First of all examine the ERSP responses of RGB colors for circle given 

in figure 7.5.  Red circle shows a slight decrease in power or de-synchronization in the beginning 

of epoch until almost 200 ms in the delta band (1 – 4 Hz) and in green circle this 

desynchronization is more visible in the same frequency band as in red circle whereas blue 

circle has the greater desynchronization from 50 to 200 ms of interval and also includes theta 

band (4 – 8 Hz) along with delta band as compare to red and green circle. An event-related 

synchronization is seen in the alpha band (8 – 12 Hz) within the same time span. This 

synchronization is most significant in red circle, then in green circle and the lowest in blue 

circle. On the other hand, focusing our attention on opposite side of ERSP responses i.e. from 
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300 to 450 ms, blue circle reflects an event-related synchronized activity not only in delta band 

but also in alpha band however red and green circles show an event-related desynchronized 

activity in alpha band with greater decrease in red circle than in green circle. This 

desynchronization appears to be insignificant in delta and theta bands of red and green circle. 

Moreover, a slight synchronization is seen in beta band of red circle and delta band of green 

circle within 300 to 450 ms. Please note that the time from 200 to 300 ms is a transition time in 

all the frequency bands i.e. either transitioning from synchronization to desynchronization or 

vice versa. Secondly, we examine the ERSP responses of RGB colors for square given in figure 

7.6. In these ERSP responses, a similar activity is seen as in figure 7.5, related to 

desynchronization within 50 to 200 ms in the delta band. In squares, this decrease in power is 

greater in red square as compare to green and blue squares and lower in green square as 

compare to red and blue squares which keeps the blue square activity in the middle of red and 

green’s activity of desynchronization. Similarly within the same time range of 50 to 200 ms, a 

significant event-related synchronization is seen in alpha band and relatively slighter 

synchronization in beta band (13 – 30 Hz). This synchronization is also seen in alpha band in 

green and blue squares. On the other hand, within 300 to 450 ms an increase in power is seen 

in delta band of red and blue squares and relatively lesser increase in power is seen not only in 

delta but also in theta band of green square. Again a slight decrease in power is seen in alpha 

and theta bands of all the colors in squares with in the time range of 300 to 450 ms. Likewise in 

circle, again the time range from 200 to 300 ms works as transition time. Thirdly, taking into 

account the ERSP responses of RGB colors of triangle as shown in figure 7.7 we can clearly see 

activities of synchronization in alpha band of red and green triangles and also in beta band of 

blue triangle within 50 to 200 ms of time along with synchronization in delta bands of red, 

green and blue triangles within time range of 300 to 450 ms. Moreover, a significant decrease 

in power is seen in delta and theta bands of all the colors of triangle within 50 to 200 ms along 

with alpha band of all the colors of triangle within 300 to 450 ms. Again the time range from 

200 to 300 ms is transition range.  

ERSP responses are again found to be differentiated responses as we found them in the 

previous experiment, not only within a shape but also across the different shapes. Therefore, it 

could be very effective for classification tasks because the spread of power increase and 

decrease is highly differentiated which makes them distinctive features to let them successfully 

work with SVM classifier. Figures, from 7.5 to 7.7 represent the averaged ERSP responses for 

channel TP7 and discussed earlier. Since it would be very lengthier to present and discuss in 

detail, the ERSP responses of all the four channels, therefore we restrict ourselves to only 

present the ERSP responses of another channel and leave the detailed discussion on discretion 

of reader because it would be similar to interpret these responses the same way we have done 

earlier. So now we present the ERSP responses for channel O2 in figures 7.8, 7.9 and 7.10. 
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Figure 7.5 ERSP: Red Circle (Top), Green Circle (Middle) and Blue Circle (Bottom). Channel TP7, 

averaged over all trials and all subjects. X-axis represents time (ms) and Y-axis represents 

frequency (Hz). 
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Figure 7.6 ERSP: Red Square (Top), Green Square (Middle) and Blue Square (Bottom). Channel 

TP7, averaged over all trials and all subjects. X-axis represents time (ms) and Y-axis represents 

frequency (Hz). 
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Figure 7.7 ERSP: Red Triangle (Top), Green Triangle (Middle) and Blue Triangle (Bottom). 

Channel TP7, averaged over all trials and all subjects. X-axis represents time (ms) and Y-axis 

represents frequency (Hz). 
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Figure 7.8 ERSP: Red Circle (Top), Green Circle (Middle) and Blue Circle (Bottom). Channel O2, 

averaged over all trials and all subjects. X-axis represents time (ms) and Y-axis represents 

frequency (Hz). 
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Figure 7.9 ERSP: Red Square (Top), Green Square (Middle) and Blue Square (Bottom). Channel 

O2, averaged over all trials and all subjects. X-axis represents time (ms) and Y-axis represents 

frequency (Hz). 
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Figure 7.10 ERSP: Red Triangle (Top), Green Triangle (Middle) and Blue Triangle (Bottom). 

Channel O2, averaged over all trials and all subjects. X-axis represents time (ms) and Y-axis 

represents frequency (Hz). 
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7.4 Classification Results using SVM with ERSP features 

We have created different groups of classification problems from the data we have recorded 

from the following nine different conditions as follows: 

 

    Red Circle (RCr) 

    Green Circle (GCr) 

Blue Circle (BCr) 

     

    Red Square (RSq) 

    Green Square (GSq) 

    Blue Square (BSq) 

     

    Red Triangle (RTr) 

    Green Triangle (GTr) 

    Blue Triangle (BTr) 

 

Group 1: Classification of colors within shapes 

Group 2: Classification of colors across shapes 

Group 3: Classification of shapes 

Group 4: Classification of all conditions simultaneously 

 

7.4.1 Classification of RGB colors within shapes: Group 1 

In this group we have classified RGB colors within shapes by treating each condition a separate 

class so we have three classification problems, one for circle, one for square and one for 

triangle. Each problem is a three class problem, for example, within Circle we have data for 

three different classes of RGB colors i.e. RCr, GCr and BCr, similarly for Square (RSq, GSq and 

BSq) and Triangle (RTr, GTr, BTr). All the three problems work similar to earlier classification 

problem whose results are presented in tables 1, 2 and 3 in chapter 6, specially the 

classification of square because the shape of object in each classification problem do not 

change. However, it is seen that the accuracy for the three classification problems is reduced 

due to the involvement of multiple shapes at the time of exposure of colors. Here we again 
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used three kernels i.e. linear, polynomial and RBF kernel. In all the three classification problems 

linear and RBF kernels worked very well but the performance with polynomial kernel is 

dramatically reduced. The average accuracy with linear kernel for Circle, Square and Triangle is 

88%, 84%, 84% and with RBF kernel is 94%, 89%, 94% respectively whereas the average 

accuracy with polynomial kernel is 52%, 47% and 49% respectively. The results for all the three 

classification problems are given in tables from 7.1 to 7.9. We can see that the highest accuracy 

is always achieved with RBF kernel and lowest with polynomial kernel. 

Table 7.1 presents the classification accuracies with an average accuracy of 88% for five 

subjects among different groups of data which were used with linear kernel. (Circle) 

 S1 S2 S3 S4 S5 

TP7 100 100 100 100 100 

TP8 100 100 100 96.2406 100 

O1 94.73684 97.74436 100 90.22556 96.2406 

O2 92.4812 93.23308 90.97744 96.2406 93.98496 

TP7TP8 92.13483 95.50562 97.37828 94.38202 93.63296 

O1O2 77.90262 76.40449 74.90637 79.40075 79.77528 

TP8O2 83.89513 83.89513 88.01498 89.13858 92.8839 

TP7O1 77.15356 74.1573 77.52809 71.91011 71.91011 

All 75.46816 69.28839 63.67041 71.91011 71.34831 

 

Figures 7.11, 7.12 and 7.13 show the classification results with linear (left), polynomial (middle) 

and RBF (right) for the three classification problems of Circle, Square and Triangle respectively. 

An important observation is seen in these figures that regardless of whatever the accuracy is, 

the consistency is found to be good in all the classification problems as there is only a minor 

varying accuracy or less deviation in all groups of data channels across all the subjects. 
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Table 7.2 presents classification accuracies with an average accuracy of 52% for five subjects 

among different groups of data which were used with polynomial kernel of degree 3, (Circle) 

 S1 S2 S3 S4 S5 

TP7 60.15038 58.64662 54.13534 58.64662 67.66917 

TP8 57.14286 63.90977 53.38346 56.39098 52.63158 

O1 43.60902 42.10526 43.60902 46.61654 49.62406 

O2 42.85714 48.87218 48.87218 49.62406 45.86466 

TP7TP8 53.55805 56.17978 54.68165 56.55431 59.92509 

O1O2 46.81648 46.06742 48.68914 46.06742 50.18727 

TP8O2 55.80524 56.55431 58.05243 55.05618 55.80524 

TP7O1 50.5618 53.18352 50.5618 51.31086 49.06367 

All 50.93633 51.68539 52.80899 48.50187 57.6779 

Table 7.3 presents the classification accuracies with an average accuracy of 94% for five 

subjects among different groups of data which were used with RBF kernel. (Circle) 

 S1 S2 S3 S4 S5 

TP7 93.98496 93.98496 93.23308 98.49624 100 

TP8 100 100 100 97.74436 100 

O1 95.48872 84.96241 82.70677 90.97744 90.97744 

O2 91.72932 100 100 100 100 

TP7TP8 96.62921 96.25468 95.13109 91.38577 97.75281 

O1O2 95.50562 94.00749 92.8839 89.88764 95.13109 

TP8O2 91.7603 88.38951 89.88764 86.89139 86.51685 

TP7O1 95.88015 97.00375 97.37828 97.37828 96.25468 

All 85.20599 90.82397 91.7603 87.64045 86.89139 
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Figure 7.11 Classification accuracies are summarized on a single plane in linear (on left), 

polynomial (in center) and RBF (on right) kernels for data from all the groups of channels. X-axis 

shows the groups of channels of data and Y-axis shows the classification accuracy in (%) and 

each group of vertical bars shows the number of five subjects. (Circle) 

Table 7.4 presents the classification accuracies with an average accuracy of 84% for five 

subjects among different groups of data which were used with linear kernel. (Square) 

 S1 S2 S3 S4 S5 

TP7 100 100 100 100 100 

TP8 93.23308 100 100 100 87.96992 

O1 69.17293 60.90226 60.90226 75.18797 71.42857 

O2 82.70677 95.48872 90.97744 87.21805 80.45113 

TP7TP8 91.38577 91.7603 89.51311 95.50562 87.26592 

O1O2 82.77154 70.03745 68.53933 74.90637 72.65918 

TP8O2 77.90262 85.39326 84.64419 81.27341 78.65169 

TP7O1 76.77903 90.6367 85.01873 83.89513 85.76779 

All 78.83895 74.34457 73.59551 71.91011 73.22097 
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Table 7.5 presents the classification accuracies with an average accuracy of 47% for five 

subjects among different groups of data which were used with polynomial kernel of degree 3. 

(Square) 

 S1 S2 S3 S4 S5 

TP7 52.63158 55.6391 59.3985 57.14286 53.38346 

TP8 47.36842 46.61654 48.1203 51.12782 46.61654 

O1 45.86466 39.84962 40.6015 40.6015 38.34586 

O2 41.35338 36.84211 42.10526 38.34586 35.33835 

TP7TP8 53.93258 53.93258 54.68165 57.30337 57.6779 

O1O2 43.07116 46.81648 46.81648 56.17978 52.43446 

TP8O2 44.94382 49.06367 47.56554 53.18352 48.68914 

TP7O1 43.07116 40.82397 42.69663 42.69663 41.57303 

All 46.81648 46.25468 46.44195 46.44195 46.81648 

Table 7.6 presents the classification accuracies with an average accuracy of 89% for five 

subjects among different groups of data which were used with RBF kernel. (Square) 

 S1 S2 S3 S4 S5 

TP7 95.48872 91.72932 82.70677 93.23308 89.47368 

TP8 92.4812 96.2406 95.48872 96.2406 87.96992 

O1 97.74436 88.7218 87.21805 90.22556 93.23308 

O2 86.46617 91.72932 90.97744 95.48872 88.7218 

TP7TP8 89.13858 93.63296 86.14232 88.38951 84.64419 

O1O2 85.01873 87.64045 90.6367 86.14232 85.39326 

TP8O2 88.38951 89.13858 87.64045 90.6367 83.5206 

TP7O1 87.26592 86.89139 87.64045 88.01498 88.76404 

All 84.83146 86.32959 85.20599 85.58052 85.39326 
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Figure 7.12 Classification accuracies are summarized on a single plane in linear (on left), 

polynomial (in center) and RBF (on right) kernels for data from all the groups of channels. X-axis 

shows the groups of channels of data and Y-axis shows the classification accuracy in (%) and 

each group of vertical bars shows the number of five subjects. (Square) 

Table 7.7 presents the classification accuracies with an average accuracy of 84% for five 

subjects among different groups of data which were used with linear kernel. (Triangle) 

 S1 S2 S3 S4 S5 

TP7 84.21053 84.96241 79.69925 74.43609 84.96241 

TP8 81.95489 84.21053 71.42857 93.23308 80.45113 

O1 93.98496 100 100 100 100 

O2 90.97744 90.22556 98.49624 85.71429 94.73684 

TP7TP8 83.89513 81.64794 79.40075 80.14981 81.64794 

O1O2 93.63296 86.89139 85.39326 86.51685 84.26966 

TP8O2 83.89513 89.13858 78.65169 88.76404 87.64045 

TP7O1 82.77154 73.78277 83.14607 86.89139 75.2809 

All 67.41573 68.16479 62.92135 70.03745 67.79026 
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Table 7.8 presents classification accuracies with an average accuracy of 49% for five subjects 

among different groups of data which were used with polynomial kernel of degree 3. (Triangle) 

 S1 S2 S3 S4 S5 

TP7 57.14286 60.90226 49.62406 66.16541 55.6391 

TP8 47.36842 45.86466 43.60902 45.86466 46.61654 

O1 52.63158 48.87218 48.1203 51.8797 48.87218 

O2 38.34586 50.37594 49.62406 46.61654 45.11278 

TP7TP8 54.30712 54.30712 48.68914 52.05993 55.80524 

O1O2 46.81648 47.19101 48.31461 44.94382 46.06742 

TP8O2 54.30712 51.68539 59.92509 52.43446 50.93633 

TP7O1 43.07116 45.69288 41.57303 43.82022 45.31835 

All 51.49813 49.4382 48.12734 52.05993 49.4382 

Table 7.9 presents the classification accuracies with an average accuracy of 94% for five 

subjects among different groups of data which were used with RBF kernel. (Triangle) 

 S1 S2 S3 S4 S5 

TP7 93.98496 93.23308 93.98496 92.4812 94.73684 

TP8 96.99248 94.73684 84.21053 96.99248 96.2406 

O1 93.23308 93.23308 90.97744 93.98496 93.23308 

O2 97.74436 93.98496 88.7218 98.49624 92.4812 

TP7TP8 92.13483 99.25094 93.25843 94.75655 88.76404 

O1O2 96.25468 97.00375 97.00375 99.25094 96.62921 

TP8O2 96.62921 96.25468 97.00375 96.62921 94.00749 

TP7O1 93.63296 94.75655 95.50562 94.00749 94.38202 

All 91.38577 92.8839 92.8839 93.07116 92.13483 
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Figure 7.13 Classification accuracies are summarized on a single plane in linear (on left), 

polynomial (in center) and RBF (on right) kernels for data from all the groups of channels. X-axis 

shows the groups of channels of data and Y-axis shows the classification accuracy in (%) and 

each group of vertical bars shows the number of five subjects. (Triangle) 

7.4.2 Classification of RGB colors across shapes: Group 2 

In this group of classification, the data is being used after combining the data of similar colors 

from different shapes in order to produce a combined class for a particular color. For example, 

Red square, Red circle and Red triangle’s data will be combined together to produce data of 

Red class. Similarly, the data will be produced for Green and Blue classes, so finally we will have 

three classes of RGB colors. Now the classification problem has become same as it was in 

group1 in section 7.4.1 with one of the difference that RGB classes data from different shapes. 

This formation of classes is shown on the next page ‘Formation of Classes: Group 2’. The 

classification results for this problem are shown in table 7.11, 7.12 and 7.13 for linear, 

polynomial and RBF kernels respectively. It is seen that the average accuracy with linear kernel 

is dropped down to 71% in comparison with the performance of linear kernel for all the three 

classification problems in group 1 where the average accuracy was found to be 88, 84 and 84% 

respectively. The polynomial kernel has shown again the bad performance whereas RBF kernel 

appeared to be very consistent in showing very good accuracy. Keeping in view these results, 

we can assume that the classification of data belonging to different shapes of exposures may or 

may not affect the classification accuracy. Figure 7.14 show all the results of group 2 in a 

summarized form on a single plane. 
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    Red Circle (RCr) 

    Green Circle (GCr)     Red: Class 1 

Blue Circle (BCr) 

     

    Red Square (RSq) 

    Green Square (GSq)    Green: Class 2 

    Blue Square (BSq) 

     

    Red Triangle (RTr) 

    Green Triangle (GTr)    Blue: Class 3 

    Blue Triangle (BTr) 

Formation of Classes: Group 2 

 

Table 7.10 presents the classification accuracies with an average accuracy of 71% for five 

subjects among different groups of data which were used with linear kernel. 

 S1 S2 S3 S4 S5 

TP7 91.75 86.75 90.75 91.5 86.75 

TP8 79 86.75 75.75 82.5 78.25 

O1 78.25 78.5 78.5 73.75 75.25 

O2 72.25 78 70 71 70.25 

TP7TP8 69.41323 70.41199 72.28464 72.03496 70.91136 

O1O2 60.42447 60.799 62.67166 62.67166 59.17603 

TP8O2 66.41698 67.79026 73.2834 71.53558 69.53808 

TP7O1 65.41823 71.16105 64.54432 64.16979 69.0387 

All 54.95945 50.03119 49.53213 49.84404 49.84404 
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Table 7.11 presents the classification accuracies with an average accuracy of 50% for five 

subjects among different groups of data which were used with polynomial kernel of degree 3. 

 S1 S2 S3 S4 S5 

TP7 66 58.25 59.5 58.75 58.25 

TP8 48 53.25 48.25 47.5 51.75 

O1 45.5 50 48.25 43.75 46.75 

O2 44.5 45 44.5 43.75 47.5 

TP7TP8 54.93134 53.55805 53.55805 54.68165 56.804 

O1O2 47.4407 46.19226 45.19351 45.19351 45.19351 

TP8O2 58.05243 51.68539 51.68539 49.06367 52.68414 

TP7O1 48.68914 46.81648 42.44694 42.94632 51.93508 

All 49.65689 48.22208 49.71928 51.96507 49.40736 

Table 7.12 presents the classification accuracies with an average accuracy of 94% for five 

subjects among different groups of data which were used with RBF kernel. 

 S1 S2 S3 S4 S5 

TP7 100 100 100 100 100 

TP8 96.75 96 95.5 98.25 94.25 

O1 87.25 92.75 87.25 86.25 94.25 

O2 93.25 94.5 93.75 96 98.25 

TP7TP8 97.25343 94.38202 95.00624 96.8789 95.50562 

O1O2 91.7603 94.38202 92.25968 93.88265 93.25843 

TP8O2 92.25968 88.88889 91.51061 90.6367 87.89014 

TP7O1 96.62921 92.13483 93.63296 92.25968 96.00499 

All 89.20774 88.77105 87.1491 90.14348 89.02059 
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Figure 7.14 Classification accuracies are summarized on a single plane in linear (on left), 

polynomial (in center) and RBF (on right) kernels for data from all the groups of channels. X-axis 

shows the groups of channels of data and Y-axis shows the classification accuracy in (%) and 

each group of vertical bars shows the number of five subjects. 

7.4.3 Classification of shapes: Group 3 

As we have seen in the previous group 2 that the accuracy may be affected due to change of 

shape therefore, we have introduced another group to perform classification in a different 

context in order to see if the shapes are classifiable or not having data that belongs to different 

classes of colors so we did not classify colors but shapes. For example, we have three data sets 

each belonging to circle, square and triangle, in total nine data sets so by combining data of Red 

circle, Green circle and Blue circle will create one class of circle shape. Similarly, two other 

classes will be formed for Square and Triangle. Thus in this problem we will have three classes 

of Circle, Square and Triangle but each class will have the data of all the three colors. We can 

see the formation of these classes on the next page ‘Formation of Classes: Group 3’. The 

classification results for this group are shown in tables 7.13, 7.14 and 7.15 for linear, polynomial 

and RBF kernels with an average accuracy of 60%, 48% and 92% respectively. We can see that 

the performance of linear classifier is more reduced to 60% in comparison with earlier group 2’s 

linear classifier’s performance and polynomial kernel with an average accuracy of 48% is still 

not able to classify shapes at good rate whereas the RBF kernel again worked very well with an 

average accuracy of 92% like always. If we analyze the performance of linear kernel from 

beginning in this experiment, it would be clear that its performance is continuously decreasing; 

however the performances of polynomial and RBF kernels are quite consistent around 50% and 

92% respectively, regardless of the fact that the polynomial worked bad and RBF worked very 

well. Figure 7.15 summarized all the results in group 3. 
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    Red Circle (RCr)    combining data 

    Green Circle (GCr)      Class 1 

Blue Circle (BCr) 

     

    Red Square (RSq)     

    Green Square (GSq)      Class 2 

    Blue Square (BSq) 

     

    Red Triangle (RTr) 

    Green Triangle (GTr)      Class 3 

    Blue Triangle (BTr) 

Formation of Classes: Group 3 

 

Table 7.13 presents the classification accuracies with an average accuracy of 60% for five 

subjects among different groups of data which were used with linear kernel. 

 S1 S2 S3 S4 S5 

TP7 82.5 87.25 81.25 87 84 

TP8 73.25 73 74 70.5 72.25 

O1 66 62.5 57.25 56.5 59.5 

O2 65.75 62.25 66.5 63 61.25 

TP7TP8 53.30836 51.68539 54.18227 49.68789 58.55181 

O1O2 46.81648 53.30836 55.05618 53.6829 48.18976 

TP8O2 56.67915 55.55556 54.43196 54.5568 52.18477 

TP7O1 54.18227 54.93134 53.6829 52.80899 49.93758 

All 46.47536 48.34685 47.72302 49.2826 51.15409 
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Table 7.14 presents the classification accuracies with an average accuracy of 48% for five 

subjects among different groups of data which were used with polynomial kernel of degree 3. 

 S1 S2 S3 S4 S5 

TP7 54.25 55 51.75 47.25 57 

TP8 47.5 49.75 50 48.5 49.25 

O1 48.25 45.25 44.75 48 46.75 

O2 43 43.5 43 45.75 42.5 

TP7TP8 51.18602 50.18727 51.93508 51.43571 51.18602 

O1O2 44.19476 44.56929 44.19476 43.196 44.81898 

TP8O2 51.43571 49.31336 46.94132 49.68789 52.5593 

TP7O1 42.94632 45.81773 46.56679 45.56804 46.69164 

All 53.27511 54.08609 52.90081 52.40175 52.52651 

Table 7.15 presents the classification accuracies with an average accuracy of 92% for five 

subjects among different groups of data which were used with RBF kernel. 

 S1 S2 S3 S4 S5 

TP7 98.25 98.75 98.25 98.5 100 

TP8 93.5 94.75 95.5 89 93.5 

O1 89.25 90.75 89.25 92 87.25 

O2 90.25 93 94.5 93.75 87.5 

TP7TP8 92.38452 92.75905 94.50687 90.26217 94.8814 

O1O2 87.89014 89.51311 85.64295 87.76529 87.64045 

TP8O2 93.38327 94.00749 95.38077 95.13109 94.38202 

TP7O1 84.64419 89.01373 89.63795 90.26217 91.13608 

All 87.58578 89.89395 87.71054 88.20961 90.58016 
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Figure 7.15 Classification accuracies are summarized on a single plane in linear (on left), 

polynomial (in center) and RBF (on right) kernels for data from all the groups of channels. X-axis 

shows the groups of channels of data and Y-axis shows the classification accuracy in (%) and 

each group of vertical bars shows the number of five subjects. 

7.4.4 Classification of all conditions simultaneously. Group 4 

In all the previous groups, all the classification problems consists of three classes but here we 

have considered 9 different classes, treating each condition, a separate class. The results for 

this group of classification are shown in tables 7.16, 7.17 and 7.18. Having such a complex data 

for the SVM classifier, average accuracy with linear kernel reduces to 57%, polynomial kernel 

has dramatically reduced to 29% and RBF kernel as usual worked very well with an accuracy of 

94%. It is seen that throughout these classification problems the performance of the linear 

kernel kept reducing as the complexity of the problem increases. However, regardless of the 

complexity of classification problem, the performance of RBF kernel surprisingly remained 

always same with minor variations in accuracy rate. Therefore, we suggest to work to use 

always RBF kernel with SVM for such kind of color classification or shape classifications 

problems. Figure 7.16 summarized all the results of group 4. 

Table 7.19 summarizes all the classification results in all the groups. 
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    Red Circle (RCr)  : Class 1 

    Green Circle (GCr) : Class 2 

Blue Circle (BCr) : Class 3 

     

    Red Square (RSq) : Class 4 

    Green Square (GSq) : Class 5 

    Blue Square (BSq) : Class 6 

     

    Red Triangle (RTr) : Class 7 

    Green Triangle (GTr) : Class 8 

    Blue Triangle (BTr) : Class 9 

 

Table 7.16 presents the classification accuracies with an average accuracy of 57% for five 

subjects among different groups of data which were used with linear kernel. 

 S1 S2 S3 S4 S5 

TP7 60.25 63.5 63.75 66.5 55.25 

TP8 68 73.25 72 72 65.25 

O1 60.25 56 67 54.75 59.5 

O2 62.75 59 55 55.75 57.25 

TP7TP8 46.94132 45.4432 46.44195 51.68539 48.31461 

O1O2 46.06742 45.94257 52.68414 50.18727 42.3221 

TP8O2 48.93883 45.31835 50.43695 40.94881 46.3171 

TP7O1 51.81024 50.5618 58.17728 56.55431 51.56055 

All 67.81036 66.00125 66.00125 69.80661 68.99563 
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Table 7.17 presents the classification accuracies with an average accuracy of 29% for five 

subjects among different groups of data which were used with polynomial kernel of degree 3. 

 S1 S2 S3 S4 S5 

TP7 42 39.75 41 37.5 39.25 

TP8 33.5 31.75 30 31 28.75 

O1 21.75 22.25 21.75 22.75 22.5 

O2 19.75 18.5 20 19.75 21.25 

TP7TP8 36.45443 36.20474 36.45443 34.20724 34.9563 

O1O2 27.8402 28.83895 27.34082 26.34207 25.71785 

TP8O2 30.9613 31.46067 30.71161 33.70787 34.70662 

TP7O1 24.96879 24.21973 23.84519 24.09488 25.71785 

All 29.13288 29.94386 28.19713 30.63007 29.63194 

Table 7.18 presents the classification accuracies with an average accuracy of 94% for five 

subjects among different groups of data which were used with RBF kernel. 

 S1 S2 S3 S4 S5 

TP7 100 100 100 100 100 

TP8 95.25 94 91.25 94.25 88 

O1 92.5 85.5 94.75 88 94 

O2 91 92.75 95.75 92.25 92.25 

TP7TP8 92.50936 95.88015 95.38077 95.63046 95.00624 

O1O2 92.38452 89.26342 87.89014 91.7603 89.38826 

TP8O2 95.38077 96.37953 97.75281 95.63046 97.62797 

TP7O1 94.00749 92.38452 92.50936 91.26092 92.8839 

All 92.82595 90.70493 92.13974 93.32502 91.95259 
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Figure 7.16 Classification accuracies are summarized on a single plane in linear (on left), 

polynomial (in center) and RBF (on right) kernels for data from all the groups of channels. X-axis 

shows the groups of channels of data and Y-axis shows the classification accuracy in (%) and 

each group of vertical bars shows the number of five subjects. 

Table 7.19 Classification results (%) of all groups 

ERSP features were used Linear Polynomial RBF 

 
Group 1 

Circle 88 52 94 

Square 84 47 89 

Triangle 84 49 94 

Group 2  71 50 94 

Group 3 60 48 92 

Group 4 57 29 94 
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In this study, we have performed an experiment of presenting primary color stimuli to have 

visual evoked potential from the occipital and parietal lobe of the brain and subjects were 

instructed to imagine the same color by keeping their eyes closed, that was presented in a 

sequence. We have discussed ERP waveforms, frequency spectrum, ERSP, ITC and ERP image 

features generated as a result of exposure of real primary colors and their imaginations. 

Responses of real color and the corresponding imagination are shown together for each color. 

Slight differences have been noticed in all types of responses for each color which are visually 

seen and inspected among intra-class (color exposure) and interclass (corresponding 

imaginations). To visualize the presented data, we have used STUDY1 structure to process 

multiple data sets from multiple subjects across multiple conditions. For more information, see 

http://sccn.ucsd.edu/wiki/EEGLAB. Taking into account, grand mean ERP, real exposure of 

green color, which is perceived as lighter than others (red and blue), has a difference of 

significant negative peak centered at 800ms and is only visible in exposure of green color but 

neither in imagination of green color nor in the real exposure of red and blue colors. However, 

it is interesting to see in the imagination of all the colors, a wider positive peak centered at 500 

ms starting around 300 ms until 700 ms that remains negative after it drops down zero in the 

last one second of the epoched extracted where as in the real color exposure it remains 

positive. Considering the frequency spectrum, a significant activity is found in the alpha band (8 

– 12 Hz), not only in real color exposure but also in imagination of colors. In imagination of 

colors, maximum and average power in the alpha band was found larger than the power in real 

color exposures.  

To interpret more accurately the differences among the exposure of primary colors, event 

related spectral power (ERSP) results in terms of time-frequency frame are presented, that 

have shown the variation in distribution of power in the delta, theta, alpha and beta bands. 

Taking into account averaged ERSP, red exposure has shown higher power increase starting 

from 200 ms to 400 ms in delta and theta band than green and blue exposures whereas green 

exposure has the lowest increase in power within the same time period and frequency band. 

Blue color is only influential in delta and lower theta (4 – 6 Hz) bands and green color is slightly 

influential in upper delta (2 – 4 Hz) and lower theta (4 – 6 Hz) bands. Looking at ERSP of color 

imagination we came across that red imagination exhibited higher ERSP increase than green 

and blue, during same time period from 200 ms to 400 ms in delta and theta band whereas the 

lowest ERSP was seen in blue imagination. A significant decrease was seen in alpha band 

centered around 500 ms among exposure of all colors as well as their corresponding 

imagination. Here we see that red has the largest decrease in ERSP and green shows the lowest 

decrease in exposure of colors whereas during imagination of colors red was found to have 

http://sccn.ucsd.edu/wiki/EEGLAB
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lowest decrease and blue with largest decrease in ERSP. Interestingly, a significant increase in 

ERSP is seen in imagination of colors, more precisely with in the alpha band and partially with in 

the beta band, starting after one second of onset of instruction to the subject “Eyes Closed, 

Color Imagination”. This instruction was displayed on black background with gray font. Delay of 

one second in this increase is expected due to adjustment time in imagination because most of 

the subjects took some time to start imagination. Red imagination has shown the largest 

increase and green exhibited lowest increase. To analyze phase synchronization we further 

presented inter-trial coherence (ITC) for primary color exposure and also for their imaginations. 

While exposure of colors we noticed that phase is highly synchronized in red color within delta 

and beta bands, relatively less synchronized in alpha band and partially synchronized in beta 

band, for around 200 ms in length, starting from 200 ms until 400 ms whereas green color is 

relatively less synchronized than red and blue has the lowest synchronization than red and 

green. However, imagination of colors reveals that phase synchronization is higher in red and 

blue within delta and theta band and relatively lower in green, whereas almost equally 

synchronized within alpha band among all the color imaginations. ERP image plots shown in 

figure 6.22, 6.23 and 6.24 reflects ERSP and ITC in waveforms and supports the evidences which 

we have visualized in figures 6.6 and 6.14 respectively. 

Moreover, we have used ERSP data as features and C-SVM as classifier with three different 

kernels i.e. linear kernel, polynomial kernel and RBF kernel for the classification of EEG signals 

recorded as event-related potentials in response to RGB uniform colour stimuli. To interpret 

more accurately the differences among the exposure of primary colours, average event related 

spectral perturbation (ERSP) results in terms of time-frequency frame are presented in figure 

6.25 that have shown significant power variations in the delta, theta and alpha bands. Red 

exposure has shown highest power increase starting from 100 ms to 400 ms in delta and theta 

bands than green and blue exposures, however the blue exposure has the lowest increase in 

power within the same time period and frequency bands. Moreover, a discriminative decrease 

in power among all the colours is seen in alpha band within 1000ms after the onset of stimulus. 

We have seen that these differences against the visual conditions in terms of single uniform 

colours are successfully classified using support vector machines. We have found very good 

accuracy results, on average 84%, 89% and 98% for linear, polynomial and RBF kernels 

respectively, with in all the groups of data among all the subjects. Highest accuracy was found 

in RBF kernel with nowhere less than other kernels in any group of data in any subject. As a 

next step, we have performed the classification on EEG signals belonging to imagination of 

colors. It is seen that the imagination of colors can also be classified like the imagination of 

movement of body limbs which are mostly found in the BCI literatures. The accuracy results for 

imagination of colors were found to be 64%, 70% and 76% with linear, polynomial and RBF 

kernels respectively.  Although the results for imagination of colors are not as good as for the 

real exposure of colors but again we have seen that RBF kernel produced best results and linear 
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kernel’s performance appeared to be less than the others. Please note that we have used ERSP 

features with SVM for both the classification problems of real exposure and imagination of 

colors. 

As an alternative we have used extreme energy ratio (EER) and extreme energy difference (EED) 

criterions to extract energy features for the classification of EEG signals acquired by the 

exposure of RGB colors and for the classification EEG signals acquired by the imagination of RGB 

colors. We have applied EER and EED criterions on ERP waveforms with only linear SVM (No 

polynomial and RBF kernels were used) to solve the binary classification problems because we 

created three groups of binary classification as follows: (Blue, Green), (Red, Green) and (Red, 

Blue). So first of all we applied EER criteria on both the real exposure of colors and imagination 

of colors and achieved 79%, 78% and 80% of accuracy for BG, RG and RB classification 

problems, respectively, on real exposure of colors, however the accuracy seen as 72%, 70% and 

73% for BG, RG and RB problems, respectively, on imagination of colors. Secondly we applied 

EED on both the real exposure and imagination of colors and achieved 82%, 83% and 84% of 

accuracy for BG, RG and RB problems respectively, whereas the accuracy seen in imagination of 

colors is 73%, 75% and 72% respectively. It shows that EED is better than EER for the 

classification of real exposure of colors and slightly better for imagination of colors. 

Apart from the experiment, to expose colors in single shape we performed another experiment 

to expose colors that involves multiple shapes i.e. Circle, Square and Triangle. In this 

experiment part of imagination of colors was removed and all the concentration was focused 

on the classification of real exposure of colors. In this experiment we divided the data into four 

different groups as follows: Group1 - Classification of colors within shapes, Group2 – 

Classification of colors across shapes, Group3 – Classification of shapes and Group4 – 

Classification of all the nine conditions simultaneously. The SVM classifier was used with ERSP 

features along with linear, polynomial and RBF kernels. Group2 to group4 consists of one 

classification problem whereas group1 consists of three classification problems, one for each 

circle, square and triangle. In group1, the classification accuracies for circle, square and triangle 

are found to be (88%, 52%, 94%), (84%, 47%, 89%) and (84%, 49%, 94%) respectively as triplet 

(linear, polynomial, RBF). In group 2, 3 and 4 classification accuracies achieved are (71%, 50%, 

94%), (60%, 48%, 92%) and (57%, 29%, 94%) respectively as triplet of (linear, polynomial, RBF) 

kernels. It is seen that linear classifier’s performance kept on decreasing with the increase in 

complexity of classification problems starting from group1 to group4 and polynomial kernel’s 

performance is found to be consistent around 50% regardless of how good the performance is, 

whereas polynomial kernel’s performance also found to be very consistent in all the groups 

around 92%. From all these statistics, we can assume that the classification of real exposure of 

colors and their corresponding imaginations is possible using SVM classifier and best results are 

supported with RBF kernels. 
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We also propose to do comparative study in future on different classifiers in conjunction with 

dimensionality reduction to select the most suitable data features in order to eliminate 

redundant information for the sake of online classification. We suggest that ERSP and ITC 

variations may be utilized computationally in conjunction with statistical analysis for further 

useful feature extraction and efficient classification of different EEG signals, produced in 

response to the exposure of red, green and blue colors. Although visual inspection could be 

useful for offline analysis, we still need to use more efficient and robust algorithms to analyze 

the presented differences online for future Brain-Computer Interface applications.  

This is first step towards contribution to provide a base for BCI applications based on uniform 

color stimuli with single and multiple shapes. We also suggest that color information and shape 

information along with imagination of colors is identifiable from EEG signals. As a possible 

future work we are further designing more new experiments under more variable conditions to 

refine the results presented in chapter 6 and 7 for real time implementation. We have partially 

investigated this study from Neuro-scientific point of view while being skeptical. We believe 

that this study could further be used for simulating a scenario of traffic light signals in virtual 

environment for possible BCI applications along with analysis of depth perception or this study 

could further be extended to identify any possibility of analyzing the EEG signals and developing 

BCI applications for color blind and/or blind people. However such an application is quite novel 

in its field of BCI, therefore requires extensive collaborative research work in different domains 

including neuroscientists and engineers. 

Any feedbacks, suggestions or ideas are warmly welcome and would greatly be appreciated to 

improve the work. 
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