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1. INTRODUCTION  

1.1 EPITHELIAL BARRIER:  THE IMPORTANCE OF BEING IN TACT 

Epithelial barrier and its role in intestinal homeo stasis maintenance   

Pluricellular organisms interface with their external environments at multiple sites, 

including mucosae of the airway, oral cavity, digestive tract and genitourinary tract, and the 

skin. Although the skin is the most visible site of interface, the combined area of the 

mucosal surface is much greater than that of the skin. Epithelial cells that define the 

interface between the organism and external world forms barriers that are essential to life.  

This is particularly true in the intestine, where the epithelial barrier supports nutrient and 

water transport while preventing microbial contamination of the interstitial tissue. 

Gut epithelial surfaces are composed of cells lineages that arise from a pluripotent stem 

cell progenitor: absorptive enterocytes, globet cells, enteroendocrine cells and Paneth 

cells (1). All cellular types contribute in a unique way to mucosal defense and the 

maintenance of barrier integrity. Goblet cells, both the small and large intestines, secrete 

mucus, which is composed mainly of highly glycosylated proteins that form a protective 

layer on the epithelium surface. Mucus acts trapping the vast majority of antigens that, in 

the intestinal tract, are cleared by peristalsis. By keeping microbes moving, these physical 

factors limit the time available for adherence to the epithelia and thus restrict invasion. The 

importance of mucus gel hydration is shown by cystic fibrosis, in which the production of 

hyper-viscous mucus contributes to pulmonary, pancreatic and intestinal disease (2). 

Defective mucus production has also been reported in various immune-mediated 

diseases, and spontaneous colitis develops in mice that lack specific mucin genes (3). 

In the small intestine, Paneth cells are the key effectors of antimicrobial defense. These 

specialized epithelial cells are situated at the base of small intestinal crypts and harbor 

secretory granules containing several microbicidal proteins including defensins, lysozyme, 

and phospholipase A2. Paneth cells sense bacterial proximity and react by discharging 
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their microbicidal granule contents into the gut lumen (4). Only the microbes that can by-

pass innate defenses have the ability to infect and cause disease. 

The epithelial and sub-epithelial region of mucosal surfaces contains abundant 

immunocytes of many varieties. Indeed, in a healthy human adult, the mucosal immune 

system contributes almost 80% of all immunocytes (5). The number of immunoglobulin 

(Ig)-secreting cells in this population exceeds by several fold the number of Ig-secreting 

cells in all other lymphoid organs (spleen, bone marrow, and lymph nodes) combined (6). 

Importantly, these cells also have the ability to directly sense danger through expression of 

surface receptors specific for conserved microbial products. Under the influence of signals 

from the epithelium, stimulation through these receptors induces these cells to secrete 

cytokines and other modulatory factors. These factors work in concert with the epithelial 

signals to alert and dictate adaptive responses (7). In this way, cooperation of leukocytes 

and epithelial cells extends the definition of the innate immune system to include all cells 

of the body (8). 

Enteroendocrine cells (EEC) form the largest endocrine system in the body. They secrete 

multiple regulatory molecules which control physiological and homeostatic functions, 

particularly postprandial secretion and motility. Their key purpose is to act as sensors of 

luminal contents, either in a classical endocrine fashion, or by a paracrine effect on 

proximate cells, notably vagal afferent fibers (9). They also play a pivotal role in the control 

of food intake, and emerging data add roles in mucosal immunity and repair.  

The primary responsibility for mucosal barrier function resides in the epithelial cell plasma 

membrane, which is impermeable to most hydrophilic solutes (in the absence of specific 

transporters). Accordingly, direct epithelial cell damage, such as that induced by mucosal 

irritants or cytotoxic agents, including surfactants and some drugs used for cancer 

chemotherapy, results in a marked loss of barrier function. However, in the presence of an 

intact epithelial cell layer, the paracellular pathway between cells must be sealed or 
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modulated in physiological conditions. This function is mediated by an apical junctional 

complex, formed by tight junction and adherents junctions (10; 11) (Figure 1).  

 

 

Figure 1:  Distinct subpopulations of IEC cells. IECs are integrated into a layer presenting two main regions, 
apical and basolateral. Enterocytes, in the small intestine, and colonocytes in the large intestine, as well as 
specialized Paneth cells in the bases of small intestinal crypts continually senses the microbiota to induce 
the production of antimicrobial peptides (AMPs). Goblet cells produce mucus, organized into a dense gel that 
forms an IEC-adherent inner mucous layer, and a less dense outer mucous layer. The outer layer is highly 
colonized by constituents of the microbiota. The inner mucous layer is largely impervious to bacterial 
colonization or penetration due to its high concentration of bactericidal AMPs. 
 

Junctional systems complexes are key players of the  epithelial barrier effect   

The elements of the complexes, identified as zonula occludens (tight junction), zonula 

adhaerens (intermediary junction), and macula adherens (desmosome), occupy a 

juxtaluminal position and succeed each other in the order given in an apical-basal 

direction.  

The zonula occludens (tight junction) is characterized by fusion of the adjacent cell 

membranes resulting in closure of the intercellular space at variable distances. Within the 
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closed region, the dense outer leaflets of the adjoining cell membranes converge to form a 

single intermediate line. A diffuse layer of dense cytoplasmic material is often associated 

with this junction and its development varies from one epithelium to another.  

The zonula adhaerens (intermediate junction) is characterized by the presence of an 

intercellular space (~200 Å) occupied by homogeneous, apparently amorphous material of 

low density; by strict parallelism of the adjoining cell membranes over distances of 0.2 to 

0.5 µm; and by conspicuous bands of dense material located in the subjacent cytoplasmic 

matrix.   

The desmosome or macula adhaerens is also characterized by the presence of an 

intercellular space (~240 Å) which, in this case, contains a central disc of dense material; 

by discrete cytoplasmic plaques disposed parallel to the inner leaflet of each cell 

membrane; and by the presence of bundles of cytoplasmic fibrils converging on the 

plaques (12-14) (Figure 2).  

 

Figure 2: scheme of adherens junctions main components 
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Tight junctions are multi-protein complexes composed of transmembrane proteins, 

peripheral membrane (scaffolding) proteins and regulatory molecules including kinases 

(Figure 3).  

Tight junctions limit solute flux along the paracellular pathway, which is typically more 

permeable than the transcellular pathway. Tight junctions have also the role of rate-limiting 

step in transepithelial transport and are the principal determinant of mucosal permeability. 

Thus, it is important to understand the specific barrier properties of the tight junction, which 

can be defined in terms of size selectivity and charge selectivity. 

A second pathway is characterized by small pores that are thought to be defined by tight 

junction-associated claudin proteins, which are also primary determinants of charge 

selectivity. These pores have a radius that excludes molecules larger than 4 Å.  

The expression of claudins varies between organs and even within different regions of a 

single organ and, as detailed below, can be modified by external stimuli, such as 

cytokines. Thus, tight junctions show both size selectivity and charge selectivity, and these 

properties may be regulated individually or jointly by physiological or pathophysiological 

stimuli. 
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Figure 3: Tight Junctions structure and mayor components 

At present, the most well-studied tight junction proteins are the claudins, a large family that 

includes at least 24 members (15-16). These proteins have four transmembrane helices 

with a very short intracellular amino-terminal sequence and a somewhat longer C-terminal 

tail. The first extracellular loop is approximately 50 residues long, although there is some 

variation among claudin family members. More importantly, sequence variation within the 

first extracellular loop determines tight junction charge selectivity (17), consistent with the 

view that the array of claudin proteins expressed in a given cell type defines the 

paracellular pore (18; 19) through which ions and perhaps nonionic solutes travel. The 

second extracellular loop of claudins is smaller than the first, ranges from 16 to 33 amino 

acids in length, and is poorly characterized. The cytoplasmic C-terminal tail varies in length 

from 21 to 63 residues and is the least conserved region of claudin proteins, suggesting 

that the tail may also be a site of functional regulation. Importantly, almost all claudin 

proteins present a three-aminoacid terminal motif that binds to PDZ domains (Figure 4). 

Tight junction proteins panel include ZO-1 as well as the related proteins ZO-2 and ZO-3 

(20); each of these proteins contains three PDZ domains within the amino-terminal portion 
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of the protein. PDZ domains, which were initially identified in PSD95, DlgA, and ZO-1, are 

specialized for protein interactions. In the case of ZO-1, ZO-2, and ZO-3, the most 

aminoterminal PDZ domain binds to the C-terminal tail of claudins (21). This is functionally 

critical because deletion of the PDZ-binding motif prevents efficient claudin targeting to the 

tight junction. Moreover, ZO-1 and ZO-2 are each able to direct claudins to developing 

tight junctions (22); simultaneous elimination of ZO-1 and ZO-2 expression blocks claudin 

recruitment and tight junction formation with consequent lost of barrier function (23).  

Several other groups of proteins, including transmembrane, cytoskeletal, and signaling 

proteins (24) complete the tight junction complex; in particular actin and myosin are 

essential structural elements of the tight junction (25).  

 

Figure 4:  PDZ domain interactions and the regulation of EMT and Wnt signalling. Schematic diagram of 
some of the critical regulators involved in the regulation of the canonical and non-canonical Wnt signalling 
pathways. Interlinked with this are PDZ interactions important in the regulation of EMT. Proteins possessing 
PDZ domains are shown in red and those possessing PBMs are shown in blue. β-CAT, β-catenin; CK2, 
casein kinase 2; GSK-3β, glycogen synthase kinase 3β; PCP, planar cell polarity; TCF, T-cell factor; WGEF, 
weak-similarity GEF. 
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The best-characterized example of tight junctions regulation in response to physiological 

stimuli is represented by the reversible increase in intestinal paracellular permeability 

induced by apical Na+/nutrient co-transport (26; 27); increase in paracellular permeability is 

thought to allow passive paracellular flux of nutrients, along with water. Ultrastructural 

analyses of tight junctions showed that activation of Na+/nutrient co-transport induced 

condensation of perijunctional microfilaments (28), interpreted as an indicator of 

actomyosin contraction. Unfortunately no tools needed to study these biochemical events 

in intact tissue are still developed. To solve problem, an in vitro model that simulate 

Na+/glucose co-transport–induced tight junction regulation was developed through use of 

cultured intestinal epithelial cell monolayers (29). Based on the ultrastructural data, 

phosphorylation of myosin II regulatory light chain (MLC), a trigger for actomyosin 

contraction, was examined and shown to increase following activation of Na+/glucose co-

transport (30). Moreover, MLC-kinase (MLCK) inhibition prevented both MLC-

phosphorylation and barrier regulation induced by Na+/glucose co-transport in cultured 

monolayers and also blocked barrier regulation in intact intestinal mucosa (31). These data 

suggest that MLCK is a critical physiological regulator of tight junction permeability. 

Furthermore, in vitro studies of epithelial cells with inducible expression of constitutively 

active MLCK demonstrate that enzymatic MLCK activation is sufficient to trigger 

downstream events necessary for barrier regulation (32). 

Immune stimulation and barrier regulation: the fund amental role of apoptotic 

signals 

The ability of cytokines, such as TNF and IFNγ, to regulate the function of the tight junction 

(33) barrier was first described 20 years ago. Since then, increased tight junction protein 

transcription, vesicular removal of proteins from the tight junction, tight junction protein 

degradation, kinase activation and cytoskeletal modulation have all been proposed to 

mediate cytokine-induced loss of tight junction barrier function (34). Although extensive 



 11

apoptosis of epithelial cells may also cause barrier loss, the relevance of single-cell 

apoptosis to barrier dysfunction remains controversial owing to differing results in diverse 

experimental systems. 

TNF and IFNγ modify tight junction barrier function in intestinal, renal, pulmonary and 

salivary gland epithelia as well as between endothelial cells. The effects of TNF on barrier 

integrity have been best studied in the gut (35), where this cytokine has a central role in 

many diseases associated with intestinal epithelial barrier dysfunction, including 

inflammatory bowel disease, intestinal ischaemia and graft-versus host disease. For 

example, although the effect of therapy with TNF-specific antibodies may be largely due to 

the overall reduction in inflammation. Increased mucosal TNF production may also 

contribute to increased intestinal permeability and susceptibility to colitis in mice with 

defective mucin biosynthesis. MLCK has been shown to have a central role in TNF 

induced epithelial and endothelial barrier deregulation, both in vitro and in vivo (36). 

Similar to Na+/nutrients co-transport, TNF-induced MLCK activation seems to increase 

paracellular flux through the leak pathway. Similarly, MLCK expression and activity are 

increased in intestinal epithelial cells of patients with inflammatory bowel disease.  

1.2 BARRIER BREAKDOWN: THE PANDORA'S BOX OPENED 

Chemotherapy-induced gastrointestinal mucositis 

Many anti-cancer therapeutic strategies based on radiotherapy and chemotherapy are 

effective in the treatment of malignant disease but, conversely, present a plethora of side 

effects including oral and gastrointestinal mucositis. There is no approved therapy to 

prevent or treat chemotherapy-induced mucositis at present and the development of an 

effective intervention is seen as a high priority in oncological supportive care (37-39).  

Severe mucositis is especially common among patients who receive aggressive 

myeloablative chemotherapy and in patients who receive radiation therapy as treatment for 

cancers of the oral cavity, oropharynx, nasopharynx and salivary glands. Patients with 
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severe mucositis develop ulcerations that penetrate fully into the submucosa and cause 

severe pain, which routinely necessitates narcotic analgesia. 

In addition to the symptoms of mucositis and its impact on quality of life, mucositis 

adversely affects a variety of other health and economic outcomes. Among patients who 

have received chemotherapic treatments, the presence of mucositis results in lengthened 

hospital stays, increased use of resources and higher costs. Mucositis also threatens the 

efficacy of treatment plans by necessitating breaks in chemotherapy, reductions in doses 

of drugs used in chemotherapy and modifications in the selection of anti-neoplastic agents. 

Anthracyclines like doxorubicin are among the most widely used and effective 

chemotherapeutic agents but also the use of which often causes the onset of mucositis 

(especially in combination with 5-fluorouracil) (40-42).  

One of the most important event that compromise the intestinal epithelium biological 

functions (like nutrients absorptions and barrier effect against pathogens invasion) is the 

lack of the correct permeability caused by alterations of the junctional systems (43; 44) of 

epithelial cells in response to apoptotic events promoted by chemotherapeutic agents, 

events like apoptosis and inflammation, which affect the tunica mucosa, the vascular 

endothelium and the whole body, contribute to the onset of mucositis. One of the most 

important apoptotic pathways involves caspases; in particular caspase-3 that is connected 

with junctional damages; two target proteins for Tight Junctions and Adherent Junctions, 

zonula occludens-1 (ZO-1) and beta-catenin respectively, are down-regulated in presence 

of chemotherapy-induced apoptosis. (45; 46) Because the gastrointestinal tract present a 

vast array of microorganisms, loss of epithelial integrity, especially when patients undergo 

myeloablation, markedly increases the risk of bacteraemia, fungaemia and sepsis (47; 48) 

Inflammatory Bowel Diseases (IBD) 

Idiopathic IBDs such as Crohn disease and ulcerative colitis occur in clinically 

immunocompetent individuals whose characteristic symptoms and signs arise from a 
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robust, cytokine-driven (yet noninfectious) inflammation of the gut (49). Crohn disease is 

associated with excess IL-12/IL-23 and IFN-γ/IL-17 production that affects the small bowel 

and colon with discontinuous ulceration and full thickness bowel wall inflammation often 

including granulomas. Patients report gastrointestinal symptoms of abdominal pain, 

diarrhea, and rectal bleeding as well as systemic symptoms of weight loss, fever, and 

fatigue. Crohn disease patients can also develop obstructing structures of the bowel and 

inflammatory connections (fistulae) (Figure 5) between segments of bowel or between the 

bowel and skin and other organs. In comparison, ulcerative colitis is associated with 

excess IL-13 production, primarily affecting the colon, with a continuous inflammation of 

the mucosa nearly always involving the rectum and extending proximally (50).  

It has been proposed that three main features should be present for IBD to occur: a 

genetically susceptible mucosal immune system; an antigen, or pro-inflammatory 

compound, which reaches the gut and can trigger the susceptible immune system; and an 

alteration in gut barrier function which allows antigens to have contact with the mucosal 

immune system (51). 

Since the studies about Crohn's disease have shown immunological factors underlying 

onset of this disease, the conventional treatments for IBD as corticosteroids, mesalamine, 

and immunosuppressants, provide mostly to block downstream inflammatory events. 

Medical therapy relies on classic anti-inflammatory and immunosuppressant drugs: 

corticosteroids, mesalamine compounds, azathioprine, and derivatives of the latter. (52-

54). Newer biological drugs such as anti–TNF-α antibodies targeting the general 

inflammatory cytokine, TNF-α, have added greatly to our ability to control IBD, but even 

this therapy is limited by lack or loss of efficacy and associated toxicities (55). Emerging 

therapies for IBD are focusing on major effector cytokines as they are identified in ongoing 

investigations, for instance using an anti–IL-12p40 antibody to neutralize the effects of IL-

12 and IL-23 in Crohn disease (56).  
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Increased paracellular permeability was reported in patients with Crohn’s disease (CD) 

over 25 years ago (57). Although such barrier loss may be caused by erosions that occur 

in active disease, some approaches used to measure permeability partially excluded this 

possibility by normalizing absorption of the inert sugar lactulose to that of the smaller, and 

more easily absorbed, inert sugar mannitol (58) .  

In recent years, several lines of evidence suggested that an increased intestinal 

permeability play a central role in the pathogenesis of IBD. In different animal models of 

Crohn's disease, an increased small intestinal permeability has been shown, even before 

disease expression, and the reversal of this barrier defect can attenuate the disease, 

implying that the increased permeability is not simply an epiphenomenon but rather is an 

important etiological event (59-61). In the human condition it is also evident that increased 

small intestinal permeability is commonly observed in populations at high risk of 

developing Crohn's disease (62; 63). This would suggest that there is a subtle alteration of 

function, independent of inflammation, which can be visible as an increase in paracellular 

permeability. This raises the possibility that restoration of barrier function may be 

therapeutic in CD Consistent with this hypothesis, emerging data indicate that inhibition of 

cytoskeletally mediated barrier dysfunction may be able to prevent disease progression. 

Barrier restoration may, therefore, represent a non-immunosuppressive approach to 

achieving or maintain disease remission. 
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Figure 5: Classical representation of Crohn Disease lesions 

 

1.3 SODIUM-DEPENDENT GLUCOSE TRANSPORTER-1 

SGLT1: classical transporter and novel receptor. Tw o faces of the same medal 

The primary functions of the gastrointestinal (GI) tract have traditionally been perceived to 

be limited to the digestion and absorption of nutrients and electrolytes and to water 

homeostasis but the intestinal epithelial barrier also controls the equilibrium between 

tolerance and immunity to non-self-antigens by regulating antigen trafficking both through 

the transcellular and paracellular pathways.      

Luminal content influences intestinal epithelium function and the components of diet 

certainly play a role in the modulation of enterocytes response. The large surface of the 

gut is a wide area to protect and constitutes an easy way to the whole organism for 

pathogen bacteria. On the other hand a so large line on external environment is necessary 

to an appropriate absorption of the nutrients. Often the absorption is a transport against 

gradient because the concentration of nutrient molecules is lower in the lumen than inside 

the cells. For this reason a wide range of transporters are evolved in order to guarantee 
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the absorption of water and electrolytes, minerals and vitamins, sugars, fatty acids, amino-

acids and small peptides. The same molecules probably exert different effects on the role 

of IECs in mucosal immunity. D-glucose, in particular, is prevalently considered as 

energetic substrate and other possible roles are poorly analyzed. 

Glucose is among the more abundant monosaccharide in the diet, and its absorption in the 

intestine is mediated by the high-affinity, sodium-dependent glucose cotransporter (SGLT-

1), located in the apical membrane of enterocytes.  

Recently SGLT-1 has been described as involved in the repair of plasma membrane 

integrity and tight junction (TJ) integrity injured by heat stress or cisplatin chemo-treatment 

(45; 64) In our recent papers we demonstrate the protective effect of the activation of 

sodium-dependent glucose transporter-1 (SGLT-1) on damages induced by TLRs ligands 

in intestinal epithelial cells, in a murine model of septic shock and in LPS-induced liver 

injury, as well as liver injury and death induced by an overdose of acetaminophen (65; 66).  

Intestinal glucose absorption and the role of SGLT- 1 

D-glucose is the major source of energy in mammals and it is absorbed by the epithelial 

cells lining the surface of the small intestine. The transport of glucose from lumen to 

enterocytes in the small intestine is principally mediated by Na+-dependent glucose co-

transporters (SGLTs, members of a larger family of Na+-dependent transporters, gene 

name SLC5A) that use the Na+-electrochemical gradient at the generated by the Na+/K+- 

ATPase to transport glucose into cells (Figure 6) 

SGLT-1 is the most important active glucose transporter at intestinal level and it is found in 

brush border membrane of mature enterocytes in the small intestine. During the process of 

intestinal sugar transport, on the luminal side of the brush border membrane, two Na+ ions 

bind to SGLT-1 and produce a conformational change that permits sugar binding. Another 

conformational change allows the substrates to enter the enterocyte. The sugar, followed 

by the Na+, dissociates from SGLT-1 because the affinity of the cytosolic sites is low, and 
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also because the intracellular concentration of Na+ is low (10 vs 140 mEq/L). The Na+/K+-

ATPase in the basolateral membrane is responsible for maintaining the Na+ and K+ 

electrochemical gradients across the cell membrane (67-70). 

 

Figure 6: schematic model of intestinal sugar transport. SGLT1 is the sodium dependent glucose/galactose 
transporter on the brush border membrane. The Na+K+-ATPase on the basolateral membrane maintains the 
gradient necessary for the functioning of SGLT1.  GLUT2 transports glucose, galactose and fructose out of 
the cell. IF images of SGLT-1 in villus brush border. 
 

SGLT-1 as a new player in epithelial homoeostasis m aintenance. Engagement with 

natural and synthetic molecules.  

Since 2005 SGLT-1 assumes a novel physiological role. SGLT-1 activation loads to a local 

and systemic anti-inflammatory and cytoprotective response in different inflammatory 

conditions. Firstly the effect of glucose has been analysed in enterocytes exposed to 

agonists of TLR4 and TLR9. The encouraging in vitro results prompted us to analyze the 

effects of glucose on a systemic inflammatory response syndrome (endotoxic shock) in 

mice (Figure 7).  
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Figure 7: schematic representation of SGLT-1 activation pathways in different cases of tissue damage 

Oral ingestion of glucose was found to protect 100% of mice from lethal endotoxic shock 

induced by intraperitoneal LPS administration (65); protection was only observed when 

glucose was administered orally, not by i.p. route, suggesting the important role of 

intestinal epithelial cells. Subsequently the study investigated the possibility that orally 

administered D-glucose exerts a systemic anti-inflammatory activity on hepatic liver failure. 

In this study (66) that D-glucose prevents LPS-induced liver injury, as well as liver injury 

and death induced by acetaminophen overdosing. In both of these models, physiological 

liver morphology is maintained and organ protection was confirmed also by unchanged 

levels of circulating markers of hepatotoxicity, such as ALT or LDH. In addition, D-glucose 

was found to protect liver from alpha-amanitin intoxication. In this case, however, a second 

signal had to be present in addition to glucose in order to achieve protective efficacy.  

In addition, we observed that the in vivo protection depends from a systemic increase of 

anti-inflammatory cytokine IL- 10. The milestone of the observed immunomodulatory 

effects resides in activation of SGLT-1; in fact, the glucose analogue 3-OMG, which 

induces the transporter activity but is not metabolized, exerted the same effects as glucose 

both in vitro and in vivo. Unfortunately 3-OMG is active at the same high concentration of 
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D-glucose and in order to solve this problem we decided to screen a library of synthetic 

glucose analogues as ligands for our experiments.  

BLF501: origin of the synthetic compound 

In the search for non-metabolizable glucoderivatives able to “activate” the SGLT-1 

transporter at pharmacological concentrations, the chemical researcher team generated a 

small library of naphthyl C-glycoside and glycitol derivatives, mostly without the use of 

protecting groups. We tested in vitro anti-inflammatory activity of different compounds, 

among them, we have selected a synthetic SGLT-1 ligand, named BLF501 (figure 8), 

which binds to the transporter with high potency, i.e. at concentrations 5 orders of 

magnitude lower than glucose.  
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Figure 8:  Synthesis and Structure of BLF501 

BLF501, a member of the C-glycoside class, was designed to resist glucose metabolism 

and to retain hydrolytic stability in the acidic and basic conditions found in the 

gastrointestinal tract. Stability of BLF501 in different pH conditions was tested in samples 

prepared by dissolving 2.3 mg in 550 µl of D2O and adjusting the pH to 1.2 through DCl 

addition (acidic conditions) or by dissolving 3 mg of BLF501 in 550 µl of D2O and adjusting 

the pH to 12.5 through NaOD addition (basic conditions). Both samples were kept at room 

temperature until 1H-NMR spectra were recorded at 10 min, 4.5 h and 24 h. As shown in 

Figure 2, neither sample evidenced degradation in 24 h. BLF501 matches with the 

fundamental characteristic of absence of metabolic activity. In fact in the field of C-

glycosides like BLF501 no relevant bioactivity has been reported until now (71), allowing 

us to consider BLF501 a non-metabolizable glucose derivate.  
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3 mg pH 12.5 (D20, NaOD)     2.3 mg pH 1.2 (D20, DCl) 

 

 

 

 

 

 

Figure 9.  1H-NMR spectra of BLF501 at pH 12.5 and at pH 1.2. 

1.4 AIM OF THE STUDY: 

The aim of this work is to demonstrate that SGLT-1 engagement via orally administered 

ligands, in particular the synthetic one BLF501, could activate protective mechanisms at 

intestinal epithelial level, preserving correct epithelial morphology and permeability and 

accelerating recovery of homeostatic conditions. 
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2. MATERIALS AND METHODS: 

2.1 SGLT-1 ACTIVATION IN GIM MODELS: 

Chronic and acute in vivo experiments were performed on mice strain BALB/C purchased 

from Charles River Italy. The mice used for the different treatments were housed in 

specific aseptic conditions, with a constant temperature and humidity and received food 

and water ad libitum. The animals were divided randomly into groups and assigned to two 

treatment protocols. 

Chronic treatment:  

15 animals formed the control group; 15 animals formed the group treated with doxorubicin 

and 5-fluorouracil, 15 animals formed the group treated with doxorubicin and 5-fluorouracil 

and BLF501 25 µg/Kg; 15 animals formed the group treated with doxorubicin and 5-

fluorouracil and BLF501 2.5 µg/Kg; 15 animals formed the group treated with doxorubicin 

and 5-fluorouracil and BLF501 0.25 µg/Kg and 15 animals formed the group treated with 

BLF501 25 µg/Kg only. Administration of doxorubicin (DXR) 7 mg/kg (adriablastina, Pfizer) 

and 5-fluorouracil (5-FU) 100 ng / kg (fluorouracil; TEVA), dissolved in saline solution for a 

final volume of 300 µl, was carried out weekly for a total duration of three weeks by 

intraperitoneal injection. The administration of BLF501 (25, 2.5 and 0.25 µg/kg in saline for 

100µl total) occurred simultaneously with the chemotherapic agents by gavage using a 

gastric tube. 

Acute treatment:  

 Administration of DXR (20 mg/kg), dissolved in saline solution for a final volume of 300 µl, 

was carried out at day 0 intraperitoneal injection. The administration of BLF501 (25 µg/kg 

in saline for 100 µl total) occurred simultaneously with the chemotherapic agent by gavage 

using a gastric tube  

7 animals formed the control group; 14 animals formed the group treated with DXR; 14 

animals formed the group treated with DXR and BLF501; 14 animals formed the group 
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treated with BLF501. Seven mice from all treated groups were sacrificed after 48 and 72h. 

Control group was sacrificed after 72h. All the animals of acute treatment received, an 

hour prior to sacrifice, an intraperitoneal injection of bromodeoxyuridine (BrdU) to perform 

evaluation of cell proliferation with immunofluorescence reaction. 

Chemotherapy simulation:  

Chemotherapy simulation in vivo experiments was performed on mice strain SKH-1 nude 

mice purchased from Charles River Italy. The mice used for the different treatments were 

housed in specific aseptic conditions, with a constant temperature and humidity and 

received food and water ad libitum. A431 tumoral cells were implanted subcutaneously to 

32 mice and when the tumor weight reached a mean value of 240 mg mice were divided 

randomly into groups and assigned to the treatment protocols. 8 animals formed the 

control group; 8 animals formed the group treated with doxorubicin 6 mg/Kg 8 animals 

formed the group treated with doxorubicin 6 mg/Kg plus BLF501 25 µg/Kg; 8 animals 

formed the group treated with BLF501 25 µg/Kg only. Tumor weight was registered daily. 

At day 26 of treatment mice were sacrificed. 

Processing of samples 

After collection, the samples were fast separated in small pieces and fixed in 10% formalin 

with 2% sucrose for 4 hours at 4 ° C. Then we proce eded with 2 rinses in PBS half-hour 

after each and were placed in 70% ethanol for at least 12 hours, finally the samples were 

dehydrated by successive steps in an ascending scale of alcohols, placed in xylene for 2 

hours and finally embedded in paraffin.  

Staining with hematoxylin and eosin 

Hematoxylin-eosin staining was performed on sections obtained from paraffin-embedded 

samples. The samples were deparaffinized in xylene, rehydrated through descending 

scale of alcohol, left for 10 minutes in hematoxylin, washed under running water and then 

placed in eosin for 3 minutes, finally dehydrated through ascending scale of alcohols and 
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xylene in then mounted with coverslips using Entellan (Merck, Darmstadt, Germany). The 

observation of the samples and photographs were taken with a microscope Nikon Eclipse 

80 with a digital camera Nikon DS-L1. 

ZO-1 Immunofluorescence  

Samples sections were deparaffinized in oven at 60 ° C for 30 minutes, placed in xylene 

and rehydrated. It was then performed a quick rinse with 0.1 M Tris/HCl pH 7.4 after which 

the sections were incubated with proteinase K 20 g/ml Tris/EDTA buffer pH 8 for 15 

minutes at 37 ° C. It was subsequently made a furth er washing with Tris/HCl after the 

sections were permeabilized with 1% Triton X-100 in Tris/HCl for 5 minutes at room 

temperature. Slides were washed with Tris/HCl and then sections were blocked with a 

solution containing 1mM Hepes, 2% goat serum, 1x HBSS and 0.5% Triton X-100 for one 

hour at room temperature. Sections were incubated with primary antibody α-ZO-1 

(Invitrogen, Camarillo, CA) 1 5 g / ml in Tris/HCl overnight at 4 ° C. Samples were washed 

for three times with Tris/HCl and 0.01% Triton X-100. After washing, the sections were 

incubated with secondary antibody goat anti-rabbit conjugated to tetramethyl-rhodamine 

isothiocyanate (TRITC) diluted 1:1000 in Tris/HCl for 45 minutes at room temperature. 

We proceeded with further washes for 5 minutes with Tris/HCl + 0.01% Triton X-100, then 

the sections were incubated with 20µl of enhancer per slice for 30 minutes at room 

temperature. 2 more washes were carried out for 5 minutes with Tris/HCl and 0.01% Triton 

X-100. Sections were incubated with DAPI 1:10000 in Tris/HCl for 5 minutes at room 

temperature and then subjected to 3 washes with Tris/HCl and 0.01% Triton X-100. Slides 

were mounted with Mowiol. The observation of the samples and photographs were taken 

with a microscope Nikon Eclipse 80, with a digital camera Nikon DS-L1. 

Beta-catenin immunohistochemistry. 

The sections on slides were deparaffinized in oven at 60 ° C for 30 minutes, placed in 

xylene and rehydrated It was then performed using two antigen unmasking steps 
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interspersed with 5 minutes 1 minute pause, in a microwave oven with citrate buffer pH 6 = 

0.005 M. The sections were cooled for about an 30 minutes and then washed with 0.1 M 

Tris/HCl pH 7.4 + 0.025% Triton X-100 (three washes of 5 minutes each). Then was 

carried out the endogenous peroxidase inhibition with a solution of 3% H2O2 in 0.1 M 

Tris/HCl pH 7.4 for 20 minutes, after which the sections were washed with 0.1 M Tris/HCl 

pH 7.4 + 0.025% Triton X- 100 (three washes of 5 minutes each). Subsequently 

nonspecific sites were blocked with HHG solution (1 mM Hepes, 2% goat serum, 1X 

HBSS, 0.5% Triton X-100) in Tris/HCl for 1 hour at RT. Sections were incubated with 

primary antibody anti-beta-catenin (Abcam, Cambridge, UK) 1:500 in Tris/HCl + 1% BSA 

for 2 hours at RT, followed by 3 washes for 5 minutes with Tris/HCl, 0.1% Triton X-100. 

After washing, the sections were incubated with biotinylated secondary antibody goat anti-

rabbit 1:1000 diluted in 0.1 M Tris/HCl pH 7.4 + 0.025% Triton X-100 for 45 minutes at 

room temperature. After washes with 0.1 M Tris/HCl pH 7.4 + 0.025% Triton X-100 

sections were incubated with ABC-kit and DAB (Vector, Burlingame, U.S.), the 

development has been blocked in distilled H2O. Sections were counterstained with 

hematoxylin for 10 minutes RT and finally dehydrated through ascending scale of alcohols 

and xylene, then mounted with coverslips using Entellan (Merck, Darmstadt, Germany). 

The observation of the samples and photographs were taken with a microscope Nikon 

Eclipse 80th, with a digital camera Nikon DS-L1. 

Immunofluorescence for BrdU 

The sections on slides are deparaffinized in oven at 60 ° C for 30 minutes, placed in 

xylene and rehydrated sections were rinsed in PBS and incubated with 2N HCl for 30 

minutes at RT and in Na2B4O7 for 1o minutes. Sections were incubated with PBS/3% BSA 

for 20 minutes at RT and then with proteinase K 20 g/ml in TrisEDTA buffer pH 8 for 15 

minutes at 37°C. After three washes in PBS/BSA 3% s ections were incubated with primary 

antibody α-BrdU (Novocastra) 1:200 in PBS/3% BSA for 1 hour at RT, washed with 



 25

PBS/3% BSA and then incubated with secondary antibody goat anti- mouse Alexa Fluor 

488 1:500 in PBS/BSA 3%. Slides were washed with PBS/BSA 3% and with 

Tris/HCl/0.01% Triton X-100. Sections were incubated with 1:2500 DAPI in Tris/HCl for 5 

minutes at room temperature and then subjected to 3 washes with PBS / BSA 3%. Slides 

were mounted with Mowiol. 

Real-Time polymerase-chain reaction (PCR) 

Real-Time PCR experiments were performed in accordance with manufacturer’s 

instructions using a 7900HT Fast Real Time PCR System (Applied Biosystems, Foster 

City, CA, US). Primers for SI; TFF3; DLL1, and beta-actin were purchased from Applied 

Biosystems. 

Western Blots 

The expression of Akt/P-Akt, Caspase-3 and Ezrin was assessed by analyzing the total 

protein extract from small intestine samples taken from differently treated animals. The 

protein extracts were quantified using the BCA method (BCA Protein Assay Kit, Pierce, 

Rockford, IL). Proteins (30 µg) were fractionated on a polyacrylamide gel (BIO-RAD Labs, 

Hercules, CA) containing 0.1% to 8% of SDS and transferred onto a nitrocellulose filters 

(American Biosciences, Buckinghamshire, England) by electroblotting. Filters were 

incubated for 1 hour in TBS (8% NaCl, 3% Tris) containing 1% Tween-20 and 5% milk 

powder to block nonspecific binding sites. For the various reactions following antibodies 

were used: 

Protein Primary Ab Primary Ab 
dilution 

Solvent solution Reaction 
conditions 

Akt monoclonal anti-mouse 
Akt  

1:1000 TBS + 1% Tween-20 +5% milk O/N at 4°C 

P-Akt monoclonal anti-mouse 
P-Akt  

1:1000 TBS + 1% Tween-20 +5% milk O/N at 4°C 

Caspase-3 policlonal rabbit  
anti-mouse caspase-3 

1:500 TBS O/N at 4°C 

Ezrin monoclonal anti-mouse 
Ezrin  

1:1000 TBS O/N at 4°C 

Beta-actin policlonal rabbit  
anti-mouse beta-actin 

1:1000 TBS + 1% Tween-20 +5% milk O/N at 4°C 

Table 1:  primary antibodies used to perform WB assays  
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After three rinses with TBS containing 1% Tween-20, the filters were incubated for 1 hour 

at room temperature with secondary antibody: rabbit anti-peroxide (Vector Laboratories) 

diluted 1:1000 in TBS with Tween-20 to 0.1% and 5% milk. Following three rinses were 

performed with TBS containing 1% Tween-20 and a rinse in TBS. The bands were finally 

visualized using the ECL ™ Western Blotting Detection Reagents and plates by 

autoradiography (American Biosciences). 

Cell cultures 

Cell lines Caco-2/bbe and  Caco-2/bbe permanently transfected with SGLT-1 (kind gift of 

Prof. Mark Donowitz, MD, Johns Hopkins University School of Medicine, Baltimore) were 

cultured in DMEM high-glucose medium (4,5g/L) (Euroclone, Pero, Italy) supplemented 

with 10% FBS (Euroclone), 1% glutamine (Euroclone),  15 nM sterile HEPES solution 

(Euroclone). For Caco-2/bbe/SGLT1 cells, 250 µg/ml G418 gentamicin bisulfate salt 

solution (Sigma-Aldrich) was added as antibiotic agent; for normal Caco-2/bbe 

penicillin/streptamicin solution (Euroclone) was added. 

A431 cells were cultured in RPMI 1640 medium (Euroclone) supplemented with 10% FBS 

(Euroclone), 1% glutamine (Euroclone) and 1% penicillin/streptamicin solution (Euroclone). 

Cell treatments 

For viability assays 1 x 105 Caco-2 cells were plated on 96 flat-bottom well plates and 

treated after 24 hours with doxorubicin (100 µM) with or without BLF501 11.4 µM. Cell 

viability was evaluated after 48 h with Neutral Red assay.  

2.2 SGLT-1 ACTIVATION IN IBD MODELS 

Mice and in vivo treatments 

C57BL/6 female mice were purchased from Charles River, Italy (Head Office Wilmington, 

MA). Mice were housed under specific pathogen-free conditions, maintained at constant 

temperature and humidity, with food and water given ad libitum, and used at 8-12 weeks of 

age. Experimental protocols were approved by the Ethics Committee for Animal 
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Experimentation of Istituto Nazionale Tumori, Milano, and carried out according to 

guidelines of the United Kingdom Co-ordinating Committee on Cancer Research for 

animal welfare in experimental neoplasia (1998). 

Induction of acute and chronic colitis 

Mice weighting 20-22 g  received 2% dextran sodium salt (m. m. 40 kD, MP Biomedicals, 

Irvine, CA) ad libitum in filter-purified drinking water for 7 days. For treatments studies 

mice undergoing DSS from day 4 at day 7 received oral administration of BLF501 250 

µg/kg or 25 µg/kg or 2.5 µg/kg once day. BLF501 was administrated with a sterile gastric 

tube In other mice groups received only BLF501 250 µg/kg or 25 µg/kg or 2,5 µg/kg or 

glucose 2,5 g/kg. One group received only DSS 2% in drinking water. 

 

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 
DSS 2% DSS 2% DSS 2% DSS 2% 

+BLF501  
DSS 2% 
+BLF501 

DSS 2% 
+BLF501  

DSS 2% 
+BLF501  

Sacrifice 

Table 2 . Schematic presentation of different treatments in the time. Mice received DSS 2% in drinking water. 
BLF501 250 µg/kg or 25 µg/kg or 2,5 µg/kg were administrated (diluted in physiological solution) once per 
day at day 4, 5, 6, 7 and at 8th mice were sacrificed. 
 
Groups Treatment 
1 Untreated 
2 DSS 2% only 
3 DSS 2% + BLF501 250 µg/kg 
4 DSS 2% + BLF501 25 µg/kg 
5 DSS 2% + BLF501 2,5 µg/kg 
6 BLF501 250 µg/kg 
7 BLF501 25 µg/kg 
8 DSS 2% + physiological solution 

Table 3. Schematic representation mice groups. 5 mice/groups. 

 

To induce chronic colitis four groups of 10 mice/groups mice received three cycles of DSS 

2%. Each cycle consists of 2% DSS dissolved in filter-purified drinking water for 7 days, 

followed by a 14 days interval with normal water administration. After ten days from the 

last DSS cycle we started different treatments. 

The first group of animals (control group) received normal drinking water only, during the 

whole time of the experiment. The second group of 12 mice received only three cycles of 
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treatment with DSS, as previously described, and no any further treatment. Four mice of 

this group were sacrificed one week after DSS cycle completion; four mice of this group 

were sacrificed two weeks after DSS cycle completion; and 4 mice were sacrificed after 

three weeks. 

After DSS cycles completion, third mice group received oral administration of 25 µg/kg 

BLF501 four times/week for one week; forth received 25 µg/kg BLF501 four times/week for 

two consecutive weeks; and fifth group received 25 µg/kg BLF501 four times/week for 

three consecutive weeks.  

Groups Treatments 
1 Untreated 
2 DSS 2% +physiological solution 
3 DSS 2%+ BLF501 25 µg/kg for 1 week 
4 DSS 2% + BLF501 25 µg/kg for two week 
5 DSS 2% + BLF501 25 µg/kg for three weeks 

Table 4. Schematic representation mice groups. 12 mice in group 1. In goups 2, 3, 4 and 5 10 mice/group. 

 

 
TREAT. 

 
DSS 

 
H2O 

 
DSS 

 
H2O 

 
DSS 

 
H2O 

 
BLF501 
25 µg/kg 

 
Death 
Group3/2 

 
BLF501 
25 µg/kg 

 
Death 
Group4/2 

 
BLF501 
25 µg/kg 

 
Death 
Group5/2 

N days  7 14 7 14 7 10 7 X 7 X 7 X 

Table 5  Schematic presentation of different treatments time. N days is for number days of water DSS 2% 
added or water only administration. After ten days of the last DSS cycle BLF501 was orally administrated 4 
times/week for 1 or 2 or 3 consecutive week. X is for sacrifice day. 
 

Evaluation of intestinal inflammation in acute and chronic colitis 

Acute colitis was scored daily using standard parameters that includes evaluation of body 

weight and stool consistence. Body weight of mice was registered daily at 5.00 p.m.. Stool 

consistence was evaluated daily, but comparative analysis between different groups was 

conducted at the end of experiments. 

Score Stool consistence Blood 

0 Normal No visibile 
1 Soft but still formed No visibile 
2 Very soft Blood traces in stool visible 
3 Diarrea Rectal bleeding 

Table 6. Scoring system for the comparative analysis of stool consistence. 
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At the end of treatments the colon of mice was cut close to the ileo-cecal valve and 

rectum, and the length was measured with and .for acute colitis experiment  photos were 

captured. 

Ussing Chamber analysis.. 

In order to measure the colon permeability in 5 mice/group, organ segments were 

mounted between the two chambers of a Ussing System (0.125 cm2 opening). Two 

calomel voltage-sensitive electrodes and two Ag-AgCl current passing electrodes (EVC-

4000 World Precision Instrument Inc., Sarasota, FL) were connected to the Ussing 

chamber via agar bridges. Both the mucosal and serosal sides of the chamber were 

connected to sterilized circulating reservoirs containing 10 ml of oxygenated Krebs buffer 

(115 mM NaCl, 8 mM KCl, 1.25 mM CaCl2, 1.2 mM MgCl2, 2 mM KH2PO4, and 225 mM 

NaHCO3; pH 7.35). The buffers were maintained at 37°C by a heated water jacket and will 

circulate by a gas lift column of 95% oxygen/5% CO2. Glucose (5.5 mM) was added to the 

serosal and mucosal sides. Colonic membrane mounted in the Ussing chamber, the 

system was allowed to stabilize for 20 minutes, in order to test the system functionality and 

the integrity of the colonic mucosal membrane. Trans-epithelial electrical potential 

difference in millivolt across the mucosal membrane was measured directly, while the 

trans-membrane resistance was calculated indirectly as ohms x cm2, using Ohm's law. 

Histological evaluation of colitis severity. 

Murine colon specimens of 5 mice/group will be fixed in 10% neutral buffered formalin, 

embedded in paraffin, sectioned at 4 µm and collected on xilanized slides.  

Histopathological analysis using hematoxylin-eosin-stained sections of distal colon 

samples of mice were performed. Samples were observed with a Nikon Eclipse 80i 

microscope equipped with a digital Nikon DS-L1 camera. To quantify/evaluate acute and 

chronic colitis-associated histological alteration in the colon we used a scoring system, 

provided in table 7. 
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Score Histologic changes 
0 No evidence of inflammation 
1 Low level of inflammation with scattered infiltranting mononuclear cells 
2 Moderate inflammation with multiple foci 
3 High level of inflammation with increate vascular density and marked wall thickening 
4 Maximal severity of inflammation with transmural leukocyte infiltration and loss of globet cells. 

Table 7. Scoring system for inflammation associated histological changes in the colon 

Immunofluorescence analysis. 

Murine colon specimens were fixed in 10% neutral buffered formalin, embedded in 

paraffin, sectioned at 4 µm and collected on xilanized slides; samples were deparaffinized, 

rehydrated, and incubated for 10 minutes at 37 °C i n a humidified chamber with protease 

type XIV 2 mg/ml (from Sigma) in Tris/HCl; samples were then incubated with glycine 0,1 

M for 20 minutes at room temperature, washed with Tris/HCl + Triton X-100 0.01%, 

incubated with NaBH4 0.5mg/ml for 20 minutes at room temperature, washed with Tris/HCl 

+ Triton X-100 0.01%, incubated with Image-IT FX signal enhancer (Invitrogen) for 30 

minutes, blocked with 2% goat serum for 20 minutes at room temperature and incubated 

with rabbit anti-occludin or anti-ZO-1 antibody 4 µg/ml (both from Invitrogen). Incubation 

with secondary antibody 546 Alexa conjugated goat anti-rabbit and staining of the nuclei 

with DAPI were performer. Samples were observed with a Nikon Eclipse 80i microscope 

equipped with a digital Nikon DS-L1 camera. 
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3 RESULTS 

3.1 SGLT-1 activation exerted by BLF501 accelerates  recovery from the alterations 

of the small intestine induced by a single administ ration of DXR. 

The effect of BLF501 on alterations of the small intestine induced by DXR was evaluated 

in mice treated with DXR alone (20mg/kg i.p., n=14); DXR plus BLF501 (25ug/kg BLF501 

n=12); BLF501 alone (n=14) or left untreated (n=7). Half of the mice were sacrificed after 

48 hours and the others after 72 hours. 

Macroscopic examination of small intestine samples collected at 48 or 72 hours did not 

reveal morphological alterations. On the other hand, determination of the proliferation rate 

of crypt cells rate, performed by immunofluorescence BrdU assay, revealed a significant 

reduction of proliferation in DXR-treated mice (1.3 ± 0.2 % at 48 h; 0.8 ± 0.6 % at 72h, 

untreated 2.3 ± 2.2 % (72h); p=0.0086 and p=0.0229 respectively), that was absent in 

mice treated simultaneously with DXR and BLF501 (DXR + BLF501 3.3 ± 0.5 % and 2.2 ± 

0.5 % at 48 and 72 h respectively; p=0.004  and p=0.028 vs DXR at 48h and 72h, 

respectively) (Figure 10). No modification of the proliferation of intestinal epithelial cells 

was observed in samples from mice treated with BLF501 alone. 



 32

 

Figure 10:  BrdU immunofluorescence for evaluation of cellular proliferation (A) UNTR, untreated; (B) 
BLF501 25 µg/Kg (C) DXR 48h; (D) DXR + BLF501 25 µg/Kg 48h; (E) DXR 72h (F) DXR + BLF501 25 µg/Kg 
72h. Statistical analysis: DXR+BLF501 25 µg/Kg 48h vs DXR 48h ** P=0.004; DXR+ BLF501 25 µg/Kg 72h 
vs DXR 72h * P=0.0282 
 

Treatment with BLF501 was also found to restore the expression of beta-catenin, a unique 

intracellular protein functioning as an integral component of the cell-cell adhesion complex 

and a principal signaling protein mediating canonical Wnt signaling linked with cellular 

proliferation. In fact, expression of beta-catenin was reduced at 48 hours after DXR 

administration in the villi and at 72 hours in both villi and crypts (Figure 11). 
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Figure 11:  Immunohistochemistry for the expression of beta-catenin in a model of acute mucositis.  
(A-B ) UNTR, untreated; (C-D) BLF501 25 µg/Kg (E-F) DXR+5-FU 48h; (G-H) DXR+5-FU + BLF501 25 
µg/Kg 48h; (I-L) DXR+5-FU 72h (M-N) DXR+5-FU +BLF501 25 µg/Kg 72h.  Bars = 20 µm. 
 

The protective effect of BLF501 was then investigated by analyzing the expression of 

different genes implicated in the early response to tissue injury. In particular, we analyzed 

the expression of DLL-1, a marker for crypt cells that are in active proliferation like stem 

cells; TFF-3 and beta-actin, which are components of the mucus layer and cytoskeleton, 

respectively, and whose reduced expression mirrors decreased mucin production and 

alteration of cytoskeletal structure, respectively; sucrose isomaltase, a marker for brush 

border integrity and a key enzyme in carbohydrate metabolism, whose reduced expression 

mirrors epithelial damage and malabsorption of nutrients. Expression of all of these 

markers was reduced 48 hours after DXR treatment, but was similar to control mice in 

animals that had been co-administered BLF501 (Figure 12). 
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Figure 12:  Real-Time PCR analysis of changes in gene expression (A) DLL-1: (B) TFF-3; (C) Beta-actin; (D) 
Sucrase Isomerase;  
 

3.2 BLF501-induced recovery from injuries to the mu cosa of the small intestine 

induced by repeated treatments with DXR and 5-FU. 

In the following, we evaluated the effect of BLF501 in a model of DXR and 5-FU-induced 

mucositis that mimics medium-term, chemotherapy-induced effects on the intestinal 

mucosa. Intestinal epithelia from mice treated with the two chemotherapeutics were 

extensively damaged (Figure x). In particular, villi were atrophic, fused and reduced in 

height (-36.15 ± 2.56 % vs untreated); epithelial cells were hyperplastic and brush borders 

had large areas of erosion; focal ectasia of chyliferous vessels was detectable, numbers of 

goblet cells were decreased (DXR+5-FU 2.56 ± 1.28 %; untreated 7.13 ± 0.64 %), cells 

undergoing mitosis and cellular infiltrates rich in lymphocytes and plasma cells were also 

observed. Mice treated also with 25µg/Kg BLF501 showed substantial recovery from 
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chemotherapy-induced injury to the intestinal mucosa (villus eight: -12.31 ± 1.58 %; p = 

0.0014 vs untreated; globet cells: 6.93 ± 0.63 %; p = 0.0383 vs untreated ). At 2.5 µg/Kg, 

BLF501 improved morphological parameters (villus height: -16.82 ± 1.33 % , p = 0.0026 vs 

untreated), but was ineffective against loss of globet cells (2.2 ± 1.72 %) and appearance 

of mitotic cells; the 0.25 µg/Kg dosage of BLF501 was ineffective on all investigated 

parameters. Samples from the intestinal epithelia of mice treated with BLF501 alone were 

identical to those of control mice. A synopsis of these results is shown in Figure 13.  

 

Figure 13:  Hematoxilin/eosin staining of jejunum samples: (A) UNTR, untreated; (B) DXR+5-FU; (C) 
DXR+5-FU + BLF501 2.5 µg/Kg; (D) DXR+5-FU +BLF501 25 µg/Kg; (E) BLF501 25 µg/Kg; (F) DXR+5-FU 
luminal bacterial content. (G) Synoptic panel of evaluated parameters. Statistical analysis: villus length 
DXR+5-FU +BLF501 25 µg/Kg vs DXR+5FU ** p=0.0014. DXR+5FU +BLF501 2.5 µg/Kg vs DXR+5-FU ** 
p=0.0026. Percentage of goblet cells: DXR+5-FU +BLF501 25 µg/Kg vs DXR+5-FU * p=0.0383. Damage 
score legend: +++= SEVERE;   ++= MILD; += LIGHT; 0= ABSENT. Bars = 20 µm.  
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We also analyzed the junctional systems of the intestinal epithelia of mice treated with the 

chemotherapeutics alone or with BLF501. In particular, we investigated the expression of 

ZO-1, which mirrors the integrity of tight junctions and beta-catenin, a component of 

adherens junctions. Immunofluorescent and Immunohistochemical staining of junctional 

systems revealed respectively that ZO-1 and beta-catenin were less expressed and had 

an altered distribution in intestinal samples from DXR/5-FU-treated mice. In contrast, 

samples from mice that were co-administered with BLF501 at 25 µg/Kg showed the typical 

honeycomb distribution of ZO-1 and expression/ distribution of beta-catenin similar to 

control mice. The 2.5 µg/Kg BLF501 dose was less effective. BLF501 (25 µg/Kg) alone did 

not alter the expression or distribution of either ZO-1 or beta-catenin (Figure 14) 

 

Figure 14:  ZO-1 immunofluorescence assay: (A) UNTR, untreated; (B) DXR+5-FU; (C) BLF501 25 µg/Kg; 
(D) DXR+5-FU +BLF501 2.5 µg/Kg; (E) DXR+5-FU + BLF501 25 µg/Kg. Magnification 60X 
Immunohistochemistry reaction for beta-catenin expression in a model of chronic mucositis. (F) UNTR, 
untreated; (G) DXR+5-FU; (H) DXR+5-FU + BLF501 2.5 µg/Kg; (I) DXR+5-FU +BLF501 25 µg/Kg; (L) 
BLF501 25 µg/Kg. 
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3.3 BLF501 reduces the expression of specific marke rs for epithelial damages 

connected with chemotherapy-induced mucositis. 

It’s possible to appreciate that BLF 501 could restore the proper  expression of a panel of 

proteins involved in cellular response after treatment with chemotherapic agents like 

doxorubicin and 5-fluorouracil.  Akt  is involved in cellular response events after a generic 

damage and, in the specific case, after treatment with 5-FU. Western Blots for Akt and P-

Akt indicated that this protein is strongly expressed after treatments with doxorubicin and 

5-fluorouracil. BLF501 treatment reduced Akt/ P-Akt levels in a dose-dependent manner. 

Caspase-3 is a marker for apoptosis and its expression is increased by chemotherapic 

treatment. BLF501 co-administration only at 25 µg/Kg dosage was effective to reduce 

Caspase 3 expression. Ezrin is a protein involved in tight junctions and adherent junctions 

remodelling and functional management; over-expression of Ezrin induces TJ and AJ 

opening and an alteration of intercellular permeability. Doxorubicin and 5-fluorouracil 

chronic administration induced Ezrin over-expression and BLF501 restored low levels of 

this protein in dose-dependent manner (Figure 15). BLF501 at 0.25 µg/Kg dose was 

completely ineffective (data not shown). Beta-actin assay was performed to assess 

uniformity of proteins concentration. 
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Figure 15 : western blot assay for epithelial damage markers. 

3.4 Oral administration of BLF501 does not interfer e with the antineoplastic activity 

of DXR. 

Overexpression of SGLT-1 is one survival strategy put in place by several tumoral cellular 

types, in particular EGFR-positive ones (31). To evaluate whether oral administration of 

BLF501 could interfere with the antitumor activity of the chemotherapeutics, we performed 

experiments in athymic mice that were injected subcutaneously with A431 cells, which 

strongly express both EGFR and SGLT-1 (32). Tumor growth rate in mice co-administered 

with DXR and BLF501 was similar to that in mice treated with DXR alone (p=0.1836). This 

shows that oral administration of BLF501 does not interfere with the antitumor activity of 

DXR (Figure 7). Interestingly, while DXR-treated mice showed an average reduction of 1g 

of body weight at the end of the experiment, a slight increase in the weight (~0.4 g) was 

observed in the group treated with DXR and BLF501. No differences in tumor growth rate 

were observed between untreated mice and mice treated with BLF501 alone. 
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Figure 16.  Evaluation of tumor growth rate and body weight rate in simulated chemotherapy experiments.  
  
 

3.5 SGLT-1 activation in stably transfected Caco-2/ bbe cells is fundamental for 

cytoprotection after doxorubicin plus BLF501 challe nge. 

BLF501 is a selective ligand for SGLT-1 (71) and in vivo experiments confirm the 

biological activity of the synthetic molecule. Despite this animal model is a complex system 

and BLF501 interaction with others targets could be not excluded. In vitro experiments 

were performed to assess SGLT-1 activation ability to maintain normal cells viability rates 

after DXR treatment and to further demonstrate the unique and selective functional 

interaction between SGLT-1 and BLF501. Caco-2/bbe cells stably transfected with SGLT-1 

were treated with DXR with or without BLF501 co-administration for 48 hours.  

Dose-response Neutral Red cell viability assays were performed in order to determine 

DXR cytotoxic dose and BLF501 effective concentration (data not shown). Selected doses 

for DXR and BLF501 were 100 µM and 11.5 µM respectively and they maintained used for 

all in vitro experiments. Not-transfected Caco-2/bbe cells were used as negative control, in 

order to confirm and clarify the pivotal role of SGLT-1 in protective action.  
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Neutral red viability assay was performed 48 hours after treatments; not-transfected Caco-

2 cells resulted sensitive to DXR (viability rate reduced of 74% vs untreated cells) and 

BLF501 co-administration was ineffective to preserve cells viability (viability rate reduced 

of 75% vs untreated cells). Stably transfected Caco-2/bbe cells resulted sensitive to DXR 

treatment (viability rate reduced of 29% vs untreated cells) and BLF501 co-administration 

preserves cells viability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. Neutral Red viability assays on transfected and not-transfected Caco2 cells 
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3.6 BLF501 protection against inflammatory bowel di sease in vivo. Oral 

administration of BLF-501 protects mice from DSS-in duced diarrhoea. 

In vitro and vivo results in GIM model lead us to hypothesize that SGLT-1 may be an 

important target in intestinal diseases involving alteration of epithelial barrier effect. We 

tested BLF501’s activity in a chemically induced mouse model of acute and chronic 

intestinal inflammation choosing a dextran sodium sulphate (DSS)-induced colitis model 

for its simplicity and reproducibility of the colonic lesions. DSS polymers are directly toxic 

to the gut epithelial cells, affecting firstly the integrity of the mucosal barrier and then 

stimulating local inflammation as a secondary phenomenon. For this reason we can 

improve BLF.501 activity in intestinal barrier protection, which is thought to be the initial 

inciting event in many intestinal disorders, including IBD. 

A DSS concentration of 2% (w/v) addicted in the drinking water for 7 days induced strong 

colitis. To evaluate the effects of  BLF-501 in this model, mice (10/group) were treated in 

the drinking water for 7 days with DSS 2% concomitantly or not with oral administration of 

BLF-501 (250 or 25 µg/kg) once a day in the last four days (as described in materials and 

methods). DSS intake did not differ in different groups of mice. Colitis in the DSS model is 

usually associated with wasting disease. Determination of weight every day to get a rough 

idea of colitis severity and is often indicative of differences in colitis development between 

experimental groups. Body weight significantly decreased in DSS group compared to 

control mice. The oral treatment with BLF-501 at doses of 250 µg/kg and 25 µg/kg 

recovers DSS-induced weight loss; the 2.5 µg/kg dose appeared to be ineffective.  
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Figure 18. Weight rate after DSS treatment with or without co- treatment with BLF501  

The DSS-induced damages are generally located in the distal colon, whose length 

decreases as the disease develops. Colon mean length of mice group treated only with 

DSS decrease of 32% compared to untreated ones. BLF-501 at 250 µg/kg and 25 µg/kg 

oral treatments of mice significantly reduced colonic shortening induced by DSS. Group of 

mice treated with BLF501 2.5 µg/kg and DSS showed colon length similar to DSS group. 

About body weight and colon length results load us to consider 25 µg/kg the lower 

effective dose of our analogue glucose in this animal model. 
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Figure 19. Colon length evaluation after DSS treatment with or without co- treatment with BLF501 

After evaluation of colon length, colitis level of different group was scored using stool 

consistence as a standard parameter.  DSS treated animals group have very soft stools 

with a 1,9 mean score, whereas untreated group shows normal stools with mean score 0 

These results showed that oral treatment with BLF501 250 or 25 µg/kg inhibit water loss, 

maintaining normal stool consistence. 

* * 
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Figure 20.  Stool score after DSS treatment with or without co- treatment with BLF501  

The most important damage DSS-induced is characterized by changes in colon epithelium 

showing loss of crypts and reduction of globet cells, signs of surface epithelial 

regeneration, focal ulcerations, infiltration of inflammatory cells into the mucosa, and 

oedema in the sub-mucosa. Histopathological analysis using hematoxylin-eosin staining of 

colon section showed that DSS treatment induced crypt damage, ulceration, and infiltration 

of inflammatory cells in the distal colon. A histological colitis score was calculated for 10 

slides for each mouse of different groups; score increasing has associated with 

inflammation develop (mean score of DSS group = 3.5 vs untreated = 0). Scoring system 

of colon section of DSS-treated group plus BLF-501 250 or 25 µg/kg shows protective role 

of SGLT-1 in this animal model of acute colitis. 

* 

* 
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Figure 21.  (A) Rapresentative colonic H&E section from mice receiving water without DSS . a) Lamina 
mucosa; b)Lamina submucosa; c)Circular and longitudinal mussle. In magnification arrow shows colon 
crypte with normal morphology and black arrowhead indicates globet cells. (B) Colon histology from DSS-
treated group. DSS induces thickening of the colon wall, globet cells and crypt loss in large areas (in 
magnification arrow). Infiltration reaching the lamina submucosa (withe arrow). (C) H&E of BLF501 250 
µg/kg and (D) BLF501 25 µg/kg, histologically comparable with control group. 

C 

D 
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Figure 22.  Histological scores of the colon section stained with H&E. Results are representative of 10 
section for each animal of different groups. DSS mean score shows high level of inflammation with 
transmurall leukocite infiltration and loss of globet cells. BLF501 250 and 25 µg/kg oral treatment prevents 
and protects from DSS-induced mucosal damage. 
 

DSS is directly toxic to gut epithelial cells of mucosal epithelium and induces a alteration of 

the mucosal barrier, with increase of antigens from colon lumen to lamina propria. In this 

animal model intestinal permeability alteration is the first step in colitis aetiology/onset. 

Previous data have already described that increased colon permeability is associated with 

colitis development after administration of DSS. Ussing Chamber analysis of the colon of 

DSS-treated mice presented very low transmembrane resistance (25 ± 2,24 Ωcm2 vs 53.4 

±2,73  Ωcm2 for untreated mice), indicating an increased permeability, whereas in mice 

group treated with DSS and oral administration of glucose and BLF501 250 and 25 µg/kg 

the transmembrane resistance remained similar to untreated mice (respectively 49,6 ± 

1,52 Ω cm 2 or 50,4 ± 1,52 or 50,2 ± 1,2 vs 53.4 ±2,73 Ω cm2 in untreated mice). This 

suggests that the increase of colon permeability DSS-induced is reverted by BLF501 oral 

administration. 
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Figure 23. Colon resistence. Values represent the mean of 5 animals/group. Data are the means (±SD). *, p 
< 0,01 vs DSS. 
 

3.7 BLF501 oral administration protects against che mically-induced mouse model of 

chronic intestinal inflammation.  

SGLT-1.activation by BLF501 protects against DSS-induced acute colitis with important 

recovery of epithelial barrier intestinal barrier function. Several data in literature show that 

in different animal model of Crohn disease increased intestinal permeability has been 

shown before inflammation expression and the reversal of this defect can attenuate the 

disease, implying that the increased permeability is not simply epiphenomena but rather is 

a important etiological event. The administration of DSS at a concentration of 2% in the 

drinking water for three cycles is a validated chemically-induced mouse model of chronic 

intestinal inflammation. To evaluate the effect of BLF-501 in this model we valuated 

different parameters with attention for epithelial permeability function and morphology.  

After chronic colitis induction in DSS administered mice the colon length was significantly 

reduced if compared to samples from untreated mice. A significant decrease in the 

* * 
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shortening of the colon length was observed in mice that had received BLF501 almost for 

3 week compared with DSS-administered mice (Figure 24). 

 

Figure 24.  Distal colon length.  
Values represent the mean of 5 animals/group. Data are the means (±SD). *, p < 0,01 vs DSS 

From Histopathological analysis of hematoxylin/eosin-stained colon section is observable 

in DSS-treated mice samples the loss of crypts and reduction of globet cells, focal 

ulcerations, moderate infiltration of inflammatory cells to the mucosa, and oedema in 

submucosa. A significant decrease in histological score was observed in DSS plus 

BLF501 treated mice compared with those who received only DSS (Figure 25) 

* 

A 
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Figure 25.  Hystological analisis colon section stained H&E 
 (A) UNTR; (B) DSS; (C) DSS+BLF501 25µg/Kg 3W 

 

The intestinal epithelial barrier function is compromised in chronic inflammation, 

manifested by an increase in intestinal epithelial permeability. We analyzed the intestinal 

permeability by Ussing Chamber analysis, in order to determine if BLF501 is able to 

restore the intestinal barrier function. Segments of colon were mounted in Ussing 

chambers and electrophysiologic parameters were measured. As shown in figure 26 DSS 

treatment significantly reduced the barrier function of colon tissue, leading to an increase 

of TEER, while mice BLF501 presented a substantially normal mean value of resistance. 

B 

C 

A 
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Figure 26.  Colon resistance values in chronic DSS model.  

Data are the means (±SD). *, p < 0,01 vs DSS. 

 

The decreased barrier function in colon of DSS-treated mice led us to determine if 

alteration in tight junction (TJ) structure accompanied this pathological alteration. Colon 

sections of different treatment were examined Immunohistochemically. In the colon of 

untreated mice, the transmembrane protein occludin and ZO-1 were precisely localized to 

the epithelial TJ. In well-oriented sections this is easily appreciated at low magnification as 

a regular series of bright red spots at the apical aspect of cell junctions. Examination at 

higher magnification revealed occludin and ZO-1 co-localization with the apical 

perijunctional actomyosin ring colonic epithelial of control. In contrast, DSS-treated mice 

show loss of crypts morphology and loss of bright red spots, occludin and ZO-1, at the 

apical aspect of cell junctions. Co-treatment with BLF501 after 3 weeks restores normal 

expression and distribution of the evaluated proteins. 

 

*
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Figure 27.  Immunofluorescent staining for ZO-1 and Occludin Colon section of untreated mice, (A) UNTR; 
(B) DSS;( C-D) DSS+BLF501 25µg/Kg 3W 
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4. DISCUSSION 

The intestinal epithelial cells must integrate two different fundamental functions. They 

guarantee the absorption of nutrients transporting, often actively, a variety of substances 

from the intestinal lumen to the blood flow and, on the other hand, these cells form a 

physical barrier that results the first mechanism of protection that the innate immunity 

response executes against pathological agents that reach the mucosa through water and 

food ingestion.  

The physical barrier represented by intestinal epithelium must not be considered as an 

unchanging entity, resistant to external stimuli. We highlight the ability of the intestinal 

epithelium of reacting to stimuli of different nature, physiological or harmful, and in 

particular we attribute to SGLT-1 a key role in the management of homeostasis of the 

intestinal barrier. 

The classic role of SGLT-1 is to absorb D-glucose against a concentration gradient 

together with Na. The expression of SGLT-1 on the apical membrane of enterocytes, the 

cells that line the gut and overlook to the intestinal lumen, is fundamental in order to obtain 

the maximum D-glucose absorption from the digested alimentary bolo that transits through 

the gut. 

Our researches and recent results published by other groups help us to shed new light on 

the “not-canonical role” of SGLT-1.  

Recent papers outline the protective effect of active-type glucose transporter-1 (SGLT-1) 

engagement with high oral doses of D-glucose and non metabolizable 3-O-methyl-D-

glucopyranose (3OMG) on damages induced by TLRs ligands in intestinal epithelial cells, 

in a murine model of septic shock and in LPS-induced liver injury, as well as liver injury 

and death induced by an overdose of acetaminophen (65; 66).  This was found being due 

to glucose-induced down-regulation of systemic production of inflammatory cytokines, and 
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parallel enhanced production of anti-inflammatory cytokines. However, the high amounts 

of D-glucose and 3OMG necessary to induce anti-inflammatory effects represent a serious 

limitation for an hypothetical therapeutic application. To exploit SGLT-1 as a 

pharmacological target, we synthesized a library of glycomimetics based on a glucose and 

galactose scaffold structure. The aim was to identify agonists with much higher activity 

than glucose that does not undergo its metabolism. 

From the screening of the library we identified a glucose derivative named BLF501, 

exerting anti-inflammatory activity at a molar concentration five orders of magnitude lower 

than glucose (71).  

In parallel studies SGLT-1 has been described to be involved in anti-inflammatory and 

anti-apoptotic signalling, in the repair of plasma membrane integrity and tight junction (TJ) 

integrity injured by heat stress or cisplatin chemo-treatment (64).  

The findings herein reported suggest the use of the synthetic D-glucose analogue BLF501 

for the treatment of chemotherapy-induced mucositis. We showed that engagement of 

SGLT-1 by BLF501 accelerated recovery of intestinal epithelial structures from injuries 

induced by DXR and 5-FU. This effect is independent from glucose metabolism, since 

BLF501 is a C-glycoside, and as such does not to enter the metabolic pathways of D-

glucose (71). The ability of SGLT-1 agonists that do not enter glucose metabolic pathways, 

to protect the intestinal mucosa upon oral administration had already been observed in a 

model of LPS-induced injury. Thus, oral administration of 3-OMG protected from LPS-

induced injury similarly to D-glucose (65). 

It is noteworthy that the dose of BLF501 necessary to protect from DXR-induced injury 

was much lower than doses of D-glucose or 3-OMG to protect from LPS-induced injury (25 

µg/Kg vs. 2.5 g/Kg). This capacity of BLF501 to act at very low doses is presumably due to 

its high affinity for SGLT-1. Although we have no direct data on the binding of BLF501 to 

SGLT-1, this possibility is supported by our previous finding that, in vitro, both D-glucose 
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and BLF501 blocked LPS-induced release of IL-8, but BLF-501 was active at a dose about 

105-106-fold lower than D-glucose (71). 

Regarding the mechanism underlying its therapeutic effect, orally administered BLF501 did 

not directly protect the intestinal epithelium from chemotherapy-induced injury but, rather, 

anticipated and facilitated the recovery, which was detectable at 48 hours and almost 

complete at 72 hours after a single administration of DXR. 

Regarding the different modifications that were observed upon co-administration of 

BLF501 with chemotherapeutics, we found the reduced expression of caspase-3 in the 

intestines of these mice compared to those that were administered only 

chemotherapeutics. This is likely to reflect a reduction of apoptotic events and is in 

accordance with recent findings that glucose administration reduces LPS-induced 

apoptotic events in enterocytes both in vitro and in vivo. (72, 64). 

We observed also restoration of the integrity of tight junctions in intestinal epithelia upon 

administration of BLF501 to mice that were treated also with DXR, or DXR and 5-FU. 

Overall, these results are consistent with those obtained by others showing that in the 

presence of heat- or chemical-induced sub-lethal stress conditions, activation of SGLT-1 

restores the integrity of tight junctions. This has been shown in vitro experiments in which 

the integrity of tight junctions had been disrupted by cisplatin or heat shock proteins (64; 

45). In particular, samples of the small intestine from mice treated with DXR and 5-FU 

showed altered expression and distribution of the junctional proteins ZO-1 and beta-

catenin. On the other hand, in mice that had been administered also BLF501, ZO-1 and 

beta-catenin were normally expressed and distributed. Moreover, Ezrin, that has a 

physiological role in the remodelling of junctional mechanisms (30; 73-77), and was over-

expressed upon treatment of DXR and 5-FU treatment causing the opening of junctional 

systems, returned to normal levels in mice that had been administered also BLF501. 
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On the other hand we did not observe any effect of orally administered BLF501 on the 

antitumor activity of the chemotherapeutics. No difference was observed between DXR- 

and DXR plus BLF501-treated mice whereas, as expected, tumours in untreated mice 

grew significantly faster that tumours in mice that had been administered DXR. 

We believe that our findings are very relevant in view of a potential therapeutic use of 

BLF501 in the setting of chemo- or radiotherapy-induced mucositis. In fact, 

chemotherapeutics induce apoptotic cell death and inhibit proliferation in rapidly dividing 

epithelia like those in the intestine (78). The consequence is mucosal atrophy and the 

reduction of the absorptive capacity of the intestine. This leads to a further deterioration of 

the general conditions of patients that are already heavily compromised. 

In our mucositis models, BLF501 has been found to restore proliferation and integrity of 

junctional systems, as well as reduce the expression of a marker of apoptosis. These 

positive consequences on the overall integrity of the epithelium were confirmed by our 

histological analyses. These findings suggest the use of BLF501 as a unique therapeutic 

device for the maintenance of the integrity of the intestinal epithelium in case of 

chemotherapy-induced injury. There are currently different therapeutic approaches for 

patients suffering from mucositis, but all of them have serious side effects and/or act only 

on to reduce symptoms. These approaches include opioids with their potent anti-

nociceptive activity, the use of Lactobacillus, KGF, hyperbaric chamber, glutamine, and 5-

acetyl salicylic acid (79-81) 

The role of in vivo SGLT-1 activation by BLF501 is fundamental for the observed goals in 

GIM treatment. However, the complexity of in vivo models makes difficult to demonstrate 

clearly the interaction between SGLT-1 and BLF501.  To establish a more direct link 

between receptor and substrate appropriate in vitro assays were performed. In WT Caco-

2/bbe cells DXR treatment has a dramatic effect on cell viability and administration of 

BLF501 in absence of SGLT-1 transfection was totally ineffective and no protection was 
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observed. Transfection with SGLT-1 changed radically the situation described above. First 

of all surviving rate of cells treated with only DXR was higher in confront with not-

transfected Caco-2 cells in presence of DXR, even though significantly reduced if 

compared with untreated cells. This result lead us to attribute to SGLT-1 an intrinsic 

protective role exerted by simple expression of this protein; furthermore SGLT-1 activation 

via BLF501 simultaneous administration enhanced cytoprotection maintaining a control-

like growth rate. Results of this panel of in vitro experiments lead us to attribute a key role 

to SGLT-1 expression and activation, confirming the specificity of the ligand and the 

essential role of the interaction between BLF501 and SGLT-1. 

In conclusion, our results show that oral administration of the non-metabolizable glucose 

analogue BLF501 leads to accelerated recovery of the intestinal mucosa from injuries 

induced by chemotherapeutic drugs. This suggests a possible prophylactic and/or 

therapeutic use of BLF501 for the prevention or reduction of severity of chemotherapy-

induced mucositis. 

In parallel with the good results obtained in the protection of the structural integrity of the 

intestine in GIM model with SGLT-1 activation, we performed similar experiments in a 

model of IBD based on DSS treatment. 

Crohn’s disease is a chronic inflammatory process that affects the small intestine and 

colon and is associated with a "leaky gut", characterized by an increase in intestinal 

epithelial permeability. Actual pharmacological therapies vary in their ability to induce and 

maintain a sufficient control of symptoms balancing their activity with an intrinsic inevitable 

toxicity. Our data obtained from the present study suggest that the activation of SGLT-1 

with BLF501 may constitute a new approach for an effective treatment of IBD.  

DSS-colitis models share many clinical and pathological features of human ulcerative 

colitis with regard to ulceration and loss of barrier function. Feeding mice for several days 

with DSS polymers in the drinking water induces an acute colitis characterized by bloody 
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diarrhea, intestinal ulcerations and infiltrations with granulocytes. It is generally believed 

that DSS is directly toxic to gut epithelial cells of the basal crypts and affects the integrity 

of the mucosal barrier. The administration of DSS at a concentration of 2% in the drinking 

water for three cycles will result in development of chronic colitis. DSS, with is surfactant 

action on epithelial monolayer, has been shown to increase mucosal permeability in mice 

(82) and reduce TEER intestinal epithelium (83). For these reasons DSS-colitis model has 

been widely used to study mucosal healing (84). The DSS-colitis model is effective in 

mimic pathological features of human IBDs; although the exact action of DSS is not fully 

understood, it is believed that DSS causes mucosal injury and disrupts the barrier function, 

leading to inflammation. In the human condition it is evident that increased intestinal 

permeability is commonly observed in population at high risk of developing Crohn’s 

disease. Increased permeability is observed in the absence of symptoms of disease, 

suggesting that it is not merely an early manifestation of Crohn’s disease (Alteration in 

intestinal permeability).  

In our previous work our data obtained by Ussing Chamber analysis of colon samples 

have shown that the increase in colon permeability, which may be observed in an 

enterocolitis mouse model, is avoided when animal are concomitantly treated with oral 

glucose. This result leads us to hypothesize that SGLT-1 activation exerted by BLF501 

may protect intestinal mucosal barrier in mouse model of chronic and acute inflammatory 

diseases and DSS-based murine model is appropriate to investigate the effect of oral 

administration of BLF501.  

Using this model, we found that mice with chronic colitis BLF501-treated not presents 

typical mucosal injury, shows a weight recovery and not develops severe clinical 

symptoms, including bleeding and dehydratation. Histopathological analysis of 

hematoxylin & eosin stained samples from diverse groups of animals confirmed these 

findings from an anatomophatological point of view. DSS-treated mice, both in chronic and 
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acute models present an altered macroscopical appearance of the colon epithelium; in 

particular an abnormal organization of the IECs monolayer is reported. Co-treatment with 

BLF501 restores an untreated-like condition in a dose dependent manner in mice treated 

in acute model; evidence confirmed in the chronic one at BLF501 the single dosage.  

In GIM model the macroscopic alteration of the epithelial structure was probably the most 

impressive result of the treatment with chemotherapic agents. In DSS models the most 

important evaluated aspect is the permeability alteration. We investigated the capacity of 

BLF501 oral administration to control barrier intestinal permeability in vivo and data 

obtained by Ussing chamber analysis shown that acute and chronic treatment with DSS 

leads to increased colon permeability compared with control mice, oral administration of 

BLF501 induce in an intestinal permeability recovery in a dose-dependent manner.  

TEER evaluation is an important direct parameter to test intestinal permeability but an 

analysis of specific proteic markers linked with junctional systems expression and 

distribution. Tight junctions seal the paracellular space and regulate the permeability of the 

mucosal barrier and are the highly ordered structure formed by multiprotein complexes 

consisting of transmembrane proteins, as occludin and nonmembrane proteins, as ZO-1. 

The TJ protein has been reported to be deregulated in IBD; this is the fundamental 

background event underlying TEER reduction. We evaluated occludin and ZO-1 only in 

chronic model because their altered expression is more evident that in acute model.  

Selected junctional proteins expression and distribution in colon tissue samples of different 

treatments was evaluated with specific immunostainings assays and we evaluated that 

DSS treatment alters both expression and localization of occludin and ZO-1. BLF501 

exerts its protective action restoring normal quantitative expression and distribution of both 

proteins linking intestinal permeability recovery observed with Ussing Chamber analysis 

with TJ protection.   
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These results suggest that the BLF501-mediated action involves stabilization of epithelial 

junction complex. SGLT-1 activation plays an important role in restoring mucosal integrity 

after DSS treatment and this reparative mechanism could reestablish intact barrier function 

and structure. 

5 CONCLUSIONS 

In this work it was decided to evaluate the role of activation of SGLT-1 as a key factor in protecting 

the intestinal epithelium in the presence of potential sources of damage and the choice of two very 

different types of damage and numerous techniques for the assessment of the effects was dictated 

by the desire to have the broadest possible look at the potential of SGLT-1 activation by the 

synthetic molecule BLF501. 

All the collected data describe different aspects linked with SGLT-1 activation: 

1. SGLT-1 presence is fundamental for the protective action exerted by BLF501 

2. SGLT-1 is activated by a very low amount of a synthetic molecule: an important aspect for 

pharmacologic and pharmacotherapeutic studies of ligands and receptor. 

3. SGLT-1 activation has a direct effect on expression and distribution of member proteins of 

adherents and tight junctions, contributing to the correct formation and action of junctional 

systems. 

4. SGLT-1 activation maintains the correct proliferation rate of intestinal epithelial cells. 

5. SGLT-1 activation restores epithelial homeostasis balancing pro-apoptotic and anti-

apoptotic pathways in presence of damage.  

From these studies we can affirm that SGLT-1 has a key role in the management of events related 

to the structural integrity of the intestinal epithelium with particular attention to the aspects of 

maintaining the correct macroscopic structure, barrier function and tissue self-renewal ability after 

damages of different nature. SGLT-1 may constitute a target for new therapeutic approaches both 

for GIM and IBDs and, at the same time BLF501 could become a lead compound for SGLT-1-

active ligands interaction studies.  
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