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ABSTRACT 
 

 

The Endoplasmic Reticulum represents the first station of the secretory path-

way, where proteins destined to the cell surface or to some intracellular organelles are 

recruited in specific ER subdomains, the ER Exit Sites (ERES), and start to travel into 

transport carriers to reach the proper final destination. Even though cargoes are usual-

ly recruited to ERES by a sequence-dependent mechanism, it is known that other fac-

tors contribute to protein export from the ER. Using model fluorescent tail-anchored 

proteins our group previously demonstrated that the length/hydrophobicity of the 

transmembrane domain is an important factor determining recruitment to or exclusion 

from ERES: a protein with a short TMD (FP-17) is excluded from ERES and retained 

in the ER, while a longer TMD (FP-22) determines enrichment in ERES. In order to 

clarify the molecular mechanism underlying this TMD-dependent transport, we first 

compared the transport of an export signal-bearing (VSV-G DxE) membrane protein 

with our model protein FP22, which lacks an export signal. FP22 and VSV-G accu-

mulate together at ERES, but VSVG reaches the plasma membrane more rapidly than 

FP22. To investigate the basis of this difference, we combined cDNA microinjection 

to temperature blocks and live-cell imaging approaches that allowed us to analyze the 

transport at early steps of the secretory pathway at the ER-Golgi interface. At 20°C, a 

temperature at which only the transport between the ER and the Golgi is allowed, all 

of the VSVG accumulates in the Golgi, while FP-22 remains distributed between the 

ER and the Golgi. After bleaching the Golgi fraction of FP22 we observed a rapid, 

energy-dependent, fluorescence recovery, indicating an efficient ER to Golgi 

transport even in the absence of the export signal and suggesting that FP22 may be re-

cycled between the two compartments. In agreement, a rapid emptying of the Golgi 

was observed after ER bleaching (accompanied by a fluorescence recovery of the ER 

fraction). To investigate whether this phenomenon is restricted to our model protein 

only or it is more general event, we then tested the behavior of a signal-deleted form 

of VSV-G (VSV-G AxA). Similarly to FP22, VSVG AxA is distributed between the 

Golgi and the ER at 20°C and Golgi fluorescence rapidly decreases after ER bleach-

ing, suggesting a new role of the ER export signal, which is important not only in re-
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cruiting cargoes at the ERES, but also in preventing their recruitment into futile cy-

cles between the Golgi and the ER, which delay their arrival to the cell surface. 

To further characterize the mechanism of TMD-dependent sorting, we then in-

vestigated the role of membrane curvature; our group previously demonstrated that 

FP-22 is segregated from FP-17 in specific ER subdomains, which are characterized 

by membrane curvature (ERES and ER tubules). In collaboration with Bruno Goud 

and Jean-Baptiste Manneville (Institute Curie, Paris), we created highly curved do-

mains using membranes composed of a uniform lipid composition (POPC, palmitoyl-

oleyl-phosphatidylcholine) or ER lipids extracted from rat liver microsomes, and we 

analyzed the distribution of our two model proteins in flat and curved domains. Our 

results indicate that the two proteins are uniformly distributed in curved membranes 

and strongly suggest that the membrane curvature alone cannot drive the TMD-

dependent partitioning of membrane proteins in ERES and ER tubules. 

Taken together, our data contribute to clarify the role of two fundamental fac-

tors influencing the transport of membrane proteins along the secretory pathway that 

were never investigated before. 
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ABBREVIATIONS 
 

ALPS: Amphipatic Lipid Packing Sensor 

BAR: Bin Amphiphysin Rvs domain 

(Cyt)b5: cytochrome b5 

COPI: Coatomer Complex I 

COPII: Coatomer Complex II 

DIC: Differential Interference Contrast 

DOPE: 1,2-dioleyl-phosphatidylethanolamine 

DSPE: 1,2-distearoyl-phosphatidylethanolamine 

ER: Endoplasmic Reticulum 

ERES: Endoplasmic Reticulum Exit Sites 

ERGIC: ER to Golgi Intermediate Compartment 

FRAP: Fluorescent Recovery After Photobleaching 

GEF: Guanine nucleotide Exchange Factor 

GPI-anchored protein: GlycoPhosphatidylInostol-anchored protein 

GUV: Giant Unilamellar Vesicle 

IC: Intermediate Compartment 

ITO: Indium Tin Oxide 

LUV: Large Unilamellar Vesicle 

MTs: Microtubules 

OT: Optical Tweezers 

PAIRS: Pairing Analysis of Cargo Receptors 

PM: Plasma Membrane 

POPC: Palmitoyl-oleyl-PhosphatidylCholine 

PtdCho: phosphatidylcholine 

PtdEtn: phosphatidylethanolamine 

PtdIns: phosphatidylinositol 

PtdSer: phosphatidylserine 

ROI: Region of Interest 

SM: sphingomyelin 

SNARE: Soluble NSF Attachment protein REceptor 
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SRP: Signal Recognition Particle 

TA: C-tail-anchored 

tER: transitional Endoplasmic Reticulum 

TGN: trans-Golgi network 

TMD: transmembrane domain 

VSV-G: Vesicular Stomatitis Virus - Glycoprotein  
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1. INTRODUCTION 
 

 

The unique feature of eukaryotic cells is the presence of a complex subdivision 

into physically distinct compartments and organelles. This organization is crucial for 

a correct cellular function and to ensure that different reactions, each essential for cell 

life, occur at specific rates without interfering with other processes. For examples, ac-

id hydrolases have to be segregated into lysosomes in order to efficiently degrade cel-

lular junk without the elimination of other cellular components. Thus, each organelle 

has its own set of membrane and luminal components that confer its functional spe-

cialization. In addition to specific proteins, each organelle is enclosed by unique bi-

layers in terms of lipid composition. 

 Due to this complex organization, eukaryotic cells have developed a highly dy-

namic trafficking system that is essential to maintain the differences between orga-

nelles and their identity. The cellular sorting machinery is a very efficient system, 

which mediates continuous exchanges between contiguous compartments and a con-

stant regeneration and replacement of proteins and lipids. 

In this chapter I will summarize the organization and functional principles of the 

secretory pathway, which represents the a group of physically distinct but functionally 

interconnected organelles dedicated to the traffic of macromolecules between the cell 

interior and the extracellular world. 
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1.1 The secretory pathway 
 

The secretory pathway consists of a number of independent organelles that 

function sequentially to mediate protein and lipid transport (Fig. 1). Each compart-

ment has a specialized environment that promotes the different events that are re-

quired for protein secretion such as protein biogenesis, post-translational modifica-

tions and targeting to the correct final destination. 

 

Figure 1: The complexity of the exo-endocytic pathway (Bonifacino and Glick, 2004) 

 

The Endoplasmic Reticulum is the entry point into the secretory pathway. All 

the proteins that carry out their function in any one compartment of the secretory 

pathway (i.e. Intermediate Compartment, Golgi apparatus, lysosomes and endosomes) 

or at the plasma membrane, are synthesized on ribosomes docked on ER membranes, 

properly folded in the ER lumen and then recruited by the secretion machinery to 

reach their final destination. 

The first step in the lifetime of a newly synthesized protein destined to a com-

partment of the secretory pathway is its insertion – or translocation across – the ER 

membrane. Depending on protein topology, this event may occur either co- or post-

translationally. Most proteins are translocated into the ER in a co-translational fash-

ion. This event is mediated by the Signal Recognition Particle (SRP), which recogniz-

es a specific signal-sequence in the N-terminus of proteins or an internal transmem-

brane segment (Blobel and Dobberstein, 1975). Then SRP drives the emerging nas-

cent protein together with the ribosome to the ER membrane, where SRP interacts 
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with its specific membrane receptor. Here, the elongating polypeptide moves directly 

from the tunnel inside the ribosome to the membrane channel, which is represented by 

the Sec61 translocon complex (Rapoport, 2007). 

As mentioned above, in eukaryotic cells there are also a number of proteins, 

which are inserted after their translation on ribosomes free in the cytosol. A large and 

heterogeneous class of these proteins is represented by tail-anchored proteins, which 

belong to the type II single-spanning membrane proteins with a cytosolic amino ter-

minus and a carboxy terminus transmembrane domain followed by few luminal resi-

dues (Borgese et al., 2007; Borgese et al., 2003). Since the hydrophobic segment of 

TA proteins is in close proximity to the C-terminus, it emerges from ribosomes only 

after the termination of translation and it cannot be bound co-translationally by SRP. 

Therefore, their translocation can occur only through a translocon-independent and 

post-translational mechanism (Yabal et al., 2003), which may be, depending on the 

physicochemical features of the TA proteins, either assisted or unassisted by cytosolic 

proteins. 

 Independently from which mechanism has been used, after membrane inser-

tion/translocation all proteins need to be properly folded and post-translationally mod-

ified (i.e. N-glycosylated). Then, if they are not ER resident proteins, cargoes are first 

recruited into specific ER subdomains, known as ER Exit Sites, leave the ER and start 

to travel through the secretory pathway to reach their final destination 

 

 

1.2 Vesicular transport 
The overall organization of the secretory pathway was discovered thanks to the 

work of George Palade and colleagues, more than 30 years ago (Palade, 1975). 

Fromm this and subsequent work (Rothman and Orci, 1992) it emerged that transport 

of cargo molecules is mediated by shuttling transport vesicles. According to these 

findings, vesicles bud from a donor compartment through a process that allows the se-

lective incorporation of cargoes into these budding vesicles; subsequently the vesicles 

fuse with a specific downstream acceptor compartment where cargoes are released. 

By contrast, resident proteins of the donor organelles are retained in the donor com-

partment through their exclusion from recruitment into the budding vesicles. 
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Since the transport of cargo molecules along the secretory pathway is a highly 

dynamic process and determines a continuous flux of membranes and effector pro-

teins, eukaryotic cells have developed a parallel retrograde route that balances the 

forward movement and guarantees the recycling of effectors and the replacement of 

membranes, essential for the maintenance of organelle architecture and identity.  

Even though different effector molecules mediate different steps of the exo-

endocytic pathway, all of them follow a general scheme, which can be divided into 

seven subsequent steps (Bonifacino and Glick, 2004). As shown in figure 2, the for-

mation, budding and fusion of carrier vesicles are complex active processes that in-

volve many effector proteins and require energy. 

 

Figure 2: steps of vesicle budding and fusion (Bonifacino and Glick, 2004) 

 

The initiation of vesicle assembly is mediated by the recruitment of adaptor 

components of the coat complex (or membrane-proximal coat) to the donor compart-

ment by binding to a membrane-associated specific GTPase, leading to the accumula-

tion of cargoes at the assembling coat. Then, the membrane-distal components of the 

coat bind adaptors and their polymerization into a lattice-like structure drives the pro-

gressive deformation of the membrane. The third step is represented by the energy-

dependent scission of the vesicle neck, which could be mediated either by coat com-

ponents themselves (Matsuoka et al., 1998) or by accessory proteins (i.e. dynamin in 

the case of clathrin-coated pits) (Ferguson and De Camilli, 2012). Once the vesicle 

has been pinched off from the donor compartment, the membrane-specific small 
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GTPase hydrolyzes GTP and this energy is used to mediate vesicle uncoating, which 

is essential to return coat components to the cytosol where they become available for 

new rounds of vesicle budding; furthermore the vesicles must loose their coat to be-

come more fusogenic. The naked vesicle progressively moves and tethers to the ac-

ceptor compartment by interacting with specific Rab GTPases and tethering factors. 

The specificity of this interaction plays a central role because it determines that car-

goes are delivered to the correct destination. Finally, the SNARE complex mediates 

the late step of vesicular transport by allowing the fusion between vesicle and accep-

tor membrane. The SNARE complex is composed of three SNAREs (one on the vesi-

cle membrane, the v-SNARE, and three on the acceptor membrane, the t-SNARE) 

that form a coiled-coil-like helical bundle, which provides the energy required to 

drive the membrane fusion (Jahn and Grubmuller, 2002). In this way cargo molecules 

can be released into the acceptor compartment, travel through the different organelles 

of the secretory pathway and reach their final destination. 

 

 

1.3 Transport at the ER/Golgi interface 
 

1.3.1 COPII-dependent transport 
 

Cargo molecules that have been properly processed leave the ER through their 

recruitment at specific ER subdomains, the ER Exit Sites, also known as transitional 

ER (tER), which are regions not decorated by ribosomes and highly enriched in 

COPII proteins. There are five core components of COPII are composed, but addi-

tional regulatory proteins participate in the correct assembly of carrier vesicles that 

bud from the ER to reach ERGIC and Golgi compartments (Fig. 3). 
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Figure 3: Assembly of COPII-coated vesicle at the ERES (Dancourt and Barlowe, 2010)  

 

The first step of COPII vesicle assembly is the recruitment on the ER membrane 

of one of the key components involved in this process, the small Ras-like GTPase 

Sar1 (Lee et al., 2004). Even if it is still unclear what marks these sites for COPII re-

cruitment, Sec16 and Sec12 are two good candidates for this role: Sec16 is a large pe-

ripheral ER membrane protein and may serve as scaffold for the nucleation and stabi-

lization of the assembling coat (Espenshade et al., 1995), while Sec12 is the specific 

guanine nucleotide exchange factor (GEF) for Sar1 (Barlowe and Schekman, 1993). 

Once bound to GTP, Sar1 exposes its amino-terminal hydrophobic region, which al-

lows its association with the ER membrane and the subsequent recruitment of the 

COPII heteromeric subcomplex Sec23-Sec24, which constitutes the membrane-

proximal adaptor layer of COPII and forms, together with Sar1 the so called pre-

budding complex. Sec23 makes direct contact with Sar1-GTP (Bi et al., 2002), while 

Sec24 mediates the recruitment of cargoes (see below). Once assembled into mem-

branes, the pre-budding complex makes contact with the membrane-distal layer of 

COPII Sec13-Sec31, which consists of two Sec13 and two Sec31 molecules. Even 

though a role of Sar1-GTP in bending the membrane has been proposed by in vitro 

studies, the deformation of membrane curvature of the nascent coated vesicle is main-

ly induced by the polymerization of the external COPII subunits into a mesh-like 
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structure, which provides the force required to overcome the energetic barrier to 

membrane bending (Lee et al., 2005). 

One of the most debated points about the mechanism of COPII assembly arises 

from the fact that Sec23 displays a GTPase-activating protein (GAP) activity on Sar1-

GTP, which triggers GTP hydrolysis by Sar1, reducing the stability of the assembling 

complex. And the GAP activity of Sec23 is even augmented about 10 fold by addition 

of Sec13-Sec31 (Antonny et al., 2001). How can the COPII coat polymerize to cover 

a forming vesicle if the basic unit of the polymer is unstable? The first possible expla-

nation is that the kinetics of GTP hydrolysis is slower than the kinetics of vesicle 

budding, giving in this way enough time to the vesicle to leave the ER. Alternatively, 

GTP hydrolysis could cause only the release of Sar1, while the other components 

could remain assembled on the membrane (Bonifacino and Glick, 2004). Another 

possible explanation is that Sec12 is present on the rims of the nascent COPII vesicle 

and it provides a continual supply of activated Sar1-GTP (Futai et al., 2004; Sato and 

Nakano, 2005). 

Another key point, which is still unclear, concerns the scission of the vesicle 

neck that represents the last step in COPII vesicle formation. While clathrin-coated 

vesicles require an accessory protein, dynamin, to sever the vesicle neck, COPII vesi-

cles are intrinsically capable of pinching off the neck, even though the responsible 

subunit is unknown. Indeed, it has been demonstrated that a mixture of purified 

Sec23-Sec24, Sec13-Sec31 and Sar1-GTP is able to generate coated vesicles from 

liposomes (Matsuoka et al., 1998). Some evidences suggest that Sar1 itself, at least in 

vitro, might control membrane constriction of vesicle neck and mediate the scission of 

COPII-coated vesicles from ER membranes (Long et al., 2010).  

 

1.3.2 COPI-dependent transport 
 

Even though the best characterized function of the COPI system is the retro-

grade transport of luminal and membrane proteins at the ER/Golgi interface, it has 

been implicated also in maintaining the correct steady-state distribution of proteins 

within the Golgi stack (Rabouille and Klumperman, 2005) and in delivering antero-
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grade carrier vesicles from the intermediate compartment to the Golgi apparatus, in a 

process that is subsequent to COPII-dependent transport (Stephens et al., 2000).  

Similarly to Sar1 in COPII-mediated transport, the key molecule that organizes 

specific recruitment of the COPI subunits to donor membrane is the Ras-like GTPase 

Arf1 (Beck et al., 2009) (Fig. 4). Both the GDP and the GTP-bound forms of Arf1 in-

teract with the membrane. Arf1-GDP binds to the cytoplasmic tail of p23/p24, which 

are also able, upon binding of their TMD to a specific sphingomyelin species, to in-

teract directly with coatomer and increase the efficiency of vesicle formation 

(Contreras et al., 2012). Upon GDP/GTP switch, mediated by the GEF protein Gea1, 

Arf1 undergoes to a conformational change that leads to the exposure of a myristoy-

lated N-terminal amphipatic helix that provides a stable membrane anchorage 

(Antonny et al., 1997). Once activated, Arf1 and p24 proteins can directly bind and 

recruit all the seven subunits of the COPI complex (α, β’, β, γ, δ, ζ and ε). As de-

scribed for the membrane-distal layer of the COPII coat, the interaction of COPI 

components with the other effectors Arf1 and p24, triggers coat polymerization and 

membrane deformation. And finally, the neck of the nascent COPI-coated vesicle is 

pinched off by Arf1-GTP itself (Spang et al., 1998).  

 
Figure 4: the main steps of COPI-coated vesicles (Lee et al., 2004) 

 

Once released from the donor compartment, the COPI-coated vesicle needs to 

be uncoated in order to be competent for subsequent fusion with the acceptor mem-

brane. Similarly to Sar1 in COPII-dependent transport, the uncoating step depends on 

the GTP hydrolysis activity of Arf1, which is stimulated by Arf-directed GTPase-
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activating proteins ArfGAPs. In mammals, three Golgi-localized ArfGAPs have been 

identified, ArfGAP1 and ArfGAP2/3 (Cukierman et al., 1995). ArfGAP1 differs from 

the other two ArfGAPs for the presence of the lipid packing sensor motif ALPS, 

which is able to sense and bind poorly packed lipids, such as in the presence of highly 

curved domains or bilayers enriched in cone-shaped lipids. Indeed in both situations 

the activity of ArfGAP1 strongly increases (Bigay et al., 2005; Mesmin et al., 2007). 

By contrast, both ArfGAP2 and ArfGAP3 lack the ALPS motives and their activity is 

not modulated by either membrane curvature or lipid composition, but strictly de-

pends on coatomer binding. Indeed, a lysine-rich stretch in the middle of the Arf-

GAP2/3 was identified as a critical determinant for COPI binding and regulation of 

GAP activity (Kliouchnikov et al., 2009). Due to these different features, different 

functions of the three ArfGAPs have been proposed. Because of its curvature-

dependent activity and the fact that coated vesicles are highly curved domains, Arf-

GAP1 seems to be a general terminator of Arf1 activity, while the role of ArfGAP2/3 

seems to be tightly involved in the COPI mechanism, because their GAP activity de-

pends on coatomer binding: whether these ArfGAPs act as a coat components or their 

function is primarily related to the regulation of GTP hydrolysis is still unknown. 

  

 

1.4 Signals for COPI and COPII-dependent transport 
 

1.4.1 ER-export signals 
 

Experimental studies have proposed two different non-exclusive models for the 

exit of cargo proteins from the ER, the signal-mediated recruitment and the bulk flow 

hypothesis (Fig. 5). The bulk flow process is the passive, sequence-independent pro-

cess by which cargoes stochastically enter into transport vesicle without any positive 

selection. This type of transport appears to operate in the export of some secretory 

proteins, such as amylase and chymotripsinogen, from the ER of pancreatic exocrine 

cells (Martinez-Menarguez et al., 1999; Wieland et al., 1987). 
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Figure 5: Bulk flow and receptor-mediated hypothesis for export secretory proteins out of the ER 
(Barlowe, 2003) 

 

Despite the existence of bulk flow transport, most proteins seems to be actively 

recruited at the ERES and possesses a binding affinity for key components of the coat. 

More specifically, the molecules constituting the “pre-budding complex” (see above) 

can be isolated bound to cargoes under conditions that preserve the Sar1-GTP config-

uration (Aridor et al., 1998; Kuehn et al., 1998). Based on these findings, it has been 

hypothesized that secretory proteins contain sequence motives that can be recognized, 

either directly or indirectly, by the pre-budding complex. Indeed, many studies have 

identified specific ER-export signals on different transmembrane cargoes as well as 

on transmembrane receptors that drive the export of soluble proteins that cannot be 

bound directly by the COPII complex (Table 1).  

Table 1: Characterized ER export signals (modified from Barlowe 2003) 

 

The best-characterized export signal is represented by the di-acidic motif (DxE) 

in the cytoplasmic C-terminal tail of VSV-G, a type I transmembrane protein widely 

used as model to study the secretory pathway (Nishimura and Balch, 1997). Deletion 

of one of the aminoacids in the consensus sequence causes a slower export rate, while 

the addition of DxE to other transmembrane cargoes strongly improves their transport 
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rate (Sevier et al., 2000). This motif has been also identified in other exported pro-

teins, such as the Kir2.1 potassium channel (Ma et al., 2001) and the yeast proteins 

Sys1 and Gap1 (Malkus et al., 2002; Votsmeier and Gallwitz, 2001). However, there 

are many other transmembrane cargoes that do not contain the di-acidic sequence and 

are efficiently transport out of the ER. Indeed, other export motives have been discov-

ered and they generally consist of a pair of bulky hydrophobic residues (Barlowe, 

2003). For example, ERGIC53, a type I transmembrane protein that cycles between 

the ER and Golgi apparatus, has a pair of conserved aromatic residues in its cyto-

plasmic tail that bind COPII and that are necessary for ER export (Kappeler et al., 

1997). Other di-aromatic motifs (FF, YY, FY) have been found in similar positions in 

members of the p24 family (Dominguez et al., 1998) and in the Erv41-Erv46 complex 

(Otte and Barlowe, 2002). Concerning the export of soluble secretory proteins, be-

yond the bulk flow mechanism, a receptor-mediated mechanism has been demonstrat-

ed; in this case, a transmembrane cargo receptor links a soluble protein inside the ER 

lumen to the cytosolically exposed coat by binding, on one side, luminal cargoes and, 

on the other side, COPII through the already mentioned export sequences. Indeed, 

most of the proteins in which the export signal has been identified act as transport re-

ceptors. ERGIC53 mediates the exit from the ER of a subset of soluble glycoproteins 

including blood coagulation factors V and VII and cathepsin-Z (Appenzeller et al., 

1999), while the p24 family is required for the efficient export of some GPI-anchored 

proteins (Takida et al., 2008). 

Despite the fact that some papers reported the ability of activated Sar1 to bind 

some ER export signals (Aridor et al., 1998), Sec24 seems to be the most important 

regulator of cargo recognition. The genome of higher eukaryotes encodes at least four 

different Sec24 isoforms (Sec24A-D) (Pagano et al., 1999) and this has been pro-

posed to explain the wide range of secretory proteins with different export motives 

that can be packaged into COPII-coated vesicles. Indeed, structural studies demon-

strated a non-overlapping selectivity of the two classes of Sec24, Sec24A-B and 

Sec24C-D; Mancias and Goldberg (2008) reported that the F/IxM sequence binds a 

surface groove only of Sec24C and D and not the Sec24A and B isoforms. Converse-

ly, the LxxLE class of transport signals, as well as DxE signal, are selectively bound 

by Sec24A and B (Mancias and Goldberg, 2008). 

Recently two other receptors have been found to be important for the export of 

secretory proteins. The integral membrane protein TANGO1 is located at the ERES, 
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acts as bridge between the unusual large cargo collagen VII and the pre-budding 

complex Sec23/24-Sar1 and its knockdown strongly impaired collagen secretion 

(Saito et al., 2009). Another unconventional cargo receptor, Erv14, has been recently 

identified in yeast by combining genetic manipulation of yeast with high-throughput 

microscopy, termed “PAIRS” (Pairing Analysis of Cargo Receptors). It has been sug-

gested that Erv14 does not facilitate the export of transmembrane cargoes by the 

recognition of a specific export motif, but through the binding of the TMD inde-

pendently from their sequence (Herzig et al., 2012). 

 

 

1.4.2 Retrograde sorting signals and receptors 
 

The COPI retrograde pathway recycles not only the COPII anterograde machin-

ery, but is also critical to retrieve escaped ER resident proteins through the action of 

retrograde sorting receptors, which bind specific retention motives on cargoes 

(Dancourt and Barlowe, 2010). Indeed, two possible mechanisms to maintain correct 

protein localization have been identified, retention or retrieval. The retention mecha-

nism is the active exclusion of proteins from recruitment into transport carriers, while 

retrieval means that proteins can be included into transport carriers by bulk flow 

mechanism and then they are actively recycled back to the correct compartment 

through a receptor-mediated mechanism. 

As in the case of COPII-dependent transport, ER resident membrane proteins 

usually bear a retention motif and are directly bound by COPI, while soluble proteins 

are recognized by specific receptors that link cargoes to COPI complex. Two different 

retrieval motifs have been identified in the cytoplasmic tail of membrane proteins, the 

di-lysine motif KKxx and di-arginine motif RxR. While the specific subunit of COPI 

that binds RxR-bearing-cargo is still unknown, the KKxx signal is recognized by 

WD40 domains of either the α or β’ subunit (Michelsen et al., 2005; Shikano and Li, 

2003). Concerning soluble proteins, the most characterized retention mechanism is 

represented by the KDEL signal, or related sequences, at the C-terminus of soluble 

ER-resident proteins, which is recognized by the KDEL receptor in the ERGIC or 

Golgi compartments and recycled back to the ER in COPI-coated vesicles. On the 
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other side, the KDEL receptor can bind COPI through a di-Lysine motif. It is unclear 

how the KDEL receptor can bind COPI only when it already makes contact with car-

goes, but it is generally thought that the presence of ligand induces some conforma-

tional changes on its cytoplasmic residues, which trigger uptake into COPI vesicles 

(Aoe et al., 1998). Since the secretory pathway displays a pH gradient of increasing 

acidity from the ER to the Golgi and the optimal binding affinity of the KDEL recep-

tor with its ligands is at pH 5-5.5, once the receptor reaches the ER, the luminal neu-

tral pH induces release of cargoes. 

In addition to the KDEL receptor, another important retrograde sorting receptor 

is Rer1, a tetraspanning membrane protein that recognizes a subset of ER membrane 

proteins for COPI-dependent retrieval from the Golgi/ERGIC back to the ER (Sato et 

al., 2003b). Similarly to the KDEL receptor, it can rapidly recycle because of a di-

Lysine motif in its C-terminal tail and it is required for a correct ER localization of 

numerous proteins including Sec12, Sec63, Sec71 and Mns1 (Massaad et al., 1999; 

Sato et al., 1996). Interestingly, human Rer1 has been implicated in the regulation of 

γ-secretase activity by binding directly unassembled subunits of the γ-secretase com-

plex at the Golgi apparatus and retrieving them to ER; thus only the properly assem-

bled complex can proceed from the Golgi to the PM, where it participates in pro-

cessing of the amyloid precursor protein and of Notch (Kaether et al., 2007). Con-

cerning the molecular basis for recognition of transmembrane sorting motives, muta-

tional analysis revealed that Rer1 binds a pair of polar residues that must flank a hy-

drophobic cluster of 6-7 aminoacids. However, single mutation in the fourth trans-

membrane segment of Rer1 impaired retrograde transport of some but not all cargoes, 

suggesting that Rer1 makes contact with its cargoes through at least two different 

mechanisms (Sato et al., 2003b). 

Beyond the COPI-dependent route, another Golgi-ER retrograde pathway has 

been identified. This pathway can be used by some cargoes that lack retention mo-

tives, such as Shiga and Shiga-like toxins, to reach the ER from the plasma membrane 

via the Golgi apparatus (Sannerud et al., 2003). The ER targeting represents a crucial 

step for these toxins to be properly processed and to exploit their toxic action in the 

cytosol. White and colleagues demonstrated that Rab6-positive transport carriers are 

separated from COPI-positive components and that Shiga toxin retrograde transport is 

not inhibited upon the microinjection of anti-EAGE antibodies, potent inhibitors of 
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COPI function in live cells (White et al., 1999). It has also been demonstrated that 

Rab6 mediates vesicular Golgi-ER transport along microtubules. Indeed, one of the 

interacting partners of Rab6 is Bicaudal D1, a dynein-dynactin-binding protein, 

whose overexpression increases the recruitment of dynein on Rab6-positive struc-

tures; furthermore, a truncated form of Bicaudal D1, which is still able to bind Rab6 

but not dynein, inhibits microtubule minus-end directed movements of Rab6 transport 

vesicles (Matanis et al., 2002). Even though it’s not completely understood, it has 

been suggested that this alternative retrograde route is used not only by toxin proteins, 

but also by endogenous cellular proteins, such as Golgi enzymes, which lack a re-

trieval motif but continuously cycle to the ER via a COPI-independent pathway 

(Girod et al., 1999). 

Another different retrograde route has been identified for two Golgi proteins 

that are responsible for the generating and maintaining the Golgi structure and archi-

tecture, the so called Golgi matrix proteins. It has been demonstrated that the two cis-

Golgi proteins GM130 and GRASP65 cycle back to the Intermediate Compartment 

(IC) through specialized membrane tubules that physically interconnect the two com-

partments, allowing a very rapid exchange between them. Even though the co-

localization with COPI has been observed within these tubules, the molecular ma-

chinery operating in this pathway is still unknown (Marra et al., 2001). 

Figure 6: Working model depicting the different retrograde routes at the Golgi/ER interface (Sannerud 
et al., 2003). 
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1.5 Role of lipids in protein trafficking 
 

As already described, eukaryotic cells have different intracellular compart-

ments, where specialized metabolic reactions take place. Each organelle is enveloped 

by a unique lipid bilayer, in term of lipid composition, which provides both structural 

and signaling properties required for organelle-specific function.  

In the context of the secretory pathway, lipids and lipid transport are strictly in-

terconnected to protein transport. On the one hand, lipids use, in addition to local me-

tabolism, the same molecular machinery to reach their final membrane destination by 

vesicular transport and, on the other hand, they can influence the transport of proteins 

through the interaction with specific membrane-spanning proteins both by the inclu-

sion/exclusion of them into transport vesicles and by activating specific signaling 

events. In addition to this mechanism, as I will describe later, lipids can also be trans-

ported as single molecules through the action of cytosolic specific transporters 

(Sprong et al., 2001a).  

In this chapter, I will describe the unique molecular composition of each mem-

brane-bound compartment along the exo-endocytic pathways and the role of lipid mi-

crodomains in protein trafficking. 

 

1.5.1 Lipid composition along the secretory pathway and lipid 

transport 
 

The most abundant lipids in eukaryotic membranes are the glycerophospholip-

ids, which they are composed by diacylglycerol (DAG) and a phosphate group (phos-

phatidic acid, PA) that can be esterified to either a choline (forming PtdCho), ethano-

lamine (forming PtdEtn), serine (forming PtdSer) or inositol (forming PtdIns). PtdIns 

can be phosphorylated in different positions within their polar head, giving rise to a 

big variety of PtdIns species within the cell, which mark specific cellular membranes 

and play a fundamental role in membrane traffic (De Matteis and Godi, 2004). In con-

trast, sphingolipids contain a ceramide backbone (consisting of a sphingoid base 

linked to a fatty acid) conjugated to a variable group such as a sugar group in the case 
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of glycosphingolipid, or to choline in the case of sphingomyelin, the most abundant 

sphingolipids of eukaryotic cells. Breakdown products of these two lipid species serve 

as lipid second messengers and they include PA, DAG, lysoPA, Cer-1-phosphate, Cer 

and sphingosin-1-phosphate (van Meer et al., 2008). 

Another important class of lipids in eukaryotic cells is represented by sterols, 

where cholesterol is the most abundant sterols in eukaryotic cells and which are de-

fined by the presence of a planar and rigid tetracyclic ring (Sprong et al., 2001b). 

The main lipid biosynthetic organelle is the Endoplasmic Reticulum, which 

produces the bulk of structural phospholipids and cholesterol as well as ceramide, 

which is the precursor for complex sphingolipids. PtdCho is most abundant lipid of 

the ER membranes and represents about 60% of total ER lipids. The other two abun-

dant ER lipids are PtdEtn and PtdIns, which represent about 30% and 15% of total ER 

lipids, respectively. Although they are synthesized in the ER, ceramide and cholester-

ol are quickly transported out of the ER and represent about 5% of total ER lipids 

(Fig. 7). Due to its low content of cholesterol and sphingolipids, the ER membrane is 

the thinnest and least rigid bilayer within the secretory pathway, with a thickness of 

the hydrophobic core of about 2,5 - 2,6 nm (Sharpe et al., 2010). Significant levels of 

lipid synthesis can also occur in the Golgi complex, which is specialized in sphingo-

myelin and complex glycosphingolipid synthesis as well as PtdCho and PtdEtn. The 

major lipids of the Golgi membranes are still PtdCho and PtdEtn, even though their 

levels are less than those of the ER, but they have increased levels of SM and choles-

terol, giving rise to a thicker and more rigid bilayer (Fig. 7). The peculiarity of Golgi 

membranes is represented by the fact that their composition is not homogenous, but 

shows a gradient from the cis-Golgi to the trans-Golgi cisternae, with the cis face 

similar to the ER and the trans face similar to the composition of the downstream 

compartments (Sprong et al., 2001a). Indeed, the plasma membrane is particularly en-

riched in sphingolipids and sterols and shows the highest cholesterol/phospholipid ra-

tio within the cell. Since cholesterol and sphingolipid can be packed with a higher 

density than glycerophospholipids, they form a thick and very rigid bilayer that makes 

the plasma membrane competent to resist mechanical stress coming from the extracel-

lular environment (Fig. 7). 
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Figure 7: lipid synthesis and steady-state composition of cellular membranes: blue indicates the site of 
synthesis, while in red are shown lipids involved in signaling and organelle recognition pathways (van 
Meer et al., 2008). 

 

An important issue that many research groups are trying to address is how eu-

karyotic cells maintains the unique lipid composition of its different intracellular 

compartments; once lipids are synthesized in the ER or in the Golgi apparatus, they 

need to reach their final destination. In particular, endosomes and plasma membrane 

do not contain any enzyme required for lipid synthesis and they totally depend on ER 

and Golgi as sources of lipids. Till now, two different mechanisms of lipid transport 

have been identified. Lipids can be included in the same transport vesicles that are re-

sponsible for protein trafficking and reach, together with protein cargoes, their final 

destination. The progressive enrichment of sterols and sphingolipids along the secre-

tory pathway implies a selective inclusion/exclusion of specific lipids from antero-

grade or retrograde transport carriers. Therefore, different lipids can segregate into 

microdomains within the same membrane. Since membrane proteins can preferential-

ly interact with specific lipid species, the formation of these lipid microdomains can 

determine protein recruitment or exclusion into vesicles, representing in this way an 

important factor that can influence trafficking along the secretory pathway (see para-

graph below) (Simons and Sampaio, 2011).  
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Lipids that are synthesized on the cytosolic leaflet of the ER, such as PtdIns, can 

be also transported to the specific acceptor membrane as single molecules by the ac-

tion of cytosolic proteins. These lipid-exchange proteins contain on one side a hydro-

phobic pocket that serves as a binding domain for lipids and, on the other side, a pro-

tein interaction domain that bridges the donor and acceptor membranes creating a 

contact site that allows lipid exchange (Voelker, 2005). 

 

1.5.2 Lipid microdomains 
 

Our view of biological membranes has evolved dramatically over the last few 

decades and evidence on the role of lipids in controlling cellular events are constantly 

increasing. In the classical bilayer model of Singer and Nicolson (Singer and 

Nicolson, 1972), termed “fluid mosaic model”, both proteins and lipids freely diffuse 

within the plane of the membrane. In the 90s, the discovery of detergent-resistant 

membranes, the so called “lipid rafts”, suggested the possibility of sterol-dependent 

sphingolipid and protein associations within cell membranes and completely changed 

our view of biological membranes. This concept was first introduced to explain the 

generation of the glycolipid-rich apical membrane of epithelial cells; these membrane 

domains are characterized by resistance to cold detergent extraction (Simons and van 

Meer, 1988). This and other studies on artificial model membranes led to the conclu-

sion that lipids can coexist in two different phases in the plane of the bilayer: liquid-

ordered and liquid-disordered phases. In the liquid-disordered phase, lipids containing 

unsaturated acyl chains are poorly packed in the planar bilayer, due to the disordered 

fatty acid structures of glycerophospholipids, and they have a high lateral mobility, 

while the liquid-ordered phase is characterized by the high order of a solid but the 

high lateral mobility of a liquid. This ordered phase exists mainly in the presence of 

sphingolipids that possess long and saturated acyl chains and cholesterol, which, to-

gether, participate in packing lipids close to each other (van Meer et al., 2008). 

Presently, this working model has been modified and lipid rafts are not seen any 

more as micrometer-scale stable platforms, in which specific lipids and proteins are 

segregated, but they are defined as dynamic nano-scale, sphingolipid-enriched, or-

dered assemblies of specific proteins that can be activated to coalesce by specific li-
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pid-lipid, lipid-protein and protein-protein interactions (Lingwood and Simons, 2010). 

The real spatial characteristics and dynamics of these microdomains are still debated 

and different models strongly depend on the methodologies that are used. For in-

stance, fluorescence correlation spectroscopy studies revealed the existence of 120 nm 

structures that fluctuate on a sub-second time scale (Lenne et al., 2006), while high 

spatial and temporal resolution fluorescence energy transfer estimated more stable 

domains of about 10 nm (Goswami et al., 2008). What is nowadays generally accept-

ed, is that the fluctuating nano-scale assemblies can be functionalized by different 

stimuli (protein oligomerization, presence of palmitoylated proteins or the interaction 

with cortical actin) that trigger the coalescence of membrane order-forming lipids, 

leading to the “raft phase”, in which these domains can merge to each other and reach 

a more stable state of micro scale size and where “raftophilic” and “non-raftophilic” 

membrane constituents are laterally segregated from each other (Simons and 

Sampaio, 2011) (Fig. 8).  

Figure 8: scheme of lipid raft assemblies in cellular membranes (Lingwood and Simons, 2010). 

 

Most of the above-mentioned studies concern the plasma membrane and the 

trans-Golgi, where it has been demonstrated that their lipid composition, at physio-

logical temperature, is close to a critical miscibility point, in which the two phases co-
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exist and fluctuate in a metastable state as already described. From an evolutionary 

point of view, this situation gives a great advantage because the raft assembling and 

the formation of the “raft phase” can be achieved with a little energy cost, such as oc-

curs for protein oligomerization (Simons and Sampaio, 2011).  

In contrast, the other intracellular membranes, because of their lower cholesterol 

content, are expected to assume a homogenous liquid-disordered phase and till now, 

no demonstrations of the presence of rafts have emerged. Nonetheless, there are a 

growing number of indications that specific lipids are crucial factors in vesicular 

transport along the entire secretory pathway. Many papers have reported the im-

portance of PtdIns in many steps along the exo-endocytic pathway: PtdIns(4,5)P2 par-

ticipates in the invagination of clathrin coated pits at the plasma membrane, while 

PtdIns(3)P, which is exclusively distributed in early endosomes, is important for mul-

tiple endocytic steps, including docking, fusion and motility of endosomes (De 

Matteis and Godi, 2004). The presence of specific lipids seems to be important also in 

the early steps of the secretory pathway, at the ER/Golgi interface. COPI-coated vesi-

cles are depleted of both cholesterol and sphingomyelin (Brugger et al., 2000), while 

the presence of diacylglycerol is required for the formation of COPI vesicles and for a 

correct Golgi to ER transport (Fernandez-Ulibarri et al., 2007). 

Concerning the anterograde transport from the ER to the Golgi, a few have re-

ported the requirement of cholesterol for the transport of some membrane proteins. 

Indeed, acute treatment with statins, which inhibit cholesterol synthesis, or with cy-

clodextrins, which remove cholesterol from membranes, cause an impairment in the 

COPII-dependent transport of VSV-G, scavenger receptor-A and of the GPI-anchored 

protein, CD59 (Bonnon et al., 2010; Ridsdale et al., 2006; Runz et al., 2006). Reduced 

cholesterol levels cause both a decrease in the lateral mobility of membrane proteins 

and a delay in the turnover of the COPII component Sec23. Cholesterol doesn’t seem 

to be the only lipid involved in transport from the ER; Pathre and colleagues demon-

strated that the activation of phospholipase D (which catalyzes the formation of phos-

phatidic acid) by Sar1 supports membrane tubulation during exit site formation and 

facilitates cargo export (Pathre et al., 2003). Indeed, treatment with an inhibitor of the 

lysophospholipid acyltransferase (which promotes the formation of phosphatidic acid 

from lysophosphatidic acid) affects the exit of cargoes from the ER and the formation 

of COPII vesicles in vitro (Brown et al., 2008). Also ceramide has been suggested to 

play a role in COPII-dependent transport; treatment with PDMP, which blocks the 
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sphingolipid synthesis pathway by inhibiting the conversion of ceramide into sphin-

gomyelin and glucosylceramide and causes an accumulation of ceramide, significant-

ly delayed the transport of VSV-G and retained the M glycoprotein of Infectious 

Bronchitis Virus into the ER (Maceyka and Machamer, 1997). 

All this evidence clearly indicates the fundamental role that lipids play in con-

trolling protein function and localization and how lipid and protein sorting and 

transport are intrinsically linked. 

 

 

1.6 Membrane curvature 
 

In addition to lipid domains, cells also display different morphological domains 

that differ in membrane curvature or bending (Fig. 9). Highly curved regions are of 

particular importance during vesicle trafficking, as the budding of a vesicle means the 

formation of different domains with both “positive” and “negative” curvature (where 

positive indicates regions of membrane that curve inwards the cytoplasm and negative 

regions that curve in the opposite direction). 

 

Figure 9: regions of high curvature within cellular membranes (McMahon and Gallop, 2005) 

 

Moreover, some intracellular organelles have specialized regions characterized 

by high curvature, such as peripheral ER tubules, Golgi tubules that connect different 

cisternae within a Golgi stack and the plasma membrane protrusion during cell migra-

tion. Frequently, areas of high membrane curvature exist for only limited period of 
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time and, in the context of protein trafficking, it’s quite intuitive that dynamic changes 

should be important for proper transport; in vesicles bending is primarily induced by 

the coat proteins, but then, after the uncoating event, the curvature is no longer stabi-

lized and the vesicle becomes more fusogenic as while the coat proteins can be reused 

for another round of vesicle formation. Five different mechanisms have been identi-

fied to generate curved domains, which are not mutually exclusive, but probably co-

operate to bend a membrane (Farsad and De Camilli, 2003; McMahon and Gallop, 

2005) (Fig. 10). 

 

Figure 10: mechanisms of membrane deformation (McMahon and Gallop, 2005). 

 

One of the most studied mechanism to induce membrane deformation and that 

is strictly linked to lipid rafts involves the presence of specific lipid species that have 

a permissive role in membrane curvature because of their shape or chemical proper-

ties. For example, cone-shaped lipids with small polar heads and a bigger hydropho-

bic part, like PtdEtn, or lipids with an inverted cone shape (where the acyl chains oc-

cupy a smaller surface than the headgroup, like lysophosphatidic acid or phosphatidic 

acid) can favour positive or negative curvature, respectively (Sprong et al., 2001b). 

Indeed, as I already mentioned, phosphatidic acid has been proposed to assist the for-

mation of COPII-coated vesicle at the ERES (Brown et al., 2008). Also cholesterol 

has been proposed to be important in generating highly curved regions by two possi-

ble mechanisms: first, a selective enrichment of cholesterol in one leaflet of the bi-

layer could alter and increase the relative surface of the bilayer acting as a lipid “res-

ervoir” only on one leaflet to favour budding and second, it might intercalate into the 
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budding-site leaflet to reduce hydrophobic-hydrophilic interactions during the distor-

tion of the bilayer and, in this way, the energy needed for budding (Baba et al., 2001). 

As well as assisting or antagonizing curvature, lipids can even form domains in 

response to curvature that they prefer. Using a ternary lipid mixture close to the de-

mixing point and composed of sphingomyelin, cholesterol and PtdCho, Roux and col-

leagues demonstrated that lipids of the liquid-disordered phase are selectively parti-

tioned into curved domains, while those of the liquid-ordered phase are excluded 

(Roux et al., 2005). Indeed, COPI is able to bind membranes and form a coat only on 

liquid-disordered domains, where the membrane tension is low and, therefore, the en-

ergy cost to bend the membrane is small (Manneville et al., 2008). 

A second mechanism of membrane bending is represented by integral mem-

brane proteins. For simple geometric reasons, transmembrane proteins with a conical 

shape, like the TMD of the nicotinic acetylcholine receptor, naturally prefer curved 

regions and, in turn, themselves could facilitate membrane deformation in a way simi-

lar to the cone-shaped lipids. The Reticulon family, of which Rtn4 is the most studied 

member, represents an important example of membrane proteins that are responsible 

for generating and maintaining highly curved regions, the ER tubules. Reticulons con-

tain two hydrophobic segments that insert into the cytosolic leaflet of the ER mem-

brane adopting a wedge shape; thereby, they increase the surface area only on the out-

er leaflet of the bilayer and, similar to cone shape lipids, facilitate membrane tubula-

tion (Voeltz et al., 2006) (Fig. 11).  

Figure 11: membrane topology of Reticulon4 (Voeltz et al., 2006). 

 

Cytoskeletal assembly and disassembly is intimately linked to membrane-shape 

changes of both plasma membrane and intracellular organelles. Remodeling of actin 

filaments is involved in the generation of many areas of high membrane curvature 
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during cell migration like filopodia and axonal growth cones. It is still poorly under-

stood whether actin is directly able to drive membrane curvature, but it is generally 

accepted that the cytoskeleton can promote the generation of local curvature. Indeed, 

actin polymerization has been implicated in some endocytic events. For example, ac-

tin nucleation alone is able to mediate the scission of Shiga toxin-induced tubular in-

vaginations of the plasma membrane in a way that is independent from both clathrin 

and dynamin (Romer et al., 2010). It has also been demonstrated that the microtubule 

network can, at least in vitro, pull out tubules from intracellular membranes by the ac-

tion of molecular motors (Roux et al., 2005); thus, it is very likely that motors might 

be partly responsible for tubulated organelle morphology. 

Another class of proteins that can bend membranes is represented by cytosolic 

proteins that, upon specific modifications, are capable to bind membranes and con-

strain membrane topology into a tubular shape. BAR domains (banana-shaped lipid 

binding domains) are found in a wide variety of trafficking proteins (i.e. dynamin), 

and they bind preferentially to curved regions through their concave shape. After their 

membrane binding, they are also able to polymerize and lead to membrane tubulation 

(at least in in vitro assays). Like BAR domains, coat proteins can also bind to mem-

brane and trigger membrane bending by polymerizing into curved structures 

(Antonny et al., 2003) (see section 1.2). 

The fifth identified mechanism is based on the action of a different class of pro-

teins that contain amphipatic helices with hydrophobic residues on one side of the he-

lix and hydrophilic residues on the other one. 

The most studied member of this family is ArfGAP1, which triggers GTP hy-

drolysis of Arf1 during COPI-coated vesicle budding in the Golgi apparatus 

(Antonny, 2011). Like BAR domains, the ALPS domain (Amphipatic Lipid Packing 

Sensor) of ArfGAP1 can sense and bind highly curved domains or flat membranes en-

riched in lipids with small polar heads and unsaturated acyl chains; in both situations 

lipids are not tightly packed and, therefore, the amphipatic helix can be inserted into 

the small space between lipids (Fig. 12). 
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Figure 12: ALPS motif can sense a lipid packing defect typically present on curved domains (modified 
from (Antonny, 2011). 

 

1.7 The TMD-dependent transport 
 

As described in the section 1.3 of this chapter, one factor that strongly deter-

mines the retention in or exit from the ER is the ER export signal. But other factors 

influencing protein transport along the secretory pathway have been identified. 

Among them, the physico-chemical features of the TMD of membrane protein car-

goes are one of the most important. One fundamental principle of membrane-

spanning protein-lipid interaction is based on the fact that non-permissive hydropho-

bic-hydrophilic interactions must be avoided; therefore, the length of the TMD must 

match the thickness of the hydrophobic core of the bilayer. In other words, the se-

quences of TMDs should reflect the physical properties of the bilayers in which they 

reside (Sharpe et al., 2010). Since membranes along the secretory pathway display a 

progressive increase in thickness and rigidity of the bilayer, proteins that are distribut-

ed in different intracellular organelles and at the plasma membrane should have dif-

ferent TMD length. Indeed, this paradigm has been recently confirmed by a bioinfor-

matic analysis from a large scale dataset from fungi to vertebrates on the correlation 

between TMD length of membrane proteins and their intracellular localization 

(Sharpe et al., 2010). The authors found that TMDs have organelle-specific properties 

with a dichotomy in TMD length between the early and late parts of the secretory 

pathway; ER and Golgi resident proteins have a mean TMD length of 19-20 aa, while 

proteins localized in the TGN, endosomes and plasma membrane have longer TMDs 

of 24-25 aa (Fig. 13). 
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Experimentally, many examples of TMD-dependent sorting have been observed 

essentially throughout the entire secretory pathway (Bulbarelli et al., 2002; Nufer et 

al., 2003; Sato et al., 2003a; Schamel et al., 2003). 

 
Figure 13: TMD length distribution of fungi and vertebrates membrane proteins localized in the ER, 
Golgi and plasma membrane (Sharpe et al., 2010). 

 

The TMD-dependent sorting was first demonstrated to explain the retention of 

Golgi enzymes in the Golgi apparatus (Munro, 1991). Indeed, the author found that 

the TMD of the Golgi enzyme α-2,6-sialyltransferase is the major determinant for its 

correct localization in the Golgi apparatus and he also hypothesized that a lipid-based 

sorting could be the mechanism by which Golgi enzymes are excluded from antero-

grade vesicles and from transport to the plasma membrane (Munro, 1995). Subse-

quently, our group demonstrated how this event is fundamental at the ER/Golgi inter-

face by using C-tail-anchored proteins as model proteins (see below) (Pedrazzini et 

al., 1996).  
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1.7.1 C-tail-anchored proteins as a model to study TMD-

dependent transport 
 

Since many years, our laboratory has been using C-tail anchored proteins as 

models to study mechanisms of post-translational insertion into membranes (see sec-

tion 1.1) and TMD-dependent sorting. In particular we have been using rabbit cyto-

chrome b5 ((cyt)b5), which is a 15 kDa protein, with a globular heme-linked N-

terminal domain, a short linker separating the functional domain from the membrane, 

17 hydrophobic aminoacids spanning the ER bilayer and a short luminal polar se-

quence at the C-terminus. This protein is particularly abundant in the hepatocyte ER, 

where it acts as electron donor for a vast variety of acceptors involved in lipid metab-

olism (in association with NADH-cyt b5 reductase) and in xenobiotic detoxification 

(receiving electrons from NADPH-cyt P450 reductase) (Borgese et al., 1993; Borgese 

and Harris, 1993). 

Thanks to their simple structure and to fact that they lack any export signal mo-

tif, TA proteins represent an excellent model to clearly observe the TMD-dependent 

sorting. By analyzing the mean hydrophobicity of differently localized mammalian 

TA proteins, we observed a clear progressive increase of the TMD length along the 

exocytic pathway and that ER resident TA proteins have a short TMD tail (Borgese et 

al., 2007) (Fig. 14).  

 
Figure 14: physicochemical features of the tail region of differently localized TA proteins. ER and 
MOM localized TA proteins display similar hydrophobicity, while SNARE proteins show a progres-
sive increase of TMD length along the exo- endocytic route (Borgese et al., 2007) 
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Indeed, in 1996, our group experimentally demonstrated that the ER localization 

of (cyt)b5 strictly depends on the length/hydrophobicity of its TMD; lengthening the 

membrane anchor to 22 residues causes the escape from the ER and its redistribution 

to the plasma membrane (by adding the hydrophobic sequence ILAAV). 

This relocation does not depend on the aminoacid sequence that has been added, 

because restoring the length of 17 aa, but maintaining the ILAAV sequence does not 

alter the typical ER distribution of (cyt)b5 (Pedrazzini et al., 1996). Moreover, the re-

placement of the N-terminal catalytic domain by GFP gave the same results regarding 

the importance of the TMD, thereby excluding the possibility of other topogenic de-

terminants in the cytosolic domain (Bulbarelli et al., 2002) (Fig. 15). 

 

 Figure 15: different intracellular distribution of FP-17 and FP-22; 1 h after cDNA microinjection (left 
picture) both FP-17 and FP-22 are localized in the ER. FP-17 remains distributed within the ER in all 
timepoints analyzed (90 min in the center and 150 min on the right). In contrast, FP-22 travels through 
the secretory pathway and 90 min after microinjection is localized in the Golgi (central picture) and af-
ter 150 min reaches the plasma membrane (right picture) (Ronchi et al., 2008). 

 

1.7.2 Possible mechanisms for TMD-dependent sorting at the 

ER-Golgi interface  
 

Nevertheless the mechanisms of ER retention of FP-17 and transport to the 

plasma membrane of FP-22 are still not fully understood. Concerning the residence in 

the ER, it has been demonstrated that a (cyt)b5 version engineered to contain an O-

glycosilation acceptor site close to the C-terminus is partially O-glycosylated, a pro-

cess catalyzed by GalNAc transferases in the cis-Golgi, with a very slow rate (half 

time of 10 hours). This result suggests that only a small fraction can escape from the 

ER by a “bulk flow” mechanism and cycle between the ER and Golgi apparatus 

(Pedrazzini et al., 2000) and that the main mechanism keeping (cyt)b5 in the ER might 

be exclusion from export (see below). 
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Indeed more recently, our group demonstrated that the two proteins are already 

partitioned into different domains when both are still distributed in the ER. The longer 

TMD is selectively enriched at the ERES and ER tubules (Rtn4A-positive structures), 

while FP-17 doesn’t co-localize with the ERES marker Sec23 and is distributed in 

both ER tubules and sheets (Ronchi et al., 2008) (Fig. 16).  

Figure 16: TMD-dependent partitioning of FP-17 and FP-22 into different ER domains. This panel 
shows a cell expressing both FP-17 and FP-22 1 h after cDNA microinjection; FP-22 (in red) is segre-
gated in ER tubules, while FP-17 (in green) is localized in both ER tubules and sheets (Ronchi et al., 
2008). 

 

These findings led us to conclude that the vast majority of FP-17 is statically re-

tained within the ER by a non-receptor-mediated and positive mechanism of exclu-

sion from budding transport carriers.  

Concerning FP-22, in addition to the segregation in ER tubules and ERES, we 

also demonstrated that its diffusion within the ER and from the ERES to the surround-

ing ER is higher than that of VSV-G, whose recruitment at the ERES is receptor-

dependent. Therefore, it’s difficult to explain either by bulk flow or receptor-mediated 

mechanisms how FP-22 can be excluded from the ER sheets, recruited to the ERES 

and diffuse both at the ERES and in the rest of the ER with the same rate. To explain 

these behaviors, two different, non-exclusive hypotheses have been formulated, based 

on the concept of the hydrophobic mismatch (Fig. 17). As described in section 1.7, 

transmembrane proteins need to match the length of the TMD with the thickness of 

the bilayer where they reside. But FP-22 is predicted to have a longer TMD than the 

thin ER membrane and it needs to find a way to accommodate the mismatch and to 

avoid the exposure of hydrophobic portions to a hydrophilic environment. Although 

ER membranes, because of their low cholesterol content, are predicted to have only a 

homogenous liquid-disordered phase, some evidence on the presence of specific mi-

crodomains enriched in “thicker” lipids has been reported (Bonnon et al., 2010; 

Ridsdale et al., 2006; Runz et al., 2006). Thus, FP-22 could segregate into specific 
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microdomains in which the lipid composition matches better its 

length/hydrophobicity. Indeed, it has already been demonstrated that the two form of 

(cyt)b5 interact with different lipid species in reconstituted proteoliposomes and that 

the extended form prefers domains enriched in acidic phospholipids and ceramide, 

while the wild-type form is excluded from these domains (Ceppi et al., 2005). 

Figure 17: the lipid microdomain (1) and membrane curvature (2) hypothesis to explain the TMD-
dependent partitioning of membrane proteins within the ER; in green is depicted the short TMD of FP-
17, while in red the longer TMD of FP-22. 

 

The second hypothesis is based on a simple geometrical consideration, taking 

into consideration the observation that FP-22 is segregated into curved ER domains 

(tubules and Exit Sites). One way to accommodate hydrophobic mismatch is by tilting 

of the TMD within the lipid bilayer (de Planque and Killian, 2003), but this results in 

a sub-optimal interaction between the TMD and the acyl chains of the bilayer. By 

contrast, in curved regions, FP-22’s tilt might be compensated by tilting also of the 

acyl chains. Thus, the difference between the orientation of the acyl chains and of the 

TMD could be smaller, resulting in a more favorable interaction. 

Another interesting point comes from the analysis of the transport rates of the 

sequence-dependent and the TMD-dependent (and sequence-independent) mecha-

nisms by comparing the transport of FP-22 to that of VSV-G. This type I transmem-

brane protein is transported very efficiently to the plasma membrane and it contains a 

known di-acidic (DxE) export signal in its cytosolic tail (Balch et al., 1994). Our 

group demonstrated that VSV-G is strongly recruited at ERES compared to FP-22 and 

it’s more efficiently transported to its final destination. Indeed, in 15 minutes the vast 

1 2 
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majority of VSV-G leaves the ER and accumulates in the Golgi apparatus and in 45 

minutes it is exclusively localized at the plasma membrane. In contrast, the TMD-

dependent transport of FP-22 is less efficient: 120 minutes after its cDNA microinjec-

tion it is still distributed between the ER and the Golgi and 150 minutes after mi-

croinjection only a small amount of FP-22 reaches the plasma membrane. Therefore, 

the presence of the export signal in the cytosolic tail of VSV-G guarantees a faster 

and more efficient transport through the secretory pathway compared to that of car-

goes that lack this export motif (Ronchi et al., 2008). 

The crucial role of TMD length/hydrophobicity in protein trafficking and in par-

ticular at the ER-Golgi interface is not restricted to TA proteins, but other examples 

have been shown; one of the clearest reported case concerns the influence of the phys-

icochemical TMD features of VSV-G. It has a predicted α-helix hydrophobic domain 

of 22-23 residues, which is similar to all other proteins localized at the plasma mem-

brane (Fig. 12). The substitution of the di-acid motif with two alanines (AxA) does 

not block its arrival to the plasma membrane (even though its transport is significantly 

slowed down) thanks to the physical properties of its TMD. By contrast, Dukhovny 

and colleagues recently reported that when VSV-G TMD is shortened to 17 residues, 

a length that matches with the TMD length of ER resident proteins, the protein is no 

longer able to reach the plasma membrane and is blocked within the ER, even in the 

presence of the export signal (Dukhovny et al., 2009). 
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2. AIM OF THE THESIS 
 

 

My PhD project is aimed at the identification of the molecular mechanisms re-

sponsible for transport of membrane proteins at the ER-Golgi interface. Since all the 

proteins that are localized at the plasma membrane or in different intracellular orga-

nelles need to be transported along the secretory pathway, the exo-endocytic route 

plays a fundamental cellular function and the understanding of its molecular mecha-

nisms is of crucial importance. Considering that all ion channels and plasma mem-

brane receptors are delivered to their destination via the exocytic pathway, the rele-

vance of these mechanisms to basic pharmacology cannot be overstated. In this thesis 

we focused our attention on two crucial factors that influence protein transport: the 

presence of aminoacid export sequences and the physicochemical features of the 

TMD. 

Our lab previously demonstrated that FP-17 and FP-22, which do not contain 

any export sequence in their cytosolic portion and that differ only for the length of the 

TMD, are differently segregated within the cell. FP-17 is actively retained in the ER 

and excluded from ERES, while FP-22 is recruited at ERES and transported along the 

secretory pathway to the plasma membrane. Even though it is enriched in transport 

carriers, its transport is significantly less efficient compared to that of a signal-bearing 

membrane protein, VSV-G. Therefore, we first investigated whether the different 

transport rates are only due to a differential recruitment at the ERES (demonstrated in 

(Ronchi et al., 2008)) or whether the di-acidic signal is crucial in other steps of the se-

cretory pathway to guarantee an efficient transport. To this aim, we took advantage of 

the temperature blocks combined with live-cell imaging approaches to study the 

transport of our two model proteins in the different steps of the secretory pathway. 

Surprisingly, we found that the anterograde transport of FP-22 from the ER to the 

Golgi is fast and comparable to that of VSV-G, but it slowly reaches the plasma 

membrane because the vast majority, once arrives to the Golgi, is recycled back to the 

ER. This result suggests that recognition of the export sequence by a Golgi receptor 

might prevent VSV-G from futile recycling to the ER. In order to directly demon-

strate the role of the export signal in the Golgi apparatus, we analyzed the behavior of 
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a mutant form of VSV-G, in which the DxE sequence has been replaced with two ala-

nines (AxA). 

As explained in the introduction, the second problem I investigated in my thesis 

concerns the mechanism of the TMD-dependent recruitment to ERES (Ronchi et al., 

2008). FP-22 appears to be excluded from flat ER domains and segregated into 

curved domains. I asked whether membrane curvature could be a factor determining 

the recruitment of a hydrophobically mismatched TMD to ERES. To this aim, we 

used a simple in vitro model of membranes, in which the contribution of curvature 

alone can be easily studied. We reconstituted FP-17 and FP-22 into Giant Unilamellar 

Vesicles (GUVs) of micrometer size composed of either synthetic POPC (palmitoyl-

oleyl-phosphatidylcholine) or ER lipids extracted from rat liver microsomes, and arti-

ficial highly curved nanotubes were pulled out using micromanipulation techniques, 

such as molecular motors and optical tweezers (Sens et al., 2008); finally, the distri-

bution of the two proteins in flat (vesicle) and curved (tube) domains was analyzed. 

These experiments were carried out at the Marie Curie Institute (Paris) in collabora-

tion with Bruno Goud and Jean-Baptiste Manneville. 
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3. MATERIALS AND METHODS 
 

3.1 Plasmids and antibodies 
 

The FP-22 construct used for live-cell imaging experiments was available in the 

laboratory and has been described in (Ronchi et al., 2008). It consists of the improved 

monomeric CFP variant, called mCerulean (A206K mutation) (Rizzo et al., 2004) at 

the N-terminus linked to the C-terminus of cyt(b5) by a linker region containing the 

myc epitope and a [(Gly)4Ser]3 sequence. In this construct the cyt(b5) sequence is not 

complete, but only the C-terminal fragment from Pro94 to Asp134 is present, com-

prising the elongated TMD and the short polar luminal residues. The pCDNA3 con-

struct bearing the temperature sensitive mutant of VSV-G fused to EGFP (ts045VSV-

G EGFP) was obtained from Jenninfer Lippincott-Schwartz (NIH, Bethesda, USA), 

while pRFP-KDEL and pmCherry-GalNAc were kind gifts from Erik Snapp (NIH, 

Bethesda, USA) and Rainer Pepperkok (EMBL, Heidelberg, Germany), respectively. 

The pCDNA3 ts045VSV-G AxA construct was generated with a site-directed muta-

genesis kit (QuickChange Lightning Site-Directed Mutagenesis kit from Agilent 

Technologies) using pCDNA3 ts045VSV-G DxE as template. Briefly, the region con-

taining the di-acidic export signal was amplified with two primers that perfectly an-

neal to the template except for two base pairs designed to replace two A in position 

2508 and 2514 with two C in order to substitute the DxE sequence with AxA. 

Various other different spectral fluorescent variants of GFP fused to the wild-

type or the elongated forms of cyt(b5) were produced both for expression in cells and 

for subsequent subcloning into pGEX vector to produce recombinant proteins. 

pCDNA3 mEGFP-22 was generated starting from the EGFP-22 construct (described 

in (Bulbarelli et al., 2002): the fluorescent protein was excised with BamHI and re-

placed with the monomeric variant. pCDNA3 mEGFP-17 was available in the labora-

tory and described in (Snapp et al., 2003). pTagBFP-17 and pTagBFP-22 were gener-

ated by ligating the wild-type or the elongated form of cyt(b5) into pTagBFP-C1 

(from Evrogen) opened in the polylinker region with the two restriction enzymes 

BspEI and EcoRI. The red spectral version of GFP (tdTomato) was amplified from 
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ptdTomato-N1 (from Clontech) by PCR using a reverse primer designed with a 3’ end 

that introduced a site recognized by the restriction enzyme BspEI. The amplified 

product was digested with NheI and BspEI at the 5’ and 3’ ends respectively, and then 

ligated into pmCerulean-17 or -22 (Ronchi et al., 2008) after excising the mCerulean 

sequence with the same two restriction enzymes. Finally, all these constructs were 

amplified using forward primers designed to introduce an EcoRI site upstream to the 

open reading frame, digested with EcoRI at both 5’ and 3’ ends and ligated into 

pGEX2T vector (from Amersham) opened in the polylinker region with the same re-

striction enzyme. All constructs were checked both with diagnostic digestions and se-

quencing. 

Polyclonal α-GFP antibody (from Abcam) and the secondary antibody α-rabbit 

peroxidase (from Jackson Immunoresearch Laboratories) were used for Western Blot 

diluted 1:5000 and 1:80000 in blocking buffer (5% milk, 0.1% Tween, 20 mM Tri-

sHCl, 150 mM NaCl) respectively. 

 

3.2 Cell culture, transfection and microinjection 
 

NRK or CV1 cells were cultured in DMEM supplemented with 10% of FBS 

(Fetal Bovine Serum), 1% of antibiotic mix penicillin/streptomycin (Invitrogen) and 

1% of L-glutamine at 37°C and 10% of CO2. 

Both cell lines were transiently transfected either with the Calcium Phosphate 

method as previously described (Bulbarelli et al., 2002) or with the jetPEI system 

(from Polyplus transfection) according to the manufacturer’s instructions.  

Microinjection was performed with an Eppendorf 5200 microinjector by apply-

ing a pressure of 80-90 hPa, which injected plasmids (in water solution at a concentra-

tion of 100-200 ng/µl) into the nucleus of NRK cells cultured at 80% of confluence. 

At the times indicated in the figure legends, microinjected cells were either imaged 

alive, or fixed in 4% paraformaldehyde for 20 min at 37°C. 
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3.3 Temperature blocks and energy depletion experiments 
 

For temperature block experiments at 20°C, NRK cells were microinjected with 

FP-22 cDNA, incubated at 37°C at 10% CO2 for 1 h in order to allow protein expres-

sion and then incubated in a refrigerated bath at 20°C for 1 h in DMEM containing 25 

mM Hepes (from Sigma-Aldrich) before fixation or live-cell imaging. In the case of 

either VSV-G DxE or –AxA, cells were transfected for 24 h at the non-permissive 

temperature of 39,3°C and then, like microinjected cells, incubated in a refrigerated 

bath at 20°C for 1 h in DMEM plus 25 mM Hepes before starting live-cell imaging. 

For energy depletion experiments, cells were incubated in the presence of 

DMEM without glucose (from Invitrogen) supplemented with 10mM 2-DOG (2-

deoxyglucose, from Sigma) and 10 mM NaN3 for 10 min before live-cell imaging, 

during which cells were further incubated under energy depletion conditions. 

 

3.4 Imaging of fluorescent live cells, FRAP (Fluorescent Recov-

ery After Photobleaching) experiments and image analysis 
 

For live-cell imaging, co-microinjected or co-transfected cells were shifted to an 

incubator with both controlled temperature and CO2 mounted on Zeiss LSM510 Meta 

confocal microscope in the presence of Imaging Medium (DMEM without phenol red 

and supplemented with 10% FBS, 1% of L-glutamine and pen/strep, 25 mM Hepes). 

Single sections of Cerulean-22 were acquired with the 458 nm line of the Argon laser, 

while 543 nm laser line was used for GalNAc-mCherry or RFP-KDEL imaging. In 

order to quantitatively study the transport kinetics at the ER-Golgi interface and to 

avoid any interfering ER signal due to novel protein synthesis during image acquisi-

tion, all live-cell imaging experiments were performed in the presence of the protein 

synthesis inhibitor puromycin at 100 µg/ml (from Sigma-Aldrich). 

For VSV-G DxE-EGFP experiments at both 32°C and 20°C, live cells were 

recorded every 1 min for a total of 50 min. 

For FRAP experiments either on Cerulean-22 or VSV-G AxA-EGFP, one pre-

bleached image was acquired, and then a region of interest (ROI), corresponding to 
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the Golgi apparatus or the ER (using as a template the Golgi marker GalNAc-

mCherry or the ER marker RFP-KDEL), was drawn and bleached by scanning 30 

times with both 405 nm and 458 nm lasers at 100% power. Recovery of the fluores-

cence signal was recorded at 1 min intervals for 50-60 min. 

All images were analyzed with ImageJ software. For the accumulation of VSV-

G at the Golgi apparatus, a ROI corresponding to the GalNAc-mCherry-positive area 

has been drawn and the fluorescence signal of VSV-G in this region was measured 

over time and normalized to the total fluorescence intensity of the same cell. Similar-

ly, in FRAP experiments the fluorescence recovery of the bleached ROI (correspond-

ing to the Golgi or ER) was measured over time and normalized to the total fluores-

cence of bleached cells, which was always checked to be constant over time. In all the 

experiments background signal (determined in an area outside the cells) was subtract-

ed from the fluorescent intensities of the ROIs. Finally, data were averaged and the 

results shown as graph with GraphPad Prism software. 

 

3.5 Protein expression and purification from bacteria 
 

For reconstitution of fluorescent proteins into liposomes, we used the GST-

fusion system (Amersham) to purify mg amounts of our model proteins. BL21 strain 

of E. coli, transformed with pGEX2T constructs already described (see section 3.1), 

have been grown in a shaker at 37°C until they reach an OD600nm of 0.6 - 0.8 and in-

duced with IPTG 0.5 mM for 4 hours at room temperature. After bacterial lysis with 

Triton X-100 2%, lysozyme 0.2 mg/ml and DNAse 0.04 mg/ml (in the presence of a 

protease inhibitor cocktail as described in (Pedrazzini et al., 2000)), the soluble frac-

tion of FP-17 and FP-22 has been attached to glutathione resin GS4B 50% in PBS 

(from GE Healthcare) for 1 h at 4°C on a rotating wheel. Thanks to the presence of a 

thrombin cleavage site downstream the GST and upstream FP-17 or FP-22 sequences, 

resin-bound proteins have been purified by adding thrombin 1 u/µl in PBS in a solu-

tion containing PBS and N-octyl glucoside 30 mM for 2 h at RT on a rocker. Finally, 

protein purification has been checked on SDS-PAGE followed by Coomassie Blue 

staining and quantified with BCA assay (from Perkin Elmer). Since during the purifi-



 
 

45 

cation procedure the two proteins were partially degraded, we subtracted this amount 

to the result obtained with the BCA dosage using ImageJ software. 

 

3.6 Preparation of rat liver microsomes and ER lipid extraction 
 

 Rat liver microsomes have been isolated by differential centrifugation. Briefly, 

a rat liver was homogenized and resuspended in two volumes of sucrose 250 mM, 

TrisHCl 5 mM pH 7.4, EDTA 0.1 mM and PMSF 0.5 mM. Nuclei and cytoskeletal 

components have been first removed by centrifugation at 1000xg for 8 minutes at 

4°C. Mitochondria, lysosomes and peroxisomes have been pelleted by centrifugation 

at 10000xg for 10 min and the microsome-containing supernatant further ultracentri-

fuged at 55000 rpm for 1 h (rotor 55 Ti, Kontron) at 4°C. Finally, pelleted micro-

somes have been resuspended in sucrose 250 mM, TrisHCl 5 mM pH 7.4 and EDTA 

0.1 mM, divided in small aliquots, quickly frozen in liquid nitrogen and stored at -

80°C. The protein content has been measured by Lowry method (Lowry et al., 1951) 

or BCA assay. 

500 µl of ER lipids were extracted with organic solvents by adding 9.5 ml of 

CHCl3/MetOH 2:1 (Folch et al., 1957). Phase separation was achieved by mild cen-

trifugation at 1000xg for 10 min at RT. The aqueous phase was removed and a second 

extraction has been performed by adding 4.9 ml of KCl 0.1 M/MetOH 1:1. After the 

second centrifugation, the organic phase has been dried with Rotavapor and the lipid 

film resuspended in 500 µl of CHCl3 and stored at -20°C. Phospholipids amount was 

then measured by dosing the phosphate groups and compared samples to a standard of 

curve built using known amounts of NaH2PO4. Briefly, 50 µl of Mg(NO3)2 were add-

ed to samples or standard phosphate solution and were taken to dryness over a flame 

until the brown fumes disappeared. 0.3 ml of HCl 0.5 M were added to each sample 

and put in boiling water for 15 min to hydrolyze to phosphate any pyrophosphate 

formed in the ashing. Finally, a colorimetric reaction has been developed by adding 

0.7 ml of a mix composed of 6 parts of ammonium molibdate 0.42% and 1 part of 

ascorbic acid 10% and incubation for 20 min at 45°C. The samples have been read on 

a spectrophotometer at 820 nm. 
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3.7 Detergent dialysis and reconstitution of FP-17 and FP-22 

into LUVs (Large Unilamellar Vesicles) 
 

To reconstitute our purified model proteins into LUVs we adopted the detergent 

dialysis method as previously described (Ceppi et al., 2005). 600 µg of POPC (from 

Avanti Polar) or ER lipids extracted from rat liver microsomes have been dried with 

Rotavapor under vacuum for 1 h and then resuspended overnight in KCl 400 mM, 

TrisHCl 4 mM pH 7.4 and N-octyl glucoside 30 mM. In order to pull out nanotubes 

from GUVs by molecular motors or optical tweezers, we also added a small amounts 

of biotinylated lipids (see below): 1% (mol/mol) of Cap-Biot-DOPE in the experi-

ments with molecular motors or 0.03% w/w of Biot-DSPE Peg(2000) (from Avanti 

Polar) in the case of optical tweezers. To obtained proteoliposomes, bacterially puri-

fied FP-17 and FP-22 were added to detergent-lipid mix using a molar protein/lipid 

ratio of 1:500, loaded in dialysis membrane (cutoff 12.000-14.000) and dialyzed for 4 

days against 8 x 2 liters of KCl 400 mM and TrisHCl 4 mM pH 7.4. 

 

 

3.8 Na2CO3 extraction and flotation 
 

To check the reconstitution of FP-17 and FP-22 into LUVs, we performed a 

carbonate extraction of membranes followed by flotation on a discontinuous sucrose 

gradient. 100 µl of proteoliposomes (or bacterially purified proteins alone) were treat-

ed with an equal volume of Na2CO3 0.2 M for 30 min on ice and then brought to su-

crose 1.2 M in Na2CO3 0.1 M in a final volume of 740 µl. The samples were layered 

under a discontinuous sucrose gradient composed of layers (1, 0.5, 0.25, 0.15 and 0 M 

sucrose in Na2CO3 0.1 M), 560 µl each, which were ultracentrifuged overnight at 

40000 rpm at 4°C (Beckman SW 55 rotor). Fractions of 0.7 ml each were collected, 

precipitated with 2.7 ml of TCA 20%, washed with acetone, resuspended in PBS and 

analyzed by SDS-PAGE and Western Blot. 
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3.9 Electron microscopy of negatively stained proteoliposomes 
 

To analyze the morphology of proteoliposomes, formvar carbon-coated nickel 

grids were place on top of a 30 µl drop of proteoliposomes suspension for 10 min on 

ice. Grids were then washed quickly 5 times in H2O, stained for 10 min on ice with 

uranyl acetate 1% and the excess of uranyl acetate was drained on a Whatman filter. 

Grids were observed under a Philips CM10 transmission electron microscope. 

 

 

3.10 Giant Unilamellar Vesicle (GUV) Electroformation 
 

Starting from our reconstituted LUVs, we have chosen the electroformation 

method to obtain GUVs composed of either POPC only or ER lipids. This method is 

based on the swelling of dried lipid films rehydrated in a sucrose solution under an al-

ternating electric field (Manneville et al., 2012). Since low salt concentration is neces-

sary to guarantee an optimal growth of the vesicles, we first decreased the concentra-

tion of KCl from 400 mM to 100 mM using Midi-Trap G25 desalting columns (GE 

Healthcare), according to the manufacture’s procedure. A second critical parameter to 

get nice GUVs is the amount of lipids that are deposited on ITO (Indium Tin Oxide) -

coated slides used for the electroformation (see below), which should be between 1.3-

2.5 µg. At this aim after desalting step, proteoliposomes have been pelleted by ultra-

centrifugation at 55000 rpm for 2 h at 4°C (Beckman TLS 55 rotor) and resuspended 

in an appropriate volume of KCl 100 mM and TrisHCl 4 mM pH 7.4 to get a final li-

pid concentration of 1.3 mg/ml. 

The first step of GUV growth consists of depositing small drops (1, 1.5 and 2 

µl) of LUV suspension on the conductive side of two ITO-coated slides (Prӓzisions 

Glas & Optik GmbH), which will be used to build the electroformation chamber. In 

order to explode reconstituted LUVs and let them to pile up on ITO-coated slides, the 

samples were dried overnight under vacuum. The electroformation chamber was built 

with two ITO cover slides with their conductive sides facing each other, separated by 

a 1 mm Teflon spacer, connected to a low frequency generator (TG315 function gen-

erator, TTi Thurlby Thandar Instruments) via adhesive copper electrodes and sealed 



 
 

48 

with Sigilum wax (Vitrex Medical A/S) (Fig. 18). Dried proteoliposomes were then 

rehydrated by filling the chamber with a sucrose solution, whose osmotic pressure has 

to match to that of the experimental buffers that will be used. 

 

Figure 18: GUV electroformation. In A is depicted the spreading of samples on ITO-coated slides, 
while B shows the assembling of the electroformation chamber, the rehydratation of sample with su-
crose and the application of an alternate electric field (Manneville et al., 2012). 

 

Since GUVs are very sensitive to osmotic shock, matching the osmotic pres-

sures represents another fundamental step in the electroformation protocol. In particu-

lar, to slightly deflate membranes and facilitate tube pulling we always used a sucrose 

with an osmotic pressure about 20-30 mOsm lower that that of the experimental buff-

ers. In our case, we used two different osmolarity of sucrose, 180 mOsm and 279 

mOsm, depending on the experiments we next performed, tube pulling with molecular 

motors or optical tweezers, respectively. Finally, an alternate electric field with an in-

creasing voltage ramp from 20 mV to 1.1 V (6 minutes each step) at 10 Hz frequency 

has been applied for 3-4 hours. GUV growth has been checked in phase contrast (Ax-

iovert 200M, Carl Zeiss) and then 20 µl of vesicles have been taken from the center of 

the drops, transferred into a 0.5 ml eppendorf and stored at 4°C. 

 

 

3.11 In vitro microtubule polymerization and elongation of 

nanotubes with molecular motors 
 

This method is an in vitro assay based on the ability of kinesins to pull out lipid 

nanotubes from GUVs in the presence of polymerized microtubules and ATP. In this 

assay kinesins can bind membranes thanks to the presence of both biotinylated kine-
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sins and lipids and streptavidin that bridges the two biotinylated components (Roux et 

al., 2002). 

A 50 µl aliquot of tubulin (purified from animal brain as described in (Hyman, 

1991) dissolved in a solution containing GTP 1 mM and BRB (PIPES 80 mM, MgCl2 

1 mM and EGTA 1 mM) has been thawed and incubated 15 min at 37°C to allow 

polymerization of microtubules (MTs). To obtain fluorescent MTs, 0.5 µl of Rhoda-

mine tubulin 10 mg/ml can be added to purified tubulin. Microtubule network has 

been then stabilized with 2 µl of Taxol 1 mM and incubated again for 15 min at 37°C. 

Non-polymerized MTs were removed by centrifugation at 70000 rpm for 17 min at 

37°C (Beckman TLA 100 rotor) and the pellet of polymerized MTs was finally resus-

pended in 50 µl of BRB plus Taxol 30 µM. 

The tube assay has been performed in a flow chamber built using two parafilm 

spacers sandwiched between a glass slide and a coverslip and quickly melt on a hot 

plate (Fig. 19). 

 

Figure 19: schematic representation of the flow chamber used in the kinesin assay (Manneville et al., 
2012). 

 

5 µl of MTs was loaded into the flow chamber and incubated 15 min at RT in 

order to allow the adhesion of MTs to the coverslip. The chamber was rinsed twice 

with IMI buffer (Imidazole 50 mM pH 6.7, NaCl 50 mM, EGTA 2 mM and MgCl2 1 

mM) plus Casein 5 mg/ml and Taxol 30 µM and then filled with 5 µl of biotinylated 

kinesins pre-incubated on ice with 5 µl of streptavidin 1 mg/ml. After a 15 min incu-

bation at RT, 10 µl of Motility buffer (IMI buffer supplemented with Taxol 30 µM, 

ATP 1 mM, DTT 5 mM, glucose 25 mM, catalase 0.18 mg/ml and glucose oxidase 

0.37 mg/ml) were added and finally 1 µl of GUVs was loaded into the chamber and 

incubated for 15 min at RT to let kinesins to pull nanotubes. To avoid chamber dry-
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ing, the flow chamber was sealed with Sigilum wax on both sides and left horizontally 

before the observation. 

Single optical sections have been taken for both FP-17 and FP-22 channels in 

the vesicle plane and in the tube plane using Nikon AR1 confocal microscope. Images 

of TagBFP-17 and -22 have been acquired with 405 nm laser, while for both Venus 

and mEGFP spectral variants the Argon laser 488 nm have been used. TdTomato-17 

and -22 have been acquired with 561 nm laser. All images have been captured by ad-

justing acquisition settings in order to avoid pixel saturation. 

Concerning FRAP experiments, we acquired 3 pre-bleached images and then a 

portion of the vesicle or of the tube (selected by drawing 3 x 4 µm or 3 x 9 µm, re-

spectively) were bleached. The fluorescence intensity recovery has been followed 

over time by taking one image every 6 seconds for a total of 5 min for vesicles and 9 

min for tubes. The analysis has been done as described in section 3.5 of this chapter. 

Half-times and mobile fractions were derived from experimentally measured data by 

fitting the following monoexponential equation: 

! ! = !!"#$ + (!!"# − !!"#$)(1− !!!/!) 

where !!"#$ is the fluorescence signal after photobleaching, !!"# is the maximum flu-

orescence recovery value that is reached after bleaching, t the final time of registra-

tion and τ the mid time of registration. 

 

 3.12 Optical tweezers and micropipette aspiration to pull lipid 

nanotubes of controlled radius 
 

The second method we used to create artificial curved domains is based on a 

combination of two approaches, the optical tweezers and micropipette aspiration; the 

tube is held between the GUV aspirated by a micropipette and a streptavidin-coated 

bead trapped by optical tweezers. By progressively increase the aspiration force, it’s 

possible to progressively increase the membrane tension and, consequently, the tube 

radius that can range between 200-10 nm (Callan-Jones et al., 2011). 

The micropipette aspiration system is based on a suction pressure that is applied 

between the inside and the outside of the pipette by lowering a water reservoir com-
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pared to a reference level (typically the aspiration can vary from 0 to 200 Pa, which 

corresponds to a vertical displacement of the water reservoir from 0 to 2 cm). When 

the water level is higher than the micropipette level, GUVs will be blown by the mi-

cropipette, while when the water level is lower the micropipette will aspirate. Pipettes 

are prepared using borosilicate glass capillaries (internal radius 0.7 mm, external radi-

us 1 mm, from Kimble Glass Inc.), which are pulled using a pipette puller (Sutter in-

strument P-2000) and the pipette radius is set to the appropriate size (about 4 µm) us-

ing a microforge microscope (MF-800 Narishige, Japan). On the other hand, optical 

tweezers are created by a focused infra-red laser beam (Ytterbium fiber laser 1070 

nm, 5W, IPG GmBH). 

To perform the experiments, a micromanipulation chamber of about 200 µl was 

built using two coverslip spaced by a glass slide (Fig. 20), incubated for 10 min with 

casein 10 mg/ml to prevent membrane adhesion to glass surface and rinsed twice with 

HKM buffer (50 mM Hepes pH 7.2, 120 mM KAcetate, 1 mM MgCl2 and 2 mM EG-

TA) and filled again with 200 µl of HKM. Then the micropipette (filled with Casein 

10 mg/ml to prevent again membrane adhesion on glass surface) was inserted into the 

chamber and 2-3 µl of streptavidin-coated polystyrene beads (1.5 µm in diameter, 

from Spherotech Inc.) were injected into the chamber and followed by the injection of 

5-10 µl of GUVs. After selecting an optically fluctuating vesicle, the zero reference 

pressure has been set by adjusting the level of water reservoir (neither aspiration nor 

blowing of the selected vesicle) and the vesicle has been aspirated by slightly increas-

ing the suction pressure. After trapping a bead into the optical tweezers, a tube was 

pulled by contacting biotinylated lipid-containing GUV with the bead and moving the 

GUV away from the trap and finally the aspiration force has been progressively in-

creased step by step, where one step typically corresponds to a vertical movement of 

the water reservoir of 0.5 mm. For each tension step, one equatorial confocal plane, in 

which both the vesicle and tube were on focus, has been acquired as well as a DIC 

movie has been created to record the position of the bead relative to the trap center. 

As in the case of kinesin assay, Nikon AR1 confocal microscope has been used 

to take single optical section and 488 nm or 561 nm lasers were used to image 

mEGFP-17 and -22 or tdTomato-17 and -22, respectively. The fluorescence images 

were used to analyze the distribution of FP-17 and FP-22 in vesicles and tubes during 

the different tension steps, while DIC movies are needed to measure bead displace-
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ment, which is required to derive the force applied in each step and the progressive 

increase of the tube radius. 

 
Figure 20: in A a schematic representation of the optical path of laser tweezers is shown; B shows a 
general view of the set-up we used and C displays the micropipette inside the micromanipulation 
chamber (Manneville et al., 2012). 

 

3.13 Analysis of sorting ratio between FP-17 and FP-22 in 

GUVs and nanotubes 
 

 To analyze the distribution of FP-17 and FP-22 in tubes pulled out with molec-

ular motors, we developed a manual method on ImageJ that allows us to globally 

quantify the mean fluorescence intensity of the two proteins in the entire tube net-

work. First, the background maximum intensity was measured and subtracted to the 

image in order to set all the background pixels at 0 (Fig. 35 B). Then a ROI around 

the tube network or the vesicle has been drawn and the rest of the image has been 

cleared to exclude fluorescent objects not belonging to the tube network or vesicle 

(such as other vesicles or dirts) and a manual threshold was applied to create a mask 

and a binary image highlighting only the tube network or the vesicle (Fig. 35 B). This 

mask has been then superimposed to the original image (with the image calculator 

tool and the operator AND) and the mean fluorescence intensity has been measured 

(Fig. 35 B). Data from all experiments were averaged, the ratio of FP-22 over FP-17 
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was calculated in vesicles and in tubes and compared by paired t test with GraphPad 

Prism software. 

For the optical tweezers and micropipette aspiration technique, the fluorescent 

signal of FP-17 and FP-22 in each vesicle and tube has been measured using a Matlab 

routine (from Bassereau lab, Institute Curie, Paris) (Sorre et al., 2009). Briefly, a rec-

tangular selection was drawn around the horizontal tube and pixel intensity were av-

eraged along the horizontal lines of the selection, giving an averaged fluorescence 

profile along the vertical axis. The same operation was also applied to the vesicle by 

selecting part of it. Then the sorting ratio was used to quantify protein sorting; the 

sorting ratio is defined as the ratio of FP-22 over FP-17 in the tube normalized by the 

same ratio in the vesicle: 

!"#$%&'  !"#$% =
!!!  !"#$/!!"  !"#$
!!!  !"#/!!"  !"#

 

The initial membrane tension required to pull a tube and its progressive increase ap-

plied to increase the membrane curvature and decrease tube radius were deduced by 

Laplace’s law (Kwok and Evans, 1981) and is given by the following equation: 

! =
(!!"! ∗ Δ!)

2(1−
!!"!
!!"#

)
 

where !!"! is the radius of the pipette, !!"# is the radius of the vesicle and Δ! is the 

vertical displacement of the water reservoir linked to the micropipette. 

All the collected sorting ratios were then averaged and plotted versus membrane 

tension with GraphPad Prism software. 
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4. RESULTS 
 

4.1 Anterograde transport of VSV-G DxE at the ER-Golgi inter-

face at 32°C 
 

In previous work we showed that FP-22, our model protein lacking an export 

signal in its cytosolic portion, is transported along the secretory pathway and reaches 

the plasma membrane more slowly compared to the export signal-bearing cargo VSV-

G (Ronchi et al., 2008). And we also demonstrated that the DxE export signal permits 

a stronger recruitment at the ERES compared to FP-22. To investigate whether the di-

acidic export signal has another role downstream protein recruitment at ERES, we an-

alyzed and compared the transport rate of VSV-G and FP-22 in the different steps of 

the secretory pathway. First, we started to study the ER to Golgi anterograde transport 

of VSV-G. As described in chapter 3, we took advantage of the temperature-sensitive 

mutant form of VSV-G: when cells are incubated at 39°C VSV-G is not properly 

folded and, in this way, is retained in the ER, while at the permissive temperature of 

32°C it becomes folded, exits from the ER and is transported to the plasma mem-

brane. NRK cells were transfected for 24 h at 39°C with VSV-G GFP and then we 

analyzed its accumulation to the Golgi apparatus by live-cell imaging at the permis-

sive temperature of 32°C. As soon as we shifted cells to 32°C, VSV-G was distributed 

mostly in the ER (Fig. 21 A, upper left picture), even though in some cells a small ac-

cumulation to the Golgi has been observed (upper right cell). This probably happens 

during the few minutes that cells spent on the microscope (whose incubator was set at 

32°C) and that are required to have them on focus and to set correct acquisition set-

tings before starting image registration. VSV-G showed a clear Golgi enrichment al-

ready after 5 min (Fig. 21 A, upper central picture) and in 12 min it was mostly local-

ized in the Golgi and it is no longer distributed into the ER (Fig. 21 A, upper right 

picture). Since at 32°C the transport proceeds to the plasma membrane, at later 

timepoints VSV-G was progressively accumulated in the plasma membrane as well as 

the Golgi apparatus displayed a progressive emptying (Fig. 21 A, lower left and cen-

tral pictures) and after 40 min it is mostly localized at the plasma membrane (Fig. 21 
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A, lower right picture). By measuring VSV-G fluorescence signal in the Golgi appa-

ratus over time, it clearly appears that its anterograde transport rate at the ER to Golgi 

interface is very fast; indeed, the fluorescent intensity rapidly increases and the signal 

reaches a peak after only 12 minutes (Fig. 21 B). Since the fluorescent signal likewise 

rapidly decreases after 12 min, it also emerges that once reaches the Golgi, VSV-G 

efficiently leaves the Golgi and it is transported to its final destination (Fig. 21 B). 

 

 

4.2 Anterograde transport rate of FP-22 from the ER to the 

Golgi at 37°C 
 

We then moved to study the transport of FP-22 from the ER to the Golgi. To 

visualize the protein when is still in the ER, we co-microinjected nuclei of NRK with 

cDNAs encoding FP-22 and GalNAc-mCherry to generate a synchronized wave of 

expression and cells were imaged at 37°C in the presence of puromycin 1 h after mi-

croinjection, which represents the minimum time to have enough protein expression 

and to detect a fluorescent signal. As shown in figure 22 A (upper panels), 1 h after 

microinjection FP-22 is distributed not only in the ER, but is also partially accumulat-

ed in the Golgi and, indeed, co-localizes with the Golgi marker GalNAc-mCherry. 

Because of its double distribution, to study the transport from the ER to the Golgi we 

photobleached FP-22’s Golgi fractions (Fig. 22 A, arrowheads and red ROIs in inset) 

and we followed fluorescence recovery over time. Surprisingly, we found a clear re-

covery of the Golgi signal already 5 min after bleaching and fluorescence progres-

sively increased over time and reached a peak 20 min postbleach. This behavior can 

be particularly appreciated in merged images (Fig. 22 A, central pictures), where the 

Golgi apparatus (labeled with GalNAc-mCherry) progressively becomes “yellow” 

due to the increasing fluorescence in FP-22 channel. As in the case of VSV-G, since 

at 37°C protein transport can proceed to the plasma membrane, after reaching maxi-

mum recovery at 20 min postbleach, FP-22 Golgi signal slowly decreases and the pro-

tein reaches the plasma membrane (Fig. 22 A, lower panels). The fast ER to Golgi an-

terograde transport of FP-22 was further confirmed by quantitative analysis as shown 

in Fig. 22 B; after bleaching, FP-22 Golgi fluorescence increases very rapidly and 
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more than 90% of the signal recovers within 15-20 min, indicating that FP-22 

transport rate is comparable to that of VSV-G. 

 

 

4.3 Localization of FP-22 and VSV-G DxE upon incubation at 

20°C 
 

Since at the physiological temperature of 37°C the transport can proceed along 

the secretory pathway to the plasma membrane and, therefore, while our model pro-

teins are reaching the Golgi apparatus there is also a trafficking flux towards the 

plasma membrane, to better investigate the transport at the ER-Golgi interface we 

took advantage of the temperature block at 20°C. Indeed, at this temperature the 

membrane fluidity from the trans-Golgi cisternae to the plasma membrane is blocked 

and only the transport between ER and Golgi is allowed (Kusimanen and Saraste, 

1989). NRK cells were co-microinjected with FP-22 and GalNAc-mCherry, incubated 

for 1 h at 37°C to allow protein expression, shifted to 20°C for 2 h and then fixed. As 

shown in figure 23 (upper panels), FP-22 is not completely accumulated in the Golgi 

apparatus (co-localization with GalNAc-mCherry), but it displays also an ER distribu-

tion. By contrast, after transfection at the non permissive temperature of 39°C fol-

lowed by a 2 h incubation at 20°C, VSV-G EGFP expressing cells display complete 

accumulation of the protein in the Golgi, as demonstrated by the perfect co-

localization with GalNAc-mCherry and the absence of ER distribution (Fig. 23, lower 

panels). 

 

4.4 ER to Golgi transport of VSV-G is slowed down at 20°C 
 

To establish the transport rate of VSV-G DxE from the ER to the Golgi, we co-

transfected NRK cells with VSV-G EGFP and GalNAc-mCherry at 39°C for 24 h and 

we performed live-cell imaging at 20°C. Since at 20°C only the transport between the 
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ER and the Golgi is permitted, we were able to measure both the accumulation of 

VSV-G to the Golgi and the ER emptying. As shown in figure 24 A (upper panels), as 

soon as cells are shifted from 39°C to 20°C, VSV-G is predominantly localized only 

in the ER, but then it starts to progressively accumulate in the Golgi, as demonstrated 

by the increase in the fluorescent intensity of the perinuclear region, which co-

localizes with GalNAc-mCherry (Fig. 24 A, central panels). Since cells were imaged 

in the presence of 100 µg/ml puromycin, simultaneously to Golgi accumulation, we 

also observed a progressive and constant decrease of the VSV-G ER signal over time, 

which is particular evident in the two cells highlighted in insets (Fig. 24 A, left pan-

els). Quantitative analysis confirmed that at 20°C VSV-G is progressively transported 

from the ER to the Golgi and that its Golgi fluorescence intensity doubles during the 

registration, while the ER signal decreases of about 50-60% (Fig. 24 B). Since in the 

latest timepoint the Golgi fluorescence was still increasing as well as the ER signal 

still decreasing, these data also indicates that VSV-G transport is significantly slowed 

down at 20°C compared to 32°C, where in 12 min it was completely accumulated in 

the Golgi (Fig. 21). 

 

 

4.5 ER to Golgi transport and intrareticular diffusion of FP-22 

at 20°C  
 

Since we have found that FP-22 didn’t completely accumulate in the Golgi ap-

paratus upon incubation at 20°C (Fig. 23 and section 4.3), raising the possibility that 

FP-22 anterograde transport is somehow impaired at this temperature, we analyzed its 

ER to Golgi transport by live-cell imaging. Like in the experiments performed at 

37°C (Fig. 22 and section 4.2), cells were co-microinjected with FP-22 and GalNAc-

mCherry and incubated for 1 h at 37°C to allow protein synthesis. Cells were then 

shifted to 20°C for 30 min before starting FRAP experiments at the same temperature. 

Since the ER is spread everywhere in the cytosol and even in the Golgi region and, 

therefore, could potentially disturb our transport analysis, we also bleached a portion 

of the ER in some FP-22 expressing cells (as indicated by the arrow and in Fig. 25 A) 

and we compared ER fluorescence recovery to that of the Golgi (bleached regions are 
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indicated by the arrowheads, Fig. 25 A). After Golgi bleaching, a clear fluorescence 

recovery was observed and, indeed it progressively became more intense over time 

(left panels and in the lower cell of inset, Fig. 25 A). This recovery can be also appre-

ciated in merged images, where the Golgi apparatus of the bleached cells progressive-

ly becomes “more yellow” due to the increase of FP-22 signal (central panels, Fig. 25 

A). Thus, FP-22 transport is not blocked at 20°C and, as in the case of VSV-G, is 

slowed down compared to 37°C (Fig. 22); indeed, the analysis showed that the Golgi 

signal was still increasing after 60 min (Fig. 25 B). In contrast, FRAP on an ER por-

tion (indicated by the arrow and  by the red ROI in the upper cell of insets, Fig. 25 A) 

displayed a complete recovery 20 min after bleaching and the signal no longer in-

creased at later timepoints (40 and 60 min, Fig. 25 A). Quantitative analysis indicated 

that the diffusion of FP-22 within the ER is fast and that the equilibrium is reached 

within 10-15 min after bleaching and that, since Golgi apparatus behaves differently, 

we are able to discriminate between intrareticular diffusion and transport at the ER to 

Golgi interface. 

Since vesicular transport is an energy-dependent process, to further control 

whether the fluorescence recovery we observed in the Golgi apparatus was really due 

to FP-22 transport from the ER to the Golgi, we repeated Golgi FRAP experiments on 

energy-depleted cells. After microinjection, incubation for 1h at 37°C followed by 20 

min at 20°C, cells were kept other 10 min at 20°C in energy-depleted condition and 

then FRAP experiments were performed maintaining the same temperature and the 

absence of energy. After bleaching FP-22’s Golgi fraction (yellow ROIs, Fig. 26 A), a 

fast fluorescence recovery was observed, but after 15-20 min, when the bleached re-

gion has reached the same intensity of the surrounding ER, Golgi fluorescence no 

longer increased and the signal was constant until the end of the registration (Fig. 26 

A), mimicking exactly the same behavior of ER diffusion (Fig. 25). Indeed, as shown 

in Fig. 26 B, Golgi fluorescence recoveries are similar between +/- ATP at early 

timepoints where the major contribution is given by ER diffusion, but then, in the ab-

sence of energy, the fluorescence signal reaches a plateau and no longer increases be-

cause of the inhibition of transport, while in the presence of energy the signal contin-

ues to increase at later timepoints until the end of the registration. To better appreciate 

the difference between the two conditions, we also measured the fluorescent intensity 

profile, before and 60 min after bleaching, along a line that comprised a portion of the 

ER and of the Golgi (white lines in Fig. 27). Both in the presence or absence of ener-
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gy, prebleach images displayed an intense Golgi fluorescence that is clearly distin-

guishable from the lower ER signal (Fig. 27). In the presence of ATP, 60 min after 

bleaching, fluorescent intensity profile showed a nice recovery in the Golgi, whose 

fluorescence is still distinguishable from the surrounding ER and resembled the same 

three peaks of prebleach Golgi profile (upper graph, Fig. 27). In contrast, in energy-

depleted conditions, 60 min postbleach the fluorescence intensity in the Golgi region 

no longer mimicked prebleach profile and had exactly the same intensity of the sur-

rounding ER (lower graph, Fig. 27). 

Taken together, all these data demonstrated that our experimental system and 

the photobleaching approach represent a useful tool to study FP-22 transport at the 

ER-Golgi interface. 

 

 

4.6 FP-22 is recycled from the Golgi to the ER 
 

In previous experiments we demonstrated that FP-22, on one side, does not 

completely accumulate in the Golgi apparatus upon incubation at 20°C for 2h (Fig. 

23), but also, on the other side, that its anterograde transport from the ER to the Golgi 

is not blocked at this temperature (Fig. 25), raising the possibility that FP-22 is recy-

cled from the Golgi to the ER. To test this hypothesis, we bleached the ER fraction of 

FP-22 and we measured either fluorescence recovery of the ER or the Golgi intensity 

over time. In figure 28 two co-microinjected cells with FP-22 and RFP-KDEL are 

shown (upper panels). Like in previous experiments, microinjected cells were incu-

bated 1 h at 37°C, followed by 30 min at 20°C and then imaged at the same tempera-

ture. Cells were imaged for 30 min before bleaching and, then, by drawing ROIs us-

ing RFP-KDEL as ER template, ER fractions were bleached and fluorescence recov-

ery was followed for 60 min. As shown in insets (right panels, Fig. 28 A) and in the 

quantification (left graph, Fig. 28 B), before bleaching FP-22 Golgi fluorescence 

(black squares) is stable, but then progressively decreases over time until the end of 

the experiments and this event is also accompanied by a recovery of the ER fluores-

cence (black circles). By comparing FP-22 Golgi intensity between Golgi and ER 

bleaching experiments, it can be appreciated that the two curves display specular 
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trends; indeed, the recovery observed after Golgi bleaching (black circles) has a simi-

lar slope to that of the decrease after ER bleaching (black squares, right graph, Fig. 28 

B). These results demonstrated that FP-22, once arrives to the Golgi, is retrogradely 

transported back to the ER; moreover, Golgi fluorescence is stable before bleaching, 

indicating that at 20°C it reaches an equilibrium and, therefore, anterograde and retro-

grade transports occur with comparable kinetics. 

To investigate whether FP-22’s recycling from the Golgi to the ER is a general 

phenomenon that happens even at physiological temperatures and not only at 20°C, 

we repeated the same experiments at 37°C, at which the fluidity of cellular mem-

branes is not altered. As shown in figure 29 A and B, also at this temperature after 

bleaching the ER fraction of FP-22 there was a progressive decrease of Golgi fluores-

cence over time. In some cells we also observed FP-22-positive tubular structures 

leaving Golgi apparatus towards the ER (arrowhead in the inset of 5 min postbleach, 

Fig, 29 A). Of course, since at 37°C vesicular transport along the secretory pathway is 

not impaired in any step, theoretically the transport from trans-Golgi to PM might 

partially contribute to the decrease of Golgi fluorescence. But if this was the case, in 

unbleached cells (lower left cell, Fig. 29 A) we would have observed the same pro-

gressively loss of fluorescence of the Golgi apparatus and a progressive appearance of 

the PM; instead, in our experiments FP-22 fluorescence in Golgi was stable over time 

as well as FP-22 signal in the plasma membrane did not dramatically increase, indi-

cating that the observed Golgi emptying was mainly due to retrograde trafficking of 

FP-22 back to the ER. 

 

 

4.7 VSV-G AxA behaves similarly to FP-22 
 

In figure 23, we showed that VSV-G DxE, in contrast to FP-22, completely ac-

cumulated into the Golgi apparatus upon incubation at 20°C, suggesting that is not in-

cluded into retrograde transport from the Golgi to the ER; or even if it is recycled, the 

balance between anterograde and retrograde transports strongly favors the anterograde 

direction allowing a complete recruitment to the Golgi and the absence of ER distri-

bution. To investigate whether VSV-G is excluded from recycling at the ER-Golgi in-
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terface because of the presence of the export signal in its cytosolic tail, we mutagen-

ized the di-acidic sequence and we replaced it with two alanines (AxA) (Fig. 30 A). 

Even though the export signal interacts with Sec24 subunit of COPII and plays a cru-

cial role for VSV-G recruitment at ERES (Nishimura and Balch, 1997), the signal-

deficient form of VSV-G is still able to travel along the secretory pathway and to 

reach the plasma membrane: indeed, NRK cells transfected with VSV-G AxA for 24 

h at the permissive temperature of 32°C, displayed a complete PM distribution (Fig. 

30 B), as was already demonstrated by other groups in other cell lines (Dukhovny et 

al., 2009). To study transport of VSV-G AxA at the ER-Golgi interface, cells were 

transfected for 24 h at the non permissive temperature of 39°C, in order to accumulate 

the protein in the ER, incubated for 30 min at 20°C to block transport from TGN to 

PM, and imaged alive at the same temperature in the presence of a protein synthesis 

inhibitor. First, we observed that upon incubation at 20°C VSV-G AxA showed a 

similar distribution to that of FP-22 between the ER and the Golgi apparatus (left 

panels, Fig. 31 A). Therefore, to investigate the possibility of recycling, we applied 

the same photobleaching strategy: the ER fraction of VSV-G AxA (red ROI in pre-

bleach and bleach images, Fig. 31 A) was photobleached and both fluorescent recov-

ery of the ER and fluorescent signal of the Golgi were measured over time. After ER 

bleaching, a clear progressive decrease of Golgi fluorescent was observed in all 

timepoints and at the end of the experiment the Golgi signal of VSV-G AxA was very 

weak compared to prebleach and bleach images (Fig. 31 A). This behavior appeared 

clearly also in merged images, where the Golgi apparatus was “yellow” at the begin-

ning, meaning that VSV-G and GalNAc fluorescence intensities were comparable, 

and then progressively became more “red” because of the fluorescence decrease in 

VSV-G channel (lower panels, Fig. 31 A). As shown in figure 31 B, quantitative 

analysis revealed that the decrease of Golgi fluorescence (black squares) after bleach-

ing is also accompanied by a specular recovery of the ER fluorescence (black circles) 

as demonstrated by the similarity of the slope of the two curves. Even though fluores-

cence is very low, the recovery of the ER signal can be even perceived in images 

shown in Fig. 31 A (upper panels). All these data demonstrated that the signal-

deficient form of VSV-G behaves as FP-22 and it is continuously recycled from the 

Golgi to the ER.  

These experiments also indicates that anterograde and retrograde transport rates 

of VSV-G AxA at the ER-Golgi interface are comparable; indeed, by measuring Gol-
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gi fluorescence for 30 min before bleaching, we observed that the signal is stable, 

meaning that at 20°C there is a balance between the transport from the ER to the Gol-

gi and that of in the opposite direction (Fig. 31 B). This observation is further con-

firmed by the fact that in unbleached cells Golgi fluorescence didn’t change during 

the 80 min of recording (upper cell, Fig. 31 A). 

 

 

4.8 Reconstitution of FP-17 and FP-22 in LUVs 
 

To investigate whether FP-22 is segregated into curved domains because here it 

could tilt less its TMD to accommodate the hydrophobic mismatch (see section 1.7.2), 

we pulled out lipid nanotubes from GUVs reconstituted with both FP-17 and FP-22. 

To this aim, we generated different fluorescent variants of our model proteins and we 

purified mg amounts of them. After having generated the different variants in plas-

mids designed for expression in mammal cells (see section 3.1), we transfected CV1 

cells with all these constructs to analyze their steady-state distribution on fixed cells at 

confocal microscope and we compared them to the localization of Venus-17 and -22 

variants, which were already available in our laboratory (described in (Ronchi et al., 

2008). As shown in Fig. 32 A, all the different FP-17 spectral variants displayed a 

clear ER distribution and, depending on the focus plane that was acquired, the nuclear 

envelope was also observed in some images (Venus-17 and mEGFP-17 pictures, Fig. 

32 A). By contrast, all fluorescent versions of FP-22 were uniquely distributed at the 

plasma membrane and the typical ER distribution of the shorter TMD was not ob-

served (lower panels, Fig. 32 A). 

After subcloning all these sequences in pGEX2T vector, we expressed in and 

purified them from bacteria and then checked on SDS-PAGE followed by Coomassie 

Blue staining. All recombinant proteins had the predicted molecular weight (upper 

and predominant band in each lane, Fig. 32 B). As expected, Tomato-17 and -22 are 

bigger than other proteins because the fluorescent protein tdTomato is composed of 

two red fluorescent proteins linked together to from a tandem dimer (Nienhaus and 

Wiedenmann, 2009), while all the other proteins are monomeric. Due to the presence 

of five more aminoacids in FP-22 proteins, a shift in the molecular weight between 
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FP-17 and FP-22 was detected in all fluorescent variants, even though was less evi-

dent in TagBFP and Tomato variants. On SDS-PAGE we also observed that a number 

of minor bands of smaller molecular weight, that probably correspond to degradation 

products formed during the purification process, were always present, and that the 

amount of degradation was bigger in purified FP-17 compared to the corresponding 

FP-22 as well as it varied depending on the fluorescent version that was used (Fig. 32 

B). 

As shown in Fig. 33 A, the shape and morphology of FP-17 and/or FP-22-

containing proteoliposomes were analyzed by negative staining at the electron micro-

scope. In all conditions (liposomes without proteins, with FP-17 or -22 and with both 

of them), proteoliposomes are round-shaped and they are homogenous within the 

field. The averaged diameter was also measured, but no clear differences between ex-

perimental groups were observed as well as a big heterogeneity between different 

preparations was found (not shown). 

The insertion of the two proteins within the bilayer was analyzed by membrane 

carbonate extraction followed by discontinuous sucrose gradient and Western blot 

analysis (Fig. 33 B). In proteoliposomes both FP-17 and FP-22 were found in the top, 

light fractions of the gradient, meaning that the two proteins interact with lipids, 

which confer to proteins the ability to float in the gradient (left panel, Fig. 33 B). In 

contrast, the two proteins alone were found only on the bottom fractions of the gradi-

ent (right panel, Fig. 33 B), indicating that FP-17 and FP-22 are tightly integrated in 

the lipid bilayer. Interestingly, the amount of proteins that was degraded during the 

purification process (see above) is not inserted in the lipid bilayer and, indeed, didn’t 

float and remained in the heavy fractions of the gradient, indicating that only full-

length proteins are reconstituted in liposomes (left panel, Fig. 33 B). 

 

 

4.9 FP-17 and FP-22 are not segregated in lipid nanotubes 

pulled out with molecular motors 
 

To investigate the role of membrane curvature in TMD-dependent partitioning 

of FP-22 in ER tubules and ERES, in collaboration with Jean-Baptiste Manneville and 
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Bruno Goud at Marie Curie Institute (Paris, France), we generated FP-22 and FP-17 

reconstituted Giant Unilamellar Vesicles using the electroformation technique (re-

viewed in (Manneville et al., 2012)) starting from our reconstituted LUVs. After some 

efforts, we set up a good protocol to achieve an abundant growth of GUVs by apply-

ing an alternate electric field for 4 h and figure 34 shows a typical growth of our re-

constituted giant vesicles. Since this method is based on the swelling, under an alter-

nate electric field, of lipids that are previously piled up on a conductive slide under 

vacuum, GUVs display a typical layering with the smallest vesicles close to the glass 

surface of the slide (low focus, Fig. 34) and with bigger vesicles that are found by 

progressively moving the focus away from the focus plane of the glass surface (medi-

um, high and max focus, Fig. 34). The main advantages of GUVs are their microme-

ter scale size and that some micromanipulation techniques are available to pull out 

very thin nanotubes (Sens et al., 2008). In figure 35 A, the principles of the first tech-

nique we used to create artificial highly curved domains are depicted. This assay is 

based on in vitro polymerized MTs that are attached to a coverslip, and on biotinylat-

ed kinesins that, in the presence of ATP, walk along MTs and pull nanotubes (aver-

aged tube radius of about 20 nm) from GUVs that can be bound thanks to the pres-

ence of streptavidin and biotinylated lipids. A representative picture of in vitro pol-

ymerized, fluorescent MT networks is shown in Fig. 35 B. 

In order to compare the distribution of FP-17 and FP-22 in curved (tubules) and 

flat (vesicle) domains, for each GUV, two single optical sections were acquired in the 

equatorial plane of the vesicle and in the plane of the tube network. Indeed, kinesins 

walk along MTs that are attached to the coverslip and, thus, they pull nanotubes from 

the bottom of the vesicle, whose focus plane does not correspond to the equatorial 

plane of the vesicles (Fig. 36 A). As shown in the tube plane of figure 36 A, the dis-

tribution of the two proteins was not homogenous in all tubes of the network; some 

tubes appeared predominantly “red”, meaning that FP-22 is enriched compared to FP-

17 (left side of the network, tube plane images, Fig. 36 A), but in some other it 

seemed the opposite (right and upper side of the network, Fig. 36 A). For this reason 

and to globally analyze protein distribution within tube networks, we developed a 

manual quantification method as described in section 3.13 and shown in Fig. 36 B. 

The first two fluorescent couples we used in these experiments were TagBFP-17 to-

gether with Venus-22 and Venus-17 with TagBFP-22. Unfortunately, image analysis 

revealed that TagBFP fluorescent protein itself was not homogenously distributed in 
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flat and curved domains, but it showed a preference for tubules and, therefore, it was 

altering the analysis (not shown). In contrast, the green (mEGFP)-red (tdTomato) 

couples were found homogenously distributed in vesicles and tubules and, therefore, 

we always used these couples in all tube pulling experiments that will be shown. The 

kinesins assay was performed on either GUVs of uniform lipid composition (POPC) 

or composed of ER lipids extracted from rat liver microsomes. In all cases any statis-

tically significant difference in the fluorescence intensity ratio of FP-22 over FP-17 in 

vesicles and tube was found and, indeed, in all the three histograms (Fig. 37 A and B), 

the mean fluorescence ratio in tubes has about the same value of the mean ratio in 

vesicles. Since in the case of ER lipids (Fig. 37 B) we analyzed both mEGFP-17 ver-

sus Tomato-22 and the inverted couple and no differences were found between them, 

we also demonstrated that fluorescent proteins themselves were not influencing our 

results. Since a lot of heterogeneity between different tube networks was found, we 

decided to analyze the sorting ratio (fluorescence intensity ratio of FP-22 over FP-17 

divided by the same ratio in the vesicle, see section 3.13) distribution of all tube net-

works; even though most networks showed a sorting ratio around 1, one or two outli-

ers in which FP-22 was enriched in tubes compared to FP-17 were always found in 

each experimental group (red squares, left graphs, Fig. 37 A and B). And this became 

even clearer when all the experimental data were grouped and analyzed together (Fig. 

37 C); also in this case the mean fluorescent ratio of FP-22 over FP-17 in tubes was 

identical to the value in the vesicles and, indeed, t test didn’t reveal any statistically 

significant difference. But the analysis of the sorting ratio distribution displayed the 

presence of some outliers reporting always an enrichment of FP-22 in tubes and never 

reporting the opposite situation (FP-17 partitioning in tubes). Indeed, the skewness 

(g1) calculation revealed that the distribution of our dataset is far from being symmet-

rical and that the asymmetry was due to high values. Taken together, these data sug-

gests that FP-22 was not significantly enriched in tubes pulled out with molecular mo-

tors compared to FP-17, but probably under specific conditions, which have been re-

produced in the outliers, FP-22 may be preferentially partitioned into highly curved 

domains. 
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4.10 FP-17 and FP-22 diffuse similarly in flat and curved do-

mains 
 

Because of the outliers found in the previous experiment (Fig. 37) suggesting 

the possibility that FP-22 could be partitioned into curved domains under specific 

conditions, we further investigate this hypothesis by combining FRAP and real time 

registration to the kinesin assay. Theoretically, if FP-22 prefers curved domains, it 

would diffuse faster than FP-17 in tubes. Moreover, since tdTomato is about twice 

bigger than mEGFP, with FRAP we also tested whether it could influence the diffu-

sion of our model proteins within the thin nanotubes because of steric reasons. There-

fore, we photobleached in both FP-17 and FP-22 channels portion of tubes and vesi-

cles and we measured their fluorescence recovery over time. As shown in figure 38, 

both FP-17 and FP-22 diffuse very rapidly within the vesicle; 15 sec after bleaching 

half of the fluorescence was already recovered (Fig. 38 A and B) and at the end of the 

experiments the intensity in the bleached region is approximately the same of the sur-

rounding areas (right panels, Fig. 38 A). This behavior appears also clear from the re-

covery curves in Fig. 38 B, where the two proteins reached the equilibrium very rap-

idly. In addition, the calculation of half times and mobile fractions didn’t reveal any 

significant difference by comparing neither the two fluorophores nor the two TMDs 

(Fig. 38 C). All the reconstituted proteins showed fluorescence recovery half times 

between 15 and 20 sec (left graph, Fig. 38 C) and about 80-90% is free to diffuse 

within the vesicle (right graph, Fig. 38 C). 

By contrast, some differences were seen when a portion of tubes was bleached 

(yellow ROI, Fig. 39 A). First, we found that all proteins, probably because of the dif-

ferent geometry between tubes and vesicles, diffuse more slowly in lipid nanotubes 

compared to vesicles: indeed, 58 sec after bleaching about half of the fluorescence 

signal was recovered and the equilibrium was reached after 8-10 min (Fig. 39 A and 

B), indicating that the diffusion is slowed down about 4 times compared to vesicles. 

Moreover, quantitative analysis also revealed that the two fluorescent variants behave 

differently in term of velocity of diffusion: as shown in figure 39 B, both Tomato-17 

and -22 diffuse slower and their fluorescence recovery curves are less sloped than 

those of mEGFP-17 and mEGFP-22. Statistical analysis confirmed that the fluores-

cence recovery half time of Tomato is significantly higher to that of mEGFP (left 
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graph, Fig. 39 C). In contrast, as demonstrated by the calculation of mobile fractions, 

at steady state the amount of Tomato that diffuses in the tube is the same of mEGFP 

(right graph, Fig. 39 C). Since all the experiments were performed at least 20 min af-

ter adding kinesins and GUVs in the flow chamber that is used for this assay, we are 

sure that our analysis was not altered by the fact that Tomato-17 and -22 diffuse more 

slowly than mEGFP-17 and -22. Concerning FP-17 and FP-22, even though FP-17 

displayed a shorter half time and FP-22 a bigger mobile fraction (Fig. 39 C), no statis-

tically significant differences were found in both cases, suggesting that the longer 

TMD does not diffuse faster in tubes compared to FP-17 and, thus, that is not prefer-

entially sorted into highly curved domains. 

 

 

4.11 FP-17 and FP-22 are homogenously distributed in tubes 

pulled out with optical tweezers and micropipette aspiration 

system 
 

Since with the kinesins assay some outliers, in which FP-22 was enriched in 

highly curved domains were found and this assay didn’t allow a strict control of the 

membrane tension and, thus, of the tube radius, we hypothesized that maybe in those 

outliers there was a specific membrane curvature that induced FP-22 sorting. To this 

aim, FP-17 and FP-22 distribution was investigated in tubes pulled out by combining 

the use of optical tweezers and a micropipette aspiration system. As described in sec-

tion 3.12 and shown in Fig. 40 A and B, this technique is based on the aspiration of a 

GUV with a micropipette that is connected to a water reservoir and, by simply regu-

lating water height in the reservoir, it is possible to regulate the sunction pressure ap-

plied to aspirate the vesicle. On the other hand, a streptavidin-coated bead is trapped 

by an optical tweezer. By contacting biotinylated lipid-containing GUV with a 

trapped bead and moving the GUV away from the trap a tube can be pulled out and, 

then, by increasing the aspiration force the membrane tension can be progressively in-

creased (and the tube radius progressively decreases). Representative fluorescence 

levels of FP-17 and FP-22 are shown in Fig. 40 C. Upper panels displayed protein dis-
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tribution in the first tension step after the tube has been pulled out; because the tube 

has a diameter under the optical resolution limit, the signal is always lower compared 

to the vesicle and decreases during each tension step because of the progressive re-

duction in the tube radius (lower panels, Fig. 40 C). Indeed, while in the vesicle is al-

ready clear by eye that FP-17 and FP-22 are equally distributed, in the tube is not so 

obvious because of the low fluorescent signal and quantitative analysis was required. 

Fluorescence analysis using a home-made routine for Matlab (from Bassereau lab, In-

stitute Curie, Paris), revealed that FP-22 is not enriched in tubes during the progres-

sive increase of the membrane tension compared to FP-17 and, indeed, the red trend 

line is flat, meaning that the sorting ratio didn’t change with the tension (right graph, 

Fig. 40 D). As we did with the molecular motor assay, to be sure that the fluorescent 

proteins were not influencing TMD distribution we also compared mEGFP-17 with 

Tomato-17 and mEGFP-22 with Tomato-22. The fact that the sorting ratio didn’t 

change with the progressive decrease of the tube radius by comparing the same TMD 

indicates that the fluorophore didn’t alter the distribution of TMDs in flat and curved 

domains. Taken together, these data demonstrate that FP-22 is not preferentially parti-

tioned into artificially curved domains. 
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5. FUGURES AND LEGENDS 
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Figure 21: ER to Golgi transport rate of ts045 VSV-G DxE-EGFP at 32°C. (A) NRK 

cell transfected with VSV-G DxE-EGFP construct for 24 h at the non permissive 

temperature of 39°C were imaged alive at 32°C. Immediately after shifting to the 

permissive temperature of 32°C, VSV-G is mostly localized in the ER (even though 

in the right cell VSV-G already partially localizes in the Golgi), but, then, it rapidly 

accumulates in the Golgi apparatus and in 12 min the ER distribution of VSV-G dis-

appeared (5 and 12 min timepoints). At the later timepoints VSV-G is transported to 

the plasma membrane and, indeed, Golgi fluorescence progressively disappears and 

the intensity of the plasma membrane increases (20, 30 and 40 min timepoints) (scale 

bar = 10 µm). (B) Quantitative analysis showing that VSV-G is transported very rap-

idly to the Golgi apparatus; 12 min after shifting to the permissive temperature Golgi 

fluorescence intensity reaches the maximum value and then progressively decreases 

because of the transport to the plasma membrane (n = 11). 
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Figure 22: Anterograde transport of FP-22 at the ER-Golgi interface at 37°C. (A) 

Prebleach images show NRK cells expressing FP-22 and GalNAc-mCherry 1h after 

microinjection; arrowheads and red ROIs (in inset) indicate Golgi fractions of FP-22 

that were bleached. After bleaching a rapid recovery of FP-22 Golgi fluorescence is 

observed and, indeed, a clear recovery can be seen 5 min after bleaching and it further 

increases until 20 min postbleach. At later timepoints a slow decrease of the Golgi 

fluorescence is observed because FP-22 transport proceeds to the plasma membrane, 

in which FP-22 signal can be detected in the latest timepoint (50 min) (scale bars = 10 

µm). (B) Quantitative analysis revealed that after bleaching FP-22 Golgi fluorescence 

recovery is fast and reaches a peak after 15-20 min and then the fluorescence slowly 

decreases because FP-22 is delivered to the plasma membrane (n = 15). 
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Figure 23: Intracellular localization of FP-22 and VSV-G DxE-EGFP upon incuba-

tion at 20°C for 2h. Co-microinjected cells with FP-22 and GalNAc-mCherry show 

that FP-22 is distributed between the ER and Golgi apparatus and, indeed, a partial 

co-localization with the Golgi marker GalNAc-mCherry is observed (upper panels). 

In contrast, NRK cells co-transfected with VSV-G DxE-EGFP and GalNAc-mCherry 

show a perfect co-localization between the two proteins and the absence of VSV-G in 

the ER (lower panels) (scale bars = 10 µm). 
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Figure 24: VSV-G transport from the ER to the Golgi apparatus at 20°C. (A) NRK 

cells transfected with VSV-G DxE-EGFP and GalNAc-mCherry for 24h at the non-

permissive temperature of 39°C were shifted at 20°C and imaged alive. At time 0 

VSV-G is distributed in the ER and no co-localization with GalNAc-mCherry was 

observed; at later timepoints it started to accumulate in the Golgi (progressive in-

crease in the co-localization with GalNAc-mCherry) and, simultaneously, the ER sig-

nal decreases (scale bars = 10 µm). (B) Quantitative analysis showing the progressive 

increase of VSV-G fluorescence in the Golgi apparatus and decrease in the ER when 

cells are incubated at 20°C (n = 27). 
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Figure 25: ER to Golgi transport and intrareticular diffusion of FP-22 at 20°C. (A) 

NRK cells co-microinjected with FP-22 and GalNAc-mCherry were incubated 1h at 

37°C, 30 min at 20°C and imaged alive at the same temperature. FP-22 is initially dis-

tributed between the ER and the Golgi apparatus (co-localization with GalNAc-

mCherry) (prebleach images). Arrowheads indicate bleached FP-22 Golgi fractions 

and the arrow indicates the bleached ER portion (red ROIs in inset, the upper ROI in-

dicates the bleached ER region and the lower one the bleached Golgi region). 20 min 

after bleaching, a clear fluorescence recovery in the ER was observed and the signal 

no longer increased at later timepoints (40 and 60 min). In contrast, after Golgi 

bleaching only a partial recovery was found after 20 min, but FP-22 Golgi signal pro-

gressively increased even in the later timepoints until the end of the registration (60 

min) (scale bars = 10 µm). (B) FRAP analysis showing the different fluorescent re-

covery in the ER (black squares) and Golgi (black circles). The ER recovers rapidly 

and reaches a plateau after 10-15 min (with a recovery of about 90% compared to the 

prebleach value), while the Golgi fluorescence recovers more slowly and the signal 

progressively increases in all timepoints until the end of the experiments (n = 17 for 

FRAP on Golgi and n = 7 for FRAP on ER). 
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Figure 26: ER to Golgi transport of FP-22 is inhibited in energy-depleted conditions 

at 20°C. (A) NRK cells co-microinjected with FP-22 and GalNAc-mCherry were in-

cubated 1h at 37°C, 30 min at 20°C and imaged alive in the absence of energy at the 

same temperature. Yellow ROIs in prebleach and bleach images indicate bleached 

Golgi fractions of FP-22. After bleaching, a fluorescence recovery was observed in 

the first 20 min until the signal reached the same intensity of the surrounding ER and 

then Golgi fluorescence no longer increased in later timepoints (40 and 60 min). This 

can also be observed in merged images, where the Golgi apparatus, which was “yel-

low” before bleaching because of the co-localization with GalNAc-mCherry, re-

mained only “red” because FP-22 didn’t recover after bleaching (scale bar = 10 µm). 

(B) Quantitative analysis of Golgi recovery in the presence (black squares) and ab-

sence of energy (black circles); immediately after bleaching the two curves showed 

similar trends because the major contribution was given by intrareticular diffusion, 

but then, while in the presence of energy the Golgi fluorescence progressively recov-

ered until the end of the registration, upon ATP depletion no fluorescence recovery 

was detected after the first 15-20 min (n = 8 for ATP depletion and n = 17 for con-

trolled condition). 
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Figure 27:  Fluorescence intensity profiles of FP-22 in the Golgi and ER in the pres-

ence and absence of energy. Fluorescence intensity along the white lines was meas-

ured in control conditions or upon ATP depletion before and 60 min after bleaching. 

Fluorescence images are reported in a pseudocolor scale where blue tones represent 

low intensities and green/red tones higher intensities. In the presence of ATP peaks 

corresponding to the Golgi apparatus are clearly distinguishable from the ER intensity 

both before and 60 min after bleaching (upper panels and graph). In energy-depleted 

conditions, the Golgi intensity after bleaching is no longer distinguishable to that of 

the surrounding ER and, indeed, it has the same intensity of the ER fluorescence level 

(lower panels and graph) (scale bars = 10 µm). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

83 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

84 

Figure 28: FP-22 recycles from the Golgi to the ER at 20°C. (A) NRK cells co-

microinjected with FP-22 and GalNAc-mCherry were incubated 1h at 37°C, 30 min at 

20°C and imaged alive at the same temperature. Before bleaching FP-22 is distributed 

between the ER, as demonstrated by the co-localization with the ER marker RFP-

KDEL, and the Golgi, which corresponds to the intense fluorescence in the perinucle-

ar region. After bleaching the ER fraction of FP-22 (indicated by red ROIs) a progres-

sive emptying of the Golgi fluorescence and a recovery of the ER were observed until 

the latest timepoint (60 min). Insets show a more detailed temporal sequence of FP-22 

Golgi fluorescence, which was constant before bleaching and progressively decreases 

as soon as the ER fraction was bleached (scale bars = 10 µm and 5 µm in insets). (B) 

Left graph displays ER and Golgi fluorescent changes over time of the experiment 

showed in (A). Before bleaching FP-22 Golgi fluorescence (black squares) was stable, 

but then rapidly decreased of about 45% during 60 min of registration and, converse-

ly, the ER (black circles) recovered with the opposite slope to that of the Golgi fluo-

rescence (n = 12). Right graph shows the anterograde (black circles) and retrograde 

(black squares) transport rates of FP-22, analyzed by Golgi and ER bleaching, respec-

tively. After Golgi bleaching, there is a progressive recovery of the signal, while after 

ER bleaching, the Golgi apparatus progressively empties. Since the two curves dis-

play specular slopes, the analysis suggests that the anterograde and retrograde trans-

ports occur with similar kinetics (n = 17 for anterograde transport and n = 12 for ret-

rograde). 
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Figure 29: FP-22 is recycled from the Golgi apparatus to the ER at 37°C. (A) NRK 

cells co-microinjected with FP-22 and GalNAc-mCherry were incubated 1h at 37°C 

and imaged alive at the same temperature. As already showed in Fig. 22, before 

bleaching FP-22 is distributed between the ER (co-localization with RFP-KDEL) and 

the Golgi apparatus. The red ROI indicates the bleached region corresponding to the 

ER fraction of FP-22. After ER bleaching, there was a progressive decrease of the 

Golgi fluorescence over time and a tubular structure, showed in inset (5 min) and in-

dicated by the arrowhead, leaving the Golgi apparatus was also observed. In addition, 

in unbleached cell (lower left cell) the Golgi fluorescence was stable over time, sug-

gesting that the observed decrease of the Golgi fluorescence in bleached cell was due 

to retrograde transport and not to trafficking from the Golgi to the plasma membrane 

(scale bars = 10 µm and 5µm in inset). (B) Quantitative analysis confirmed the pro-

gressive decrease of FP-22 Golgi fluorescence after ER bleaching (n = 8). 
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Figure 30: Topology of ts045VSV-G AxA and its localization after transfection at the 

permissive temperature. (A) The di-acidic export signal in the cytosolic tail of the 

protein was replaced by site-directed mutagenesis with two alanines. VSV-G is a type 

I transmembrane protein and contains a single TMD and an N-terminus domain ex-

posed in the ER lumen. (B) After transfection for 24h at the permissive temperature of 

32°C VSV-G AxA shows a typical plasma membrane distribution without any ER or 

Golgi localization (scale bar = 10 µm). 
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Figure 31: VSV-G AxA is recycled from the Golgi apparatus to the ER at 20°C. (A) 

NRK cells were transfected with VSV-G AxA-EGFP and GalNAc-mCherry for 24 h 

at 39°C, incubated for 30 min at 20°C and then imaged alive at the same temperature. 

At 20°C VSV-G AxA is distributed between the ER and the Golgi (co-localization 

with GalNAc-mCherry in prebleach images). The red ROI indicates bleached area. 

After bleaching the ER portion of VSV-G AxA, a progressive decrease of Golgi fluo-

rescence was observed over time, while in the unbleached cell the fluorescent signal 

in the Golgi remained constant until the end of the registration. In merged images the 

decrease of Golgi fluorescence can be perceived by the fact that Golgi apparatus be-

comes “more red” over time (scale bar = 5 µm). (B) Quantitative analysis shows that 

Golgi fluorescence of VSV-G AxA (black squares) is stable over time before bleach-

ing and, then, progressively diminishes after bleaching. Golgi emptying is accompa-

nied by a progressive fluorescence recovery in the ER (black circles), whose curve 

has a specular slope compared to that of the Golgi decrease (n = 13). 
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Figure 32: Intracellular localization of different spectral variants of FP-17 and FP-22 

and corresponding bacterially purified recombinant proteins on SDS-PAGE. (A) CV1 

cells were transfected with FP-17 or FP-22 for 24 h with Calcium Phosphate method. 

All FP-17 fluorescent variants show a typical ER distribution, in which the nuclear 

envelop can be observed in some cases (Venus-17 and mEGFP-17) depending on the 

focus plane that was chosen for image acquisition. By contrast, FP-22 variants are all 

localized to the plasma membrane (scale bar = 10 µm). (B) The same fluorescent var-

iants were purified from bacteria with the GST-fusion system and checked on SDS-

PAGE. In all cases a shift in the molecular weight between FP-17 and FP-22 was ob-

served, even though it was clearer for Venus and mEGFP fluorescent variants. Toma-

to-17 and -22 are approximately twice bigger than other variants, because the fluores-

cence protein Tomato is not monomeric but is composed of two fluorescent proteins 

linked together to form a tandem dimer. During the purification process a certain 

amount of degradation was obtained and corresponds to the lower bands. In all lanes a 

band of 70 kDa was observed and corresponds to the bacterial cytosolic chaperone 

Hsp70. 
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Figure 33: Morphological and biochemical characterization of reconstituted LUVs. 

(A) Electron micrographs of negatively stained liposomes without protein or contain-

ing FP-17 and/or FP-22. In all samples a homogenous round-shaped population of 

liposomes was observed, even though some heterogeneity in size within the same 

sample and between different experimental groups was found (scale bar = 500 nm). 

(B) Reconstituted proteoliposomes or purified proteins were treated with sodium car-

bonate, layered under a discontinuous sucrose gradient and collected fractions were 

analyzed by Western Blot with an αGFP antibody. Only in proteoliposomes the full-

length form of both FP-17 and FP-22 float into the light fractions of the gradient, in-

dicating a tight integration in the bilayer. Indeed, the two proteins alone remain in the 

heavy fractions in the tube bottom. In both proteoliposomes and proteins alone the 

shift in the molecular weight between FP-17 and FP-22 was detected. 
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Figure 34: Reconstituted Giant Unilamellar Vesicles with FP-17 and FP-22 observed 

in phase contrast. Since the electroformation method we used to grow GUVs is based 

on the swelling, under an alternate electric field, of lipids that were previously dried 

under vacuum, at the microscope GUVs appeared layered in the growth chamber, 

with small vesicles in the lower focus plane (close to the glass surface of the slide) 

and progressively bigger vesicles in higher focus planes (scale bar = 20 µm). 
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Figure 35: (A) Schematic picture representing kinesin assay. In the presence of ATP, 

biotinylated kinesins move along in vitro polymerized MTs and pull out lipid nano-

tubes (average radius of 20 nm) thanks to presence of biotinylated lipids in GUVs 

(average radius of 10-40 µm) and of streptavidin that bridges biotinylated kinesins to 

biotinylated lipids (from Bruno Goud’s laboratory). (B) Fluorescent MT networks of 

in vitro polymerized MTs attached to the coverslip of the flow chamber used for the 

kinesin assay (scale bar = 20 µm). 
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Figure 36: (A) Representative images of a tube network pulled by molecular motors 

from GUV reconstituted with FP-17 and FP-22 together. In upper panels the distribu-

tion of FP-17 and FP-22 in the equatorial plane of the vesicle is shown; both proteins 

are uniformly distributed within the vesicle as demonstrated by the perfect merge. 

Lower panels show the tube network pulled out from the bottom of the same vesicle. 

Tubes are less intense compared to the vesicle because of their smaller size. FP-17 

and FP-22 distribution is heterogeneous with some tubes that seem to contain more 

FP-17 (top right field) and some others more FP-22 (bottom left field) (scale bar = 10 

µm). (B) Figure summarizing the quantification method that was used to analyze the 

distribution of FP-17 and FP-22 in GUVs and nanotubes. The first panel shows FP-22 

fluorescence in tube plane after background subtraction. Secondly, a threshold based 

on fluorescence intensity was applied and a ROI around the network was drawn to 

create a mask highlighting only the tubes (second panel on the left); finally the mask 

was superimposed to the original images and the mean fluorescence intensity was 

measured (scale bar = 10 µm).  
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Figure 37: Quantitative analysis of the distribution of FP-17 and FP-22 in lipid nano-

tubes and in GUVs. (A) No statistical differences in the mean fluorescent ratio of FP-

22 over FP-17 between vesicles and tubes were observed in GUVs/tubes composed of 

POPC (left graph). Right graph shows the sorting ratio distribution of each network; 

even though most of them displayed a ratio around 1, one outlier with an enrichment 

of FP-22 in tubes was observed (n = 35). (B) As in vesicles composed of POPC only, 

the mean fluorescent ratio of FP-22 over FP-17 in liposomes composed of ER lipids 

extracted from rat liver microsomes is the same between vesicles and tubes either 

when mEGFP-17 and Tomato-22 was compared (left upper graph) or when the in-

verted fluorescent couple was used (left lower graph). Again, when the distribution of 

the sorting ratio was analyzed two outliers, in the case of mEGFP-17/Tomato-22, and 

one outlier with the inverted couple, were found and they all show an enrichment of 

FP-22 in tubes (n= 35 for mEGFP-17/Tomato-22 and n = 16 for mEGFP-22/Tomato-

17). (C) The left graph shows the mean fluorescence ratio of FP-22 over FP-17 of all 

the data collected and presented in (A) and (B); no differences were observed between 

vesicles and tubes. Indeed, most networks have a sorting ratio around 1, even though 

some outliers showing an enrichment of FP-22 in the tubes were observed (right 

graph) (n = 86). 
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Figure 38: Diffusion of FP-17 and FP-22 in reconstituted GUVs composed of ER li-

pids extracted from rat liver microsomes. (A) A portion of the vesicle was bleached in 

both FP-17 and FP-22 channels and their fluorescent recovery was followed over 

time. Images 15 sec after bleaching show a fast fluorescent recovery in the bleached 

area that, indeed, reaches about the same intensity of the prebleach values after 250 

sec. (B) Fluorescent recovery curves have similar trends between the fluorescent pro-

teins that were analyzed, even though Tomato-17 seems to diffuse more slowly (n = 

10 for each fluorescent protein). (C) However calculation of fluorescent half time re-

covery (left histogram) didn’t display any statistically significant difference neither 

between different fluorescent proteins nor between different TMD lengths. Like half 

times, no difference in the mobile fractions were observed between fluorescent pro-

teins and TMD lengths. 
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Figure 39: Diffusion of FP-17 and FP-22 in lipid nanotubes pulled by molecular mo-

tors from GUVs composed of ER lipids extracted from rat liver microsomes. (A) As 

indicated by the yellow ROI, a portion of a tube was bleached in both FP-17 and FP-

22 channels and their fluorescent recovery was followed over time. 58 sec after 

bleaching both FP-17 and FP-22 showed a clear recovery of the fluorescence and in 

the latest timepoint (527 sec) both proteins displayed a fluorescent intensity, which is 

approximately the same of the prebleach images. (B) Fluorescent recovery curves 

have similar trends between mEGFP-17 and –22 and between Tomato-17 and -22, but 

they are different between Tomato and mEGFP fusion proteins; mEGFP-17 and -22 

diffuse and reach plateau faster than Tomato-17 and -22. However, in the end the val-

ue that is reached at the steady-state is similar (n = 9 for each fluorescent protein). (C) 

Comparison of fluorescent recovery half times revealed a significant difference be-

tween mEGFP and Tomato and not between different TMD lengths (left histogram), 

while the analysis of mobile fractions demonstrates that the amount of protein that is 

free to diffuse is the same between all samples (right histogram).  
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Figure 40: Lipid nanotubes pulled out by optical twezeers and micropipette aspiration 

system from GUVs composed of ER lipids extracted from rat liver microsomes. (A) 

Experimental configuration of nanotube pulling by an optical tweezers from a vesicle 

aspirated in a micropipette. The GUV, which contains biotinylated lipids is held on 

the left side by a micropipette connected to a water tank. On the right side, a mem-

brane nanotube is pulled using a streptavidin-coated bead (black circle) trapped in an 

optical tweezers. By measuring the progressive displacement of the bead (∆!), the 

force (!) necessary to pull the tube and the tube radius (!!)can be derived. (B) DIC 

image of a GUV aspirated by the micropipette and a tube pulled from the aspirated 

GUV using a bead trapped in an optical tweezers (scale bar = 5 µm). (C) Fluorescent 

confocal images of the vesicle and the tube shown in (B). The aspiration of the vesicle 

can be perceived by the membrane invagination inside the pipette. Upper panels show 

fluorescence intensities of FP-17 and FP-22 in the tube and vesicle in the first tension 

step, which corresponds to the tension applied to pull the tube. Both in the vesicle and 

in the tube FP-17 and FP-22 have about the same fluorescence intensities and seem to 

be homogenously distributed. Lower panels show the distribution of the two proteins 

in the final tension step; the increased tension can be appreciated by the bigger por-

tion of the vesicle that is aspirated inside the micropipette. Because of the reduced 

tube radius, fluorescence signal in both channels was arbitrary enhanced to highlight 

the fluorescence signal in the tube. Even at this tension step, FP-17 and FP-22 seem to 

be equally distributed in the tube and in the vesicle (scale bar = 5 µm). (D) Quantita-

tive analysis of mEGFP-17 versus Tomato-17 and mEGFP-22 versus Tomato-22 re-

vealed that the sorting ratio is the same with the progressive increase of the membrane 

tension, indicating that fluorophores do not influence protein distribution. The same 

behavior was observed when FP-22 distribution was compared to that FP-17 (n = 12 

for FP-22/FP-17, n = 7 for mEGFP-17/Tomato17 and n = 6 for 

mEGFP22/Tomato22).  
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Figure 41: Working model explaining the role of the export signal in protein transport 

along the secretory pathway. (A) Transport of transmembrane cargoes that contain the 

export signal in their cytosolic tail are strongly recruited at the ERES and efficiently 

transported to the Golgi apparatus, where they are excluded from retrograde transport 

back to the ER, probably through the interaction with an unknown protein, and then 

proceed directly to the plasma membrane, given a global high efficiency of their 

transport through the secretory pathway. (B) Cargoes that lack the export signal are 

still positively recruited at the ERES (even though less than signal-bearing cargoes), 

thanks to the physicochemical features of the TMD, and transported quite efficiently 

to the Golgi apparatus, where the vast majority of them are included into retrograde 

carriers and transported back to the ER. Since only a small fraction can escape from 

this futile recycling their arrival to the plasma membrane is significantly delayed and 

less efficient compared to the cargoes that have the export signal. 
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6. DISCUSSION 
 

 

6.1 A novel role of the VSV-G di-acidic export signal 

at the Golgi apparatus 
 

The importance of the export signal in protein transport along the secretory 

pathway is well known and many short aminoacid motives, such as di-acidic or di-

hydrophobic stretches, have been identified in the cytosolic tail of different membrane 

cargoes (Barlowe, 2003). Till now, these export signals were thought to be important 

only for cargo concentration into COPII-coated vesicles; this belief was probably due 

to the fact that many proteins on which the export signal has been identified are com-

ponents of the transport machinery at the ER-Golgi interface and, therefore, after 

leaving the ER they need to be recycled back for a new round of transport (Dancourt 

and Barlowe, 2010). But in the present study we demonstrated for the first time that 

the export signal of proteins that are localized at the plasma membrane assists their 

transport even in another step downstream the exit from the ER when proteins reach 

the Golgi apparatus.  

Indeed, in the first part of the thesis we compared protein trafficking at the ER-

Golgi interface of two model proteins, VSV-G and FP-22, by combining cDNA mi-

croinjection to temperature blocks and photobleaching approaches, which provide us 

a powerful tool to precisely analyze the transport of membrane proteins at the very 

early steps of the secretory pathway. VSV-G is the most used model protein to study 

transport along the secretory pathway and contains a well known di-acidic export sig-

nal in its cytosolic tail that leads to its recruitment into COPII-coated vesicles at the 

ERES (Nishimura and Balch, 1997). FP-22 is a TA chimeric protein, which contains a 

fluorescent protein exposed in the cytosol fused with an extended form of the TMD of 

cyt(b5) (22 aa) and it is positively enriched at the ERES and transported to the plasma 

membrane thanks to the physicochemical features of the TMD (Bulbarelli et al., 2002; 

Pedrazzini et al., 1996; Ronchi et al., 2008). Our group previously demonstrated that 
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VSV-G is transported more efficiently to its final destination (in 75 min reaches is 

transported from the ER to the plasma membrane) compared to FP-22, which is still 

distributed between the ER and the Golgi 2h after cDNA microinjection (Ronchi et 

al., 2008). Even though FP-22 is less recruited at the ERES compared to VSV-G 

(Ronchi et al., 2008), in the present study we demonstrated that its anterograde 

transport from the ER to the Golgi apparatus is fast and with transport rates that are 

comparable to those of VSV-G and that the low efficiency of its transport is mainly 

given by the fact that the vast majority of FP-22, once arrives to the Golgi, is recycled 

back to the ER.  

To investigate whether this mechanism was restricted to TA proteins only or 

whether was a more general phenomenon, we took advantage of a signal-deleted form 

of VSV-G (VSV-G AxA), which showed exactly the same behavior of FP-22. Al-

ready in 1997, Nishimura and colleagues demonstrated that the absence of the di-

acidic sequence causes a stronger reduction in VSV-G recruitment into export do-

mains and a reduction in its arrival to the plasma membrane (Nishimura and Balch, 

1997). More recently, it has been also reported that the transport of VSV-G AxA is 

guided by the physicochemical features of the TMD, which has a predicted length of 

22-23 aminoacids, like FP-22 (Dukhovny et al., 2009). In this study we found that the 

delayed arrival of VSV-G AxA to the plasma membrane is, again, due to a futile re-

cycling from the Golgi to the ER, whose transport rate is similar to that of the antero-

grade transport (Golgi fluorescence is stable before bleaching at 20°C, see Fig. 31). 

Taken together, these findings indicate a novel role of the VSV-G export signal 

at the Golgi apparatus, which is responsible for the exclusion of cargoes from futile 

cycling from the Golgi to the ER (Fig. 41). Indeed, signal-bearing cargoes are strong-

ly recruited at the ERES thanks to the interaction between the export motif and the 

Sec24 subunit of COPII complex (Mancias and Goldberg, 2008), are rapidly trans-

ported to the Golgi apparatus and then directly to the plasma membrane. By contrast, 

signal-deficient cargoes such as FP-22 or VSV-G AxA are still efficiently antero-

gradely transported to the Golgi apparatus (fast fluorescence recovery after Golgi 

bleaching, see Fig. 22), but, then, the vast majority is included into retrograde 

transport carriers back to the ER and only a small fraction can progressively escape 

from this futile recycling and travel towards the plasma membrane, giving a global 

low efficiency of transport along the secretory pathway compared to membrane car-

goes that contain the export signal. We think that this event not only influences the ef-
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ficiency of transport through the secretory pathway of membrane proteins, but it 

might also be a general phenomenon influencing the trafficking of all proteins that 

lack an export signal. Indeed, this could be the reason why some Golgi enzymes con-

tinuously cycle between the ER and the Golgi; for example glycosilation Golgi en-

zymes lack any export signal and their correct localization is guaranteed by the physi-

cochemical features of the TMD, whose length is shorter than the TMD of protein lo-

calized at the plasma membrane; but instead of being stably retained in the proper 

Golgi cisterna, they slowly cycled at the ER-Golgi interface (Munro, 1995; Opat et 

al., 2001). 

Since we didn’t provide any direct proof on the exclusion of VSV-G DxE from 

retrograde transport carriers, this hypothesis should be considered. Recently, Contre-

ras and colleagues showed that the expression of a dominant negative form of p24, a 

key membrane component of COPI transport machinery, caused an acceleration of 

VSV-G transport, raising the possibility that even signal-bearing cargoes can be recy-

cled from the Golgi to the ER (Contreras et al., 2012). This hypothesis needs to be 

further tested, but even if it is true, would not invalidate our working model; indeed, 

we clearly demonstrated that upon incubation at 20°C, VSV-G DxE and not FP-22 

and VSV-G AxA is completely accumulated in the Golgi complex, indicating that the 

balance between anterograde and retrograde transports is strongly shifted in favour of 

the anterograde transport. 

Of course the molecular mechanism of this phenomenon as well as the retro-

grade transport pathway that is involved in recycling cargoes from the Golgi to the 

ER remain to be elucidated. Concerning the retrograde pathway, two main retrograde 

routes from the Golgi to the ER have been identified (see section 1.4.2). The most 

studied route is the COPI-dependent pathway, which usually recognizes a specific re-

tention motif in the cytosolic tail of membrane cargoes (KK and RR motives) 

(Michelsen et al., 2005). The second retrograde pathway is COPI-independent and 

Rab6-dependent and, till now, no specific signal on cargoes have been identified 

(Sannerud et al., 2003). Since our model proteins FP-22 and VSV-G AxA does not 

contain any known retention signal recognized by COPI machinery, the Rab6-

dependent route represents a good candidate for their retrograde transport from the 

Golgi to the ER. Since in our laboratory are now available dominant negatives con-

structs of both Arf1 (a key component of COPI-dependent transport) and Rab6 (kind 

gift from Bruno Goud’s lab, Institute Curie, Paris), we plan to co-microinject cells 
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with FP-22 and the dominant negative constructs in order to identify which is the ret-

rograde pathway involved in futile recycling of signal-deficient cargoes and to inves-

tigate whether the inhibition of retrograde trafficking leads to a complete accumula-

tion of FP-22 in the Golgi and to an acceleration of its transport to the plasma mem-

brane. 

The second point that needs to be elucidated concerns the identification of the 

protein/receptor that recognizes and binds the DxE sequence in the Golgi to exclude 

cargoes from recycling. How transport carriers that have left the ER can be recog-

nized and fuse to the cis-face of the Golgi apparatus is a subject of intense studies and 

many proteins that facilitate this event have been identified. These proteins are mainly 

divided in two different families: multisubunit complexes, like the TRAPP-I and 

COG complexes, and coiled-coil proteins, called Golgins (Lorente-Rodriguez and 

Barlowe, 2011). These proteins act as tethering factors by binding specific compo-

nents of transport vesicles, such as Rab GTPases, and they facilitate docking and fu-

sion events of the vesicles to the correct acceptor compartment (Ramirez and Lowe, 

2009). Even if all these tethering factors might be good candidates to interact with the 

export signal of protein cargoes, no evidences on their ability to bind the DxE se-

quence or other export sequences has been reported. Recently, D’Angelo and col-

leagues demonstrated for the first time that two cis-Golgi proteins, GRASP65 and 

GRASP55, also involved in vesicle tethering via the interaction with GM130 and 

Golgin-45 (Marra et al., 2007), bind C-terminal valine-bearing cargoes (but not the di-

acidic signal) and sequentially promote their transport to and through the Golgi com-

plex (D'Angelo et al., 2009), suggesting that probably the transport to the Golgi is 

mediated by different proteins that recognize different class of secretory proteins. 
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6.2 Mechanisms of TMD-dependent sorting at the 

ER-Golgi interface 
 

 

In the second part of my thesis, we focused our attention on one possible mech-

anism of TMD-dependent sorting of FP-17 and FP-22 at the very early steps of the 

secretory pathway. As described in section 1.7.2, our lab previously demonstrated that 

FP-17 and FP-22 are partitioned in different ER subdomains: FP-17 is excluded from 

ERES and distributed in both ER tubules and sheets, while FP-22 is segregated at the 

ERES and ER tubules and excluded from ER sheets. Even though in principle the re-

cruitment of FP-22 could be explained by its interaction with a specific receptor that 

recognizes the TMDs, which has also been recently identified (Herzig et al., 2012), 

the exclusion of FP-17 from ERES and FP-22 partitioning in ER tubules are difficult 

to be explained on a receptor-mediated mechanism (Ronchi et al., 2008). Therefore, 

we hypothesized that the TMD-dependent partitioning of the two proteins could be 

due to specific interaction of TMDs with lipid bilayer and based on hydrophobic 

mismatch of the FP-22 within the thin ER bilayer (see section 1.7.2). 

The possible mechanism we tested in the second part of the thesis was based on 

the idea that in curved domains, such as COPII nascent vesicles at ERES or ER pe-

ripheral tubules, FP-22 could tilt less its TMD with respect to the acyl chains of the 

bilayer, resulting in a more favorable interaction between the TMD and the acyl 

chains. In addition, in the first part of this thesis we demonstrated that proteins, whose 

transport is guided by the physicochemical features of the TMD, are also included in-

to retrograde transport carriers, which are characterized, as COPII-coated vesicles and 

ER tubules, by high degree of curvature. To this aim, in collaboration with Jean-

Baptiste Manneville and Bruno Goud (Institute Marie Curie, Paris), we used an in 

vitro model system to create highly curved domains in artificial membranes of de-

fined lipid composition (reviewed in (Manneville et al., 2012). Quantitative analysis 

of the distribution of FP-17 and FP-22 in lipid nanotubes pulled out by molecular mo-

tors or optical tweezers and micropipette aspiration from GUVs composed of both 

POPC only or ER lipids extracted from rat liver microsomes revealed that the two 

proteins are uniformly distributed in highly curved domains, therefore demonstrating 
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that the membrane curvature alone is not sufficient to explain TMD-dependent parti-

tioning of FP-22 in the early steps of the secretory pathway. 

The second hypothesis we formulated was based on the idea that FP-22 could 

segregate in specific ER subdomains, where the lipid composition could locally in-

crease the thickness of the thin ER bilayer and, thus, matches better with the length of 

the longer TMD. Although detailed informations are lacking, some studies have re-

ported the presence of lipid microdomains in the ER membranes, suggesting an in-

volvement in different processes, such as protein folding and transport (Bagnat et al., 

2000; Campana et al., 2006). Particularly, a growing number of evidences suggests a 

key role of cholesterol in the formation of anterograde transport carriers and recruit-

ment of membrane cargoes; indeed, the transport of VSV-G is impaired in cultured 

cells acutely depleted of cholesterol, which decreases the lateral mobility of cargoes 

and the turnover of Sec23 subunit of COPII (Ridsdale et al., 2006; Runz et al., 2006). 

More recently, another paper suggesting a role of cholesterol reported that a GPI-

anchored protein, CD59, is segregated together with p24, the receptor of GPI-

anchored cargoes, into COPII-coated vesicles specifically enriched in cholesterol and 

in C and D isoforms of Sec24 subunit of COPII (Bonnon et al., 2010). 

Finally, our previous results with a model system consisting of proteoliposomes 

reconstituted either with wild-type cyt(b5) or cyt(b5) with an extended TMD are fully 

consistent with the hypothesis of lipid-based sorting. Differential scanning calorime-

try and fluorescence measurements of lipid probes revealed that the extended b5 mu-

tant (which in vivo is sorted to the plasma membrane, like FP-22) partitions preferen-

tially into domains enriched in acidic phospholipids or in ceramide, and that the wild-

type protein is partially excluded from these domains (Ceppi et al., 2005). In our la-

boratory we are presently working on cultured cells trying to identify whether FP-17 

and FP-22 interact with different lipid species and whether pharmacological lipid de-

pletion affects FP-22 transport. Preliminary results are suggesting that FP-17 and FP-

22 interact with a different lipid environment within the ER and that cholesterol de-

pletion seems to cause an impairment in the transport of the longer TMD; in particu-

lar, we are comparing the impairment of FP-22 to that of VSV-G DxE and our results 

seem to indicate a stronger impairment of FP-22, suggesting a more important role of 

cholesterol in TMD-dependent transport with the respect of the sequence-dependent. 

Another important aspect that could contribute to explain both the ER retention 

of FP-17 and the export of FP-22 concerns the oligomerization. Indeed, it has been 
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demonstrated that the export of some proteins requires their oligomerization (Nufer et 

al., 2003; Sato et al., 2003b) as well as protein aggregation could cause the immobili-

zation of proteins in the ER and the failure of their export. Even though a previous 

work from our laboratory, based on sucrose gradient and FRAP analysis, suggested 

that both proteins are present as monomers, this hypothesis cannot be completely ex-

cluded. The diffusion coefficient of FP-17 and FP-22 is identical and indicates that 

both proteins are freely diffusible within the ER. In addition, the sedimentation of FP-

17 and –22 in detergent-solubilized cell lysates on sucrose gradients also shows an 

aggregation state peak compatible with monomers (Ronchi et al., 2008). However, 

FRAP technique is not probably enough sensitive to distinguish between monomers 

and small oligomers and the sucrose gradient was performed on transfected cells, in 

which FP-22 was mainly localized to the plasma membrane and only a small fraction 

was still in the ER, and in the presence of the detergent Triton X-100, which might 

potentially destroy small FP-17 or -22 aggregates.  

 

 

6.3 Conclusions 
 

In the present work we analyzed two factors that strongly influence the transport 

of membrane proteins along the secretory pathway: the role of the ER export signal 

and of membrane curvature. 

For the first time we identified a novel role of the di-acidic export signal at the 

Golgi apparatus, which is required to exclude cargoes from a futile inclusion into ret-

rograde transport carriers and to guarantee an efficient transport through the secretory 

pathway and arrival to the plasma membrane. 

Secondly, using an in vitro system we were able to investigate to role of mem-

brane curvature alone in TMD-dependent partitioning of membrane proteins at the 

ER-Golgi interface and our data clearly indicate that the membrane curvature, even 

when the composition resembles that of the ER, is not sufficient to determine TMD-

dependent segregation. 

Since all plasma membrane-localized proteins are delivered to their final desti-

nation through the exocytic pathway and some pathological conditions are caused by 
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an altered protein trafficking, the understanding of the molecular mechanisms that de-

termine the efficiency of protein export is of fundamental importance and the data 

presented in this thesis contribute to clarify some aspects that was previously un-

known.    
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