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CHAPTER 1 

SYNTHESIS AND CONFORMATIONAL ANALYSIS OF               

RGD-PEPTIDOMIMETICS CONTAINING A BIFUNCTIONAL 

DIKETOPIPERAZINE SCAFFOLD, AS INTEGRIN LIGANDS 

 

1 -  Targeting Integrins 

Integrins are the major family of adhesion receptors known in the kingdom Animalia, being involved 

in cell adhesion to extracellular matrix proteins and also playing important roles in cell-cell adhesion. 

In addition to mediating cell adhesion, integrins make transmembrane connections to the cytoskeleton 

and activate many intracellular signaling pathways. Since the recognition of the integrin receptor 

family around 20 years ago,1 they have become the best-understood cell adhesion receptors. Integrins 

and their ligands play key roles in the pathogenesis of inflammatory diseases, leukocyte traffic, 

aggregation, tumor progression as well as osteoporosis and macular degeneration. The role of integrins 

in pathological conditions makes them attractive as pharmacological targets.2 

Research in the last two decades has been directed to the discovery and the development of integrin 

antagonists for clinical applications.3 The early discovery of the structural basis of the recognition 

between integrins and their natural ligands by means of short amino acid sequences,4 together with 

outstanding crystallographic, electron microscopy, and computational analyses5,6 on selected integrin 

subfamilies provided a breakthrough for the rational design of a wide variety of class-selective or 

promiscuous integrin inhibitors. 

1.1 -  Integrins: family, function, structure 

Integrins are heterodimeric membrane glycoproteins comprising non-covalently associated α- and β-

subunits, mediating dynamic linkages between extracellular adhesion molecules and the intracellular 

actin cytoskeleton. They are expressed by all multicellular animals, but their diversity varies widely 

among species; for example, 18 α and 8 β subunit genes are present in mammals, encoding for 25 

different heterodimers, whereas the Drosophila and Caenorhabditis genomes encode only five and two 

integrin α and β subunits, respectively. 
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Each integrin subunit consists of an extracellular domain, a single transmembrane region, and a short  

cytoplasmic region (∼30–40 amino acids). Figure 1.1 depicts the mammalian subunits and their αβ 

associations; 8 β subunits can assort with 18 α subunits to form 24 distinct integrins.7 

Figure 1.1. Integrin family 

 
 

The N-terminus of the α-chain consists of a β-propeller domain that is formed by seven repeats of 60 

amino acids each.8 The β-propeller domain is linked to the transmembrane domain by three regions 

that have been named the Thigh, Calf-1, and Calf-2 domains (Figure 1.2 a). In addition, a highly 

flexible region is present between the Thigh and Calf-1 domains.5 Half of all α-chains have an 

additional 200-amino acid inserted domain between repeats two and three of the β- propeller (the I-

domain, Figure 1.2 a).9 The I-domain functions as the major ligand-binding site in those integrins 

where it is present, whereas the β-propeller serves as the ligand binding in integrins without I-

domains.10 Cytoplasmic tail domains of individual α-subunits are well-conserved across species 

boundaries.11 

The N-terminal region of the β-subunit consists of a cysteine-rich region termed the plexin-

semaphorin-integrin (PSI) domain. C-terminal to this domain is an evolutionarily conserved I-like 

domain flanked on either side by immunoglobulin folds called hybrid domains. The membrane 

proximal region of the α-subunit contains four EGF-like repeats. The α-subunit also has a flexible 

“knee” region, which is formed by the hybrid domain and the first two EGF-like repeats (Figure 1.2 

b).10 The intracellular regions of the β-subunits are more conserved between subunits than are the α-

subunit cytoplasmic tails.12 These β-chain cytoplasmic tails play significant roles in regulating integrin 

activity.5b 
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Figure 1.2. Integrin structurea 

 

a a) Primary structure of integrin α-subunits. Half of the α-subunits also have an I-domain inserted between β-
propeller repeats 2 and 3; b) Primary structure of integrin β-subunits. 

 

Each α-chain combines with a β-chain to form a unique heterodimer with selectivity for ECM 

proteins, cell surface molecules, plasma proteins, or microorganisms.13 Integrins bind to their ligands 

in a divalent cation-dependent fashion.14 Although some integrins recognize primarily a single ECM 

protein ligand (e.g., α5β1 recognizes primarily fibronectin), others can bind several ligands (e.g., 

integrin αvβ3 binds vitronectin, fibronectin, fibrinogen, denatured or proteolyzed collagen, and other 

matrix proteins). Many integrins recognize the tripeptide Arg–Gly–Asp (RGD) (e.g. αvβ3, α5β1, αIIbβ3, 

αvβ6, and α3β1), but sequences flanking the RGD peptide are also important for selectivity.13a,b Other 

integrins recognize alternative short peptide sequences (e.g., integrin α4β1 recognizes Glu lle Leu Asp 

Val [EILDV] and Arg Glu Asp Val [REDV] in alternatively spliced CS-1 fibronectin and αIIbβ3 binds 

KQAGDV in the fibrinogen γ chain).15 In addition, some integrins can also bind cell surface receptors 

to induce cell–cell adhesion.13b,c 

The ligands bound by common integrins and integrin clinical targets are shown in Table 1.1.16 

Integrins are not constitutively active, but rather exist in multiple activation states (Figure 1.3).17 

Integrin activation status is regulated by the delicate balance in a bidirectional signaling mechanism 

which drives reversible changes in integrin conformation and affinity for their ligands. Both extra- and 

intracellular stimuli are allowed to regulate activation.7,18  
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Table 1.1. Integrin subfamilies cluster major therapeutic indications and main ligands 

Integrin class Clinically targeted in? Main ligandsa 
 
α4- Family 
α4β1  MS, autoimmune, Crohn’s, IBD  VCAM-1, FN 
α4β7  MS, autoimmune, arthritis  MAd-CAM-1 
α9β1  Cancer  VCAM-1, Opn, VEGF-C,-D 
 
Leukocyte cell adhesion 
αLβ2  Inflammation, psoriasis, stroke, ischemia, fibrosis  ICAM-1,-2,-3 
αMβ2  Inflammation, autoimmune  iC3b, Fbg 
αXβ2  Inflammation  iC3b, Fbg 
αDβ2  Inflammation  ICAM-3, VCAM-1 
αEβ7  Inflammation  E-cadherin 
 
RGD-binding 
gpIIbIIIa  Thrombosis, stroke, myocardial ischemia  Fbg, vWf 
α5β1  Cancer, AMD  FN 
α8β1  None  Npn, FN, VN 
αnβ1  Cancer  VN, FN 
αnβ3  Cancer, osteoporosis  VN, Opn, vWf, FN, Fbgb 
αnβ5  Cancer  VN 
αnβ6  Fibrosis, transplant rejection, cancer  FN, TGF-b1,-3 
αnβ8  Cancer  FN, TGF-b1,-3 
 
I domain: collagen binding 
α1β1  Fibrosis, cancer  Col 
α2β1  Fibrosis, cancer  Col 
α10β1, α11β1  None  Col 
 
LN binding 
α3β1  None  LN-5 
α6β1, α7β1  None  LN-1, -2 
α6β4  None  LN-2, -4, -5 

aAbbreviations: Col, collagens; Fbg, fibrinogen; FN, Fibronectin; LN, laminin; Npn, nephronectin; Opn, 
osteopontin; VN, vitronectin; vWF, von Willebrand factor. 
bAmong many other ligands. 

 

Figure 1.3. Representation of integrin activation states 
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High affinity binding of integrins to ligands is promted in response to intracellular signaling events 

converging on the cytoplasmic domain that alter the tertiary and quaternary structure of the 

extracellular region, making the integrin ligand-competent (inside-out signaling). 

Extracellular factors that influence integrin activation are ligand binding, divalent cation 

concentration, chemokine signaling and mechanical stress. Integrins transmit signals to the cell 

interior, which regulate organization of the cytoskeleton, activate kinase signaling cascades, and 

modulate the cell cycle and gene expression (outside-in signaling). Through this mechanism, integrins 

behave as mechanochemical transducers, orchestrating a synergic cross-talk with other extracellular 

matrix constituents and providing anchorage for endothelial cells. 

The integrin tails serve as a site for the docking of various kinases and related adaptor proteins that 

comprise focal adhesions. Signals emanating from focal adhesions have been shown to promote 

survival, differentiation and proliferation.19 In the absence of integrin ligation, these processes are 

abrogated, and therefore pharmacological inhibition of integrin ligation is of great interest for the 

therapy of numerous diseases resulting from aberrant integrin mediated signaling. 

Integrins are transducing information both into and out of the cell to promote cell adhesion, spreading 

and motility. Disruption of focal adhesions prevents integrin-mediated cell adhesion and impairs cell 

motility and migration. Prolonged integrin inhibition in adhesion-dependent cells results in anoikis, 

apoptotic cell death due to ECM deprivation.20 

 

1.2 -  Role in Angiogenesis 

Angiogenesis is the process whereby new vessels form from pre-existing vessels. The growth of new 

blood vessels promotes embryonic development, wound healing, the female reproductive cycle, and 

also plays a key role in the pathological development of solid tumors, hemangiomas, diabetic 

retinopathy, age-related macular degeneration, psoriasis, gingivitis, rheumatoid arthritis, and possibly 

osteoarthritis and inflammatory bowel disease.21 

Several cell types within tumors, including tumor cells, monocytes, and fibroblasts, secrete growth 

factors, such as VEGF, that induce blood vessel growth into tumors (Figure 1.4).22 

Studies have shown that angiogenesis plays a major role in tumor growth and that inhibiting 

angiogenesis can inhibit tumor progression and metastasis. Although growth factors and their 

receptors play key roles in angiogenic sprouting, adhesion to the ECM also regulates angiogenesis. 

Formation of new vasculature requires endothelial cell attachment and migration on ECM proteins. 

One ECM protein, fibronectin, is associated with vascular proliferation.23 As integrins are critical for 

the cell to bind ECM, many integrins play crucial roles in regulating vascular growth, both during 

embryonic development and in various pathologies. Proliferating endothelial cells express several 

integrins that are not expressed on quiescent blood vessels. 
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Recent studies suggest that inhibition of both αvβ3 and α5β1 may be required for optimal effects on 

angiogenesis.24 

 

Figure 1.4. Angiogenesis 

 

a) secretion of growth factors and Chemokines from tumor cells in vicinity of already existing blood vessels;  
b) activation or expression upregulation of integrins such as α1β1, α2β1, α4β1, α5β1 and αVβ3 on blood vessels;  
c) integrins promoting endothelial cell migration and survival during invasion of tumour tissue. New vessel 
sprouts are produced promoting tumour growth and providing a way to metastasis to local and distant sites, such 
as lung. 

 

1.2.1 -  Integrins αIIbβ3 

αIIbβ3 integrin (GPIIa/IIIb) is highly expressed on the surface of platelets,25 comprising approximately 

80% of the total surface proteins found on platelets. The final common pathway in blood coagulation 

involves the engagement of this integrin induced by platelet activation. Under normal conditions 

integrin αIIbβ3 is maintained in the inactivated state. Soluble factors in the blood such as thrombin, 

bind their respective platelet receptors to activate inside-out signaling pathways that cause 

conformational changes in αIIbβ3 integrin.25 Changes in conformation lead to increases in receptor 

affinity and avidity, which promote platelet aggregation and clot formation through increased cell-to-

cell contacts and cell-matrix contacts. Aberrant platelet aggregation or thrombosis is central to the 
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pathophysiology of multiple Acute Coronary Syndromes (ACS), unstable angina, ischemic stroke and 

sickle cell anemia. Inhibition of αIIbβ3 prevents platelet aggregation and therefore has shown efficacy 

in the prevention of thrombosis for the treatment of ACS. Some αIIbβ3 integrin targeted drugs have 

already been approved so far. 

The complete ectodomain structure of integrin αIIbβ3 was determined,26 thus living information about 

its binding site, better understanding its binding mode and conformation (Figure 1.5). The binding 

mode of RGD-based αIIbβ3 antagonists was established through mutagenesis experiments27 and 

crystallographic analysis of the platelet fibrinogen receptor.28 

 

Figure 1.5. Crystal structure of the extracellular segment of integrin αIIbβ3. 

 
 

1.2.2 -  Integrins αvβ3 and αvβ5 

Integrin αvβ3 is expressed on angiogenic blood vessels but not on resting vessels.29  Inhibitors of αvβ3 

antibody block angiogenesis in a variety of animal models. A key role of αvβ3 in vasculogenesis and 

angiogenesis has been outlined. Peptide and antibody antagonists of αvβ3 also block tumor 

angiogenesis and growth. Further analysis showed tumor regression related to apoptosis in the 

vasculature, induced by these antagonists.30 

Different members of the integrin αv subfamily transduce angiogenic signals by different growth 

factors. In vivo angiogenesis assays showed that bFGF or TNF-α depend on αvβ3 to initiate 

angiogenesis, whereas αvβ5 is required for TGF-α- and VEGF-mediated angiogenesis.31 These data, 

taken together, have established a role for αvβ3 and αvβ3 integrins in angiogenesis and as important 

therapeutic targets. 

α IIbβ3 
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One study showed that animals lacking β3 or β3 and β5 subunits displayed increased tumor 

angiogenesis.32 This led to the controversial conclusion that αvβ3/αvβ5 integrins might actually be 

involved in suppressing angiogenesis. However, it is likely that the apoptotic mechanism, which is 

generally induced by unligated integrins and controls tumor vascular growth, is responsible for the 

increased vascularization in β3 - and β5 -deficient tumors.16,33 

The complete crystal structure of αvβ3 integrin ectodomain including an αβ transmembrane fragment 

has been very recently determined.34 The earlier determination of the crystal structure of the 

ectodomain of αvβ3 (∆TM- αvβ3, Figure 1.6a) in the absence and presence of a prototypical RGD 

ligand (Cilengitide, Figure 1.6b), already revealed the modular nature of integrins and pivotal 

information on its divalent cation–mediated binding interactions with extracellular ligands. 

 

Figure 1.6. Crystal structures of αVβ3 integrina 

 

a a) Crystal structure of the extracellular segment of integrin αVβ3; b) Crystal structure of the extracellular 
segment of αVβ3 integrin in complex with the cyclic pentapeptide ligand Cilengitide, in its binding conformation. 

 

A homology model for the closely related αVβ5 receptor was developed. The two integrins were found 

to mostly differ in the region comprising residues 159-188 in the β3 subunit. A ‘roof’ was described 

for αVβ5 integrin featuring Tyr and Lys residues, which would hamper the binding of compounds 

containing bulky substituents nearby their Asp-mimicking group. Because of this difference, a few 

inhibitors of αVβ3 integrin displaying selectivity over αVβ5 have actually been found,35 but specific 

inhibitors of αVβ5 integrins have not been described yet. 

 

αVβ3 
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1.2.3 -  Integrin α5β1 

Integrin α5β1 is significantly upregulated in tumor angiogenesis in both mice and humans, but is not 

expressed on quiescent endothelium. Antagonists of α5β1 also inhibited tumor angiogenesis in chicks 

and mice, thus leading to tumor regression.23 

Integrin α5β1-mediated adhesion promotes endothelial cell survival in vivo and in vitro33 by 

suppressing the activity of protein kinase A (PKA). Integrin α5β1 antagonists activate both PKA and 

caspase-8, thereby inducing apoptosis and inhibiting angiogenesis.36 Although inhibition of integrin 

ligation can prevent cell attachment to the ECM, recent studies show that integrin α5β1 antagonists 

also actively suppress signal transduction that leads to cell survival. Antagonists of α5β1 suppress cell 

migration and survival on vitronectin, but not cell attachment to vitronectin, indicating that these 

antagonists affect the migration and survival machinery rather than integrin receptors for 

vitronectin.16,37 The three-dimensional structure of the ligand-binding headpiece of integrin α5β1 

complexed with fragments of its physiological ligand fibronectin was determined by means of a 

molecular electron microscopy. The density map for the unliganded α5β1 headpiece shows a ‘closed’ 

conformation similar to that seen in the αVβ3 crystal structure. By contrast, binding to fibronectin 

induces an ‘open’ conformation (Figure 1.7).38 

 

Figure 1.7. Surface-rendered density maps of the α5β1 headpiecea 

  

a a) the unliganded closed and b) the ligand-bound open conformation. 

 

The lack of reliable structural data in the past, however, excluded α5β1 as target for structure based 

drug design. However, the high homology between the different integrin subtypes makes them 

promising targets for homology modeling, which was achieved for αVβ5 integrin by Kessler and co-

workers.39,35b Homology modeling of proteins is considered to be possible for a homology of 40% or 

greater.40 This precondition is met by the integrins αvβ3 and α5β1 with 53% homology for αv/α5 and 

55% for β3/β1. Recently the α5β1 crystal structure was published, providing the necessary knowledge 

for structure based drug design. 41 In particular Takagi and coworkers reported the crystal structure of a 

a) b) a) 
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ligand-binding fragment of human α5β1 integrin, a prototypic integrin that functions as an RGD-

dependent fibronectin receptor. The structure, solved as a complex with a Fab fragment of the anti-β1 

inhibitory antibody SG/19, revealed high similarity to the ligand unbound form of αVβ3 and αIIbβ3 

integrins (Figure 1.8). Surprisingly, the RGD peptide can be introduced into the binding pocket by 

soaking, without causing any conformational change in integrin except for an ~1 Å shift of one residue 

and the dissociation of Ca2+ from the adjacent to the MIDAS (ADMIDAS). Docking simulations and 

structure-based mutagenesis identified a single α5 residue responsible for the strong preference of α5β1 

for fibronectin, establishing a basis for the combinatorial roles played by each subunit during the 

specific recognition of protein ligands. 

 

Figure 1.8. Structure of the α5β1integrin headpiece in complex with SG/19 Faba 

 

a A) Ribbon presentation of the overall structure with disulfide bonds in stick model. Individual domains are 
differently colored in magenta (β-propeller), red (thigh), cyan (βA), blue (hybrid), and purple (PSI), and bound 
metal ions are shown as spheres (yellow for Ca2+ and purple for Mg2+). SG/19 Fab is colored in gray (light chain) 
and wheat (heavy chain), with their CDR loop regions highlighted in green and yellow, respectively. B) Close-up 
view of the SG/19-binding interface. SG/19 Fab and β1 chain are shown in surface and ribbon presentations, 
respectively, with the same color code used in A. CDR regions and important interface residues are labeled. C) 
Superposition of three integrin headpiece structures in the ligand unbound form. Blue, α5β1; red, αvβ3 (3IJE); 
green, αIIbβ3 (3FCS). On the right is a blowup of the region around the metal-binding sites in the β1(blue) and β3 
(green; 3FCS) βA domains. 
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1.3 -  Role in hemostasis and thrombosis 

Thrombosis is a desease-related process consisting in the formation of a blood clot inside a blood 

vessel. It occurs when platelets adhere to damaged blood vessels and become activated.42 These 

activated platelets recruit other platelets, resulting in the formation of a haemostatic plug. This is an 

essential mechanism for preventing blood loss, but inappropriate thrombus formation can lead to a 

stroke or to a heart attack. It is probably the first clearly integrin associated process. 

In this context, integrin αIIBβ3 is responsible for platelet aggregation and this feature made it the first 

integrin to be identified as therapeutic target. In the 1990s, three αIIBβ3 integrin inhibitors were 

approved to reduce the risk of ischaemic events in patients with acute coronary syndromes and those 

undergoing percutaneous coronary intervention. They were the antibody fragment abciximab and the 

small-molecule inhibitors eptifibatide 1 and tirofiban 2 (Figure 1.9), all of which are administered 

intravenously.43 

 

Figure 1.9. αIIBβ3 integrin inhibitors 

 

 
 

However, despite initial expectations that antagonists targeting this integrin would be blockbuster 

drugs, attempts to develop oral antagonists for more convenient administration were not successful, 

and the use of the approved intravenous inhibitors has largely been restricted to high-risk patients.  

Instead, clopidogrel (commercially known also as PLAVIX®), an orally active ADP receptor 

antagonist, filled the market that was expected for αIIBβ3 integrin antagonists and became the second 

biggest-selling drug globally.44 

The failure of oral αIIBβ3 antagonists was probably due to multiple factors.45 There were severe 

problems, in particular a poor bioavailability and the lack complete understanding of the αIIBβ3 integrin 

role in thrombosis and signaling. 
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1.4 -  Immune system disorders 

Beside the studies on blood diseases, a great number of attempts have been made to find efficient 

antagonists of integrins involved in immune system disorders. 

In particular, both β1 and β2 integrins are important in immune function, where they have essential 

roles in localizing the immune response to the site of inflammation.46 Moreover a defect in β2 integrins 

leads to a life-threatening immune dysfunction (that is, leukocyte adhesion deficiency).47 

In this context, αLβ2 and α4β1 have been the first integrins to be therapeutically targeted. In particular 

Karin and coworkers reported that α4β1 integrin has a key role in the migration of lymphocytes to 

inflamed regions of the central nervous system in rodent models of multiple sclerosis.48 

Monoclonal antibody binding the α4 integrin subunit (natalizumab, approved in 2004) was effective in 

the treatment of multiple sclerosis, and also for the inflammatory bowel disorder Crohn’s disease.49 

Although natalizumab showed substantial efficacy in clinical trials,50 several patients developed a fatal 

progressive multifocal leukoencephalopathy after treatment,51 and the drug was withdrawn from the 

market in 2005. However, after reassessment in 2010, the European Medicines Agency (EMA) 

concluded that the benefits outweighed the risks for patients treated with natalizumab, and it was re-

approved with implementation of appropriate warning and safety measures. Several small-molecule 

inhibitors of α4 integrins are in development as followers of natalizumab. 

 

1.5 -  Osteoporosis 

Osteoporosis occurs when the balance between bone formation and degradation is disturbed. Integrins 

have an important role in the function of osteoclasts, which mediate bone resorption. Osteoclast α1β1 

integrin is responsible for the adhesion of osteoclasts to collagen.52 The αVβ3 integrin is also important 

in osteoclast function, and polymorphisms in this receptor are also associated with increased rate of 

fracture.53 An antagonist of this receptor (L-000845704) showed an increased bone density in 

postmenopausal women in a Phase II clinical study.54 However, it seems that neither this antagonist or 

any other anti-integrin is currently in clinical development for osteoporosis. 

 

1.6 -  RGD recognition motifs 

The arginine-glycine-aspartic acid (RGD) cell adhesion sequence (Figure 1.10) was discovered in 

fibronectin almost 30 years ago.55 Other adhesion proteins such as vitronectin, fibrinogen, von 

Willebrand factor, thrombospondin, laminin, entactin, tenascin, osteopontin, bone sialoprotein and, 

under some conditions, collagens were then discovered to include RGD sites. It was soon confirmed 
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with regard to fibronectin and then extended to other proteins that the RGD sequence is the 

endogenous recognition motif for cell attachment to proteins. 

 

Figure 1.10. Arg-Gly-Asp (RGD) tripeptide sequence 

 
Cells expressing several αV integrins (e.g. β1, β3, β5, β6 and β8), as well as integrins αIIbβ3, α5β1 and 

α8β1, recognize the ubiquitous RGD sequence in their ligands. Naturally occurring integrin inhibitor 

proteins bearing the RGD motif are showing an extremely varied selectivity and potency in targeting 

RGD-recognizing integrins. Elucidations on their structure suggests that proper restriction of the RGD 

flexibility can lead to integrin inhibition.56 

Hence, monomeric linear or confomationally constrained RGD-containing cyclic peptides, pseudo-

peptides, and mimetics thereof displaying high potency and selectivity were conceived. The most 

significant advances in this field have led to the development of agents targeting αIIbβ3 integrin on 

platelets for inhibiting thrombosis57 and inhibitors of αVβ3 and αVβ5 integrins against angiogenesis, 

cancer and bone resorption.58 Among these, it is important to highlght the nanomolar αVβ3/αVβ5 binder 

cyclic pentapeptide c-RGD-(D-Phe)-N-methyl-V developed by Kessler (known as Cilengitide or 

EMD121974, which has recently entered phase III clinical investigation for patients with glioblastoma 

multiforme, vide infra).58j  

As already mentioned, a crucial enhancement in this field was achieved with the crystal structure 

resolution of the ectodomain of αVβ3 integrin, both unligated and complexed with Cilengitide,5b as 

well as the better crystal structure resolution of αIIbβ3 integrin complexed with the synthetic anti-

trombotic drug Eptifibatide.6d,59 

Besides the well-defined RGD and other binding motifs, it has been proposed that the NGR and DGR 

sequences might also have a role in integrin recognition. Controversial results have however been 

reported. The importance of the isoDGR sequence as an integrin binding motif was serendipitously 

discovered by Corti research group (S.Raffaele/MolMed).60 

The NGR sequence, present in several endogenous molecules as well as in fibronectin FN-I5 and FN-

I7, can easyly deamidate (also in vivo) on asparagine, giving isoDGR and DGR (Scheme 1.1). 

Although protein modifications typically causes loss of activity/function, it was recently suggested 
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that isoDGR formation at NGR or DGR sites might result in a gain of function. The isoDGR sequence 

can in fact mimic RGD and interact with the RGD-binding site of integrins.61 

 

Scheme 1.1. Formation of DGR and isoDGR sequences by asparagine deamidation 

 
 

IsoDGR-containing peptides can recognize members of the RGD-dependent integrin family, such as 

α vβ 3, α vβ 5, αvβ6, αvβ8 and α 5β 1, but not others.62 Both affinity and specificity of the interaction 

between isoDGR and integrin binding site is reported to be highly dependent on the flanking residues. 

Notably, isoDGR docks onto the integrin binding site in an inverted orientation with respect to RGD. 

This orientation allows isoDGR to bind to the αvβ3  binding pocket maintaining all the typical 

electrostatic-clamp interactions of the RGD motif. The acidic and basic residues are at the correct 

distance and orientation to engage stabilizing interactions with the polar regions of integrin: the 

isoAspartic carboxylic side chain is interacting with MIDAS, Asn215, Tyr122 and Arg214, while Arginine 

guanidinium interacts with Asp218, Asp150 and Gln.180 Moreover, additional stabilizing interactions are 

present: glycine recognizes the receptor via polar interactions and an H-bond between its amide and 

carbonyl of Arg216.61 Therefore, isoDGR can be considered as a natural fit for the RGD binding pocket 

of αvβ3 integrin, suggesting that the naturally occurring transformation of NGR and DGR into isoDGR 

functions as a molecular switch able to activate integrin recognition. 

Although isoDGR- and RGD-containing ligands can share the same integrin binding site, their effects 

on integrin finction might not be necessarily the same.63 In a very recent paper, the MolMed group 

discovered an extremely interesting feature of the isoDGR ligands: when one of these ligands reaches 

the αvβ3 binding site, it is capable of blocking the integrin in the bent, inactive conformation.64 

 

1.6.1 -  RGD integrin ligands: state of the art 

The potential of αvβ3 inhibitor EMD121974 (3, Cilengitide, Figure 1.11), developed by Kessler and 

co-workers, was soon recognized by various clinical programs opening the era of the integrin inhibitor 

class as investigational agents for antiangiogenic and anticancer therapies. The crystal structure 
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analysis of the ectodomain of αvβ3 complexed with Cilengitide offered the first clear picture of the 

RGD binding mode, which revealed a Cilengitide conformation featuring an inverse γ-turn centered on 

Asp, and a distorted βII'-turn with Gly and Asp at the i+1 and i+2 positions, respectively. A distance 

of 8.9 Å between the Cβ of Asp and Arg, accounting for an almost extended conformation of the RGD 

motif were observed. The most important interactions between the ligand and the receptor involved 

the Arg guanidinium group, which was forming salt bridges with Asp150 and Asp218 in the 

α subunit, and the Asp carboxylic group of the ligand, which interacts with the Mn2+
 ion at MIDAS 

(Metal-Ion-Dependent Adhesion Site) in the β subunit. Moreover, several hydrophobic interactions 

were engaging the Gly residue, positioned at the interface between the α and β subunits. An earlier 

example of RGD-based cyclic peptide had already been identified by Kessler, c(RGDfV) 4 (Figure 

1.11),65 which can be considered as an ancestor of Cilengitide. This compound is selectively active 

against αVβ3 integrin and is commercially available, which makes it useful as a reference standard. 

Representative examples of semipeptidic αVβ3 inhibitors, bearing a non-peptidic and rigid turn-

inducing motif to appropriately constrain the RGD motif, are reported in the literature. Classic 

bicyclic, but also monocyclic scaffolds and simple linear tethers have been used to properly fold the 

RGD sequence within a macrocyclic template, to better fit within αVβ3 integrin binding site.66 Bicyclic 

heterocycles stand among the most popular constrained mimetics of natural amino acids in the 

structure-based design of peptidomimetics. Various successful examples of peptide are validating their 

use as preferred conformation-inducing scaffolds.67 Kessler exploited azabicycloalkane and 

spyrocyclic systems, traditionally known as β-turn inducers, to prepare cyclic RGD-containing 

peptidomimetics.68 The most active and less constrained compound of the series (ligand 5, Figure 

1.11) was a fully promiscuous antagonist. 

 

Figure 1.11. Integrin ligands developed by Kessler and coworkers 

 

 
 

A stereoisomeric library of RGD pentapeptide mimetics incorporating 5,6- and 5,7-fused 

azabicycloalkane amino acids was generated by the group of Scolastico.69 Among the high affinity 
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ligands found within the collection, the most active compounds (Figure 1.12) proved low nanomolar 

binders of αVβ3 and αVβ5 integrins. Ligand 7 was completely selective towards αVβ3 integrin with 

respect to αIIbβ3 and α5β1 integrins. Moreover, significant antiangiogenic activity of this compound 

emerged from in vitro experiments, showing inhibition of the proliferation of endothelial cells.70 

 

Figure 1.12. Azabicycloalkane RGD peptidomimetics 

 
 

A strong dependence of the overall conformation of the cyclic peptides on the lactam ring size and 

stereochemistry was revealed. Almost the same interactions observed in the crystal structure of αVβ3 

complexed with Cilengitide 3 were maintained. An average distance between Arg and Asp Cβ of 8.8 Å 

in the case of 6 and 8.5 Å in the case of 7 was observed, indicative of an almost extended 

conformation of the RGD sequence. Cyclopeptide 8 (Figure 1.12) emerged as a nanomolar antagonist 

of both αVβ3 and αVβ5 integrins comparable to ST1646 7. Docking studies revealed that the 

conformations containing an inverse γ-turn on Asp, conserved the main contacts observed in the X-ray 

crystal structure with Cilengitide 3.71 

 

Also monocyclic turn-inducing scaffolds were used in non-peptidic RGD-containing systems, based 

on βII'/γ arrangement with the γ-turn centred on Gly. Kessler inserted amino pyrrolidinone-based 

motifs to hold the RGD moiety, providing macrocycles 9a and 9b (Figure 1.13).72 A βII' turn 

conformation with Gly at the i+1 position was unexpectedly observed for these compounds.  

 

Figure 1.13. Pyrrolidinone RGD ligands 
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Ligand 9a was a moderate and selective antagonist of αVβ3 integrin, while 9b proved to be a more 

active αVβ3 inhibitor, even though aspecific. The main difference between the two analogues was the 

orientation of the lactam bond in the turn-motif, which was found to be rotated by 180° in the two 

isomers, and involved in a H-bond with the receptor in the case of 9b. 

D- and L-morpholines were exploited by Guarna and co-workers to replace the N-Me-Val motif of 

Cilengitide 3, giving compounds 10 (Figure 1.14).73 The different conformation of the peptide bond 

between D-Phe and the morpholine scaffold provided distinct structural arrangements for the two 

compounds. Ligand 10b showed in particular a cis conformation in the docking analysis, with an RGD 

sequence arrangement comparable to that observed in the αVβ3-Cilengitide complex. 

 

Figure 1.14. Morpholine-base RGD 

 

 
 

Kessler and Overhand designed several pyranoid and furanoid sugar δ- and ε-amino acid-based 

compounds. Due to their high flexibility, they proved to be aspecific antagonists of αVβ3 and αIIbβ3 

integrins. This aspecificity was also supported by the conformational analysis of this compounds, 

which showed an arrangement standing in between the typical kinked conformation of αVβ3-selective 

antagonists and the extended one required for targeting αIIbβ3 integrin. The two most representative 

members of this class of compounds (ligands 11 and 12) are sketched in Figure 1.15.74,58k  

 

Figure 1.15. Pyranoid and furanoid RGD peptidomimetics 
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Casiraghi and colleagues, following an analogous inspiration, exploited furanoid carbasugar γ-amino 

acid equivalents to generate four stereoisomeric macrocycles (most active members 13, Figure 1.15). 

Although an improvement in the affinity towards αVβ3 and αVβ5 was observed, surprisingly their 

activity proved to be almost irrespective of the configuration at the carbons bearing the amino acid 

functions. An inverted γ-turn, centered on Asp was revealed by NMR, displaying a Cβ(Asp)- Cβ(Arg) 

distance in the range of 8.0-8.4 Å.75 

The same group incorporated 4-amino proline (Amp) scaffolds into a library of RGD peptides, to 

further extend these findings.76 The compounds reported in Figure 1.16 (14a-d) displayed 

exceptionally high affinity towards αVβ3 and αVβ5 integrins. A picomolar activity was observed for 

αVβ3 integrin in the high affinity status. A preferential conformation featuring an inverse γ-turn motif 

around Asp for the macrocycles containing a cis-disposed γ-amino acid motif was detected by NMR 

conformational analysis. On the contrary, the macrocycles proved to be more flexible when a trans γ-

amino acid was present. All the macrocycles showed a Cβ(Asp)-Cβ(Arg) distance in the 7.8-8.2 Å 

range. The most active analogues maintain the relevant key interactions observed for Cilengitide. 

Compound 14a was stabilized by a strong H-bonding contact between the NH in the aminoproline 

motif and Tyr178. Quite interestingly, the alkyl and acyl chains of 14b and 14c provided additional 

contacts for binding, pointing towards a large hydrophobic hollow rich with aromatic residues.  

Figure 1.16. Library of RGD peptides containing 4-amino proline or cis-β-aminocyclopropanecarboxylic acid 

 

 
 

Pseudopentapeptides containing both enantiomers of cis-β-aminocyclopropanecarboxylic acid (β-Acc) 

were conceived, the most interesting (ligand 15) is sketched in Figure 1.13.58e Compound 15 resulted 

more active towards both αVβ3 and α5β1 integrins, with respect to the reference compound c(RGDfV) 

4. The Cβ(Asp)-Cβ(Arg) distance found for compound 15 resulted considerably shorter than expected 

(7.06 Å). Moreover, a γ-turn centered on Gly and a pseudo β-turn wherein (+)-β-Acc occupied the i+1 

position were observed. 

Despite the impressive work dedicated to the identification of semipeptide analogues, Cilengitide is 

the only investigational agent of this class that has been developed for clinical testing on cancer 

patients. The growth inhibitory activity of Cilengitide observed in the clinic is likely due to a 
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combination of multifaceted mechanisms. These might depend on whether the drug is administered 

alone or in combination, and include inhibition of angiogenesis, direct cytotoxic activity on tumor 

cells, increase of endothelial cell permeability, and inhibition of cell adhesion, migration and 

invasion.66,77  

Our research group reported the synthesis of two cyclic peptidomimetic compounds 16 and 17, 

containg the RGD sequence and bearing either DKP1 or DKP2 as a rigid scaffold (Figure 1.17).78  

 

Figure 1.17. Cyclic RGD peptidomimetics 16 and 17 containing scaffolds DKP1 and DKP2 respectively. 

 

 
 

These compounds were examined in vitro for their ability to inhibit biotinylated vitronectin binding to 

the purified αvβ3 and αvβ5 receptors, giving strikingly different yet encouraging results. High 

micromolar IC50 values were obtained by compound 16 [IC50 (αvβ3): 3898 ± 418 nm; IC50 (αvβ5):  > 

104], while compound 17 gave low nanomolar values and demonstrated 50 times more selective for the 

αvβ3 integrin with respect to the αvβ5 (αvβ3 IC50: 3.2 ± 2.7; αvβ5 IC50: 114 ± 99). 

 

2 -  Cyclic [DKP-RGD] compounds 

We decided to prepare a small library of cyclic DKP-RGD peptidomimetics (Figure 1.18), based on 

previous results obtained by our research group, mantaining the RGD sequence and fine tuning the 

diketopiperazine scaffolds (i.e. varying the configuration of the two stereocenters and the substitution 

at the diketopiperazinic nitrogen atoms). The aim of this study was to investigate activity, selectivity, 

and structure of these compunds, in order to identify new specific αv-integrin ligands. Furthemore, we 

wanted to better understand the role of diketopiperazine building blocks as inducers of secondary 

structures in these peptidomimetics. These data were also a starting point for the synthesis of RGD-

peptidomimetics bearing modified DKPs that allow the conjugation with Paclitaxel (see Chapter 2). 
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Figure 1.18. Cyclic RGD-peptidomimetics 16-23 containing bifunctional diketopiperazine scaffolds DKP1-
DKP8. 

 

 
 

2.1 -  Diketopiperazines 79 

Having emerged as privileged structures, diketopiperazines (DKPs) were used as templates capable of 
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and unsymmetrical DKPs bearing reactive functionalities (e.g., NH2, COOH) in the side chains of the 

amino acids. This let them being incorporated as peptidomimetic moiety. 

These constrained heterocyclic scaffolds were used in receptors, for the selective recognition of small 

peptides and anions, and in peptidomimetics mimicking topologically relevant elements of the 

secondary structure of proteins (e.g., β-turns, β-hairpins, and α-helices). 

 

2.1.1 -  DKPs as β-turn mimics 

A β-turn is defined as any tetrapeptide sequence, showing a typical 10-membered intramolecular H-

bonded ring (Figure 1.19). 

 

Figure 1.19. Example of a β-turn motif 

 

 
 

Although there has been much discussion in the literature on what constitutes a β-turn mimic and how 

different types of mimics are to be characterized,80 these can be roughly classified into three broad 

classes, which are illustrated in Figure 1.20: a) internal β-turn mimics, b) β-hairpin mimics (where a 

rigid scaffold induces reversal of the peptide chain), and c) external β-turn inducers. 

 

Figure 1.20. Classification of β-turn mimics.  
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2.1.2 -  Internal β-turn mimics 

The first class of β-turn mimics includes scaffolds displaying side chains with trajectories mimicking a 

peptide reverse turn. Several examples of this type of DKP-based scaffolds are reported in the 



22  Chapter 1 

literature. Golebiowski and co-workers developed a solid-supported high-throughput synthesis of 

bicyclic diketopiperazines, starting from racemic piperazine-2-carboxylic acid.81 A library of β-turn 

mimics was prepared (general structure shown in Figure 1.21), in which the first two  substituents (R4 

and R5) were introduced via the Petasis reaction and subsequent amide bond formation, whereas R1 

and R2 substituents were originated from an α-amino acid and were introduced in the amidation 

reaction. 

 

Figure 1.21. Examples of DKP-based internal β-turn mimics. 

 

 
 

Later on, the same authors were able to introduce the missing R3 substituent by developing a solid-

phase protocol based on the Ugi reaction and using both L- and D-diaminopropionic acid as starting 

material, leading to two (complementary) epimeric series of β-turn mimics 24 (Figure 1.22).82,83 

 

Figure 1.22 – Examples of DKP-based internal β-turn mimics. 

 

 

 
 

Simulated annealing calculations were performed on both epimers of structure 24 to determine their 
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more closely a type I β-turn.83 Starting from simple α-amino acids, Kahn and co-workers have also 

reported the solution-phase synthesis of a conformationally restricted β-turn mimic 25, based on a 

similar bicyclic diketopiperazine scaffold (Figure 1.22).84  
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diketopiperazine scaffolds used in this work (Figure 1.23) are functionalized at the N-1 and C-3, and 

the substituents at these two positions were calculated to overlay well with the side chains of the i+1 

and i+2 residues of a type-I β-turn. 

 

Figure 1.23. DKP mimics of a type I β-turn. 

 
 

2.1.3 -  DKPs as β-hairpin inducers 

The second class of β-turn mimics consists of a rigid scaffold which, when incorporated into a peptide 

or pseudo-peptide chain, causes a reversal of the chain.86 In strictest terms, these structures themselves 

should adopt a β-turn conformation, but quite often they lack substitution at the important i+1 and i+2 

residues of the turn region or the means to introduce significant diversity at these positions. As β-

hairpin inducers, the scaffolds can promote the formation of parallel or antiparallel β-sheets depending 

whether the side chains contain the same (e.g., two amine or carboxylic groups) or complementary 

functionalities (one amine and one carboxylic function). Gellerman and co-workers have reported the 

synthesis of orthogonally protected optically pure diketopiperazine scaffolds, starting from Nα-

carboxymethyl ω-Alloc ornithine and orthogonally protected L-lysine.87,88 The resulting non-

symmetrical diketopiperazine scaffold 26 (Figure 1.24) bears two amine functionalities [AllocNH-

(CH2)3, generated from Orn and FmocNH-(CH2)4, generated from Lys] in the arms of the DKP core 

and a complementary Nα-carboxymethyl group, which could be further manipulated via solid-phase 

organic chemistry. 

 

Figure 1.24. Example of DKP-based β-turn mimic 
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Alternatively, two different functionalities can be created in the lateral chains of the two amino acids 

forming the DKP core, such as an amine (e.g., derived from Lys, Orn or diaminobutyric acid) and a 

carboxylic acid (e.g., derived from Asp or Glu). Davies and co-workers performed some calculations 

on the minimum constraint requirement for a β-turn, which would fit tightly at the turn without 

causing steric hindrance, and preserve the polar backbone at the β-turn.89 The result turned out to be a 

reverse cis-amide link in the form of a DKP ring containing an amino and a carboxylic groups in a cis-

orientation, which would mimic a β-turn (correct angles and distances) and induce the formation of β-

sheet structures. 

 

2.1.4 -  DKPs in cyclic peptidomimetics, as external β-turn inducers 

In the case of external β-turn inducers, a rigid template is used to constrain the backbone of a cyclic 

peptide in order to stabilize the peptidic residue into a β-turn conformation. Notable examples of this 

type of β-turn mimic, based on a DKP scaffold, have been reported by Robinson and co-workers.90 

The authors have reported an extensive investigation of proline-based diketopiperazine templates 

(Figure 1.25), that were used to stabilize turn and hairpin conformations in cyclic peptides containing 

the Asn-Pro-Asn-Ala (NPNA) sequence. 

 

Figure 1.25. Examples of diketopiperazine-based scaffolds as “external” β-turn mimics. 
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This tetrapeptide motif, which is found as a repeated unit in the circumsporozoite (CS) surface protein 

of the malaria parasite Plasmodium falciparum, has a tendency to adopt type-I β-turns in aqueous 

solution in linear peptides containing tandemly repeated NPNA sequence, and this secondary structure 

appears to be important for immune recognition of the folded CS protein. Several bifunctional bi- and 

tri-cyclic diketopiperazine scaffolds were prepared and inserted into cyclic peptides containing the 

ANPNAA sequence. 

Scaffold 27 (R = H) was also introduced into the cyclic peptide 35 containing the Arg-Gly-Asp (RGD) 

sequence (Figure 1.26).90 

 

Figure 1.26. Cyclic RGD peptidomimetics 35 containing bicyclic DKP template 27. 

  
 

A conformational study to determine the three-dimensional presentation of the RGD motif in 

peptidomimetic 35 was performed by 1H-NMR spectroscopy. However, no conclusive evidence of a 

defined conformation could be found, and it seems very likely that the peptide backbone of 35 is 

interconverting rapidly between two or more conformational states in aqueous solution. 

In a similar approach, Royo, Albericio and co-workers prepared cyclic peptidomimetics containing 

cyclo[Lys-Asp] as a template (compounds 36a-c, Figure 1.27).91 The side arms of the diketopiperazine 

were used to link the amino and carboxy termini of three different peptides containing the RGD 

sequence (RGD, RGDG, and GRGDG), following a solid phase approach. 

 

Figure 1.27. Cyclic RGD peptidomimetics containing cyclo[Lys-Asp]. 
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2.1.5 -  DKPs in helical structures 

Bis-peptides were recently introduced by Schafmeister and co-workers as “synthetic oligomers 

assembled from cyclic, stereochemically pure monomers coupled through pairs of amide bonds to 

form rigid spiroladder oligomers with predefined and programmable three-dimensional structures”.92 

A “molecular rod” 37 (Figure 1.28) was synthesized starting from the “bis-amino acid” 4-amino-4-

carboxy proline 38.93 This substituted proline was prepared in multi-gram quantities in nine synthetic 

steps from commercially available trans-4-hydroxy-L-proline. The synthesis of the “molecular rod” 37 

occurred in two stages: a first “assembly” stage where the linear oligomer was grown, coupling the 

proline COOH to the primary amine in 4-position, by solid-phase peptide synthesis. A “rigidification” 

stage followed after cleavage from the resin. In this step, the diketopiperazines were cyclized by an 

intramolecular aminolysis reaction, in which the secondary amine of each monomer attacked the 

methyl ester of the previous monomer. 

 

Figure 1.28. Molecular rod 

 
 

 

2.1.6 -  Previous work of our research group in the diketopiperazine field 

In 2008, our group reported the synthesis of a new class of bifunctional DKP scaffolds (DKP1, DKP2, 

Figure 1.29), formally derived from aspartic acid and 2,3-diaminopropionic acid, bearing a carboxylic 

acid and an amino functionality.94 As a consequence of the absolute configuration of the two α-amino 

acids forming the cyclic dipeptide unit, the two reactive functionalities (amino and carboxylic acid) are 

locked in a cis- (DKP1) or trans-configuration (DKP2). In addition, while being derived from α-

amino acids, these DKP scaffolds can be seen as a conformationally constrained dipeptide formed by 

two β-amino acids (see Figure 1.29), and in particular a β2- and a β3-amino acids (following Seebach’s 

nomenclature).95 
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Figure 1.29. Structure of bifunctional DKP scaffolds highlighting the conformationally constrained β2–β3 
dipeptide sequence. 

N

COOH

N

O

O
Ph

NHBoc

H

DKP1 (S,S)
DKP2 (S,R)

β3-amino acid

β2-amino acid

 
 

In particular, the bifunctional scaffold DKP1, derived from L-aspartic acid and (S)-2,3-

diaminopropionic acid, bears the amino and carboxylic acid functionalities in a cis relationship and, as 

such, can be seen as a β-turn mimic and promoter of antiparallel β-sheet. In view of these potential 

properties, the synthesis of several peptidomimetics was performed by solution phase peptide 

synthesis (Boc strategy). Conformational analysis of these derivatives94 was carried out by a 

combination of 1H-NMR spectroscopy (chemical shift and NOE studies), IR spectroscopy, CD 

spectroscopy and molecular modeling, and revealed the formation of β-hairpin mimics involving 10- 

and 18-membered H-bonded rings and a reverse turn of the growing peptide chain (39 and 40, Figure 

1.30). The β-hairpin conformation of the longer derivatives (40a and 40b) was detected also in 

competitive, dipolar and even protic solvents such as dimethylsulfoxide and methanol, thus showing 

the high stability of these structures and the very good turn-inducing ability of the scaffold. 

 

Figure 1.30. Peptidomimetics containing scaffold DKP1. 

 

 
 

This attitude was further confirmed in the conformational analysis of two oligomers of DKP1, namely 

the trimer Boc-(DKP1)3-NHnBu 41 (Figure 1.31), and the tetramer Boc-(DKP1)4-NHnBu 42 (Figure 

1.31).96 The conformational preferences in solution of these foldamers were investigated by 1H-NMR 

and CD spectroscopy and molecular modeling. In the case of the trimeric structure, the conformational 

studies suggest the possible formation of two turns for the first and third residues, while the tetramer 
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42 (Figure 1.31) is best described as a β-bend ribbon conformation, which is characterized by a 

succession of β-turns forming a linear peptide with a ribbon-like shape. 

 

Figure 1.31. Structure of trimer 41 and tetramer 42. 

 

 
 

The most peculiar feature of the β-turn structure present both in the hairpin and β-bend ribbon are the 

CD spectra which display a rather strong minimum around 200 nm and a weaker one at 225 nm with a 

negative maximum at 215 nm (Figure 1.32). This was shown, by NMR studies, to adopt a turn-like 

conformation with a 10-membered H-bonded ring induced by the β2–β3 unit. 

 

Figure 1.32. CD spectrum of the tetramer 42 and the hairpin peptidomimimetic 40a. The data of the latter 
compound have been multiplied by a factor 10 to magnify the appearance of the curve. 
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Finally, in 2009 our group reported synthesis, conformational analysis and investigation of the 

biological activity of cyclic RGD-peptidomimetics 16 and 17 (see Figure 1.17), containing the 

bifunctional diketopiperazine scaffolds DKP1 (cis) and DKP2 (trans).97  

Conformational studies of these cyclic RGD peptidomimetics were performed by NMR spectroscopy 

(1H-NMR and NOESY spectra of dilute 9:1 H2O/D2O solutions) and by computational methods 

[Monte Carlo/Stochastic Dynamics (MC/SD) simulations]. The RGD-peptidomimetic 16 exists in two 

different preferred conformations: one characterized by a γ-turn centered at the Gly residue and a βII’-

turn at Gly-Asp, and the second featuring a γ-turn at Arg and a βII’-turn at Arg-Gly (respectively, 16A 

and 16B in Figure 1.33). In both cases, the RGD sequence displays a kinked, non-extended 

arrangement with a rather short (6.5-7.4 Å) Cβ(Arg)–Cβ(Asp) distance. This result is in good 

agreement with the low integrin affinity of compunds 16. On the contrary, the high affinity ligand 17 

adopts a single extended arrangement of the RGD sequence [Cβ(Arg)–Cβ(Asp) average distance = 9.3 

Å] characterized by a pseudo β-turn at DKP-Arg and the formation of an inverse γ-turn at Asp (Figure 

1.33).97 

 

Figure 1.33. Preferred intramolecular hydrogen-bonded patterns proposed for compound 16 and 17 on the basis 
of spectroscopic data.  

 
 

 

2.2 -  Library of DKP scaffolds 

On the basis of the goals previously achieved by our research group, a library of bifunctional 

diketopiperazines structurally similar to DKP1 and DKP2 (see Figure 1.29) was prepared, varying 

their stereochemistry and substitution pattern (DKP3 - DKP8, Figure 1.34). 
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Figure 1.34 – Library of bifunctional diketopiperazine scaffolds DKP1-DKP8 

 

 
 

2.2.1 -  Conception of the library 

DKP1 and DKP2 already revealed interesting and valuable constrained rigid scaffolds which, bearing 

a carboxylic acid and an amino functionalities. Tiny variations in their stereochemistry, ring 

substitutions or degrees of freedom, may dramatically change the behavior of these scaffolds when 

inserted into a peptidomimetic moiety. Having a wide range of scaffolds available may be of great 

impact, expecially when aiming at the modulation of a biological target. 

A collection of eight diketopiperazines (DKP1–DKP8) was synthesized, varying their stereochemistry 

and substitution patterns (Figure 1.34). In particular the scaffolds differ in:  

1) the relative stereochemistry, namely cis (DKP1) or trans (DKP2–DKP8); 

2) the absolute stereochemistry of the trans scaffolds [3R,6S (DKP2, DKP4, DKP5) or 3S,6R (DKP3, 

DKP6, DKP7, DKP8)]; 

3) the substitution at the endocyclic nitrogen atoms, which can be either hydrogen or benzyl (DKP2, 

DKP3, DKP4, DKP6, DKP8) or dibenzyl (DKP5, DKP7); 

4) the length of the side-arm bearing the carboxylic group, which can be either carboxymethyl 

(DKP1–DKP7) or carboxyethyl (DKP8). 

 

2.3 -  Synthesis of DKP1-DKP8 

A solution phase Boc-strategy was chosen for the synthesis of all the scaffolds. Different synthetic 

approaches were devised depending on the diketopiperazine nitrogen substitution. 
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2.3.1 -  Synthesis of DKP1 - DKP3  

The synthesis of DKP1, DKP2 and DKP3 (bearing a benzyl group at nitrogen N-4, Figure 1.34) was 

performed according to procedures already developed in the group.94 Hydroxymethyl diketopiperazine 

43 was identified as a suitable precursor. The diketopiperazine ring was supposed to be provided by 

the cyclization of the dipeptide methylester derived from suitably protected and functionalized L- or D-

aspartic acid and L- or D-serine (Scheme 1.2). 

 

Scheme 1.2. Retrosynthetic approach to DKP1-DKP3. 

 

 
 

Initially, aspartic acid was protected as an allylester on the β carboxylic acid functionality, i.e. 

orthogonally to Boc and methyl ester. Either L- or D-aspartic acid were accordingly esterified by 

treatment with acetyl chloride in allyl alcohol to give aspartic acid β-allylester hydrochloride 44 

(Scheme 1.3). The reaction of acetyl chloride with allyl alcohol generated HCl in situ leading to the 

formation of allyl acetate, which did not interfere with the reaction. This procedure is reported to be 

selective for the β-carboxylic group esterification, but some bis-allylation can still take place.98 In 

order to minimize the α-carboxylic acid esterification, the reaction was performed at low temperature 

(0-10 ºC). The amino group was then protected as tert-butoxycarbonyl (Boc) under standard 

conditions, to give N-(Boc)-aspartic acid β-allyl ester 45  (Scheme 1.3). On the other hand, the free 

OH group of the serine side-chain was not expected to react in the subsequent coupling reaction. 

Hence, only the α-carboxylic acid group was protected as methyl ester: serine methyl ester 

hydrochloride 46 was obtained by esterification of the corresponding free amino acid in refluxing 

methanol, in the presence of acetyl chloride (as a source of HCl). The hydrochloride salt 46 was then 

treated with benzaldehyde in methanol, in the presence of iPr2NEt to obtain the corresponding imine, 

that was subsequently reduced with sodium borohydride (Scheme 1.3) affording N-benzylserine 

methyl ester 47. In order to minimize racemization during this reductive alkylation step, special 

attention should be given to both temperature (-10°C during addition of reagents) and reaction time.99 

 

HN 55
22

33 N

66

O

O

Ph

COOH

NHBoc

HN

33 N

66

O

O

Ph

COOH

OH

43 a: 3S, 6S
     b: 3R, 6S
     c: 3S, 6R

H2N COOH

COOH

HOOC NH2

OH

L- or D-Asp

L- or D-Ser

DKP1: 3S, 6S
DKP2: 3R, 6S
DKP3: 3S, 6R



32  Chapter 1 

Scheme 1.3. Synthesis of precursorsa 

 

 

aReagents and conditions: (a) CH3COCl, CH2=CHCH2OH, 80%; (b) Et3N, Boc2O, 1:1 H2O/THF, 96%; (c) 
CH3COCl, CH3OH, 100%; (d) Et3N, PhCHO, CH3OH, then NaBH4, 93%. 

 

It was then attempted to couple protected aspartic acid 45 with N-benzylserine 47. This reaction was 

reported using Carpino’s reagent HATU, and the formation of dipeptides 48 was reported to occur in 

good yield (70%).94 After Boc-deprotection with TFA in dichloromethane, and subsequent basic 

activation in a biphasic medium (aqueous 1M NaHCO3 solution, AcOEt), diketopiperazines 43 were 

expected to be formed through an intramolecular 6-exo ring closing (Scheme 1.4). 

 

Scheme 1.4. Synthetic route to diketopiperazine 43, as reported in the literaturea  

 

 

aReagents and conditions: (a) HATU, HOAt, iPr2EtN, DMF, 72%; (b) CF3COOH/CH2Cl2 1:1; (c) NaHCO3 aq. 
1M, AcOEt, 77% over two steps. 
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Diketopiperazines 43 were actually obtained in good yields with these synthetic steps. The structure of 

the cis compound DKP1 (Figure 1.31) was also confirmed by X-ray.94 

Being sure of having obtained compounds of structure 43, we decided to investigate more carefully the 

reaction between aspartic acid derivatives 45 and the serin derivatives 47. Direct coupling of these 

fragments (with HATU, iPr2NEt or with EDC, DMAP) led to the isopeptides 49 in high yield, instead 

of forming the expected dipeptides 48 (Scheme 1.5).100 

 

Scheme 1.5. Formation of an isopeptide by direct coupling of compounds 45 and 47a 

 

 

aReagents and conditions: (a) HATU, HOAt, iPr2NEt, DMF, 72%. 

 

The spectroscopic properties of the intermediates were more closely inspected, revealing the the 

selective acylation of the unprotected β-hydroxy group of either (S)- or (R)-N-benzylserine, with no 

evidence peptide formation. Diagnostic of this outcome were the NMR spectra, studied in particolar 

for compounds 49a and 49b: (i) in the 1H NMR spectrum, the O-CH2 protons of serine were rather 

deshielded [49a: δ 4.32-4.48, m, 2H (CDCl3); 49b: δ 4.30, dd, 1H and δ 4.39, dd, 1H (CD2Cl2)]; (ii) in 

the HMBC (Heteronuclear Multiple Bond Coherence) spectrum of both compounds, a long-range 

coupling (through three bonds) was clearly evident between the O-CH2 protons of serine and the α-

carbonyl carbon of aspartic acid residue (Figure 1.35). Had we been in presence of dipeptide 48, we 

would have expected other long range couplings, in particular between the the α-carbonyl carbon of 

Asp and both the CH2-Ph and the Cα-H of Ser. 
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Figure 1.35. HMBC spectra analysis of isopeptides 49a and 49ba 

 

 

a HMBC spectra of a) 49a (CDCl3) and b) 49b (CD2Cl2), highlighting the long range coupling (through three 
bonds) between the O-CH2 protons of Ser and the α-carbonyl carbon of Asp; c) scheme representing the long 
range couplings highlighted from the HMBC spectra. 

 

In order to further prove our hypothesis, an extra experiment was conducted on compound 49b. 

Capping compound 49b with acetic anhydride provided isopeptide 50 (Scheme 1.6).  

Scheme 1.6. Acetylation of isopeptide 49ba  

 

 

aReagents and conditions: (a) Ac2O, pyridine, 3h, quant. 
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the secondary amine group of serine, which was therefore not involved in an amide bond with the 

aspartic fragment (Figure 1.36). 

 

Figure 1.36. HMBC spectrum of 50 in CD2Cl2 

 
 

Thus, given that compound 43 was obtained quantitatively after Boc deprotection of compounds 49 

with TFA and subsequent treatment with four equivalents of Et3N or iPr2NEt in methanol, it was clear 

that the deprotected isopeptide intermediate had to procede through an O,N-acyl transfer while 

forming the diketopiperazine ring. Puzzled by this behavior, we decided to investigate the conditions 

promoting O,N-acyl transfer/cyclization reactions, and the relevant mechanism that leads to 

diketopiperazine 43b from isopeptide 49b. Despite the presence of a nucleophilic nitrogen, isopeptide 

59b was stable both in solid state and in solution (dichloromethane). Instead, a complete degradation 

of the product was observed in methanol after 72 h, which could be attributed (as revealed from 1H-

NMR spectra) to the transesterification of the aspartate β-allyl ester and to the cleavage of the 

isopeptidic bond, giving rise to N-(tert-butoxycarbonyl)-aspartic acid dimethylester and N-

benzylserine methyl ester. In any case, isomerisation to dipeptide 48b was not observed. 

Afterwards, the Boc group of isopeptide 49b was cleaved by reaction with TFA to give the bis-TFA 

salt 51, which was fully characterized (Scheme 1.7). 
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Scheme 1.7. Cleavage of the Boc group on 49ba 

 

 

aReagents and conditions: (a) CF3CO2H/CH2Cl2, 1:1, 2h, quantitative. 

 

Also in this case, the HMBC spectrum of 51 confirmed that no O,N-acyl shift had occurred: no long-

range couplings were detected between the α-carbonyl carbon of Asp and either the CH2-Ph or the Cα-

H of Ser. Only a long-range coupling between the O-CH2 of Ser and the α-carbonyl carbon of Asp was 

highlighted in the spectrum (Figure 1.37). 

 

Figure 1.37. HMBC spectrum of isopeptide bis trifluoroacetate salt 51a 
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a a) HMBC spectrum of isopeptide bis trifluoroacetate salt 51 (CDCl3), highlighting the long range coupling 
(through three bonds) between the O-CH2 protons of Ser and the α-carbonyl carbon of Asp; b) scheme 
representing the long range couplings highlighted from the HMBC spectrum. 

 

The reactivity of bis-TFA salt 51 was then investigated. O,N-Acyl migration was not observed after 48 

h, monitoring a dichloromethane solution of compound 51 by 1H-NMR; conversely, when dissolved in 

methanol, complete methanolysis of isopeptide bis-TFA salt was detected in 6 h, giving rise to (2S)-

aspartic acid β-allyl ester α-methylester and N-benzylserine methyl ester. Even in this case 

isomerization to the dipeptide was not observed. Upon addition of 4 equivalents of a base (Et3N or 

iPr2NEt) to a solution of bis-TFA salt 51 in methanol, ring closure occurred rapidly and was virtually 

complete after 2 h. However, monitoring the reaction by 1H-NMR spectroscopy (CD3OD / 4 eq. Et3N), 

the dipeptide 48b resulting from the O,N-acyl shift was never detected, and only signals concerning 

the starting bis-TFA salt 51 and the resulting diketopiperazine 43b were identified. 

As can be clearly seen in Figure 1.38, the two dd at δ 4.32 and δ  4.45, belonging to the O-CH2 protons 

of benzylserine in the isopeptide bis-TFA salt 51, decreased in intensity with time, while the dd at δ 

3.93 and δ 4.02, corresponding to the same O-CH2 protons in 43b, proportionally increased. 

 

Figure 1.38. 1H-NMR monitoring of the transformation of isopeptide bis-TFA salt 51 into the diketopiperazine 
43b (CD3OD / 4 eq. Et3N). 

 

 



38  Chapter 1 

The same holds for the two doublet of the benzylic CH2 protons, which in the isopeptide salt 51 

resonate at δ 3.73 and δ 3.87, while in 43b shift to δ 4.12 and δ 5.38, and for the serine Cα-H which 

moves from δ 3.6 to δ 3.77. The same transformation (bis-TFA salt 51 to 43b) was followed by 1H-

NMR in an aprotic solvent (CD2Cl2 containing 4 eq. of Et3N). In this case too, despite the much 

reduced reaction rate (only 32% conversion was observed after 15 h), no O,N-acyl shift product was 

ever detected (Figure 1.39). 

 

Figure 1.39 - 1H-NMR monitoring of the transformation of isopeptide bis-TFA salt 51 into the diketopiperazine 
43b (CD2Cl2 / 4 eq. Et3N). 

 
 

Based on these experimental observations, a reasonable mechanistic explanation involves a rate 

limiting O,N-acyl transfer with simultaneous ring closure to DKP, so that no dipeptide intermediate 

can be detected (Scheme 1.8). On a preparative scale, the synthesis of diketopiperazine 43b from bis-

TFA salt 51 was more efficiently performed (94% isolated yield) with iPr2NEt (4 eq.) in iPrOH instead 

of MeOH, that in the long run leads to transesterification of aspartic allyl ester.100 Analogous results 

were also observed while synthesizing both diketopiperazines 43a (cis) and 43c (trans). 
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Scheme 1.8. Proposed diketopiperazine mechanism of formationa 

 

 

aReagents and conditions: (a) CF3CO2H/CH2Cl2, 1:1; (b) 4 equiv. base (Et3N or iPr2EtN), MeOH. 

 

In vision of scaling up the synthesis of isopeptide 49, these studies gave us enough information on 

how to improve the coupling reaction between the two aminoacid derivatives 45 and 47. Since an ester 

bond is formed instead of an amide bond, the more appropriate coupling reagent EDC (1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide) in presence of a catalytic amount of DMAP (4-

dimethylaminopyridine) provided the best results (Scheme 1.9). Carpino’s reagents (HATU, HOAt) 

are very useful to avoid epimerization on the α proton during aminoacid coupling, but also this 

methodology, monitoring temperature and reaction time, gives no epimerization on the α proton, as 

confirmed by 13C-NMR. Furthermore, the yields we got were higher than those obtained with 

Carpino’s reagent. 

 

Scheme 1.9. Coupling reaction using EDC 

 

aReagents and conditions: (a) EDC, DMAPcat., CH2Cl2, 94% 

 

Once the coupling reaction and the subsequent diketopiperazine ring closure were improved, we 

focused on the transformation of the hydroxy moiety of 43 into the Boc-protected amino moiety 

present in DKP1-DKP3. Functional group interconversion was accomplished by a Mitsunobu type 

reaction,101 followed by Staudinger reduction of the obtained azides 52 and in situ Boc-protection to 
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afford derivatives 53. Deprotection of the allyl ester on compounds 53 was succesfully accomplished 

via a Pd0 catalyzed Tsuji-Trost reaction, which proceeds quantitatively obtaining the final scaffolds 

DKP1-DKP3 (Scheme 1.10). 

 

Scheme 1.10. Synthesis of DKP1-3a 

 

 

aReagents and conditions: (a) PPh3, DIAD, H3N.tol, DCM/toluene, -20°C; (b) Me3P, Boc-ON, THF, -20°C to 
room temp.; (c) [Pd(PPh3)4], PPh3, pyrrolidine, DCM, 0°C. 

 

Mitsunobu transformation on substrates 43 is a quite sensitive reaction, since the activated hydroxy 

group can β eliminate before reacting with the hydrazoic acid (HN3). The C(6) proton can be in fact 

easily abstracted due to its acidity, providing a diketopiperazine with an exocyclic double bond (54, 

Scheme 1.11). 

 

Scheme 1.11. β-Elimination competing with the Mitsunobu reactiona 

 

aReagents and conditions: (a) PPh3, DIAD, H3N.tol, DCM/toluene, -20°C. 
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we were able to drastically reduce the amount of 54 formed, reducing the ratio 52a:54a to 3:1, 

52b:54a and 52c:54b to 8:1. The reaction was carried out in a 2:1 toluene/dichloromethane mixture, 
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since toluene was not sufficient to solubilize diketopiperazines 43 at -20°C. β-Elimination side 

reaction proved to be particularly competitive in the case of the cis substrate 43a. Purification from the 

by-product revealed even more difficult, as product 52a showed almost the same elution time of the 

corresponding byproduct 54a, with various eluents. These are the main reasons why yields are far 

lower for the cis product. NMR evidence of the formation of azide 52b, namely the shift of Cα-H and 

Cβ-H2 derived from serine, is reported in Figure 1.40. 

 

Figure 1.40. 1H-NMR comparison of compounds 43b and 52b 

 
 

The next step involved a one-pot Staudinger reaction – Boc protection. The Staudinger reaction, a very 

mild azide reduction, involves the reaction of the azide with a phosphine to generate a phosphazide, 

which loses N2 to form an iminophosphorane. Hydrolysis of this intermediate leads to the amine and 

the very stable phosphine oxide. In our case the intermediate iminophosphorane reacted directly with 

2-(t-butoxycarbonyloxyimino)-2-phenylacetonitrile (Boc-ON),102 present in the reaction medium, 

affording the desired Boc-protected amine in very good yield. The mechanism is reported in Scheme 

1.12. 

 

Scheme 1.12. Staudinger reaction, mechanism. 
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Finally the DKP scaffold allyl esters 53 (Scheme 1.10), were de-allylated in the presence of a catalytic 

amount of tetrakis(triphenylphosphine) palladium(0) [Pd(PPh3)4] and pyrrolidine, i.e. a nucleophile 

acting as an allyl scavenger to give the amino acid derivatives DKP1-DKP3 in quantitative yield. 

Such methodology is of special interest for peptide synthesis because the deprotection conditions are 

usually mild enough to be compatible with the presence of acid labile t-Bu and Boc protective 

groups.103 

A comprehensive scheme of the whole synthetic route to DKP1-DKP3 is reported below (Scheme 

1.13). 

 

Scheme 1.13. A summary scheme of the whole synthetic route to DKP1-DKP3a 

 

 

aReagents and conditions: (a) CH3COCl, CH2=CHCH2OH; (b) Et3N, Boc2O, 1:1 H2O/THF; (c) CH3COCl, 
CH3OH; (d) Et3N, PhCHO, CH3OH, then NaBH4; (e) EDC, DMAPcat., DCM; (f) TFA/DCM, 1:1; (g) iPr2EtN, 
iPrOH; (h) PPh3, DIAD, H3N.tol, DCM/toluene, -20°C; (i) Me3P, Boc-ON, THF, -20°C -> r.t; (j) [Pd(PPh3)4], 
PPh3, pyrrolidine, DCM, 0°C. 
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Scheme 1.14. Retrosynthetic analysis of scaffolds DKP4 and DKP6 

 

 
 

Protection of the Ser hydroxy group was necessary to avoid self-condensation: we initially decided to 

non-orthogonally protect the hydroxyl (as tBu ether) and the amino functionalities (as Boc), which can 

be simultaneously deprotected in an acidic medium (e.g. TFA solution) before diketopiperazine ring 

closure; Boc-Ser(OtBu)OH 57, was commercially available (Fluorochem™). 

 

Scheme 1.15. Synthesis of protected dipeptide Ser-Aspa 

 

 

aReagents and conditions: (a) CH3COCl, CH3OH: 99%; (b) NaBH3CN, PhCHO, CH3OH: 67%. 
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group is hindered as well, due to the two surrounding tBu groups. The use of classical aminoacid 

coupling agents, such as HATU, DPPA, PyBrOP (reported to be very useful in the coupling of N-

methyl aminoacids),104 was attempted first, but the desired dipeptide 65 could not be obtained (Scheme 

1.16). Curiously, reaction with PyBrOP provided a pyrrolidine serine derivative in good yield. Other 

methods envisaging carboxyl activation via N-carboxyl anhydride (NCAs) derivatives were 

employed.105 Original procedures prompted the treatment of an aminoacid with phosgene. Milder 

reactants, such as diphosgene (ClCO2CCl3) or chlorosilanes (such as Cl2SiMe2) were later developed to 

generate an NCA derivative (these compounds generate silylated NCA derivatives). 
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Scheme 1.16. Coupling attempts between compounds 56 and 57 with “traditional” methodologies. 

 

 
 

We attempted to use both of these mild methodologies to generate NCA-activated derivatives of H-D-

Ser(tBu)-OH (Fluorochem™). Unfortunately, only reaction with dimethylchlorosilane led to the NCA-

like compound. Also this activation did not prove anyway strong enough to induce dipeptide 

formation when reacted with nucleophile 56 (Scheme 1.17). 

 

Scheme 1.17. Coupling attempts between compounds 56 and 57 exploiting NCA derivatives 
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of 57 was prepared in crystalline form using cyanuric fluoride and was subjected to reaction with 

compound 56, without previous purification: the isolated yield of dipeptide 58 after workup and 

chromatography purification was extremely low (10%, Scheme 1.18). 
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Scheme 1.18. Attempted activation of compound 57 as acyl floride 

 

  
 

Further attempts were made activating Ser as its mixed and symmetric anhydrides.107 The mixed 

anhydride of compound 57, obtained after reaction with isobutylchloroformate (IBCF), was reacted in 

a one-pot procedure with aspartic derivative 56. The nucleophile preferentially attacked on the wrong 

carbonyl of the mixed anhydride (probably due to steric factors), leading to a useless carbamate 

(Scheme 1.19). 

 

Scheme 1.19. Mixed anhydride attempt 

 

 
 

Finally, to our delight, pre-formation of the symmetric Boc-Ser(OtBu) anhydride (with DCC) and 

coupling to N-Bn-Asp dimethyl ester 56 afforded the corresponding dipeptide 58 in a satisfactory 75% 

yield (Scheme 1.20). The symmetric anhydride was separated by filtration from the unsoluble 

dicylohexyl urea (DCU, formed as DCC byproduct), in order to prevent the undesidered condensation 
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derivative 57, resulting from the breakdown of the symmetric anhydride, was recovered in the workup  
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(Scheme 1.21). Planning to transform hydroxy group of 55a in a protected amino group, we performed 

the Mitsunobu reaction under the same conditions used for the synthesis of scaffolds DKP1-DKP3 

(toluene/DCM, -20 °C), but we recovered only the starting material. Hence, we tried increasing 

temperature gradually, from -20 °C to 0 °C, without any results. 

 

 

BocHN COOH

O-tBu
N
H

COOCH3

56

Ph

57

N COOCH3
BocHN

tBu-O

O

Ph

58

N N

NF F

F

, Py

DCM

85%

BocHN COOF

O-tBu

DIPEA, DCM
-30 °C ! r.t

10%

COOCH3

COOCH3

BocHN COOH

OtBu

56
57

DIPEA, DCM

0!C, 5 min.

BocHN

OtBu
Cl

O

O

O

O

O

O

57

N COOCH3O

O
COOCH3

Ph



46  Chapter 1 

Scheme 1.20. Formation of dipeptide 58 via symmetric anhydride 

 

 
 

Scheme 1.21. Formation of DKP 55a 

 

aReagents and conditions: (a) TFA/DCM; (b) MeOH, DIPEA, 85% (over two steps). 

 

The Mitsunobu reaction performed at room temperature afforded the azide 59, although the major 

product was the olefin derivative 60 (ratio 59/60 = 2:3, Scheme 1.22).  

 

Scheme 1.22. Mitsunobu reaction on compound 55a 

 

 

aReagents and conditions: a) PPh3, DIAD, HN3⋅Tol, toluene/DCM, r.t. 
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In order to circumvent the problem of β-elimination, simplify the synthetic sequence and avoid the use 

of an additional protecting group (tBu), the hydroxy group of Boc-Ser-OMe 61 (either L or D) was 

directly transformed into the corresponding azide under Mitsunobu conditions in 78% yield (Scheme 

1.23).  The obtained compound 62 was then saponified with LiOH. Treatment of freshly prepared acid 

63 with DCC afforded the symmetric anhydride 64 in a quantitative yield, which was isolated by 

filtering off DCU and evaporating the solvent, and immediately used in the next synthetic step without 

further purification (Scheme 1.23). 

 

 Scheme 1.23. Synthesis of symmetric anhydrides 64a 

 

 

aReagents and conditions: a) CH3COCl, CH3OH; b) Boc2O, THF/H2O 1:1; c) HN3, DIAD, PPh3, THF; d) LiOH, 
THF/H2O 1:1; e) DCC, DCM. 

 

The coupling of 3-azido-2-N-tert-butoxycarbonylaminopropionic anhydride 64 to either (S)- or (R)-N-

benzyl-aspartic acid dimethylester 56 occurred in 80% yield, whereas the subsequent Boc cleavage 

and cyclization to diketopiperazines 59 were nearly quantitative (Scheme 1.24). 

 

Scheme 1.24. Synthesis of diketopiperazines 59a 

 

aReagents and conditions: a) TFA/DCM 1:2; b) DIPEA, iPrOH. 
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hydrolysis of the methyl ester provided diketopiperazines DKP4 and DKP6 in 90% yield over three 

steps (Scheme 1.25). 

 

Scheme 1.25. Synthesis of DKP4 and DKP6a 

 

aReagents and conditions: (a) H2, Pd-C, THF; (b) Boc2O, THF; (c) LiOH, THF/H2O 1:1. 

 

2.3.3 -  Synthesis of DKP5 and DKP7 

The synthesis of scaffolds DKP5 and DKP7 can in principle be achieved through the benzylation of 

the second diketopiperazine nitrogen of an advanced intermediate in the synthesis of either DKP2 and 

DKP4, or DKP3 and DKP6, respectively (Figure 1.41). With the aim to minimize the use of 

protecting groups, a suitable substrate for the nitrogen alkylation was identified in the azide derivative. 

The diketopiperazine intermediates bearing a free hydroxy group or a Boc-protected amino 

functionality could give over-alkylated by-products. The azido group was used as a protecting group 

here, being stable under the alkylation reaction conditions. 

 

Figure 1.41. DKP5 and DKP7 retrosynthetical analysis  
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We initially investigated the N-benzylation on available intermediates 52b-c. The alkylation of 

nitrogen N-4 was attempted using sodium hydride and benzyl bromide in dimethylformamide. This 

procedure generally provides good yields for amide benzylation, but in our case the major product was 

the diketopiperazine with an exocyclic double bond (compounds 54a-b, Scheme 1.11), formed from 

the elimination of the azido gruop in presence of a strong non-hindered base (i.e. NaH). Better results 

were obtained using the more hindered base KHMDS (potassium bis(trimethylsilyl)amide) in presence 

of benzyl bromide at a temperature between -70 °C and -40 °C. Azides 68 were converted into DKP5 

and DKP7 following the same protocols used for the synthesis of DKP2 and DKP3: a Staudinger 

reduction provided N-Boc protected amine 69, which was then subjected to a Tsuji-Trost-like ester 

deallylation (Scheme 1.26). 

 

Scheme 1.26. Synthesis of DKP5 and DKP7, starting from intermediates 58b and 58c, respectivelya 

 

aReagents and conditions: (a) KHMDS, BnBr, THF/DMF 7:3, 76%; (b) Me3P, BocON, toluene, 65%; (c) 
pyrrolidine, PPh3, [Pd(PPh3)4], DCM. 

 

Intermediates 59a-b resulted less prone to β-elimination under N-alkylation conditions. Azides 70 are 

catalytically hydrogenated to the corresponding amines, which could be easily Boc-protected to yield 

derivatives 71. Methyl ester hydrolysis finally afforded the desired DKP5 and DKP7 (Scheme 1.27). 

This last approach seems to be slightly better than the previous one, even if both methods can 

considered comparably reliable. 

 

Scheme 1.27. Synthesis of DKP5 and DKP7, starting from intermediates 59a and 59b, respectivelya 

 

aReagents and conditions: (a) KHMDS, BnBr, THF/DMF 7:3; (b) H2, Pd-C, THF; (c) Boc2O, THF (d) LiOH, 
THF/H2O 1:1; 75% over four steps. 
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2.3.4 -  Synthesis of DKP8 

Scaffold DKP-8, bearing a carboxyethyl side chain, was obtained through a synthetic strategy similar 

to the one adopted in the case of compounds DKP1-DKP3 (see § 2.3.1, in this Chapter), starting from 

(S)-N-benzylserine methyl ester 47 (see Scheme 1.3) and (R)-N-(tert-butoxycarbonyl)glutamic acid γ-

methyl ester 72.108 Also in this case, direct coupling of these fragments afforded isopeptide 73, which 

was deprotected and cyclized to diketopiperazine 74. Azidation of the -CH2OH group through a 

Mitsunobu reaction, reduction by catalytic hydrogenation, protection with Boc2O and final hydrolysis 

of the methylester afforded DKP8 (Scheme 1.28). 

 

Scheme 1.28. Synthesis of DKP8a 

 

 

aReagents and conditions: (a) 47, HATU, HOAt, DIPEA, DMF; (b) TFA/CH2Cl2 1:2; (c) DIPEA, iPrOH; (d) 
HN3, DIAD, PPh3, CH2Cl2/toluene/DMF; (e) H2, Pd-C, THF; (f) Boc2O, THF; (g) LiOH, THF/30% H2O2 1:1. 
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aspartic derivative Cbz-Asp(OtBu)-OH afforded the linear peptidomimetic Cbz-Asp(OtBu)-

DKPArg(Mtr)-Gly-OBn (Scheme 1.29). 

 

Scheme 1.29. Synthesis of cyclic RGD peptidomimetics 18-23 containing scaffolds DKP3-DKP8 

 

aReagents and conditions: (a) Cs2CO3, MeOH; (b) BnBr, DMF: 95%; (c) TFA/DCM 1:2; (d) HBTU, HOBt, 
DIPEA, DMF: 90%; (e) TFA/DCM 1:2; (f) HATU, HOAt, iPr2EtN, DMF: 67%; (g) TFA/DCM 1:2; (h) Cbz-
Asp(OtBu)-OH, HATU, HOAt, iPr2EtN, DMF; (i) H2, Pd/C, THF/H2O 1:1. 
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product was formed under this reaction conditions, and the recovery of the desired product by 

preparative HPLC was not trivial. Thus, we tried different solvents and we found that the 

hydrogenolysis in THF/water mixture (1:1) proceeded quantitatively without any formation of 

methylated by-products. The macrocyclization step was optimized on DKP3 containing compound 82 
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The best results were obtained when using DPPA or FDPP (75% and 73% respectively). DPPA was 
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with a flash chromatographic column. 
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Table 1.2. Optimization of macrolactamization conditions, on compound NH2-D-DKP3-RG-OH (82). 

Reagents and conditions Purification Yield 
DPPA, DIPEA, 1.4 mM in DMF, 48 h Flash silica gel column cromatography 75% 

PyBrOP, DIPEA, 1.4 mM in DMF, 48 h Flash silica gel column cromatography 28% 
FDPP, DIPEA, 1.4 mM in DMF, 48 h Flash silica gel column cromatography 73% 

HATU, HOAt, collidine, 2 mM in DMF, 48 h Flash silica gel column cromatography 40% 
 

Anyway, in order to avoid purification problems, all the other linear intermediates 82 (containing 

DKP4-8) were efficiently macrolactamized using the more conventional HATU, in presence of HOAt 

and iPr2NEt. The final cleavage of the side chain protecting groups (Mtr and tBu) was accomplished 

treating cyclized products 83 with a strongly acidic “cleavage cocktail”. A first receipe envisaged a 

mixture TFA/triethylsilane/1,2-ethandithiol/phenol/thioanisole/H2O 80:2.5:5:5:5:2.5. Far better results 

and cleaner crudes were obtained with the mixture TFA/thioanisole/ethanedithiol/anisole 90:5:3:2. 

The N-dibenzyl derivatives 20 and 22 can exist as two different separable conformers (diastereomers) 

due to hindered rotation of one ring around the other, in a way reminiscent of the ansa-

cyclopeptides109 (i.e., the DKP N-benzyl group cannot pass inside the macrolactam ring). In the case of 

20, we were able to isolate only one diastereomer (either because it was formed exclusively or because 

it was formed predominantly) and the minor one was not detected. 

The two diastereomers of 22 (A and B), formed in the macrolactamization step, were isolated in a 2:1 

ratio (Scheme 1.30). Although two sets of peaks (2:1 ratio) were visible in the 1H NMR spectrum, the 

two diastereomers could not be separated by HPLC because they had the same elution time. However, 

after side-chain deprotection, the two diastereomers could be separated, analyzed and subjected to the 

binding assays (vide infra). 

 

Scheme 1.30. Non-interconverting diastereoisomers 22 A and B 
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2.5 -  Biological evaluation 110 

The cyclic RGD peptidomimetics were examined in vitro for their ability to inhibit biotinylated 

vitronectin binding to the purified αvβ3 and αvβ5 receptors (Table 1.3). 

  

Table 1.3. Inhibition of biotinylated vitronectin binding to αvβ3 and αvβ5 receptors  

Compound Structure αVβ3 IC50 [nM]a αVβ5 IC50 [nM]a 

16 Cyclo[DKP1-RGD] (cis) 3898 ± 418 > 104 

17 Cyclo[DKP2-RGD] (trans) 3.2 ± 2.7 114 ± 99 

18 Cyclo[DKP3-RGD] (trans) 4.5 ± 1.1 149 ± 25 

19 Cyclo[DKP4-RGD] (trans) 7.6 ± 4.3 216 ±  5 

20 Cyclo[DKP5-RGD] (trans) 12.2 ± 5.0 131 ± 29 

21 Cyclo[DKP6-RGD] (trans) 2.1 ± 0.6 79 ±  3 

22 A Cyclo[DKP7-RGD] (A-major) 220.2 ± 82.3 > 104 

22 B Cyclo[DKP7-RGD] (B-minor) 0.2 ± 0.09 109 ± 15 

23 Cyclo[DKP8-RGD] (trans) 7.5 ± 0.6 > 103 

ref 1 c(RGDfV) 3.2 ± 1.3 7.5 ± 4.8 

ref 2 ST1646 1.0 ± 0.5 1.4 ± 0.8 

aIC50 values were calculated as the concentration of compound required for 50% inhibition of biotinylated 
vitronectin binding as estimated by GraphPad Prism software; all values are the arithmetic mean ± SD of 
triplicate determinations. 

 

Screening assays were performed by incubating the immobilized integrin receptors with various 

concentrations (10-10 – 10-5 M) of the RGD ligands 16-23 in the presence of biotinylated vitronectin (1 

µg/mL), and measuring the concentration of bound vitronectin in the presence of the competitive 

ligands. The ability of the new compounds to inhibit the binding of vitronectin to the isolated αvβ3 and 

αvβ5 receptors was compared with that of the reference compounds c(RGDfV)111 (4, Figure 1.11) and 

ST164669 (7, Figure 1.12). 

Low nanomolar values were obtained with all the ligands except cyclo[DKP1-RGD] 16, which 

incorporates a cis-DKP and ligand 22 A. The behavior of this last ligand is peculiar, considering that 

the diastereomeric compound 22 B (see above for the definition of the two diastereomers) is the most 

potent ligand of this series, as it effectively inhibits the binding of vitronectin to the isolated αvβ3 

receptor in subnanomolar concentration. Interestingly, unlike reference compounds c(RGDfV) and 
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ST1646, the RGD-peptidomimetics 16-22 were ca. 10-1000-fold more selective for the αvβ3 integrin 

with respect to the αvβ5, in this kind of assay. 

 

2.6 -  NMR spectroscopy characterization and conformational studies 112 

The structure and connectivity of ligands 16-22 and of their fully protected precursors were 

unambiguously assigned by means of mono- and bidimensional 1H- and 13C-NMR spectra. 

The preferred conformations of the cyclic RGD peptidomimetics 16-22 in aqueous solution were then 

investigated, with the aim of rationalizing the affinity of these compounds for the αvβ3 receptor at a 

molecular level. In fact, as already mentioned, the high activity and selectivity of Cilengitide 3 has 

been attributed to an extended conformation of the RGD motif displaying a distance of ca. 9 Å 

between the Cβ atoms of Asp and Arg. In such extended conformations, the carboxylate and 

guanidinium groups are properly positioned to effectively exert their function of electrostatic clamp. 

Monodimensional 1H-NMR experiments were conducted to detect intramolecular hydrogen bonds, by 

measuring the chemical shift of the N–H protons and their temperature coefficients (Δδ/ΔT). NOESY 

spectra were recorded to investigate both sequential and long-range NOEs that provide evidence of 

preferred conformations. The relevant NMR data are summarized in Table 1.4, while the graphic in 

Figure 1.42 displays the temperature coefficients. 

As already reported in the literature,78 ligand 16 exists as an equilibrium of two different preferred 

conformations. The NOESY spectrum shows two mutually exclusive long-range NOE contacts. The 

cross peak between DKP-NH10 and NHAsp (strong) is indicative of a β-turn conformation at Gly-Asp 

stabilized by a hydrogen bond between DKP-NH10 and Arg-C=O (referred to as type I H-bonding 

pattern, Figure 1.43 A). The chemical shift value (δ = 7.46 ppm) and the Δδ/ΔT value (-2 ppb K-1) of 

the amide proton DKP-NH10 indicate that this proton is strongly locked in an intramolecularly H-

bonded state. The cross peak between NHGly and NHAsp (medium) is indicative of an alternative β-turn 

conformation at Arg-Gly, stabilized by a hydrogen bond between Asp-NH and C(8)=O (referred as 

type II H-bonding pattern, Figure 1.43 B). 

 

Table 1.4. 1H-NMR and NOE data of cyclic RGD-peptidomimetics 16-23 in water 
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 NH1 NH4 NH10 NHArg NHGly NHAsp 
Significant NOE 

contacts 

16 
c[DKP1-RGD] 

δ  (ppm) 8,35 - 7,46 8,40 8,75 8,10 
NHAsp-NH10; 
NHAsp-NHGly Δδ /ΔΤ  

(ppb/K) -7.3 - -2.0 -7.0 -8.0 -3.7 

17 
c[DKP2-RGD] 

δ  (ppm) 8.35 - 8.78 8.57 8.18 8.29 
NHArg-NHGly Δδ /ΔΤ  

(ppb/K) -8.7 - -10.7 -7.0 -5.7 -7.7 

18 
c[DKP3-RGD] 

δ  (ppm) 8.10 - 8.28 8.80 8.00 7.85 
NHArg-NHGly Δδ/ΔΤ 

(ppb/K) -5.7 - -8.5 -6.0 -4.5 -3.5 

19 
c[DKP4-RGD] 

δ  (ppm) - 8.17 7.59 8.29 8.27 8.88 
-- Δδ /ΔΤ  

(ppb/K) - -9.1 -0.7 -9.3 -8.2 -9.3 

20 
c[DKP5-RGD] 

δ  (ppm) - - 8.58 8.48 8.23 8.42 
NHArg-NHGly Δδ /ΔΤ  

(ppb/K) - - -11.0 -7.5 -4.7 -8.2 

21 
c[DKP6-RGD] 

δ  (ppm) - 8.07 7.90 8.32 8.35 8.80 
NHAsp-NH10; NH4-

NH10; Δδ /ΔΤ  
(ppb/K) - -4.9 -5.1 -7.6 -6.7 -8.0 

22 A 
c[DKP7-RGD]-A 

δ  (ppm) - - 8.04 8.66 7.93 7.76 
NHArg-NHGly; 
NHAsp-NHGly Δδ /ΔΤ  

(ppb/K) - - -7.5 -5.0 -3.0 -1.0 

22 B 
c[DKP7-RGD]-B 

δ  (ppm) - - 7.72 8.34 8.45 8.55 
NHAsp-NH10 Δδ /ΔΤ  

(ppb/K) - - -4.0 -7.0 -7.0 -5.0 

23 
c[DKP8-RGD] 

δ  (ppm) 7.82 - 7.43 8.64 8.04 7.90 
- Δδ /ΔΤ  

(ppb/K) -8.0 - -6.0 -6.8 -4.4 -5.2 

 

Figure 1.42. Graphical illustration of temperature coefficients (Δδ/ΔT) for compounds 16-23 in H2O/D2O 9:1 
between 290 K and 320 K 
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Figure 1.43. Preferred intramolecular hydrogen-bonding pattern proposed for compound 16 on the basis of 
spectroscopic dataa 

 

aThe arrows indicate significant NOE contacts. A) Type I H-bonding pattern, Gly-Asp β-turn motif. B) Type II 
H- H-bonding pattern, Arg-Gly β-turn motif. 

 

High affinity ligands 17 and 18 are apparently characterized by a high conformational mobility, as 

suggested by the values of chemical shifts and Δδ/ΔT reported in Table 1.4. The only exception is 

proton NH-Asp of 18 (δ = 7.85 ppm, Δδ/ΔT = -3,5 ppb K-1), which might be involved in a Type II H-

bonding pattern (Figure 1.43 B). On the other hand, the presence in both cases of a NOE contact 

between NHGly and NHArg suggests the formation of a β-turn motif at DKP-Arg, stabilized by a 

hydrogen bond between NHGly and C(5)=O (referred to as type III H-bonding pattern, Figure 1.44). 

The presence of this hydrogen bond is also supported by the rather upfield chemical shift value of 

NHGly in these two ligands (8.18 and 8.00 ppm for 17 and 18, respectively) and the relatively low 

temperature dependence (δ = -5.7 ppm and Δδ/ΔT = -4.5 ppb K-1, respectively). The similarity of the 

NMR spectroscopy data and, hence, of the conformation of these two ligands is quite surprising, 

considering the opposite configuration of the diketopiperazine scaffold [DKP2 (3R,6S) in 17; DKP3 

(3S,6R) in 18], which should impart a different stereochemical orientation to the two side arms of the 

diketopiperazine. This conformational similarity can be interpreted in terms of a quasi-enantiomeric 

structure of the two ligands (not considering the configuration of the remote RD amino acid side 

chains, Figure 1.44). 

High affinity ligands 19 and 21, featuring the diketopiperazine scaffolds DKP4 (3R,6S) and DKP6 

(3S,6R) respectively (with the benzyl substitution at the endocyclic nitrogen N1, instead of N4), show 

a different NMR pattern. 
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Figure 1.44. Preferred intramolecular hydrogen-bonding pattern proposed for compound 17 and 18 on the basis 
of spectroscopic dataa 

 

aThe arrows indicate significant NOE contacts. The DKP-Arg β-turn motif is referred as Type III H-bonding 
pattern.  

 

In particular, ligand 21 is characterized by a rather strong NOE contact between NHAsp and NH10 and a 

moderate/weak one involving NH4 and NH10. These two contacts are mutually exclusive and are hence 

indicative of an equilibrium between two different conformations, respectively Type I and Type IV H-

bonding patterns (Figure 1.45 A and B). 

 

Figure 1.45. Preferred intramolecular hydrogen-bonded pattern proposed for compound 21 on the basis of 
spectroscopic dataa 

 

 
 

aThe arrows indicate significant NOE contacts. A) Type I H-bonding pattern is characterized by a β-turn motif at 
Gly-Asp stabilized by a hydrogen bond between NH10 and Arg-C=O. B) Type IV H-bonding pattern which is 
characterized by a pseudo β-turn at Asp-DKP stabilized by a hydrogen bond between NH4 and Gly-C=O.  
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values (δ = 8.07 and δ = 7.90 ppm, respectively), corroborate this assumption. The Type IV H-

bonding pattern could feature a pseudo β-turn at Asp-DKP stabilized by a hydrogen bond between 

NH4 and Gly-C=O (NOE contact between NH4 and NH10). 

Ligand 19, on the other hand, is characterized by the absence of relevant NOE contacts, a very low 

temperature dependence (-0.7 ppb K-1) and a quite upfield chemical shift value (δ = 7.59 ppm) for 

proton NH10. These two features suggest a Type I H-bonding pattern, notwithstanding the apparent 

lack of NOE contact between NHAsp and NH10. 

The dibenzylated diketopiperazine-containing peptidomimetics 20 and 22 were eventually studied. 

Ligand 22 shows NMR spectroscopy features similar to ligand 17 (Type III H-bonding pattern): a 

NOE contact between NHGly and NHArg and a rather shielded NHGly (δ = 8.23 ppm) with a relatively 

low temperature coefficient (-4.7 ppb K-1). As discussed above, ligand cyclo[DKP7-RGD] was 

obtained as a mixture of two diastereomers 22 A and 22 B, the solution conformations of which were 

studied separately. In particular, the low affinity ligand 22 A displays two mutually exclusive NOE 

contacts between NHArg and NHGly and between NHAsp and NHGly. These three protons, on the other 

hand, show also a rather strong hydrogen bonded status, as indicated by their low temperature 

dependence and, at least for NHAsp and NHGly, their upfield chemical shift (Table 1.4). These data 

indicate an equilibrium between two different conformations: one displaying a Type III H-bonding 

pattern and a second one showing a Type II H-bonding pattern (β-turn at Arg-Gly), like the low-

affinity ligand 16, i.e. cyclo[DKP1-RGD]. Finally, high affinity ligand 22 B shows a single NOE 

contact between NHAsp and NH10 and a hydrogen bonded status for NH10 (δ = 7.72 ppm and Δδ/ΔT = -

4 ppb K-1, Table 1.4). These values are indicative of a Type I H-bonding pattern. 

No NOE contacts were identified for compound 23, containing the superior homolog of DKP3 (i.e. 

DKP8). Moreover, also temperature coefficients of the amide protons are not relevant for the 

identification of H-bonds. Compound 23, containing the carboxyethyl diketopiperazine scaffold 

DKP8, is characterized by temperature coefficients of amide protons (Table 1.4) greater than 5 ppb   

K-1; this suggests the presence of an equilibrium between different conformations. The NOESY 

spectrum of this ligand shows a strong long-range NOE contact that involves DKP-NH1 and NHArg. 

This contact is indicative of a conformation stabilized by a hydrogen bond between NH1 and Arg-C=O 

(referred to as type V H-bonding pattern, Figure 1.46). The involvement of NH1 in a hydrogen bond is 

also confirmed by its relatively low chemical shift value (δ = 7.75 ppm). 
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Figure 1.46. Preferred intramolecular hydrogen-bonded pattern (Type V H-bonding pattern) proposed for 
compound 23 on the basis of spectroscopic dataa 

 

aThe arrows indicate significant NOE contacts. 

 

2.6.1 -  Conformational analysis.  

Conformational studies of the cyclic RGD-peptidomimetics were performed by mixed-mode 

Metropolis Monte Carlo/Stochastic Dynamics (MC/SD) simulations, using the implicit water GB/SA 

solvation model2 and the OPLS_2001 force field.113,114 

As outlined in the paragraph 1.6.1, a key parameter for the RGD fitting into the active site of the αVβ3 

integrin is the distance of ca. 9 Å between the Cβ atoms of Asp and Arg, imparted by an extended 

conformation of the Arg-Gly-Asp sequence. In such an extended conformation, the carboxylate and 

guanidinium groups are properly positioned to effectively exert their function of electrostatic clamp 

(vide infra for the relevant docking studies). 

As mentioned in our preliminary studies,78 three-dimensional structures satisfying long-range NOE 

contacts were generated for RGD peptidomimetic 16 performing two 10 ns restrained MC/SD 

simulations and applying the DKP-NH10/NHAsp or the NHAsp/NHGly distance restraint derived from 

NOESY spectra. More than 90% of the conformations sampled during the first simulation adopted a 

non-extended arrangement of the RGD sequence characterized by a β-turn at Gly-Asp and by the 

presence of the corresponding hydrogen bond between DKP-NH10 and Arg-C=O. In addition, the 

formation of a γ-turn at Gly stabilized by the hydrogen bond between NHAsp and Arg-C=O was 

observed for 40% of the conformers obtained in the simulation. A Cβ(Arg)–Cβ(Asp) average distance 

of 7.4 Å was obtained during this MC/SD calculation. A representative energy-minimized 

conformation selected by cluster analysis and featuring both H-bonds is shown in Figure 1.47 A (Type 

I-cis H-bonding pattern). Approximately 60% of the conformations sampled during the simulation of 

16 featuring the NHAsp/NHGly distance restraint, adopted a non-extended arrangement of the RGD 

sequence characterized by a β-turn at Arg-Gly and the corresponding hydrogen bond between NHAsp 

and C(8)=O. In addition, the formation of a γ-turn at Arg stabilized by the hydrogen bond between 

NHGly and C(8)=O was observed for 40% of the simulation. The Cβ(Arg)–Cβ(Asp) average distance 
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in this MC/SD calculation was 6.8 Å. A representative energy minimized conformation selected by 

cluster analysis and featuring both H-bonds is shown in Figure 1.47 B (Type II H-bonding pattern). 

 

Figure 1.47. Structures of 16 as obtained by restrained MC/SD simulations based on experimental distance 
information, after energy minimizationa 

 

aA) Type I-cis H-bonding pattern, γ-turn at Gly and βII’-turn at Gly-Asp [CβArg)–Cβ(Asp)=7.9 Å]. B) Type II 
H-bonding pattern, γ-turn at Arg and βII’-turn at Arg-Gly [Cβ(Arg)–Cβ(Asp)=6.6 Å]. 

 

The NOESY spectra of high affinity ligands 17 (containing N-4-benzylated DKP2, 3R,6S), 18 

(containing N-4-benzylated DKP3, 3S,6R) and 20 (containing N-dibenzylated DKP5 3R,6S) showed 

only one relevant long-range interaction between NHGly and NHArg: this NOE is indicative of a β-turn 

motif at DKP-Arg stabilized by a hydrogen bond between NHGly and C(5)=O (Figure 1.44, Type III H-

bonding pattern). The distance restraint corresponding to the NOE contact between NHGly and NHArg 

was applied in the 10 ns MC/SD simulations of compounds 17, 18 and 20. More than 90% of the 

conformations sampled during each of these simulations adopted an extended arrangement of the RGD 

sequence characterized by a pseudo β-turn at DKP-Arg and the formation of the corresponding 

hydrogen bond between the NHGly and C(5)=O. Interestingly, only for compound 18, the additional 

formation of a β-turn at Arg-Gly stabilized by the hydrogen bond between NHAsp and C(8)=O was 

observed for 15% of the simulation. These results and the NMR data (showing δ=7.85 ppm and 

Δδ/ΔT=-3.5 ppb K-1 for NHAsp of 18) suggest the contribution of a Type II/Type III H-bonding pattern 

to the conformational equilibrium of 18 (mainly populated by a Type III H-bonding pattern).  

Cβ(Arg)-Cβ(Asp) average distances of 9.3, 8.8, and 9.1 Å were obtained during the MC/SD 

calculations of 17, 18 and 20, respectively. A representative energy minimized conformation selected 
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by cluster analysis and featuring the H-bond between the Gly-NH and C(5)=O (Type III H-bonding 

pattern) is shown in Figure 1.48 for RGD peptidomimetic 17. 

 

Figure 1.48. Structure of 17 as obtained by restrained MC/SD simulations based on experimental distance 
information, after energy minimizationa 

 

aType III H-bonding pattern, distorted inverse γ-turn at Asp and pseudo β-turn at DKP-Arg, Cβ(Arg)–
Cβ(Asp)=9.4 Å. 

 

Due to the absence of relevant long-range NOE contacts, several 10 ns runs of unconstrained MC/SD 

simulations were performed for RGD peptidomimetic 19 (containing N-1-benzylated DKP4, 3R,6S) 

starting from different 3D structures. Most of the conformations sampled during these simulations 

adopted an extended arrangement of the RGD sequence [Cβ(Arg)-Cβ(Asp) average distance of 8.8 Å] 

and approximately 40% of them are characterized by a β-turn at Gly-Asp and the presence of the 

corresponding hydrogen bond between DKP-NH10 and Arg-C=O. These results provide a structural 

model compatible with NMR data showing a low temperature dependence (Δδ/ΔT = -0.7 ppb K-1) and 

an upfield chemical shift value (δ = 7.59 ppm) for proton NH10. 

A representative energy minimized conformation selected by cluster analysis and featuring the H-bond 

between DKP-NH10 and Arg-C=O (Type I-trans H-bonding pattern) is shown in Figure 1.49 for RGD 

peptidomimetic 19. It is worth noting how the combination of the trans DKP4 scaffold with the Gly-

Asp β-turn occurs by generating an extended RGD arrangement, while the combination of the cis 

DKP1 scaffold with the same secondary motif resulted in a non-extended RGD disposition (see above, 

Figure 1.47 A). Accordingly, two Type I H-bonding patterns have been defined, depending on the cis 

or trans relative stereochemistry of the diketopiperazine scaffold. 

Three-dimensional structures satisfying long-range NOE contacts were generated for RGD 

peptidomimetic 21 (containing N-1-benzylated DKP6, 3S,6R) performing two 10 ns restrained 
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MC/SD simulations and applying the DKP-NH10/NHAsp or the NH4/NH10 distance restraint derived 

from NOESY spectra (Table 1.4, Figure 1.42). Most of the conformations sampled during the first 

simulation adopted an extended arrangement of the RGD sequence (Cβ(Arg)-Cβ(Asp) average 

distance of 9.0 Å) and approximately 40% of them are characterized by a β-turn at Gly-Asp and the 

corresponding hydrogen bond between DKP-NH10 and Arg-C=O. A representative energy-minimized 

conformation selected by cluster analysis and featuring this H-bond is shown in Figure 1.49 A (Type 

I-trans H-bonding pattern). Approximately 70% of the conformations sampled during the simulation 

of 21 featuring the NH4/NH10 distance restraint, adopted an extended arrangement of the RGD 

sequence [Cβ(Arg)-Cβ(Asp) average distance of 8.8 Å] characterized by a pseudo β-turn at Asp-DKP 

and the corresponding hydrogen bond between NH4 and Gly-C=O. In addition, the formation of a γ-

turn at Asp stabilized by the hydrogen bond between NH10 and Gly-C=O was observed for 50% of the 

conformers. A representative energy-minimized conformation selected by cluster analysis and 

featuring these H-bonds is shown in Figure 1.49 B (Type IV H-bonding pattern). 

 

Figure 1.49. Structures of 21 as obtained by restrained MC/SD simulations based on experimental distance 
information, after energy minimizationa 

 

aA) Type I-trans H-bonding pattern, inverse γ-turn at Asp and distorted βII’-turn at Gly-Asp [Cβ(Arg)–
Cβ(Asp)=9.0 Å]. B) Type IV H-bonding pattern, inverse γ-turn at Asp and pseudo β-turn at Asp-DKP 
[Cβ(Arg)–Cβ(Asp)=8.8 Å]. 

 

Three-dimensional structures fulfilling long-range NOE contacts were generated for RGD 

peptidomimetic 22 (containing N-dibenzylated DKP7 3S,6R) performing three 10 ns restrained 

MC/SD simulations and applying the distance restraints derived from NOESY spectra of 

diastereoisomers 22A and 22B (Table 1.4): in the first simulation NHArg/NHGly relevant in 22A, in the 

second simulation NHAsp/NHGly also relevant in 22A, and in the third simulation DKP-NH10/NHAsp 

relevant in 22B. 
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All the conformations sampled during the first two simulations adopted a non-extended arrangement 

of the RGD sequence [Cβ(Arg)-Cβ(Asp) average distance of 6.6 Å] characterized by the simultaneous 

presence of different turn motifs (pseudo β-turn at DKP-Arg, γ-turn at Gly and pseudo β-turn centered 

at the DKP unit). The structural models provided by these restrained MC/SD simulations differ from 

the conformations hypothesized on the basis of NMR data of 22A [equilibrium between Type III 

(pseudo β-turn at DKP-Arg) and Type II (β-turn at Arg-Gly) H-bonding patterns, see the NMR 

spectroscopy section]. However, also the calculated structures are able to provide an explanation for 

the NOE contacts and the NMR temperature coefficients observed for 22A. 

The distance restraint corresponding to the NOE contact between DKP-NH10 and NHAsp (observed in 

the NOESY spectrum of 22B) was applied in the third 10 ns MC/SD simulation of compound 22. 

Most of the conformations sampled during this simulation adopted an extended arrangement of the 

RGD sequence (Cβ(Arg)-Cβ(Asp) average distance of 9.0 Å) and approximately 50% of them are 

characterized by a β-turn at Gly-Asp and the corresponding hydrogen bond between DKP-NH10 and 

Arg-C=O. A representative energy-minimized conformation selected by cluster analysis and featuring 

this H-bond is shown in Figure 1.50 (Type I-trans H-bonding pattern). 

Contrary to what observed for the other cyclic RGD peptidomimetics containing DKP scaffolds, 

rotation of the DKP ring can not be observed during the simulations performed on compound 22: this 

confirms 22A and 22B as two different separable conformers (diastereomers) due to hindered rotation 

of one ring around the other. 

 

Figure 1.50. Structure of 22B as obtained by restrained MC/SD simulations based on experimental distance 
information, after energy minimizationa 

 

aType I-trans H-bonding pattern, distorted inverse γ-turn at Asp and βII’-turn at Gly-Asp, Cβ(Arg)–
Cβ(Asp)=9.2 Å). 

 

The distance restraint corresponding to the NOE contact between NH1 and NHArg was applied in the 10 

ns MC/SD simulation of RGD peptidomimetic 23 (containing N-4-benzylated DKP8, 3S,6R). 

Approximately 60% of the conformations sampled during this simulation adopted an extended 
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arrangement of the RGD sequence characterized by the formation of the hydrogen bond between NH1 

and Arg-C=O (Figure 1.43, Type V H-bonding pattern). In addition, the formation of the hydrogen 

bond between NHAsp and C(2)=O (Type Va H-bonding pattern) or the presence of a β-turn at Gly-Asp 

stabilized by the hydrogen bond between DKP-NH10 and Arg-C=O (Type Vb H-bonding pattern) were 

observed for 35% and 25% of the simulation, respectively. Representative energy-minimized 

conformations selected by cluster analysis and featuring the Type Va and Vb H-bonding patterns are 

shown in Figure 1.51 for RGD peptidomimetic 23. 

 

Figure 1.51. Structure of 23 as obtained by MC/SD simulations, after energy minimization (Cβ(Arg)–
Cβ(Asp)=9.5 Å). 

 

 
 

 

2.6.2 -  Molecular docking  

In order to rationalize, on a molecular basis, the affinity of cyclic RGD peptidomimetics for the αvβ3 

receptor, docking studies were performed starting from the representative conformations obtained 

from the MC/SD simulations. The crystal structure of the extracellular segment of integrin αvβ3 

complexed with the cyclic pentapeptide Cilengitide (1L5G, pdb code) was taken as a reference model 

for the interpretation of the docking results in terms of ligand-protein interactions. In the X-ray 

complex, Cilengitide binds to the interface of the α and β units forming specific electrostatic 

interactions. The acid and basic pharmacophoric groups and their orientation are essential for binding 

to the αvβ3 because they act like an electrostatic clamp, interacting with charged regions of the 

receptor binding site. 

Docking calculations starting from geometries featuring the Type I-cis and Type II H-bonding patterns 

produced top-ranked poses conserving optimal interactions only with the α subunit of the αvβ3 
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receptor. Probably, the short Cβ(Arg)-Cβ(Asp) distances (values less than 8 Å) of these geometries 

prevent the guanidine and carboxylic groups from achieving the required separation for binding to the 

αvβ3 integrin. On the other hand, docking calculations starting from the RGD extended conformations 

featuring the Type I-trans, Type III and Type IV H-bonding patterns, produced top-ranked binding 

modes conserving all the important interactions of the X-ray complex. As examples, the best poses 

obtained for the compounds 18 and the highest affinity ligand 22B are shown in Figure 1.52. 

 

Figure 1.52. Docking best pose of compounds 18 and 22Ba 

 

 

aDocking best pose of compounds A) cyclo[DKP3-RGD] (18) and B) cyclo[DKP7-RGD] (22 B) into the crystal 
structure of the extracellular domain of αVβ3 integrin overlaid on the bound conformation of Cilengitide (green).  

 

The positively charged Arg guanidinium group of the ligand interacts with the negatively charged side 

chains of Asp218 and Asp150 in the α unit, one carboxylate oxygen of the ligand Asp side chain is 

coordinated to the metal cation in the metal-ion-dependent adhesion site (MIDAS) region of the β unit, 

while the second carboxylate oxygen forms hydrogen bonds with the backbone amides of Asn215 and 

Tyr122 in the β unit. A further stabilizing interaction involves the formation of a hydrogen bond 

between the ligand backbone NH of the Asp residue and the backbone carbonyl group of Arg216 in 

the β unit. 

In light of all these considerations, the micromolar affinity of RGD peptidomimetics 16 and 22A (3.9 

and 0.2 µM, respectively) for αvβ3 (Table 1.3) can be explained in terms of their low pre-organization 

for binding. In fact, as determined by the computational and NMR studies, these compounds in 

solution mainly feature non-extended RGD conformations which, according to the docking results, are 

not able to properly fit into the αvβ3 receptor. On the contrary, the nanomolar affinity of RGD 

peptidomimetics 17-21, 22B and 23 for αvβ3 can be attributed to their high structural pre-organization. 

A B 
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In fact, as determined by the computational and NMR studies, these compounds in solution mainly 

feature extended RGD conformations (principally determined by Type I-trans, Type III and Type IV 

H-bonding patterns) similar to the RGD-bound conformation of Cilengitide. 
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CHAPTER 2 

SYNTHESIS AND BIOLOGICAL EVALUATION (IN VITRO 

AND IN VIVO) OF CYCLIC RGD PEPTIDOMIMETIC - 

PACLITAXEL CONJUGATES TARGETING INTEGRIN αVβ3 

 

 

1 -  Chemotherapy 

Chemotherapy has been one of the main approaches for the treatment of cancer for more than half a 

century and is based on the administration of drugs which often interfere with fundamental cellular 

functions (e.g., DNA replication, cell division). The antitumor efficacy of anticancer drugs is thus 

limited by their nonspecific toxicity to normal cells, especially to rapidly growing cells such as blood, 

bone marrow and mucous membrane cells, resulting in a low therapeutic index and serious side-

effects. The efficacy of chemotherapy is further limited by the occurrence or development of drug 

resistance: tumor cells can be regarded as a rapidly changing target because of their genetic instability, 

heterogeneity, and high rate of mutation, leading to selection and overgrowth of a drug-resistant tumor 

cell population.1 In principle, the efficiency of the treatment can be improved by increasing the doses, 

but this approach commonly results in severe toxicity. Therefore, selective tumor targeting of 

chemotherapeutic agents represents a major goal, and various drug delivery systems have been 

recently developed,2 including the use of liposomes, microspheres, micelles, polymers, protein- or 

antibody-drug conjugates, and pro-drugs (Figure 2.1).3  

Considerable efforts are currently being made in this domain to such an extent that leaders of major 

pharmaceutical companies foresee that >60% of all existing drugs will be targeted in less than two 

decades.4 In this field, an attractive avenue for selective tumor targeting are hybrid molecules designed 

to bind to specific over-expressed receptors on cancer cells.5 Clearly, the success of this approach is 

heavily dependent on the rational selection of appropriate biological objectives. 
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Figure 2.1. Pharmaceutical nano-carriers for drug targetinga  

 

 

a A): Structural design of a ligand-targeted drug conjugate B): i) ligand-drug conjugate obtained by a direct 
linkage between the ligand and the drug or ii) connected through a linker. 

 

Integrins are ideal pharmacological targets based on their key role in angiogenesis and tumor 

development and on their easy accessibility as cell surface receptors interacting with extracellular 

ligands.6 They are also involved in tissue integrity and cell trafficking, growth, differentiation, 

proliferation and migration (see relevant discussion in Chapter 1).7  As a consequence of their role in 

so many fundamental processes, integrin malfunction is connected to a large variety of diseases such 

as thrombosis, osteoporosis, inflammation, and cancer.8 The tripeptide sequence arginine-glycine-

aspartate (RGD) has been identified as the common motif used by several endogenous ligands to 

recognize and bind a group of integrins, including αVβ3, αVβ5, α5β1, which are crucial in angiogenesis, 

tumor progression and metastasis, and αIIbβ3, which is involved in platelet aggregation.9 

As mentioned in Chapter 1, the potent αVβ3 integrin ligand, cyclo[Arg-Gly-Asp-D-Phe-N(Me)-Val] 

(Cilengitide) developed by Kessler and co-workers (Figure 2.2),10,11 is currently in phase III clinical 

trials as an angiogenesis inhibitor for patients with glioblastoma multiforme.12 The high activity and 

selectivity of this derivative has been attributed to an extended conformation of the RGD motif 

displaying a distance of about 9 Å between the Cβ atoms of Asp and Arg.11,13 These observations 

prompted many other research groups to investigate the use of conformationally constrained cyclic 
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RGD peptidomimetics as active and selective integrin antagonists. A selection of these ligands, 

encompassing a wide variety of rigid scaffolds and featuring 13-, 14-, 15- and 16-membered rings, is 

shown in 2.2.14 

 

Figure 2.2. Potent αVβ3 integrin ligands 

 
 

We have recently contributed to this field with a new class of cyclic RGD-peptidomimetics, 

containing bifunctional diketopiperazine (DKP) scaffolds and featuring 17-membered rings (Figure 

2.3).15 The cis-derivative cyclo[DKP-1-RGD] (16) inhibited biotinylated vitronectin binding to the 

purified αVβ3 receptor at a micromolar concentration (3.9 ± 0.4 μM), while trans-derivatives 17-22 

ranged from submicro- to subnanomolar concentrations (220 - 0.2 nM). 

 

Figure 2.3. Library of cyclo[DKP-RGD] integrin ligands 

 

aN,N’-dibenzyl cyclo[DKP-7-RGD] was isolated as two different separable conformers (diastereomers, 22a and 
22b) due to hindered rotation of one ring around the other, i.e., the DKP N-benzyl group cannot pass inside the 
macrolactam ring, see Chapter 1 
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1.1 -  RGD ligand - cytotoxic conjugates 

It is currently emerging that antiangiogenic therapy alone is not sufficient to fight and eradicate 

tumors: recent pre-clinical findings of a paradoxical pro-angiogenic activity of RGD-mimetic agents 

(like Cilengitide) at low concentrations have stimulated the debate on the use of antiangiogenetics as 

single drugs.16 After 25 years of research on integrins as pharmacological targets, only four drugs are 

currently on the market (see Table 2.1 and Figure 2.4). 

 

Table 2.1. Integrin inhibitors in late-stage (Market, Phase III or Phase II) clinical studiesa 

 

a Cut-off: November 2012. 
bAbbreviations: A, trials active; AP, angina pectoris; cPep, cyclic peptide; Chi-mAb-Fab, chimeric monoclonal 
antibody, Fab’ fragment; Diag, diagnostic reagent; HIV, human immunodeficiency virus; Hu-mAb, humanized 
monoclonal antibody; IS, ischemic stroke; L, launched/drug approved for clinical use; mAb, monoclonal 
antibody; MS, multiple sclerosi, ndr, no development reported, drug not discontinued, but trials not apparently 
active; oSM, orally available small molecule; Pep-der, peptide derivative; PF, pulmonary fibrosis; RA, 
rheumatoid arthritis; SM, small molecule; TR, transplant rejection; UC, ulcerative colitis. 
c βx indicates that all associated β chains are targeted. 
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Although it initially appeared a promising strategy, successful therapeutic inhibition of integrins has 

proven to be elusive, despite the discovery of highly potent inhibitors. This is due to a number of 

reasons, including redundancy among the integrins, the importance of integrins in key physiological 

systems and antagonists that had less than optimal properties.17 

 

Figure 2.4. Integrin inhibitors in clinical trials or on the market. 

 

 

a The current distribution of integrins as therapeutic targets and the stages of related clinical trials. If targeting 
affects all α chains (‘αx’) or all β chains (‘βx’) the trial is classified accordingly (e.g., intetumumab affects all 
αv integrins independently of associated β chains – and is classed under αvβx). Trials discontinued (light blue); 
at Phase I (dark blue); at Phase II (pale orange); at Phase III (mid orange); or approved drugs (red). Symbols: 
small molecules and peptides (circles yellow); antibodies (triangles); biologicals (cubes). Symbols with black 
centers represent discontinued trials. 

 

Since αV integrins, which can be internalized by cells, are involved in tumor angiogenesis and are 

overexpressed on the surface of cancer cells, integrin ligands can be usefully employed as tumor-

homing peptidomimetics for site-directed delivery of cytotoxic drugs.18 During the past fifteen years, a 

number of RGD-cytotoxic drug conjugates have been developed. 
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In a pioneering work Arap and co-workers used a phage display library to isolate peptides that home 

specifically to tumor blood vessels.19a Recovery of phage from tumors led to identification of RGD-4C 

as best candidates. To determinate if this RGD-compound could be used to improve the therapeutic 

index of cancer chemotherapeutics, they coupled the RGD-4C ligand to doxorubicin (a well known 

anticancer agent). The RGD-4C-doxorubicin conjugate (see Figure 2.5) was used to treat mice bearing 

tumors derived from human MDA-MB-435 breast carcinoma cells. An enhanced efficacy and reduced 

toxicity of the drug against the human breast cancer xenografts in nude mice were observed. These 

results demonstrated the utilities of targeted chemotherapy strategies based on selective expression of 

receptors in tumor vasculature. The same conjugate (RGD-4C-doxorubicin) was evaluated by Lee and 

Kim in an orthotopic murine hepatoma model. When given intravenously to mice the construct 

suppressed the growth of hepatoma more effectively than free doxorubicin, confirming the previously 

reported results on a different tumor model.19b 

 

Figure 2.5. RGD-4C-doxorubicin conjugate 

 

 
 

Ryppa and co-workers also developed doxorubicin conjugates with a divalent RGD peptidomimetic 

E[cyclo(RGDfK)]2.20 In particular, they prepared a 6-maleimidocaproyl amide derivative of 

doxorubicin, which was conjugated with E[cyclo(RGDfK)]2 elongated by introducing a thiol group (2-

iminothiolane, Traut’s reagent) at the α position of the glutamic acid moiety (Figure 2.6). 

In vivo studies in an OVCAR-3 xenograft model, the doxorubicin conjugate showed unconvincing 

antitumor efficacy: the construct resulted inactive compared to free doxorubicin, being also toxic with 

a mortality of 50%. 
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Figure 2.6.  E[cyclo(RGDfK)]2-doxorubicin conjugate 

 

 
 

Koch and co-workers synthesized two conjugates of the doxorubicin pro-drug (doxsaliform) with 

either the acyclic form of RGD-4C peptide or cyclo[(N-Me)VRGDf-NH] (Figure 2.7).21 A 

hydroxylamine ether tether was used to attach 5’-formyldoxsaliform to the RGD ligands via an oxime 

functional group. Although the two conjugates showed promising results in vitro (cytotoxicity and 

integrin binding assays), no in vivo data are reported. For this reason, the real efficacy of these 

constructs could be speculated but not demonstrated. 

 

Figure 2.7.  RGD ligands-doxsaliform conjugates 

 

 
 

NH

O

O

OH

OH

HO

O
OH

OO O

HO

O

N

O

O

N
H

HN

HN

O

NH

NH

O

O

O

HN

H2N

NH

COOH

O

NH

O H
N

HN
O

NH

NH

N
H O

HN

H
N

O

O

O HN

NH2

NH

HOOC

O

HN

S

E[c(RGDfK)2]-DOXO

O

O

OH

OH

HO

O
OH

OO O

HO

HN

HN

HO

O

N
O

HN

O

O

NH

O
NH

HS

N
H

H
N

HS

O

O

O
HN

COOH

HN

O

H
N

O

NH

NH2
HN

O
HN

O

HS

H
N

O

OH
O

H2N

HS

acyclic-RGD-4C-DOXSF

O

O

OH

OH

HO

O
OH

OO O

HO

HN

HN

HO

O

N
O

O

N
HNH

N

O

H
N

HN

O

O O

NH

NH2
HN

HOOC

O

N
H

cyclic-[(N-Me)-VRGDf-NH]-DOXSF



Chapter 2    79 

 

In 2008, Lippard and co-workers reported the synthesis of a few functionalized platinum(IV) 

complexes conjugated to linear or cyclic RGD peptides, as tumor homing devices to target tumor 

endothelial cell  selectivity over healthy cells (Figure 2.8).22 

 

Figure 2.8.  RGD ligands-doxsaliform conjugates 

 
 

The Pt(IV)-RGD conjugates were highly and specifically cytotoxic to cell containing overexpressed 

levels of αVβ3 and αVβ5 integrins. In contrast, Pt(IV)-AGR complexes (used as negative control) were 

significantly less active than Pt(IV)-RGD compounds. 

Five RGD peptide-camptothecin constructs were designed and synthesized by Dal Pozzo, Pisano, and 

co-workers with the purpose of improving the therapeutic index of the drug.23 They used cyclic 

peptide analogs of cyclo[RGDfV], replacing valine with a functionalized non-proteogenic aminoacid 

for the attachment of cytotoxic drugs. The conjugation to the drug was achieved through either a stable 

amide/oxime or an acid-labile amide/hydrazone linkers (see compounds 84, 85 and 86 in Figure 2.9). 

Conjugates 84 and 85 showed lower in vitro and in vivo activity than the parent drug, probably due to 

the excessive stability of the linker even inside the tumor cells. On the contrary, the hydrazone bond-

containing conjugates exhibited high in vitro cytotoxicity, but their stability at pH 7.4 was much lower 

than expected; as a consequence, their activity has been mostly attributed to a prematurely delivery of 

the drug. Moreover, their poor solubility hampered in vivo experiments. To overcome these 

drawbacks, Dal Pozzo, Pisano and co-workers developed dimeric RGD ligands conjugated to a 

camptothecin derivative through PEGilated linkers containing protease-sensitive peptides suitable for 

releasing the drug by enzymatic hydrolysis inside the tumor cells. These constructs increased the 

affinity for integrin receptors together with appreciable stability and solubility. Evaluation of the best 

candidates in preclinical animal model were programmed but, up to date, no in vivo data are reported. 

The same group very recently reported the synthesis of four camptothecins conjugated to a RGD 

mimics, using a piperazine carbamate linker (to prevent a rapid hydrolysis). The best candidate 

(compound 87, Figure 2.9) revealed a potent affinity to integrin receptors, high cytotoxic activity on 

A2780 cancer cells (which present a high level of integrin receptors) and a superior stability in plasma 

(t1/2 = 13 h for compound 87 vs. t1/2 = 45 min for the unconjugated camptothecin parent).  In vivo 
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experiments showed a reduced metastatic area and inhibition of tumor growth comparable to those 

observed with the parent drug, without a real improvement. 

 

Figure 2.9. Camptothecin derivatives conjugated to RGD peptides or peptidomimetic. 

 

 
 

 

Summarizing, a few cyclic RGD integrin ligands (e.g., RGD-4C19, cyclo[(N-Me)VRGDf-NH],22 

cyclo[RGDfK],21,22 cyclo[CRGDC],22 cyclo[RGDf-Aad],23a cyclo[RGDf-Amp]23a) were conjugated to a 

cytotoxic drug (e.g., doxorubicin,19,20 doxsaliform,19 camptothecin,23a,b cisplatin22) through different 

linkers, such as amides,19,22,23a oximes,19,23a maleimides,20 carbamates,23b and hydrazones.23a  
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Notably, Chen and co-workers prepared the RGD ligand - Paclitaxel conjugate 88 (Figure 2.10), 

which was covalently assembled by joining the microtubule-stabilizing anticancer agent to the dimeric 

RGD peptide E[cyclo(RGDyK)]2 via a cleavable succinyl ester linker, and evaluated its antitumor 

activity on the metastatic breast cancer cell line MDA-MB-435.24 In mice, conjugate 89 showed a 

moderately improved antitumor effect over Paclitaxel, but no tumor regression could be observed. The 

stability of the succinyl linker was not assessed and a premature release of Paclitaxel can be suspected.  

 

Figure 2.10. Dimeric RGD ligand-Paclitaxel conjugates 

 

 
 

A very similar conjugate (i.e., compound 89 reported in Figure 2.10) was extensively evaluated in a 

recent study by Ryppa and co-workers on an ovarian carcinoma xenograft model (OVCAR-3).25 

Although the construct provided promising results in vitro, unfortunately it did not show any 

antitumor effect in vivo. The stability of conjugate 89 in a glucose phosphate buffer solution at pH=7 

was studied over 24 h, yielding a half-life of only ~2 h at 37 °C. Half-life in the bloodstream is 

expected to be much shorter, and the inefficacy of this conjugate was attributed to hydrolysis of the 

ester bond at the 2’ position of Paclitaxel, which causes premature release of the cytotoxic agent and 

loss of the tumor-homing effect. 

The full account of our investigations on this topic reporting is presented in this Chapter,26 including: 

(i) the synthesis of new cyclo[DKP-RGD] integrin ligands, bearing a free amino group suitable for 
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turned out to be far better than that of previously reported Paclitaxel conjugates;25 (iv) the ability of the 

cyclo[DKP-RGD]-Paclitaxel conjugates to compete with biotinylated vitronectin for binding to the 

purified αVβ3 and αVβ5 receptors; (v) the in vitro cytotoxic activity of the cyclo[DKP-RGD]-Paclitaxel 

conjugates against a panel of human cancer cell lines; (vi) the in vivo tumor-targeting efficacy against 

the IGROV-1/Pt1 human ovarian carcinoma xenotransplanted in nude mice; (vii) the effects of tumor 

treatment, analyzed using immunohistochemistry. 

 

Figure 2.11. Structure of cyclo[DKP-RGD]-Paclitaxel conjugates 90-93 
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were synthesized, varying the position of the p-aminomethylbenzyl N-substituent (N-1 or N-4) and the 

absolute stereochemistry at C-3 and C-6 (Schemes 2.1-2.3). These DKPs were used for the synthesis 

of cyclo[DKP-RGD] integrin ligands (Scheme 2.4), which were conjugated to 2’-succinyl Paclitaxel 

(Scheme 2.5). 

For the preparation of the functionalized trans diketopiperazines DKP-f2, DKP-f3, DKP-f4, and DKP-

f6, it was selected a linker bearing both an aldehyde (for successive reductive alkylation) and an amino 

group (for the final conjugation to Paclitaxel). Thus, linker 94 was synthesized in three steps from 4-

aminomethyl benzoic acid via LiAlH4 reduction, primary amine protection as 4-methoxy-2,3,6-

trimethylbenzenesulphonamide (Mtr) and benzylic alcohol oxidation using activated MnO2 (Scheme 

2.1). The Mtr protecting group was chosen because of its stability and orthogonality with the methyl, 

benzyl, allyl, tBu, Boc, and Cbz protecting groups. 

 

Scheme 2.1. Synthesis of aldehyde 94a 

 

 

aReagents and conditions: (a) LiAlH4, THF, 8 h, reflux, 70%; (b) Mtr-Cl, i-Pr2NEt, THF, 6 h, room temp., 85%; 
(c) MnO2, THF, overnight, room temp., quant.. 

 

Trans scaffolds DKP-f2, DKP-f3 (Scheme 2.2) and DKP-f4, DKP-f6 (Scheme 2.3) were synthesized 

starting from commercially available (R)- or (S)-aspartic acid and (R)- or (S)-serine. Two different 

synthetic strategies were developed depending on the nitrogen substitution. In particular, the synthesis 

of DKP-f2 and DKP-f3 (bearing the linker on DKP nitrogen N-4, former serine nitrogen) was realized 

making use of a serine ligation strategy,27 as described in Scheme 2.2. (R)- and (S)-Aspartic acid were 

initially protected as allyl ester on the side chain and as N-Boc to give the enantiomeric derivatives 

(S)-95 and (R)-96. (R)- and (S)-Serine were protected as methyl ester and reductively alkylated with 

aldehyde 94 and sodium triacetoxyborohydride to afford the enantiomeric compounds (R)-97 and (S)-

98. Direct coupling (HATU, iPr2NEt) of protected aspartic acid (S)-15 with functionalized serine (R)-

97, or of the enantiomers (R)-96 with (S)-98, led to the isopeptides (S,R)-99 and (R,S)-100 in high 

yield (86%), rather than forming the expected dipeptides. The O,N-acyl migration27 was then triggered 

by cleavage of the Boc protecting group and treatment with a base (iPr2NEt) in a protic solvent 

(iPrOH), which also promoted the simultaneous cyclization to the trans diketopiperazines 101 and 102 

(93% overall yield). The hydroxyl group of 101 and 102 was converted into azides 103 and 104 via a 

Mitsunobu reaction in good yield (86%), using HN3‧Tol in a toluene / dichloromethane solution. 

Finally, a one-pot Staudinger reduction - Boc protection, followed by allyl deprotection yielded the 

ONHMtr

COOH

H2N a, b, c

94



84  Chapter 2 

 

trans scaffolds DKP-f2 (107; 3R,6S) and DKP-f3 (108; 3S,6R) in 88% yield. This synthetic route 

involves a high overall yield (60%) and only a few chromatographic purifications, which allows easy 

preparation on a multi-gram scale. 

 

Scheme 2.2. Synthesis of DKP-f2 and DKP-f3a,b 

 

 

aReagents and conditions: (a) allyl alcohol, AcCl; (b) Boc2O, TEA, Dioxane, water, 95% over two steps; (c) 
MeOH, AcCl, quant.; (d) aldehyde 94, NaBH(OAc)3, THF, 3 h, room temp., quant.; (e) HATU, HOAT, iPr2NEt, 
DMF, 3 h, 0 °C to room temp., 86%; (f) TFA/DCM 1:2, 3 h, 0 °C to room temp.; (g) iPr2NEt, iPrOH, 6 h, room 
temp., 93% over two steps; (h) HN3

.Tol, DIAD, Ph3P, DCM/Tol 1:2, 7 h, -20 °C, 86%; (i) Me3P, BOC-ON, 
THF, 6 h, -20 °C to room temp., 88%; (j) pyrrolidine, PPh3, [Pd(PPh3)4], DCM, 4 h, room temp., quant.. bYields 
reported are the average of six experiments, including different reaction batches with the two enantiomeric 
products. 

 

For the synthesis of trans scaffolds DKP-f4 and DKP-f6 (Scheme 2.3), (R)- and (S)-aspartic acid were 

protected as dimethyl ester and reductively alkylated with aldehyde 94 to obtain the enantiomeric 

derivatives (S)-109 and (R)-110. The hydroxyl group of (R)- or (S)-Boc-Ser-OMe was first 

transformed into the corresponding azide under Mitsunobu conditions in 78% yield and then the 
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dehydroalanine derivative was ever detected, the beta-elimination possibly caused by excess iPr2NEt 

in the HATU, PyBrOP and DPPA tentative couplings might be an additional reason for this failure, 

combined with the poor reactivity of the sterically hindered secondary amine of the aspartic derivative.  

After Boc deprotection, the six-membered cyclization occurred spontaneously with 4 equiv of iPr2NEt 

in iPrOH, to give diketopiperazines (3R,6S)-117 and (3S,6R)-118 in 92% yield. Trans scaffolds DKP-

f4 (121; 3R,6S) and DKP-f6 (122; 3S,6R) were finally obtained by catalytic hydrogenation of the 

azide, Boc protection of the primary amine and hydrolysis of the methyl ester (96% overall yield). 

 

Scheme 2.3. Synthesis of DKP-f4 and DKP-f6a,b 

 

 

aReagents and conditions: (a) MeOH, AcCl, quant.; (b) aldehyde 94, NaBH3(CN), MeOH, 4 h, room temp., 66%; 
(c) Boc2O, TEA, dioxane-water, 95%; (d) HN3

.Tol, DIAD, Ph3P, THF, 7 h, -20 °C, 78%; (e) LiOH, H2O/THF 
1:1, 1 h, 0 °C, quant.; (f) DCC, DCM, 1 h, room temp., quant.; (g) DCM, overnight, room temp., 40%; (h) TFA, 
Et3SiH, DCM, 3 h, room temp., quant.; (i) iPr2NEt, iPrOH, 6 h, room temp., 92%; (j) H2, 10% Pd/C, THF, 4 h, 
room temp., quant.; (k) Boc2O, iPr2NEt, DCM, 6 h, room temp., 96%. bYields reported are the average of six 
experiments, including different reaction batches with the two enantiomeric products. 
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(86-88%). After carboxybenzyl and benzyl groups simultaneous deprotection by catalytic 

hydrogenolysis to give 135-138 quantitatively, the synthesis of protected cyclo(DKP-RGD) 139-142 

was accomplished in good yield (60-81%) by 17-membered macrolactamization in a highly diluted 

DMF solution (1.4 mM) utilizing HATU, HAOT, i-Pr2NEt (4:4:6 equiv). The final step was the non 

trivial removal of the side chain protecting groups.  

 

Scheme 2.4. Synthesis of functionalized cyclo[DKP-RGD] integrin ligands 143-146a 

 

 

aReagents and conditions:  (a) HATU, HOAT, iPr2NEt, DMF, overnight, room temp., 83-85%; (b) TFA/DCM 
1:2, 3 h, room temp., quant.; (c) Cbz-Asp(OtBu)-OH, HATU, HOAT, iPr2NEt, DMF, overnight, room temp., 86-
88%; (d) H2, 10% Pd/C, THF/H2O 1:1, overnight, room temp., quant.; (e) HATU, HOAT, iPr2NEt, 1.4 mM in 
DMF, overnight, room temp., 60-81%; (f) TFA/TMSBr/thioanisol/EDT/phenol 70:14:10:5:1, 2 h, room temp., 
70-85%. 
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TFA/TMSBr/thioanisole/EDT/phenol (70/14/10/5/1) cleavage cocktail at room temperature for 2 h, 

fully deprotected compounds 143-146 were obtained in 70-85% isolated yield.  

Thus, we were ready to conjugate Paclitaxel to our ligands: the 2’-hydroxyl function of Paclitaxel was 

derivatized with succinic anhydride, following a reported procedure.29 The resulting Paclitaxel 

hemisuccinate ester 14729 was activated using diisopropylcarbodiimide (DIC) and N-

hydroxysulfosuccinimide sodium salt (sulfo-NHS), followed by coupling with cyclo[DKP-RGD] 

ligands 143-146 (Scheme 2.5).  

 

Scheme 2.5. Synthesis of cyclo[DKP-RGD] - PTX conjugates 90-93a 

 

 

aReagents and conditions: (a) succinic anhydride, py, DCM, overnight, 0 °C to room temp., 94%; (b) N-
hydroxysulfosuccinimide sodium salt, DIC, DMF, overnight, room temp.; (c) cyclo(DKP-RGD) 143, 144, 145 or 
146, CH3CN, aq. phosphate buffer, pH = 7.3, 10 h at 0 °C then 8 h at room temp., 60-70%. 

 

The conjugation yield was strongly pH-dependent: at pH < 7.0 the reaction did not proceed, whereas 

at pH > 7.5 the hydrolysis of the sulfo-NHS ester substantially competed with the primary amine 

reaction. The synthesis of conjugates 90-93 was finally achieved in good yield (60-70%) by adding a 

0.1 M aqueous NaOH solution when required throughout the reaction, for maintaining the pH value at 

7.3. 

We also prepared the hemisuccinamide 148, which is theoretically formed if the hydrolysis of the 

cyclo[DKP-f3-RGD] 91 takes place at the Paclitaxel-2’ position. The synthesis was carried out 

derivatizing the amine of cyclo[DKP-f3-RGD] with the tert-butyl hemisuccinate (see Scheme 2.6). 
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The final deprotection of the tBu protecting group afforded the hemisuccinamide 148 in 54% overall 

yield. 

 

Scheme 2.6. Synthesis of cyclo[DKP-f3-RGD]-hemisuccinamide 148a 

 

 

aReagents and conditions: (a) N-hydroxysuccinimide, Et3N, DMAP, Toluene, DCM, 48 h, reflux, 80%; (b) N-
hydroxysuccinimide, DIC, DCM, 4 h, room temp., quant.; (c) cyclo(DKP-f3-RGD) 64, CH3CN, aq. phosphate 
buffer, pH = 7.3, 10 h at 0 °C then 8 h at room temp., 68%; (d) TFA/DCM 1:2, TES, 3 h, 0 °C to room temp., 
quant.  

 

 

2.2 -  Biological results 

2.2.1 -  Solubility and stability in a physiological solution  

The solubility of conjugate cyclo[DKP-f3-RGD]-PTX 91 was investigated in a physiological solution 

(0.9% NaCl in H2O)/Cremophor EL/ethanol (90:5:5 v/v) by quantitative HPLC. A 1.92 mM clear 

solution turned out to be oversaturated and slowly flocculated to reach a concentration of 1.28 mM in 

2 days (Figure 2.12, left diagram). The precipitate was the conjugate 91 itself, with a purity > 99.5%. 

Compound 91 (1.28 µmol) dissolved in 0.1 mL of Cremophor EL/ethanol (1:1 v/v) and diluted with 

0.9 mL of physiological solution, was perfectly stable for one week, with a purity > 99.5%. The 1.28 

mM solution did not undergo any precipitation or decomposition (Figure 2.12, right diagram).  
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Figure 2.12. Solubility and stability of cyclo[DKP-f3-RGD]-PTX 91 in a physiological solutiona 

 

aQuantitative HPLC determination of solubility and stability of compound 91 in a physiological solution (0.9% 
NaCl in H2O)/Cremophor EL/ethanol (90:5:5 v/v). A 1.92 mM clear solution of 91 turned out to be oversaturated 
and slowly flocculated to reach a concentration of 1.28 mM in 2 days (left diagram). The 1.28 mM solution did 
not undergo any precipitation or decomposition over seven days (right diagram). 

 

2.2.2 -  Plasma stability assays 

Paclitaxel conjugate 91 (1.28 µmol) was dissolved in DMSO (128 µL) and then diluted with pH 7.5 

phosphate buffer (PBS) to give a 200 µM stock solution. Murine plasma was spiked with the stock 

solution to obtain a final 10 µM concentration and incubated at 37 °C. At time points varying from 1 

min to 330 min, aliquots of 50 µL were taken and quenched with 200 µL of ice-cold acetonitrile 

(containing Verapamil as internal standard, see Chapter 4 for details). Samples were centrifuged at 

3000 rpm for 20 min and the supernatant was analyzed by RP-HPLC UV-MS/MS.  

The data were fitted using a signal phase exponential decay and the calculated half-life was = 165 ± 2 

min (Figure 2.12, left diagram). The same procedure was adopted for a pooled human plasma stability 

assay and in this case the calculated half-life was = 143 ± 3 min (Figure 2.12, right diagram). Free 

Paclitaxel accumulated during the assays as a result of hydrolysis of the succinyl ester bond at the 

PTX-2’ position. These results were very encouraging and showed that cyclo[DKP-f3-RGD]-PTX 91 

is sufficiently stable to undergo animal testing with murine models. In fact, similar RGD ligands 

showed significant (maximum) tumor uptakes in mice after 10,30 20,31 30,32 and 60 min.33  

Summarizing, we have investigated the stability of compound 91 to hydrolysis both in a physiological 

solution and in murine and human plasma. As a matter of fact, cyclo[DKP-f3-RGD]-PTX 91 turned 

out to be far more stable than PTX-E[cyclo(RGDfK)]2 8925 (see Figure 2.10, and the relevant 

discussion therein). The rather high stability of 91 can possibly be attributed to a more lipophilic 

structure, where the ester linkage is less accessible in the protic medium than in Ryppa’s compound 

89. 
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Figure 2.13. Stability of cyclo[DKP-f3-RGD]-PTX 91 in murine and human plasmaa 

 

a Quantitative HPLC determination of stability of compound 91 (10 μM) in murine plasma (left diagram) and in 
human plasma (right diagram) at 37 °C. 

 

 

2.2.3 -  Integrin receptors competitive binding assays34  

Cyclo[DKP-RGD] - PTX conjugates 90-93 were examined in vitro for their ability to inhibit 

biotinylated vitronectin binding to the purified αvβ3 and αvβ5 receptors and compared to their 

unfunctionalized analogs 17, 18, 19 and 21, to the unconjugated ligands 144 and 148, and to the 

reference compounds cyclo[RGDfV]35 and ST1646.36 The results are collected in Table 2.2. Screening 

assays were performed incubating the immobilized integrin receptors with various concentrations (10-

12 - 10-5 M) of the RGD ligands in the presence of biotinylated vitronectin (1 µg/mL), and measuring 

the concentration of bound vitronectin in the presence of the competitive ligands. Low nanomolar 

values were obtained with all the Paclitaxel-RGD constructs (90-93), comparable to the 

unfunctionalized ligands (17, 18, 19 and 21). These data reassured us that the enormous increase of 

steric hindrance in the cyclo[DKP-RGD] - PTX conjugates, due to presence of the linker bearing 

Paclitaxel through the succinate tether, did not influence the high affinity for integrin receptors αvβ3 

and αvβ5. Notably, for inhibition of vitronectin binding to the αvβ3 receptor, unconjugated ligand 144 

required a 5-fold higher concentration than both its unfunctionalized and conjugated analogs 

(compounds 18 and 91, respectively). This reduced affinity may result from perturbation of the 

electrostatic clamp (i.e. the binding interactions of the carboxylate and guanidinium groups with the 

charged regions of the receptor),13 induced by the free amine present in 144.  
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Table 2.2. Inhibition of biotinylated vitronectin binding to αvβ3 and αvβ5 receptors 

Compound Structure αvβ3  
IC50 [nM]a 

αvβ5  
IC50 [nM]a 

90 cyclo[DKP-f2-RGD]-PTXb 8.5 ± 0.8 518 ± 10 
91 cyclo[DKP-f3-RGD]-PTXb 5.2 ± 2.3 219 ± 124 
92 cyclo[DKP-f4-RGD]-PTXb 0.9 ± 0.6 76 ± 32 
93 cyclo[DKP-f6-RGD]-PTXb 1.1 ± 0.1 22 ± 3 
144 cyclo[DKP-f3-RGD]c 26.4 ± 3.7 > 5·103 

148 cyclo[DKP-f3-RGD]- 
hemisuccinamided 4.1 ± 0.6 75 ± 1 

17 cyclo[DKP-2-RGD]e 3.2 ± 2.7 114 ± 99 
18 cyclo[DKP-3-RGD]e 4.5 ± 1.1 149 ± 25 
19 cyclo[DKP-4-RGD]e 7.6 ± 4.3 216 ± 5 
21 cyclo[DKP-6-RGD]e 2.1 ± 0.6 79 ± 3 
cyclo[RGDfV]f cyclo[RGDfV] 3.2 ± 1.3 7.5 ± 4.8 
ST1646f ST1646g 1.0 ± 0.5 1.4 ± 0.8 

aIC50 values were calculated as the concentration of compound required for 50% inhibition of biotinylated 
vitronectin binding as estimated by GraphPad Prism software; all values are the arithmetic mean ± SD of 
triplicate determinations. bSee Figure 2.11. cSee Scheme 2.4. dsee Scheme 2.6. eSee Figure 2.3. fReference 
compound. gSee Figure 2.2. 

 

Derivatization of the amine with succinic anhydride gave the hemisuccinamide 148 and restored the 

high binding affinity for the αvβ3 receptor. Interestingly, unlike reference compounds cyclo(RGDfV) 

and ST1646, the cyclo[DKP-RGD] peptidomimetics were ca. 20-200 fold more selective for the αvβ3 

integrin with respect to the αvβ5 in this kind of assay. 

 

 

2.2.4 -  Sensitivity of tumor cell lines treated with cyclo[DKP-RGD] - PTX conjugates 90-

9337 

Cyclo[DKP-RGD] - PTX conjugates 90-93 were tested in vitro for their cytotoxic activity in 

comparison with Paclitaxel, against a panel of human tumor cell lines. The cell sensitivity assays 

(Table 2.3) clearly indicated that the functionalized cyclo[DKP-f3-RGD] integrin ligand 144 was not 

cytotoxic, while the cyclo[DKP-RGD]-PTX conjugates displayed a cytotoxic activity similar to that of 

Paclitaxel (same order of magnitude). These data imply that free Paclitaxel is released at some stage, 

possibly after the conjugates have been internalized into the cells, because it is well known that the 

free 2’-OH group is necessary for Paclitaxel to exert its cytotoxic and microtubule-stabilizing 

activities.38 Compounds 90-93, 144 and Paclitaxel were also tested in vitro on normal HDFC 

fibroblasts. When cells started to proliferate and were exposed to different concentrations of these 
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compounds (range of concentrations tested = 64-1000 nM), a marginal inhibition of cell growth was 

observed. The effect was not concentration-dependent, suggesting that the compounds were not 

cytotoxic but were at best cytostatic in these cells. The data reported in Table 2.3 did not identify 

undoubtedly a lead compound for evaluation of antitumor activity with in vivo models. Therefore, we 

chose cyclo[DKP-f3-RGD]-PTX 91 as our lead conjugate mainly because of its straightforward 

synthetic accessibility on a multi-gram scale. 

Flow cytometry was used to detect the expression of αVβ3 and αVβ5 integrins on the surface of the 

different cancer cell lines (Table 2.4). Among these, the cisplatin-resistant IGROV-1/Pt1 cells 

expressed very high levels of integrin αVβ3, making them attractive to be tested in murine models with 

cyclo[DKP-RGD]-PTX construct 91 (vide infra the in vivo experiments). 

 

Table 2.3. Cell sensitivity of different tumor cell lines to compounds 90-93 and 144a 

Compd Structure 
IC50 (nM) 

IGROV-1 IGROV-1 
/Pt1 U2-OS SKOV3 PANC-1 MIA-

PaCa2 

90 Cyclo[DKP-f2-
RGD]-PTX 17.7 ± 6.0 18.7 ± 6.0 2.2 ± 0.5 1.6 ± 1.0 5.8 ± 4.0 2.0 ± 0.7 

91 Cyclo[DKP-f3-
RGD]-PTX 61.3 ± 19.1 4.9 ± 2.0 12.8 ± 

0.1 1.2 ± 0.1 2.4 ± 0.8 2.3 ± 0.4 

92 Cyclo[DKP-f4-
RGD]-PTX 34.4 ± 29.0 3.7 ± 2.0 6.8 ± 4.6 2.4 ± 0.9 3.2 ± 0.7 1.8 ± 0.6 

93 Cyclo[DKP-f6-
RGD]-PTX 48.2 ± 2.2 2.4 ± 1.9 5.7 ± 4.4 2.4 ± 1.1 3.5 ± 0.1 2.5 ± 0.6 

144 Cyclo[DKP-f3-
RGD] > 1200 > 18000 > 6300 > 11600 > 11600 > 11600 

PTX Paclitaxel 23.0 ± 0.8 2.2 ± 0.8 3.4 ± 0.4 2.7 ± 1.1 5.2 ± 1.9 7.2 ± 3.8 

aCell sensitivity was evaluated by growth inhibition assays based on cell counting. Cells were seeded and 24 h 
later they were exposed to the compounds for 72 h. At the end of treatment, cells were counted using a cell 
counter. 

 

Table 2.4. Integrin expression of tumor cell lines of different tumor typesa 

Integrin 
Mean fluorescence intensity 

IGROV-1 IGROV-1 
/Pt1 U2-OS SKOV3 PANC-1 MIA-

PaCa2 

αVβ3 4.8 ± 1.9 23.3 ± 5.0 1.8 ± 0.6 6.4 ± 0.05 7.9 ± 2.8 1.2 ± 0.1 
αVβ5 3.4 ± 0.9 3.3 ± 0.5 27.4 ±  0.1 4.4 ± 0.5 25.7 ± 6.5 5.6 ± 0.9 

aIntegrin expression levels were examined by immunofluorescence using a flow cytometer. The ratios between 
the mean fluorescence intensity of cells incubated with primary antibody and isotypic control are shown. 
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Comparing the data presented in Tables 2.3 and 2.4, it is quite clear that there is no correlation 

between the phenotypic integrin expression levels and efficacy of cyclo[DKP-RGD]-PTX conjugates, 

in in vitro assays. The cell sensitivity studies were carried out to determine whether Paclitaxel was 

released from the conjugate; in these in vitro assays, no tumor homing effect can be expected and 

therefore the different response can be attributed only to a higher or lower sensitivity of the different 

cell lines to the particular compound tested, independently of the integrin receptor expression. On the 

other hand, the evaluation of integrin expression was important for the choice of the best in vivo model 

for efficacy studies (i.e., the choice of cisplatin-resistant IGROV-1/Pt1, a cell line where the 

expression of integrin αvβ3 is particularly relevant). 

 

2.2.5 -  Adhesion studies37 

Adhesion assay experiments performed on a panel of human cancer cell lines show that 50% 

inhibition of cell adhesion to vitronectin-coated plates can be obtained using cyclo[DKP-3-RGD] 18 at 

2-15 µM concentration (cell adhesion IC50, unpublished results from our group). Following the 

referee’s recommendation, the capability of IGROV-1/Pt1 cells to adhere to vitronectin-coated plates 

was evaluated. When cells were pretreated with cyclo[DKP-f3-RGD] 144 at a suboptimal 0.064 µM 

concentration, only 13% inhibition was observed (Figure 2.14). When cells were pretreated with 

cyclo[DKP-f3-RGD]-PTX 91 at  0.064 µM concentration (corresponding to the compound 91 cell 

sensitivity IC80), a more pronounced inhibition (36%) was observed. 

 

Figure 2.14. IGROV-1/Pt1 cell adhesion assays to vitronectin-coated platesa 

 

aCells were pretreated with compound 144 (CPD144, 0.064 µM), compound 91 (CPD11, 0.064 µM), or 
Paclitaxel (PTX, 0.10 µM) for 24 h. 
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However, when cells were pretreated with an equitoxic concentration of Paclitaxel (PTX, Paclitaxel 

cell sensitivity IC80 = 0.10 µM), a similar inhibition (39%) was observed, which is probably due to its 

direct toxicity to the cells. It has been demonstrated that the inability of the cytoskeleton to rearrange 

by depolymerization, caused by Paclitaxel, results in a 35-40% reduction in cell adhesion.39 Under the 

experimental conditions used, the assay is inconclusive and does not allow to distinguish between 

RGD-promoted and toxicity-promoted adhesion inhibition.  

 

2.2.6 -  Evaluation of in vivo antitumor activity40  

Antitumor activity of our lead conjugate cyclo[DKP-f3-RGD]-PTX 91, delivered i.v. and administered 

every 4 days for 4 times (q4dx4), was examined on the αVβ3-rich IGROV-1/Pt1 carcinoma grown in 

athymic mice as subcutaneous (s.c.) tumor. A significant, dose-related antitumor effect was observed 

following administration of two dose levels of compound 91 (15 mg/kg and 30 mg/kg). Moreover, 

when compound 91 (30 mg/kg, i.e. 19.1 µmol/kg) was compared to Paclitaxel (30 mg/kg, i.e. 35.1 

µmol/kg) administered with the same weight dosage and schedule, it displayed better effects in terms 

of tumor volume inhibition (TVI, 85 vs 76%), despite the lower (ca. half) molar dosage used (Figure 

2.15).  

 

Figure 2.15. In vivo antitumor activity studies of cyclo[DKP-f3-RGD]-PTX 91 compared to Paclitaxel on 
IGROV-1/Pt1 ovarian carcinomaa 

 

aEfficacy of compound 91 (CPD11) and Paclitaxel (PTX) administered intravenously every fourth day for four 
times on the ovarian carcinoma IGROV-1/Pt1 xenografted subcutaneously in athymic nude mice. The solvent 
was injected for the control group (○). Each point represents the mean tumor volume from 8 tumors. Bars 
represent S.D. *, P < 0.05 by Student’s t test on tumor volumes over control mice. 
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Furthermore, 2 out of 8 tumors in animals receiving conjugate 91 disappeared without any evidence of 

disease until the end of the experiment. Thus, an improved and more persistent effect against the 

growth of treated tumors was achieved, as indicated also by the higher Log10 Cell Kill value (LCK, 1.4 

vs 0.7, Table 2.5). Treatment was well tolerated, as no deaths or significant weight losses were 

observed among the treated animals.41 

 

Table 2.5. In vivo antitumor activity and toxicity profile of cyclo[DKP-f3-RGD]-PTX 91 and Paclitaxel against 
human ovarian cancer xenografts (IGROV-1/Pt1) in mice, as a function of dose.  

Treatment Dose 
(mg/kg) 

Dose 
(µmol/kg) TVI%a CRb NEDc LCKd BWL%e D/Tf 

Paclitaxel 30 35.1 76 3/8 0/8 0.7 4 0/4 

Cyclo [DKP-f3-
RGD]-PTX 91 15 9.6 64 0/8 - 0.3 0 0/4 

Cyclo [DKP-f3-
RGD]-PTX 91 30 19.1 85 2/8 2/8 1.4 3 0/4 

aTVI%: Tumor Volume Inhibition percent in treated over control mice, calculated 10 d after the end of 
treatments. 

bCR: Complete Response: disappearance of tumors lasting at least 10 days. 
cNED: No Evidence of Disease at the end of experiment (at day 66). 
dLCK: Gross Log10 Cell Kill to reach 600 mm3 of tumor volume (see Figure 2.15).  
eBWL%: Body Weight Loss percentage induced by drug treatment.  

fD/T: Dead/Treated mice. 

 

2.2.7 -  Immunohistochemistry of treatment effects42  

To investigate the mechanism underlying the improved antitumor activity of cyclo[DKP-f3-RGD]-

PTX 11 over paclitaxel, histopathological and Western blot analyses were carried out in tumors from 

untreated mice and from mice treated with cyclo[DKP-f3-RGD]-PTX 91, compound 144, and 

Paclitaxel (Figure 2.16). The comparison between Paclitaxel and cyclo[DKP-f3-RGD]-PTX 91 was 

carried out administering 30 mg/kg for both compounds, amounts which correspond to 35.1 µmol/kg 

for Paclitaxel and to 19.1 µmol/kg for cyclo[DKP-f3-RGD]-PTX 91. Histological analysis indicated 

the presence of a high number of mitotic cells in the group treated with cyclo[DKP-f3-RGD]-PTX 91, 

compared to the other groups (Figure 2.16). In addition, the majority of the mitoses observed in the 

groups treated with either cyclo[DKP-f3-RGD]-PTX 91 or Paclitaxel were aberrant, an observation 

consistent with the mechanism of action of spindle poisons.43 High levels of aberrant mitoses were 

observed with cyclo[DKP-f3-RGD]-PTX 91, already 24 h after the second treatment and persisted 

after the fourth treatment. On the contrary, the amount of aberrant mitotic cells observed after mice 

treatment with Paclitaxel decreased over time. 
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Figure 2.16. Histopathological analysis of IGROV-1/Pt1 xenograft, after treatment with cyclo[DKP-f3-RGD]-
PTX 91a 
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aA. Quantitative analysis of mitoses. Mitoses were evaluated in 3 randomly selected 400x fields using 
quadruplicate samples. The reported numbers correspond to the mean number of normal/aberrant mitoses in 
analyzed groups: control groups (control); groups treated with compound 144 (CPD144); group treated with 
compound 91 (CPD91); groups treated with Paclitaxel (PTX). Note that tumors were obtained from mice 
sacrificed 24 h after the second or the fourth treatment. B. Randomly selected high power field (hpf) within the 
bulk of the tumor from a control group sample, characterized by normal mitoses (hematoxyilin and eosin; Bar, 
50 µm). C. Randomly selected hpf within the bulk of the tumor from a sample treated with compound 64. 
Hyperchromatic nuclei with condensed chromatin are evident (hematoxylin and eosin; Bar, 50µm). D. 
Randomly selected hpf within the bulk of the tumor from a sample treated with compound 11. Note markedly 
aberrant mitoses, with formation of nuclear envelops around individual clusters of missegregated chromosomes 
(mitotic catastrophe) (hematoxylin and eosin; Bar, 50µm). E. Randomly selected hpf within the bulk of the 
tumor from a sample treated with Paclitaxel. Note markedly aberrant mitoses, with formation of nuclear 
envelops around individual clusters of missegregated chromosomes (mitotic catastrophe) (hematoxylin and 
eosin; Bar, 50µm). 

 

Since tumors from mice treated with cyclo[DKP-f3-RGD]-PTX 91 had the highest number of mitoses 

and the major part of them were atypical, it is likely that tumor cells treated with compound 91 entered 

mitosis, but failed to replicate and incurred in mitotic arrest.  
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 CHAPTER 3 

CONLCUSIONS 

Integrins are transmembrane heterodimeric cell adhesion receptors, consisting of an α- and a β-

subunit, involved in many fundamental processes, such as cell growth, cell division, cell survival, 

cellular differentiation, apoptosis. As a consequence, integrin malfunctions are connected to a large 

variety of diseases (e.g. thrombosis, cancer, osteoporosis, inflammation), and integrins themselves 

represent attractive targets for pharmacological research. Of the 24 different heterodimers known, the 

RGD-binding integrins αVβ3, αVβ5, α5β1 are key-factors of angiogenesis, i.e. the formation and 

maturation of new blood vessels. A small localized tumor releases angiogenic growth factors, 

promoting the generation of abnormal blood vessels which can feed the tumor. Hence, angiogenesis 

plays a pivotal role in tumor growth and metastatic spreading. 

Particular integrins are able to selectively bind different spatial presentations of a single binding motif 

(RGD) in multiple ECM proteins. Therefore, synthetic RGD-ligands can bind and inhibit endogenous-

ligand-binding to integrins with an RGD-recognition specificity (αVβ3, αVβ5, α5β1), thus significantly 

inhibiting angiogenesis, tumor growth and metastasis. 

An efficient synthesis in solution of constrained peptides (16-23) containing the Arg-Gly-Asp (RGD) 

motif and diketopiperazine scaffolds DKP1-DKP8 was developed and optimized.  

All the bifunctional 2,5-diketopiperazine scaffolds (DKP1-DKP8) derive from L- or D-Ser and either 

L- or D-Asp (DKP1-DKP7) or D-Glu (DKP8) and feature a carboxylic acid functionality and an 

amino moiety protected as Boc, which can be locked in a cis- (DKP1) or trans-relationship (DKP2-

DKP8) as a consequence of the absolute configurations of the two α-amino acids. Moreover, the DKP 

scaffolds differ each from the other for the substitution at the diketopiperazine nitrogens (N-1, N-4), as 

they are either mono (DKP1-DKP4, DKP6, DKP8,) or bis-benzylated (DKP5, DKP7). While being 

derived from α-amino acids, they can be seen as a constrained dipeptide formed by two β- or a β- and 

a γ-amino acid. Ligands 16-23 were tested for their ability to inhibit biotinylated vitronectin binding to 

αvβ3 and αvβ5 receptors. All the ligands, except for the one containing a cis-scaffold, displayed low 

nanomolar affinity for both αVβ3 and αVβ5 integrins, with a slight selectivity towards the former 

receptor. Notably, two different separable conformers (diastereomers) were isolated for compound 22, 

containing bis-benzylated scaffold DKP7, due to hindered rotation of one ring around the other. 

Interestingly, the two diastereomeric compounds showing atropoisomerism (22 A, 22 B) are the most 

and the least selective and potent of the series. 
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Our ligands were fully characterized by NMR spectroscopy, detecting both H-bondings and long-

range NOE contacts. Moreover, three-dimensional structures satisfying long-range NOE contacts were 

generated by restrained simulations. Five different H-bonding patterns were observed for our ligands 

on the basis of the conformational analysis, each one featuring at least a β-turn motif. A Cβ (Asp)-Cβ  

(Arg) distance of around 9 Å was detected from the structures obtained by restrained MC/SD 

simulations for the ligands displaying good affinity towards αVβ3 and αVβ5 integrins, while shorter 

distances were observed for the cis compound (16). In order to rationalize, on a molecular basis, the 

affinity of cyclic RGD peptidomimetics for the αvβ3 receptor, docking studies were performed starting 

from the representative conformations obtained from the MC/SD simulations. The crystal structure of 

the extracellular segment of integrin αvβ3 complexed with the cyclic pentapeptide Cilengitide (1L5G, 

pdb code) was taken as a reference model for the interpretation of the docking results in terms of 

ligand-protein interactions. In most of the cases the electrostatic clamp interactions of the 

pharmacophoric groups were maintained; moreover, further stabilizing interactions were observed in 

the case of higher affinity compounds. 

Since αv integrins, which can be internalized by cells, are involved in tumor angiogenesis and are 

overexpressed on the surface of cancer cells, integrin ligands can be usefully employed as tumor-

homing peptidomimetics for site-directed delivery of cytotoxic drugs. A small library of integrin 

ligand - Paclitaxel conjugates 90-93 was synthesized with the aim of using cyclo[DKP-RGD] 

peptidomimetics as recognition motif for “tumor homing drug delivery”. 

In order to prepare cyclic RGD-peptidomimetics covalently linked to Paclitaxel, four functionalized (f) 

trans diketopiperazines (i.e., DKP-f2, DKP-f3, DKP-f4, DKP-f6) were synthesized, varying the 

position of the p-aminomethylbenzyl N-substituent (N-1 or N-4) and the absolute stereochemistry at C-

3 and C-6. These DKPs were used for the synthesis of cyclo[DKP-RGD] integrin ligands, which were 

finally conjugated to 2’-succinyl Paclitaxel. 

All the Paclitaxel-RGD constructs 90-93 inhibited biotinylated vitronectin binding to the purified αVβ3 

receptor at low nanomolar concentration, showing that the enormous increase of steric hindrance in the 

conjugates, due to presence of the linker bearing Paclitaxel through the succinate tether, did not 

influence the high affinity for the integrin receptors. Cyclo[DKP-RGD]-PTX conjugates 90-93 showed 

in vitro cytotoxic activity against a panel of human tumor cell lines similar to that of Paclitaxel. 

Among the cell lines, the cisplatin-resistant IGROV-1/Pt1 cells expressed high levels of integrin αVβ3, 

making them attractive to be tested in in vivo models. Cyclo[DKP-f3-RGD]-PTX 91 displayed 

sufficient stability in physiological solution and in both human and murine plasma to be a good 

candidate for in vivo testing. In tumor-targeting experiments against the IGROV-1/Pt1 human ovarian 

carcinoma xenotransplanted in nude mice, compound 91 exhibited better effects than Paclitaxel in 

terms of tumor volume inhibition and Log10 Cell Kill, despite the lower (ca. half) molar dosage used. 

Moreover, 2 out of 8 tumors in animals receiving conjugate 91 disappeared without any evidence of 
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disease until the end of experiment, suggesting an improved and more persistent antitumor effect. 

Treatment was well tolerated, as no deaths or significant weight losses were observed among the 

treated animals. Comparison of the in vitro data (where conjugate 91 is apparently two-fold less 

cytotoxic than Paclitaxel with respect to the IGROV-1/Pt-1 cancer cell line) with the in vivo data 

(where conjugate 91 shows a superior antitumor effect compared to Paclitaxel against the IGROV-

1/Pt1 human ovarian carcinoma xenotransplanted in nude mice) is not contradictory but rather 

reinforces the tumor homing effect claimed for compound 91. In fact, in vivo the conjugate is targeted 

to the tumor, whereas in vitro it acts through release of Paclitaxel. The histological examination of 

tumor specimens supports this view, because the induction of aberrant mitosis observed after treatment 

with conjugate 91 was more frequent, pronounced and persistent than that observed with Paclitaxel, 

consistent with a successful drug delivery to the target. The superior in vivo activity of cyclo[DKP-f3-

RGD]-PTX 91 as compared to Paclitaxel supports the view that integrin ligands are promising tools to 

improve delivery of cytotoxic drugs. 

 



 

 

CHAPTER 4  

EXPERIMENTAL SECTION - CHEMISTRY  

1 -  General remarks and procedures 

 

MATERIALS AND METHODS: All manipulations requiring anhydrous conditions were carried out 

in flame-dried glassware, with magnetic stirring and under a nitrogen atmosphere. All commercially 

available reagents were used as received. Anhydrous solvents were purchased from commercial 

sources and withdrawn from the container by syringe, under a slight positive pressure of nitrogen. (S)-

and-(R)-serine methyl ester hydrochloride,1 (S)- and (R)-serine methyl ester hydrochloride,2 (2R)- and 

(2S)-aspartic acid β-allyl ester hydrochloride,3 N-(tert-butoxycarbonyl)-(2R)-aspartic acid β-allyl 

ester,3 (S)- and (R)-N-Boc-serine methyl ester,4 (S)- and (R)-methyl 3-azido-2-(tert-

butoxycarbonylamino)propanoate,5 (S)- and (R)-3-azido-2-(tert-butoxycarbonylamino) propanoic 

acid,5 (S)- and (R)-dimethyl aspartate hydrochloride,6 (S)- and (R)-N-benzyl-dimethyl aspartate,7 γ-

methyl glutamate hydrochloride8 and N-Boc-glycine benzyl ester9 were prepared according to 

literature procedures and their analytical data were in agreement with those already published. 

Reactions were monitored by analytical thin layer chromatography using 0.25 mm pre-coated silica 

gel glass plates (DURASIL-25 UV254) and compounds visualized using UV fluorescence, aqueous 

potassium permanganate or ninhydrin. Flash column chromatography was performed according to the 

method of Still and co-workers10 using Chromagel 60 ACC (40-63 µm) silica gel. Melting points were 

obtained in an open capillary apparatus and are uncorrected. 1H-NMR spectra were recorded on a 

spectrometer operating at 400.16 MHz. Proton chemical shifts are reported in ppm (δ) with the solvent 

reference relative to tetramethylsilane (TMS) employed as the internal standard. The following 

abbreviations are used to describe spin multiplicity: s = singlet, d = doublet, t = triplet, q = quartet, m 

= multiplet, br = broad signal, dd = doublet of doublet. 13C-NMR spectra were recorded on a 

spectrometer operating at 100.63 MHz, with complete proton decoupling. Carbon chemical shifts are 

reported in ppm (δ) relative to TMS with the respective solvent resonance as the internal standard. 

Infrared spectra were recorded on a standard FT-IR and peaks are reported in cm–. Optical rotation 

values were measured on an automatic polarimeter with a 1 dm cell at the sodium D line and are given 

in units of 10-1 deg cm2 g-1. High resolution mass spectra (HRMS) were performed on a  Fourier 

Transform Ion Cyclotron  Resonance (FT-ICR) Mass Spectrometer APEX II & Xmass software 
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(Bruker Daltonics) – 4.7 T Magnet (Magnex) equipped with ESI source, available at CIGA (Centro 

Interdipartimentale Grandi Apparecchiature) c/o Università degli Studi di Milano. Low resolution 

mass spectra (MS) were measured on a Waters Acquity UPLC-MS (ESI ion source). All described 

compounds showed a purity > 98%, as determined by HPLC (UV and MS detectors). LC-UV/MS data 

were collected with an Agilent 1100 HPLC connected to a Bruker Esquire 3000+ ion trap mass 

spectrometer through an ES interface. 

 

I really thank Indena S.p.A. for a generous gift of Paclitaxel 

 

 

GENERAL PROCEDURES: 

 

GENERAL PROCEDURE FOR Boc-DEPROTECTION REACTIONS: 

GP1: To a solution of the N-Boc-protected  amino acid or peptide in CH2Cl2 (0.13 M) was added half 

volume of TFA. The reaction mixture was stirred at for 2 h r.t. and then concentrated at reduced 

pressure. The excess TFA was azeotropically removed from the residue with toluene. Diethyl ether 

was added to the residue and the resulting suspension was evaporated under reduced pressure to afford 

the corresponding TFA salt.  

 

GENERAL PROCEDURE FOR COUPLING REACTIONS: 

GP2: To a solution of the N-protected amino acid in DMF, under nitrogen atmosphere and at 0 ºC, 

HATU (1.2 eq.), HOAt (1.2 eq.) and DIPEA (4 eq.) were added successively. After 30 min, a solution 

of the N-deprotected TFA salt of the peptide in DMF was added and the reaction mixture was stirred at 

0 ºC for 1 h and at r.t. overnight. The mixture was afterwards diluted with EtOAc and consecutively 

washed with 1 M KHSO4 (2×), aqueous NaHCO3 (2×) and brine (2×), and dried over Na2SO4. 

Volatiles were evaporated under reduced pressure to afford the crude product. 

 

GENERAL PROCEDURE FOR Cbz AND OBn HYDROGENOLYTIC CLEAVAGE:  

GP3: protected compound (1 eq.) was dissolved in a mixture of THF/H2O (1:1) and Pd/C 10% (0.1 

eq.) was added. The reaction mixtures were subjected to three vacuum/hydrogen cycles and then left 

stirring overnight at room temperature under 1 bar of hydrogen. The mixture was filtered through 

Celite, and the cake thus obtained was washed thoroughly with THF/H2O (1:1). The filtrate was 

concentrated and dried to give the crude product as white solid (100%). 

 

GENERAL PROCEDURE FOR MACROLACTAMIZATION: 

GP4: to a 1.4 mM solution of deprotected linear compound (1 eq.) in DMF, under nitrogen 

atmosphere and at 0 ºC, HATU (4 eq.), HOAt (4 eq.) and DIPEA (6 eq.) were added successively. 
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After stirring the reaction mixture at 0 ºC for 1 h, it was allowed to reach r.t., and stirred overnight. 

DMF was then removed under reduced pressure and the residue was purified by flash chromatography 

on silica gel to afford the product as white foam (31-74%). 

 

GENERAL PROCEDURE FOR Mtr AND OtBu ESTER REMOVAL: 

GP5: protected macrolactams was treated with TFA (0.01 M solution), in the presence of ion 

scavengers: thioanisole (5%), ethanedithiol (3%), anisole (2%). After TFA removal, under reduced 

pressure, the residue was dissolved in a 1:1 mixture of diisopropyl ether/water. Phases were separated 

and the aqueous layer was washed several times with diisopropyl ether. The aqueous phase was 

concentrated under reduced pressure to give the crude product, which was purified by HPLC to give 

the desired compound as white solid (60-80%). 

 

 

Preparation of hydrazoic acid  

 

 
 

In a three-necked flask, NaN3 (3 g) was dissolved in H2O (3 mL). Once completely dissolved, toluene 

(20 mL) was added and the reaction mixture was cooled to 0 °C under vigorous stirring. Concentrated 

H2SO4 (1.2 mL) was added extremely slowly, so that the solution temperature did not exceed 10 °C. 

The reaction was stirred for one hour at 0 °C and then filtered on cotton wool. The residue was washed 

twice with toluene. The toluene solution was titrated by diluting 1 mL in distilled water (50 mL), and 

addition of NaOH (0.1 M) with phenolphthalein as indicator. 
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2 -  Synthesis of diketopiperazine scaffolds DKP1-DKP8  

 

2.1 -  DKP1-DKP3 

 

Reagents and conditions: (a) CH3COCl, CH2=CHCH2OH; (b) Et3N, Boc2O, 1:1 H2O/THF; (c) CH3COCl, 
CH3OH; (d) Et3N, PhCHO, CH3OH, then NaBH4; (e) EDC, DMAPcat., DCM; (f) TFA/DCM, 1:1; (g) iPr2EtN, 
iPrOH; (h) PPh3, DIAD, H3N.tol, DCM/toluene, -20°C; (i) Me3P, Boc-ON, THF, -20°C -> r.t; (j) [Pd(PPh3)4], 
PPh3, pyrrolidine, DCM, 0°C. 

 

 

(R)- and (S)-β-allyl aspartic acid hydrochloride 44 

 

 
 

In a round bottom flask cooled at 0 °C were diluted 5 g (37.57 mmol) of L- or D- aspartic acid in 45 

mL of allylic alcohol. Acetyl chloride (10.4 mL, 146.5 mmol, 3.9 eq.) was then slowly added dropwise 

with a dropping funnel into the reaction mixture. Once the addition was finished, the reaction flask 

was removed from the ice bath and let react at room temperature for 18 h. The reaction mixture was 

diluted in Et2O making the product precipitate entirely. The salt was filtered through a glass filter and 

washed twice with more Et2O. The salt was recovered and dried under vacuum affording 5.94 g (80%) 

of the monoallylated aspartic acid hydrochloride white solide. 
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=+22.7 (S-; MeOH, c=1.00); mp: 181 - 183 °C. litt. = 184 - 185 °C; 1H NMR (400 MHz, D2O) δ 

5.96-5.86 (m, 1H, H6), 5.33-5.23 (m, 2H, H7), 4.64 (d, J=5.74 Hz, 2H, H5), 4.37-4.34 (m, 1H, H2), 

3.14-3.08 (dd, J1=4.8 Hz, J2=18.4 Hz, 2H, H3); 13C NMR (101 MHz, D2O) δ 171.5 (C=O), 171.2 

(C=O), 131.8 (C6), 119.3 (C7), 67.1 (C5), 49.7 (C2), 34.4 (C3); IR (cm-1): 3437, 2913, 1742, 1726, 1505, 

1227, 1206. 

 

 

 (R)- and (S)-N-Boc-β-allyl aspartic acid 45 

 

 
 

In a round bottom flask were solved 5.9 g (28.14 mmol) of either (R)- or (S)- allyl aspartic acid 

hydrochloride 44 in 120 mL of THF/water 1:1 solution. The reaction flask was lowered into an ice 

bath and 11.77 mL (84.42 mmol, 3 eq.) of triethylamine were added. Then, 7.37 g (33.77 mmol, 1.2 

eq.) of Boc2O were added and the reaction was stirred at room temperature for 24 h. The reaction 

mixture was then diluted with 200 mL of EtOAc and washed with aqueous KHSO4 1M until pH = 3 

and brine. The organic phase was dried over Na2SO4, filtered and concentrated under reduced pressure. 

The product was then dried under high vacuum for a few hours affording 7.38 g (96%) of the pure 

expected product as viscous transparent oil. 

Rf=0.1 (EtOAc 100%); =+33.3 (CHCl3, c=1.00) for (S)-N-Boc-β-allyl aspartic acid; 1H NMR 

(400 MHz, CDCl3) δ 9,90 (bs, 1H, OH), 5.94-5.86 (m, 1H, H6), 5.57 (d, J=8.4, 1H, NH), 5.19-5.32 (m, 

2H, H7), 4.52- 4.60 (m, 3H, H2, H5), 3.07 (dd, J1=4.2 Hz, J2=17.2 Hz, 1H, H3a), 2.89 (dd, J1=4.8Hz, 

J2=17.1 Hz, 1H, H3b), 1.46 (s, 9H, tBu); 13C NMR (101 MHz, CDCl3) δ 176.0 (C=O), 171.2 (C=O), 

156.0 (C=O), 132.0 (C6), 119.1 (C7), 80.9 (C(CH3)3), 66.2 (C5), 50.2 (C2), 36.9 (C3), 28.7 (C(CH3)3); 

IR (cm-1): 3331, 2980, 1732, 1504, 1385, 1163. 

 

 

(S)- and (R)-serine methyl ester hydrochloride 46 

 

 
 

[ ]20Dα

[ ]20Dα
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In a round bottom flask at 0°C were dissolved 6 g (57.09 mmol) of L- or D-serine in 45mL MeOH. 

Acetyl chloride (16.2 mL, 228 mmol, 4 eq.) was added dropwise in the reaction mixture. Once the 

addition was finished, the reaction flask was equipped with a condenser and the mixture was heated to 

reflux. After 2.5 h reflux was then stopped and the flask was cooled to room temperature. 200 mL of 

Et2O were added provoking the precipitation of the resulting salt which was filtered on a glass funnel 

and dried under high vacuum affording 8.79 g (99%) of serine methyl ester hydrochloride as a white 

solid. 

mp: 162-164 °C; =+3.98 (MeOH, c=1.00)  for (S)-serine methyl ester hydrochloride; 1H NMR 

(400 MHz, D2O) δ 4.25 (t, J=3.8 Hz, 1H, H2 ), 4.08 (dd, J1=4.3 Hz, J2=12.6 Hz, 1H, H3a), 3.98 (dd, 

J1=3.4 Hz, J2=12.6 Hz, 1H, H3b), 3.83 (s, 3H, OCH3); 13C NMR (101 MHz, D2O) δ 169.3 (C=O), 59.6 

(C3), 55.1 (C2), 54.1 (OCH3); IR (cm-1): 3358, 2928, 1750, 1595, 1510, 1260, 1095, 1040 

 

 
(S)- and (R)-N-benzyl-serine methyl ester 47 
 

 
 
6 g (38.6 mmol) of (S)- or (R)-serine methylester hydrochloride 46 were dissolved in 90 mL MeOH, 

and the mixture was cooled to -10°C. 9.4 mL of iPr2EtN (54.0 mmol, 1.4 eq.) and 0,79 mL (7.71 

mmol, 1eq.) of freshly distilled benzaldehyde were successively added dropwise. The reaction was 

stirred for 4 hours at r.t.. The temperature was then lowered again to -10°C and 2.9 g (76.6 mmol, 

2eq.) of NaBH4 were added portionwise over 30 min. The reaction mixture was again let react for half 

an hour, then, reaction was quenched by adding at low temperature HCl 4 M until no more gas 

formation was observed. The mixture was washed 3 times with Et2O. The organic phases were 

combined and extracted with HCl 4 M twice. The aqueous phases were then combined and neutralized 

by careful addition of saturated NaHCO3 solution until a pH=8 was reached. The aqueous phase was 

then extracted 4 times with Et2O. The organic phase was separated and dried over Na2SO4, filtered, 

concentrated under reduced pressure and dried under vacuum affording 7.35 g (91%) of benzyl serine 

methyl ester as transparent oil. 

Rf=0.2 (EtOAc/ hexane 1:1); =+39.4 (R-; CHCl3, c=1.00); 1H NMR (400 MHz, CDCl3) δ 7.38 – 

7.26 (m, 5H, C6H5), 3.91 (d, J = 13.0, 1H, CH2Ph), 3.82 (dd, J = 4.4, 10.9, 1H, H3), 3.77 (m, 4H, 

CH2Ph, OCH3), 3.66 (dd, J = 6.2, 10.8, 1H, H3), 3.46 (dd, J = 4.5, 6.1, 1H, H2), 2.78 (s, 1H, OH); 13C 

NMR (101 MHz, CDCl3) δ 173.6 (C=O), 139.3 (C6H5 quat), 129.0 (C6H5), 128.8 (C6H5), 127.8(C6H5), 

62.8 (C3), 62.2 (C2), 52.6 (OCH3), 52.4 (CH2Ph); IR (cm-1): 3320, 2951, 1736, 1454, 1202, 1142, 1057 

[ ]20Dα

[ ]20Dα
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4-allyl 1-[2-(benzylamino)-3-methoxy-3-oxopropyl] N-(tert-butoxycarbonyl)-aspartate (49a-c) 

 

 
 

To a solution of either (R)- or (S)-N-benzylserine methyl ester 47 (734 mg, 3.51 mmol, 1 eq.) and 

EDC·HCl (3.4 g, 17.6 mmol, 5 eq.) in dry CH2Cl2 (20 ml) at 0°C under a N2 atmosphere, β-allyl (2R)- 

or (2S)-N-(tert-butoxycarbonyl) aspartate ester 45 (1.92 g, 7.01 mmol, 2 eq.) was added as a solution 

in CH2Cl2. After 30 min, DMAP (214 mg, 1.76 mmol, 0.5 eq.) was added in one portion. The mixture 

was stirred at 0°C  for 2 h and for additional 4 h at r.t.. The resulting mixture was diluted with EtOAc 

(70 ml) and washed with KHSO4 1M aqueous solution (2x40 ml), aqueous NaHCO3 (2x40 ml) and 

brine (2x40 ml), dried over Na2SO4, and volatiles were removed under reduced pressure. The residue 

was purified by flash chromatography on silica gel (Hexane/EtOAc, 7:3) to afford the desired product 

as a transparent oil (1.54 g, 94%). 

Rf=0.30 (Hexane/EtOAc 6:4); 

a) =-2.65 (c=1.00, CHCl3); 1H NMR (400 MHz, CDCl3) δ 7.24-7.34 (m, 5H, C6H5), 5.83-5.93 (m, 

1H, H9), 5.48 (d, J = 8.5 Hz, 1H, NHBoc), 5.30 (d, J = 17.2 Hz, 1H, H10a), 5.23 (d, J = 10.4 Hz, 1H, 

H10b), 4.51-4.61 (m, 3H, H2, H8), 4.32-4.48 (m, 2H, H7), 3.88 (d, J = 13.1 Hz, 1H, CH2Ph), 3.75 (s, 

3H, OCH3), 3.73 (d, J = 13.1 Hz, 1H, CH2Ph), 3.55 (t, J = 4.7 Hz, 1H, H6), 2.99 (dd, J1 = 17.0 Hz, 

J2=4.3 Hz, 1H, H3a), 2.85 (dd, J1=17.0 Hz, J2=4.7 Hz, 1H, H3b), 2.21 (bs, 1H, OH), 1.45 (s, 9H, 

C(CH3)3); 13C NMR (101 MHz, CDCl3) δ 172.8 (C=O), 171.0 (2C=O), 155.7 (COBoc), 139.6 

(C6H5 - quat), 132.1 (C9), 128.9 (C6H5), 128.7 (C6H5), 127.6 (C6H5), 119.1 (C10), 80.6 (C(CH3)3), 

66.2 (C8), 66.1 (C7), 59.5 (C6), 52.7 (C2), 52.2 (CH2Ph), 50.3 (OCH3), 37.1 (C3), 28.7 (C(CH3)3); IR 

(cm-1): 3358, 2928, 1738, 1500, 1454, 1385, 1163, 1053. 

b) =+11 (c=1.00 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 7.26-7.34 (m, 5H, C6H5), 5.83-5.93 

(m, 1H, H9), 5.47 (d, J = 8.4, 1H, NHBoc), 5.32 (d, J = 17.2, 1H, H10a), 5.25 (d, J = 10.5, 1H, H10b), 

4.66 – 4.52 (m, 3H, H2, H8), 4.46 (dd, J = 4.6, 11.0, 1H, H7a), 4.35 (dd, J = 4.8, 11.0, 1H, H7b), 3.89 

(d, J = 13.1, 1H, CH2Ph), 3.80 – 3.68 (m, 4H, OCH3, CH2Ph ), 3.55 (t, J = 4.7, 1H, H6), 3.01 (dd, J 

= 4.3, 17.0, 1H, H3a), 2.86 (dd, J = 4.7, 17.1, 1H, H3b), 1.96 (s, 1H, OH), 1.45 (s, 9H, C(CH3)3); IR 

(cm-1): 3362, 2978, 1740, 1500, 1455, 1368, 1167, 1053. 

c) 1H NMR (400 MHz, CD2Cl2) δ 7.37-7.20 (m, 5H), 5.95-5.82 (m, 1H), 5.41 (br d, 1H, J = 7.9 Hz), 

5.34-5.18 (m, 2H), 4.61-4.48 (m, 3H), 4.39 (dd, 1H, J = 10.9, 4.6 Hz), 4.30 (dd, 1H, J = 10.9, 4.9 

Hz), 3.86 (d, 1H, J = 13.1 Hz), 3.71 (s, 3H), 3.70 (d, 1H, J = 13.1 Hz), 3.51 (t, 1H, J = 4.7 Hz), 
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2.94 (dd, 1H, J = 17.2, 4.7 Hz), 2.82 (dd, 1H, J = 17.0, 4.8 Hz), 1.42 (s, 9H); 13C NMR (101 MHz, 

CD2Cl2) δ 172.4, 170.6, 139.7, 131.9, 128.3, 128.2, 127.1, 118.1, 65.9, 65.6, 59.1, 52.0, 51.8, 50.0, 

36.7, 28.0; HRMS (ESI) m/z calcd for [C23H33N2O8]+: 465.22314 [M+H]+; found: 465.22267. 

 

 

OH-DKP1-CO2Allyl (43 a);  

OH-DKP2-CO2Allyl (43 b);  

OH-DKP3-CO2Allyl (43 c) 

 

 
 

Compound 49 (1.08 g, 1.82 mmol, 1 eq.) was deprotected according to general procedure GP1. The 

corresponding trifluoroacetate salt 51 was dissolved in iPrOH (20 ml) and iPr2EtN (0.9 ml, 5.6 mmol, 

4 eq.) was added at r.t.. The reaction was stirred for 18 h at r.t., monitoring the formation of DKP by 

TLC (EtOAc/Hexane: 8/2). The solution was then concentrated under reduced pressure and the residue 

was purified by flash chromatography on silica gel (Hexane/EtOAc, 75:25) to afford the desired 

product as a white foam (543.8 mg, 90%). 

43 a) Rf=0.25 (EtOAc/Hexane: 8/2); =-72.1 (c= 1.00 in CHCl3); 1H NMR (300 MHz, CDCl3) δ 

7.41 – 7.19 (m, 5H), 7.02 (d, J = 2.1 Hz, 1H), 5.96 – 5.78 (m, J = 17.1, 10.4, 5.8 Hz, 1H), 5.38 – 

5.19 (m, 3H), 4.67 – 4.53 (m, 2H), 4.53 – 4.43 (m, 1H), 4.06 (d, J = 15.0 Hz, 1H), 4.00 – 3.91 (m, 

J = 6.7 Hz, 1H), 3.91 – 3.80 (m, J = 3.1 Hz, 2H), 3.20 (dd, J = 17.6, 3.5 Hz, 1H), 3.11 (dd, J = 

17.6, 10.1 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ 171.8, 166.8, 166.2, 135.6, 131.9, 129.5, 

128.6, 128.6, 119.5, 66.4, 61.2, 60.6, 52.8, 47.8, 40.7; IR (cm-1): 3427, 2928, 1740, 1653, 1452, 

1383, 1339, 1275, 1184, 1128. 

43 b) Rf=0.10 (EtOAc/Hexane 8:2); =-35.3 (c=1.00 in CHCl3); 1H NMR (400 MHz, CD2Cl2) δ 

7.43 - 7.25 (m, 5H), 7.20 (br s, 1H), 6.02 - 5.83 (m, 1H), 5.39 - 5.20 (m, 3H), 4.70 - 4.55 (m, 3H), 

4.12 (d, 1H, J = 15.2 Hz), 4.01 (dd, 1H, J = 11.8, 1.9 Hz), 3.90 (dd, 1H, J = 11.8, 3.1 Hz), 3.81 

(bs, 1H,), 3.21 (dd, 1H, J = 17.4, 4.0 Hz), 2.86 (dd, 1H, J = 17.4, 8.0 Hz); 13C NMR (101 MHz, 

CD2Cl2) δ 170.8, 168.2, 166.6, 135.9, 131.8, 128.8, 127.9, 127.9, 127.8, 118.3, 117.9, 65.7, 61.9, 

61.6, 51.1, 47.3, 37.1; IR (neat): νmax 3364, 3032, 2942, 1738, 1651, 1452, 1383, 1329, 1273, 

1183, 1129; HRMS (ESI) m/z calcd for [C17H20N2NaO5]+: 355.12644 [M+Na]+; found: 355.12590. 
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N3-DKP1-CO2Allyl (52 a);  

N3-DKP2-CO2Allyl (52 b);  

N3-DKP3-CO2Allyl (52 c) 

 

 
 

To a solution of diketopiperazine 43 (559 mg, 1.7 mmol, 1 eq.) in CH2Cl2/toluene (6.6 ml/12.2 ml), 

under a nitrogen atmosphere and at -20 ºC, PPh3 (535 mg, 2.0 mmol, 1.2 eq.) was added and the 

mixture was stirred until a solution was obtained. Addition of hydrazoic acid (0.45 M in toluene, 7.5 

ml, 3.4 mmol, 2 eq.) was followed by dropwise addition of DIAD (0.42 ml, 2.0 mmol, 1.2 eq.) and the 

reaction was stirred at -20ºC during 3.5 h. The reaction mixture was loaded onto a silica gel column 

(Hexane/EtOAc, 6:4) thus removing the hydrazo-derivative. The resulting crude residue was further 

purified by flash chromatography (CH2Cl2/MeOH, 99:1) to afford the desired product as a white foam 

(a: 309 mg, 51%; b-c: 486 mg, 80%). 

In the case of the cis isomer, an almost unseparable mixture of compounds 52a and 54a was obtained 

in a 3:1 ratio. 

a) Rf=0.25 (EtOAc/Hexane: 8/2); =-72.1 (c= 1.00 in CHCl3) 1H NMR (400 MHz, CDCl3) δ  7.39 

– 7.21 (m, 5H), 6.77 (s, 1H), 5.84-5.91 (m, 1H), 5.41 – 5.27 (m, 2H), 5.25 (d, J = 15.0, 1H), 4.70 – 

4.57 (m, 2H), 4.52 (dt, J = 2.7, 10.7, 1H), 4.17 (d, J=15.0 Hz, 1H), 4.03 (q, J = 3.5, 1H), 3.92 – 

3.85 (m, 2H, H2), 3.24 (dd, J = 2.7, 17.7, 1H), 3.16 (br s, 1H); 3.11 (dd, J = 10.9, 17.7, 1H); 13C 

NMR (101 MHz, CDCl3) δ  171.8, 166.8, 166.2, 135.6, 131.9, 129.5, 128.6, 128.6, 119.5, 66.4, 

61.2, 60.6, 52.8, 47.8, 40.7; IR (cm-1): 3427, 2928, 1740, 1653, 1452, 1383, 1339, 1275, 1184, 

1128. 

c) Rf=0.13 (Hexane/EtOAc 6:4); =+55.9 (c=1.00 in CHCl3); 1H NMR (400 MHz, CD2Cl2) δ 7.39 

– 7.26 (m, 5H), 7.09 (d, 1H, J = 11.3 Hz), 6.00 – 5.83 (m, 1H), 5.35 (dq, 1H, J = 1.5, 17.2 Hz), 

5.28 (dq, 1H, J = 1.3, 10.4 Hz), 5.16 (d, 1H, J = 15.1 Hz), 4.69 – 4.60 (m, 3H), 4.26 (d, 1H, J = 

15.1 Hz), 3.95 (t, 1H, J = 2.9 Hz), 3.89 (dd, 1H, J = 2.3, 12.7 Hz), 3.65 (dt, 1H, J = 6.6, 13.2 Hz), 

3.29 (dd, 1H, J = 3.6, 17.5 Hz), 2.84 (dd, 1H, J = 8.9, 17.5 Hz); 13C NMR (101 MHz, CD2Cl2) δ 

171.0, 166.8, 166.4, 135.61, 131.9, 129.5, 128.7, 128.5, 119.4, 66.3, 59.5, 52.1, 51.5, 51.4, 48.3, 

37.6; IR (cm-1): νmax 3250, 2937, 2118, 1732, 1694, 1447, 1329, 1277, 1184; MS (ESI) m/z calcd 

for [C17H20N5O4]+: 380.13 [M+H]+; found: 380.2. 
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N-Boc-DKP1- CO2Allyl (53 a);  

N-Boc-DKP2- CO2Allyl (53 b);  

N-Boc-DKP3- CO2Allyl (53 c) 

 

 
 

To a solution of azide 52 (268 mg, 0.75 mmol, 1 eq.) in THF (2.5 ml), under a nitrogen atmosphere 

and at -20 ºC, Me3P (0.83 ml of 1 M solution in THF, 0.83 mmol, 1.1 eq.) and 2-(t-

butoxycarbonyloxyimino)-2-phenylacetonitrile (Boc-ON, 206 mg, 0.83 mmol, 1.1 eq.) were added 

successively. After stirring for 5 h at r.t., the solution was diluted with CH2Cl2 (60 ml) and washed 

with H2O (3x30 ml) and brine. The organic phase was dried over Na2SO4 and volatiles were removed 

under reduced pressure. The residue was purified by flash chromatography on silica gel 

(CH2Cl2/MeOH, 99:1) to afford the desired product as a white foam (a: 308 mg, 95%; b: 246 mg, 

76%). 

a) Rf=0.2 (CH2Cl2/MeOH 97:3); =-123.7 (c=1.00 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 7.33 

(m, 5H), 6.99 (s, 1H), 5.92 (m, 1H), 5.56 (d, J = 15.1, 1H), 5.35 (dd, J = 1.3, 17.2, 1H), 5.28 (dd, J 

= 0.9, 10.4, 1H), 5.20 (t, J = 6.4, 1H), 4.65 (d, J = 5.7, 2H), 4.50 (dt, J = 2.6, 11.2, 1H), 4.09 (d, J = 

15.1, 1H), 3.90 – 3.76 (m, 2H), 3.49 (m, 1H), 3.28 (dd, J = 2.4, 17.6, 1H), 2.84 (dd, J = 11.2, 17.6, 

1H), 1.46 (s, 9H); 13C NMR (101 MHz, CDCl3) δ 171.5, 166.7, 164.9, 156.2, 135.6, 131.8, 129.4, 

128.9, 128.5, 119.3, 80.8, 66.4, 59.2, 52.4, 47.2, 40.8, 40.6, 28.7; IR (cm-1): 3389, 2928, 1663, 

1524, 1453, 1339, 1271, 1169. 

b) Rf=0.14 (DCM/MeOH 97:3); =+16.9 (c=1.00 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 7.41 – 

7.21 (m, 5H), 6.94 (s, 1H), 5.91 (m, 1H), 5.51 (d, 1H, J = 15.1 Hz), 5.39 – 5.23 (m, 2H), 5.05 (br s, 

1H), 4.64 (d, 2H, J = 5.6 Hz), 4.49 (dd, 1H, J = 2.8, 9.3 Hz), 4.09 (d, 1H, J = 15.1 Hz), 3.83 – 3.76 

(m, 2H), 3.61 – 3.47 (m, 1H), 3.35 (dd, 1H, J = 3.3, 17.6 Hz), 2.79 (dd, 1H, J = 9.4, 17.6 Hz), 1.45 

(s, 9H); 13C NMR (101 MHz, CDCl3) δ 171.3, 167.6, 165.3, 156.3, 135.8, 131.8, 129.4, 128.8, 

128.5, 119.4, 80.8, 66.4, 59.7, 51.3, 47.6, 41.1, 38.3, 28.7; IR (cm-1): νmax 3328, 2980, 1692, 1524, 

1453, 1329, 1273, 1171; MS (ESI) m/z calcd for [C22H30N3O6]+: 432.21 [M+H]+; found: 432.3. 
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Allyl ester 53 (363 mg, 0.84 mmol, 1 eq.) was dissolved in CH2Cl2 (6.0 ml) under a nitrogen 

atmosphere. After cooling the solution at 0 ºC, pyrrolidine (83 μl, 1.01 mmol, 1.2 eq), PPh3 (40 mg, 

0.15 mmol, 0.18 eq) and [Pd(PPh3)4] (39 mg, 0.034 mmol, 0.04 eq) were added successively. After 

stirring for 1 h at 0°C, the mixture was diluted with EtOAc (25 ml) and extracted with aqueous 

NaHCO3 (4x10 ml). The combined aqueous phases were acidified to pH 2 with a 1 M KHSO4 solution 

and then extracted with CH2Cl2. The resulting organic phase was dried over Na2SO4 and the solvent 

was evaporated to afford the desired product as a fluffy white solid (327 mg, 99%) that was used 

without further purification. 
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2.2 -  DKP4-DKP6 

 

Reagents and conditions: a) CH3COCl, CH3OH; b) Boc2O, THF/H2O 1:1; c) HN3, DIAD, PPh3, THF; d) LiOH, 
THF/H2O 1:1; e) DCC, DCM. 

 

 

Reagents and conditions: a) TFA/DCM 1:2; b) DIPEA, iPrOH 

 

 

Reagents and conditions: (a) H2, Pd-C, THF; (b) Boc2O, THF; (c) LiOH, THF/H2O 1:1. 

 

 

N-benzyl-dimethyl aspartate (56) 6,7 

 

    
 

At 0 °C to 50 ml of anhydrous methanol, 3.75 ml (47.5 mmol) of thinly chloride was added dropwise. 

The solution was stirred at 0 °C for 30 min and then 6.332 g (47.5 mmol) of Asp was added. The 

reaction mixture was stirred at r.t. for 24 h and TLC (CH3Cl/CH3OH, 9:1) indicated complete 

disappearance of Asp. The reaction mixture was evaporated under reduced pressure and the residue 
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was triturated with petroleum ether repeatedly to provide 7.495 mg (98%) of HCl•Asp-(OCH3)2 as a 

colorless which was directly used for the next reaction. 

To a vigorously stirred solution of 500 mg (2.54 mmol) of dimethyl aspartate hydrochloride and 160 

mg (2.54 mmol) of sodium cyanoborohydride in 12 mL of methanol at rt was added 265 mg (2.54 

mmol) of benzaldehyde in one portion. After being stirred for 4 h, the mixture was cooled in an ice 

bath, and the pH was lowered to ca. 1 with concd HCl. The mixture was then allowed to warm to r.t. 

for 2 h, and the methanol was removed under reduced pressure at r.t.. The white residue was dissolved 

into a minimum volume of water, and the pH was raised to ca. 10 with saturated aqueous Na2CO3. 

After three ethyl acetate extractions, combined organic portions were washed with brine, dried over 

Na2CO3, and evaporated to give a pale yellow oil. 

 

 

Methyl 3-azido-2-(tert-butoxycarbonylamino)propanoate (62) 

 

    
 

In a round bottom flask were solved (10.0 g, 64.3 mmol, 1 eq.) of serine methyl ester hydrochloride in 

232 mL of THF/water 1:1 solution. The reaction flask was lowered into an ice bath and 27 ml (193 

mmol, 3 eq.) of triethylamine were added. Then, 16.8 g (77.1 mmol, 1.2 eq.) of Boc2O were added and 

the reaction was stirred at room temperature for 24 h. The reaction mixture was then diluted with 200 

mL of EtOAc and washed with aqueous KHSO4 1M until pH = 3 and brine. The organic phase was 

dried over Na2SO4, filtered and concentrated under reduced pressure. The product was then dried 

under high vacuum for a few hours affording 12.3 g (90 %) of pure Boc-Ser-OMe 61 as viscous 

transparent oil, which was used in the next step without purification. 

To triphenyl phosphine (1.45 g, 5.54 mmol, 1.2 eq.) in THF (11 mL) at -78 °C was added DIAD (1 ml, 

5.54 mmol, 1.2 eq.) in THF (10 mL) followed by the HN3 solution (1.8 M in toluene, 3.1 ml, 

5.54mmol,  1.2 eq.) and Boc-serine methyl ester 61 (1.00 g, 4.62 mmol) in THF (10 mL). After the 

mixture stirred at -78 °C for 30 min and then allowed to slowly reach 0°C (within 3 h). The solvent 

was evaporated and the residue was chromatographed with hexane/EtOAc 9:1 to provide 839 mg 

(74%) of the azide as a mobile oil which crystallizes upon standing in the refrigerator. 

 

 

3-azido-2-(tert-butoxycarbonylamino)propanoic acid (63) 
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Compound 62 (350.0 mg, 1.433 mmol) in THF (6 mL) at 0 °C was treated with LiOH monohydrate 

(84.0 mg, 2.00 mmol) in water (4 mL). After 1 h, the mixture was concentrated, diluted with water, 

washed with ether, acidified with 1 M KHSO4, and extracted into DCM which was dried and 

evaporated to provide 329.2 mg (quant.) of a colorless oil. 

 

 

(R)-dimethyl-2-((S)-3-azido-N-benzyl-2-(tert-butoxycarbonylamino)propanamido)succinate 

(65a);  

(S)-dimethyl-2-((R)-3-azido-N-benzyl-2-(tert-butoxycarbonylamino)propanamido)succinate          

(65b) 

 

 
 

DCC (1.77 g, 8.56 mmol, 1 eq.) was added to a solution of N-Boc-Ser(N3)-OH (62) (3.94g, 17.11 

mmol, 2 eq.) 60 ml of CH2Cl2, in one portion. A white precipitate (DCU) formed and stirring 

continued for 1h at r.t.. The mixture was then filtered on a cotton wool to remove DCU. The white 

DCU residue was washed twice with cold CH2Cl2. The filtrate was concentrated under reduced 

pressure at r.t., and dried under high vacuum to afford symmetric anhydride 64a or 64b as a pale 

yellow foam, which was used without further purification. N-benzyl-aspartic acid dimethylester 56 

(1.51 g, 6.01 mmol, 0.7 eq.) was dissolved in CH2Cl2 (50 ml) and the mixture was cooled to 0°C. A 

solution of symmetric anhydride in 50 ml of CH2Cl2 was then added dropwise, very slowly. The 

reaction mixture was let to reach r.t. and stirred overnight. The solvent was afterwards removed under 

reduced pressure and the residue was purified by flash chromatography on silica gel (Hexane/EtOAc, 

8:2) to afford the desired product as a viscous transparent oil (2.22 g, 80%). 

Rf=0.37 (Hexane/EtOAc, 7:3); =-38.6 (65 a, c=1.0 in CHCl3); 1H NMR (400 MHz, CD2Cl2) 

(rotamers ratio in CD2Cl2 A/B = 4:1) δ 7.51 – 7.11 (m, 5H), 5.61 – 5.50 (m, 1HB), 5.40 – 5.28 (m, 1HB, 

overlapping with solvent signal), 5.17 (t, 1HB, J = 7.1 Hz), 5.07 – 4.99 (m, 1HB), 4.86 – 4.69 (m, 3HA, 

1HB), 4.54 – 4.38 (m, 1HA, 1HB), 3.74 (dd, 1HB, J = 12.3, 5.4 Hz), 3.69 – 3.65 (m, 3HA, 1HB), 3.63 (s, 

3HA), 3.52 (dd, 1HA, J = 12.4, 6.3 Hz), 3.41 (dd, 1HA, J = 12.3, 6.0 Hz), 3.28 (dd, 1HA, J = 16.9, 7.4 

Hz), 3.05 (dd, 1HB, J = 17.1, 7.0 Hz), 2.71 (dd, 1HB, J = 17.2, 7.3 Hz), 2.55 (dd, 1HA, J = 16.1, 6.1 

Hz), 1.45 (s, 9H); 13C NMR (101 MHz, CD2Cl2) δ 171.9, 171.3, 170.4, 155.5, 136.3, 129.5, 129.3, 

BocHN

N3

O

N COOCH3

COOCH3
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129.2, 129.1, 129.0, 128.8, 128.2, 128.0, 127.9, 80.9, 58.0, 56.9, 56.6, 53.4, 53.1, 53.0, 52.6, 52.4, 

51.4, 48.1, 35.3, 34.9, 28.6; IR (neat): νmax 3343, 2979, 2953, 2106, 1739, 1712, 1651, 1497, 1438, 

1367, 1289, 1250, 1166; MS (ESI) m/z calcd for [C21H29N5NaO7]+: 486.20 [M+Na]+; found: 486.3. 

 

 

N3-DKP4-CO2Me (59 a);  

N3-DKP6-CO2Me (59 b) 

  

 
 

Dipeptide 65 (1.44 g, 3.11 mmol, 1 eq.) was deprotected according to general procedure GP1, with the 

addition of Et3SiH (1.24 ml, 7.78 mmol, 2.5 eq.) as an ion scavenger. The corresponding 

trifluoroacetate salt was dissolved in iPrOH (40 ml) and iPr2EtN (2.13 ml, 12.44 mmol, 4 eq.) was 

added at r.t.. The reaction was stirred for 5 h at r.t., then the solution was concentrated under reduced 

pressure and the residue was purified by flash chromatography on silica gel (EtOAc/Hexane, 8:2) to 

afford the desired product as a white foam (927.4 mg, 90%). 

Rf=0.33 (Hexane/EtOAc 2:8); =+32.2 (59 a, c=1 in CHCl3); 1H NMR (400 MHz, CD2Cl2) δ 7.45 

– 7.24 (m, 5H), 6.83 (s, 1H), 5.13 (d, 1H, J = 15.3 Hz), 4.53 – 4.47 (m, 1H), 4.24 (d, 1H, J = 15.3 Hz), 

4.12 (t, 1H, J = 4.7 Hz), 3.91 (dd, 1H, J = 12.5, 5.8 Hz), 3.85 (dd, 1H, J = 12.5, 3.6 Hz), 3.65 (s, 3H), 

3.07 (dd, 1H, J = 17.5, 3.3 Hz), 2.88 (dd, 1H, J = 17.5, 5.0 Hz); 13C NMR (101 MHz, CD2Cl2) δ 170.4, 

167.6, 164.5, 135.6, 128.9, 127.9, 127.8, 56.0, 54.3, 52.0, 47.4, 34.6; IR (neat): νmax 3249, 3066, 3030, 

3007, 2953, 2924, 2852, 2362, 2342, 2117, 1736, 1558, 1496, 1449, 1372, 1332, 1281, 1204, 1180, 

1138; MS (ESI) m/z calcd for [C15H18N5O4]+: 332.14 [M+H]+; found: 332.3. 
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NH2-DKP4-CO2Me (66 a);  

NH2-DKP6-CO2Me (66 b) 

 

 
 

Compound 59 (737 mg, 2.22 mmol, 1 eq.) was dissolved in THF (45 ml) and Pd/C (237 mg, 0.22 

mmol, 0.1 eq.) was added. The flask was thoroughly purged with H2, and the system was closed. The 

reaction mixture was stirred at r.t. for 4 h, and then filtered through a Celite pad. The cake thus 

obtained was washed thoroughly with THF. The filtrate was concentrated and dried to give the crude 

product as a transparent paste (643.9 mg, 95%) which was used without further purification. 

Rf=0.13 (CH2Cl2/MeOH 95:5); =+83.2 (66 a, c=1  in CHCl3); 1H NMR (400 MHz, CD2Cl2) δ 

7.30 – 7.09 (m, 5H), 6.75 (br s, 1H), 4.99 (d, 1H, J = 15.3 Hz), 4.15 – 4.04 (m, 2H), 4.00 (br s, 1H), 

3.53 (s, 3H), 3.18 (dd, 1H, J = 13.1, 3.6 Hz), 2.99 – 2.84 (m, 2H), 2.73 (dd, 1H, J = 17.0, 5.1 Hz), 1.33 

(s, 2H); 13C NMR (101 MHz, CD2Cl2) δ 170.3, 167.4, 166.2, 136.1, 128.8, 127.7, 56.3, 55.9, 51.9, 

47.2, 44.2, 35.0; IR (neat): νmax 1736, 1685, 1659, 1496, 1449, 1371, 1318, 1254, 1203, 1179, 1109; 

MS (ESI) m/z calcd for [C15H20N3O4]+: 306.14 [M+H]+; found: 306.3. 

 

 

NHBoc-DKP4-CO2Me (67 a); NHBoc-DKP6-CO2Me (67 b) 

 

 
 

To a solution of 66 (586 mg, 1.92 mmol, 1 eq.) in THF (35 ml), Boc2O (461 mg, 2.11 mmol, 1.1 eq.) 

was added in one portion. After stirring the mixture at r. t. overnight, EtOAc (60 ml) was added. The 

solution was washed with 1 M KHSO4 (4x) and brine (1x). The organic phase was dried over Na2SO4 

and volatiles were removed under reduced pressure, to afford the desired product as a white foam 

(739.5 mg, 95%), which was used without further purification. 

66 a: 3R, 6S

b: 3S, 6R
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Rf=0.23 (EtOAc/Hex 7:3); =+82.2 (67 a, c=1  in CHCl3); 1H NMR (400 MHz, CD2Cl2) δ 7.33 – 

7.06 (m, 5H), 6.69 (br s, 1H), 5.12 (br s, 1H), 4.96 (d, 1H, J = 15.2 Hz), 4.26 (s, 1H), 4.14 (d, 1H, J = 

15.3 Hz), 4.00 (s, 1H), 3.68 – 3.57 (m, 3H), 3.56 – 3.45 (m, 4H), 2.86 (d, 1H, J = 16.9 Hz), 2.72 (dd, 

1H, J = 17.1, 4.9 Hz), 1.35 (s, 9H); 13C NMR (101 MHz, CD2Cl2) δ 170.3, 167.3, 166.0, 146.7, 135.9, 

128.8, 127.8, 127.6, 79.9, 56.6, 55.9, 51.9, 47.7, 42.2, 35.1, 28.0; IR (neat): νmax 3328, 3004, 2979, 

2953, 2934, 1809, 1737, 1690, 1586, 1508, 1497, 1450, 1393, 1368, 1333, 1250, 1208, 1168, 1119; 

MS (ESI) m/z calcd for [C20H28N3O6]+: 406.20 [M+H]+; found: 406.3. 

 

 

NHBoc-DKP4-COOH (DKP4);  

NHBoc-DKP6-COOH (DKP6) 

 

 
 

Compound 67 (710 mg, 1.75 mmol, 1 eq.) was dissolved in THF (60 ml) and the mixture was cooled 

to 0 °C. A solution of LiOH·H2O (183.7 mg, 4.38 mmol, 2.5 eq.) in H2O (30 ml) was added dropwise. 

The resulting solution was let reacting for 1 h at 0 °C. Then, maintaining the temperature at 0 °C, the 

mixture was acidified with HCl 1M to pH = 1-2, and extracted with CH2Cl2 (4x). The collected 

organic phases were dried over Na2SO4 and volatiles removed under reduced pressure. Either DKP4 or 

DKP6 were afforded as a white foam (685 mg, 100%), which was used in subsequent steps without 

further purification. 

 

 

2.3 -  DKP5-DKP7 

 

Reagents and conditions: (a) KHMDS, BnBr, THF/DMF 7:3; (b) Me3P, Boc-ON, THF, -20°C -> r.t; (c) LiOH, 
THF/H2O 1:1; 75% over three steps. 
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N3-DKP5-CO2Me (70 a);  

N3-DKP7-CO2Me (70 b) 

 

 
 

A flame-dried flask under N2 was charged with a solution of 59 (640 mg, 1.93 mmol, 1 eq.) in dry 

THF (32 ml). The temperature was lowered to -78°C and KHMDS (4.25 ml of a 0.5 M solution in 

toluene, 2.12 mmol, 1.1 eq.) was added dropwise. After 30 min benzyl bromide (1.18 ml, 9.65 mmol, 

5 eq.) was added, and a final solvent ratio THF/DMF 7:3 was reached by adding DMF (13.6 ml). The 

mixture was allowed to reach -40°C and stirred for 3 h. Then aqueous NH4Cl was slowly added and 

the mixture was extracted with EtOAc (3x). Organic phases were washed with brine and dried over 

Na2SO4. Volatiles were removed under reduced pressure and the residue was purified by flash 

chromatography on silica gel (Hex/EtOAc, 7:3) to afford the desired product as a viscous transparent 

oil (761 mg, 86%). 

Rf=0.20 (Hexane/EtOAc 6:4); =+14.8 (70 b, c=1  in CHCl3); 1H NMR (400 MHz, CD2Cl2) δ 7.46 

– 7.27 (m, 10H), 5.42 – 5.34 (m, 1H, overlapping with solvent signal), 5.29 (d, 1H, J = 15.5 Hz), 4.31 

– 4.25 (m, 1H), 4.23 – 4.14 (m, 3H), 4.11 (dd, 1H, J = 12.9, 2.0 Hz), 3.82 (dd, 1H, J = 12.8, 3.2 Hz), 

3.61 (s, 3H), 3.26 (dd, 1H, J = 17.5, 2.9 Hz), 2.93 (dd, 1H, J = 17.5, 5.1 Hz); 13C NMR (101 MHz, 

CD2Cl2) δ  170.9, 166.7, 165.6, 136.0, 129.5, 128.8, 128.4, 127.3, 104.3, 59.0, 55.7, 52.5, 52.1, 47.8, 

47.6, 35.4; IR (neat): νmax 2117, 1735, 1660, 1449, 1439, 1362, 1329, 1267, 1216, 1174; MS (ESI) m/z 

calcd for [C22H24N5O4]+: 422.18 [M+H]+; found: 422.3. 

 

 

NHBoc-DKP5-CO2Me (71 a); NHBoc-DKP7-CO2Me (71 b) 
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To a solution of azide 70 (751 mg, 1.78 mmol, 1 eq.) in THF (48 ml), under a nitrogen atmosphere and 

at -20 ºC, 2-(t-butoxycarbonyloxyimino)-2-phenylacetonitrile (Boc-ON, 964 mg, 3.92 mmol, 2.2 eq.) 

and Me3P (3.57 ml of 1 M solution in toluene, 3.56 mmol, 2 equiv) were added successively. After 

stirring for 6 h at r.t., the solution was diluted with CH2Cl2 and washed with H2O (3x) and brine. The 

organic phase was dried over Na2SO4 and volatiles were removed under reduced pressure. The residue 

was purified by flash chromatography on silica gel (CH2Cl2/EtOAc, 8:2) to afford the desired product 

as a white foam (716 mg, 87%). 

Rf=0.39 (CH2Cl2/EtOAc, 9:1); [a]D20=-103.6 (71 b, c=1.5 in CHCl3); 1H NMR (400 MHz, CD2Cl2) δ 

7.48 – 7.24 (m, 10H), 5.56 (d, 1H, J = 15.3 Hz), 5.12 (d, 1H, J = 15.1 Hz), 4.98 (br s, 1H), 4.36 – 4.18 

(m, 3H), 4.05 (s, 1H), 3.87 – 3.63 (m, 2H), 3.57 (s, 3H), 3.23 (dd, 1H, J = 17.3, 2.7 Hz), 2.92 (dd, 1H, 

J = 17.3, 4.9 Hz), 1.47 (s, 9H); 13C NMR (101 MHz, CD2Cl2) δ 170.8, 166.7, 166.4, 156.5, 136.5, 

136.3, 129.6, 129.4, 129.2, 128.5, 128.4, 80.3, 59.4, 56.0, 52.5, 48.0, 47.1, 41.5, 35.7, 28.8; IR (neat): 

νmax 3323, 2978, 1738, 1714, 1658, 1497, 1450, 1366, 1330, 1252, 1202, 1168; MS (ESI) m/z calcd for 

[C27H34N3O6]+: 496.24 [M+H]+; found: 496.3. 

 

 

NHBoc-DKP5-CO2H (DKP5); NHBoc-DKP7-CO2H (DKP7) 

 

 
 

Compound 78 (370 mg, 0.75 mmol, 1 eq.) was dissolved in THF (30 ml) and the mixture was cooled 

to 0 °C. A solution of LiOH·H2O (78.3 mg, 1.86 mmol, 2.5 eq.) in H2O (15 ml) was added dropwise. 

The resulting solution was let reacting for 1 h at 0 °C. Then, maintaining the temperature at 0 °C, the 

mixture was acidified with HCl 1M to pH = 1-2, and extracted with CH2Cl2 (4x). The collected 

organic phases were dried over Na2SO4 and volatiles removed under reduced pressure. Either DKP5 or 

DKP7 were afforded as a white foam (361 mg, 100%), which was used in subsequent steps without 

further purification. 
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2.4 -  DKP8 

2  

Reagents and conditions: (a) 46, HATU, HOAt, DIPEA, DMF; (b) TFA/CH2Cl2 1:2; (c) DIPEA, iPrOH; (d) 
HN3, DIAD, PPh3, CH2Cl2/toluene/DMF; (e) H2, Pd-C, THF; (f) Boc2O, THF; (g) LiOH, THF/30% H2O2 1:1. 

 

 

 (R)-N-(tert-butoxycarbonyl)glutamic acid γ-methyl ester (72) 

 

 
 

To a flask containing MeOH (4,6 ml) and cooled to -14 °C was slowly added Acetyl chloride (1.3ml, 

18.4 mmol, 2.7 eq) followed by D-glutamic acid (1g, 6.8 mmol, 1eq). Cooling bath was removed, and 

the solution was stirred for 30 min at r.t. and then poured into Et2O (330 mL). The precipitate was 

filtered off and washed well with Et2O (50 mL) to give (R)- glutamic acid γ-methyl ester 

hydrochloride (1.25 g, 93%) as a white solid, which was used without further purification. 

In a round bottom flask was solved 1 g (5.06 mmol, 1 eq) of (R)- glutamic acid γ-methyl ester 

hydrochloride in 20 mL of THF/water 1:1 solution. The reaction flask was lowered into an ice bath, 

and triethylamine  (2.12 ml, 15.2 mmol, 3 eq.) and Boc2O (1.21 g, 5.56 mmol, 1.1 eq)  were added. 

After stirring at r.t. for 24 h. The reaction mixture was diluted with 60 mL of EtOAc and washed with 

aqueous KHSO4 1M until pH = 3 and brine. The organic phase was dried over Na2SO4, filtered and 

concentrated under reduced pressure. The product was then dried under high vacuum for a few hours 

affording 1.3 g (98%) of the pure expected product as viscous transparent oil. 
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(R)-1-((S)-2-(benzylamino)-3-methoxy-3-oxopropyl)5-methyl2-(tert-

butoxycarbonylamino)pentanedioate (73) 

 

 
 

(R)-N-(tert-butoxycarbonyl)glutamic acid γ-methyl ester 72 (1.0 g, 3.8 mmol, 1.3 eq.) was coupled 

with (S)-N-benzylserine methyl ester 47 (607 mg, 2.9 mmol, 1 eq.) according to general procedure 

GP2. The crude product was purified by flash chromatography on silica gel (Hexane/EtOAc, 7:3) to 

afford the desired product as a transparent oil (774 mg, 59%). 

Rf=0.35 (Hexane/EtOAc 7:3); =-4 (c=1.00 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 7.31 

(m,5H), 5.12 (m, 1H), 4.47 (dd, J = 11.0, 4.9 Hz, 1H), 4.30 (dd, J = 11.0, 4.9 Hz, 1H), 3.90 (d, J = 

13.1 Hz, 1H), 3.79 – 3.74 (m, 4H), 3.71 (d, J = 10.3 Hz, 1H), 3.68 (s, 3H), 3.56 (t, J = 4.9 Hz, 1H), 

2.49 – 2.34 (m, 2H), 2.17 (dt, J = 13.3, 7.4 Hz, 1H), 1.95 (dt, J = 14.8, 7.9 Hz, 1H), 1.45 (s, 9H); 13C 

NMR (101 MHz, CD2Cl2) δ 173.7, 173.1, 172.5, 155.8, 140.3, 129.0, 128.8, 127.7, 80.3, 66.2, 59.8, 

53.5, 52.7, 52.4, 52.2, 30.5, 28.6, 28.2; IR (neat): νmax 3368, 2976, 2953, 1739, 1716, 1509, 1454, 

1367, 1249, 1201, 1166, 1051; MS (ESI) m/z calcd for [C22H33N2O8]+: 453,22 [M+H]+; found: 453.6. 

 

 

HO-DKP8-CO2Me (74) 

 

 
 

Isopeptide 73 (440 mg, 0.97 mmol, 1 eq.) was deprotected according to general procedure GP1. The 

corresponding trifluoroacetate salt  was dissolved in iPrOH (12 ml) and iPr2EtN (0.7 ml, 3.9 mmol, 4 

eq.) was added at r.t. The reaction was stirred for 18 h at r.t., monitoring the formation of DKP by 

TLC (EtOAc). The solution was then concentrated under reduced pressure and the residue was 

purified by flash chromatography on silica gel (EtOAc) to afford the desired product as a white foam 

(289 mg, 93%).  

Rf=0.12 (EtOAc); =+29.5 (c=1.00 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 7.41 – 7.25 (m, 5H), 

5.32 (d, J = 15.1 Hz, 1H), 4.43 (t, J = 4.4 Hz, 1H), 4.13 (d, J = 15.1 Hz, 1H), 3.95 (dd, J = 11.7, 2.4 

[ ]20Dα

[ ]20Dα
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Hz, 2H), 3.80 (t, J = 2.1 Hz, 1H), 3.67 (s, 3H), 2.53 – 2.26 (m, 3H), 2.23 – 2.10 (m, 1H); 13C NMR 

(101 MHz, CD3OD) δ 174.35, 169.95, 168.69, 136.75, 129.19, 128.77, 128.25, 128.17, 62.82, 61.46, 

53.77, 51.51, 47.41, 29.05, 27.25; IR (neat): νmax 3420, 2952, 1732, 1682, 1653, 1496, 1449, 1328, 

1259, 1175, 1122, 1070; MS (ESI) m/z calcd for [C16H21N2O5]+: 321,14 [M+H]+; found: 321.4. 

 

 

N3-DKP8-CO2Me (75) 

 

 
 

To a solution of diketopiperazine 74 (104 mg, 0.32 mmol, 1 eq.) in CH2Cl2/toluene/DMF (3 ml / 2.5 

ml / 1 ml), under nitrogen atmosphere and at -20 ºC, PPh3 (128 mg, 0.49 mmol, 1.5 eq.) was added and 

the mixture was stirred until a solution was obtained. Hydrazoic acid (1.9 M in toluene, 0.51 ml, 0.97 

mmol, 3 eq.) was added followed by dropwise addition of DIAD (0.096 ml, 0.49 mmol, 1.5 eq.) and 

the reaction was stirred at -20ºC overnight. The reaction mixture was loaded onto a silica gel column 

(EtOAc/Hexane 8:2) to afford the desired product as a white foam (72 mg, 65%). 

Rf=0.52 (EtOAc); =+57.9 (c=1.00 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 7.44 – 7.30 (m, 3H), 

7.30 – 7.23 (m, 2H), 5.15 (d, J = 15.0 Hz, 1H), 4.43 (t, J = 4.7 Hz, 1H), 4.25 (d, J = 15.0 Hz, 1H), 3.94 

(d, J = 2.7 Hz, 1H), 3.88 (dd, J = 12.8, 2.4 Hz, 1H), 3.71 (s, 3H), 3.64 (dd, J = 12.7, 3.4 Hz, 1H), 2.61 

– 2.46 (m, 2H), 2.34 (dd, J = 9.1, 3.7 Hz, 2H); 13C NMR (101 MHz, CDCl3) δ 174.58, 167.72, 167.37, 

136.06, 129.82, 128.97, 128.71, 78.02, 77.70, 59.99, 54.39, 52.71, 52.42, 48.51, 30.24, 27.73; IR 

(neat): νmax 2116, 1733, 1686, 1654, 1437, 1327, 1289, 1258, 1174; MS (ESI) m/z calcd for 

[C16H20N5O4]+: 346,15 [M+H]+; found: 346.3. 

 

 

NHBoc-DKP8-CO2Me (77) 

 

 
 

[ ]20Dα
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Azide 75 (192 mg, 0.55 mmol, 1 eq.) was dissolved in 12 ml of THF. After addition of 59 mg of Pd/C 

10% (0.05 mmol, 0.1 eq.), the mixture was hydrogenated under vigorous stirring over 3 h. Pd/C was 

then filtered off on a celite pad, which was thoroughly washed with THF. The filtrate was 

concentrated to dryness, obtaining amine 83 as a white solid, which was dissolved in THF. The 

mixture was cooled to 0°C before adding Boc anhydride (132 mg, 0.6 mmol, 1.1 eq.) and iPr2EtN 

(0.19 ml, 1.1 mmol, 2 eq.). The mixture was afterwards let to reach r.t. and stirred for 18 h. Volatiles 

were then removed under reduced pressure, and the residue was purified by flash chromatography on 

silica gel (EtOAc/Hexane, 1:1) to afford the desired product as a white foam (201 mg, 87%). 

Rf=0.34 (EtOAc); [a]D20=-4.4 (c=1.00 in CHCl3); 1H NMR (400 MHz, CDCl3) δ 7.44 (d, J = 9.9 Hz, 

1H), 7.39 – 7.14 (m, 5H), 5.48 (d, J = 15.1 Hz, 1H), 5.29 (s, 1H), 4.25 (t, J = 4.4 Hz, 1H), 4.06 (d, J = 

15.0 Hz, 1H), 3.80 (s, 1H), 3.77 – 3.57 (m, 4H), 3.57 – 3.43 (m, 1H), 2.60 – 2.42 (m, 2H), 2.38 – 2.19 

(m, J = 6.1 Hz, 2H), 1.43 (s, 9H); 13C NMR (101 MHz, CDCl3) δ 174.56, 168.93, 166.59, 156.62, 

136.35, 129.64, 128.92, 128.66, 80.80, 60.21, 53.98, 52.59, 47.78, 41.22, 29.96, 28.96, 28.28; IR 

(neat): νmax 3298, 2978, 2952, 1689, 1523, 1448, 1393, 1366, 1329, 1253, 1169, 1059; MS (ESI) m/z 

calcd for [C21H30N3O6]+: 420.21 [M+H]+; found: 420.3. 

 

 

NHBoc-DKP8-CO2H (DKP8) 

 

 
 

Compound 84 (117 mg, 0.28 mmol, 1 eq.) was dissolved in THF (7 ml). The mixture was cooled to 

0°C and a 2.7M solution of LiOOH in H2O2 (453 mg of LiOH in 7 ml of H2O2 35%) was added  

dropwise. The mixture was stirred for additional 30 min at 0°C, then warmed up to r.t. and stirred for 

7h. After the addition of Na2SO3 (30.6 mg, 0.24 mmol, 6 eq.) the reaction mixture was diluted with 8 

ml of THF/H2O 1:1. KHSO4 1M was added to reach pH = 1-2, and the mixture was extracted with 

DCM (4x). The collected organic phases were dried over Na2SO4 and volatiles removed under reduced 

pressure, to afford crude DKP8 as a yellowish solid. Crude product was dissolved in EtOAc and 

extracted with NaHCO3 sat.; collected aqueous layers were acidified with KHSO4 1M to reach pH 1-2, 

and extracted with DCM (4x). Collected organic phases were dried over Na2SO4 and volatiles removed 

under reduced pressure, to afford DKP8 as a white foam (100 mg, 90%), which was used without 

further purification. 
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3 -  Synthesis of cyclic[DKP-RGD] compounds 18-23 

 

Reagents and conditions: (a) Cs2CO3, MeOH; (b) BnBr, DMF: 95%; (c) TFA/DCM 1:2; (d) HBTU, HOBt, 
DIPEA, DMF: 90%; (e) TFA/DCM 1:2; (f) HATU, HOAt, iPr2EtN, DMF: 67%; (g) TFA/DCM 1:2; (h) Cbz-
Asp(OtBu)-OH, HATU, HOAt, iPr2EtN, DMF; (i) H2, Pd/C, THF/H2O 1:1. 

 

 

Boc-Arg(Mtr)-Gly-OBn (79) 

 

 
 

N-Boc glycine benzylester 78 (1.6 mg, 6 mmol, 1.2 eq.) was deprotected according to general 

procedure GP1. The corresponding trifluoroacetate salt was then coupled with Boc-Arg(Mtr)-OH 

(2.5g, 5.14 mmol, 1 eq.) according to general procedure GP2. The residue was purified by flash 
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chromatography on silica gel (CH2Cl2/MeOH; 97:3) to afford the desired product as white foam (2.9 g, 

90%). 

Rf=0.21 (CH2Cl2/MeOH 97:3); =-6.0 (c=0.5 in CHCl3); 1H NMR (400 MHz, CD2Cl2) δ 7.40 - 

7.31 (m, 5H), 7.27 (br, 1H), 6.58 (s, 1H), 6.19 (s, 2H), 6.00 (br, 1H), 5.50 (d, 1H, J = 6.6), 5.15 (s, 

2H), 4.24 (m, 1H), 4.09 (dd, 1H, J = 17.5, 6.4), 3.99 (dd, 1H, J = 17.9, 5.7), 3.84 (s, 3H), 3.25 (m, 2H), 

2.67 (s, 3H), 2.60 (s, 3H), 2.14 (s, 3H), 1.84 (m, 2H), 1.61 (m, 2H), 1.43 (s, 9H); 13C NMR (101 MHz, 

CD2Cl2) δ 172.9, 170.0, 158.5, 156.5, 156.0, 138.4, 136.5, 135.4, 133.4, 128.5, 128.4, 128.2, 124.8, 

111.7, 80.1, 67.1, 55.4, 50.5, 41.2, 40.4, 30.0, 28.0, 25.1, 23.8, 18.1, 11.6; IR (neat): νmax 3343, 2937, 

1669, 1621, 1555, 1455, 1366, 1307, 1251, 1171, 1120; MS (ESI) m/z calcd for [C30H44N5O8S]+: 

634.29 [M+H]+; found: 634.3. 

 

 

N-Boc-DKP-Arg(Mtr)-Gly-OBn 80 

 

 
 

a) N-Boc-DKP3-Arg(Mtr)-Gly-OBn 

 Compound 79 (973.5 mg, 1.54 mmol, 1.2 eq.) was deprotected according to general procedure 

GP1. The corresponding trifluoroacetate salt was then coupled with DKP3 (500 mg, 1.28 mmol, 1 

eq.) according to general procedure GP2. The residue was purified by flash chromatography on 

silica gel (CH2Cl2/MeOH, 93:7) to afford the desired product as white foam (811 mg, 70%). 

 Rf=0.34 (CH2Cl2/MeOH 9:1); =-1.8 (c=0.2 in CHCl3); 1H NMR (400 MHz, CD2Cl2) δ 7.85 

(br, 1H), 7.69 (br, 1H), 7.53 – 7.28 (m, 11H), 6.56 (s, 1H), 6.35 – 6.03 (br, 3H), 5.64 (br, 1H), 5.35 

(m, 1H), 5.12 (d, 2H, J = 8.3), 4.60 (m, 1H), 4.50 (m, 1H), 4.09 – 4.97 (m, 3H), 3.84 – 3.80 (m, 

4H), 3.66 – 3.45 (m, 2H), 3.30 – 2.79 (m, 4H), 2.65 (s, 3H), 2.59 (s, 3H), 2.12 (s, 3H), 1.95 – 1.50 

(m, 4H), 1.39 (s, 9H); 13C NMR (101 MHz, CD2Cl2) δ 172.5, 170.6, 170.4, 169.9, 167.7, 166.4, 

158.5, 156.6, 156.1, 138.4, 136.5, 135.8, 135.4, 133.3, 128.8, 128.5, 128.4, 128.2, 127.9, 124.8, 

111.7, 79.8, 67.2, 67.1, 60.0, 55.4, 52.7, 51.5, 47.4, 41.2, 40.8, 39.7, 38.1, 31.6, 29.7, 28.0, 25.1, 

23.8, 22.6, 18.1, 13.8, 11.7; IR (neat): νmax 3335, 2937, 1651, 1557, 1455, 1307, 1251; MS (ESI) 

m/z calcd for [C44H59N8O11S]+: 907.40 [M+H]+; found: 907.6. 
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b) N-Boc-DKP4-Arg(Mtr)-Gly-OBn 

 Compound 79 (973.5 mg, 1.54 mmol, 1.2 eq.) was deprotected according to general procedure 

GP1. The corresponding trifluoroacetate salt was then coupled with DKP4 (500 mg, 1.28 mmol, 1 

eq.) according to general procedure GP2. The residue was purified by flash chromatography on 

silica gel (CH2Cl2/MeOH, 93:7) to afford the desired product as white foam (811 mg, 70%). 

 Rf=0.36 (CH2Cl2/MeOH 9:1); =+21.7 (c=1 in CHCl3); 1H NMR (400 MHz, Acetone-d6) δ 7.85 

(t, 1H, J = 5.8 Hz), 7.61 (d, 1H, J = 7.7 Hz), 7.44 – 7.23 (m, 10H), 6.69 (s, 1H), 6.54 (br s, 2H), 

6.19 (br s, 1H), 5.24 (d, 1H, J = 15.2 Hz), 5.17 (s, 2H), 4.56 – 4.47 (m, 1H, J = 8.1 Hz), 4.35 (t, 1H, 

J = 4.8 Hz), 4.17 (d, 1H, J = 15.2 Hz), 4.10 (t, 1H, J = 5.4 Hz,), 4.00 (d, 2H, J = 5.9 Hz), 3.85 (s, 

3H), 3.77 – 3.68 (m, 1H), 3.62 – 3.50 (m, 1H), 3.34 – 3.11 (m, 2H), 2.92 (d, 2H, J = 5.4 Hz), 2.69 

(s, 3H), 2.64 (s, 3H), 2.12 (s, 3H), 1.97 – 1.79 (m, 1H), 1.69 – 1.49 (m, 3H), 1.43 (s, 9H); 13C NMR 

(101 MHz, Acetone-d6) δ 138.9, 137.4, 136.9, 135.6, 129.3, 129.1, 128.7, 128.5, 128.2, 124.6, 

112.3, 79.3, 66.8, 57.6, 55.9, 55.6, 53.1, 47.4, 42.9, 41.5, 40.8, 37.3, 28.4, 26.1, 24.0, 18.5, 11.9; IR 

(neat): νmax 3331, 2936, 1681, 1555, 1454, 1392, 1366, 1333, 1306, 1249, 1172, 1120; MS (ESI) 

m/z calcd for [C44H59N8O11S]+: 907.40 [M+H]+; found: 907.5. 

 

c) N-Boc-DKP5-Arg(Mtr)-Gly-OBn 

 Compound 79 (410 mg, 0.65 mmol, 1.2 eq.) was deprotected according to general procedure GP1. 

The corresponding trifluoroacetate salt was then coupled with DKP5 (260 mg, 0.54 mmol, 1 eq.) 

according to general procedure GP2. The residue was purified by flash chromatography on silica 

gel (CH2Cl2/MeOH, 97:3) to afford the desired product as white foam (323 mg, 60% yield). 

 Rf=0.44 (CH2Cl2/MeOH, 9:1); =-51.2 (c=0.6 in CHCl3); 1H NMR (400 MHz, CD2Cl2) δ 7.69 

(br s, 1H), 7.41 (br s, 1H), 7.38 – 7.22 (m, 15H), 6.57 (s, 1H), 6.26 (br s, 2H), 5.33 (d, 1H, J = 15.6 

Hz), 5.24 (d, 1H, J = 15.3 Hz), 5.12 (s, 2H), 4.77 (br s, 1H), 4.51 – 4.41 (m, 1H), 4.36 (br s, 1H), 

4.28 (d, 1H, J = 15.5 Hz), 4.17 (d, 1H, J = 15.4 Hz), 4.08 – 3.95 (m, 3H), 3.84 (s, 3H), 3.76 – 3.65 

(m, 1H), 3.64 – 3.53 (m, 1H), 3.34 – 3.13 (m, 2H), 3.07 (d, 1H, J = 13.3 Hz), 2.93 (dd, 1H, J = 

15.8, 6.6 Hz), 2.66 (s, 3H), 2.58 (s, 3H), 2.11 (s, 3H), 2.01 – 1.88 (m, 1H), 1.75 – 1.48 (m, 3H), 

1.42 (s, 9H); 13C NMR (101 MHz, CD2Cl2) δ 172.9, 170.6, 170.3, 167.8, 166.7, 159.1, 157.1, 

139.1, 137.1, 136.5, 136.1, 134.0, 129.6, 129.5, 129.2, 128.9, 128.9, 128.6, 128.5, 128.4, 125.4, 

112.4, 67.7, 59.8, 56.3, 56.1, 47.6, 41.9, 41.6, 41.1, 37.2, 30.3, 29.5, 28.7, 26.2, 24.5, 18.8, 12.3; IR 

(neat): νmax 3329, 2938, 2357, 2341, 1750, 1719, 1660, 1652, 1557, 1455, 1369, 1301, 1257, 1176, 

1121; MS (ESI) m/z calcd for [C51H65N8O11S]+: 997.45 [M+H]+; found: 997.5. 
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d) N-Boc-DKP-6-Arg(Mtr)-Gly-OBn 

 Compound 79 (973 mg, 1.54 mmol, 1.2 eq.) was deprotected according to general procedure GP1. 

The corresponding trifluoroacetate salt was then coupled with DKP6 (500 mg, 1.28 mmol, 1 eq.) 

according to general procedure GP2. The residue was purified by flash chromatography on silica 

gel (CH2Cl2/MeOH, 93:7) to afford the desired product as white foam (811 mg, 70%). 

 Rf=0.38 (CH2Cl2/MeOH 9:1); =+23.4 (c=1 in CHCl3); 1H NMR (400 MHz, Acetone-d6) δ 7.93 

(t, 1H, J = 5.8 Hz), 7.73 (d, 1H, J = 8.1 Hz,), 7.45 – 7.24 (m, 10H), 6.69 (s, 1H), 6.59 (br s, 2H), 

6.24 (br s, 1H), 5.34 (d, 1H, J = 15.2 Hz,), 5.16 (s, 2H), 4.68 – 4.58 (m, 1H), 4.34 (t, 1H, J = 4.6 

Hz), 4.17 (d, 1H, J = 15.1 Hz), 4.11 – 3.93 (m, 3H), 3.85 (s, 3H), 3.75 – 3.65 (m, 1H), 3.65 – 3.54 

(m, 1H), 3.32 – 3.11 (m, 2H), 3.07 (dd, 1H, J = 15.2, 5.8 Hz), 2.97 – 2.85 (m, 1H, overlapping with 

water signal), 2.70 (s, 3H), 2.65 (s, 3H), 2.11 (s, 3H), 1.92 – 1.80 (m, 1H), 1.67 – 1.47 (m, 3H), 

1.42 (s, 9H); 13C NMR (101 MHz, Acetone-d6) δ 172.5, 170.2, 169.7, 168.7, 167.2, 158.7, 157.4, 

157.3, 138.9, 137.1, 136.9, 136.8, 135.6, 129.4, 129.1, 128.8, 128.6, 128.2, 124.6, 112.3, 79.3, 

66.9, 57.3, 56.1, 55.7, 52.7, 47.0, 43.1, 41.5, 40.8, 37.1, 30.5, 28.4, 25.7, 24.1, 18.5, 11.9; ; IR 

(neat): νmax 3329, 2932, 1687, 1560, 1451, 1387, 1361, 1338, 1310, 1243, 1177, 1121; MS (ESI) 

m/z calcd for [C44H59N8O11S]+: 907.40 [M+H]+; found: 907.5. 

 

e) N-Boc-DKP7-Arg(Mtr)-Gly-OBn 

 Compound 79 (327 mg, 0.52 mmol, 1.1 eq.) was deprotected according to general procedure GP1. 

The corresponding trifluoroacetate salt was then coupled with DKP-7 (227 mg, 0.47 mmol, 1 eq.) 

according to general procedure GP2. The residue was purified by flash chromatography on silica 

gel (CH2Cl2/MeOH, 95:5) to afford the desired product as white foam (286 mg, 61%). 

 Rf=0.45 (CH2Cl2/MeOH 9:1); =-55.6 (c=0.7 in CHCl3); 1H NMR (400 MHz, Acetone-d6) δ 

7.85 (t, 1H, J = 5.7 Hz), 7.55 (d, 1H, J = 8.2 Hz), 7.51 – 7.22 (m, 15H), 6.68 (s, 1H), 6.54 (br s, 

2H), 6.26 (br s, 1H), 5.92 (br s, 1H), 5.50 (d, 1H, J = 15.6 Hz), 5.29 (d, 1H, J = 15.3 Hz), 5.16 (s, 

2H), 4.68 – 4.56 (m, 1H), 4.32 (d, 2H, J = 15.2 Hz), 4.26 – 4.20 (m, 1H), 4.06 (t, 1H, J = 3.3 Hz), 

4.03 – 3.92 (m, 2H), 3.84 (s, 3H), 3.79 – 3.65 (m, 2H), 3.40 – 3.22 (m, 1H), 3.22 – 2.99 (m, 3H), 

2.69 (s, 3H), 2.64 (s, 3H), 2.10 (s, 3H), 1.96 – 1.79 (m, 1H), 1.68 – 1.48 (m, 3H), 1.43 (s, 9H); 13C 

NMR (101 MHz, Acetone-d6) δ 171.7, 169.4, 169.1, 166.8, 166.4, 158.0, 156.7, 155.9, 138.3, 

136.3, 128.7, 128.5, 128.3, 128.1, 127.6, 127.3, 123.9, 111.6, 78.5, 66.1, 58.9, 55.5, 54.9, 51.8, 

46.5, 46.2, 40.8, 40.5, 39.9, 36.1, 27.7, 25.1, 23.4, 17.8, 11.2; IR (neat): νmax 3326, 2936, 2361, 

2343, 1748, 1714, 1659, 1650, 1555, 1453, 1366, 1306, 1253, 1172, 1120; MS (ESI) m/z calcd for 

[C51H65N8O11S]+: 997.45 [M+H]+; found: 997.6. 
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f) N-Boc-DKP8-Arg(Mtr)-Gly-OBn 

 Compound 79 (200 mg, 0.31 mmol, 1.1 eq.) was deprotected according to general procedure GP1. 

The corresponding trifluoroacetate salt was then coupled with DKP-8 (116 mg, 0.29 mmol, 1 eq.) 

according to general procedure GP2. The residue was purified by flash chromatography on silica 

gel (CH2Cl2/MeOH, 95:5) to afford the desired product as white foam (163 mg, 61%). 

 Rf=0.4 (CH2Cl2/MeOH 9:1); =-2.0 (c=0.2 in CHCl3); 1H NMR (400 MHz, CD3OD) δ 7.42 – 

7.26 (m, 10H), 6.67 (s, 1H), 5.39 (d, 1H, J = 15.3 Hz), 5.16 (s, 2H), 4.43 – 4.36 (m, 1H), 4.30 (t, 

1H, J = 3.7 Hz), 4.09 – 4.00 (m, 2H), 3.93 (d, 1H, J = 17.6 Hz), 3.84 (s, 3H), 3.82 – 3.73 (m, 2H), 

3.45 (d, 1H, J = 13.2 Hz), 3.25 – 3.09 (m, 2H), 2.69 (s, 3H), 2.63 (s, 3H), 2.46 – 2.22 (m, 3H), 2.22 

– 2.16 (m, 1H), 2.14 (s, 3H), 1.87 – 1.76 (m, 1H), 1.68 – 1.52 (m, 3H), 1.44 (s, 9H); 13C NMR (101 

MHz, CD2Cl2) δ   173.7, 173.1, 170.3, 168.8, 167.0, 158.8, 157.0, 156.5, 138.8, 136.8, 136.5, 

135.8, 133.9, 129.2, 128.9, 128.7, 128.5, 128.3, 125.1, 112.1, 80.0, 67.4, 60.6, 55.8, 53.9, 53.0, 

48.0, 41.6, 41.1, 40.8, 31.6, 30.3, 28.4, 28.0, 25.6, 24.2, 18.5, 12.1; IR (neat): νmax 3328, 3066, 

3007, 2974, 2937, 1747, 1660, 1550, 1455, 1392, 1366, 1306, 1254, 1173, 1120; MS (ESI) m/z 

calcd for [C45H61N8O11S]+: 921.42 [M+H]+; found: 921.7. 

 

 

Cbz-Asp(OtBu)-DKP-Arg(Mtr)-Gly-OBn 81 

 

 
 

a) Cbz-Asp(OtBu)-DKP3-Arg(Mtr)-Gly-OBn 

 Compound 80 a (290 mg, 0.32 mmol, 1 eq.) was deprotected according to general procedure GP1. 

The corresponding trifluoroacetate salt was then coupled with Cbz-L-Asp(OtBu)-OH (155 mg, 0.48 

mmol, 1.5 eq.)  according to general procedure GP2. The residue was purified by flash 

chromatography on silica gel (CH2Cl2/MeOH, 9:1) to afford the desired product as white foam (320 

mg, 90%). 

 Rf=0.25 (CH2Cl2/MeOH 9:1); =-7.0 (c=1 in CHCl3); 1H NMR (400 MHz, CD2Cl2) δ 7.85 – 

7.55 (m, 3H), 7.41 – 7.16 (m, 16H), 6.55 (s, 1H), 6.36 – 6.00 (br, 3H), 5.24 (d, 1H, J = 13.9 Hz), 
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5.17 – 5.03 (m, 3H), 4.92 (d, 1H, J = 12.3 Hz), 4.70 – 4.39 (m, 3H), 4.17 (d, 1H, J = 14.7 Hz), 4.01 

– 3.71 (m, 7H), 3.68 – 3.53 (m, 1H), 3.31 – 2.48 (m, 12H), 2.11 (s, 3H), 2.02 – 1.48 (m, 4H), 1.42 

(s, 9H); 13C NMR (101 MHz, CD2Cl2) δ 172.5, 172.0, 171.4, 170.6, 170.4, 170.0, 167.5, 166.6, 

165.9, 165.7, 158.5, 156.6, 138.4, 136.5, 136.2, 135.8, 135.4, 133.5, 128.8, 128.5, 128.3, 127.9, 

127.8, 124.8, 111.7, 81.6, 67.1, 59.5, 55.4, 52.4, 51.7, 51.2, 47.5, 41.2, 40.5, 39.6, 38.6, 37.3, 31.6, 

29.7, 27.7, 25.1, 23.8, 22.6, 18.1, 13.8, 11.7; IR (neat): νmax 3327, 2938, 1730, 1651, 1549, 1455, 

1367, 1306, 1254, 1158, 1120; MS (ESI) m/z calcd for [C55H70N9O14S]+: 1112.48 [M+H]+; found: 

1112.6. 

 

b) Cbz-Asp(OtBu)-DKP4-Arg(Mtr)-Gly-OBn 

 Compound 80 b (290 mg, 0.32 mmol, 1 eq.) was deprotected according to general procedure GP1. 

The corresponding trifluoroacetate salt was then coupled with Cbz-L-Asp(OtBu)-OH (124 mg, 0.38 

mmol, 1.2 eq.)  according to general procedure GP2. The residue was purified by flash 

chromatography on silica gel (CH2Cl2/MeOH, 9:1) to afford the desired product as white foam (327 

mg, 92%).  

 Rf=0.45 (CH2Cl2/MeOH 9:1); =+22.1 (c=1 in CHCl3); 1H NMR (400 MHz, Acetone-d6) δ 7.84 

(t, 1H, J = 5.8 Hz), 7.77 (t, 1H, J = 5.9 Hz), 7.60 (d, 1H, J = 8.0 Hz), 7.46 – 7.21 (m, 16H), 6.77 (d, 

1H, J = 8.2 Hz), 6.69 (s, 1H), 6.54 (br s, 2H), 6.43 – 6.17 (br, 1H), 5.23 (d, 1H, J = 15.2 Hz), 5.19 – 

5.10 (m, 3H), 5.06 (d, 1H, J = 12.5 Hz), 4.58 (td, 1H, J = 7.8, 5.6 Hz), 4.53 – 4.46 (m, 1H), 4.43 (t, 

1H, J = 5.3 Hz), 4.18 (d, 1H, J = 15.2 Hz), 4.12 (t, 1H, J = 5.3 Hz), 4.06 – 3.93 (m, 2H), 3.93 – 

3.81 (m, 4H), 3.70 – 3.59 (m, 1H), 3.31 – 3.11 (m, 2H), 2.97 – 2.89 (m, 2H), 2.87 – 2.77 (m, 1H, 

overlapping with water signal), 2.76 – 2.58 (m, 7H), 2.12 (s, 3H), 1.97 – 1.77 (m, 1H), 1.70 – 1.48 

(m, 3H), 1.42 (s, 9H).; 13C NMR (101 MHz, Acetone-d6) δ 172.3, 172.0, 170.2, 169.8, 169.4, 

168.5, 166.4, 158.4, 157.1, 156.5, 138.7, 137.4, 137.1, 136.6, 135.4, 129.1, 128.8, 128.7, 128.4, 

128.2, 127.9, 124.3, 112.0, 80.9, 66.7, 66.6, 57.4, 55.4, 54.7, 47.1, 41.7, 41.3, 40.6, 37.9, 36.9, 

29.9, 29.7, 29.6, 29.4, 29.2, 29.0, 28.8, 27.7, 25.8, 23.8, 18.2, 11.6; IR (neat): νmax 3317, 2937, 

1726, 1667, 1548, 1454, 1367, 1306, 1254, 1190, 1156, 1120; MS (ESI) m/z calcd for 

[C55H70N9O14S]+: 1112.48 [M+H]+; found: 1112.5. 

 

c) Cbz-Asp(OtBu)-DKP5-Arg(Mtr)-Gly-OBn 

 Compound 80 c (147 mg, 0.15 mmol, 1 eq.) was deprotected according to general procedure GP1. 

The corresponding trifluoroacetate salt was then coupled with Cbz-L-Asp(OtBu)-OH (58 mg, 0.18 

mmol, 1.2 eq.) according to general procedure GP2. The residue was purified by flash 

chromatography on silica gel (CH2Cl2/MeOH, 95:5) to afford the desired product as white foam 

(172 mg, 96%). 
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 Rf=0.43 (CH2Cl2/MeOH 95:5); =-23.6 (c=0.7 in CHCl3); 1H NMR (400 MHz, Acetone-d6) δ 

7.89 (t, 1H, J = 5.9 Hz), 7.51 – 7.19 (m, 20H), 6.75 – 6.65 (m, 2H), 6.55 (br s, 2H), 6.33 (br s, 1H), 

5.39 (d, 1H, J = 15.4 Hz), 5.16 (s, 2H), 5.10 (d, 1H, J = 13.8 Hz), 5.04 (d, 1H, J = 15.5 Hz), 4.59 – 

4.49 (m, 3H), 4.46 (d, 1H, J = 15.6 Hz), 4.28 (d, 1H, J = 15.5 Hz), 4.20 – 4.15 (m, 1H), 4.08 – 3.91 

(m, 3H), 3.84 (s, 3H), 3.81 – 3.73 (m, 1H), 3.39 – 3.24 (m, 1H), 3.22 – 3.11 (m, 1H), 3.08 (dd, 1H, 

J = 15.9, 3.5 Hz), 2.92 (dd, 1H, J = 15.9, 6.4 Hz), 2.87 – 2.77 (m, 4H), 2.73 – 2.60 (m, 4H), 2.08 (s, 

3H, overlapping with solvent signal), 1.95 – 1.81 (m, 1H), 1.69 – 1.50 (m, 3H), 1.42 (s, 9H); 13C 

NMR (101 MHz, Acetone-d6) δ 171.7, 171.2, 169.8, 169.4, 166.1, 162.8, 158.0, 156.7, 147.4, 

136.9, 136.5, 128.7, 128.6, 128.3, 128.1, 128.0, 127.8, 127.6, 127.3, 111.6, 80.4, 66.3, 66.1, 58.5, 

55.9, 54.9, 52.2, 52.0, 46.8, 46.6, 40.9, 40.1, 39.3, 37.2, 35.9, 27.3, 25.6, 23.4, 17.8, 11.2; IR (neat): 

νmax 3324, 2938, 1731, 1660, 1654, 1546, 1451, 1368, 1310, 1253, 1160, 1122; MS (ESI) m/z calcd 

for [C62H76N9O14S]+: 1202.52 [M+H]+; found: 1202.5. 

 

d) Cbz-Asp(OtBu)-DKP6-Arg(Mtr)-Gly-OBn 

 Compound 80 d (400 mg, 0.44 mmol, 1 eq.) was deprotected according to general procedure GP1. 

The corresponding trifluoroacetate salt was then coupled with Cbz-L-Asp(OtBu)-OH (171 mg, 0.52 

mmol, 1.2 eq.) according to general procedure GP2. The residue was purified by flash 

chromatography on silica gel (CH2Cl2/MeOH, 9:1) to afford the desired product as white foam (451 

mg, 92%). 

 Rf=0.46 (CH2Cl2/MeOH 9:1); =+25.1 (c=1 in CHCl3); 1H NMR (400 MHz, Acetone-d6) δ 7.92 

(br s, 1H), 7.82 (br s, 1H), 7.70 (br s, 1H), 7.43 – 7.22 (m, 15H), 6.81 (d, 1H, J = 8.1 Hz), 6.68 (s, 

1H), 6.58 (br s, 2H), 5.31 (d, 1H, J = 15.1 Hz), 5.19 – 5.10 (m, 3H), 5.05 (d, 1H, J = 12.6 Hz), 4.60 

(m, 2H), 4.41 (t, 1H, J = 5.1 Hz), 4.17 (d, 1H, J = 15.1 Hz), 4.10 – 3.91 (m, 3H), 3.89 – 3.80 (m, 

4H), 3.80 – 3.68 (m, 1H), 3.31 – 3.11 (m, 2H), 3.04 (dd, 1H, J = 15.3, 5.7 Hz), 2.98 – 2.86 (m, 1H, 

overlapping with water signal), 2.82 (dd, 1H, J = 16.2, 5.4 Hz), 2.70 (s, 3H), 2.65 (s, 3H), 2.11 (s, 

3H), 1.92 – 1.79 (m, 1H), 1.70 – 1.46 (m, 3H), 1.41 (s, 9H); 13C NMR (101 MHz, Acetone-d6) δ 

172.7, 172.5, 170.4, 170.2, 169.7, 168.7, 167.0, 158.7, 157.4, 156.9, 138.9, 137.7, 137.1, 136.9, 

136.8, 135.6, 129.4, 129.3, 129.1, 129.0, 128.8, 128.7, 128.5, 128.2, 124.6, 112.3, 81.1, 66.9, 57.3, 

55.7, 55.3, 52.8, 52.7, 47.1, 44.0, 43.7, 41.9, 41.5, 40.8, 38.6, 38.3, 37.0, 30.5, 28.0, 25.8, 24.1, 

18.5, 11.9; IR (neat): νmax 3312, 2943, 1729, 1672, 1553, 1453, 1369, 1309, 1259, 1186, 1161, 

1124; MS (ESI) m/z calcd for [C55H70N9O14S]+: 1112.48 [M+H]+; found: 1112.5. 

 

e) Cbz-Asp(OtBu)-DKP7-Arg(Mtr)-Gly-OBn 

 Compound 80 e (210 mg, 0.21 mmol, 1 eq.) was deprotected according to general procedure GP1. 

The corresponding trifluoroacetate salt was then coupled with Cbz-L-Asp(OtBu)-OH (82 mg, 0.25 

mmol, 1.2 eq.) according to general procedure GP2. The residue was purified by flash 
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chromatography on silica gel (CH2Cl2/MeOH, 97:3) to afford the desired product as white foam 

(226 mg, 90%). 

 Rf=0.45 (CH2Cl2/MeOH 95:5); =-28.9 (c=0.8 in CHCl3); 1H NMR (400 MHz, Acetone-d6) δ 

7.85 (t, 1H, J = 5.8 Hz), 7.53 (d, 1H, J = 8.1 Hz), 7.50 – 7.21 (m, 21H), 6.71 (d, 1H, J = 8.3 Hz), 

6.67 (s, 1H), 6.53 (br s, 2H), 6.24 (br s, 1H), 5.44 (d, 1H, J = 15.5 Hz), 5.24 (d, 1H, J = 15.2 Hz), 

5.18 – 5.10 (m, 3H), 5.07 (d, 1H, J = 12.6 Hz), 4.64 – 4.50 (m, 2H), 4.39 – 4.30 (m, 2H), 4.27 (s, 

1H), 4.14 (t, 1H, J = 3.5 Hz), 4.06 – 3.94 (m, 2H), 3.94 – 3.77 (m, 5H), 3.38 – 3.22 (m, 1H), 3.20 – 

3.01 (m, 3H), 2.84 – 2.78 (m, 1H, overlapping with water signal), 2.69 (s, 3H), 2.66 – 2.56 (m, 

4H), 2.09 (s, 3H), 1.94 – 1.78 (m, 1H), 1.66 – 1.45 (m, 3H), 1.41 (s, 9H); 13C NMR (101 MHz, 

Acetone-d6) δ 172.1, 171.5, 170.0, 169.8, 169.5, 167.5, 166.7, 158.4, 157.1, 138.6, 136.7, 136.6, 

129.2, 128.9, 128.8, 128.7, 128.6, 128.5, 128.4, 128.2, 127.9, 127.6, 124.3, 111.9, 80.7, 66.6, 66.5, 

58.7, 55.9, 55.4, 52.3, 52.2, 47.0, 46.6, 41.2, 40.3, 39.5, 37.7, 36.4, 30.2, 27.7, 25.6, 23.8, 18.2, 

11.6; IR (neat): νmax 3322, 2936, 1729, 1659, 1651, 1549, 1454, 1367, 1306, 1256, 1161, 1120; MS 

(ESI) m/z calcd for [C62H76N9O14S]+: 1202.52 [M+H]+; found: 1202.5. 

 

f) Cbz-Asp(OtBu)-DKP8-Arg(Mtr)-Gly-OBn 

 Compound 80 f (143 mg, 0.16 mmol, 1 eq.) was deprotected according to general procedure GP1. 

The corresponding trifluoroacetate salt was then coupled with Cbz-L-Asp(OtBu)-OH (62 mg, 0.19 

mmol, 1.2 eq.) according to general procedure GP2. The residue was purified by flash 

chromatography on silica gel (CH2Cl2/EtOH, 95:5) to afford the desired product as white foam (155 

mg, 86%). 

 Rf=0.5 (CH2Cl2/MeOH 9:1); =-3.0 (c=0.35 in CHCl3); 1H NMR (400 MHz, Acetone-d6) δ 8.02 

(s, 1H), 7.97 – 7.89 (m, 2H), 7.58 (d, 1H, J = 7.9 Hz), 7.39 – 7.21 (m, 15H), 6.87 (d, 1H, J = 8.6 

Hz), 6.66 (s, 1H), 6.54 (br s, 2H), 5.31 (d, 1H, J = 15.2 Hz), 5.16 – 5.09 (m, 3H), 5.01 (d, 1H, J = 

12.5 Hz), 4.61 – 4.52 (m, 2H), 4.41 (br s, 1H), 4.14 (d, 1H, J = 15.2 Hz), 4.04 (dd, 1H, J = 17.6, 6.0 

Hz), 3.95 (dd, 1H, J = 17.6, 5.8 Hz), 3.90 – 3.86 (m, 1H), 3.85 – 3.76 (m, 4H), 3.76 – 3.66 (m, 1H), 

3.28 – 3.10 (m, 2H), 2.81 (dd, 1H, J = 16.3, 5.3 Hz), 2.70 – 2.59 (m, 7H), 2.56 – 2.40 (m, 2H), 2.36 

– 2.24 (m, 1H), 2.23 – 2.11 (m, 1H), 2.08 (s, 3H), 1.89 – 1.78 (m, 1H), 1.70 – 1.49 (m, 3H), 1.38 (s, 

9H); 13C NMR (101 MHz, Acetone-d6) δ 174.0, 173.2, 172.7, 170.7, 170.5, 168.5, 167.6, 158.9, 

157.6, 157.2, 139.1, 137.8, 137.1, 137.0, 135.8, 129.6, 129.3, 129.2, 129.0, 128.8, 128.7, 128.4, 

124.9, 112.5, 81.3, 67.3, 67.2, 60.6, 55.9, 54.2, 53.3, 53.0, 48.0, 41.8, 41.1, 40.4, 38.3, 31.9, 30.5, 

28.2, 28.0, 26.3, 24.3, 18.7, 12.1; IR (neat): νmax 3309, 2932, 2359, 1731, 1652, 1541, 1455, 1258, 

1120; MS (ESI) m/z calcd for [C56H72N9O14S]+: 1126.49 [M+H]+; found: 1126.7. 
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H-Asp(OtBu)-DKP-Arg(Mtr)-Gly-OH 82 

 

 
 

a) H-Asp(OtBu)-DKP3-Arg(Mtr)-Gly-OH 

 Compound 81 a (307 mg, 0.28 mmol, 1 eq.) was treated with Pd/C 10%  (29.3 mg, 0.03 mmol, 0.1 

eq.) in the conditions described in general procedure GP3. The crude product was obtained as 

white solid (248 mg, 100%) that was used without further purification. 

 

b) H-Asp(OtBu)-DKP4-Arg(Mtr)-Gly-OH 

 Compound 81 b (307 mg, 0.28 mmol, 1 eq.) was treated with Pd/C 10%  (29.3 mg, 0.03 mmol, 0.1 

eq.) in the conditions described in general procedure GP3. The crude product was obtaine as white 

solid (248 mg, 100%) that was used without further purification. 

 

c) H-Asp(OtBu)-DKP5-Arg(Mtr)-Gly-OH 

 Compound 81 c (170 mg, 0.14 mmol, 1 eq.) was treated with Pd/C 10%  (14.9 mg, 0.014 mmol, 0.1 

eq.) in the conditions described in general procedure GP3. The crude product was obtained as 

white solid (137 mg, 100%) that was used without further purification. 

 

d) H-Asp(OtBu)-DKP6-Arg(Mtr)-Gly-OH 

 Compound 81 d (400 mg, 0.36 mmol, 1 eq.) was treated with Pd/C 10%  (38.1 mg, 0.04 mmol, 0.1 

eq.) in the conditions described in general procedure GP3. The crude product was obtained as 

white solid (322 mg, 100%) that was used without further purification. 

 

e) H-Asp(OtBu)-DKP7-Arg(Mtr)-Gly-OH 

 Compound 81 e (218 mg, 0.18 mmol, 1 eq.) was treated with Pd/C 10%  (19.3 mg, 0.018 mmol, 0.1 

eq.) in the conditions described in general procedure GP3. The crude product was obtained as 

white solid (176 mg, 100%) that was used without further purification. 

 

f) H-Asp(OtBu)-DKP8-Arg(Mtr)-Gly-OH 
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 Compound 81 f (148 mg, 0.13 mmol, 1 eq.) was treated with Pd/C 10%  (13.8 mg, 0.013 mmol, 0.1 

eq.) in the conditions described in general procedure GP3. The crude product was obtained as 

white solid (124 mg, 100%) that was used without further purification. 

 

 

Cyclo[Arg(Mtr)-Gly-Asp(OtBu)-DKP] 83 

 

 
 

a) Cyclo[Arg(Mtr)-Gly-Asp(OtBu)-DKP3] 

 To a solution of 82 a (80 mg, 0.09 mmol, 1 eq.) in DMF (64 ml), under nitrogen atmosphere and at 

0 ºC, DIPEA (92 μl, 0.54 mmol, 6 eq.) and DPPA (58 μl, 0.27 mmol, 3 eq.) were added 

successively. After stirring the reaction mixture at 0 ºC for 5 h, it was allowed to reach r.t., and 

stirred for 2 days. DMF was then removed under reduced pressure and the residue was purified by 

flash chromatography on silica gel (CH2Cl2/MeOH, 95:5) to afford the desired product as white 

foam (58.7 mg, 75%). 

 Rf=0.34 (CH2Cl2/MeOH, 9:1); 1H NMR (400 MHz, CD3OD) δ 7.33 – 7.14 (m, 5H), 6.57 (s, 1H), 

5.06 (d, 1H, J = 15.1 Hz), 4.87 – 4.79 (m, 1H), 4.49 – 4.40 (m, 1H), 4.33 (d, 1H, J = 17.2 Hz), 3.92 

– 3.80 (m, 3H), 3.74 (s, 3H), 3.69 (dd, 1H, J = 10.2, 4.6 Hz), 3.45 – 3.34 (m, 2H), 3.10 (t, 2H, J = 

6.6 Hz), 2.78 (dd, 1H, J = 16.4, 8.5 Hz), 2.64 (dd, 1H, J = 13.4, 10.1 Hz), 2.58 (s, 3H), 2.51 (s, 3H), 

2.46 – 2.33 (m, 2H), 2.03 (s, 3H), 2.01 – 1.76 (m, 2H), 1.58 – 1.37 (m, 2H), 1.32 (s, 9H); 13C NMR 

(101 MHz, CD3OD) δ 173.8, 173.3, 172.3, 171.7, 171.2, 159.8, 158.2, 139.5, 137.9, 136.9, 134.9, 

130.1, 129.1, 125.7, 114.2, 112.9, 82.4, 60.3, 56.0, 53.2, 50.4, 48.4, 43.6, 39.6, 38.5, 37.1, 28.3, 

27.5, 27.0, 24.2, 18.8, 12.1; MS (ESI) m/z calcd for [C40H56N9O11S]+: 870.38 [M+H]+; found: 870.8. 

 

b) Cyclo[Arg(Mtr)-Gly-Asp(OtBu)-DKP4] 

 Compound 82 b (224 mg, 0.25 mmol, 1 eq.) was cyclized in the conditions described in general 

procedure GP4, in presence of HATU (380.2 mg, 1 mmol, 4 eq.), HOAt (136.1 mg, 1 mmol, 4 eq.) 

and DIPEA (0.26 ml, 1.5 mmol, 6 eq). The crude product was purified by flash chromatography on 

silica gel (CH2Cl2/MeOH, 95:5) to afford yellowish solid that was further purified by Biotage 

(gradient: 95% H2O / 5% acetonitrile to 5% H2O / 95% acetonitrile), to obtain the product as white 

foam (133 mg, 61%). 

a [3S, 6R, R1 = H, R2 = Bn, n = 1] 

b [3R, 6S, R1 = Bn, R2 = H, n = 1]   

c [3R, 6S, R1 = Bn, R2 = Bn, n = 1]  

d [3S, 6R, R1 = Bn, R2 = H, n = 1] 

e [3S, 6R, R1 = Bn, R2 = Bn, n = 1] 

f  [3S, 6R, R1 = H, R2 = Bn, n = 2]
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 Rf=0.45 (CH2Cl2/MeOH 9:1); 1H NMR (400 MHz, CD3OD) δ 7.41 – 7.21 (m, 5H), 6.68 (s, 1H), 

5.36 (br s, 1H), 4.53 – 4.41 (m, 1H), 4.39 – 4.28 (m, 1H), 4.24 – 3.89 (m, 3H), 3.85 (s, 1H), 3.78 

(d, 1H, J = 10.6 Hz,), 3.68 – 3.48 (m, 1H), 3.31 – 3.26 (m, 1H) 3.20 (t, 2H, J = 5.7 Hz), 2.98 – 2.86 

(m, 1H), 2.83 – 2.72 (m, 2H), 2.72 – 2.56 (m, 7H), 2.14 (s, 3H), 1.89 – 1.75 (m, 1H), 1.74 – 1.52 

(m, 3H), 1.49 (s, 9H); 13C NMR (101 MHz, CD3OD) δ 172.3, 172.1, 169.9, 169.4, 168.4, 166.9, 

158.5, 138.1, 136.5, 128.6, 127.5, 124.3, 111.4, 81.3, 56.8, 54.6, 53.2, 41.9, 40.7, 40.1, 35.8, 30.7, 

27.8, 26.9, 22.8, 17.3, 10.7; MS (ESI) m/z calcd for [C40H56N9O11S]+: 870.38 [M+H]+; found: 870.4. 

 

c) Cyclo[Arg(Mtr)-Gly-Asp(OtBu)-DKP5] 

 Compound 82 c (224 mg, 0.25 mmol, 1 eq.) was cyclized in the conditions described in general 

procedure GP4, in presence of HATU (103.4 mg, 0.27 mmol, 4 eq.), HOAt (37.3 mg, 0.27 mmol, 4 

eq.) and DIPEA (54 μl, 0.41 mmol, 6 eq). The crude product was purified by flash chromatography 

on silica gel (CH2Cl2/MeOH, 95:5) to afford yellowish solid that was further purified by Biotage 

(gradient: 95% H2O / 5% acetonitrile to 5% H2O / 95% acetonitrile), to obtain the product as white 

foam (20 mg, 31%). 

 Rf=0.33 (CH2Cl2/MeOH 9:1); 1H NMR (400 MHz, Acetone-d6) δ 8.00 (d, 1H, J = 6.9 Hz), 7.84 (d, 

1H, J = 6.7 Hz), 7.79 – 7.70 (m, 1H), 7.58 (d, 1H, J = 7.7 Hz), 7.48 – 7.17 (m, 10H), 6.69 – 6.62 

(m, 2H), 6.52 (br s, 2H), 6.38 (br s, 2H), 5.30 (d, 1H, J = 15.4 Hz), 5.24 (d, 1H, J = 16.0 Hz), 5.02 

(d, 1H, J = 8.2 Hz), 4.65 – 4.38 (m, 2H), 4.38 – 3.89 (m, 5H), 3.82 (s, 3H), 3.52 (dd, 1H, J = 15.6, 

2.3 Hz), 3.42 (dd, 1H, J = 13.9, 4.4 Hz), 3.28 – 3.13 (m, 2H), 2.87 (dd, 1H, J = 16.2, 8.2 Hz), 2.72 

– 2.54 (m, 9H), 2.08 (s, 3H), 1.91 – 1.78 (m, 1H), 1.73 – 1.48 (m, 3H), 1.40 (s, 9H); 13C NMR (101 

MHz, Acetone-d6) δ 172.1, 171.7, 171.6, 169.4, 169.1, 166.9, 158.0, 156.6, 138.5, 138.2, 136.3, 

136.1, 128.9, 128.5, 127.9, 127.7, 127.0, 123.9, 111.6, 80.4, 58.9, 58.7, 54.9, 50.8, 49.3, 46.7, 41.9, 

40.3, 39.4, 39.2, 36.8, 27.7, 27.3, 26.2, 23.3, 17.7, 11.2; MS (ESI) m/z calcd for [C47H62N9O11S]+: 

960.43 [M+H]+; found: 960.7. 

 

d) Cyclo[Arg(Mtr)-Gly-Asp(OtBu)-DKP6] 

 Compound 82 d (322 mg, 0.36 mmol, 1 eq.) was cyclized in the conditions described in general 

procedure GP4, in presence of HATU (547.2 mg, 1.44 mmol, 4 eq.), HOAt (195.8 mg, 1.44 mmol, 

4 eq.) and DIPEA (0.37 ml, 2.2 mmol, 6 eq). The crude product was purified by flash 

chromatography on silica gel (CH2Cl2/MeOH, 95:5) to afford yellowish solid that was further 

purified by Biotage (gradient: 95% H2O / 5% acetonitrile to 5% H2O / 95% acetonitrile), to obtain 

the product as white foam (180 mg, 58%). 

 Rf=0.47 (CH2Cl2/MeOH 9:1); 1H NMR (400 MHz, DMSO-d6) δ 9.08 – 8.95 (m, 1H), 8.37 (d, 1H, J 

= 8.2 Hz), 7.95 (br s, 1H), 7.71 – 7.61 (m, 1H), 7.46 (br s, 1H, J = 7.6 Hz), 7.39 – 7.22 (m, 5H), 

6.88 – 6.64 (m, 2H), 6.55 – 6.25 (m, 1H), 5.14 (d, 1H, J = 14.9 Hz), 4.21 (br s, 2H), 4.05 (d, 1H, J 

= 16.0 Hz), 3.99 – 3.92 (m, 1H), 3.90 – 3.75 (m, 5H), 3.63 – 3.43 (m, 3H), 3.01 (m, 2H), 2.88 (dd, 
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1H, J = 16.2, 7.4 Hz), 2.78 – 2.48 (m, 8H, overlapping with solvent signal), 2.44 (dd, 1H, J = 16.3, 

7.0 Hz), 2.06 (s, 3H), 1.74 – 1.58 (m, 1H), 1.56 – 1.26 (m, 12H); 13C NMR (101 MHz, DMSO-d6) δ 

172.3, 171.6, 170.9, 169.8, 167.4, 166.7, 158.6, 157.2, 138.8, 137.8, 136.7, 135.7, 129.8, 128.8, 

128.5, 124.7, 112.9, 81.2, 58.5, 56.6, 55.6, 53.4, 51.5, 47.2, 43.6, 42.1, 36.6, 35.5, 32.4, 29.9, 28.8, 

26.8, 24.7, 19.1, 12.9; MS (ESI) m/z calcd for [C40H56N9O11S]+: 870.38 [M+H]+; found: 870.4. 

 

e) Cyclo[Arg(Mtr)-Gly-Asp(OtBu)-DKP7] 

 Compound 82 e (167 mg, 0.17 mmol, 1 eq.) was cyclized in the conditions described in general 

procedure GP4, in presence of HATU (259.7 mg, 0.68 mmol, 4 eq.), HOAt (93 mg, 0.68 mmol, 4 

eq.) and DIPEA (0.17 ml, 1.02 mmol, 6 eq). The crude product was purified by flash 

chromatography on silica gel (CH2Cl2/MeOH, 95:5) to afford yellowish solid that was further 

purified by Biotage (gradient: 95% H2O / 5% acetonitrile to 5% H2O / 95% acetonitrile), to obtain 

the product (75 mg, 46%) as a 2:1 mixture of two inseparable diastereomers. 

 Rf=0.32 (CH2Cl2/MeOH 9:1); 1H NMR (400 MHz, CD3OD) δ (two diastereomers A and B; A/B = 

2:1) 7.47 – 7.19 (m, 10HA+ 10HB), 6.70 – 6.65 (m, 1HA + 1HB), 5.40 (d, 1HB, J = 15.2 Hz), 5.35 (d, 

1HB, J = 16.6 Hz), 5.19 (d, 1HA, J = 14.9 Hz), 5.05 – 4.94 (m, 2HA), 4.78 (dd, 1HA, J = 11.5, 2.1 

Hz), 4.57 (t, 1HB, J = 6.7 Hz), 4.52 (d, 1HB, J = 16.7 Hz), 4.46 (d, 1HA, J = 17.4 Hz), 4.43 – 4.39 

(m, 1HB), 4.34 (d, 1HB, J = 16.5 Hz), 4.29 – 4.19 (m, 1HA + 2HB), 4.13 (d, 1HA, J = 15.1 Hz), 4.08 

– 3.96 (m, 2HA), 3.91 (d, 1HB, J = 15.3 Hz), 3.88 – 3.78 (m, 3HA + 4HB), 3.70 (dd, 1HA, J = 10.4, 

4.1 Hz), 3.66 – 3.56 (m, 1HA + 1HB), 3.53 – 3.42 (m, 1HA + 1HB), 3.28 – 3.09 (m, 2HA + 2HB), 3.03 

– 2.80 (m, 2HA + 1HB), 2.78 – 2.65 (m, 4HA + 4HB), 2.63 (s, 3HB), 2.60 (s, 3HA), 2.58 – 2.43 (m, 

1HA + 2HB), 2.15 (s, 3HB), 2.13 (s, 3HA), 2.11 – 2.00 (m, 1HA), 1.94 – 1.81 (m, 1HA + 1HB), 1.80 – 

1.70 (m, 1HB), 1.66 – 1.52 (m, 2HA + 2HB), 1.49 – 1.44 (m, 9HA + 9HB); 13C NMR (101 MHz, 

CD3OD) δ (two rotamers) 173.2, 172.2, 171.7, 171.1, 170.7, 170.4, 169.8, 168.5, 167.5, 158.5, 

156.7, 138.1, 136.9, 136.5, 135.8, 135.5, 133.5, 128.7, 128.6, 128.5, 128.3, 127.9, 127.8, 127.0, 

126.9, 126.1, 124.3, 111.4, 80.9, 59.7, 58.4, 56.9, 56.8, 54.6, 53.8, 50.2, 48.7, 43.2, 42.2, 39.7, 

38.2, 35.9, 35.6, 35.1, 28.3, 26.9, 26.0, 25.5, 22.9, 17.4, 13.0, 10.7; MS (ESI) m/z calcd for 

[C47H62N9O11S]+: 960.43 [M+H]+; found: 960.5. 

 

f) Cyclo[DKP-8-Arg(Mtr)-Gly-Asp(OtBu)] 

 Compound 82 f (124 mg, 0.13 mmol, 1 eq.) was cyclized in the conditions described in general 

procedure GP4, in presence of HATU (197 mg, 0.52 mmol, 4 eq.), HOAt (70 mg, 0.52 mmol, 4 

eq.), and DIPEA (137 μl, 0.8 mmol, 6 eq.). The crude product was purified by flash 

chromatography on silica gel (CH2Cl2/MeOH, 93:7) to afford the desired product as white foam (85 

mg, 74%). 

 Rf=0.4 (CH2Cl2/MeOH, 9:1); 1H NMR (400 MHz, CD3OD) δ 7.41 – 7.22 (m, 5H), 6.66 (s, 1H), 

5.31 (d, 1H, J = 15.3 Hz), 4.47 (dd, 1H, J = 8.4, 4.9 Hz), 4.27 (dd, 1H, J = 8.7, 5.8 Hz), 4.18 – 4.08 
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(m, 2H), 4.05 (d, 1H, J = 15.3 Hz), 3.97 (d, 1H, J = 16.8 Hz), 3.88 – 3.79 (m, 4H), 3.67 (d, 1H, J = 

16.8 Hz), 3.55 (d, 1H, J = 13.7 Hz), 3.26 – 3.14 (m, 2H), 2.91 (dd, 1H, J = 16.6, 4.9 Hz), 2.76 (dd, 

1H, J = 16.6, 8.4 Hz), 2.71 – 2.56 (m, 7H), 2.56 – 2.42 (m, 2H), 2.12 (s, 3H), 1.86 – 1.52 (m, 5H), 

1.44 (s, 9H); 13C NMR (101 MHz, CD3OD) δ 176.4, 175.9, 175.0, 173.9, 171.6, 171.6, 169.6, 

169.5, 159.9, 158.2, 139.5, 138.0, 137.4, 134.8, 130.0, 129.0, 125.7, 112.8, 82.4, 60.4, 56.0, 54.9, 

53.0, 52.4, 48.2, 44.0, 41.1, 40.2, 37.5, 31.8, 30.7, 29.0, 28.3, 27.4, 24.4, 18.9, 12.1; MS (ESI) m/z 

calcd for [C41H58N9O11S]+: 884.40 [M+H]+; found: 884.46. 

 

 

Cyclo[Arg-Gly-Asp-DKP] 

 

 
 

Cyclo[Arg-Gly-Asp-DKP3] 18 

 Compound 83 a (50 mg, 0.06 mmol) was fully deprotected in the conditions described in  general 

procedure GP5. The crude product was purified by HPLC (Water's Atlantis 21 mm x 10 cm 

column, gradient: 90% H2O / 10% acetonitrile to 70% H2O / 30% acetonitrile) to give the desired 

compound (as trifluoroacetate salt) as white solid (34 mg, 80%). 
 1H NMR (600 MHz, H2O/D2O 9:1, T= 298K) δ 8.76 (d, 1H, J = 8.2 Hz, Arg-NH), 8.28 (t, 1H, J = 

6.7 Hz, DKP-NH10), 8.06 (s, 1H, DKP-NH1), 8.02 – 7.95 (m, 1H, Gly-NH), 7.85 (d, 1H, J = 8.6 

Hz, Asp-NH), 7.37 – 7.18 (m, 5H, H-Ar), 7.10 (t, 1H, J = 5.9 Hz, NH-guan), 5.01 (m, 1H, CH2-

Ph), 4.76 (m, 1H, αH-Asp), 4.48 (m, 1H, DKP-H6), 4.21 (dd, 1H, J = 17.7, 8.2 Hz, αH-Gly), 4.16 

– 4.00 (m, 3H, DKP-H3 + CH2-Ph + αH-Arg), 3.90 (dd, 1H, J = 15.8, 7.1 Hz, DKP-H9), 3.63 – 

3.47 (m, 2H, DKP-H9 + αH-Gly), 3.13 (dd, 2H, J = 13.2, 6.8 Hz, δH-Arg), 2.86 – 2.76 (m, 2H, 

DKP-H7, βH-Asp), 2.68 (dd, 1H, J = 17.1, 7.0 Hz, DKP-H7), 2.56 (dd, 1H, J = 14.4, 5.3 Hz, βH-

Asp), 1.95 – 1.84 (m, 1H, βH-Arg), 1.77 – 1.66 (m, 1H, βH-Arg), 1.63 – 1.46 (m, 2H, γH-Arg); 
13C NMR (151 MHz, D2O, T= 298K) δ 174.2, 173.9, 173.0, 172.9, 171.0, 170.2, 168.6, 135.1, 

128.7, 127.6, 127.5, 59.3, 53.8, 51.9, 49.3, 47.7, 42.4, 40.5, 39.1, 37.8, 34.7, 25.5, 24.4; HRMS 

(ESI) m/z calcd for [C26H35N9O8Na]+: 624.25008 [M+Na]+; found: 624.24928. 

 

18 [3S, 6R, R1 = H, R2 = Bn, n = 1]   = c[DKP3-RGD]

19 [3R, 6S, R1 = Bn, R2 = H, n = 1]   = c[DKP4-RGD]

20 [3R, 6S, R1 = Bn, R2 = Bn, n = 1]  = c[DKP5-RGD]

21 [3S, 6R, R1 = Bn, R2 = H, n = 1]   = c[DKP6-RGD]

22 [3S, 6R, R1 = Bn, R2 = Bn, n = 1]  = c[DKP7-RGD]

23  [3S, 6R, R1 = H, R2 = Bn, n = 2]   = c[DKP8-RGD]
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Cyclo[Arg-Gly-Asp-DKP4] 19 

 Compound 83 b (93.7 mg, 0.11 mmol) was fully deprotected in the conditions described in  

general procedure GP5. The crude product was purified by HPLC (Water's Atlantis 21 mm x 10 

cm column, gradient: 90% H2O / 10% acetonitrile to 70% H2O / 30% acetonitrile) to give the 

desired compound as white solid (62 mg, 80%). 
 1H NMR (400 MHz, H2O/D2O 9:1, T= 298K) δ  8.88 (br s, 1H, Asp-NH), 8.37 – 8.23 (m, 2H, 

Arg-NH + Gly-NH), 8.20 (m, 1H, DKP-NH4), 7.59 (m, 1H, DKP-NH10), 7.35 – 7.19 (m, 5H, H-

Ar), 7.11 (t, 1H, J = 6.1 Hz, NH-guan), 5.08 (m, 1H, CH2-Ph), 4.35 (m, 1H, αH-Asp), 4.29 – 4.14 

(m, 2H, αH-Arg + DKP-H6), 4.01 – 3.82 (m, 2H, αH-Gly + DKP-H3), 3.77 – 3.58 (m, 2H, αH-

Gly + DKP-H9), 3.34 (m, 1H, DKP-H9), 3.12 (m, 2H, δH-Arg), 3.01 – 2.67 (m, 4H, DKP-H7 + 

βH-Asp), 1.85 – 1.43 (m, 4H, βH-Arg + γH-Arg); 13C NMR (101 MHz, D2O, T= 298K) δ 173.8, 

172.8, 170.8, 168.5, 156.8, 135.3, 128.7, 127.6, 57.5, 53.5, 53.3, 52.0, 47.3, 42.3, 40.7, 40.6, 35.7, 

34.3, 28.0, 24.4; HRMS (ESI) m/z calcd for [C26H35N9O8Na]+: 624.25008 [M+Na]+; found: 

624.24942. 

 

Cyclo[Arg-Gly-Asp-DKP5] 20 

 Compound 83 c (20 mg, 0.02 mmol) was fully deprotected in the conditions described in  general 

procedure GP5. The crude product was purified by HPLC (Water's Atlantis 21 mm x 10 cm 

column, gradient: 90% H2O / 10% acetonitrile to 30% H2O / 70% acetonitrile) to give the desired 

compound (as trifluoroacetate salt) as white solid (9.5 mg, 60%). 
 1H NMR (400 MHz, H2O/D2O 9:1, T= 298K) δ 8.61 – 8.53 (m, 1H, DKP-NH10), 8.48 (d, 1H, J = 

6.6 Hz, Arg-NH), 8.42 (d, 1H, J = 8.3 Hz, Asp-NH), 8.23 (d, 1H, J = 9.6 Hz, Gly-NH), 7.44 – 

7.19 (m, 10H, H-Ar), 7.11 – 7.03 (m, 1H, NH-guan), 5.10 (m, 1H, CH2-Ph), 5.00 (m, 1H, CH2-

Ph), 4.62 (m, 1H, αH-Asp), 4.41 (m, 1H, DKP-H6), 4.37 (m, 1H, CH2-Ph), 4.33 (m, 1H, DKP-

H3), 4.32 (m, 1H, DKP-H9), 4.23 (m, 1H, αH-Gly), 4.15 (d, 1H, J = 15.4 Hz, CH2-Ph), 4.11 (m, 

1H, αH-Arg), 3.42 (d, 1H, J = 17.3 Hz, αH-Gly), 3.34 (m, 1H, DKP-H9), 3.10 (dd, 2H, J = 12.6, 

6.6 Hz, δH-Arg), 2.86 (dd, 1H, J = 16.8, 7.8 Hz, βH-Asp), 2.70 (dd, 1H, J = 17.0, 7.2 Hz, βH-

Asp), 2.55 (m, 2H, DKP-H7), 1.82 – 1.50 (m, 4H, βH-Arg + γH-Arg); 13C NMR (101 MHz, D2O, 

T= 298K) δ 175.0, 174.8, 174.4, 173.7, 173.3, 169.7, 167.8, 136.5, 135.5, 129.1, 129.0,  128.7, 

128.5, 127.6, 126.2, 59.5, 55.1, 51.5, 50.1, 48.3, 48.1, 41.9, 40.3, 39.7, 39.4, 38.6, 26.8, 24.3; 

HRMS (ESI) m/z calcd for [C33H41N9O8Na]+: 714.29703 [M+Na]+; found: 714.29588. 

 

Cyclo[Arg-Gly-Asp-DKP6] 21 

 Compound 83 d (80.2 mg, 0.09 mmol) was fully deprotected in the conditions described in  

general procedure GP5. The crude product was purified by (Water's Atlantis 21 mm x 10 cm 

column, gradient: 90% H2O / 10% acetonitrile to 70% H2O / 30% acetonitrile) to give the desired 

compound (as trifluoroacetate salt) as white solid (54 mg, 82%). 
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 1H NMR (400 MHz, H2O/D2O 9:1, T= 298K) δ 8.80 (d, 1H, J = 6.4 Hz, Asp-NH), 8.40 – 8.26 

(m, 2H, Gly-NH + Arg-NH), 8.07 (s, 1H, DKP-NH4), 7.89 (t, 1H, J = 6.1 Hz, DKP-NH10), 7.40 

– 7.22 (m, 5H, H-Ar), 7.10 (t, 1H, J = 5.7 Hz, NH-guan), 5.06 (d, 1H, J = 17.9 Hz, CH2-Ph), 4.35 

(m, 1H, αH-Asp), 4.29 (m, 1H, αH-Arg), 4.26 – 4.19 (m, 2H, DKP-H6 + CH2-Ph), 3.96 – 3.89 

(m, 1H, DKP-H3), 3.90 – 3.75 (m, 2H, αH-Gly + DKP-H9), 3.67 (dd, 1H, J = 15.6, 6.1 Hz, αH-

Gly), 3.58 – 3.43 (m, 1H, DKP-H9), 3.13 (dd, 2H, J = 12.9, 6.9 Hz, δH-Arg), 2.81 – 2.67 (m, 3H, 

DKP-H7 + βH-Asp), 2.56 (dd, 1H, J = 16.1, 8.3 Hz, βH-Asp), 1.84 – 1.48 (m, 4H, βH-Arg + γH-

Arg); 13C NMR (101 MHz, D2O, T= 298K) δ 174.6, 173.3, 172.7, 171.9, 171.0, 168.3, 166.7, 

135.3, 129.1, 128.6, 127.6, 57.6, 54.9, 53.1, 51.3, 47.7, 47.1, 42.8, 40.4, 35.4, 35.0, 27.8, 24.2; 

HRMS (ESI) m/z calcd for [C26H35N9O8Na]+: 624.25008 [M+Na]+; found: 624.24929. 

 

Cyclo[Arg-Gly-Asp-DKP7] 22 

 Compound 83 e (65 mg, 0.068 mmol) was fully deprotected in the conditions described in  

general procedure GP5. The crude product was purified by HPLC (Water's Atlantis 21 mm x 10 

cm column, gradient: 90% H2O / 10% acetonitrile to 40% H2O / 60% acetonitrile) to give 22A (as 

trifluoroacetate salt) (21.3 mg) and 22B (as trifluoroacetate salt) (10.6 mg) as white solids (60% 

overall). 

 22A: 1H NMR (400 MHz, H2O/D2O 9:1, T= 298K) δ 8.66 (d, 1H, J = 7.7 Hz, Arg-NH), 8.04 (t, 

1H, J = 6.6 Hz, DKP-NH10), 7.95 – 7.89 (m, 1H, Gly-NH), 7.77 – 7.70 (m, 1H, Asp-NH), 7.44 – 

7.16 (m, 10H, H-Ar), 7.10 – 7.04 (m, 1H, NH-guan), 5.06 – 4.99 (m, 1H, CH2-Ph), 4.89 (m, 1H, 

αH-Asp), 4.80 (m, 1H, CH2-Ph), 4.69 (m, 1H, DKP-H6), 4.57 (m, 1H, CH2-Ph), 4.39 – 4.33 (m, 

2H, αH-Gly, DKP-H3), 4.14 – 4.07 (m, 1H, αH-Arg), 4.04 (d, 1H, J = 14.8 Hz, CH2-Ph), 3.91 

(dd, 1H, J = 15.4, 7.1 Hz, DKP-H9), 3.71 – 3.61 (m, 1H, DKP-H9), 3.60 – 3.52 (m, 1H, αH-Gly), 

3.10 (dd, 2H, J = 12.9, 6.9 Hz, δH-Arg), 2.90 – 2.76 (m, 2H, DKP-H7, βH-Asp), 2.62 (dd, 1H, J 

= 17.1, 6.3 Hz, βH-Asp), 2.58 – 2.49 (m, 1H, DKP-H7), 2.01 – 1.87 (m, 1H, βH-Arg), 1.73 – 

1.58 (m, 1H, βH-Arg), 1.55 – 1.42 (m, 2H, γH-Arg); 13C NMR (101 MHz, D2O, T= 298K) δ 

174.3, 173.4, 173.0, 172.4, 171.2, 170.6, 169.4, 156.8, 129.3, 129.1, 128.5, 127.8, 126.5, 58.7, 

56.9, 53.7, 48.9, 48.3, 47.6,  43.2, 40.9, 39.7, 37.7, 36.9, 25.4, 24.4; HRMS (ESI) m/z calcd for 

[C33H41N9O8Na]+: 714.29703 [M+Na]+; found: 714.29618. 

 

 22B: 1H NMR (400 MHz, H2O/D2O 9:1, T= 298K) δ 8.55 (d, 1H, J = 8.1 Hz, Asp-NH), 8.45 (t, 

1H, J = 5.8 Hz, Gly-NH), 8.34 (d, 1H, J = 5.9 Hz, Arg-NH), 7.73 (d, 1H, J = 8.4 Hz, DKP-

NH10), 7.46 – 7.16 (m, 10H, H-Ar), 7.16 – 7.10 (m, 1H, NH-guan), 5.27 – 5.15 (m, 2H, CH2-Ph), 

4.52 (m, 1H, αH-Asp), 4.44 (m, 1H, DKP-H6), 4.36 – 4.29 (m, 1H, CH2-Ph), 4.20 (d, 1H, J = 

14.8 Hz, CH2-Ph), 4.16 – 4.07 (m, 2H, αH-Arg, DKP-H3), 3.80 (dd, 1H, J = 15.2, 4.1 Hz, αH-

Gly), 3.76 – 3.63 (m, 2H, αH-Gly, DKP-H9), 3.38 – 3.28 (m, 1H, DKP-H9), 3.16 (dd, 2H, J = 

13.6, 7.1 Hz, δH-Arg), 2.94 (dd, 1H, J = 14.9, 6.1 Hz, DKP-H7), 2.87 – 2.72 (m, 2H, DKP-H7, 
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βH-Asp), 2.60 (dd, 1H, J = 16.6, 7.2 Hz, βH-Asp), 1.77 (dd, 2H, J = 15.6, 8.3 Hz, βH-Arg), 1.69 

– 1.52 (m, 2H, γH-Arg);13C NMR (101 MHz, D2O, T= 298K) δ 174.5, 174.1, 171.9, 171.6, 170.8, 

169.0, 168.3, 136.8, 135.4, 129.2, 129.0, 128.3, 127.8, 127.6, 125.9, 60.7, 56.8, 53.6, 51.4, 49.6, 

47.5, 43.5, 40.6, 39.3, 36.7, 35.6, 27.8, 24.7; HRMS (ESI) m/z calcd for [C33H41N9O8Na]+: 

714.29703 [M+Na]+; found: 714.29676. 

 

Cyclo[Arg-Gly-Asp-DKP8] 23 

 Compound 83 f (50 mg, 0.06 mmol) was fully deprotected in the conditions described in  general 

procedure GP5. The crude product was purified by HPLC HPLC (Water's Atlantis 21 mm x 10 

cm column, gradient: 95% H2O / 5% acetonitrile to 80% H2O / 20% acetonitrile) to give the 

desired compound (as trifluoroacetate salt) as white solid (34 mg, 80%). 
 1H NMR (600 MHz, H2O/D2O 9:1, T= 298K) δ 8.42 (d, 1H, J = 7.3 Hz, Arg-NH), 8.27 (t, 1H, J = 

6.6 Hz, Gly-NH), 8.16 – 8.14 (m, 2H, Asp-NH, DKP-NH10), 7.75 (s, 1H, DKP-NH1), 7.26 – 

7.14 (m, 5H, H-Ar), 7.05 (t, 1H, J = 5.9 Hz, NH-guan), 5.03 (d, 1H, J = 17.6 Hz, CH2-Ph), 4.42 

(m, 1H, αH-Asp), 4.16 (q, 1H, J = 7.8 Hz, αH-Arg), 4.02 (d, 1H, J = 15.9, CH2-Ph), 4.05 – 3.96 

(m, 2H, DKP-H3, DKP-H6), 3.90 – 3.75 (m, 3H, αH-Gly, DKP-H9), 3.65 (dd, 1H, J = 15.0, 6.2 

Hz, DKP-H9), 3.10 (q, 2H, J = 7.1 Hz, δH-Arg), 2.76 – 2.71 (m, 2H, βH-Asp), 2.50 – 2.30 (m, 

3H, DKP-H7, DKP-H8), 1.75 – 1.45 (m, 5H, DKP-H8, βH-Arg, γH-Arg); 13C NMR (151 MHz, 

D2O, T= 298K) δ 174.9, 174.5, 174.3, 173.8, 171.1, 168.6, 168.2, 157.1, 135.4, 129.1, 128.1, 

127.6, 59.3, 53.6, 51.9, 50.9, 47.6, 42.3, 40.6, 39.4, 35.3, 30.3, 29.6, 27.1, 24.5; HRMS (ESI) m/z 

calcd for [C27H37N9O8Na]+: 638.26573 [M+Na]+; found: 638.26512.  
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4 -  Synthesis of RGD ligand – Paclitaxel conjugates 

 

4.1 -  Synthesis of aldehyde 14a 

 

 

aReagents and conditions: (a) LiAlH4, THF, 8 h, reflux, 70%; (b) Mtr-Cl, i-Pr2NEt, THF, 6 h, room temp., 85%; 
(c) MnO2, THF, overnight, room temp., quant.. 

 

 

(4-(aminomethyl)phenyl)methanol 

 

 
 

LiAlH4 (2.01 g, 52.92 mmol, 4 equiv) was added in three portions to a stirred suspension of 

commercially available 4-(aminomethyl)benzoic acid (2 g, 13.23 mmol, 1 equiv) in THF (20 mL) kept 

at 0 °C. The mixture was heated to reflux and stirred overnight before cooling down again to 0 °C and 

quenching with H2O (2 mL) / 15% NaOH (2 mL) / H2O (6 mL). After stirring for 10 min at rt the 

mixture was filtered on a pad of celite (washing with AcOEt). Evaporation of the filtrate gave (4-

(aminomethyl)phenyl)methanol11 as a white solid (1.27 g, 70% yield), which was used without 

purification. 

 

 

4-((4-methoxy-2,3,6-trimethylphenylsulfonyl)aminomethyl)benzylic alcohol 

 

 
 

To a solution of (4-(aminomethyl)phenyl)methanol (1.3 g, 9.4 mmol, 1 equiv) and i-Pr2NEt (3.3 mL, 

1.88 mmol, 2 equiv) in dry THF (80 mL) at 0 °C under a N2 atmosphere, 4-methoxy-2,3,6-

trimethylbenzene-1-sulfonyl chloride (2.57 g, 10.3 mmol, 1.1 equiv) was added dropwise as a solution 

ONHMtr

COOH

H2N a, b, c

94
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in dry THF (20 mL). After stirring for 30 min, the mixture was warmed up to rt and stirred for 6 h. A 

white precipitate was formed. The solid was filtered off over a small pad of celite, and volatiles were 

removed under reduced pressure to obtain viscous pale yellow oil. Dry DCM (5 mL) was then added 

and this mixture was sonicated for a few minutes, until a white precipitate was formed. This 

precipitate was collected by filtration on a buchner funnel, washed with a minimum volume of cold 

DCM, a minimum volume of cold Et2O and dried to obtain the pure desired 4-((4-methoxy-2,3,6-

trimethylphenylsulfonyl)aminomethyl)benzylic alcohol as a white powder (2.79 g, 85% yield). 

Rf=0.40 (Hexane/AcOEt 3:7); 1H NMR (400 MHz, CD3OD) δ 7.22-7.14 (AB system, 4H), 6.76 (s, 

1H), 6.63 (t, 1H, J = 6.3 Hz), 4.57 (d, 2H, J = 5.1 Hz), 4.10 (t, 1H, J = 5.1 Hz), 4.05 (d, 2H,  J = 6.3 

Hz), 3.88 (s, 1H), 2.66 (s, 3H), 2.55 (s, 3H), 2.1 (s, 3H); 13C NMR (101 MHz, acetone-d6) δ 159.9, 

142.4, 139.4, 139.3, 137.2, 131.2, 128.5, 127.2, 127.1, 125.4, 113.0, 64.3, 56.0, 46.8, 24.4, 18.1, 12.0; 

m.p.: 157-158 °C; IR (film) 3502, 2925, 1579, 1558, 1307, 1140 cm-1; MS (ESI) m/z calcd for 

[C18H24NO4S]+: 350.14 [M+H]+; found: 350.1. 

 

 

4-((4-methoxy-2,3,6-trimethylphenylsulfonyl)aminomethyl)benzaldehyde 94 

 

 
 

To a solution of alcohol 4-((4-methoxy-2,3,6-trimethylphenylsulfonyl)aminomethyl)benzylic alcohol 

(2.79 g, 8.0 mmol, 1 equiv) in dry THF (200 mL) at rt, was added activated MnO2 (7.65 g, 88 mmol, 

11 equiv). The mixture was stirred overnight, then filtered over a small pad of celite. The solvent was 

evaporated to obtain 94 as a white solid. (2.76 g, quantitative yield). 

Rf=0.60 (Hexane/AcOEt 1:1); 1H NMR (400 MHz, acetone-d6) δ 9.97 (s, 1H), 7.76 (d, 2H, J = 8.2 

Hz), 7.43 (d, 2H, J = 8.2 Hz), 6.89 (t, 1H, J = 6.5 Hz), 6.73 (s, 1H), 4.21 (d, 2H, J = 6.5 Hz), 3.86 (s, 

3H), 2.64 (s, 3H), 2.55 (s, 3H).; 13C NMR (101 MHz, acetone-d6) δ 192.4, 160.0, 145.7, 139.4, 139.3, 

136.6, 130.1, 129.1, 129.0, 125.5, 113.0, 56.0, 46.8, 24.4, 18.1, 12.0; m.p.: brown at 95 °C and melt 

with decomposition at 145 °C; IR (film) 3320, 2977, 2940, 2848, 1694, 1608, 1308, 1142, 843 cm-1; 

MS (ESI) m/z calcd for [C18H22NO4S]+: 348.13 [M+H]+; found: 348.2. 
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4.2 -  Synthesis of DKP-f2 and DKP-f3a,b 

 

 
 

aReagents and conditions: (a) allyl alcohol, AcCl; (b) Boc2O, TEA, Dioxane, water, 95% over two steps; (c) 
MeOH, AcCl, quant.; (d) aldehyde 14, NaBH(OAc)3, THF, 3 h, room temp., quant.; (e) HATU, HOAT, iPr2NEt, 
DMF, 3 h, 0 °C to room temp., 86%; (f) TFA/DCM 1:2, 3 h, 0 °C to room temp.; (g) iPr2NEt, iPrOH, 6 h, room 
temp., 93% over two steps; (h) HN3

.Tol, DIAD, Ph3P, DCM/Tol 1:2, 7 h, -20 °C, 86%; (i) Me3P, BOC-ON, THF, 
6 h, -20 °C to room temp., 88%; (j) pyrrolidine, PPh3, [Pd(PPh3)4], DCM, 4 h, room temp., quant.. bYields 
reported are the average of six experiments, including different reaction batches with the two enantiomeric 
products. 

 

 

(S)-4-(allyloxy)-2-((tert-butoxycarbonyl)amino)-4-oxobutanoic acid 95 

(R)-4-(allyloxy)-2-((tert-butoxycarbonyl)amino)-4-oxobutanoic acid 96 

 

 
 

The compounds 95 or 96 were prepared starting from (S) or (R)-aspartic acid, according to procedures 

reported by Webster and co-workers.3 

 

 

(R)-methyl 3-hydroxy-2-(4-((4-methoxy-2,3,6 trimethylphenylsulfonamido) methyl) 

benzylamino) propanoate 97 

(S)-methyl 3-hydroxy-2-(4-((4-methoxy-2,3,6 trimethylphenylsulfonamido) methyl) benzylamino) 

propanoate 98 
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To a suspension of (S) or (R)-serine methyl ester hydrochloride (1.1 g, 7.0 mmol, 1.2 equiv), 4-((4-

methoxy-2,3,6-trimethylphenylsulfonyl)aminomethyl)benzaldehyde 94 (2.0 g, 5.7 mmol, 1 equiv) and 

TEA (1.2 mL, 8.6 mmol, 1.5 equiv)  in dry THF (100 mL) at 25 °C under a N2 atmosphere, 

NaBH(OAc)3 (3.6 g, 17.0 mmol, 3 equiv) was added in small portions. The mixture was stirred for 5 h. 

Then aqueous NaHCO3 was added, and it was extracted with AcOEt (3x60 mL). The organic phases 

were combined, washed with brine, dried over Na2SO4, and volatiles were removed under reduced 

pressure to afford the desired pure products 97 or 98 as a white solid (2.6 g, 99% yield). 

Rf=0.30 (AcOEt 100%);  = +19.0 (c=1.0 in CH2Cl2) for the (R)-enantiomer; 1H NMR (400 MHz, 

CD2Cl2) δ 7.21 (d, 2H, J = 8.2 Hz), 7.10 (d, 2H, J = 8.2 Hz), 6.61 (s, 1H), 4.82 (t, 1H, J = 6.3 Hz), 

4.01 (d, 2H, J = 6.3 Hz), 3.85 (s, 3H), 3.81 (d, 1H, J = 13.2 Hz), 3.73-3.70 (m, 4H), 3.65 (d, 1H, J = 

13.2 Hz), 3.57 (dd, 1H, J = 6.3, 10.5 Hz), 3.57 (dd, 1H, J = 4.6, 6.3 Hz), 2.65 (s, 3H), 2.51 (s, 3H), 

2.11 (s, 3H); 13C NMR (101 MHz, CD2Cl2) δ 173.7, 159.8, 139.7, 139.3, 139.0, 136.1, 129.3, 128.7, 

128.3, 125.7, 112.6, 62.8, 62.3, 55.9, 52.4, 51.9, 46.9, 24.4, 18.1, 12.1; m.p.: 105-106 °C; IR (film) 

3316, 2940, 2848, 1735, 1585, 1562, 1308, 1141 cm-1; MS (ESI) m/z calcd for [C22H31N2O6S]+: 451.18 

[M+H]+; found: 451.2. 

 

 

(S)-4-allyl 1-((R)-3-methoxy-2-(4-((4-methoxy-2,3,6-

trimethylphenylsulfonamido)methyl)benzylamino)-3-oxopropyl) 2-(tert-

butoxycarbonylamino)succinate 99 

(R)-4-allyl 1-((S)-3-methoxy-2-(4-((4-methoxy-2,3,6-

trimethylphenylsulfonamido)methyl)benzylamino)-3-oxopropyl) 2-(tert-

butoxycarbonylamino)succinate 100 

 

 
 

To a solution N-(tert-butoxycarbonyl)-aspartic acid β-allyl ester (1.9 g, 7.1 mmol, 1.3 equiv), in dry 

DMF (50 mL) at 0 °C under a N2 atmosphere, HATU (2.7 g, 7.1 mmol, 1.3 equiv), HOAt (0.97 g, 7.1 

mmol, 1.3 equiv) and i-Pr2NEt (1.9 mL, 11.0 mmol, 2 equiv) were added. After stirring the mixture for 
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30 min, compound 97 or 98 (2.5 g, 5.5 mmol, 1 equiv) was added. The reaction mixture was stirred at 

0 ºC for 1 h and at rt overnight. The mixture was diluted with AcOEt (250 mL) and consecutively 

washed with 1 M KHSO4 (2×50), aqueous NaHCO3 (2×50) and brine (2×50), dried over Na2SO4 and 

the solvent evaporated under reduced pressure to afford the crude product. The residue was purified by 

flash chromatography on silica gel (Hexane/AcOEt from 7:3 to 5:5, solid load) to afford the desired 

product 99 or 100 as a transparent oil (3.4 g, 86% yield).  

Rf=0.30 (Hexane/AcOEt 6:4); =+11.4 (c=1.0 in CH2Cl2) for (S)-4-allyl 1-((R)-3-methoxy-2-(4-

((4-methoxy-2,3,6-trimethylphenylsulfonamido)methyl)benzylamino)-3-oxopropyl) 2-(tert-

butoxycarbonylamino)succinate; 1H NMR (400 MHz, CD2Cl2) δ 7.21 (d, 2H, J = 8.1 Hz), 7.09 (d, 2H, 

J = 8.1 Hz), 6.61 (s, 1H), 5.88 (ddt, 1H, J = 5.7, 10.5, 17.2 Hz), 5.40 (d, 1H, J = 8.2 Hz), 5.28 (dq, 1H, 

J = 1.3, 17.2 Hz), 5.21 (dq, 1H, J = 1.3, 10.4 Hz), 4.87 (t, 1H, J = 6.2 Hz), 4.59-4.48 (m, 3H), 4.35 

(dd, 1H, J = 4.7, 10.9 Hz), 4.28 (dd, 1H, J = 4.7, 10.9 Hz), 4.01 (d, 2H, J = 6.3 Hz), 3.85 (s, 3H), 3.81 

(d, 1H, J = 13.3 Hz), 3.70 (s, 3H), 3.63 (d, 1H, J = 13.3 Hz), 3.46 (t, 1H, J = 4.7 Hz), 2.92 (dd, 1H, J = 

4.7, 16.9 Hz), 2.80 (dd, 1H, J = 4.7, 16.9 Hz), 2.65 (s, 3H), 2.51 (s, 3H), 2.11 (s, 3H), 1.41 (s, 9H); 13C 

NMR (101 MHz, CD2Cl2) δ 172.7, 171.0, 170.8, 159.8, 155.5, 139.7, 139.3, 139.0, 136.0, 132.3, 

129.2, 128.7, 128.3, 125.6, 118.5, 112.5, 80.3, 66.2, 65.9, 59.5, 55.9, 52.4, 51.7, 50.3, 46.9, 37.0, 28.4, 

24.4, 18.1, 12.1; IR (film) 3338, 2976, 2940, 1738, 1586, 1563, 1308, 1143 cm-1; MS (ESI) m/z calcd 

for [C34H48N3O11S]+: 706.30 [M+H]+; found: 706.3. 

 

 

HO-(3R,6S)-DKP-f2-COOAllyl 101 

HO-(3S,6R)-DKP-f3-COOAllyl 102 

 

 
 

Boc-isopeptide 99 or 100 (3.0 g, 4.3 mmol, 1 equiv) was deprotected according to general procedure 

GP1. The corresponding trifluoroacetate salt was dissolved in iPrOH (70 mL) and iPr2EtN (3 mL, 2.28 

mmol, 4 equiv) was added at rt. The reaction was stirred for 5 h at rt, then the solution was 

concentrated under reduced pressure and the residue was purified by flash chromatography on silica 

gel (AcOEt/Hexane, 8:2) to afford the desired product 101 or 102 as a white foam (2.3, 93% yield). 

Rf=0.30 (AcOEt 100%); =+26.9 (c=1.0 in CH2Cl2) for HO-(3R,6S)-DKP-f2-COOAllyl; 1H NMR 

(400 MHz, CD2Cl2) δ 7.15 (A2 second order system, 4H), 6.99 (s, 1H), 6.62 (s, 1H), 5.90 (ddt, 1H, J = 

[ ]20Dα
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5.7, 10.5, 17.2 Hz), 5.30 (dq, 1H, J = 1.3, 17.2 Hz), 5.22 (dq, 1H, J = 1.3, 10.5 Hz), 5.14-5.10 (m, 2H), 

4.59 (dt, 2H, J = 1.3, 5.7 Hz), 4.56 (dd, 1H, J = 3.9, 8.0 Hz), 4.07 (d, 1H, J = 15.2 Hz), 3.99 (d, 2H, J 

= 6.3), 3.92 (1H, dd, J =  3.5, 10.5), 3.87-3.77 (m, 4H), 3.73 (br t, 1H), 3.39 (br t, 1H), 3.14 (dd, 1H, J 

= 3.9, 17.4), 2.79 (dd, 1H, J = 8.0, 17.4), 2.63 (s, 3H), 2.51 (s, 3H) , 2.12 (s, 3H); 13C NMR (101 MHz, 

CD2Cl2) δ 171.1, 168.5, 166.9, 159.8, 139.3, 139.1, 137.0, 135.8, 132.2, 129.0, 128.7, 128.5, 125.6, 

118.7, 112.5, 66.1, 62.3, 62.0, 55.9, 51.4, 47.5, 46.7, 37.3, 24.4, 18.1, 12.1; IR (film) 3346, 2940, 

1734, 1675, 1585, 1559, 1458, 1308, 1141 cm-1; MS (ESI) m/z calcd for [C28H36N3O8S]+: 574.22 

[M+H]+; found: 574.2. 

 

 

N3-(3R,6S)-DKP-f2-COOAllyl 103 

N3-(3S,6R)-DKP-f3-COOAllyl 104 

 

 
 

To a solution of diketopiperazine 101 or 102 (1.4 g, 2.44 mmol, 1 equiv) in CH2Cl2/toluene (48 mL, 

4:6), under nitrogen atmosphere and at -20 ºC, PPh3 (850 mg, 3.2 mmol, 1.33 equiv) was added and 

the mixture was stirred until a solution was obtained. Hydrazoic acid (1.5 M in toluene, 10 mL, 15 

mmol, 6.25 equiv) was added followed by dropwise addition of DIAD (0.7 mL, 3.5 mmol, 1.4 equiv) 

and the reaction was stirred overnight at -25 ºC. The reaction mixture was loaded on silica gel without 

previous evaporation and purified by flash-chromatography (Hexane/AcOEt, from 5:5 to 4:6) to afford 

the desired product 103 or 104 as a white foam (1.25 g, 86% yield). 

Rf=0.3 (Hexane/AcOEt 5:5); =-26.1 (c=1.0 in CH2Cl2) for N3-(3R,6S)-DKP-f2-COOAllyl; 1H 

NMR (400 MHz, CD2Cl2) δ 7.16 (A2 second order system, 4H), 6.62 (br s, 2H), 5.92 (ddt, 1H, J = 5.7, 

10.5, 17.2 Hz), 5.36-5.30 (m, 1H, overlapped with solvent signal), 5.25 (dq, 1H, J = 1.3, 10.5 Hz), 

5.05 (d, 1H, J = 15.2 Hz), 4.86 (br t, 1H, J = 6.3 Hz), 4.62 (dt, 2H, J = 1.3, 5.7 Hz), 4.56 (dd, 1H, J = 

3.4, 8.9 Hz), 4.16 (d, 1H, J = 15.2 Hz), 4.01 (d, 2H, J = 6.3), 3.88-3.82 (m, 5H), 3.64 (dd, 1H, J  = 3.3, 

12.7 Hz), 3.21 (dd, 1H, J  = 3.6, 17.5 Hz), 2.79 (dd, 1H, J = 8.8, 17.5), 2.64 (s, 3H), 2.53 (s, 3H) , 2.12 

(s, 3H); 13C NMR (101 MHz, CD2Cl2) δ 170.9, 166.3, 166.2, 159.8, 139.3, 139.0, 137.2, 135.6, 132.1, 

129.0, 128.7, 128.5, 125.7, 118.8, 112.5, 66.2, 59.7, 55.9, 52.2, 51.4, 47.7, 46.7, 37.5, 24.4, 18.1, 12.1; 

IR (film) 3269, 2938, 2116, 1735, 1690, 1670, 1585, 1560, 1308, 1141 cm-1; MS (ESI) m/z calcd for 

[C28H35N5O7S]+: 599.23 [M+H]+; found: 598.3. 
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Boc-(3R,6S)-DKP-f2-COOAllyl 105 

Boc-(3S,6R)-DKP-f3-COOAllyl 106 

 

 
 

To a solution of azide 103 or 104 (1.2 g, 2 mmol, 1 equiv) in THF (50 mL), under nitrogen atmosphere 

and cooled to -20 ºC, Me3P (5.0 mL of 1 M solution in THF, 5 mmol, 2.5 equiv) and 2-(t-

butoxycarbonyloxyimino)-2-phenylacetonitrile (Boc-ON, 1.2 g, 0.83 mmol, 2.5 equiv) were added. 

After stirring for 5 h at rt, CH2Cl2 (200 mL) was added and the solution was washed with H2O (3x50 

mL) and brine. The organic phase was dried over Na2SO4 and volatiles were removed under reduced 

pressure. The residue was purified by flash chromatography on silica gel (CH2Cl2/MeOH, from 99:1 to 

95:5) to afford the desired product 105 or 106 as a white foam (1.2 g, 88% yield). 

Rf=0.25 (DCM/MeOH 97:3); =-26.1 (c=1.0 in CH2Cl2) for Boc-(3R,6S)-DKP-f2-COOAllyl; 1H 

NMR (400 MHz, CD2Cl2) δ 7.14 (AB system, 4H), 6.82 (br s, 1H) 6.62 (br s, 1H), 5.90 (ddt, 1H, J = 

5.7, 10.5, 17.2 Hz), 5.31 (dq, 1H, overlapped with solvent signal, J = 1.3, 17.2 Hz), 5.23 (dq, 1H, J = 

1.3, 10.5 Hz), 5.1 (br s, 1H), 4.96 (t, 1H, J = 6.3 Hz), 4.60 (dt, 2H, J = 1.3, 5.7 Hz), 4.42 (dd, 1H, J = 

3.6, 8.5 Hz), 4.03-3.99 (m, 3H), 3.85 (s, 3H), 3.73-3.62 (m, 2H), 3.47 (ddd, 1H, J = 2.5, 6.2, 14.4), 

3.20 (dd, 1H, J  = 3.6, 17.5 Hz), 2.80 (dd, 1H, J = 8.5, 17.5), 2.64 (s, 3H), 2.52 (s, 3H) , 2.11 (s, 3H); 
13C NMR (101 MHz, CD2Cl2) δ 171.0, 167.4, 165.5, 159.8, 156.2, 139.3, 139.0, 136.9, 135.8, 132.1, 

129.0, 128.7, 125.6, 118.8, 112.5, 80.3, 66.1, 60.0, 55.9, 51.2, 47.2, 46.7, 41.1, 37.8, 28.3, 24.4, 18.1, 

12.1; IR (film) 3345, 2970, 2939, 1740, 1680, 1652, 1585, 1555, 1455, 1308, 1141 cm-1; MS (ESI) m/z 

calcd for [C33H45N4O9S]+: 673.29 [M+H]+; found: 673.3. 

 

 

Boc-(3R,6S)-DKP-f2-COOH 107 (DKP-f2) 

Boc-(3S,6R)-DKP-f3-COOH 108 (DKP-f3) 
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To a solution of allyl ester 105 or 106 (1.2 g, 1.78 mmol, 1 equiv) in CH2Cl2 (40 mL), under nitrogen 

atmosphere and at 0 ºC, pyrrolidine (0.28 mL, 3.56 mmol, 2 equiv), PPh3 (220 mg, 0.89 mmol, 0.5 

equiv) and then [Pd(PPh3)4] (170 mg, 0.147 mmol, 0.08 equiv) were added. After stirring for 1 h at 0 

ºC, AcOEt (200 mL) was added and the solution was acidified to pH 2 with aqueous KHSO4 (1 M, 100 

mL). The organic phase was separated and the aqueous phase was then extracted with AcOEt (2x50 

mL). The organic phases were combined, dried over Na2SO4 and the solvents were evaporated to 

afford a white solid (desired product + Ph3P). The crude was dissolved in DCM and loaded on a small 

pad of silica gel. Triphenylphosphine was removed washing the silica pad with DCM and then the 

desired product was eluted with DCM-MeOH 9:1. The acid (107 or 108), a white fluffy solid, (1.1 g, 

99% yield) was used without further purification. 
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4.3 -   Synthesis of DKP-f4 and DKP-f6a,b 

 

 
 

aReagents and conditions: (a) MeOH, AcCl, quant.; (b) aldehyde 94, NaBH3(CN), MeOH, 4 h, room temp., 66%; 
(c) Boc2O, TEA, dioxane-water, 95%; (d) HN3

.Tol, DIAD, Ph3P, THF, 7 h, -20 °C, 78%; (e) LiOH, H2O/THF 
1:1, 1 h, 0 °C, quant.; (f) DCC, DCM, 1 h, room temp., quant.; (g) DCM, overnight, room temp., 40%; (h) TFA, 
Et3SiH, DCM, 3 h, room temp., quant.; (i) iPr2NEt, iPrOH, 6 h, room temp., 92%; (j) H2, 10% Pd/C, THF, 4 h, 
room temp., quant.; (k) Boc2O, iPr2NEt, DCM, 6 h, room temp., 96%. bYields reported are the average of six 
experiments, including different reaction batches with the two enantiomeric products. 

 

 

(S)-dimethyl-2-(4-((4-methoxy-2,3,6-trimethylphenylsulfonamido)methyl)benzylamino)  

succinate 109 

(R)-dimethyl-2-(4-((4-methoxy-2,3,6-trimethylphenylsulfonamido)methyl)benzylamino) 

succinate 110 

 

 
 

To a vigorously stirred solution of (S)- or (R)-dimethylaspartate hydrochloride (490 mg, 2.5 mmol, 1 

equiv) and sodium cyanoborohydride (160 mg, 2.5 mmol, 1 equiv) in methanol (12 mL), N-(4-

formylbenzyl)-4-methoxy-2,3,6-trimethylbenzenesulfonamide 94 (870 mg, 2.5 mmol, 1 equiv) was 
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added in one portion at rt under N2. After being stirred for 4 h, the mixture was cooled to 0 °C and the 

pH was lowered to approximately 1 with a few drops of 37% aqueous HCl (v/v). The mixture was 

allowed to warm and stirred at rt for 2 h. The solvent was removed under reduced pressure at rt, the 

residue was suspended in a small volume of water and the pH was adjusted to 7 with an aqueous 

NaHCO3 solution. AcOEt was added and the mixture was stirred for a few minutes. Then, the 

emulsion was filtered over a small pad of celite to afford a separable mixture. The aqueous phase was 

extracted 3 times with AcOEt and the organic phases were collected, dried with Na2SO4 and the 

solvent was evaporated to afford a clear oil.  

This oil was dissolved in THF (50 mL) and treated with an excess of activated MnO2: in this way, the 

small amount (ca. 10%) of benzyl-alcoholic byproduct [i.e. N-(4-(hydroxymethyl)benzyl)-4-methoxy-

2,3,6-trimethylbenzenesulfonamide] was re-oxidized to aldehyde 94, which is less polar with respect 

to the alcohol (which co-eluted with the desired product). The mixture was stirred for 4 h, filtered over 

a pad of celite and the solvent was evaporated under reduced pressure. The brown oil was purified by 

column chromatography on silica gel (Hexane/AcOEt, 1:1) to afford the desired product 109 or 110 as 

a viscous transparent oil (800 mg, 66% yield). 

Rf=0.45 (Hexane/AcOEt, 1:1); =-20.5 (c=1.0 in CH3OH) for the (S)-enantiomer; 1H NMR (400 

MHz, CD2Cl2) δ 7.18 (AB system, 4H), 6.66 (s, 1H), 4.88 (t, 1H, J = 5.6 Hz), 4.06 (d, 2H, J = 6.3 Hz), 

3.90 (s, 3H), 3.85 (d, 1H, J = 13.9 Hz), 3.75 (s, 3H), 3.69-3.61 (m, 5H),  2.77-2.64 (m, 5H), 2.56 (s, 

3H), 2.16 (s, 3H); 13C NMR (101 MHz, CD2Cl2) δ 174.2, 171.5, 159.7, 139.9, 139.2, 139.0, 135.9, 

129.2, 128.6, 128.2, 125.6, 112.5, 57.4, 55.9, 52.3, 52.0, 51.8, 46.9, 38.3, 24.4, 18.1, 12.1; IR (film) 

3356, 2940, 2847, 1736, 1585, 1562, 1308, 1141 cm-1; MS (ESI) m/z calcd for. [C24H33N2O7S]+: 493.20 

[M+H]+; found: 493.2. 

 

 

(S)-dimethyl-2-((R)-3-azido-2-(tert-butoxycarbonylamino)-N-(4-((4-methoxy-2,3,6-

trimethylphenylsulfonamido)methyl)benzyl)propanamido)succinate 115 

(R)-dimethyl-2-((S)-3-azido-2-(tert-butoxycarbonylamino)-N-(4-((4-methoxy-2,3,6-

trimethylphenylsulfonamido)methyl)benzyl)propanamido)succinate 116 

 

 
 

N-Boc-Ser(N3)-OMe (1.96 g, 8.0 mmol, 5 equiv) was dissolved in THF (120 mL) and treated dropwise 

at 0 °C with a solution of LiOH·H2O (840 mg, 20 mmol, 12.5 equiv) in H2O (60 mL). The resulting 
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solution was stirred for 1 h at 0 °C. The mixture was then acidified with 1M HCl to pH 1-2 at 0 °C and 

the resulting solution was extracted with AcOEt (4x100 mL). The collected organic phases were dried 

over Na2SO4 and volatiles were removed under reduced pressure, to afford the crude acid 111 or 112 

as a viscously oil, which was used without further purification. 

(S)- or (R)-3-azido-2-(tert-butoxycarbonylamino) propanoic acid 111 or 112 (1.84 g, 8.0 mmol, 5 

equiv) was dissolved in CH2Cl2 (12 mL) and then DCC (826 g, 4 mmol, 2.5 equiv) was added in one 

portion. A white precipitate (DCU) was formed and stirring was continued for 1h at rt. The mixture 

was then filtered on cotton funnel to remove DCU, which was washed with cold CH2Cl2. The filtrate 

and the washings were concentrated under reduced pressure at rt, to afford symmetric anhydride 113 

or 34 as a pale yellow foam, which was immediately used without further purification.  

(S)- or (R)-N-(N-Mtr-aminomethylbenzyl)-Asp(OMe)-OMe 109 or 110  (780 mg, 1.59 mmol, 1 equiv) 

was dissolved in CH2Cl2 (12 mL) and cooled to 0 °C. A solution of symmetric anhydride in CH2Cl2 (8 

mL) was added dropwise and very slowly. The reaction was warmed up to rt and stirred overnight. 

Then solvent was removed under reduced pressure and the residue was purified by flash 

chromatography on silica gel (Hexane/AcOEt, 6:4) to afford the desired product 115 or 116 as a 

viscous transparent oil (440 mg, 40% yield). 

Rf=0.43 (Hex/AcOEt 1:1); =-31.6 (c=0.5 in CH2Cl2) for (S)-dimethyl-2-((R)-3-azido-2-(tert-

butoxycarbonylamino)-N-(4-((4-methoxy-2,3,6-trimethylphenylsulfonamido)methyl)benzyl) 

propanamido) succinate; 1H NMR (400 MHz, CD2Cl2) (rotamers ratio in CD2Cl2 A/B = 4:1) δ 7.34 – 

7.17 (m, 4HA), 7.12 – 7.01 (m, 4HB), 6.66 – 6.60 (m, 1HA + 1HB), 5.49 (d, 1HB, J = 8.2 Hz), 5.26 (d, 

1HA, J = 8.5 Hz), 5.14 – 5.07 (m, 1HB), 4.99 – 4.92 (m, 1HB), 4.78 (t, 1HA, J = 6.3 Hz), 4.74 – 4.60 (m, 

3HA + 1HB), 4.36 (t, 1HA, J = 6.4 Hz), 4.29 (d, 1HB, J = 15.9 Hz), 4.05 – 3.96 (m, 2HA + 2HB), 3.85 (s, 

3HA + 3HB), 3.71 – 3.53 (m, 6HA + 8HB), 3.45 (dd, 1HA, J = 12.3, 6.3 Hz), 3.34 (dd, 1HA, J = 12.3, 6.1 

Hz), 3.22 (dd, 1HA, J = 16.9, 7.3 Hz), 2.98 (dd, 1HB, J = 17.3, 7.0 Hz), 2.72 – 2.61 (m, 3HA + 4HB), 

2.60 – 2.45 (m, 4HA + 3HB), 2.14 (s, 3HA + 3HB), 1.50 – 1.35 (m, 9HA + 9HB); 13C NMR (101 MHz, 

CD2Cl2) δ 171.6, 171.0, 170.0, 159.8, 155.2, 139.3, 139.0, 137.3, 135.6, 129.4, 128.8, 128.2, 127.8, 

125.7, 112.5, 80.7, 57.8, 56.7, 55.9, 53.1, 52.8, 52.4, 52.2, 51.1, 50.7, 47.5, 46.7, 35.0, 34.6, 28.3, 

24.4, 18.1, 12.1; IR (film) 3301, 2933, 2112, 1736, 1691, 1670, 1585, 1561, 1307, 1140 cm-1; MS 

(ESI) m/z calcd for [C32H45N6O10S]+: 705.29 [M+H]+; found: 705.4. 
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N3-(3R,6S)-DKP-f4-COOMe 117 

N3-(3S,6R)-DKP-f6-COOMe 118 

 

 
 

Dipeptide-N3 115 or 116 (400 mg, 0.57 mmol, 1 equiv) was deprotected according to general 

procedure GP1, with the addition of Et3SiH (0.23 mL, 1.43 mmol, 2.5 equiv) as ion scavenger. The 

corresponding trifluoroacetate salt  was dissolved in iPrOH (8 mL) and iPr2EtN (0.4 mL, 2.28 mmol, 4 

equiv) was added at rt. The reaction was stirred for 5 h at rt, then the solution was concentrated under 

reduced pressure and the residue was purified by flash chromatography on silica gel (AcOEt/Hexane, 

8:2) to afford the desired product 117 or 118 as a white foam (300 mg, 92% yield). 

Rf=0.49 (AcOEt); =+15.6 (c=0.5 in CH2Cl2) for N3-(3R,6S)-DKP-f4-COOMe; 1H NMR (400 

MHz, CD2Cl2) δ  7.17 – 7.10 (m, 4H), 6.62 (s, 1H), 6.59 (s, 1H), 5.08 (d, 1H, J = 15.3 Hz), 4.92 (t, 

1H, J = 6.3 Hz), 4.46 – 4.40 (m, 1H), 4.08 (d, 1H, J = 15.3 Hz), 4.04 – 3.97 (m, 3H), 3.90 – 3.82 (m, 

4H), 3.79 (dd, 1H, J = 12.6, 3.5 Hz), 3.60 (s, 3H), 3.00 (dd, 1H, J = 17.5, 3.4 Hz), 2.80 (dd, 1H, J = 

17.5, 5.0 Hz), 2.64 (s, 3H), 2.52 (s, 3H), 2.12 (s, 3H); 13C NMR (101 MHz, CD2Cl2) δ 170.7, 167.7, 

164.9, 159.8, 139.3, 139.0, 137.1, 135.5, 128.8, 128.3, 125.7, 112.5, 56.2, 55.9, 54.6, 53.7, 52.4, 47.3, 

46.7, 34.9, 24.4, 18.1, 12.1; IR (film) 3265, 2933, 2110, 1735, 1690, 1671, 1586, 1559, 1308, 1141 

cm-1; MS (ESI) m/z calcd for [C26H33N6O7S]+: 573.21 [M+H]+; found: 573.5. 

 

 

Boc-(3R,6S)-DKP-f4-COOMe 119 

Boc-(3S,6R)-DKP-f6-COOMe 120 

 

 
 

A solution of azide 117 or 118 (300 mg, 0.52 mmol, 1 equiv) in THF (45 mL) was treated with 10% 

Pd/C (56 mg, 0.052 mmol, 0.1 equiv), and the flask was purged three times with vacuum/H2. The 

mixture was stirred at rt for 4 h under H2 atmosphere, then filtered through a pad of Celite and the 
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Celite cake was washed thoroughly with THF. The solvent was removed under vacuum to give the 

crude amine as a white foam (280 mg, 99% yield), which was used without further purification. 

To a solution of the crude amine (280 mg, 0.52 mmol, 1 equiv) in DCM (40 mL) at 0 °C, i-Pr2NEt 

(0.17 mL, 1.0 mmol, 2 equiv) and Boc2O (132 mg, 0.6 mmol, 1.2 equiv) were added. The mixture was 

stirred at rt for 6 h, the solvent was evaporated and the crude compound was purified over a small pad 

of silica gel with AcOEt as eluent, to afford the desired product 119 or 120 as a white foam (320 mg, 

96% yield). 

Rf=0.59 (AcOEt); =+60.0 (c=1.00 in CH2Cl2) for Boc-(3R,6S)-DKP-f4-COOMe; 1H NMR (400 

MHz, CD2Cl2) δ 7.17 – 7.06 (m, 5H), 6.62 (s, 1H), 5.39 (t, 1H, J = 6.0 Hz), 5.27 (t, 1H, J = 5.9 Hz), 

4.97 (d, 1H, J = 15.3 Hz), 4.29 (t, 1H, J = 4.4 Hz), 4.14 (d, 1H, J = 15.3 Hz), 4.03 – 3.96 (m, 3H, J = 

6.1 Hz), 3.85 (s, 3H), 3.66 (ddd, 1H, J = 14.2, 6.6, 4.3 Hz), 3.59 (s, 3H), 3.57 – 3.48 (m, 1H), 2.92 (dd, 

1H, J = 17.1, 4.1 Hz), 2.76 (dd, 1H, J = 17.1, 5.1 Hz), 2.63 (s, 3H), 2.52 (s, 3H), 2.11 (s, 3H), 1.41 (s, 

9H); 13C NMR (101 MHz, CD2Cl2) δ 170.7, 167.8, 166.5, 159.7, 157.2, 139.3, 139.1, 137.1, 135.7, 

128.7, 128.1, 125.6, 112.5, 80.1, 56.8, 56.0, 55.9, 52.4, 47.6, 46.6, 42.7, 35.3, 28.4, 24.4, 18.1, 12.1; 

IR (film) 3340, 2971, 2937, 1741, 1681, 1650, 1586, 1554, 1455, 1307, 1141 cm-1; MS (ESI) m/z 

calcd for [C31H43N4O9S]+: 647.27 [M+H]+; found: 647.4 

 

 

Boc-(3R,6S)-DKP-f4-COOH 121 (DKP-f4) 

Boc-(3S,6R)-DKP-f6-COOH 122 (DKP-f6) 

 

 
 

A solution of compound 119 or 120 (320 mg, 0.5 mmol, 1 equiv) in THF (20 mL) was cooled to 0 °C 

and treated dropwise with a solution of LiOH·H2O (52 mg, 1.24 mmol, 2.5 equiv) in H2O (10 mL). 

The resulting solution was stirred for 1 h at 0 °C, then acidified with a 1M KHSO4 solution to pH 1-2. 

The mixture was extracted with CH2Cl2 (4x), and the collected organic extracts were dried over 

Na2SO4 and evaporated under reduced pressure, to afford the acid (109 or 110) as a white foam (310 

mg, 100% yield), which was used without further purification. 

[ ]20Dα



156 Experimental section Chapter 4 

 

4.4 -  Synthesis of functionalized cyclo[DKP-RGD] integrin ligands 143-146a 

 

aReagents and conditions:  (a) HATU, HOAT, iPr2NEt, DMF, overnight, room temp., 83-85%; (b) TFA/DCM 
1:2, 3 h, room temp., quant.; (c) Cbz-Asp(OtBu)-OH, HATU, HOAT, iPr2NEt, DMF, overnight, room temp., 86-
88%; (d) H2, 10% Pd/C, THF/H2O 1:1, overnight, room temp., quant.; (e) HATU, HOAT, iPr2NEt, 1.4 mM in 
DMF, overnight, room temp., 60-81%; (f) TFA/TMSBr/thioanisol/EDT/phenol 70:14:10:5:1, 2 h, room temp., 
70-85%. 

 

 

Boc-DKP-f2-Arg(Mtr)-Gly-OBn 123 [(3R, 6S), R1= H, R2= CH2C6H4CH2NHMtr]  

 

 
 

Dipeptide Boc-Arg(Mtr)-Gly-OBn (480 mg, 0.76 mmol, 1.2 equiv) was deprotected according to 

general procedure GP1. The corresponding trifluoroacetate salt was then coupled with DKP-f2 107 
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(400 mg, 0.63 mmol, 1 equiv), according to general procedure GP2. The residue was purified by flash 

chromatography on silica gel (CH2Cl2/MeOH, 93:7) to afford the desired product 123 as a white foam 

(613 mg, 85%). 

Rf=0.4 (CH2Cl2/MeOH 9:1); =+34.7 (c=1.0 in CH2Cl2); 1H NMR (400 MHz, CD2Cl2) δ 7.79 (br s, 

2H), 7.39 (br s, 1H), 7.32-7.24 (m, 5H), 7.15 (AB system, 4H), 6.60 (s, 1H), 6.50 (s, 1H), 6.17-5.9 (m, 

4H), 5.71 (br s, 1H), 5.28 (d overlapped to solvent signal, 1H, J = 14.3 Hz), 5.07 (s, 2H), 4.55 (br s, 

1H), 4.42 (br s, 1H), 4.01-3.83 (m, 9H), 3.77 (s, 3H), 3.74-3.61 (m, 1H), 3.50-3.38 (m, 1H), 3.15-2.81 

(m, 4H), 2.61 (s, 3H), 2.60 (s, 3H), 2.53 (s, 3H), 2.50 (s, 3H), 2.10 (s, 3H), 2.05 (s, 3H), 1.80-1.69 (m, 

1H), 1.63-1.52 (m, 1H), 1.51-1.30 (m, 11H); 13C NMR (101 MHz, CD2Cl2) δ 173.0, 170.9, 170.4, 

168.1, 167.1, 159.7, 158.6, 156.8, 156.5, 139.1, 138.8, 137.5, 136.8, 135.8, 135.5, 134.0, 129.3, 128.9, 

128.7, 128.6, 128.4, 125.6, 125.1, 112.5, 112.1, 80.1, 67.5, 60.5, 55.9, 55.8, 53.1 51.2, 47.5, 46.3, 

41.7, 41.2, 40.8, 37.7 28.3, 24.5, 24.2, 18.5, 18.1, 12.1, 12.0; IR (film) 3344, 2971, 2938, 1741, 1682, 

1650, 1585, 1558, 1456, 1308, 1141 cm-1; MS (ESI) m/z calcd for [C55H74N9O14S2]+: 1148.48 [M+H]+; 

found: 1148.6. 

 

 

Boc-DKP-f3-Arg(Mtr)-Gly-OBn 124 [(3S, 6R), R1= H, R2= CH2C6H4CH2NHMtr] 

 

 
 

Dipeptide Boc-Arg(Mtr)-Gly-OBn (1.5 g, 2.37 mmol, 1.25 equiv) was deprotected according to 

general procedure GP1. The corresponding trifluoroacetate salt was then coupled with DKP-f3 108 

(1.2 g, 1.90 mmol, 1 equiv), according to general procedure GP2. The residue was purified by flash 

chromatography on silica gel (CH2Cl2/MeOH, 93:7) to afford the desired product 124 as a white foam 

(1.8 g, 84%). 

Rf=0.4 (CH2Cl2/MeOH 9:1); =-29.0 (c=1.0 in CH2Cl2); 1H NMR (400 MHz, acetone-d6) δ 7.86 (t, 

1H, J = 6.0 Hz), 7.61 (d, 2H, J = 11.0 Hz), 7.39-7.29 (m, 5H), 7.18 (AB system, 4H), 6.76 (s, 1H), 

6.70-6.66 (m, 2H), 6.49-6.44 (m, 3H), 5.35 (d, 1H, J = 15.5 Hz), 5.14 (s, 2H), 4.60-4.50 (m, 2H), 4.04-

3.91 (m, 5H), 3.88 (s, 3H), 3.82 (s, 3H), 3.76-3.70 (m, 2H), 3.55-3.45 (m, 1H), 3.24-3.11 (m, 2H), 3.07 

(dd, 1H, J = 15.6, 4.6 Hz), 2.78 (dd, 1H, J = 15.6, 6.8 Hz), 2.67 (s, 3H), 2.64 (s, 3H), 2.62 (s, 3H), 2.55 
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(s, 3H), 2.10 (s, 3H), 2.08 (s, 3H) 1.92-1.83 (m, 1H), 1.66-1.58 (m, 3H), 1.40 (s, 9H); 13C NMR (101 

MHz, acetone-d6) δ 173.0, 171.1, 170.4, 167.9, 167.4, 160.0, 159.0, 157.6, 156.9, 139.49, 139.31, 

139.16, 138.2, 137.14, 137.03, 136.5, 135.8, 131.2, 129.3, 129.0, 128.7, 125.5, 124.9, 113.1, 112.5, 

79.6, 67.2, 60.8, 56.1, 55.9, 53.3, 52.3, 47.5, 46.7, 41.8, 41.5, 41.1, 38.8, 30.3, 29.8, 28.7, 26.1, 24.42, 

24.30, 18.7, 18.2, 12.15, 12.14; IR (film) 3349, 2972, 2939, 1740, 1680, 1654, 1585, 1555, 1455, 

1307, 1143 cm-1; MS (ESI) m/z calcd for [C55H74N9O14S2]+: 1148.48 [M+H]+; found: 1148.5. 

 

 

Boc-DKP-f4-Arg(Mtr)-Gly-OBn 125 [(3R, 6S), R1= CH2C6H4CH2NHMtr, R2= H] 

 

 
 

Dipeptide Boc-Arg(Mtr)-Gly-OBn (280 mg, 0.44 mmol, 1.2 equiv) was deprotected according to 

general procedure GP1. The corresponding trifluoroacetate salt was then coupled with DKP-f4 121 

(230 mg, 0.37 mmol, 1 equiv), according to general procedure GP2. The residue was purified by flash 

chromatography on silica gel (CH2Cl2/MeOH, 93:7) to afford the desired product 125 as a white foam 

(350 mg, 83%). 

Rf=0.36 (CH2Cl2/MeOH 9:1); =+29.7 (c=1.0 in CH2Cl2); 1H NMR (400 MHz, acetone-d6) δ 7.84 

(t, 1H, J = 5.9 Hz), 7.49 (d, 1H, J = 7.3 Hz), 7.40-7.32 (m, 5H), 7.19-7.15 (A2 system, 4H), 6.76 (s, 

1H), 6.71-6.67 (m, 2H), 6.51 (br s, 2H), 6.16 (t, 1H, J = 4.7 Hz), 5.15 (s, 2H), 5.06 (d, 1H, J = 15.2 

Hz), 4.52-4.47 (m, 1H), 4.33 (t, 1H, J = 4.9 Hz), 4.20 (d, 1H, J = 15.2 Hz), 4.07-4.02 (m, 3H), 4.00 (d, 

2H, J = 6.8 Hz), 3.88 (s, 3H), 3.84 (s, 3H), 3.70 (ddd, 1H, J = 14.0, 5.9, 4.6 Hz), 3.57-3.51 (m, 1H), 

3.27-3.11 (m, 2H), 2.92-2.82 (m overlapped with water signal, 2H), 2.67 (s, 3H), 2.63 (s, 3H), 2.62 (s 

3H), 2.57 (s, 3H), 2.10 (s, 6H), 1.87-1.82 (m, 1H), 1.63-1.52 (m, 4H), 1.41 (s, 9H); 13C NMR (101 

MHz, acetone-d6) δ 172.6, 170.3, 169.9, 169.1, 167.0, 160.0, 159.0, 157.57, 157.53, 139.51, 139.32, 

139.17, 138.2, 137.12, 137.08, 136.7, 135.8, 131.2, 129.3, 129.12, 128.99, 128.97, 128.6, 125.5, 

124.9, 113.0, 112.5, 79.6, 67.1, 58.0, 56.14, 56.10, 55.91, 53.3, 47.6, 46.8, 43.2, 41.8, 41.1, 37.5, 30.2, 

28.6, 26.3, 24.42, 24.28, 18.7, 18.2, 12.1; IR (film) 3343, 2972, 2939, 1741, 1680, 1656, 1586, 1557, 

1455, 1306, 1140 cm-1; MS (ESI) m/z calcd for [C55H74N9O14S2]+: 1148.48 [M+H]+; found: 1148.6. 
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Boc-DKP-f6-Arg(Mtr)-Gly-OBn 126 [(3S, 6R), R1= CH2C6H4CH2NHMtr, R2= H] 

 

 
 

Dipeptide Boc-Arg(Mtr)-Gly-OBn (460 mg, 0.73 mmol, 1.1 equiv) was deprotected according to 

general procedure GP1. The corresponding trifluoroacetate salt was then coupled with DKP-f6 122 

(420 mg, 0.66 mmol, 1 equiv), according to general procedure GP2. The residue was purified by flash 

chromatography on silica gel (CH2Cl2/MeOH, 93:7) to afford the desired product 126 as a white foam 

(630 mg, 83%). 

Rf=0.47 (DCM/MeOH 9:1); =-34.8 (c=1.0 in CH2Cl2); 1H NMR (400 MHz, acetone-d6) δ 7.97 (br 

s, 1H , J = 5.3 Hz), 7.73 (d, 1H, J = 7.4 Hz), 7.49 (s, 1H), 7.40 – 7.27 (m, 5H), 7.23 – 7.13 (m, 4H), 

6.80 – 6.73 (m, 2H), 6.67 (s, 1H), 6.58 (br s, 2H), 6.25 (t, 1H, J = 5.0 Hz), 5.25 (d, 1H, J = 15.1 Hz), 

5.13 (s, 2H), 4.68 – 4.58 (m, 1H, J = 4.4 Hz), 4.31 (br s, 1H, J = 3.8 Hz), 4.14 – 3.91 (m, 6H), 3.87 (s, 

3H), 3.82 (s, 3H), 3.74 – 3.63 (m, 1H), 3.62 – 3.52 (m, 1H), 3.15 (m, 2H), 3.02 (dd, 2H), 2.89 (d, 1H, J 

= 12.7 Hz), 2.68 (s, 3H), 2.66 – 2.60 (m, 6H), 2.55 (s, 3H), 2.09 (s, 6H), 1.89 – 1.77 (m, 1H), 1.66 – 

1.46 (m, 3H), 1.40 (s, 9H); 13C NMR (101 MHz, acetone-d6) δ 172.9, 170.4, 170.0, 169.0, 167.3, 

159.9, 158.9, 157.6, 157.4, 139.4, 139.3, 139.2, 138.3, 137.1, 136.9, 136.1, 135.6, 131.0, 129.3, 129.1, 

129.0, 128.8, 125.4, 124.9, 113.0, 112.5, 79.6, 67.2, 57.4, 56.2, 56.1, 55.9, 52.9, 46.9, 46.6, 43.3, 41.7, 

40.9, 37.3, 30.7, 28.6, 25.9, 24.4, 24.3, 18.7, 18.2, 12.1; IR (film) 3340, 2971, 2937, 1740, 1684, 1660, 

1584, 1558, 1456, 1307, 1141 cm-1; MS (ESI) m/z calcd for [C55H74N9O14S2]+: 1148.48 [M+H]+; found: 

1148.7 
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Cbz-Asp(OtBu)-DKP-f2-Arg(Mtr)-Gly-OBn 131 [(3R, 6S), R1= H, R2= CH2C6H4CH2NHMtr]  

 

 
 

Boc-DKP-f2-Arg(Mtr)-Gly-OBn 123 (500 mg, 0.32 mmol, 1 equiv) was deprotected according to 

general procedure GP1. The corresponding trifluoroacetate salt 127 was then coupled with Cbz-L-

Asp(OtBu)-OH (155 mg, 0.48 mmol, 1.5 equiv), according to general procedure GP2. The residue 

was purified by flash chromatography on silica gel (CH2Cl2/MeOH, 9:1) to afford the desired product 

131 as a white foam (385 mg, 88%). 

Rf=0.35 (CH2Cl2/MeOH 9:1); =+8.0 (c=1.0 in CH3OH); 1H NMR (400 MHz, acetone-d6) δ 8.00 

(t, 1H, J = 6.2 Hz), 7.84 (t, 1H, J = 6.1 Hz), 7.65 (d, 1H, J = 7.8 Hz), 7.52 (s, 1H), 7.38-7.29 (m, 10H), 

7.18 (AB system, 4H), 6.76-6.74 (m, 2H), 6.67-6.64 (m, 2H), 6.49 (br s, 2H), 6.25 (br s, 1H), 5.25 (d, 

1H, J = 15.4 Hz), 5.14-5.05 (m, 4H), 4.67 (t, 1H, J = 5.8 Hz), 4.59-4.50 (m, 2H), 4.10 (d, 2H, J = 15.4 

Hz), 4.04-3.93 (m, 4H), 3.88 (s, 3H), 3.85-3.82 (m, 4H), 3.59 (dt, 1H, J = 4.7, 13.9 Hz), 3.26-3.12 (m, 

2H), 3.02 (dd, 1H, J = 15.4, 5.6 Hz), 2.84-2.72 (m overlapped with water signal, 2H), 2.67 (s, 3H), 

2.64 (s, 3H), 2.63-2.57 (m, 4H), 2.55 (s, 3H), 2.10 (s, 3H), 2.08 (s, 3H), 1.96-1.86 (m, 1H), 1.69-1.52 

(m, 3H), 1.39 (s, 9H); 13C NMR (101 MHz, acetone-d6) δ 172.8, 172.5, 171.3, 170.6, 170.5, 167.8, 

167.7, 160.0, 159.0, 157.6, 157.5, 139.5, 139.4, 139.2, 138.2, 137.9, 137.1, 136.7, 136.0, 131.2, 

129.34, 129.26, 129.03, 128.96, 128.95, 128.86, 128.82, 128.73, 125.5, 124.9, 113.1, 112.5, 81.3, 

67.3, 67.1, 60.4, 56.1, 55.9, 53.4, 53.0, 52.1, 47.9, 46.8, 41.8, 41.1, 40.4, 38.36, 38.28, 28.3, 26.4, 

24.4, 24.3, 18.7, 18.2, 12.16, 12.13; IR (film) 3340, 3298, 2927, 1718, 1684, 1653, 1558, 1456, 1307, 

1144 cm-1; MS (ESI) m/z calcd for [C66H85N10O17S2]+: 1353.56 [M+H]+; found: 1353.6. 
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Cbz-Asp(OtBu)-DKP-f3-Arg(Mtr)-Gly-OBn 132 [(3S, 6R), R1= H, R2= CH2C6H4CH2NHMtr] 

 

 
 

Boc-DKP-f3-Arg(Mtr)-Gly-OBn 124 (1.4 g, 1.22 mmol, 1 equiv) was deprotected according to 

general procedure GP1. The corresponding trifluoroacetate salt 128 was then coupled with Cbz-L-

Asp(OtBu)-OH (455 mg, 0.48 mmol, 1.2 equiv),  according to general procedure GP2. The residue 

was purified by flash chromatography on silica gel (CH2Cl2/MeOH, 9:1) to afford the desired product 

132 as a white foam (1.43 g, 87%). 

 

Rf=0.31 (CH2Cl2/MeOH 9:1); =-15.5 (c=1.0 in CH2Cl2); 1H NMR (400 MHz, acetone-d6) δ 7.83 

(t, J = 6.1 Hz, 1H), 7.79 (t, 1H, J = 6.2 Hz), 7.59 (m, 2H), 7.38-7.28 (m, 10H), 7.19 (AB system, 4H), 

6.75 (m, 2H), 6.66 (d, 2H, J = 6.4 Hz), 6.48 (br s, 2H), 5.28 (d, 1H, J = 15.5 Hz), 5.14-5.00 (m, 4H), 

4.63-4.51 (m, 3H), 4.09 (d, 1H, J = 15.5 Hz), 4.03 (d, 2H, J = 6.3 Hz), 3.97 (dd, 2H, J = 5.8, 3.5 Hz), 

3.90-3.81 (m, 8H), 3.63 (ddd, 1H, J = 13.5, 5.8, 3.5 Hz), 3.17 (m, 2H), 3.05 (dd, 1H, J = 15.7, 4.7 Hz), 

2.85-2.80 (m, 1H), 2.79-2.76 (m, 1H), 2.67 (s, 3H), 2.65 (m, 4H), 2.62 (s, 3H), 2.55 (s, 3H), 2.10 (s, 

3H), 2.08 (s, 3H), 1.93-1.84 (m, 1H), 1.65-1.55 (m, 3H), 1.39 (s, 9H); 13C NMR (101 MHz, acetone-

d6) δ 172.9, 172.5, 171.1, 170.7, 170.4, 167.63, 167.44, 160.0, 159.0, 157.5, 157.2, 139.51, 139.33, 

139.17, 138.1, 137.9, 137.13, 137.06, 136.6, 135.9, 131.2, 129.33, 129.26, 129.02, 128.99, 128.75, 

128.73, 125.5, 124.9, 113.1, 112.5, 81.3, 67.30, 67.15, 60.3, 56.1, 55.9, 53.2, 53.0, 52.2, 47.7, 46.8, 

41.8, 41.1, 40.4, 38.6, 38.2, 30.4, 28.3, 26.2, 24.44, 24.31, 18.7, 18.2, 12.16, 12.14; IR (film) 3349, 

3292, 2928, 1719, 1685, 1654, 1558, 1456, 1307, 1142 cm-1; MS (ESI) m/z calcd for 

[C66H85N10O17S2]+: 1353.56 [M+H]+; found: 1353.6. 
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Cbz-Asp(OtBu)-DKP-f4-Arg(Mtr)-Gly-OBn 133 [(3R, 6S), R1= CH2C6H4CH2NHMtr, R2= H] 

 

 
 

Boc-DKP-f4-Arg(Mtr)-Gly-OBn 125 (270 mg, 0.235 mmol, 1 equiv) was deprotected according to 

general procedure GP1. The corresponding trifluoroacetate salt 129 was then coupled with Cbz-L-

Asp(OtBu)-OH (91 mg, 0.28 mmol, 1.2 equiv),  according to general procedure GP2. The residue was 

purified by flash chromatography on silica gel (CH2Cl2/MeOH, 9:1) to afford the desired product 133 

as a white foam (280 mg, 88%). 

Rf=0.45 (CH2Cl2/MeOH 9:1); =+22.1 (c=1.0 in CH2Cl2); 1H NMR (400 MHz, acetone-d6) δ 7.85 

(t, 1H, J = 5.5 Hz), 7.74 (t, 1H, J = 5.8 Hz), 7.47 (d, 1H, J = 7.9 Hz), 7.40-7.28 (m, 10H), 7.17 (A2 

system, 4H), 6.76 (m, 2H), 6.68 (m, 2H), 6.51 (br s, 2H), 5.14-5.01 (m, 5H), 4.54 (td, 1H, J = 7.8, 6.0 

Hz), 4.47 (m, 1H), 4.41 (t, 1H, J = 5.4 Hz), 4.22 (d, 1H, J = 15.1 Hz), 4.06 (t, 1H, J = 5.3 Hz), 4.02 (d, 

2H, J = 6.3), 3.99 (d, 2H, J = 6.6), 3.90-3.84 (m, 4H), 3.83 (s, 3H), 3.61 (dt, J = 14.0, 6.6 Hz, 1H), 

3.25-3.12 (m, 2H), 2.91-2.85 (m, 2H), 2.81-2.79 (m overlapped with water signal, 1H), 2.69-2.65 (m, 

4H), 2.64 (s, 3H), 2.62 (s, 3H), 2.55 (s, 3H), 2.10 (s, 6H), 1.87-1.81 (m, 1H), 1.62-1.51 (m, 3H), 1.40 

(s, 9H); 13C NMR (101 MHz, acetone-d6) δ 172.8, 172.5, 170.7, 170.3, 169.8, 169.0, 166.9, 160.0, 

158.9, 157.5, 157.0, 139.51, 139.34, 139.17, 138.07, 137.88, 137.12, 137.08, 136.8, 135.8, 129.32, 

129.23, 129.14, 129.09, 128.99, 128.95, 128.7, 125.5, 124.8, 113.0, 112.5, 81.4, 67.21, 67.11, 58.1, 

56.08, 55.88, 55.2, 53.3, 52.9, 47.6, 46.8, 42.3, 41.8, 38.4, 37.5, 30.3, 28.2, 26.2, 24.43, 24.29, 18.7, 

18.2, 12.1; IR (film) 3343, 3291, 2927, 1718, 1685, 1655, 1554, 1456, 1308, 1141 cm-1; MS (ESI) m/z 

calcd for [C66H85N10O17S2]+: 1353.56 [M+H]+; found: 1353.6. 
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Cbz-Asp(OtBu)-DKP-f6-Arg(Mtr)-Gly-OBn 134 [(3S, 6R), R1= CH2C6H4CH2NHMtr, R2= H] 

 

 
 

Boc-DKP-f6-Arg(Mtr)-Gly-OBn 126 (420 mg, 0.37 mmol, 1 equiv) was deprotected according to 

general procedure GP1. The corresponding trifluoroacetate salt 130 was then coupled with Cbz-L-

Asp(OtBu)-OH (141.6 mg, 0.44 mmol, 1.2 equiv), according to general procedure GP2. The residue 

was purified by flash chromatography on silica gel (CH2Cl2/MeOH, 9:1) to afford the desired product 

134 as a white foam (428 mg, 86%). 

 

Rf=0.49 (DCM/MeOH 9:1); =-27.6 (c=0.5 in MeOH); 1H NMR (400 MHz, acetone-d6) δ 7.97 (t, 

1H, J = 5.5 Hz), 7.83 (br s, 1H), 7.70 (d, 1H, J = 6.8 Hz), 7.48 (s, 1H), 7.40 – 7.24 (m, 10H), 7.24 – 

7.14 (m, 4H), 6.84 (d, 1H, J = 8.2 Hz), 6.79 – 6.71 (m, 2H), 6.66 (s, 1H), 6.58 (br s, 2H), 5.21 (d, 1H, 

J = 15.0 Hz), 5.16 – 5.06 (m, 3H), 5.00 (d, 1H, J = 12.5 Hz), 4.65 – 4.55 (m, 2H), 4.38 (t, 1H, J = 4.8 

Hz), 4.17 – 3.92 (m, 6H), 3.90 – 3.77 (m, 7H), 3.75 – 3.65 (m, 1H), 3.28 – 3.09 (m, 2H), 3.04 – 2.95 

(m, 1H), 2.94 – 2.86 (m, 1H), 2.85 – 2.76 (m, 1H), 2.75 – 2.59 (m, 10H), 2.55 (s, 3H), 2.17 – 2.05 (m, 

6H), 1.88 – 1.76 (m, 1H), 1.66 – 1.46 (m, 3H), 1.38 (s, 9H); 13C NMR (101 MHz, acetone-d6) δ 172.9, 

170.7, 170.4, 170.0, 168.9, 167.1, 159.9, 158.9, 157.6, 157.1, 139.3, 139.2, 138.2, 137.8, 137.1, 136.9, 

136.2, 135.7, 131.0, 129.2, 129.0, 128.7, 125.4, 124.9, 113.0, 112.5, 81.4, 67.2, 57.5, 56.1, 55.9, 55.4, 

53.0, 52.9, 47.1, 46.7, 42.3, 41.8, 41.0, 38.4, 37.3, 30.7, 28.2, 26.1, 24.4, 18.7, 18.2, 12.1; IR (film) 

3342, 3299, 2927, 1718, 1683, 1658, 1557, 1453, 1307, 1141 cm-1; MS (ESI) m/z calcd for 

[C66H85N10O17S2]+: 1353.55 [M+H]+; found: 1353.8. 
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H-Asp(OtBu)-DKP-f2-Arg(Mtr)-Gly-OH 135 [(3R, 6S), R1= H, R2= CH2C6H4CH2NHMtr]  

 

 
 

A solution of Cbz-Asp(OtBu)-DKP-f2-Arg(Mtr)-Gly-OBn 131 (380 mg, 0.28 mmol, 1 equiv) in 

THF/H2O 1:1 (100 mL) was treated with 10% Pd/C (30 mg, 0.028 mmol, 0.1 equiv), and the flask was 

purged three times with vacuum/H2. The mixture was stirred at rt overnight under H2 atmosphere, then 

filtered through a pad of Celite and the Celite cake was washed thoroughly with THF/H2O 1:1. The 

solvents were removed under vacuum to give the crude product 135 as a white solid (320 mg, 100%), 

which was used without further purification. 

 

 

H-Asp(OtBu)-DKP-f3-Arg(Mtr)-Gly-OH 136 [(3S, 6R), R1= H, R2= CH2C6H4CH2NHMtr] 

 

 
 

A solution of Cbz-Asp(OtBu)-DKP-f3-Arg(Mtr)-Gly-OBn 132 (700 mg, 0.52 mmol, 1 equiv) in 

THF/H2O 1:1 (200 mL) was treated with 10% Pd/C (100 mg, 0.10 mmol, 0.2 equiv), and the flask was 

purged three times with vacuum/H2. The mixture was stirred at rt overnight under H2 atmosphere, then 

filtered through a pad of Celite and the Celite cake was washed thoroughly with THF/H2O 1:1. The 
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solvents were removed under vacuum to give the crude product 136 as a white solid (580 mg, 100%), 

which was used without further purification.  

 

 

H-Asp(OtBu)-DKP-f4-Arg(Mtr)-Gly-OH 137 [(3R, 6S), R1= CH2C6H4CH2NHMtr, R2= H] 

 

 
 

A solution of Cbz-Asp(OtBu)-DKP-f4-Arg(Mtr)-Gly-OBn 133 (200 mg, 0.148 mmol, 1 equiv) in 

THF/H2O 1:1 (50 mL) was treated with 10% Pd/C (16 mg, 0.015 mmol, 0.1 equiv), and the flask was 

purged three times with vacuum/H2. The mixture was stirred at rt overnight under H2 atmosphere, then 

filtered through a pad of Celite and the Celite cake was washed thoroughly with THF/H2O 1:1. The 

solvents were removed under vacuum to give the crude product 137 as a white solid (166 mg, 100%), 

which was used without further purification.  

 

 

H-Asp(OtBu)-DKP-f6-Arg(Mtr)-Gly-OH 138 [(3S, 6R), R1= CH2C6H4CH2NHMtr, R2= H] 
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A solution of Cbz-Asp(OtBu)-DKP-f6-Arg(Mtr)-Gly-OBn 134 (317 mg, 0.23 mmol, 1 equiv) in 

THF/H2O 1:1 (80 mL) was treated with 10% Pd/C (25 mg, 0.023 mmol, 0.1 equiv), and the flask was 

purged three times with vacuum/H2. The mixture was stirred at rt overnight under H2 atmosphere, then 

filtered through a pad of Celite and the Celite cake was washed thoroughly with THF/H2O 1:1. The 

solvents were removed under vacuum to give the crude product 138 as a white solid (260 mg, 100%), 

which was used without further purification.  

 

 

Cyclo[DKP-f2-Arg(Mtr)-Gly-Asp(OtBu)] 139 [(3R, 6S), R1= H, R2= CH2C6H4CH2NHMtr] 

  

 
 

To a solution of H-Asp(OtBu)-DKP-f2-Arg(Mtr)-Gly-OH 135 (200 mg, 0.18 mmol, 1 equiv) in DMF 

(130 mL), under nitrogen atmosphere and at 0 ºC, HATU (273 mg, 0.72 mmol, 4 equiv), HOAt (98 

mg, 0.72 mmol, 4 equiv) and i-Pr2NEt (0.180 mL, 1.06 mmol, 6 equiv) were added. The reaction was 

warmed up to rt and stirred overnight. DMF was then removed under reduced pressure and the residue 

was dissolved in AcOEt (200 mL). The resulting solution was washed with 1 M aqueous KHSO4 

(2×30 mL), saturated aqueous NaHCO3 (2×30 mL) and brine (2×30 mL), dried over Na2SO4 and the 

solvent evaporated under reduced pressure to afford the crude product. The crude was purified by 

flash-chromatography on silica gel (CH2Cl2/MeOH, 9:1) to afford the desired product 139 as a fluffy 

solid (116 mg, 60%). 

Rf=0.34 (CH2Cl2/MeOH, 9:1); =+7.5 (c=1.0 in CH2Cl2); 1H NMR (400 MHz, DMSO-d6) δ  8.59 

(br s, 1H), 8.49 (d, 1H, J = 7.0 Hz), 8.13 (s, 1H), 8.05 (d, 1H, J = 8.0 Hz), 7.89-7.83 (m, 2H), 7.14 (AB 

system, 4H), 6.76 (s, 1H), 6.68 (s, 1H), 5.06 (d, 1H, J = 15.0 Hz), 4.53-4.45 (m, 2H), 4.28-4.17 (m, 

1H), 4.00-3.84 (m, 5 H), 3.82 (s, 3H), 3.79 (s, 3H), 3.62 (d, 1H, J = 5.4 Hz), 3.49 (br d, 1H, J = 13.6 

Hz), 3.09-3.0 (m, 2H), 2.76-2.67 (m, 2H), 2.60 (s, 3H), 2.56 (s, 3H), 2.52 (s, 3H), 2.45 (s, 3H), 2.27 

(dd, 1H, J = 12.6, 3.0 Hz), 2.05 (s, 6H), 1.72-1.63 (m, 1H), 1.53-1.46 (m, 3H), 1.37 (s, 9H); 13C NMR 

[ ]20Dα
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(101 MHz, DMSO-d6) δ 171.6, 171.1, 170.7, 169.0, 168.5, 168.2, 167.1, 158.4, 157.4, 156.1, 138.2, 

137.73, 137.57, 137.4, 135.5, 135.1, 134.6, 130.0, 127.9, 127.4, 124.0, 123.5, 112.2, 111.7, 80.2, 58.6, 

55.61, 55.43, 54.1, 51.4, 49.8, 45.9, 45.0, 41.6, 39.8, 39.0, 38.1, 37.0, 28.9, 27.6, 25.9, 23.73, 23.54, 

17.9, 17.6, 11.71, 11.69; IR (film) 3437, 3304, 3060, 2928, 2855, 1720, 1674, 1654, 1584, 1559, 1458, 

1307 cm-1; MS (ESI) m/z calcd for [C51H71N10O14S2]+: 1111.46 [M+H]+; found: 1111.7. 

 

 

Cyclo[DKP-f3-Arg(Mtr)-Gly-Asp(OtBu)] 140 [(3S, 6R), R1= H, R2= CH2C6H4CH2NHMtr]  

 

 
 

To a solution of H-Asp(OtBu)-DKP-f3-Arg(Mtr)-Gly-OH 136 (580 mg, 0.52 mmol, 1 equiv) in DMF 

(440 mL), under nitrogen atmosphere and at 0 ºC, HATU (900 mg, 2.36 mmol, 4.5 equiv), HOAT 

(323 mg, 2.36 mmol, 4.5 equiv) and i-Pr2NEt (0.630 mL, 3.70 mmol, 7 equiv) were added. The 

reaction was warmed up to rt and stirred overnight. DMF was then removed under reduced pressure to 

afford a yellowish solid. The solid was dissolved in AcOEt (200 mL) and the resulting solution was 

washed with 1 M aqueous KHSO4 (2×30 mL), saturated aqueous NaHCO3 (2×30 mL) and brine (2×30 

mL), dried over Na2SO4 and the solvent evaporated under reduced pressure to afford the crude 

product. The crude was purified by flash-chromatography on silica gel (CH2Cl2/MeOH, 9:1) to afford 

the desired product 140 as a fluffy solid (470 mg, 81%). 

Rf=0.34 (CH2Cl2/MeOH, 9:1); [ ]20Dα =-41.6 (c=1.0 in CH3OH); 1H NMR (400 MHz, acetone-d6) δ 8.63 

(d, 1H, J = 6.7 Hz), 8.01 (dd, 1H, J = 9.3, 2.4 Hz), 7.47 (d, 1H, J = 8.8 Hz), 7.22 (AB system, 4H), 

6.92 (s, 1H), 6.76-6.73 (m, 2H), 6.68 (s, 1H), 6.53 (s, 2H), 5.06 (d, 1H, J = 14.9 Hz), 4.88 (td, 1H, J = 

8.9, 6.3 Hz), 4.44 (td, 2H, J = 9.7, 7.4 Hz), 4.14 (d, 1H, J = 14.9 Hz), 4.08 (d, 2H, J = 6.3 Hz), 4.02 

(dd, 1H, J = 13.9, 7.2 Hz), 3.90-3.80 (m, 8H), 3.50 (dt, 1H, J = 13.9, 6.8 Hz), 3.35 (dd, 1H, J = 16.9, 

2.4 Hz), 3.25 (m, 2H), 2.91 (dd, 1H, J = 16.2, 9.0 Hz), 2.81-2.78 (m overlapped with water signal, 

1H), 2.68 (s, 3H), 2.63 (s, 6H), 2.55-2.50 (m, 4H), 2.43 (dd, 1H, J = 16.2, 6.1 Hz), 2.20-2.10 (m, 7H), 

1.99-1.93 (m, 1H), 1.72-1.51 (m, 2H), 1.41 (s, 9H); 13C NMR (101 MHz, acetone-d6) δ 173.1, 172.7, 
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171.47, 171.30, 171.10, 170.8, 170.3, 159.9, 158.9, 157.4, 139.46, 139.29, 139.12, 138.7, 137.0, 

135.9, 131.2, 129.3, 129.0, 125.5, 124.8, 113.0, 112.5, 81.0, 60.3, 56.10, 56.02, 55.88, 52.8, 49.6, 

47.8, 46.7, 43.2, 39.2, 38.6, 36.7, 28.2, 27.4, 26.9, 24.41, 24.26, 18.7, 18.2, 12.1; IR (film) 3300, 3062, 

2927, 2856, 1719, 1672, 1655, 1584, 1559, 1458, 1308 cm-1; MS (ESI) m/z calcd for 

[C51H71N10O14S2]+: 1111.46 [M+H]+; found: 1111.6.  

 

 

Cyclo[DKP-f4-Arg(Mtr)-Gly-Asp(OtBu)] 141 [(3R, 6S), R1= CH2C6H4CH2NHMtr, R2= H] 

 

 
 

To a solution of H-Asp(OtBu)-DKP-f4-Arg(Mtr)-Gly-OH 137 (166 mg, 0.148 mmol, 1 equiv) in DMF 

(110 mL), under nitrogen atmosphere and at 0 ºC, HATU (224 mg, 0.593 mmol, 4 equiv), HOAt (81 

mg, 0.592 mmol, 4 equiv) and i-Pr2NEt (0.160 mL, 0.89 mmol, 6 equiv) were added. The reaction was 

warmed up to rt and stirred overnight. DMF was then removed under reduced pressure to afford a 

yellowish solid. The solid was dissolved in AcOEt (150 mL) and the resulting solution was washed 

with 1 M aqueous KHSO4 (2×20 mL), saturated aqueous NaHCO3 (2×20 mL) and brine (2×32 mL), 

dried over Na2SO4 and the solvent evaporated under reduced pressure to afford the crude product. The 

crude was purified by flash-chromatography on silica gel (CH2Cl2/MeOH, 9:1) to afford the desired 

product 141 as a fluffy solid (110 mg, 67%). 

Rf=0.4 (CH2Cl2/MeOH 9:1); [ ]20Dα =-42.0 (c=1.0 in DMSO); 1H NMR (400 MHz, DMSO-d6) δ 8.88 (br 

s, 1H), 8.25 (m, 2H), 8.03 (br s, 1H), 7.85 (t, 1H, J = 6.2 Hz), 7.41 (br s, 1H), 7.12 (AB system, 4H), 

6.75 (s, 1H), 6.68 (s, 1H), 6.41 (br s, 1H), 5.18 (d, 1H, J = 14.1 Hz), 4.26-4.18 (m, 2H), 4.02-3.97 (m, 

1H), 3.92-3.87 (m, 3H), 3.82 (s, 3H), 3.80-3.74 (m, 4H), 3.70-3.56 (m, 2H), 3.34 (m overlapped with 

water signal, 1H), 3.08-2.95 (m, 3H), 2.93-2.83 (m, 1H), 2.64-2.60 (m, 4H), 2.54 (m, 7H), 2.50 (m 

overlapped with solvent signal, 1H), 2.44 (s, 3H), 2.05 (s, 3H), 2.04 (s, 3H), 1.73-1.61 (m, 1H), 1.55-

1.40 (m, 12H); 13C NMR (101 MHz, DMSO-d6) δ 171.2, 170.3, 169.8, 169.1, 168.4, 167.6, 158.5, 

157.5, 156.1, 138.2, 137.79, 137.65, 137.3, 135.6, 135.0, 130.0, 128.0, 127.5, 124.0, 123.5, 112.2, 
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111.7, 80.5, 55.67, 55.50, 52.19, 52.05, 51.98, 45.10, 45.00, 42.1, 39.9, 39.7, 36.1, 35.6, 28.1, 27.7, 

25.8, 23.81, 23.64, 18.0, 17.7, 11.8; IR (film) 3436, 3309, 3055, 2927, 2857, 1720, 1674, 1656, 1584, 

1557, 1458, 1306 cm-1; MS (ESI) m/z calcd for [C51H71N10O14S2]+: 1111.46 [M+H]+; found: 1111.7. 

 

 

Cyclo[DKP-f6-Arg(Mtr)-Gly-Asp(OtBu)] 142 [(3S, 6R), R1= CH2C6H4CH2NHMtr, R2= H] 

 

 
 

To a solution of H-Asp(OtBu)-DKP-f6-Arg(Mtr)-Gly-OH 138 (260 mg, 0.23 mmol, 1 equiv) in DMF 

(165 mL), under nitrogen atmosphere and at 0 ºC, HATU (350 mg, 0.92 mmol, 4 equiv), HOAt (125 

mg, 0. 92 mmol, 4 equiv) and i-Pr2NEt (0.236 mL, 1.38 mmol, 6 equiv) were added. The reaction was 

warmed up to rt and stirred overnight. DMF was then removed under reduced pressure to afford a 

yellowish solid. The solid was dissolved in AcOEt (200 mL) and the resulting solution was washed 

with 1 M aqueous KHSO4 (2×20 mL), saturated aqueous NaHCO3 (2×20 mL) and brine (2×32 mL), 

dried over Na2SO4 and the solvent evaporated under reduced pressure to afford the crude product. The 

crude was purified by flash-chromatography on silica gel (CH2Cl2/MeOH, 9:1) to afford the desired 

product 142 as a fluffy solid (170 mg, 68%). 

Rf=0.35 (DCM/MeOH 9:1); [ ]20Dα =-38.0 (c=0.5 in DMSO); 1H NMR (400 MHz, CD3OD) δ 7.19 – 

7.06 (m, 4H), 6.67 (s, 1H), 6.65 (s, 1H), 5.18 (d, 1H, J = 14.7 Hz), 4.50 – 4.39 (m, 2H), 4.12 – 3.95 

(m, 5H), 3.92 – 3.81 (m, 7H), 3.78 – 3.65 (m, 2H), 3.61 (dd, 1H, J = 13.7, 3.6 Hz), 3.29 – 3.08 (m, 

2H), 2.99 (dd, 1H, J = 16.6, 7.0 Hz), 2.75 – 2.69 (m, 2H), 2.66 (s, 3H), 2.64 – 2.56 (m, 7H), 2.47 (s, 

3H), 2.11 (s, 3H), 2.07 (s, 3H), 1.83 – 1.71 (m, 1H), 1.69 – 1.49 (m, 3H), 1.45 (s, 9H); 13C NMR (101 

MHz, CD3OD) δ 174.2, 174.0, 173.1, 172.3, 171.8, 171.3, 160.7, 159.9, 158.2, 139.9, 139.5, 138.6, 

137.9, 136.3, 134.7, 131.0, 129.5, 129.0, 126.1, 125.7, 113.2, 112.8, 82.3, 56.2, 56.0, 54.5, 52.2, 47.8, 

46.9, 44.0, 42.5, 36.6, 36.1, 28.3, 24.5, 24.4, 18.9, 18.2, 12.1; IR (film) 3304, 3060, 2927, 2855, 1719, 

1674, 1654, 1584, 1559, 1456, 1307 cm-1; MS (ESI) m/z calcd for [C51H71N10O14S2]+: 1111.46 [M+H]+; 

found: 1111.6 
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Cyclo[DKP-f2-Arg-Gly-Asp] 143 [(3R, 6S), R1= H, R2= CH2C6H4CH2NH2] 

 

 
 

Cyclo[DKP-f2-Arg(Mtr)-Gly-Asp(OtBu)] 139 (110 mg, 0.10 mmol) was treated with TFA (10 mL), in 

the presence of ion scavengers thioanisole (1.5 mL), ethanedithiol (0.75 mL) and phenol (150 mg). 

The mixture was cooled to 0 °C and flushed with N2. Trimethylsilylbromide (2 mL) was then added, 

the flask was open and the mixture warmed up to rt and stirred for 2 h. All volatiles were then 

evaporated and the crude was dissolved in a mixture of water and diisopropyl ether 1:1 (30 mL). The 

aqueous phase was washed several time with diisopropyl ether and then concentrated under reduced 

pressure to give the crude compound, which was purified by semipreparative-HPLC (Water's Atlantis 

21 mm x 10 cm column, gradient: 95% H2O / 5% acetonitrile to 80% H2O / 20% acetonitrile) to give 

the desired compound 143 (as trifluoroacetate salt) as a white solid (63 mg, 75% yield). 
1H NMR (400 MHz, D2O) δ 7.47 (d, 2H, J = 8.1 Hz), 7.39 (d, 1H, J = 8.1 Hz), 5.13 (d, 1H, J = 15.6 

Hz), 4.89 (t, 1H, J = 7.1 Hz), 4.61 (dd, 1H, J = 7.8, 5.8 Hz), 4.33 (d, 1H, J = 17.0 Hz), 4.26-4.18 (m, 

5H), 4.02 (d, 1H, J = 14.9 Hz), 3.71-3.61 (m, 2H), 3.25 (t, 2H, J = 6.8 Hz), 2.99-2.90 (m, 2H), 2.81 

(dd, 1H, J = 7.0, 17.0 Hz), 2.69 (dd, 1H, J = 5.4, 14.0 Hz), 1.83 (ddt, 1H, J = 14.3, 9.7, 4.7 Hz), 1.83 

(ddt, 1H, J = 14.3, 9.7, 4.7 Hz), 1.74-1.61 (m, 2H); 13C NMR (101 MHz, D2O)  δ 174.7, 174.5, 173.7, 

173.5, 171.5, 170.7, 157.4, 136.6, 133.1, 130.1, 128.9, 60.1, 54.6, 52.8, 50.1, 48.3, 43.3, 43.2, 41.3, 

39.9, 38.7, 35.3, 26.5, 25.3; IR (film) 3258, 3065, 2940, 1670, 1545, 1425, 1202, 1136 cm-1; MS (ESI) 

m/z calcd for [C27H39N10O8]+: 631.30 [M+H]+; found: 631.4 
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Cyclo[DKP-f3-Arg-Gly-Asp] 144 [(3S, 6R), R1= H, R2= CH2C6H4CH2NH2] 

 

 
 

Cyclo[DKP-f3-Arg(Mtr)-Gly-Asp(OtBu)] 140 (200 mg, 0.18 mmol) was treated with TFA (20 mL), in 

the presence of ion scavengers thioanisole (3 mL), ethanedithiol (1.5 mL) and phenol (300 mg). The 

mixture was cooled to 0 °C and flushed with N2. Trimethylsilylbromide (4 mL) was then added, the 

flask was open and the mixture warmed up to rt and stirred for 2 h. All volatiles were then evaporated 

and the crude was dissolved in a mixture of water and diisopropyl ether 1:1 (50 mL). The aqueous 

phase was washed several time with diisopropyl ether and then concentrated under reduced pressure to 

give the crude compound, which was purified by semipreparative-HPLC (Water's Atlantis 21 mm x 10 

cm column, gradient: 95% H2O / 5% acetonitrile to 80% H2O / 20% acetonitrile) to give the desired 

compound 144 (as trifluoroacetate salt) as a white solid (144 mg, 85% yield).  

 
1H NMR (400 MHz, D2O) δ 7.43 (AB system, 4H), 5.12 (d, 1H, J = 15.6 Hz), 4.89 (t, 1H, J = 7.1 Hz), 

4.61 (dd, 1H, J = 7.8, 5.8 Hz), 4.33 (d, 1H, J = 17.0 Hz), 4.26-4.19 (m, 5H), 4.02 (d, 1H, J = 14.9 Hz), 

3.71-3.61 (m, 2H), 3.25 (t, 2H, J = 6.8 Hz), 2.99-2.90 (m, 2H), 2.81 (dd, 1H, J = 17.0, 7.0 Hz), 2.69 

(dd, 1H, J = 14.0, 5.4 Hz), 2.02 (ddt, 1H, J = 14.2, 9.9, 4.9 Hz), 1.83 (ddt, 1H, J = 14.3, 9.7, 4.7 Hz), 

1.75-1.59 (m, 2H); 13C NMR (101 MHz, D2O) δ 174.74, 174.55, 173.67, 173.51, 171.5, 170.7, 169.3, 

157.4, 136.6, 133.1, 130.1, 128.9, 60.1, 54.6, 52.8, 50.1, 48.3, 43.34, 43.17, 41.3, 39.9, 38.7, 35.3, 

26.5, 25.3; IR (film) 3265, 3060, 2936, 1672, 1545, 1428, 1201, 1135 cm-1 MS (ESI) m/z calcd for 

[C27H39N10O8]+: 631.30 [M+H]+; found: 631.4. 
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Cyclo[DKP-f4-Arg-Gly-Asp] 145 [(3R, 6S), R1= CH2C6H4CH2NH2, R2= H] 

 

 
 

Cyclo[DKP-f4-Arg(Mtr)-Gly-Asp(OtBu)] 141 (90 mg, 0.081 mmol) was treated with TFA (10 mL), in 

the presence of ion scavengers thioanisole (1.5 mL), ethanedithiol (0.75 mL) and phenol (150 mg). 

The mixture was cooled to 0 °C and flushed with N2. Trimethylsilylbromide (2 mL) was then added, 

the flask was open and the mixture warmed up to rt and stirred for 2 h. All volatiles were then 

evaporated and the crude was dissolved in a mixture of water and diisopropyl ether 1:1 (30 mL). The 

aqueous phase was washed several time with diisopropyl ether and then concentrated under reduced 

pressure to give the crude compound, which was purified by semipreparative-HPLC (Water's Atlantis 

21 mm x 10 cm column, gradient: 95% H2O / 5% acetonitrile to 80% H2O / 20% acetonitrile) to give 

the desired compound 145 (as trifluoroacetate salt) as a white solid (49 mg, 70% yield).  
1H NMR (400 MHz, D2O) δ 7.40 (AB system, 4H), 5.35-5.18 (m, 1H), 4.44 (br s, 1H), 4.35 (dd, 1H, J 

= 9.1, 5.0 Hz), 4.28 (br s, 1H), 4.22-4.12 (m, 3H), 4.08-3.94 (m, 2H), 3.78-3.63 (m, 2H), 3.43 (br s, 

1H), 3.22 (t, 2H, J = 6.6 Hz), 3.10-3.00 (m, 1H), 2.96-2.83 (m, 3H), 1.93-1.76 (m, 2H), 1.73-1.61 (m, 

2H); 13C NMR (101 MHz, D2O,) δ 174.5, 173.9, 173.4, 171.3, 169.1, 157.4, 136.7, 132.9, 130.0, 

128.6, 58.2, 54.2, 53.6, 53.0, 47.3, 43.3, 43.1, 41.05, 41.02, 36.9, 35.2, 28.3, 25.2; IR (film) 3258, 

3063, 2942, 1671, 1545, 1425, 1202, 1133 cm-1 MS (ESI) m/z calcd for [C27H39N10O8]+: 631.30 

[M+H]+; found: 631.4 
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Cyclo[DKP-f6-Arg-Gly-Asp] 146 [(3S, 6R), R1= CH2C6H4CH2NH2, R2= H] 

 

 
 

Cyclo[DKP-f6-Arg(Mtr)-Gly-Asp(OtBu)] 142 (90 mg, 0.081 mmol) was treated with TFA (10 mL), in 

the presence of ion scavengers thioanisole (1.5 mL), ethanedithiol (0.75 mL) and phenol (150 mg). 

The mixture was cooled to 0 °C and flushed with N2. Trimethylsilylbromide (2 mL) was then added, 

the flask was open and the mixture warmed up to rt and stirred for 2 h. All volatiles were then 

evaporated and the crude was dissolved in a mixture of water and diisopropyl ether 1:1 (30 mL). The 

aqueous phase was washed several time with diisopropyl ether and then concentrated under reduced 

pressure to give the crude compound, which was purified by semipreparative-HPLC (Water's Atlantis 

21 mm x 10 cm column, gradient: 95% H2O / 5% acetonitrile to 80% H2O / 20% acetonitrile) to give 

the desired compound 146 (as trifluoroacetate salt) as a white solid (50 mg, 71% yield).  
1H NMR (400 MHz, D2O) δ 8.06 (t, 1H, J = 6.1 Hz), 7.43 (AB system, 4H), 5.16 (d, 1H, J = 15.7 Hz), 

4.53 (t, 1H, J = 7.1 Hz), 4.39 (dd, 1H, J = 9.3, 5.7 Hz), 4.36 – 4.29 (m, 2H), 4.20 (s, 2H), 4.05 (t, 1H, J 

= 6.2 Hz), 3.89 (d, 1H, J = 15.4 Hz), 3.82 (d, 1H, J = 15.4 Hz), 3.77 – 3.71 (m, 2H), 3.21 (t, 2H, J = 

6.8 Hz), 3.11 (dd, 1H, J = 17.0, 6.8 Hz), 2.92 – 2.76 (m, 3H), 1.92 – 1.54 (m, 4H); 13C NMR (101 

MHz, D2O) δ 175.2, 173.9, 173.3, 172.5, 171.6, 168.8, 167.4, 157.4, 136.9, 132.9, 130.0, 128.8, 58.9, 

55.4, 54.2, 51.6, 48.3, 43.4, 43.4, 41.7, 41.0, 35.9, 34.4, 28.4, 25.1; IR (film) 3254, 3062, 2942, 1671, 

1545, 1423, 1202, 1134 cm-1; MS (ESI) m/z calcd for [C27H39N10O8]+: 631.29 [M+H]+; found: 631.5 
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4.5 -  Synthesis of cyclo[DKP-RGD] - PTX conjugates 90-93a 

 

 
 

aReagents and conditions: (a) succinic anhydride, py, DCM, overnight, 0 °C to room temp., 94%; (b) N-
hydroxysulfosuccinimide sodium salt, DIC, DMF, overnight, room temp.; (c) cyclo(DKP-RGD) 143, 144, 145 or 
146, CH3CN, aq. phosphate buffer, pH = 7.3, 10 h at 0 °C then 8 h at room temp., 60-70%. 

 

 

2′-Succinyl-Paclitaxel 147 

 

 
 

A solution of Paclitaxel (200 mg, 0.234 mmol) and succinic anhydride (28.0 mg, 0.281 mmol, 1.2 

equiv) in dry dichloromethane (1.0 mL), under argon at 0 °C, was treated with pyridine (1.90 mL, 23.4 

mmol, 100 equiv). The resulting mixture was stirred for 3 hours at 0 °C, then warmed up to room 
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temperature and stirred for further 20 h. The reaction mixture was then concentrated in vacuo, the 

resulting solid was dissolved in water/acetonitrile/acetic acid (2 mL, 1:1:1) and purified by medium 

pressure reverse phase chromatography (Reveleris Grace) eluting with water and acetonitrile to give 

compound 67 as a white solid (200 mg, 94% yield). The analytical and spectroscopic data were in 

agreement with those already published.  
1H NMR (400 MHz, CD3OD): δ 8.14 (d, 2H, J = 7.2 Hz), 7.85 (d, 2H, J = 7.2 Hz), 7.42-7.72 (m, 

10H), 7.30 (t, 1H, J = 7.5 Hz), 6.47 (s, 1H), 6.10 (m, 1H), 5.86 (d, 1H, J = 6.4 Hz), 5.66 (d, 1H, J = 6.4 

Hz), 5.50 (d, 1H, J = 6.4 Hz), 5.02 (d, 1H, J = 9.2 Hz), 4.36 (m, 1H), 4.21 (s, 2H), 3.84 (d, 1H, J = 6.8 

Hz), 2.64-2.74 (m, 4H), 2.49 (m, 1H), 2.42 (s, 3H), 2.15-2.30 (m, 4H), 1.94 (s, 3H), 1.86 (m, 1H), 1.81 

(m, 1H), 1.68 (s, 3H), 1.16 (s, 6H; 13C NMR (101 MHz, CD3OD): δ 206.1, 177.0, 174.4, 172.5, 172.2, 

171.5, 171.3, 168.6, 143.4, 139.3, 136.5, 135.7, 135.5, 133.7, 132.3, 132.1, 130.9, 130.6, 130.4, 129.5, 

86.8, 83.1, 79.9, 78.3, 77.7, 77.1, 76.8, 73.8, 73.1, 60.1, 56.1, 48.8, 45.4, 38.4, 37.3, 30.3, 27.8, 24.1, 

23.2, 21.6, 15.8, 11.2; MS (ESI) m/z calcd. for [C51H56NO17]+ 954.36 [M+H]+; found: 954.2   

 

 

Cyclo[DKP-f2-RGD]-PTX 90 

 

 
 

Diisopropylcarbodiimide (11.93 μL, 9.72 mg, 0.077 mmol, 1.9 equiv) was added to a solution of 2′-

succinyl-Paclitaxel 144 (49 mg, 0.0513 mmol, 1.25 equiv) and N-hydroxysulfosuccinimide sodium 

salt (13.94 mg, 0.0642 mmol, 1.55 equiv) in dry dimethylformamide (2.0 mL). The resulting solution 

was stirred under argon at room temperature for 24 h. Volatiles were then removed in vacuo to give an 

off-white solid, which was re-dissolved in acetonitrile (2 mL). A solution of cyclo[DKP-f2-RGD] 143 

(35 mg, 0.0414 mmol) in pH 7.0 phosphate buffer (0.5 M, 1.0 mL) was then added to the acetonitrile 

solution, and the pH was adjusted to 7.3 with NaOH (0.2 M, a few drops). The resulting solution was 

rapidly cooled to 0 °C and stirred for 10 hours, warmed to room temperature and stirred for further 18 

h. During the entire period the pH value was kept near 7.3 adding 0.1 M aqueous NaOH, when 
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required. Dioxane/water (1:1, 10 mL) was then added to the reaction mixture and the resulting solution 

was freeze-dried. The solid recovered from freeze-drying was purified by semipreparative-HPLC 

[Water's Atlantis 21 mm x 10 cm column, gradient: 90% (H2O + 0.1% HCOOH) / 10% (CH3CN + 

0.1% HCOOH) to 30% (H2O + 0.1% HCOOH) / 70% (CH3CN + 0.1% HCOOH)]. The purified 

product was then freeze dried to give the desired compound 90 as a white solid (40 mg, 60% yield). 
1H NMR (400 MHz, CD3OD) δ 8.09 (dd, 2H, J = 8.4, 1.2 Hz), 7.84 (dd, 2H, J = 7.1, 1.6 Hz), 7.74 (tt, 

1H, J = 6.8, 1.6 Hz), 7.64 (t, 2H, J = 7.6 Hz), 7.59-7.54 (m, 1H), 7.49-7.44 (m, 6H), 7.28-7.25 (m, 

4H), 7.22 (tt, 1H, J = 5.8, 2.8 Hz), 6.43 (s, 1H), 5.98 (t, 1H, J = 9.1 Hz), 5.69 (d, 1H, J = 7.9 Hz), 5.61 

(d, 1H, J = 7.0 Hz), 5.45 (d, 1H, J = 7.9 Hz), 5.24 (d, 1H, J = 15.1 Hz), 5.10 (dd, 1H, J = 9.7, 1.6 Hz), 

4.77 (m overlapped with water signal, 1H), 4.65 (m overlapped with water signal, 1H), 4.40-4.30 (m, 

4H), 4.21 (m, 3H), 4.08 (d, 2H, J = 15.7 Hz), 3.85 (d, 1H, J = 4.6 Hz), 3.78 (d, 1H, J = 7.0 Hz), 3.64 

(d, 1H, J = 16.3 Hz), 3.28 (m overlapped with solvent signal, 1H), 3.22 (t, 2H, J = 6.7 Hz), 2.98 (dd, 

1H, J = 13.2, 7.4 Hz), 2.84-2.75 (m, 2H), 2.71-2.68 (m, 2H), 2.64-2.50 (m, 3H), 2.37-2.34 (m, 4H), 

2.18 (s, 3H), 2.01 (m, 1H), 1.89-1.79 (m, 5H), 1.75-1.59 (m, 7H), 1.14 (s, 3H), 1.11 (s, 3H); 13C NMR 

(101 MHz, CD3OD) δ 205.7, 175.8, 175.0, 174.5, 174.17, 174.02, 173.7, 172.09, 171.96, 171.1, 

170.74, 170.54, 169.8, 168.0, 158.3, 142.3, 139.6, 137.9, 135.5, 135.04, 134.95, 134.7, 133.2, 131.1, 

130.8, 130.2, 129.94, 129.82, 129.71, 129.3, 129.0, 128.64, 128.46, 85.9, 82.0, 79.1, 77.5, 76.7, 76.14, 

76.06, 72.9, 72.1, 60.3, 59.1, 55.8, 55.4, 53.2, 51.3, 48.1, 47.8, 44.3, 43.7, 43.0, 40.7, 39.9, 37.32, 

37.21, 36.0, 31.0, 29.9, 28.2, 26.8, 26.2, 23.4, 22.3, 20.9, 15.0, 10.6; IR (film) 3361, 3075, 2940, 1730, 

1715, 1698, 1667, 1538, 1422, 1243, 1135, 1072 cm-1; MS (ESI) m/z calcd. for [C78H92N11O24]+: 

1566.63 [M+H]+; found: 1566.6. 

 

 

Cyclo[DKP-f3-RGD]-PTX 91 
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Diisopropylcarbodiimide (11.93 μL, 9.72 mg, 0.077 mmol, 1.9 equiv) was added to a solution of 2′-

succinyl-Paclitaxel 147 (49 mg, 0.0513 mmol, 1.25 equiv) and N-hydroxysulfosuccinimide sodium 

salt (13.94 mg, 0.0642 mmol, 1.55 equiv) in dry dimethylformamide (2.0 mL). The resulting solution 

was stirred under argon at room temperature for 24 h. Volatiles were then removed in vacuo to give an 

off-white solid, which was re-dissolved in acetonitrile (2 mL). A solution of cyclo[DKP-f3-RGD] 144 

(35 mg, 0.0414 mmol) in pH 7.0 phosphate buffer (0.5 M, 1.0 mL) was then added to the acetonitrile 

solution, and the pH was adjusted to 7.3 with NaOH (0.2 M, a few drops). The resulting solution was 

rapidly cooled to 0 °C and stirred for 10 hours, warmed to room temperature and stirred for further 18 

h. During the entire period the pH value was kept near 7.3 adding 0.1 M aqueous NaOH, when 

required. Dioxane/water (1:1, 10 mL) was then added to the reaction mixture and the resulting solution 

was freeze-dried. The solid recovered from freeze-drying was purified by semipreparative-HPLC 

[Water's Atlantis 21 mm x 10 cm column, gradient: 90% (H2O + 0.1% HCOOH) / 10% (CH3CN + 

0.1% HCOOH) to 30% (H2O + 0.1% HCOOH) / 70% (CH3CN + 0.1% HCOOH)]. The purified 

product was then freeze dried to give the desired compound 91 as a white solid (47 mg, 70% yield). 
1H NMR (400 MHz, CD3OD) δ 8.12 (dd, 2H, J = 8.5, 1.4 Hz), 7.83 (dd, 2H, J = 8.5, 1.4 Hz), 7.71-

7.66 (m, 1H), 7.60 (t, 2H, J = 7.5 Hz), 7.56-7.52 (m, 1H), 7.50-7.42 (m, 6H), 7.30 (s, 4H), 7.25 (tt, 1H, 

J = 7.1, 1.6 Hz), 6.45 (s, 1H), 6.05 (td, 1H, J = 9.1, 1.0 Hz), 5.79 (d, 1H, J = 6.5 Hz), 5.64 (d, 1H, J = 

7.2 Hz), 5.44 (d, 1H, J = 6.5 Hz), 5.13 (d, 1H, J = 14.9 Hz), 5.03 (dd, 1H, J = 9.4, 1.6 Hz), 4.91-3.86 

(m, 1H), 4.75 (dd, 1H, J = 6.5, 4.7 Hz), 4.44-4.36 (m, 3H), 4.30-4.22 (m, 2H), 4.20 (br s, 2H, J = 4.2 

Hz), 4.16 (ddd, 1H, J = 12.0, 8.7, 3.6 Hz), 4.09-4.08 (m, 2H), 3.90 (d, 1H, J = 6.0 Hz), 3.82 (d, 1H, J = 

7.1 Hz), 3.74-3.68 (m, 2H), 3.61 (d, 1H, J = 17.2 Hz), 3.54 (dt, 1H, J = 11.7, 2.8 Hz), 3.42 (dd, 1H, J = 

14.6, 6.4), 3.27-3.16 (m, 2H), 2.80-2.75 (m, 2H), 2.72-2.51 (m, 7H), 2.37 (s, 3H), 2.18-2.12 (m, 4H), 

2.09-2.01 (m, 1H), 1.92 (s, 3H), 1.86-1.76 (m, 3H), 1.68-1.63 (m, 5H), 1.14 (s, 3H), 1.13 (s, 3H); 13C 

NMR (101 MHz, CD3OD) δ 205.5, 174.0, 173.60, 173.46, 173.0, 171.63, 171.54, 171.46, 171.2, 

170.5, 167.7, 142.4, 140.2, 138.4, 135.5, 134.80, 134.63, 132.9, 131.39, 131.22, 130.1, 129.72, 

129.60, 129.56, 129.3, 128.6, 100.0, 85.9, 82.3, 79.0, 77.5, 76.9, 76.2, 75.9, 72.9, 72.4, 61.6, 60.6, 

59.2, 55.4, 54.4, 53.2, 50.5, 48.0, 44.6, 43.76, 43.69, 42.2, 39.9, 37.6, 36.49, 36.36, 31.1, 29.8, 27.7, 

26.9, 26.5, 25.1, 23.3, 22.3, 20.8, 15.1, 10.5; IR (film) 3360, 3075, 2940, 1729, 1714, 1693, 1665, 

1537, 1421, 1241, 1135, 1071 cm-1; MS (ESI) m/z calcd. for [C78H92N11O24]+: 1566.63 [M+H]+; found: 

1566.6. [M+H]+1; HRMS (QTOF) m/z calcd. for [C78H92N11O24]+: 1566.6238 [M+H]+; found: 

1566.6283 (error: 3.2 ppm) [M+H]+1. 
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HRMS of Cyclo[DKP-f3-RGD]-PTX 91: 
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Cyclo[DKP-f4-RGD]-PTX 92 

 

 
 

Diisopropylcarbodiimide (11.93 μL, 9.72 mg, 0.077 mmol, 1.9 equiv) was added to a solution of 2′-

succinyl-Paclitaxel 147 (49 mg, 0.0513 mmol, 1.25 equiv) and N-hydroxysulfosuccinimide sodium 

salt (13.94 mg, 0.0642 mmol, 1.55 equiv) in dry dimethylformamide (2.0 mL). The resulting solution 

was stirred under argon at room temperature for 24 h. Volatiles were then removed in vacuo to give an 

off-white solid, which was re-dissolved in acetonitrile (2 mL). A solution of cyclo[DKP-f4-RGD] 145 

(35 mg, 0.0414 mmol) in pH 7.0 phosphate buffer (0.5 M, 1.0 mL) was then added to the acetonitrile 

solution, and the pH was adjusted to 7.3 with NaOH (0.2 M, a few drops). The resulting solution was 

rapidly cooled to 0 °C and stirred for 10 hours, warmed to room temperature and stirred for further 18 

h. During the entire period the pH value was kept near 7.3 adding 0.1 M aqueous NaOH, when 

required. Dioxane/water (1:1, 10 mL) was then added to the reaction mixture and the resulting solution 

was freeze-dried. The solid recovered from freeze-drying was purified by semipreparative-HPLC 

[Water's Atlantis 21 mm x 10 cm column, gradient: 90% (H2O + 0.1% HCOOH) / 10% (CH3CN + 

0.1% HCOOH) to 30% (H2O + 0.1% HCOOH) / 70% (CH3CN + 0.1% HCOOH)]. The purified 

product was then freeze dried to give the desired compound 92 as a white solid (42 mg, 63% yield). 
1H NMR (400 MHz, DMSO-d6) δ 9.22 (d, 1H, J = 8.5 Hz), 8.95 (s, 1H), 8.79 (s, 1H), 8.44-8.40 (m, 

1H), 8.35 (t, 1H, J = 5.7 Hz), 8.20 (s, 1H), 7.98 (dd, 2H, J = 7.1, 1.3 Hz), 7.86 (dd, 2H, J = 7.2, 1.3 

Hz), 7.76-7.69 (m, 1H, J = 1.5 Hz), 7.69-7.63 (m, 2H), 7.59-7.53 (m, 1H), 7.49 (d, 1H, J = 7.6 Hz), 

7.46-7.42 (m, 5H), 7.23-7.17 (m, 5H), 6.30 (s, 1H), 5.83 (t, 1H, J = 8.9 Hz), 5.54 (t, 1H, J = 8.7 Hz), 

5.42 (d, 1H, J = 7.1 Hz), 5.36 (d, 1H, J = 8.9 Hz), 5.21 (d, 1H, J = 14.4 Hz), 4.92 (d, 2H, J = 10.6 Hz), 

4.62 (s, 1H), 4.27-4.07 (m, 5H), 4.04-3.99 (m, 3H), 3.94-3.87 (m, 1H), 3.83-3.79 (m, 1H), 3.70 (br s, 

2H), 3.58 (d, 1H, J = 7.1 Hz), 3.43-3.26 (m overlapped with water signal, 2H), 3.07 (br s, 2H), 2.89 (br 

s, 2H), 2.69-2.56 (m, 3H), 2.45 (t, 2H, J = 6.8 Hz), 2.38-2.30 (m, 2H), 2.24-2.20 (m, 4H), 2.10 (s, 3H), 

1.84-1.76 (m, 5H), 1.64 (t, 1H, J = 12.4 Hz), 1.54-1.41 (m, 7H), 1.02 (s, 3H), 1.00 (s, 3H); 13C NMR 

(101 MHz, DMSO-d6) δ 202.3, 173.9, 172.13, 171.94, 170.8, 170.2, 169.63, 169.50, 169.1, 168.84, 
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168.74, 168.3, 167.9, 166.4, 165.2, 157.3, 139.4, 138.7, 137.3, 134.8, 134.3, 133.45, 133.33, 132.7, 

131.4, 129.95, 129.93, 129.56, 129.54, 128.73, 128.65, 128.55, 128.29, 128.14, 127.83, 127.71, 

127.65, 127.4, 83.6, 80.2, 76.7, 75.3, 74.68, 74.54, 74.50, 72.5, 70.7, 70.4, 57.4, 56.1, 53.98, 53.86, 

52.17, 52.13, 46.1, 44.9, 42.9, 42.1, 41.9, 40.1, 39.9, 38.2, 36.5, 35.7, 34.4, 29.5, 28.7, 27.6, 26.3, 

25.3, 22.5, 21.4, 20.63, 20.52, 13.9, 9.7; IR (film) 3370, 3071, 2941, 1731, 1714, 1699, 1667, 1538, 

1421, 1243, 1135, 1071 cm-1; MS (ESI) m/z calcd. for [C78H92N11O24]+: 1566.63 [M+H]+; found: 

1566.6 

 

 

Cyclo[DKP-f6-RGD]-PTX 93 

 

 
 

Diisopropylcarbodiimide (11.93 μL, 9.72 mg, 0.077 mmol, 1.9 equiv) was added to a solution of 2′-

succinyl-Paclitaxel 147 (49 mg, 0.0513 mmol, 1.25 equiv) and N-hydroxysulfosuccinimide sodium 

salt (13.94 mg, 0.0642 mmol, 1.55 equiv) in dry dimethylformamide (2.0 mL). The resulting solution 

was stirred under argon at room temperature for 24 h. Volatiles were then removed in vacuo to give an 

off-white solid, which was re-dissolved in acetonitrile (2 mL). A solution of cyclo[DKP-f6-RGD] 146 

(35 mg, 0.0414 mmol) in pH 7.0 phosphate buffer (0.5 M, 1.0 mL) was then added to the acetonitrile 

solution, and the pH was adjusted to 7.3 with NaOH (0.2 M, a few drops). The resulting solution was 

rapidly cooled to 0 °C and stirred for 10 hours, warmed to room temperature and stirred for further 18 

h. During the entire period the pH value was kept near 7.3 adding 0.1 M aqueous NaOH, when 

required. Dioxane/water (1:1, 10 mL) was then added to the reaction mixture and the resulting solution 

was freeze-dried. The solid recovered from freeze-drying was purified by semipreparative-HPLC 

[Water's Atlantis 21 mm x 10 cm column, gradient: 90% (H2O + 0.1% HCOOH) / 10% (CH3CN + 

0.1% HCOOH) to 30% (H2O + 0.1% HCOOH) / 70% (CH3CN + 0.1% HCOOH)]. The purified 

product was then freeze dried to give the desired compound 93 as a white solid (43 mg, 65% yield). 
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1H NMR (400 MHz, DMSO-d6) δ 9.42 (s, 1H), 9.25 (d, 1H, J = 8.5 Hz), 8.74 (s, 1H), 8.62 (s, 1H), 

8.45 (s, 1H), 8.37 (t, 1H, J = 5.7 Hz), 7.99-7.97 (m, 2H), 7.87-7.84 (m, 3H), 7.73 (t, 1H, J = 7.3 Hz), 

7.66 (t, 2H, J = 7.4 Hz), 7.56 (tt, 1H, J = 7.3, 2.0 Hz), 7.50-7.44 (m, 7H), 7.25-7.15 (m, 5H), 6.30 (s, 

1H), 5.83 (t, 1H, J = 8.8 Hz), 5.53 (t, 1H, J = 8.7 Hz), 5.41 (d, 1H, J = 7.2 Hz), 5.35 (d, 1H, J = 9.0 

Hz), 5.11 (d, 1H, J = 14.9 Hz), 4.98-4.90 (t, 2H), 4.64 (s, 1H), 4.29-4.20 (m, 3H), 4.17-4.08 (m, 2H), 

4.04-3.95 (m, 3H), 3.93-3.79 (m, 3H), 3.74-3.64 (m, 1H), 3.59 (d, 1H, J = 6.8 Hz), 3.53-3.43 (m, 1H), 

3.26-3.19 (m, 1H), 3.07 (br s, 1H), 2.97 (br s, 1H), 2.72-2.58 (m, 4H), 2.56-2.52 (m, 1H), 2.45 (t, 2H, 

J = 6.8 Hz), 2.40-2.28 (m, 2H), 2.23 (s, 3H), 2.10 (s, 3H), 1.82-1.60 (m, 7H), 1.52-1.46 (m, 6H), 1.02 

(s, 3H), 1.00 (s, 3H); 13C NMR (101 MHz, DMSO-d6) δ 202.7, 172.0, 171.8, 170.3, 169.72, 169.57, 

169.2, 168.79, 168.72, 166.8, 166.4, 165.2, 157.3, 139.5, 137.4, 135.2, 134.3, 133.5, 133.32, 133.28, 

132.7, 131.5, 129.9, 129.6, 128.7, 128.38, 128.21, 128.0, 127.7, 127.5, 83.6, 80.3, 76.7, 75.3, 74.69, 

74.62, 74.49, 70.7, 70.4, 57.2, 54.4, 54.1, 51.98, 51.92, 46.10, 45.97, 43.0, 41.9, 40.9, 39.7, 37.8, 36.6, 

34.4, 29.5, 28.7, 28.0, 26.4, 24.4, 22.6, 21.4, 20.7, 14.0, 9.8; IR (film) 3365, 3071, 2940, 1732, 1716, 

1699, 1665, 1537, 1421, 1243, 1135, 1071 cm-1; MS (ESI) m/z calcd. for [C78H92N11O24]+: 1566.63 

[M+H]+; found: 1566.6. 

 

  



182 Experimental section Chapter 4 

 

4.6 -  Synthesis of cyclo[DKP-f3-RGD]-hemisuccinamide 148 a 

 

 

 
aReagents and conditions: (a) N-hydroxysuccinimide, Et3N, DMAP, Toluene, DCM, 48 h, reflux, 80%; (b) N-
hydroxysuccinimide, DIC, DCM, 4 h, room temp., quant.; (c) cyclo(DKP-f3-RGD) 144, CH3CN, aq. phosphate 
buffer, pH = 7.3, 10 h at 0 °C then 8 h at room temp., 68%; (d) TFA/DCM 1:2, TES, 3 h, 0 °C to room temp., 
quant.  

Tert-butyl hemisuccinate 

 

 
 

To a mixture of succinic anhydride (1.5 g, 15 mmol), N-hydroxysuccinimide (0.5 g, 4.5 mmol) and 

DMAP (0.18 g, 1.45 mmol) in toluene (25 mL), triethylamine (0.63 mL, 4.5 mmol) and tert-butyl 

alchohol (2.5 mL) were added. The brownish solution was refluxed for 24 h, cooled to room 

temperature, diluted with ethyl acetate (30 mL), washed with 10% citric acid (2 x 30 mL) and brine, 

and dried over Na2SO4. Volatiles were removed under vacuum to give a brown oil, which was 

recrystallized from Et2O / n-hexane 1/3 to afford the pure tert-butyl hemisuccinate as a white solid 

(2.08 g, 80% yield).  
1H NMR (400 MHz, CDCl3) δ 11.56 (s, 1H), 2.62 (m, 2H), 2.55 (m 2H), 1.39 (s, 9H); 13C NMR (100 

MHz, CDCl3) δ 176.91, 171.46, 81.05, 30.08, 28.92, 28.00; MS (ESI) m/z calcd. for [C8H15O4]+: 

175.10 [M+H]+; found: 175.2 
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Cyclo[DKP-f3-RGD]-hemisuccinamide 148 

 

 
 

Diisopropylcarbodiimide (11.9 μL, 9.72 mg, 0.077 mmol, 3.3 equiv) was added to a solution of tert-

butyl hemisuccinate (7 mg, 0.0401 mmol, 1.7 equiv) and N-hydroxysuccinimide (5.4 mg, 0.0466 

mmol, 2 equiv) in dry DCM (2.0 mL). The resulting solution was stirred under argon at room 

temperature for 2 h. Volatiles were then removed in vacuo to give an off-white solid, which was re-

dissolved in acetonitrile (2 mL). A solution of cyclo[DKP-f3-RGD] 144 (20 mg, 0.0233 mmol) in pH 

7.5 phosphate buffer (0.5 M, 1.0 mL) was then added to the acetonitrile solution, and the pH was 

adjusted to 7.3 with NaOH (0.2 M, a few drops). The resulting solution was rapidly cooled to 0 °C and 

stirred for 10 hours, warmed to room temperature and stirred for further 18 h. During the entire period 

the pH value was kept near 7.3 adding 0.1 M aqueous NaOH, when required. Volatiles were removed 

under vacuum, the residue was dissolved in DMC/TFA/Et3SiH (2:1:0.1, 2 mL) and stirred for 2 h. The 

solution was concentrated to dryness and the residue was purified by semipreparative-HPLC [Water's 

Atlantis 21 mm x 10 cm column, gradient: 95% (H2O + 0.1% TFA) / 5% (CH3CN + 0.1% TFA) to 

30% (H2O + 0.1% TFA) / 70% (CH3CN + 0.1% TFA)] to afford the desired compound 148 as a white 

solid (12 mg, 68% yield). 
1H NMR (400 MHz, DMSO-d6): δ 12.18 (s, 1H), 9.08 (d, 1H, J = 6.7 Hz), 8.33 (t, 1H, J = 5.8 Hz), 

8.14 (s, 1H), 7.98 (t, 1H, J = 6.2 Hz), 7.81 (dd, 1H, J = 8.9, 2.7 Hz), 7.59-7.45 (m, 1H), 7.21 (AB-

system, 4H), 5.00 (d, 1H, J = 15.1 Hz), 4.84-4.78 (m, 1H), 4.38 (dd, 1H, J = 9.5, 3.8 Hz), 4.27-4.20 

(m, 3H), 3.89 (d, 1H, J = 15.0 Hz), 3.79-3.72 (m, 3H), 3.53-3.44 (m, 1H), 3.38 (m, 1H), 3.15 (m, 2H), 

2.80 (dd, 1H, J = 16.5, 9.3 Hz), 2.60 (dd, 1H, J = 13.4, 10.1 Hz), 2.48-2.42 (m, 3H), 2.40 (m, 3H), 

2.04 (m, 1H), 1.77-1.67 (m, 1H), 1.54-1.41 (m, 2H).; 13C NMR (100 MHz, CDCl3) δ 173.7, 171.4, 

171.2, 170.98, 170.90, 170.7, 169.3, 169.1, 168.6, 156.6, 139.0, 134.5, 127.7, 127.5, 58.6, 53.7, 51.0, 

48.2, 46.3, 41.76, 41.64, 40.45, 40.33, 37.4, 35.2, 30.0, 29.1, 26.0, 25.8; MS (ESI) m/z calcd. for 

[C31H43N10O11]+: 731.31 [M+H]+; found: 731.3 
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CHAPTER 5  

EXPERIMENTAL SECTION – NMR, COMPUTATIONAL 

AND BIOLOGICAL PROCEDURES  

1 -  NMR studies  

NMR experiments were performed at a temperature of 298 K on Bruker Avance 400 and 600 MHz 

spectrometers. All proton and carbon chemical shifts were assigned unambiguously. The NMR 

experiments were carried out in a D2O/H2O 1:9 mixture in order to observe amide protons. Two-

dimensional experiments (TOCSY, NOESY, and HSQC) were carried out on samples of cyclic RGD-

peptidomimetics 16-23 at a concentration in the range 3-6 mM. NOESY experiments were performed 

at 0.7 or 0.8 s. The water resonance was saturated with the excitation sculpting sequence from the 

Bruker library. The conformations of the cyclic pentapeptides were analyzed with respect to hydrogen 

bonding of amide protons (VT-NMR spectroscopy) and NOE contacts. 

 

 

2 -  Computational procedures 

All calculations were run using the Schrödinger suite of programs (http://www.schrodinger.com) 

through the Maestro graphical interface. Conformational analysis. Conformational preferences of the 

RGD-peptidomimetics were investigated by Monte Carlo/stochastic dynamics (MC/SD) hybrid 

simulations using the NMR restraints derived from the experimental NOE contacts (for distance 

restraints used for each calculation, see the Supporting Information). All the NOE restraints have been 

set to a distance value of 2±0.5Å with a force constant of 100 kJ/mol·Å2. MC/SD simulations were 

performed at 300K within the framework of MacroModel version 9.5 employing the OPLS_2001 

force field and the implicit water GB/SA solvation model RGD side-chain dihedral angles were 

defined as internal coordinate degrees of freedom in the Monte Carlo part of the algorithm. A time 

step of 1 fs was used for the stochastic dynamics (SD) part of the algorithm for 10 ns of simulation 

time. Samples were taken at 2 ps intervals during each simulation, yielding 5000 conformations for 

analysis. The percentages of H-bonds discussed in the paper have been calculated as percentages of 
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conformations sampled during the simulation in which donor H - acceptor O distance  < 2.5 Å (γ-turn) 

or < 4 Å (β-turn). 

 

2.1 -  Molecular docking  

The recently solved crystal structure of the extracellular domain of the integrin αvβ3 receptor in 

complex with Cilengitide and in the presence of the proadhesive ion Mn2+ (PDB entry code 1L5G) 

was used for docking studies. Docking was performed only on the globular head of the integrin 

because the headgroup of integrin has been identified in the X-ray structure as the ligand-binding 

region. The protein structure was setup for docking as follows; the protein was truncated to residue 

sequences 41-342 for chain α and 114-347 for chain β. Due to a lack of parameters, the Mn2+ ions in 

the experimental protein structure were modelled by replacing them with Ca2+ ions. The resulting 

structure was prepared using the Protein Preparation Wizard of the graphical user interface Maestro 

and the OPLSAA force field. The automated docking calculations were performed using Glide (Grid-

based Ligand Docking with Energetics). The grid generation step started from the extracellular 

fragment of X-ray structure of αvβ3 complex with Cilengitide, as described in the protein setup section. 

The center of the grid enclosing box was defined by the center of the bound ligand, as described in the 

original PDB entry. The enclosing box dimensions, which are automatically deduced from the ligand 

size, fit the entire active site. For the docking step, the size of the bounding box for placing the ligand 

center was set to 12 Å. No further modifications were applied to the default settings. The GlideScore 

function was used to select 20 poses for each ligand. The Glide program was initially tested for its 

ability to reproduce the crystallized binding geometry of cilengitide. The program was successful in 

reproducing the experimentally determined binding mode of this compound, as it corresponds to the 

best-scored pose. 

 

 

3 -  Biological procedures 

3.1 -  Plasma stability assays  

A 10 mM stock solution of cyclo[DKP-f3-RGD]-PTX 11 (MW 1566.62) was obtained by dissolving 2 

mg of compound in 127.66 µL of DMSO. A further dilution 1:50 in pH 7.5 phosphate buffer (PBS) 

was performed (10 µL of stock solution into 490 µL PBS) to obtain a 200 µM solution; from this last 

solution, 25 µL were spiked into 475 µL of plasma (murine or human) to obtain the final concentration 

of 10 µM. Standards (lidocaine and 2-Piperidinoethyl-4-amino-5-chloro-2-methoxybenzoate) were 
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tested at 2.5 µM final concentration starting from a 500 µM stock solution in DMSO, further diluted 

1:10 into PBS and 1:20 into plasma. 

Aliquots of 50 µL volume were taken at 0, 15, 30, 60, 120, 180 and 300 minutes of incubation at 37 

°C and immediately quenched with 200 µL of a solution of Verapamil 250 ng/mL (internal standard) 

in acetonitrile. Samples were centrifuged for 20 min at 3000 rpm and supernatants analyzed by UPLC 

(Waters) interfaced with a Premiere XE Triple Quadrupole (Waters). Eluents were Phase A: 95% H2O, 

5% CH3CN + 0.1% HCOOH and Phase B: 5% H2O, 95% CH3CN + 0.1% HCOOH. Waters UPLC: 

flow 0.6 mL/min, column BEH C18, 50x2.1mm 1.7 µm at 50 °C, vol inj. 5 µL. Samples were 

analyzed in MRM conditions: ESI Positive, Desolvation Temperature 450 °C, Desolvation Gas 900 

L/h, Cone Gas 90 L/h, Collision Gas 0.2 L/h. Results are presented as Mean ± S.D., n=2 for standards, 

n=3 for cyclo[DKP-f3-RGD]-PTX 91. 

 

 

3.2 -  Solid-phase receptor-binding assay 

Purified αvβ3 and αvβ5 receptors (Chemicon International, Inc., Temecula, CA, USA) were diluted to 

0.5 µg/mL in coating buffer containing 20 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1 mM MnCl2, 2 

mM CaCl2 and 1 mM MgCl2. An aliquot of diluted receptors (100 µL/well) was added to 96-well 

microtiter plates (NUNC MW 96F MEDISORP STRAIGHT) and incubated overnight at 4 °C. The 

plates were then incubated with blocking solution (coating buffer plus 1% bovine serum albumin) for 

additional 2 hours at room temperature to block nonspecific binding followed by 3-hour incubation at 

room temperature with various concentrations (10-12–10-5 M) of test compounds in the presence of 1 

µg/mL biotinylated vitronectine. Biotinylation was performed using EZ-Link Sulfo-NHS-

Biotinylation kit (Pierce, Rockford, IL). After washing, the plates were incubated for 1 hour at room 

temperature with streptavidin-biotinylated peroxidase complex (Amersham Biosciences, Uppsala, 

Sweden) followed by 30 minutes incubation with 100 µL Substrate Reagent Solution (R&D Systems, 

Minneapolis, MN) before stopping the reaction by addition of 50 µL of 2 N H2SO4. Absorbance at 415 

nm was read in a Synergy™ HT Multi-Detection Microplate Reader (BioTek Instruments, Inc.). Each 

data point is the result of the average of triplicate wells and was analyzed by nonlinear regression 

analysis with Prism GraphPad program. 
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3.3 -  Cell sensitivity studies 

The human ovarian carcinoma IGROV-1 cell line, the cisplatin-resistant IGROV-1/Pt1 subline the 

human ovarian carcinoma cell line SKOV3, the human pancreatic carcinoma cell lines PANC-1 and 

MIA-PaCa2 were cultured in DMEM medium; the human osteosarcoma U2-OS cell line was grown in 

Mc Coy’s 5A medium; HDFC cells were cultured in DMEM-F12 medium. In all cases, the medium 

was supplemented with 10% fetal calf serum. The cell sensitivity to drugs was measured by using the 

growth-inhibition assay based on cell counting. Cells were seeded in duplicates into 6-well plates and 

exposed to drug 24 h later. Paclitaxel and the studied compounds were dissolved in dimethylsulfoxide 

(DMSO) and then added to culture medium. DMSO concentration in medium never exceeded 0.25%. 

After 72 h of drug incubation, cells were harvested for counting with a cell counter (Z1 Beckman 

Coulter counter). IC50 is defined as the drug concentration producing 50% decrease of cell growth. At 

least five independent experiments were performed. 

 

 

3.4 -  Analysis of integrin levels 

The expression of integrins was measured by flow cytometry, following optimization of antibody 

concentration. Exponentially growing cells were harvested and incubated fro 30 min at 4 °C with anti 

human αvβ3 or αvβ5 antibodies or isotypic controls (Millipore, Temecula, CA; Chemicon 

International). Cells were than washed and samples were immediately used for flow cytometric 

analysis (FACScan, Becton-Dickinson). Expression of integrins was expressed as ratio between the 

mean fluorescence intensity obtained in cells incubated with anti-integrin antibodies divided by that of 

cells incubated with isotypic control. 

 

 

3.5 -  In vivo antitumor activity studies   

All experiments of were carried out using female athymic Swiss nude mice, 8-10 weeks-old (Charles 

River, Calco, Italy). Mice were maintained in laminar flow rooms keeping temperature and humidity 

constant. Mice had free access to food and water. Experiments were approved by the Ethics 

Committee for Animal Experimentation of the Istituto Nazionale Tumori of Milan according to 

institutional guidelines. The IGROV-1/Pt1 human tumor xenograft, derived from cultures of the 

corresponding ovarian carcinoma cell line, was used. Exponentially growing cells (107/mouse) were 

s.c. injected into the right flank of athymic nude mice and the tumor line was achieved by serial s.c. 

passages of fragments of re-growing tumors into healthy mice. Groups of four mice bearing bilateral 
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s.c. tumors were employed. Tumor fragments were implanted on day 0 and tumor growth was 

followed by biweekly measurements of tumor diameters with a Vernier caliper. Tumor volume (TV) 

was calculated according to the formula: TV (mm3) = d2xD/2 where d and D are the shortest and the 

longest diameter, respectively. Compounds were delivered i.v. and administered every 4 days for 4 

times (q4dx4). Treatment started three days after tumor implant, when tumors were just palpable. The 

efficacy of the drug treatment was assessed as: 1) Tumor volume inhibition percentage (TVI %) in 

treated versus control mice, calculated as: TVI% = 100-(mean TV treated/mean TV control x 100);  2) 

Log10 cell kill (LCK) calculated by the formula: LCK = (T-C)/3.32xDT where T and C are the mean 

times (days) required for treated (T) and control (C) tumors, respectively, to reach an established TV 

and DT is the doubling time of control tumors, obtained from semilog best-fit curves of mean tumor 

volumes plotted against time; 3) Complete regression (CR), i.e. disappearance of the tumor lasting at 

least 10 days after the end of treatments. Tumors not re-grown at the end of experiment were 

considered no evidence of disease (NED). The toxicity of the drug treatment was determined as body 

weight loss (BWL) and lethal toxicity (D/T, dead/treated mice). The highest body weight loss 

percentage induced by treatments is reported in the Tables. Deaths occurring in treated mice before the 

death of the first control mouse were ascribed to toxic effects. Two-sided Student’s t test was used for 

statistical comparison of tumor volumes in control over treated mice. For in vivo studies PTX was 

dissolved in a mixture of ethanol and cremophor ELP (50+50%) and kept at 4 °C. At treatment the 

drug was diluted in 90% of cold saline after magnetic stirring and administered i.v.. Cyclo[DKP-f3-

RGD]-PTX 11 was dissolved and administered like Paclitaxel at room temperature. 

 

 

3.6 -  Immunohistochemistry 

Tumor xenografts and adjacent tissues were excised and formalin fixed and paraffin embedded. Four 

µm sections from each tumor xenograft were routinely stained with Hematoxylin-Eosin (HE) and 

evaluated under a light microscope. Mitoses were evaluated in 3 randomly selected 400x fields within 

the bulk of the xenograft, avoiding areas of necrosis and hemorrhage. The total number of mitoses and 

the mean value for each sample were evaluated. Furthermore, mitoses were classified as “normal” and 

“aberrant”, considering in this latter class both small condensed hyperchromatic nuclei and large cells 

composed by nuclear envelope around individual clusters of missegregated chromosomes (mitotic 

catastrophe), and the ratio between these two classes was evaluated. The analysis of mitoses was 

performed in a blind fashion. Statistical analysis of the obtained data was carried out with Kruskal 

Wallis test followed by Dunn’s multiple comparison test using GraphPad Prism (GraphPad Software, 

Inc.). 
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β-allyl aspartic acid hydrochloride 44 

 
 

N-Boc-β-allyl aspartic acid 45 
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serine methylester hydrochloride 46 

 
 

N-Bn-Ser-OMe 47 
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N-Bn-Ser(O-(S)-N-Boc-Asp(OAll))-OMe 55 a + b 
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(S)-N-Bn-Ser(O-(R)-N-Boc-Asp(OAll))-OMe 49c 
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(S)-N-Bn-Ser(O-(R)-Asp(OAll))-OMe bis-trifluoroacetate 51c: 

 
 

OH-DKP1-OAll 49a: 
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Enantiomeric compounds (3R,6S)-OH-DKP2-OAll 43b and (3S,6R)-OH-DKP3-OAll 43c 
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N3-DKP1-CO2Allyl 52a   (+ H2C=DKP-CO2Allyl 54a) 
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Enantiomeric compounds (3R,6S)-N3-DKP2-OAll 52b and (3S,6R)-N3-DKP3-OAll 52c 
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Enantiomeric compounds (3R,6S)-N-Boc-DKP2-OAll 53b and (3S,6R)-N-Boc-DKP3-OAll 53c 
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Enantiomeric compounds N-Boc-(R)-Ser(N3)-N-Bn-(S)-Asp(OMe)-OMe 65a and N-Boc-(S)-

Ser(N3)-N-Bn-(R)-Asp(OMe)-OMe 65b  
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Enantiomeric compounds (3R,6S)-N3-DKP4-CO2Me 59a and (3S,6R)-N3-DKP6-CO2Me 59b 
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Enantiomeric compounds (3R,6S)-NH2-DKP4-CO2Me 66a and (3S,6R)-NH2-DKP6-CO2Me 66b 
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Enantiomeric compounds (3R,6S)-NHBoc-DKP4-CO2Me 67a and (3S,6R)-NHBoc-DKP6-CO2Me 

67b 
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Enantiomeric compounds (3R,6S)-N3-DKP5-CO2Me 70a and (3S,6R)-N3-DKP7-CO2Me 70b 
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Enantiomeric compounds (3R,6S)-NHBoc-DKP5-CO2Me 71a and (3S,6R)-NHBoc-DKP7-CO2Me 

71b 
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(S)-N-Bn-Ser(O-(R)-N-Boc-Glu(OMe))-OMe 73 
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HO-DKP8-CO2Me 74  
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N3-DKP8-CO2Me 75 
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NHBoc-DKP8-CO2Me 77 
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N-Boc-Arg(Mtr)-Gly-OBn 79 
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N-Boc-DKP3-Arg(Mtr)-Gly-OBn 80a 
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N-Boc-DKP4-Arg(Mtr)-Gly-OBn 80b 

 
  

 
  



Appendix of NMR Data  213 

 

N-Boc-DKP5-Arg(Mtr)-Gly-OBn 80c 
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N-Boc-DKP6-Arg(Mtr)-Gly-OBn 80d 
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N-Boc-DKP7-Arg(Mtr)-Gly-OBn 80e 
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N-Boc-DKP8-Arg(Mtr)-Gly-OBn 80f 

 
  

 
  



Appendix of NMR Data  217 

 

Cbz-Asp(OtBu)-DKP3-Arg(Mtr)-Gly-OBn 81a 
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Cbz-Asp(OtBu)-DKP4-Arg(Mtr)-Gly-OBn 81b 
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Cbz-Asp(OtBu)-DKP5-Arg(Mtr)-Gly-OBn 81c 
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Cbz-Asp(OtBu)-DKP6-Arg(Mtr)-Gly-OBn 81d 
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Cbz-Asp(OtBu)-DKP7-Arg(Mtr)-Gly-OBn 81e 
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Cbz-Asp(OtBu)-DKP8-Arg(Mtr)-Gly-OBn 81f 
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Cyclo[Arg(Mtr)-Gly-Asp(OtBu)-DKP3] 83a 
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Cyclo[Arg(Mtr)-Gly-Asp(OtBu)-DKP4] 83b 
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Cyclo[Arg(Mtr)-Gly-Asp(OtBu)-DKP5] 83c 
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Cyclo[Arg(Mtr)-Gly-Asp(OtBu)-DKP6] 83d 
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Cyclo[Arg(Mtr)-Gly-Asp(OtBu)-DKP7] 83e 
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Cyclo[Arg(Mtr)-Gly-Asp(OtBu)-DKP8] 83f 
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Cyclo[Arg-Gly-Asp-DKP-3] 18 
1H NMR (600 MHz, H2O/D2O 9:1) 
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Cyclo[Arg-Gly-Asp-DKP4] 19 
1H NMR (400 MHz, H2O/D2O 9:1) 
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Cyclo[Arg-Gly-Asp-DKP5] 20 
1H NMR (400 MHz, H2O/D2O 9:1) 
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Cyclo[Arg-Gly-Asp-DKP6] 21 
1H NMR (400 MHz, H2O/D2O 9:1) 
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Cyclo[Arg-Gly-Asp-DKP7-A] 22A 
1H NMR (400 MHz, H2O/D2O 9:1) 
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Cyclo[Arg-Gly-Asp-DKP7-B] 22B 
1H NMR (400 MHz, H2O/D2O 9:1) 
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Cyclo[Arg-Gly-Asp-DKP8] 23 
1H NMR (400 MHz, D2O): 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4-((4-methoxy-2,3,6-trimethylphenylsulfonyl)aminomethyl)benzylic alcohol 
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Compound 94 
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Enantiomeric compounds (R)-97 and (S)-98 
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Enantiomeric compounds (S,R)-99 and (R,S)-100 
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Enantiomeric compounds (3R,6S)-101 and (3S,6R)-102 
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Enantiomeric compounds (3R,6S)-103 and (3S,6R)-104 
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Enantiomeric compounds (3R,6S)-105 and (3S,6R)-106 

 
 

 

9.0

9.0

3.03.0

3.03.0

3.13.1

1.01.0

1.01.0

1.01.0

1.11.1

1.01.0

3.33.3

3.03.0

1.01.0

2.12.1

1.01.0

0.80.8

0.90.9

2.62.6

0.70.7

1.01.0

0.90.9

4.24.2

1

122334455667788ppm-14.98

1
.4
0

2
.1
2

2
.5
2

2
.6
4

2
.7
3

2
.7
5

2
.7
8

2
.8
0

3
.1
6

3
.1
7

3
.2
1

3
.2
2

3
.4
4

3
.4
4

3
.4
5

3
.4
6

3
.4
7

3
.4
8

3
.4
9

3
.4
9

3
.6
2

3
.6
3

3
.6
4

3
.6
5

3
.6
7

3
.6
9

3
.7
1

3
.7
2

3
.8
5

3
.9
9

4
.0
1

4
.4
1

4
.4
1

4
.4
3

4
.4
4

4
.5
9

4
.6
0

4
.6
0

4
.6
1

4
.6
1

4
.6
1

4
.9
4

4
.9
6

4
.9
7

5
.1
1

5
.2
2

5
.2
2

5
.2
2

5
.2
3

5
.2
4

5
.2
5

5
.2
5

5
.2
5

5
.2
9

5
.2
9

5
.3
0

5
.3
0

5
.3
3

5
.3
3

5
.3
4

5
.3
4

5
.8
6

5
.8
7

5
.8
8

5
.8
8

5
.9
0

5
.9
0

5
.9
1

5
.9
1

5
.9
2

5
.9
3

5
.9
4

5
.9
5

6
.6
2

6
.8
1

7
.1
2

7
.1
4

7
.1
6

7
.1
8

0 0101020203030404050506060707080809090100100110110120120130130140140150150160160170170180180190190ppm-299.31

1
2
.1
0

1
8
.1
3

2
4
.4
0

2
8
.3
9

3
7
.8
2

4
1
.1
2

4
6
.7
4

4
7
.2
2

5
1
.2
0

5
5
.9
2

6
0
.0
4

6
6
.1
5

8
0
.3
3

1
1
2
.5
1

1
1
8
.7
6

1
2
5
.6
5

1
2
8
.7
4

1
2
9
.0
2

1
3
2
.1
5

1
3
5
.8
1

1
3
6
.9
2

1
3
9
.0
4

1
3
9
.2
9

1
5
6
.1
7

1
5
9
.7
9

1
6
5
.5
0

1
6
7
.4
1

1
7
1
.0
2



Appendix of NMR Data  243 
 

 

Enantiomeric compounds (S)-109 and (R)-110 

 
 

 

3.0

3.0

3.13.1

5.05.0

5.05.0

2.92.9

1.21.2

3.13.1

2.02.0

0.90.9

1.01.0

4.14.1

1

12233445566778899ppm-13.98

2
.1
6

2
.5
6

2
.6
4

2
.6
6

2
.6
8

2
.7
0

2
.7
2

2
.7
3

2
.7
6

2
.7
7

3
.6
1

3
.6
3

3
.6
3

3
.6
5

3
.6
6

3
.6
9

3
.7
5

3
.8
3

3
.8
7

3
.9
0

4
.0
5

4
.0
6

4
.8
7

4
.8
8

4
.9
0

6
.6
6

7
.1
2

7
.1
4

7
.2
3

7
.2
5

0 0101020203030404050506060707080809090100100110110120120130130140140150150160160170170180180ppmppm-199.56

1
2
.0
6

1
8
.1
1

2
4
.4
0

3
8
.2
8

4
6
.8
8

5
1
.7
5

5
2
.0
1

5
2
.2
9

5
5
.9
0

5
7
.3
6

1
1
2
.5
1

1
2
5
.6
1

1
2
8
.1
7

1
2
8
.6
3

1
2
9
.2
3

1
3
5
.8
9

1
3
8
.9
9

1
3
9
.2
3

1
3
9
.8
7

1
5
9
.7
5

1
7
1
.4
8

1
7
4
.2
1



244    Appendix of NMR Data 
 

 

Enantiomeric compounds (S,R)-115 and (R,S)-116 
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Enantiomeric compounds (3R,6S)-117 and (3S,6R)-118 
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Enantiomeric compounds (3R,6S)-119 and (3S,6R)-120 
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Boc-DKP-f2-Arg(Mtr)-Gly-OBn 123 [(3R, 6S), R1= H, R2= CH2C6H4CH2NHMtr] 
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Boc-DKP-f3-Arg(Mtr)-Gly-OBn 124 [(3S, 6R), R1= H, R2= CH2C6H4CH2NHMtr] 
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Boc-DKP-f4-Arg(Mtr)-Gly-OBn 125 [(3R, 6S), R1= CH2C6H4CH2NHMtr, R2= H] 
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250    Appendix of NMR Data 
 

 

Boc-DKP-f6-Arg(Mtr)-Gly-OBn 126 [(3S, 6R), R1= CH2C6H4CH2NHMtr, R2= H] 
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Appendix of NMR Data  251 
 

 

Cbz-Asp(OtBu)-DKP-f2-Arg(Mtr)-Gly-OBn 131 [(3R, 6S), R1= H, R2= CH2C6H4CH2NHMtr] 
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252    Appendix of NMR Data 
 

 

Cbz-Asp(OtBu)-DKP-f3-Arg(Mtr)-Gly-OBn 132 [(3S, 6R), R1= H, R2= CH2C6H4CH2NHMtr] 
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Cbz-Asp(OtBu)-DKP-f4-Arg(Mtr)-Gly-OBn 133 [(3R, 6S), R1= CH2C6H4CH2NHMtr, R2= H] 
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Cbz-Asp(OtBu)-DKP-f6-Arg(Mtr)-Gly-OBn 134 [(3S, 6R), R1= CH2C6H4CH2NHMtr, R2= H] 
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Cyclo[DKP-f2-Arg(Mtr)-Gly-Asp(OtBu)] 139 [(3R, 6S), R1= H, R2= CH2C6H4CH2NHMtr] 
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Cyclo[DKP-f3-Arg(Mtr)-Gly-Asp(OtBu)] 140 [(3S, 6R), R1= H, R2= CH2C6H4CH2NHMtr] 
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Cyclo[DKP-f4-Arg(Mtr)-Gly-Asp(OtBu)] 141 [(3R, 6S), R1= CH2C6H4CH2NHMtr, R2= H] 
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Cyclo[DKP-f6-Arg(Mtr)-Gly-Asp(OtBu)] 142 [(3S, 6R), R1= CH2C6H4CH2NHMtr, R2= H] 
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Cyclo[DKP-f2-Arg-Gly-Asp] 143 [(3R, 6S), R1= H, R2= CH2C6H4CH2NH2] 
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Cyclo[DKP-f3-Arg-Gly-Asp] 144 [(3S, 6R), R1= H, R2= CH2C6H4CH2NH2] 
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Cyclo[DKP-f4-Arg-Gly-Asp] 145 [(3R, 6S), R1= CH2C6H4CH2NH2, R2= H] 
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Cyclo[DKP-f6-Arg-Gly-Asp] 146 [(3S, 6R), R1= CH2C6H4CH2NH2, R2= H] 
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cyclo[DKP-f2-RGD]-PTX 90 
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cyclo[DKP-f3-RGD]-PTX 91 
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