
DOTTORATO IN INFORMATICA

XXII CICLO

Classifiers based on a New
Approach to Estimate the Fisher
Subspace and Their Applications

Tesi di Dottorato di Ricerca di:

Alessandro Rozza

Relatore:
Prof.ssa Paola Campadelli

Correlatore:
Prof. Danilo Bruschi

Coordinatore del Dottorato:
Prof. Ernesto Damiani

Anno Accademico 2009/10

Aknowledgements

I wish to thank you. . .

Paola Campadelli and Danilo Bruschi for their invaluable support;

Elena Casiraghi, Gabriele Lombardi, and Stefano Arca for their pleasant

presence,

and for aid that they gave me;

my parents for their support;

my girlfriend Carolina Saporiti that I love;

my family,

the lighthouse in the storm.

Dedicated to my grandfather.

Contents

1 Introduction 1

1.1 Outline of the Work . 5

2 Overview 7

2.1 Background on Classification 7

2.2 Main Geometrical Algorithms 14

2.2.1 Matrix Decomposition 14

2.2.2 Eigen-Decomposition vs. Singular Value Decomposition 16

2.2.3 Orthogonalization . 17

2.2.4 Principal Component Analysis (PCA) 17

2.2.5 Whitening Process . 18

3 IPCAC 21

3.1 Fisher SubSpace . 22

3.2 The Fisher Linear Discriminant Analysis 22

3.2.1 Fisher subspace for multiple classes 24

3.3 The Fisher’s Criterion and Isotropy 26

3.4 IPCA-based Classifier . 28

3.4.1 IPCAC Retaining Variance 30

3.5 Experimental Results on Syntethic Data 31

3.6 IPCAC Model Merging . 32

3.7 A Real Application: the Spam Classification 34

3.7.1 Experiments . 35

3.7.2 Obtained Results . 36

3.8 Conclusion . 38

iii

iv CONTENTS

4 O-IPCAC 39

4.1 Related works . 40

4.2 Incremental Singular Value Decomposition 44

4.3 Online IPCAC . 46

4.3.1 An Adaptive Version of OIPCAC 50

4.3.2 Experiment to evaluate the d-Dimension 51

4.4 Results . 53

4.4.1 Experimental Setting 54

4.4.2 Synthetic Datasets . 54

4.4.3 Real Datasets . 55

4.4.4 Experimental Comparison with Batch Algorithms . . 56

4.4.5 Experimental Comparison with Online Algorithms . . 57

4.4.6 Comparison beetween R-FLDA and OIPCAC 59

4.5 A Real Application: EEG Classification 60

4.5.1 Data Description and Pre-processing 61

4.5.2 Experimental Results 62

4.6 Conclusion . 64

5 K-IPCAC and P-IPCAC 67

5.1 Related Works . 68

5.1.1 Kernel Principal Component Analysis 68

5.1.2 Kernel Fisher Discriminant 71

5.2 Kernel IPCAC . 73

5.2.1 K-IPCAC Retaining Variance 77

5.2.2 Kernel Truncated IPCAC 78

5.3 Experimental Results . 78

5.3.1 Experiments on the Spam Classification 79

5.3.2 Experimental Comparison 80

5.4 Perceptron-IPCAC . 82

5.4.1 Estimation of MoG Parameters 82

5.4.2 P-IPCAC . 85

5.4.3 Computational Complexity 89

5.5 Experimental Results . 90

5.5.1 Experiments on Synthetic Data 90

CONTENTS v

5.5.2 Experiments on a Real Dataset 93

5.6 Conclusions . 95

6 DDAG K-TIPCAC 97

6.1 Problem Definition and Related Works 98

6.2 DDAG K-TIPCAC . 101

6.2.1 Decision DAGs (DDAGs) 101

6.2.2 Decision DAG K-TIPCAC 102

6.3 Experimental Setting . 102

6.3.1 Methods . 103

6.3.2 Dataset . 104

6.3.3 Performance Evaluation: 105

6.4 Results . 106

6.4.1 DDAG K-TIPCAC Employing the Standard Multiclass

Estimation of Fs . 108

6.4.2 DDAG K-TIPCAC without Projection on Multiclass Fs . 109

6.5 Conclusion . 110

7 Conclusions 113

A Performance Evaluation Measures 117

A.0.1 Basic concepts of ROC curve 118

Bibliography 119

Chapter 1

Introduction

Machine learning (Ml) is concerned with the design and development of

algorithms allowing computers to learn to recognize patterns and make in-

telligent decisions based on empirical data. In the last few decades Ml has

been widely investigated since it provides a general framework to build effi-

cient algorithms solving complex problems in various application areas. The

strength of machine learning algorithms relies in their capability to automat-

ically improve their performance through experience [68], that is through

data analysis methods that can be grouped into three main classes, called su-

pervised learning, unsupervised learning, and reinforcement learn-

ing.

The first class of methods, which is the main focus of this thesis, com-

prises the supervised learning algorithms. These algorithms are based

on a learning approach that tunes the parameters of an adaptive model by

exploiting a set of N training points in ℜD+B, generally represented by

vectors. More precisely, each training point is composed both by an input

vector (also called feature vector or instance), x ∈ ℜD, and its desired out-

put vector, t ∈ ℜB, also called target or ground-truth.

A supervised Ml algorithm is applied on the training set to learn the rela-

tion between the input points and their targets; indeed, the result of this

training, or learning, phase is a tuned algorithm, also called model, that

implements the function t̂ = y(x), x ∈ ℜD, t̂ ∈ ℜB; this function processes

an input point and generates a prediction of the output vector, which is

1

2 CHAPTER 1. INTRODUCTION

encoded in the same way as the target vectors, and should be as similar as

possible to the desired output. The trained algorithm can then process test

points, that are unknown input points whose ground-truth is not available

during training, to predict the output t̂. The ability of computing the cor-

rect output when the input points differ from the training points is known

as generalization, and it is an important characteristic that must be taken

into account when assessing the performance of a supervised learning tech-

nique.

The problems handled by supervised learning methods can be divided into

two classes, classification and regression. Classification problems

need to find the association between an input point and one of finite num-

ber of discrete values, also called labels, that usually represent categories

(classes). In this case, the Ml algorithms are called classifiers1 and the

training points are said to be labeled. In the most common applications

the classes to be discriminated are considered as disjoint, so that each in-

put point is belonging to just one class. In such cases, the input space is

partitioned into decision regions separated by decision boundaries or

decision surfaces. When these decision boundaries are (D−1)-dimensional

linear surfaces (hyperplanes) within the D-dimensional input space, and they

completely separate the classes, the classes are said to be linearly sepa-

rable. Accordingly, linear classifiers are learning machines employing a

linear discriminant function, that is a decision surface obtained as a linear

function of the input vector x.

The goal of regression, which is beyond the scope of this thesis, is to pre-

dict the value of one or more continuous dependent variables, t, given the

value of a D-dimensional independent input variable, x. More specifically,

application of regression analysis are generally used to predict the values of

dependent variables when any one of the independent variables is varied,

while the other independent variables are kept fixed.

The second class of Ml techniques comprises the unsupervised learn-

ing algorithms [30], that process input vectors without any corresponding

1In the following we will refer to binary, or multiclass, classifiers when the classes to
be discriminated are, respectively, two or more.

3

target values. These techniques can be divided in two categories: cluster-

ing, which aims at discovering groups of ‘similar’ examples within the data

(where the similarity criteria is depending on the employed learning algo-

rithm), and density estimation, which determines the distribution that

underlines the data in the input space. However, unsupervised learning also

encompasses many other techniques that seek to summarize and explain key

features of the data.

The third class of Ml methods is composed of reinforcement learn-

ing [90] algorithms. Reinforcement learning is the problem faced by an

agent (the learning algorithm) that must learn its behavior through trial-

and-error interactions with a dynamic environment, in order to maximize

a reward. In contrast to supervised learning, the learning algorithm is not

given examples of optimal outputs but must instead discover them by a

process of trial and error. Usually there is a sequence of states and actions

in which the learning algorithm is interacting with its environment, and in

many cases the current action affects not only the immediate reward but

also the rewards of the subsequent steps.

All the above mentioned approaches are strongly dependent on the input

data representation. This is the reason why several Ml techniques are ap-

plied on preprocessed input points, where the preprocessing step aims at

transforming the input variables into a new space that simplifies the learning

task to be solved. As an example, when a classification problem must be

solved, data preprocessing is performed in order to project the data onto a

new space where the classes can be better discriminated. The preprocessing

stage is often referred as feature extraction. We note that unknown test

data must be preprocessed in the same way as the training data. Feature

extraction might also be performed in order to speed up the computation

by decreasing the dimensionality of the input space; note that, this step

must be developed in order to minimize the information loss caused by the

deletion of some dimensions.

Many practical and theoretical limits that could reduce the classification

4 CHAPTER 1. INTRODUCTION

performance are still open. At first, several classification problems have at

their disposal a limited percentage of training data; in this case, classifiers

with an high generalization capability are needed to avoid a strong decrease

of the classification accuracy during the testing phase.

On the other side, when the data are encoded in high dimensional spaces,

many techniques cannot be applied for their high computational space and

complexity; furthermore, when the space dimensionality is higher than the

number of available training data, several algorithms become untractable

since the underlying mathematical formulations become inconsistent. A

similar situation could also happen when the cardinality of the training set

is approximately equal to the space dimensionality.

Other problems affecting the classifier performance may be due to unbal-

anced training sets, i.e. training sets whose number of examples per class is

strongly different.

Moreover, several learning techniques are based on strong theoretical as-

sumptions regarding the data distribution, that might decrease the classifier

robustness.

Furthermore, classifiers developed to cope with non-linearly separable classes

often suffer of overfitting problems. More precisely, in the process of over-

fitting the performance of the learner on the training examples increases

while the performance on unknown data becomes worse.

Finally, in multiclass classification a wide range of problems, including the

need to minimize the computational complexity maintaing high accuracy,

are still open.

This thesis is focused on supervised learning algorithms solving classifi-

cation problems. More precisely, it describes novel, efficient, and effective

classifiers overcoming the problems described above that affect the perfor-

mance of existing supervised learning techniques.

To assess the performance, and to highlight the capabilities of the clas-

sifiers described in this work, we applied them on hard classification tasks,

also employing high-dimensional and strongly unbalanced datasets. A fur-

ther proof of the classifiers’ effectiveness has been provided by the compari-

son of the achieved results with those computed by well-known state of the

1.1. OUTLINE OF THE WORK 5

art methods.

1.1 Outline of the Work

In this thesis, after an overview of well-known classification methods, we

start by introducing our base classifier, which is a linear binary classifier

based on a different approach to estimate the Fisher subspace, and its linear

improvements, which deal with high dimensional data and data dynamically

supplied. In the second part of the thesis we explain two different techniques

to overcome the linear separability constraint thus dealing with non linearly

separable classes. Besides, we present an ensemble method that effectively

deals with a difficult biological multiclass classification problem. Finally,

future works and conclusions are presented to the readers.

More specifically, the thesis is organized as follows:

In Chapter 2 well-known learning techniques and some mathematical and

geometrical tools used in the rest of the thesis are defined.

In Chapter 3 we report the description of the Isotropic Principal Compo-

nent Analysis Classifier (IPCAC), showing its advantages with respect

to existing methods, and a technique that merges different IPCAC mod-

els trained on different training subsets. The effectiveness of our meth-

ods is demonstrated by experiments on synthetic data and on a spam

classification task, and by comparing the computed results with those

achieved by state of the art classifiers.

In Chapter 4 we present O-IPCAC, an online version of IPCAC that deals

with high dimensional data, strongly unbalanced and characterized

by a training set whose cardinality is approximately equal to the fea-

ture space dimensionality. This method has been compared with well-

known batch and online algorithms to evaluate its efficacy.

In Chapter 5 we describe two different approaches to generalize our method

to non linear classification. The first approach, called K-IPCAC, ex-

ploits the “kernel trick”, while the second one employs a multilayer

6 CHAPTER 1. INTRODUCTION

network architecture to combine trained classifiers by exploiting a pa-

rameterless approach.

In Chapter 6 we present an ensemble method combining several K-IPCACs.

This method achieves promising results when it is applied to protein

subcellular localization. Note that this is a particularly challenging

multiclass classification problem since it is composed by 22 strongly

unbalanced classes.

In Chapter 7 the summary, conclusions, and future works are presented.

Chapter 2

Overview

This chapter provides an overview about some well-known classification

methods and useful geometrical and mathematical tools employed in the

rest of the thesis. More precisely this chapter is organized as follows: the

overview of well-known learning techniques is proposed in Section 2.1; in Sec-

tion 2.2 the mathematical and geometrical tools are defined.

2.1 Background on Classification

In this section we present a brief overview of well-known classification algo-

rithms, that have been used in several applications due to their promising

results. For this reason, most of them have been employed to perform the

base-line comparisons that allowed to evaluate the quality of the classifiers

proposed in this thesis.

Classifiers based on Fisher Linear Discriminant Analysis

Classifiers employing the Fisher Linear Discriminant Analysis (FLDA) and

its modified versions are linear discriminant techniques that perform classi-

fication of points projected on a subspace that maximizes the separability

between classes, while minimizing the separation within each class. This

subspace, called the Fisher subspace (Fs), is evaluated on the training data.

The Fs and the FLDA approach are described in details in Sections (3.1,3.2).

Support Vector Machines

Support Vector Machines (SVM) [86, 95, 69] use discriminant hyperplanes to

7

8 CHAPTER 2. OVERVIEW

separate points belonging to two different classes. The selected hyperplane

is the one that maximizes the margins, that is the hyperplane such that the

distance to the nearest data point on each side is maximized. More precisely,

given a data set Z = {(xi, yi)}ni=1, xi ∈ ℜD, yi ∈ Y = {−1, 1}, where yi are

the labels of two different classes of examples, a linear classifier computes a

decision function g(x) = sign (f(x)), where f(x) = w · x+ b.

For a point xp on the separating hyperplane f(xp) = w · xp + b = 0

px
xm

w

γ

Figure 2.1: Separating hyperplane and margins in a two-class classification
problem

(See Figure 2.1), a point xm on the margin whose width is γ can be expressed

as:

xm = xp +
w

||w||γ

Then f(xm) = w · xm + b = w · xp +
w·w
||w||γ + b = γ||w||. The functional

margin is γ||w|| and the geometric margin is γ = f(xm)
||w|| .

To obtain the canonical separating hyperplane we need to normalize

2.1. BACKGROUND ON CLASSIFICATION 9

w.r.t the functional margin:

fc(x) =
f(x)

γ||w||

The canonical functional margin is

fc(xm) =
f(xm)

γ||w|| = 1

The canonical margin is γc =
1

||w|| .

From this point we consider only the canonical hyperplane (that is the hy-

perplane with canonical margin 1/||w||).
In order to maximize the margin γ = 1

||w|| and to correctly separate the

examples we need to solve a constrained quadratic optimization problem:

Minimize w ·w
subject to yi(w · xi + b) ≥ 1

1 ≤ i ≤ n

The hyperplane w ·x+b = 0 that solves this quadratic optimization problem

is the maximal margin hyperplane with margin γ = 1
||w|| .

The Lagrangian associated with the primal optimization problem is:

L(w, b,α) =
1

2
w ·w −

n∑

i=1

αi(yi(w · xi + b)− 1)

leading to this set of optimality conditions:

∂L(w, b,α)

∂w
= w −

n∑

i=1

yiαixi = 0

∂L(w, b,α)

∂b
=

n∑

i=1

yiαi = 0

hence

w =
n∑

i=1

yiαixi

0 =
n∑

i=1

yiαi

10 CHAPTER 2. OVERVIEW

Putting the relations obtained into the primal we have:

L(w, b,α) =
1

2
w ·w −

n∑

i=1

αi(yi(w · xi + b)− 1)

=
1

2

n∑

i=1

n∑

j=1

yiyjαiαj(xi · xj)−
n∑

i=1

n∑

j=1

yiyjαiαj(xi · xj) +
n∑

i=1

αi

=
n∑

i=1

αi −
1

2

n∑

i=1

n∑

j=1

yiyjαiαj(xi · xj)

obtaining the associated dual optimization problem:

Maximize Φ(α) =
∑n

i=1 αi − 1
2

∑n
i=1

∑n
j=1 yiyjαiαj(xi · xj)

subject to
∑n

i=1 yiαi = 0
αi ≥ 0, 1 ≤ i ≤ n

The hyperplane whose weight vector w∗ =
∑n

i=1 yiαixi solves this quadratic

optimization problem is the maximal margin hyperplane with geometric

margin γ = 1
||w|| .

The linear SVMs compute the family of linear functions:

F(x,w, b) = {x ·w + b,w ∈ ℜD, b ∈ ℜ}

If α∗ is the solution of the dual optimization problem then

• w∗ =
∑n

i=1 yiα
∗
ixi is the weight vector of the maximal margin hyper-

plane

• f(x) = w∗ · x + b∗ =
∑n

i=1 yiα
∗
ixi · x + b∗ is the corresponding dis-

criminant function.

• The decision function g : ℜD → {−1,+1} is g(x) = sign(
∑n

i=1 yiα
∗
ixi ·

x+ b∗)

The SVM algorithm minimizes both the empirical risk and the confidence

interval [94]. Indeed, maximizing the margin, that is equivalently minimiz-

ing ||w||, we minimize the Vapnik Chervonenkis (VC) dimension, and the

confidence interval depends mainly on the ratio (VC) dimension/cardinality

of the training set.

Nevertheless, the SVM defined above deals with linearly separable data. In

order to consider non linearly separable data we need to introduce soft mar-

gin SVM and kernels. In this setting we first add to the primal optimization

2.1. BACKGROUND ON CLASSIFICATION 11

problems a set of slack variables ξi and their corresponding constraints, thus

obtaining:

Minimize w ·w + C
∑n

i=1 ξi
subject to yi(w · xi + b) ≥ 1− ξi

ξi ≥ 0
1 ≤ i ≤ n

If K(x,x′) is a symmetric function satisfying Mercer’s conditions, that

is:

∫ ∫

K(x,x′)f(x)f(x′)dxdx′ ≥ 0

for all f such that
∫
f2(x)dx < ∞, then we can expand K(x,x′) in a some

inner product feature space:

K(x,x′) =
∞∑

j=1

λjφ(x)φ(x
′)

Note that in the dual representation of linear SVMs the inputs appears only

in a dot-product form; as a consequence, we can substitute the dot-products

in the input space with a kernel function obeying Mercer’s conditions:

Maximize Φ(α) =
∑n

i=1 αi − 1
2

∑n
i=1

∑n
j=1 yiyjαiαjK(xixj)

subject to
∑n

i=1 yiαi = 0
0 ≤ αi ≤ C, 1 ≤ i ≤ n

The discriminant function computed by , and obtained from the solution of

this quadratic optimization problem, is:

f(x, α∗, b) =
n∑

i=1

yiα
∗
iK(xi,x) + b∗

In this case, the input patterns, x, processed by the Kernel SVM belong to

the input space, but the SVM itself works in an high dimensional (possibly

infinite) feature space, where it performs a linear separation of the data. The

symmetric functionK(·, ·) must be chosen among the kernels of Reproducing

Kernel Hilbert Spaces [97]; three possible choices are:

• Linear kernel: K(u,v) = u · v

• Polynomial kernel: K(u,v) = (u · v + 1)d

12 CHAPTER 2. OVERVIEW

• Gaussian kernel: K(u,v) = exp(−‖u− v‖2/σ2)

The bias and variance of SVMs are typically controlled by two parameters.

Parameter C controls the tradeoff between fitting the data (achieved by

driving the ξi’s to zero) and maximizing the margin (achieved by driving

‖w‖ to zero). Setting C large should tend to minimize bias. The second

parameter that controls bias arises only in SVMs that employ parameterized

kernels such as the polynomial kernel (where the parameter is the degree

d of the polynomial) and RBF kernels (where the parameter is the width

σ of the gaussian kernel). Bias and variance depend critically on these

parameters [93].

The SVM technique is considered to be insensitive to overfitting, and it has

good generalization capabilities [53]; for this reasons it is a good base-line

for performance comparison, and it has been widely employed in our tests.

Nearest Neighbours and K-Nearest Neighbors

The Nearest Neighbor classifier (NN, [26]) is a supervised learning method

that classifies previously unseen examples x by calculating the distances to

the training cases and then using the label of the nearest training example

as the final decision.

Generally, the NN classifier employs the euclidean distance to find the nearest

neighbor of an unknown test sample x. Let xi be an input sample in ℜD,

the euclidean distance between two samples xi and xl (i, l = 1, 2, . . . , N)

is defined as:

d(xi,xl) =
√

(xi,1 − xl,1)2 + · · ·+ (xi,D − xl,D)2 = ‖xi − xl‖2 .

A graphical depiction of the nearest neighbor concept is illustrated in the

Voronoi tesellation ([96], see Figure 2.2). A Voronoi cell encapsulates all

the neighboring points that are nearest to each sample. Given a set of N

points, xi (i = 1, 2, . . . , N), the Voronoi cell for xi, referred as Ri, is defined

as:

Ri = {y ∈ ℜD : d(y,xi) ≤ d(y,xm), ∀ i 6= m, m = 1, 2, . . . , N}

Notice that all the possible points within a sample’s Voronoi cell are the

nearest neighbors of that sample.

2.1. BACKGROUND ON CLASSIFICATION 13

Figure 2.2: Voronoi tesellation showing Voronoi cells of 19 samples marked
with a “+”.

The K-Nearest Neighbors classifier (KNN, [30]) extends this idea by find-

ing in the training set the first K nearest neighbours of x, and assigning

to x the majority category label of its K nearest points. In Figure 2.3 an

intuitive example of KNN classification is given; considering the green circle

as the test sample, it should be classified as belonging to either the first class

of blue squares, or the second class of red triangles. If K = 3 it is classified

as belonging to the second class because there are 2 triangles and only 1

square inside the inner circle, whilst if K = 5 it is classified as belonging to

the first class.

Mahalanobis distance based classifiers

Mahalanobis distance based classifiers assume that each class is described by

a Multivariate Gaussian distribution. Considering a set of clustered points

P = {Pc}Cc=1 = {pi ∈ ℜD}Ni=1 , and the class means µc, c = 1, .., C, an

unknown point x ∈ ℜD is assigned to the class of the nearest µc; in details,

the selected class is the one that minimizes the distance function d(x,µc),

that is computed as the Mahalanobis distance between the point x and the

mean vector of class c, µc. More precisely, d(x,µc) is computed as follows:

d(x,µc) =

√

(x− µc)Σ
−1
c (x− µc)

T

14 CHAPTER 2. OVERVIEW

Figure 2.3: Example of KNN classification.

where Σc is the class covariance matrix:

µc =
1

Nc

Nc∑

i=1

pc,i

Σc =
1

Nc

Nc∑

i=1

(pc,i − µc) (pc,i − µc)
T ,

where Nc is the cardinality of the class c, pc,i is the i-th sample of class c.

2.2 Main Geometrical Algorithms

In this section the main geometrical algorithms used in the rest of the thesis

are briefly recalled.

2.2.1 Matrix Decomposition

Given a symmetric positive semi-definite square matrix T ∈ ℜD×D, several

applications might need to diagonalize it; to this aim, the eigen-system T =

XΛXT must be solved to find the set of real valued 1 eigenvectors xi, and

the associated eigenvalues λi, such that ∀i,Txi = λixi.

Being T symmetric, the eigenvalues can be estimated using a very effi-

cient algorithm. To understand it, we highlight that a symmetric positive

1Note that the eigenvectors and the eigenvalues are real-valued as long as T is positive
semi-definite, otherwise they are complex-valued.

2.2. MAIN GEOMETRICAL ALGORITHMS 15

semi-definite square matrix can be geometrically interpreted as an ellipsoid,

and its diagonalization extracts the orthogonal vectors (eigenvectors) ori-

ented along the ellipsoid axes, and their length. To this aim, the principal

axes can be rotated by the inverse of the eigenvector matrix XT transform-

ing them into vectors aligned with the canonical basis; this transformation

allows to obtain the diagonal matrix XTTX = XTXΛXTX = IΛI = Λ.

Since X is not known, an iterative technique, such as the Jacobi method,

must be used.

The Jacobi method is based on the Givens rotation matrices: chosing

two integers p and q such that 1 ≤ p < q ≤ D, an angle θ can be found so

that the following orthogonal similarity holds:

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
T i
p,p T i

p,q

T i
q,p T i

q,q

)(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)

=

(
T i+1
p,p 0

0 T i+1
q,q

)

(2.1)

in fact the angle θ = 0 can be chosen if T i
p,q = T i

q,p = 0; otherwise, if

T i
p,q = T i

q,p 6= 0, it must be T i+1
p,q = T i+1

q,p = 0. To this aim, the following

derivations allow to compute the angle θ representing the correct rotation:

T i+1
p,q = 0 ⇒ (T i

p,p − T i
q,q) cos(θ) sin(θ) + T i

p,q(sin
2(θ)− cos2(θ)) = 0

⇒ θ = arctan




T i
q,q − T i

p,p

2T i
p,q

+

√
(
T i
q,q − T i

p,p

2T i
p,q

)2

+ 1





−1

(2.2)

Computing this transformation for all index pairs 1 ≤ p < q ≤ D allows

to transform T into the diagonal eigenvalues matrix Λ by means of a finite

sequence of at most D(D−1)
2 rotations.

To compute the associated eigenvectors, in the hypothesis that the dom-

inant eigenvalue λ1 has geometrical multiplicity 1, it is possible to randomly

choose an initial non-zero estimate of x1, say x0
1 , and employ the itera-

tive method xi+1
1 =

Txi
1

‖Txi
1‖

that converges to x1. Noting that it must be

∀i, TTxi = λiTxi = λ2
ixi, and in general TKxi = λK

i xi, it is possi-

ble to obtain a faster algorithm fixing a K value and computing directly

xi+K
1 =

TKxi
1

‖TKxi
1‖
; this iterative method is the basis of the power method for

16 CHAPTER 2. OVERVIEW

eigenvectors computation. This procedure can be iterated by computing the

new matrix T̃ = T − λ1x1x
T
1 and finding the next eigenvalue/eigenvector

pair. This algorithm follows the decomposition T =
∑D

i=1 λixix
T
i obtained

by:

T = XΛXT = X

(
D∑

i=1

Λ̃i

)

XT =
D∑

i=1

XΛ̃iX
T =

D∑

i=1

λixix
T
i (2.3)

On the other side, if the eigenvalues matrix Λ and the eigenvector matrix X

are known, the matrix T can be encoded by simply computing T = XΛXT ;

nevertheless, due to roundoff machine precision errors, the obtained matrix

is redundant and no longer symmetric. Therefore, it is better to compute

only the D(D+1)
2 values for the upper triangular part, and store them instead

of the D2 redundant coefficients.

For details, and other efficient algorithms to solve eigen-systems in case

of symmetric positive semi-definite matrices, see [33].

2.2.2 Singular Value Decomposition

Given a D ×N matrix M composed of real, or complex, valued vectors, it

can be factorized as follows:

M = UQV T (2.4)

where U is the the D×D unitary (left) singular vector matrix over the field

membership, the matrix Q is a D×N diagonal singular valued matrix with

non-negative real numbers on the diagonal, and V T denotes the conjugate

transpose of V , which is an N ×N unitary matrix. Such a factorization is

called a singular value decomposition (SVD) of M .

The SVD can be applied to any D × N matrix, while the eigenvalue-

decomposition can only be applied to positive semi-definite square matrices.

Nevertheless, the two decompositions are related. Indeed, considering the

SVD of M the following two relations hold:

MTM = V QTUT UQV T = V (QTQ)V T ,

MMT = UQV T V QTUT = U(QQT)UT .

2.2. MAIN GEOMETRICAL ALGORITHMS 17

where the right hand sides of these relations describe the eigenvalue-decompositions

of the left hand sides. Under these consideration the columns of U (left

singular vectors) are eigenvectors of MMT and the columns of V (right

singular vectors) are eigenvectors of MTM .

Considering the example of covariance matrix estimation, where the co-

variance matrix is estimated as Σ̃ = 1
N−1MMT , then the eigen-decomposition

of Σ̃, that is Σ̃ = XΛXT can be performed through the SVD of M , that

is M = UQV T , since in this case MMT = UQ2UT , thus obtaining

Λ = 1
N−1Q

2 and X = U .

2.2.3 Orthogonalization

Given a D × d matrix V = [v1| · · · |vd] with d linear independent columns

spanning a d-dimensional subspace of ℜD, it might be useful to find an

orthonormal basis X of ℜD so that the first d columns of X span the same

subspace spanned by V ; this problem has infinite solutions. To find one of

the possible solutions, the Gram-Schmidt orthogonalization method can be

used:

• set x1 =
v1

‖v1‖ ;

• compute every xi with 1 < i ≤ d as xi =
vi−

∑i−1
j=1(xj ·vi)xj

‖vi−
∑i−1

j=1
(xj ·vi)xj‖

;

• eventually, compute the remaining D− d orthonormal vectors xi with

d < i ≤ D, to span the whole space ℜD. This can be done as in

the previous step by choosing every time an initial vector vi linearly

independent with respect to xj for 1 ≤ j < i. A simple way to get a

vector vi linearly independent w.r.t. the vectors vj<i is to generate it

randomly.

The first d orthonormal vectors obtained by this algorithm span the same

subspace spanned by the vi, while the other D − d orthogonal vectors span

its normal subspace.

2.2.4 Principal Component Analysis (PCA)

Given a set of points P = {pi ∈ ℜD}Ni=1, drawn from an unknown Gaus-

sian distribution, the Principal Component Analysis (PCA) transform

18 CHAPTER 2. OVERVIEW

is aimed at projecting the points on a d-dimensional space (d ≤ D), such

that the variance of the projected data is maximized. When d < D, PCA

is used as a convenient dimensionality reduction method that reduces the

loss of discriminative information. The idea is to find the directions in ℜD

where the variance of the data is greater, so that the input points can be

approximated by representing them with a basis that spans only a linear

subspace excluding the low variance directions.

To this aim, the following maximum likelihood estimators are used:

µ̃ =
1

N

N∑

i=1

pi

Σ̃ =
1

N

N∑

i=1

(pi − µ̃) (pi − µ̃)T

Performing the eigen-decomposition Σ̃ = XΛXT , and maintaining the

eigenvalues/eigenvectors sorted in descendant eigenvalues order, the ob-

tained first d column-vectors xj of X (j = 1, .., d) represent an orthonormal

basis for the d-dimensional linear subspace that “captures” the highest vari-

ance of the points in P . Representing with Xd the selected basis, the point

projections on this subspace can be obtained by means of equation:

p⊥ = XT
d (p− µ̃)

where the d values p⊥ are called PCA coefficients. On the other side, given

a coefficient vector b, the corresponding point p ∈ ℜD can be computed as:

p = Xdb+ µ̃

2.2.5 Whitening Process

The process of data whitening is a geometrical approach that moves the

data in an isotropic position. More precisely, after employing this process

the points are mean centered and the data covariance matrix equals the

identity matrix; thus, from a geometrical point of view, the points assume

the shape of an hypersphere centered in the origin. Considering the set of

training points P̂ =
⋃C

c=1Pc = {pi}Ni=1, where c is the class membership,

the whitening matrix W is estimated as follows:

2.2. MAIN GEOMETRICAL ALGORITHMS 19

1. estimate the expectation µ̃ = 1
N

∑

i pi, and the covariance matrix

Σ̃ = 1
N−1

∑

i(pi − µ̃)(pi − µ̃)T ;

2. estimate the principal components through the eigen-decomposition of

the covariance matrix XΛXT = Σ̃;

3. estimate the whitening matrix as W = XΛ− 1
2XT . Note that Λ− 1

2

can be computed by substituting the non-zero diagonal elements λi of

Λ with the values λ
− 1

2

i .

20 CHAPTER 2. OVERVIEW

Chapter 3

Isotropic Principal
Component Analysis-based
Classifier

In this chapter we propose a linear binary classifier, called Isotropic Prin-

cipal Component Analysis-based Classifier (IPCAC), that deals with data

points drawn from a Mixture of Gaussians (MoG). IPCAC can be considered

as an evolution of the Fisher Linear Discriminant Analysis (FLDA) that em-

ploys a novel approach to estimate the Fisher subspace. More precisely,

the estimation of this subspace is based on the theoretical results, reported

by Brubaker and Vempala in [10], proving that, given an isotropic MoG, the

Fisher subspace underlying the data corresponds to the span of the Gaussian

means.

This chapter is organized as follows: in Section 3.1 the definition of the

Fisher subspace is reported; in Section 3.2 the Fisher Linear Discriminant

Analysis technique is summarized; in Section 3.3 we consider data points

distributed according to an isotropic mixture, and we show that the Fisher

subspace equals the intermean subspace; in Section 3.4 the IPCAC classifier

is presented, and its advantages are highlighted; in Section 3.5 experimen-

tal results are reported, together with the performance comparison between

IPCAC and FLDA; in Section 3.6 a model merging technique to combine differ-

ent IPCACs is described; in Section 3.7 the efficacy of the proposed methods is

demonstrated by their application on spam classification, and by comparing

21

22 CHAPTER 3. IPCAC

their results with those achieved by well-known techniques.

3.1 Fisher SubSpace

Consider a set of clustered points P = {Pc}Cc=1 drawn from ℜD, where

each cluster Pc = {pc,i}Nc

i=1 contains Nc points (feature vectors). In [4], it is

proved that it is possible to find a (C−1)-dimensional linear subspace FsP ,

called the Fisher subspace, defined by the given point set P , that maximizes

the linear separability among the classes. More precisely, the subspace FsP

is presented as the subspace that maximizes a function, called the Fisher’s

criterion, that produces a large separation between the projected classes

while simultaneously minimizing the variance within each projected class.

The Fisher’s criterion is:

FsP = argmax
w

J(w) = argmax
w

between-class variance(P proj on w)

within-class variance(P proj on w)

In [29, 38] the FsP is also defined as the maximization of the following

discriminant function:

FsP = argmax
w

J(w) = argmax
w

total variance

within-class variance(P proj on w)

= argmax
w

Ec,i

[
‖projw(pc,i − µ)‖2

]

Ec [Ei [‖projw(pc,i − µc)‖2]]

where i indexes the points in each cluster, projw(·) is the linear operator

that projects a point on the subspace w, E· [·] is the expectation operator

(Ec,i [·] is the expectation over all the training set, Ei [·] is the expectation

over the cth class, and Ec [·] is the expectation over all the classes), µ and µc

are respectively the overall mean and the c-cluster mean. In the following

section we report the rationale at the basis of the Fisher’s criterion, together

with its mathematical formulation, and its solution.

3.2 The Fisher Linear Discriminant Analysis

The most common approach to estimate the Fisher subspace is the Fisher

Linear Discriminant Analysis (FLDA, [4]) technique. To describe it we firstly

consider a two class classification problem, where A and B are the two

3.2. THE FISHER LINEAR DISCRIMINANT ANALYSIS 23

classes to be discriminated. If the points to be classified belong to a D-

dimensional space, a vector w ∈ ℜD can be found so that a point x can be

projected on w through y = wTx; given a threshold value w0, each point

can be classified as belonging to class A if y ≥ w0, to class B otherwise.

To achieve good classification results from this classifier, the goal is to find

a vector w, commonly called optimal discriminant projection vector, such

that the separability of the projected classes is maximal. Simultaneously,

w should be defined in order to minimize the scattering within each class.

The idea proposed by Fisher is to maximize a function that produces the

largest separation between the projected class means while maintaining a

small variance of the projected points within each class. To formulate this

function, called the Fisher’s criterion, we identify with NA and NB the

number of points belonging to class A, and to class B respectively, and we

refer with µa and µb the class means in the original space:

µa =
1

NA

NA∑

i=1

xi, µb =
1

NB

NB∑

j=1

x (3.1)

Considering the projection vector w, the separation among the projected

class means is:

µa − µb = wT (µa − µb), where µa = wTµa, µb = wTµb

while the variance of the projected points within each class is:

σ2
a =

NA∑

j=1

(xj − µa), and σ2
b =

NB∑

j=1

(xj − µb), where xj = wTxj

The Fisher’s criterion is then defined as:

J(w) =
(µa − µb)

2

σ2
a + σ2

b

Alternatively, J(w) can be defined in order to make the dependence from

w explicit, as follows:

J(w) =
wTΣBetw

wTΣWw
(3.2)

where ΣBet is the between-class covariance matrix defined as:

ΣBet = (µb − µa)(µb − µa)
T (3.3)

24 CHAPTER 3. IPCAC

and ΣW is the total within-class covariance matrix:

ΣW =

NA∑

i=1

(xi − µa)(xi − µa)
T +

NB∑

j=1

(xj − µb)(xj − µb)
T (3.4)

Differentiating Equation (3.2) with respect to w, we find that J(w) is max-

imal when:

(
wTΣBetw

)
ΣWw =

(
wTΣWw

)
ΣBetw (3.5)

Considering that ΣBet is oriented along (µb−µa), and that both
(
wTΣBetw

)

and
(
wTΣWw

)
can be dropped since the magnitude of w is not important,

we obtain:

w ∝ Σ−1
W (µb − µa). (3.6)

The resulting vector, which could also be computed by finding the eigenvec-

tor of Σ−1
W ΣBet corresponding to the largest eigenvalue, is the direction that

allows to project data points, belonging to two classes A ∈ ℜD, B ∈ ℜD,

onto the one-dimensional Fisher subspace.

3.2.1 Fisher subspace for multiple classes

When C classes are considered, the points are projected on a (C − 1)-

dimensional Fisher subspace, through a projection matrixW whose columns

are the optimal discriminant projection vectors wk, k = 1, .., C − 1. The

projection matrix is obtained by generalizing both the within-class and the

between-class scatter matrices to the case of C classes. More precisely, the

within-class covariance matrix is defined as follows:

ΣW =
C∑

c=1

Σc, Σc =

Nc∑

j=1

(xj − µc)(xj − µc)
T

To generalize the between-class scatter matrix to the C-class case, we con-

sider the total covariance matrix:

ΣTot =

N∑

j=1

(x− µ)(x− µ)T

and we notice that it can be decomposed it into the sum of ΣW and a

matrix that can be viewed as a measure of the between-class covariance

3.2. THE FISHER LINEAR DISCRIMINANT ANALYSIS 25

matrix, ΣBet. More precisely, setting ΣTot = ΣW +ΣBet we can compute

ΣBet as:

ΣBet =
C∑

c=1

Nc(µc − µ)(µc − µ)T

Exploiting these equations, in [38] the Fisher’s criterion in the multiclass

case is defined as:

J(W) = Tr

{
W TΣBetW

W TΣWW

}

(3.7)

As pointed out by Fukanaga there are many choices of criterion. Indeed, in

the same work another variant of this criterion is showed, where the quantity

to be maximized is:

J̄(W) = Tr

{
W TΣTotW

W TΣWW

}

(3.8)

Similarly, in [60] a third definition of the Fisher’s criterion, exploiting ΣTot,

is reported:

Ĵ(W) = Tr

{
W TΣBetW

W TΣTotW

}

(3.9)

As described at length in [38], the set of projection vectorswk, k = 1, .., C−1

that allow to maximize all the above mentioned Fisher’s criteria, is the set

of eigenvectors of Σ−1
W ΣBet corresponding to the largest eigenvalues. For

these reason J̄(W), Ĵ(W), and J(W) are said to be functionally equivalent

in terms of solving the optimal set of projection axes [60], that is:

argmax
W

J̄(W) = argmax
W

Ĵ(W) = argmax
W

J(W)

After finding the best projection subspace, classification can be per-

formed by exploiting different approaches proposed in the literature to ana-

lyze the training points projected on w in order to identify either separation

hyperplanes (in case of multiclass classification) or a thresholding value (in

case of binary classification). As an example, classification can be per-

formed in the transformed space by employing some distance metric, such

as the Euclidean distance (d(x,y) =
√∑

i(xi − yi)2) or the cosine measure

26 CHAPTER 3. IPCAC

(d(x,y) = 1−
∑

i xiyi√∑
i x

2
i

√∑
i y

2
i

), and classifying a new instance z as belonging

to the class ĉ that minimizes the following:

ĉ = argmin
c

d
(
wTz,wTµc

)
,

where µc is the centroid of the training subset composed of points belonging

to the cth class [59].

Due to its efficacy, and simplicity, FLDA is widely employed in different

application fields by several applications that exploit input data projected

on the Fisher subspace [64, 61, 52, 79, 43]. Nevertheless, although effective

FLDA-based classification methods have been proposed, their performance is

affected by some drawbacks that are shortly reported in the following.

At first, batch classification methods based on FLDA cannot efficiently deal

with datasets of high dimensionality, for their high computational complex-

ity.

Secondly, when the ratio between the number of training points and the

dimensionality of the input space is close to 1 the classification performance

drastically decreases. This is due to the fact that, under this setting, the

sample covariance matrix is not a consistent estimator of the real covariance

matrix [74].

We further note that when the number of training samples is smaller than

the dimensionality of the samples, the within-class scatter matrix, ΣW , may

become singular; in this case the execution of FLDA may encounter computa-

tional difficulty due to the need of computing the inverse of ΣW . Although

many modified FLDA techniques have been proposed to overcome this prob-

lem (called the small sample size problem), it is still open.

Besides, as reported by some authors [100, 101], for a classification task with

unbalanced classes the performance of FLDA based classifiers decrease.

Finally, since classifiers that exploit FLDA are linear techniques, they cannot

cope with non linearly separable classes.

3.3 The Fisher’s Criterion and Isotropy

In this section we report the Lemma proved by Brubaker and Vempala in [10]

which is the basis of the IPCAC algorithm. The Lemma is the following, for

3.3. THE FISHER’S CRITERION AND ISOTROPY 27

simplicity the within-class covariance matrix for the class c (ΣWc) is denoted

as Σc:

Lemma 1. Suppose {wc,µc,Σc}Cc=1 defines an isotropic mixture in ℜD.

Let λ1 ≥ · · · ≥ λD be the eigenvalues of the matrix Σ =
∑C

c=1wcΣc and let

v1, · · · ,vD be the corresponding eigenvectors. If the dimension of the span

of the means of the components is C − 1, then the Fisher subspace

F = Span 〈vD−C+1, · · · ,vD〉 = Span 〈µ1, · · · ,µC〉 . (3.10)

To prove this Lemma it is useful to recall that:

Fact 1. Let λ1 ≥ · · · ≥ λD be the eigenvalues for a D×D symmetric positive

definite matrix Z and let v1, · · · ,vD be the corresponding eigenvectors. Then

λD + · · ·+ λD−C+1 = min
S:dim(S)=C

C∑

j=1

pT
j Zpj , (3.11)

where {pj} is any orthonormal basis for the subspace S. If λD−C > λD−C+1,

then Span 〈vD, · · · ,vD−C+1〉 is the unique minimizing subspace.

Proof of Lemma 1. By definition, for an isotropic distribution, the Fisher

subspace minimizes

J(S) =
Ec

[
Ei

[
‖projS(pc,i − µc)‖2

]]

1
=

C−1∑

j=1

pT
j Σpj (3.12)

where pj is an orthonormal basis for S.

By Fact 1 the span of the smallest C−1 eigenvectors of the matrix Σ, i.e.

vD−C+2, · · · ,vD is one of the minimizing subspaces. Being the distribution

isotropic we have:

Σ = I −
C∑

c=1

wcµcµ
T
c , (3.13)

and the vectors vD−C+2, · · · ,vD become the largest eigenvectors of
∑C

c=1wcµcµ
T
c .

Moreover, since Span 〈vD−C+2, · · · ,vD〉 ⊆ Span 〈µ1, · · · , µC〉, and

dim(Span 〈vD−C+2, · · · ,vD〉) = C − 1 = dim(Span 〈µ1, · · · ,µC〉),

it follows that the two subspaces are equal. Since vD−C+1 must be or-

thogonal to the other eigenvectors, it follows that λD−C+1 = 1 > λD−C+2;

therefore, Span 〈vD−C+2, · · · ,vD〉 = Span 〈µ1, · · · ,µC〉 is the unique min-

imizing subspace.

28 CHAPTER 3. IPCAC

3.4 IPCA-based Classifier

In Section 3.3 it is proved that, given a mixture of Gaussian distribution with

mean µ = 0, and covariance matrix Σ = σI (where I is the identity matrix

and σ the standard deviation), and given a set of clustered points P sampled

from it, then the subspace spanned by the cluster means approximates FsP .

It follows that, in the two-class classification problem, FsP is one-

dimensional and it is represented with a unit vector F computed as follows:

F =
µA − µB

‖µA − µB‖
(3.14)

where µA ∈ ℜD and µB ∈ ℜD are the means of the training points belonging

to the classes A and B respectively.

In this case, classification could be achieved by computing F , and thresh-

olding the value of the projection of an unknown test point p on F as follows:

projF (p) = F · p, where · is the dot product operator.

Nevertheless, the probability distribution related to several classification

tasks is not mean-centered, and its random variables are often correlated.

For this reason, we preprocess the data by a linear (whitening) transforma-

tion1. Considering the set of N training points P̂ =
⋃C

c=1Pc = {pi}Ni=1,

the whitening matrix W and the overall mean µ̃ are estimated as described

in Section 2.2.5:

1. estimate the expectation µ̃ = N−1
∑

i pi, and the sample covariance

matrix Σ̃ = N−1
∑

i(pi − µ̃)(pi − µ̃)T ;

2. estimate the principal components through the covariance matrix eigen-

decomposition XΛXT = Σ̃;

3. estimate the whitening matrix as

W = XΛ− 1
2XT (3.15)

Note that Λ− 1
2 can be computed by substituting the non-zero diagonal

elements λi of Λ with the values λ
− 1

2

i .

1We call whitened data a set of points extracted from a multivariate probability dis-
tribution with µ = 0, and Σ = I.

3.4. IPCA-BASED CLASSIFIER 29

The whitened training points, calculated through µ̃ and W , are em-

ployed to compute the class means µA and µB; F is then computed by

means of Equation (3.14). Therefore, given a new point p, it is projected

on F as follows:

projF (p) = F TW (p− µ̃) = wT (p− µ̃) (3.16)

where w = W TF is the vector used to simultaneously perform the data

whitening and projection.

To classify the new point p, a threshold γ must be determined, so that

if w · (p− µ̃) > γ than p is classified as belonging to class A, otherwise it is

considered as belonging to class B. To estimate the best threshold value γ,

we maximize the number of correctly classified points, that is:

γ =

〈

argmax
{γ̄}⊆{w·(pi−µ̃)}

Score(γ̄)

〉

(3.17)

where the function Score(γ̄) computes the number of correctly classified

training points when γ̄ is used as threshold, the argmax operator returns

the set of thresholds {γ̄} leading to the maximum value, and 〈·〉 is the mean

operator.

The thresholding technique just described performs well in case of bal-

anced training datasets; nevertheless, on unbalanced training data its per-

formance decreases. To overcome this problem, we defined a new method

for the computation of the thresholding value γ. More precisely, we consider

the two sets γ̄A and γ̄B defined as:

{γ̄A} ≡ {wT (p− µ̃)|p ∈ PA} (3.18)

{γ̄B} ≡ {wT (p− µ̃)|p ∈ PB} (3.19)

where PA and PB are the training points belonging to class A and B re-

spectively. We then compute the following maximal scores:

γA = argmax
γ̄∈{γ̄A}

Score(γ̄) (3.20)

γB = argmax
γ̄∈{γ̄B}

Score(γ̄) (3.21)

30 CHAPTER 3. IPCAC

Using these values, the following threshold is selected:

γ =
1

2
〈γ̄ ∈ {γ̄A}|Score(γ̄) > k · γA〉+

1

2
〈γ̄ ∈ {γ̄B}|Score(γ̄) > k · γB〉 (3.22)

where k ∈ (0, 1) is a parameter to be experimentally tuned, according to the

unbalancing ratio.

The thresholding value computed by Equation (3.22) compensates the

effects of unbalanced data, and allows to maintain a balanced amount of

information from the two classes.

This classifier is very simple, and it has a low computational cost both

in the training and in the classification phase. Moreover, denoting with D

the feature space dimensionality, the space complexity required to store an

IPCA-based classifier is at most 2D + 1. Indeed, D real values are needed

to store the estimated expectation2 µ̃ (that will be denoted with µ in the

following), D real values record the weight vector w, and one value stores

the threshold γ.

3.4.1 IPCAC Retaining Variance

Given the matrix P ∈ ℜD×N , representing a training dataset P = PA ∪
PB, |P | = N = NA + NB, let α be the ratio D/N ; assuming that the

population covariance matrix Σ = Σ∗+σ2I, where Σ∗ has rank k < D and

σ2I represents the contribution of a zero mean Gaussian noise affecting the

data, calling σ2 = λ1 = . . . = λD−k−1 < . . . < λD the ordered eigenvalues

of Σ, and denoting with λ̃1 < . . . < λ̃D the ordered eigenvalues of sample

covariance matrix Σ̃, in [75] it is proved that only the portion of the spectrum

of Σ above σ2 +
√
α can be correctly estimated from the sample.

To deal with the above mentioned problem, Belhumeur et al. [3] proposed a

two-stage PCA+FLDA technique, that applies a first PCA step followed by the

application of FLDA algorithm.

IPCAC solves this problem in a more efficient way. To describe it, we recall

that, to evaluate the whitening D × D matrix W (see Equation (3.15)),

2Note that considering the equivalent thresholding function w · p > γ +w · µ̃ , β, the
space required to store µ̃ can be avoided.

3.5. EXPERIMENTAL RESULTS ON SYNTETHIC DATA 31

IPCAC performs an eigen-decomposition to diagonalize the overall sample

covariance matrix. Nevertheless, it is possible to perform dimensionality

reduction by selecting only the largest d < D eigenvalues (λ̃1, · · · , λ̃d), and

the corresponding eigenvectors, that retain a fixed percentage of variance

perc =
∑d

j=1 λ̃j
∑N

j=1 λ̃j
; this allows to compute a matrix Wd ∈ ℜd×D that performs

the whitening process on a d-dimensional subspace. After this step the

Fisher subspace, spanned by the projection vector Fd, is computed in the

whitened d dimensional space. Therefore, given a new point p ∈ ℜD, it is

projected on Fd as follows:

projFd
(p) = F T

d Wd(p− µ̃) = wT
d (p− µ̃) (3.23)

where wd = W T
d Fd is the vector used to simultaneously perform the data

whitening and projection in the d-dimensional subspace.

Our approach allows to achieve the same goal of the two-stage technique

proposed by Belhumeur in a single step, thus reducing the time complexity

of the algorithm.

3.5 Experimental Results on Syntethic Data

To assess the performance of the proposed techniques, we performed some

tests on synthetic data comparing IPCAC, IPCAC retaining variance (IPCACvar

with perc = 0.99), FLDA, and PCA+FLDA [3] (the PCA retained the 99% of the

variance).

In order to produce synthetic datasets, we employed a generator that

was built to draw points from two randomly selected non-isotropic Multi-

variate Gaussian Distributions (MGDs). To this aim, the mean vectors and

the covariance matrices of the MGDs have been randomly choosen.

For each MGD, the mean vector coordinates were randomly selected in the

open interval (0, 1) according to the uniform distribution, while the covari-

ance matrix was obtained by randomly generating both the positive eigenval-

ues, and the orthonormal eigenvectors. More precisely, the eigenvalues were

generated by employing the random generator for the uniform distribution,

while the eigenvectors were drawn from the normal distribution, and they

were orthogonalized through the Gram-Schmidt orthogonalization process.

32 CHAPTER 3. IPCAC

By employing this generator we produced 2 datasets, each one composed

by two classes with 1000 points per class in ℜ500. The second dataset was

created strongly reducing the distance between the class means, that is by

multiplying the two means for a scale factor equal to 0.05.

We adopted K-fold cross validation (K = 10) to achieve an unbiased

evaluation of the compared algorithms. To obtain a statistically significant

evaluation, for each classifier we estimated the classification accuracy for all

the K folds, and we executed R runs (R = 50) of K-folding permuting the

data, thus obtaining KR accuracies to be averaged. All the classifiers are

implemented in MATLAB.

The results obtained are shown in Table 3.1. From this table it can be

Classifier Synth 1 Synth 2

IPCACvar 98.50% (±0.0068) 83.28% (±0.0269)

IPCAC 81.28% (±0.0296) 68.01% (±0.0353)

FLDA 81.25% (±0.0289) 66.89% (±0.0332)

PCA+FLDA 96.70% (±0.0038) 80.91% (±0.0220)

Table 3.1: Experimental results (accuracy%, (±std)) obtained.

noticed that IPCAC and FLDA have the same behavior achieving comparable

results. Applying the PCA step we obtained interesting improvements, as can

be seen by observing the IPCACvar and PCA+FLDA results; note that IPCACvar

achieves the best results.

3.6 IPCAC Model Merging

One of the benefits of using IPCAC, is the simplicity of combining several

classifiers into a single one that has three main advantages: it is more accu-

rate than a single IPCAC; it is simply upgradeable with dynamically supplied

training data; it is able to cope with large training sets, since each classifier

can be trained on a subset of the whole dataset.

To perform the IPCAC model merging (MM-IPCAC), the following informa-

tions must be stored for each trained classifier: {F ,W ,w, γ,µ,µA,µB, NA, NB},
where NA and NB are the numbers of training feature vectors used in

each class. We call {Mm}Mm=1 the classification models to be merged, and

3.6. IPCAC MODEL MERGING 33

{Fm,Wm,wm, · · · } their components. Moreover, we consider the following

quantities:

Nm = NAm +NBm, N =
∑

m

Nm

NA =
∑

m

NAm, NB =
∑

m

NBm

At first, the new (merged) mean vector µ, and the merged whitening

matrix W , must be estimated for the whitening operation. More precisely,

to merge the whitening matricesWm, the corresponding covariance matrices

must be calculated. To this aim, we employ the eigen-decomposition Wm =

XmΛ̂mXT
m, and we compute Σm = XmΛ̂−2

m XT
m. The merged mean vector

µ, and the merged covariance matrix Σ, are then estimated by means of the

following generalizations of the results reported in [45]:

µ = N−1
M∑

m=1

µmNm

Σ = N−1
M∑

m=1

ΣmNm

+N−2
M∑

m=1

M∑

l=m+1

NmNl(µm − µl)(µm − µl)
T

To compute the merged whitening matrix W starting from Σ, we use the

eigen-decomposition Σ = XΛXT , and we compute W = XΛ− 1
2XT .

To estimate µA and µB we recall that the means µAm and µBm, m ∈
{1, . . . ,M}, are determined on the whitened training points; therefore the

merge operation requires the inversion of the whitening process. Being the

whitening matrices Wm possibly singular, we use their pseudo-inverses de-

noted by W
†
m, and we merge the cluster means as follows:

µA = N−1W
∑

m

W †
mµAmNAm

µB = N−1W
∑

m

W †
mµBmNBm

where NAm and NBm are the numbers of training data points used to

estimate µAm and µBm.

34 CHAPTER 3. IPCAC

Given the quantities computed above, the new vector F , and the weight

vector w, are computed as before:

F =
µA − µB

‖µA − µB‖
; w = W TF

The last model part to be merged is the thresholding value γ; to get
it, for each classifier m we compute the point γ̂m on FsP such that its
projection on Fm generates exactly the thresholding value γm. We get:

γm = F T
mWm(γ̂m − µm) ⇒ γmFm = Wm(γ̂m − µm)

⇒ γ̂m = γmW †
mFm + µm

The merged threshold γ is then computed by projecting the average of the

γ̂m on F , that is:

γ̂ = N−1
∑

m

γ̂mNm

γ = F ·W (γ̂ − µ) = wT (γ̂ − µ)

Note that, the obtained classification model maintains the same space

and time complexity of the original ones.

3.7 A Real Application: the Spam Classification

The proposed classification methods have been tested on email classification

to recognize spam emails from legitimate emails. In this section we describe

the framework implemented for our tests, the experimental setting, and the

obtained results.

Our spam filter is a classification system based on email text semantic

analysis. The following tasks are performed to achieve the message classifi-

cation:

Sparse vectors construction: each email is processed to be represented

as an high dimensional, and sparse feature vector. More precisely, the

words contained in each email are extracted and reduced to the same

form by means of standard stemming algorithms [62]; moreover, the

obtained set of words is filtered by removing unknown terms (i.e. terms

3.7. A REAL APPLICATION: THE SPAM CLASSIFICATION 35

that are not listed in a predefined ‘dictionary’3). The sparse feature

vector is then defined by the frequencies of the remaining words in the

processed email.

Sparse to dense projection: in order to generate an easily manipulable

representation, and to extract semantic informations, the sparse fea-

ture vectors are projected on a lower dimensional space. To this

aim, the Term Frequency-Inverse Document Frequency coefficients

(TF-IDF, [5]), and the Latent Semantic Analysis technique (LSA, [57]),

are applied to the sparse feature vectors in the training set. These al-

gorithms generate a sparse to dense projection matrix SD that is used

to compute all the dense feature vectors processed by the classifiers.

We must highlight that sparse to dense projection matrices computed

on different training sets allow to compute dense feature vectors of

different dimensionality and semantic.

Classification: classification is performed by applying the chosen classifier

to the obtained dense feature vectors.

3.7.1 Experiments

In order to show the effectiveness of our algorithms, we have compared their

results to those obtained by well-known methods described in the literature,

more precisely SVM and KNN4.

The tests have been performed on two standard email sets, that are:

12000 messages randomly extracted from the TREC 2005 corpus [24] (6000

ham, and 6000 spam), and 3600 messages randomly selected from the Spa-

mAssassin corpus (1800 ham, and 1800 spam) [1]. Each database has been

randomly halved, thus obtaining Dataset1 and Dataset2, and the following

two experiments have been carried out:

Experiment 1: in this experiment we tested the IPCACvar
5, SVM, and KNN

3The employed dictionary contains approximately 87000 words and acronyms extracted
from different sources.

4For each classifier, we determined the best configuration parameters by executing a
tuning phase on a smaller data-set, that was automatically generated through random
message selection and K-folding.

5We retain the 99% of the variance.

36 CHAPTER 3. IPCAC

classifiers by performing 4-fold cross validation on Dataset1 and we

averaged the evaluation measures.

Experiment 2: this experiment has been performed both to test the ro-

bustness of all the classifiers with respect to input vectors generated

through different sparse to dense projection matrices, and to compare

the MM-IPCAC classifier with the other techniques. To this aim, the

following steps were performed:

• a sparse to dense projection matrix ˆSD was calculated using half

of Dataset1;

• the matrix ˆSD was employed to process the second part ofDataset1;

• the obtained set of dense vectors was randomly split into four

overlapped subsets that were used to train four IPCACvar, four

SVMs, and four KNN models;

• the MM-IPCAC technique was applied to merge the four IPCACvar

classifiers;

• all the trained classifiers were then tested on the feature vectors

obtained by processing Dataset2 with ˆSD. The performance of

the four IPCACvar, the four SVMs, and the four KNN classifiers were

averaged to obtain their final result.

All the described experiments were executed by using a Python implemen-

tation for the framework and for all the tested algorithms.6.

3.7.2 Obtained Results

We executed our tests using as evaluation measures the Accuracy, Recall

(or Sensitivity), and Precision (see Appendix A), where we considered as

positive examples the spam messages.

The achieved performances have been reported in Table 3.2 and Ta-

ble 3.3. From this results the reader can note that:

6For the SVM classifier we used a Python wrapper to the library “libSVM” [12]. For
the KNN algorithm we used the implementation of Biopython [22]

3.7. A REAL APPLICATION: THE SPAM CLASSIFICATION 37

Experiment# Classifier Accuracy (std) Precision Recall

Exp1

KNN 95.499 (0.759) 95.922 95.028

IPCACvar 96.817 (0.279) 96.250 97.430

SVM 97.116 (0.213) 96.234 98.057

Exp2

KNN 95.449 95.113 95.927

IPCACvar 95.05 93.901 96.374

SVM 97.001 95.958 98.133

MM-IPCAC 98.350 97.387 99.367

Table 3.2: Experimental results on the emails belonging to TREC corpus.

Experiment# Classifier Accuracy (std) Precision Recall

Exp1

KNN 96.278 (0.379) 96.773 95.777

IPCACvar 97.444 (1.002) 97.608 97.333

SVM 98.444 (0.602) 98.148 98.778

Exp2

KNN 91.222 96.932 85.111

IPCACvar 90.167 93.280 86.667

SVM 93.611 96.444 90.556

MM-IPCAC 98.222 98.329 98.111

Table 3.3: Experimental results on the emails belonging to SpamAssassin
corpus.

Experiment 1: on both corpuses the results achieved by IPCACvar, and

SVM (employing a gaussian non-linear kernel properly tuned) are com-

parable, while KNN achieves lower performances.

Experiment 2: on both corpuses the results show that our MM-IPCAC tech-

nique is promising, since it outperforms all the other algorithms.

It is important to highlight that all the classifiers, except MM-IPCAC,

obtain low accuracy when Experiment2 is run on the SpamAssassin cor-

pus; this is due to the fact that ˆSD is computed exploiting a subset of

the Dataset1 having a low cardinality; this produces a not accurate result

affected by discriminative information loss, that decreases the classification

performance.

These experiments confirm the effectiveness of the proposed algorithms.

38 CHAPTER 3. IPCAC

3.8 Conclusion

In this chapter a linear classification algorithm, called IPCAC, is described

in detail; this classifier deals with data drawn from a mixture of two gaus-

sians. Furthermore, we present an improved version of this method called

IPCACvar, that performs an implicit dimensionality reduction to garantee a

better performance. IPCAC and IPCACvar have been tested on synthetic and

real data, achieving promising results.

Finally, to cope with large datasets or with dynamically supplied data,

a Model Merging technique has presented to merge different IPCAC, or

IPCACvar, trained models. Tests on spam classification, and the compari-

son with SVM, KNN have demonstrated the effectiveness of this method.

Chapter 4

O-IPCAC: an Online Classifier
based on IPCAC

In practical application the cardinality of the training dataset (N) is often

lower than the space dimensionality (D), or the ratio between N and D is

approximately 1. Both these conditions might cause hard problems to clas-

sifiers exploiting the sample covariance matrix during their computations.

Firstly, when N < D the small sample size problem might occur, causing the

covariance matrix to be singular and hereby raising computational problems

during the learning and classification tasks. On the other side, when N ≈ D

the sample covariance matrix is an inconsistent estimator of the population

covariance matrix, as proved by Johnstone et al. in [55], thus affecting the

classification performance. It has to be further noted that, when either the

training set cardinality or the input space dimensionality are high, several

classifiers cannot be applied for their high computational costs.

Despite the effectiveness of IPCAC, its performance is highly affected un-

der the above mentioned circumstances; for this reason, in this chapter we

propose its improvement to address these problems, that will be referred

as O-IPCAC (Online IPCAC). More precisely, in O-IPCAC two main improve-

ments have been defined: firstly, problems due to the high-dimensional data

are tackled by replacing the data whitening with a process that whitens the

data in a linear subspace πd = Span 〈v1, . . . ,vd〉 , d ≪ D, while maintain-

ing unaltered the information related to the orthogonal subspace (πd)
⊥ =

Span 〈vd+1, . . . ,vD〉; secondly, to cope with huge amount of training points

and with data dynamically supplied the classification algorithm has been

39

40 CHAPTER 4. O-IPCAC

designed to perform online/incremental training. As result, we obtain a

classifier that can deal with problems where N ≈ D, and both these values

are high.

We demonstrate the efficacy of our algorithm by employing it for the

classification of both synthetic and real datasets, and by comparing the

computed results with those achieved by other well-known methods.

The chapter is organized as follows: in Section 4.1 we briefly overview

related works that deal with the small sample size problem; in Section 4.2

the method to perform Incremental Singular Value Decomposition is sum-

marized; in Section 4.3 we present our method, called Online-IPCAC, and

its adaptive version that deals with problems where the probability distri-

bution underlying the data might change with time; in Section 4.4 we show

the results obtained by our method on different datasets and we compare it

with well-known batch and online classifiers; in Section 4.5 we present the

results achieved by O-IPCAC when it is applied for EEG data classification.

4.1 Related works

At the state of the art, many techniques based on FLDA have been proposed

to deal with high dimensional data and with the small sample size problem

(for a detailed review see [13]). We recall that, as mentioned in Section 3.2

this problem occurs when the number of training samples is lower than

the space dimensionality, hereby producing a singular within-class scatter

matrix ΣW . This makes it difficult to compute the set of projection vectors

spanning the Fisher subspace. In this section we briefly overview the most

important techniques that try to cope with the mentioned problem.

The first authors that tried to tackle the small sample size problem,

applied linear algebra techniques to solve the numerical problems due to

the singularity of the sample within-class covariance matrix. As an exam-

ple, in [92] the authors employ the pseudo inverse of the scatter matrix to

compute the Fisher subspace; alternatively, some researches [50, 103] recom-

mend the addition of a small perturbation to the within-class scatter matrix

so that it becomes nonsingular.

4.1. RELATED WORKS 41

Although interesting results have been reported in the above mentioned

works, the most promising and recent techniques employ a subspace ap-

proach. Among them, one of the most notable methods is a two-stage

PCA+FLDA [91, 3] that performs a first step to evaluate the Principal Compo-

nents used to project the point into a subspace where the sample within-class

scatter matrix is not degenerate; this allows to subsequently apply the FLDA

algorithm without any problem. The drawback of this method is due to the

fact that dimensionality reduction might discard important discriminative

information, thus decreasing the classification performance. As an exam-

ple, consider two classes with the shape of two parallel “pancakes” in ℜD,

i.e. two Gaussians that are spherical in D − 1 directions and narrow in

the last direction (see Figure 4.1), so that an hyperplane orthogonal to the

last direction separates the two. Under these circumstances, dimensionality

reduction through PCA would keep the directions of maximum elongation

while discarding the last direction. As a consequence, the result of the data

projection process would be a mixture of two completely overlapped Gaus-

sian distributions.

Chen et al. [13] proposed a different approach, which exploits the modi-

fied Fisher’s criterion presented by Liu in [60]. We recall that this Fisher’s

criterion (see Equation (3.9)) employs the total sample covariance matrix

(ΣTot = ΣBet+ΣW) as the divisor of the original Fisher’s criterion, instead

of merely using the within-class scatter matrix (ΣW).

In cases of nonsingular ΣW , Chen et al. compute the optimal discriminant

projection vectors according to [60], that is by selecting the eigenvectors

corresponding to the set of the largest eigenvalues of the matrix Σ−1
TotΣBet.

On the other side, when the small sample size problem occurs so that ΣW

(and hence ΣTot) is singular, the authors compute the Fisher subspace on

the points projected in the null space of ΣW . More precisely, if the rank of

ΣW is equal to r, the null space is the subspace Rnull ⊂ ℜD such that

Rnull = Span
〈
αi ∈ ℜD|ΣWαi = 0, i = 1, · · · , D − r

〉

Note that the existence of this space is guaranteed by the fact that r is

lower than the space dimensionality, D. Considering Q = [α1, · · · , αD−r],

then the transformation QQT can be used to transform all the vectors x

42 CHAPTER 4. O-IPCAC

Figure 4.1: Two classes with the shape of two parallel “pancakes”; they are
represented by two ellipsoids that are spherical along the Y and Z directions,
and narrow along the X axis. Discarding the direction of the lowest variance,
that is oriented along the X axis, the projected classes would be shaped as
two completely overlapped circles on the Y-Z plane.

from ℜD into its subspace Rnull. From the linear algebra it can be easily

proved that for each w ∈ Rnull then wTΣWw = 0, so that it would be

ΣTot = ΣBet. In this case, the authors note that the modified Fisher’s crite-

rion becomes equal to 1, that is its maximum, for each w ∈ Rnull such that

wTΣBetw 6= 0. However, a projection vector w ∈ Rnull satisfying the above

mentioned conditions cannot guarantee the maximum class separability, un-

less wTΣBetw is further maximized. Therefore, Chen et al. propose to

choose, as projection vectors, those vectors in the null space that maximize

the between-class scatter of the training samples transformed into Rnull.

This procedure is based on the authors’ observation that the null space of

ΣW carries the most of the discriminative information. Intuitively, choos-

ing projection vectors such that wTΣWw = 0 while wTΣBetw 6= 0 means

4.1. RELATED WORKS 43

that, when projected onto w, the within-class separation is abolished while

the between-class scatter is not. Obviously, this method has the effect of

increasing the classification performance. Nevertheless, the main drawback

of this technique is due to the fact that it does not consider any informa-

tion outside the null space of ΣW ; furthermore, it has some computational

limitations in managing large sample covariance matrices.

To overcome these limitations, Hua Yu and Jie Yang [54] proposed a “uni-

fied” PCA+FLDA, called D-FLDA, which simultaneously performs the two steps.

The key idea of this algorithm is to discard the null space of ΣBet, which

does not contain useful discriminative information, maintaining the infor-

mation contained in the null space of ΣW that, as proved by Chen, is the

most discriminative part. To this aim, the authors proposed to proceed in

the following order:

• diagonalize ΣBet, that is find a matrix V such that V TΣBetV = Λ,

V TV = I and Λ is a diagonal matrix sorted in decreasing order;

• diagonalize Y TΣWY , where Y is composed of the first columns of

V , and discard the largest eigenvalue/eigenvector pairs to keep the

information in the null space of ΣW .

Although this approach reverses the traditional procedure order, when ΣW

is not singular it is equivalent to PCA+FLDA [3]; otherwise, when ΣW is

singular the reversal in order makes a drastic difference.

Lu et al. in [63] noted that the performance of the technique proposed

by Hua Yu and Jie Yang deteriorates rapidly when the small sample size

problem becomes severe, since the insufficient number of training examples

makes it difficult to compute a reliable estimate of the null eigenvalues of

the within-class covariance matrix, and hereby its null space. Indeed, in

this case, both bias and variance affect the estimation of the within-class

covariance matrix. Firstly, the ΣW estimate produces biased estimated

eigenvalues, so that the largest ones are biased high and the smallest ones

are biased toward too low values. Secondly, the estimate of the null space

of ΣW can be highly unstable, giving rise to high variance. To solve this

problem, the authors proposed a new FLDA methodology (R-FLDA, [63, 64])

44 CHAPTER 4. O-IPCAC

based on a regularized Fisher’s discriminant criterion, that is:

J(W) =
W TΣBetW

ν(W TΣBetW) +W TΣWW
0 ≤ ν ≤ 1

which is equivalent to both D-FLDA and FLDA under particular configurations

of the regularization parameter ν. This method is inspired to the regularized

quadratic discriminant analysis proposed by Friedman [36], where a regu-

larization term is introduced to cope with highly ill-posed covariance matri-

ces. Friedman demonstrated that the regularization successfully decreases

the larger eigenvalues and increases the smaller ones, thereby counteracting

the biasing. Moreover, this technique stabilizes the smallest eigenvalues.

Indeed, experimental results presented in [63, 64] showed that the regular-

ization technique inspired to Friedman’s approach is more robust, against

the small sample size problem, than the D-FLDA technique.

We note that, although promising results have been obtained by the

above mentioned techniques, all of them do not consider the case where the

number, N , of training examples is approximately equal to the space dimen-

sionality (N ≈ D). In such circumstances, since it might be N > D, the

sample within-class covariance matrix is nonsingular but the sample covari-

ance matrix is still not a consistent estimator of the population covariance

matrix, as proved in [55]. Under this setting, the estimated null space

might not contain useful information, thus causing a drastic performance

decrease.

4.2 Incremental Singular Value Decomposition

In this section the method proposed by Brand [7] to incrementally perform

the singular value decomposition (SVD) is described in detail since it is used

in the rest of this chapter.

Given a real matrix X ∈ ℜD×N with rank d and economy SVD X =

UQV T , where Q in ℜd×d, Brand proposed [7] an identity for additive mod-

ifications of a SVD to reflect updates, shifts, downdates, and edits of the data

matrix, X. More precisely, considering two arbitrary matrices A ∈ ℜD×c

4.2. INCREMENTAL SINGULAR VALUE DECOMPOSITION 45

and B ∈ ℜN×c of rank c, he showed how to express the SVD of the sum:

X +ABT =
[
U A

]
[
Q 0
0 I

]
[
V BT

]
(4.1)

as modifications to U ,Q,V ; in this section we briefly recall the method

proposed by Brand.

Let P an orthogonal basis of the column-space of
(
I −UUT

)
A, and Q

an orthogonal basis of the column-space of
(
I − V V T

)
B; setting

RA = P T
(
I −UUT

)
A and RB = QT

(
I − V V T

)
B

we obtain:

X +ABT =
[
U P

]
K
[
V Q

]T
(4.2)

where the matrix K is:

K =

[
I UTAT

0 RA

] [
Q 0
0 I

] [
I V TBT

0 RB

]T

=

[
Q 0
0 0

]

+

[
UTA

RA

] [
V TB

RB

]T

(4.3)

which is usually small, highly structured, and sparse; if we diagonalize K

as U ′TKV ′ = Q′ we obtain the rotations U ′ and V ′ of the subspaces
[
U P

]
and

[
V Q

]T
. Reformulating Equation (4.3), the following identity

is obtained:

X +ABT =
([
U P

]
U ′)Q′ ([V Q

]
V ′)T (4.4)

that is the desired SVD.

Given the vector a ∈ ℜD and b ∈ ℜN , it can be useful to consider

m = UTa; p = a−Um; Ra = ‖p‖ ; P = R−1
a · p; and

n = V Tb; q = b− V n; Rb = ‖q‖ ; Q = R−1
b · q.

Under this setting, the diagonalisation problem of Equation (4.3) is simpli-

fied to:

[
Q 0
0 0

]

+

[
m

‖p‖

] [
n

‖q‖

]T

(4.5)

46 CHAPTER 4. O-IPCAC

Before After a bT

Update UQ
[

V T 0
]

=
[

X 0
]

U ′Q′V ′T =
[

X c
]

c [0, · · · , 0, 1]

Downdate UQV T =
[

X c
]

U ′Q′V ′T = X −c [0, · · · , 0, 1]

Recenter UQV T = X U ′Q′V ′T = X
(

I −
1

q
11T

)

−
1

q
X1 1T = [1, · · · , 1]

Table 4.1: The operations expressed as rank-1 modifications of an SVD, where
c is a vector in ℜp representing the modification element.

The method described in this section can be used for computing a thin

SVD of streaming data in a single pass with linear time complexity. In-

deed, considering a rank-d thin SVD of a D × N matrix, the necessary d-

modifications can be computed in O(dDN) time for d ≤
√

min(D,N).

In Table 4.2 we summarize the updating, downdating, and recentering op-

erations that are expressed as specializations of this scheme.

4.3 Online IPCAC

Given the matrix P ∈ ℜD×N , representing a training dataset P = PA ∪
PB, |P | = N = NA + NB, let α be the ratio D/N ; when α ≈ 1 the

performance of IPCAC (see Section 3.4) deteriorates dramatically since the

sample covariance matrix SN = 1
N−1PP T is not a consistent estimator of

the population covariance matrix Σ [55]. More precisely, assuming that

Σ = Σ∗ + σ2I, where Σ∗ has rank k < D and σ2I represents the contri-

bution of a zero mean Gaussian noise affecting the data, calling σ2 = λ1 =

. . . = λD−k−1 < . . . < λD the ordered eigenvalues of Σ, and denoting with

l1 < . . . < lD the ordered eigenvalues of SN , in [75] it is proved that only

the portion of the spectrum of Σ above σ2 +
√
α can be correctly estimated

from the sample. Furthermore, when α ≈ 1 the estimates of the smallest

eigenvalues li can be much smaller than the real ones, and the correspond-

ing estimated eigenvectors are uncorrelated with the real ones. These results

motivate our choice of improving IPCAC by obliging it to consider only the

largest eigenvalues; this is obtained by substituting the whitening step by a

“partial” whitening with respect to the first d ≤ D principal components of

4.3. ONLINE IPCAC 47

P , where d is a parameter to be set1.

To estimate the linear transformation W , which represents the partial

whitening operator, we apply the Truncated Singular Value Decomposition2

(TSVD, [46]), obtaining the low-rank factorization P ≃ UdQdV
T
d . The d

largest singular values on the diagonal of Qd, and the associated left singular

vectors, are employed to project the points in P on the subspace SPd

spanned by the columns of Ud, and to perform the whitening, as follows:

P̄Wd
= qdQ

−1
d P⊥SPd

= qdQ
−1
d UT

d P = WdP (4.6)

where qd is the smallest singular value of the points projected on SPd. Note

that, to obtain points whose covariance matrix best resembles a multiple of

the identity, we have chosen to set the value of the d largest singular values

to qd instead of 1, thus avoiding the gap between the d-th and the (d+1)-th

singular value.

The obtained matrix Wd projects and whitens the points in the linear

subspace SPd; however, dimensionality reduction might delete discrimina-

tive information, decreasing the classification performance as reported in [54]

(see Section 4.1 and Figure 4.1).

To avoid this information loss, we add to the partially whitened data the

residuals, R, of the points in P with respect to their projections on SPd:

R = P −UdP⊥SPd
= P −UdU

T
d P

P̄WD
= UdP̄Wd

+R

= UdWdP + P −UdU
T
d P

=
(
qdUdQ

−1
d UT

d + I −UdU
T
d

)
P

= WP

where W ∈ ℜD×D represents the linear transformation that whitens the

data along the first d principal components, while keeping unaltered the

information along the remaining components.

1We empirically chose d = min(log22 N,D) since our tests on synthetic data showed that
the generalization capability of O-IPCAC remains approximately maximal by employing
this value (see Section 4.3.2).

2Since the sample covariance matrix estimation is ΣN = 1

N−1
PP T , the eigen-

decomposition of ΣN = UΛUT is performed by calculating the SVD decomposition of P ,
that is P = UQV T (see Section 2.2.2); since PP T = UQ2UT and setting Λ = 1

N−1
Q2

we obtain ΣN = UΛUT .

48 CHAPTER 4. O-IPCAC

The Fisher subspace is then estimated by exploiting the whitened class

means, µA and µB, obtained by applying the partial whitening transform

to the class means in the original space µ̂A and µ̂B, as follows:

µA = Wµ̂A

=
(
qdUdQ

−1
d UT

d + I −UdU
T
d

)
µ̂A

= qdUdQ
−1
d UT

d µ̂A + µ̂A −UdU
T
d µ̂A (4.7)

The same calculation is done for µB. Using these quantities we estimate the

vector f spanning the Fisher subspace, as follows: f = µA−µB

‖µA−µB‖ . To classify

an unknown point p, we transform it with W , and we project it on f ; both

these steps are performed by the inner product w · p, where:

w = W Tf = qdU
T
d Q−1

d Udf + f −UT
d Udf (4.8)

Finally, given γ as in Equation (3.17), p is assigned to class A if w · p < γ,

to class B otherwise.

Notice that we never explicitly compute the matrix W , but we perform

the matrix times vector operations reported in Equations (4.7,4.8), thus

preventing a quadratic time and space complexity. After the training phase,

the classification model is represented by w and γ. The described method

is a batch classifier that will be referred as truncated IPCAC (TIPCAC) in the

following.

When the cardinality of the training set is too high, or when mini-batches

of training data Bk = BA,k ∪ BB,k are dynamically supplied, subsequent

training phases must be applied to update the classification model. To this

aim, TIPCAC has been extended to perform online/incremental training

by updating the following parameters:

Nk, NA,k, NB,k : number of training points seen until the k-th training

phase;

µk, µ̂A,k, µ̂B,k : the means employed to obtain the centered sets Pk, PA,k,

and PB,k respectively;

Udk ,Qdk ,Vdk : the SVD matrices related to Pk, truncated to dk principal

components;

4.3. ONLINE IPCAC 49

σA, σB : the standard deviations of the projections wT
k PA,k and wT

k PB,k.

Consider the case when k − 1 training phases have been performed and a

new mini-batch Bk is provided, where |Bk| = nk = nA,k + nB,k. Firstly,

we update Nk, NA,k, NB,k, µk, µ̂A,k, µ̂B,k, and we center the points in Bk

around the old mean: B̄k = {p − µk−1|p ∈ Bk}. Secondly, we update

the TSVD matrices 3 by means of the algorithm described in [7] and by

exploiting the information carried by B̄k, so that: P̄k ≃ U ′
dkQ

′
dk
V ′T

dk
,

where P̄k represents the set P̄k = Pk−1 ∪ B̄k. Finally, considering that the

updated TSVD matrices are related to the points P̄k that are centered on

µk−1, a re-centering operation is required to obtain TSVD matrices related

to points centered on µk; this is done by applying the re-centering rank-one

modification described in [7], choosing as translation the quantity n
N

〈
B̄k

〉
.

Given the updated means and TSVD matrices, we can:

• estimate the whitened means µA,k and µB,k by employing Equation (4.7);

• obtain the updated vector fk;

• compute the the new vector wk through Equation (4.8).

Notice that these computations require to store only O(Dnk + Ddk) real

values per mini-batch.

Regarding the update of the thresholding value γk we have not em-

ployed Equation (3.17), since it requires to store the whole training set, and

it is not able to handle unbalanced classes; therefore, we have chosen to set

the value of γk so that it corresponds to the point having the same Maha-

lanobis distance |ξ| from the projections of the mean vectors on the Fisher

subspace, computed as: µ̄A,k = fk · µA,k and µ̄B,k = fk · µB,k.

More precisely, we impose that µ̄A,k+ξ σA,k = µ̄B,k−ξ σB,k, where σA,k and

σB,k are the standard deviations of the projections of the whitened points

on fk. Defining γk = µ̄A,k + ξ σA,k we obtain:

γk = µ̄A,k +
σA,k (µ̄B,k − µ̄A,k)

σA,k + σB,k

3We underline that the number of retained components dk = min(log22 Nk, D) might
increase at each step, so that the rank of the computed TSVD matrices would grow accord-
ingly, up the maximum value D.

50 CHAPTER 4. O-IPCAC

Considering that σ2 = E
[
x2
]
−E [x]2, the employed quantities are updated

as follows:

µ̄A,k =
NA,k−1 µ̄A,k−1 + nA,k

〈
wT

k BA,k

〉

NA,k

µ̄2A,k−1 = E

[{(
wT

k p
)2 | p ∈ PA,k−1

}]

= µ̄2
A,k−1 + σ2

A,k−1

µ̄2A,k = E

[{(
wT

k p
)2 | p ∈ PA,k

}]

=
NA,k−1 µ̄2A,k−1 + nA,k

〈(
wT

k BA,k

)2
〉

NA,k

σA,k =
√

µ̄2A,k − µ̄2
A,k

where we have defined the set of real values

(
wT

k BA,k

)2
= {(wk · p)2|p ∈ BA,k}

The updated quantities µ̄B,k, µ̄2B,k, and σB,k are similarly evaluated.

After the k-th update of the classification model, the described online

algorithm approximates the Fisher subspace with respect to the points in

Pk, and these points will no longer be needed for future updates; therefore,

O-IPCAC performs only one pass through the data to compute its classifica-

tion model.

The computational cost of the training phase is dominated by the incre-

mental rank-d SVD that requiresO(DNd) operations for d ≤
√

min(N,D) [7].

Regarding the memory requirements, O-IPCAC stores O(Dnk+Ddk) real val-

ues during the training tasks, and only O(D) values during classification.

4.3.1 An Adaptive Version of OIPCAC

In this subsection we describe how to handle a probability distribution un-

derlying the data that changes with time; to this aim, we maintain the

information related to a fixed budget of the most recently supplied training

vectors in an on-line fashion, and suppress the information related to the

oldest training vectors.

As reported in [7], and explained in Section 4.2, given the following TSVD

decomposition:

Pk = [B1 · · ·Bk] ≃ UdQdV
T
d

4.3. ONLINE IPCAC 51

it is possible to update it to get a new TSVD decomposition:

ŪdS̄dV̄
T
d ≃ [B2 · · ·Bk+1] = Pk+1 (4.9)

such that the contributions given by the oldest points in B1 is inhibited, and

the information related to novel training vectors in Bk+1 is added.

To obtain an adaptive version of O-IPCAC we update the vector w by

employing Equation (4.8), and by using the updated TSVD matrices to per-

form the update, downdate, and recentering modifications proposed in Sec-

tion 4.2.

Subsequently, we need to modify the threshold γ through the updated means

µk+1,µA,k+1,µB,k+1, µ̄A,k+1, µ̄2A,k+1, µ̄2B,k+1, the updated standard devia-

tions σA,k+1, σB,k+1, and the Nk+1, NA,k+1, NB,k+1 values. We modify these

quantities both by considering the novel training vectors and by inhibiting

the information given by those in the oldest training mini-batch.

The update of Nk+1, NA,k+1, NB,k+1 is straightforward, while the other

quantities are computed as follows:

µk+1 =
Nkµ+NBk+1

µBk+1
−NB1

µB1

N +NBk+1
−NB1

µA,k+1 =
µA,kNA,k +NA,Bk+1

µA,Bk+1
−NA,B1

µA,B1

NA +NA,Bk+1
−NA,B1

µ̄A,k+1 =
NA,kµ̄A,k +NA,Bk+1

µ̄A,Bk+1
− nA,B1

µ̄A,B1

NA,k +NA,Bk+1
− nA,B1

µ̄2A,k+1 =
NA,kµ̄2A,k+1 +NA,Bk+1

µ̄2A,Bk+1
−NA,B1

µ̄2A,B1

NA,k +NA,Bk+1
−NA,B1

σA,k+1 =
√

µ̄2A,k+1 − µ̄2
A,k+1

where Bk+1 is the subscript referred to the new mini-batch of points, and B1

is the oldest training mini-batch that must be inhibited; moreover, N∗ are

the cardinalities, µ∗ are the means, µ̄A,∗ and σA,∗ are the projected means

and standard deviation on w. The updated quantities for the class B are

similarly evaluated.

4.3.2 Experiment to evaluate the d-Dimension

In this section we describe the experiment on synthetic datasets that we

performed to evaluate the relation between the classification performance of

52 CHAPTER 4. O-IPCAC

O-IPCAC and the number d of considered eigenvalues. We recall that O-IPCAC

considers only the largest eigenvalues, substituting the whitening step by a

partial whitening process that whitens the training vectors projected along

the first d ≤ D principal components, and keeps the remaining components

unchanged.

The points in the synthetic dataset have been randomly drawn from two

non-isotropic MGDs.

For each MGD, the mean vector coordinates were randomly selected in the

open interval (0, 1) according to the uniform distribution, and then multi-

plied by 0.01 to reduce the separation between the classes, while the co-

variance matrices were obtained by randomly generating both the positive

eigenvalues, and the orthonormal eigenvectors. More precisely, the eigenval-

ues were generated by employing the random generator for the uniform dis-

tribution, while the eigenvectors were drawn from the normal distribution,

and they were orthogonalized through the Gram-Schmidt orthogonalization

process.

By employing this generator we produced 100 datasets (Di = {xj}Nj=1,

i ∈ {1, · · · , 100}, xj ∈ ℜ500), each composed by 500-dimensional vectors

split into two classes with 250 points per class; we note that this datasets

are characterized by a ratio between the number of points and the space

dimensionality equal to one.

Under this experimental setting we could ascertain that the behavior of

the accuracy as function of d is described by the following equation:

F (d) =

∑100
i=1

(
1
10

∑10
k=1Accuracy

(
Dk

i (d)
))

100

where Accuracy
(
Dk

i (d)
)
is the accuracy achieved on the Di dataset in the

kth fold. In Figure 4.2 the results achieved are summarized. Note that

the performance of O-IPCAC is stable for each value of d that obliges the

whitening process to neglect the 50 smallest principal components. The

best results are achieved on the interval [70, 100] that contains the value

d = min(log22N,D); this experiment confirms the choice of d reported in Sec-

tion 4.3. We further note that a similar behavior was observed in large-scale

latent semantic indexing, as reported in [6].

4.4. RESULTS 53

0 50 100 150 200 250 300 350 400 450 500
0.45

0.5

0.55

0.6

0.65

0.7

Value of d

F
(d

)

Figure 4.2: Averaged results on 100 datasets employing 10−fold cross vali-
dation in function of the value of d.

4.4 Results

In the following we firstly describe the experimental settings (see Section 4.4.1),

and the tests performed on both synthetic data (see Section 4.4.2) and real

data (see Section 4.4.3 and Section 4.5). To test the efficacy of the pro-

posed techniques, we compare the obtained results to those computed by

well known classification methods. More precisely, we consider as base-line

algorithms the following batch algorithms: IPCAC, IPCACvar (IPCAC main-

taining a fixed amount of variance4), FLDA, and SVM. Furthermore, we com-

pare our method with base-line online methods that are: Perceptron [80],

Projectron and its improvement [72], Passive-Aggressive (PA-I, [27]), Online

Independent Support Vector Machines (OISVM, [71]), and the Second Order

Perceptron (SOP, [11]) implemented in [70]. Finally, in Section 4.4.6 we also

report the test that allowed us to compare the performance achieved by

OIPCAC and R-FLDA, when the test dataset has a cardinality which is lower

than the space dimensionality, hereby causing the small sample size problem

to occur.

For all the tested algorithms, we selected the linear kernel where needed,

and we tuned the other parameters by using the grid optimization with 10-

fold cross-validation on a randomly selected subset of the training data. All

4We maintained the 99% of the variance.

54 CHAPTER 4. O-IPCAC

the tested algorithms are implemented in MATLAB5.

4.4.1 Experimental Setting

To test the performances of our classifiers, we executed two kinds of evalu-

ation:

K-folding: we adopted this method to evaluate the performances of the

compared algorithms. When testing online algorithms, we executed

the training phase by performing iterative updates with the data con-

tained on K − 1 folds. To obtain a statistically significant evaluation,

for each classifier we estimated the classification accuracy for all the K

folds, and we executed R runs of K-folding permuting the data, thus

obtaining KR accuracies to be averaged.

Average Online Error rate: to assess the efficacy of online training algo-

rithms, we also evaluated the average online error. More precisely, for

each point pt given at time t, pt was at first used to test the classifier;

after classification, the evaluated average online error at time t was

computed as the cumulative mistakes divided by the total observed

instances:

Err(t) =

∑t
k=1 err(k)

t

where err(k) = 1 if the classifier has wrongly classified pk, err(k) = 0

otherwise. After the evaluation of Err(t), pt was employed to update

the classification model. This method is also called the learning curve

and let us compare the learning speed of O-IPCAC with that of the

other online classifiers.

4.4.2 Synthetic Datasets

The synthetic datasets, were generated employing the generator described

in Section 4.3.2.

By employing this generator we produced 2 datasets, each composed of

two classes with 1200 points per class in ℜ2000, thus maintaining the ratio

5For the SVM classifier we used a MATLAB wrapper to the library “libSVM” [12].

4.4. RESULTS 55

between the number of points and dimensions approximately equal to one.

Notice that the second dataset differs from the first one since we reduced

the distance between the classes by multiplying the class means by 0.05.

4.4.3 Real Datasets

The three real datasets employed for testing the proposed techniques are:

SpamAssassin: it is composed by 900 spam e-mails and 900 legitimate

e-mails, extracted from the SpamAssassin corpus [1]. As described

in Section 3.7, for each email we calculated an high dimensional, and

sparse feature vector containing the word occurrences with respect

to a dictionary composed by 87000 entries, and we applied the Term

Frequency-Inverse Document Frequency (TF-IDF) weighting schema.

Moreover, we employed the Latent Semantic Analysis (LSA) technique

to compute a sparse to dense projection matrix that maps the feature

vectors on a dense subspace, thus obtaining a set of 1800 points in

ℜ1004.

Hungarian heart diseases: it is composed by 294 feature vectors in ℜ13

extracted from the UCI machine learning repository [2]. More pre-

cisely, 106 points are related to patients affected by heart disease,

and 188 points are related to healthy patients. This is an interesting

dataset for at least two reasons. First of all, the probability distri-

bution underlying each class is strongly different from a MGD, so that

the results achieved on this dataset reflect the dependency of IPCAC

based classifiers from their base assumption. Secondly, this dataset is

very small compared with all the other datasets; this fact stresses the

learning speed of online algorithms.

Reuters Corpus Volume I: it is composed by 800000 manually catego-

rized newswire stories made available by Reuters for research purposes.

To obtain a two-class classification problem we defined the class A to

be the one containing all the documents tagged with the label Cor-

porate, whilst the class B contains all the other documents. From

the obtained dataset we randomly selected 23149 training vectors and

56 CHAPTER 4. O-IPCAC

199328 test vectors in ℜ47236, where 108809 points belong to class A

and 113668 belong to class B.

4.4.4 Experimental Comparison with Batch Algorithms

We evaluated O-IPCAC by testing it on the synthetic datasets, and on the

SpamAssassin and Hungarian heart diseases datasets, performing 10 runs

of 10-fold cross validation. Moreover, we compared its results with those

achieved by well-known batch methods.

Classifier Synth 1 Synth 2 SpamAssassin Hungarian

O-IPCAC 99.80% (±0.0030) 90.61% (±0.0174) 94.03% (±0.0152) 80.53% (±0.0709)

IPCACvar 97.50% (±0.0068) 83.28% (±0.0269) 94.61% (±0.0152) 66.44% (±0.0664)

IPCAC 82.23% (±0.0266) 58.01% (±0.0353) 86.44% (±0.0246) 81.33% (±0.0638)

FLDA 81.28% (±0.0279) 55.89% (±0.0332) 86.10% (±0.0218) 81.09% (±0.0623)

SVM 99.10% (±0.0037) 87.91% (±0.0220) 86.76% (±0.0244) 80.35% (±0.0692)

Table 4.2: Experimental results (accuracy%, (±std)) obtained by comparing
O-IPCAC with batch methods.

Observing the results shown in Table 4.2, we note that O-IPCAC outper-

forms the other methods on the synthetic datasets. In these tests, character-

ized by a ratio between the number of points and the space dimensionality

similar or smaller than one, SVM has a slightly worse performance, IPCAC

and FLDA are affected by serious decrease of the accuracy, whilst IPCACvar

suffers for the information loss caused by the dimensionality reduction step.

Considering the real datasets, IPCAC and FLDA achieve the best results

on the Hungarian dataset, where there is a sufficient amount of points with

respect to the space dimensionality. Note that, the results achieved on this

dataset are useful to demonstrate the importance of the residuals to maintain

all the discriminative information. Indeed, although more than the 99% of

variance is contained in the first 4 principal components, IPCACvar obtains

an accuracy of 66.44%. On the other side, O-IPCAC tested by applying 10-

fold cross validation with d = 4 obtained an higher accuracy (79.33% with

respect to the 66.44 obtained by IPCACvar). Finally, we can underline that,

when O-IPCAC is not the best performing classifier its results are anyway

comparable with the best ones.

4.4. RESULTS 57

The overall results confirm what follows:

1. performing the “full” whitening process, by employing also the eigen-

vectors related to the smallest eigenvalues of the covariance matrix,

might produce decrease of the classification performance when the ra-

tio between the space dimension and the cardinality of the training set

is approximately equal to one;

2. dimensionality reduction might produce information loss that affects

the classification results.

As shown by our tests, O-IPCAC demonstrates to be a good solution when

the ratio between the space dimensionality and the training set cardinality

is ≈ 1, since it does not apply any dimensionality reduction technique that

might discard discriminative information.

4.4.5 Experimental Comparison with Online Algorithms

To further evaluate the efficacy of O-IPCAC we compared it with well-known

online classifiers. Note that in these tests we employed also the Reuters

dataset. We note that this dataset has not been used to test the batch

algorithms since its high cardinality and high space dimensionality make

the application of several batch classifiers impractical.

To test the algorithms we applied 10 runs of 10-fold cross validation as

described in Section 4.4.1 and we plotted the curves of the average online

error.

Classifier Synth 1 Synth 2 SpamAssassin

O-IPCAC 99.80% (±0.0030) 90.61% (±0.0174) 94.03% (±0.0152)

PA-I 99.71 (±0.0037) 88.04% (±0.0200) 75.96% (±0.1168)

Perceptron 97.05 (±0.0106) 82.43% (±0.0256) 65.57% (±0.1149)

Projectron 96.88% (±0.0119) 82.64% (±0.0265) 64.03% (±0.1252)

Projectron++ 96.99% (±0.0124) 82.56% (±0.0278) 74.22% (±0.1183)

OISVM 99.70% (±0.0036) 88.32% (±0.0199) 88.33% (±0.0257)

SOP 97.17% (±0.0122) 82.13% (±0.0276) 91.48% (±0.0264)

Table 4.3: Experimental results (accuracy%, (±std)) obtained by employing
online algorithms.

58 CHAPTER 4. O-IPCAC

Classifier Hungarian Reuters

O-IPCAC 80.53% (±0.0709) 93.77% (±0.0038)

PA-I 53.06% (±0.1622) 91.19% (±0.0134)

Perceptron 54.41% (±0.1433) 87.66% (±0.0363)

Projectron 63.00% (±0.1045) 92.25% (±0.0061)

Projectron++ 60.37% (±0.1423) 88.85% (±0.0266)

OISVM 81.23% (±0.0673) —

SOP 78.47% (±0.0744) 91.22% (±0.0065)

Table 4.4: Experimental results (accuracy%, (±std)) obtained by employing
online algorithms.

100 400 700 1000 1.300 1.600
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
0.55

Number of Samples

A
ve

ra
ge

 O
nl

in
e

E
rr

or
 (

lo
g)

PA−I
SOP
Perceptron
Projectron
Projectron++
OISVM
OIPCAC

Figure 4.3: Average training error curves on SpamAssassin Corpus. Y axis
is in log scale.

As reported in Table 4.3 and Table 4.4, O-IPCAC obtains the best results

outperforming the other online techniques when tested on synthetic, Spa-

mAssassin, and Reuters datasets. Moreover, in our tests, OISVM failed to

manage the high cardinality and dimensionality of the Reuters dataset.

Considering the average online errors plotted in Figure 4.3 and Fig-

ure 4.4, it is possible to notice the different learning behavior of second or-

der methods and first order techniques. In fact, the second order algorithms

need a smaller number of training vectors to achieve good classification per-

formances. Nevertheless, with a huge amount of data, PA-I obtains good

results, as shown in Figure 4.5. Finally, it is important to underline that

O-IPCAC achieved the best learning speed on the Reuters and SpamAssasin

datasets, whilst OISVM outperforms our method on the Hungarian dataset

due to its high “non-Gaussianity”.

4.4. RESULTS 59

10 60 110 160 210 260 310

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55
0.6

0.65
0.7

Number of Samples

A
ve

ra
ge

 O
nl

in
e

E
rr

or
 (

lo
g)

PA−I
SOP
Perceptron
Projectron
Projectron++
OISVM
OIPCAC

Figure 4.4: Average training error curves on Hungarian dataset. Y axis is
in log scale. Note that the curves related to Perceptron, Projectron, and
Projectron++ are overlapped.

0 0.5 1 1.5 2 2.5

x 10
4

0.07

0.1

0.13

0.16

0.19

0.22

0.25

0.28

Number of Samples

A
ve

ra
ge

 O
nl

in
e

E
rr

or
 (

lo
g)

PA−I

SOP

Perceptron

Projectron

Projectron++

OIPCAC

Figure 4.5: Average training error curves on Reuters dataset. Y axis is in
log scale.

4.4.6 Comparison beetween R-FLDA and OIPCAC

R-FLDA was developed to deal with the small simple size problem; more

precisely, this method is more robust with respect to the other FLDA based

techniques, when the cardinality of the dataset is lower than its space di-

mensionality. For this reason, in this section we have compared O-IPCAC

with R-FLDA under this condition. To this aim, we have employed the same

generator described in Section 4.3.2 to generate two synthetic datasets with

two classes, where the points in each class are drawn from a randomly se-

lected non-isotropic MGD. The first dataset is composed of two classes with

600 points per class in ℜ2000, thus maintaining the ratio between number of

points and dimensionality approximately equal to one. The second dataset

60 CHAPTER 4. O-IPCAC

was produced reducing the distance between the classes of the first dataset,

multiplying the class means by 0.1

We have applied R-FLDA selecting the threshold by employing the Equa-

tion (3.17), and we have performed a grid optimization to empirically select

the best values of the required parameters.

Classifier Synth 1 Synth 2

O-IPCAC 77.67% (±0.0342) 74.92% (±0.0462)

R-FLDA 60.33% (±0.0560) 57.87% (±0.0542)

IPCAC 50.21% (±0.0678) 49.25% (±0.0556)

IPCACvar 71.75% (±0.0394) 70.92% (±0.0495)

Table 4.5: Experimental results (accuracy%, (±std)) obtained by comparing
O-IPCAC with R-FLDA employing synthetic datasets with cardinality lower
than dimensionality.

In Table 4.5 the obtained results are summarized, showing that O-IPCAC

obtains the best results, outperforming the other techniques; moreover, con-

sidering the accuracies achieved by R-FLDA it is possible to notice that our

method is more robust to the small sample size problem, and it does not

need a computationally expensive tuning phase.

4.5 A Real Application: EEG Classification

Recently EEG classification is raising a wide interest since it is the funda-

mental step of Brain to Computer Interface (BCI) systems, which are based

on the translation of brain activity into commands for computers. Although

a great deal of research work has been devoted to the task of EEG classifica-

tion, and several methods have been proposed in the literature (and reviewed

in [61]), the problem is still open. Indeed, the task of EEG classification is an

hard problem, since the two classes are often highly unbalanced, the selec-

tion of discriminative information is difficult, the data are high dimensional,

and the cardinality of the training sets is often lower than their dimension-

ality. To deal with these problems, feature extraction/selection techniques

are generally used to compute a small number of features representing the

data; unfortunately, this approach causes loss of discriminative information,

and might affect the classification accuracy. Note that, while dimensionality

4.5. A REAL APPLICATION: EEG CLASSIFICATION 61

reduction is exploited as the first pre-processing step of several EEG classifi-

cation systems [98], so that their performance mainly depends on the quality

of the used features, O-IPCAC can be applied on the raw data since it has

been developed to deal with high dimensional datasets whose cardinality is

lower than the space dimensionality.

The EEG dataset employed in this work has been distributed for the MLSP

2010 competition [48]; it consists in a multi-channel time-series containing

measures of brain electrical activity recorded while a subject viewed satellite

images. The classifier must analyze the brain activity to recognize those

images containing a predefined target.

The promising results achieved in the MLSP competition, and the compar-

ison with state-of-the-art methods, demonstrate the efficacy of our approach.

This section is organized as follows: in Section 4.5.1 the training EEG

data and the classification problem are described, in Section 4.5.2 the ex-

perimental setup is summarized, and the achieved results are reported.

4.5.1 Data Description and Pre-processing

The data used in our tests have been distributed by the organizers of the

MLSP 2010 competition for research purposes6, and consist of EEG brain

signals collected while the subject viewed satellite images and tried to detect

those containing a predefined target. There are 64 channels of EEG data,

the total number of samples is 176378, and the sampling rate is 256Hz.

During the EEG recording 2775 satellite images were shown, partitioned in

75 activation blocks with 37 images per block. All images within a block

were consecutively displayed for 100 ms (an “image trigger” is provided to

indicate the time samples corresponding to the on-set of each image). Each

block was initiated by the subject after a rest period, the length of which

was not specified in advance. The classifier must analyze the brain activity

to recognize those images containing the target.

Before applying OIPCAC we pre-processed each channel with a Gaussian

filter with cut-frequency of 2.2Hz, and we subtracted the filtered data from

the original one to obtain high-pass filtered signals. These signals were

6http://www.bme.ogi.edu/∼hildk/mlsp2010Competition.html.

62 CHAPTER 4. O-IPCAC

then used to extract 64 × 97 image blocks, where each image block starts

exactly 65 time samples (≈ 250ms) after the corresponding image trigger.

We underline that each image block covers a time window approximately

located between 250ms and 550ms after the image trigger, since this range

contains the P300 waves [76] and other possible brain activations [14]. The

extracted blocks are serialized in 2775 vectors in ℜ6208, since only 58 points

represent images with target, this dataset is highly unbalanced.

4.5.2 Experimental Results

In this section we consider both the results achieved in the MLSP 2010 com-

petition [48], and the tests we performed to compare O-IPCAC with state-

of-the-art online/incremental classifiers. It is important to underline that

the high dimensional EEG data considered in this work cannot be processed

(by 32 bits PCs) by most batch algorithms such as FLDA or SVM, due to

either too high memory requirements, or too long training time. On the

other side, online algorithms such as O-IPCAC can handle this problem since

they perform subsequent training phases on mini-batches of training data.

Therefore we compare our method with: Perceptron, Second Order Percep-

tron (SOP, [11]), Online Independent SVM (OISVM, [71]), Passive Aggressive

(PA, [27]), Alma [41], and Incremental FLDA (ILDA, [56])7. All the tested

algorithms are implemented in MATLAB8;

To evaluate the performance of our classifier comparing it with the other

methods, we employed the dataset described in Section 4.5.1, we computed

the Receiver Operating Characteristic (ROC) curve, and we estimated the

Area Under the Curve (AUC, see Appendix A). To obtain an unbiased evalu-

ation, we performed ten-fold cross validation, and we averaged the computed

sensitivity and specificity values.

Figure 4.5.2 and Table 4.5.2 show the obtained ROC curves and the AUC of

7To tune all the parameters of the employed algorithms we employed 2-fold cross vali-
dation, and we selected the configuration that achieved the best accuracy. Notice that for
the kernel methods (SOP, OISVM, PA, Alma) the best results are achieved by choosing the
linear kernel.

8For the SVM classifier we used a MATLAB wrapper to the library “libSVM” [12];
for all the online algorithms, except ILDA, we used a MATLAB implementation called
dogma [70], while for ILDA based classifier we have used the authors’ implementation
avaible at http://mi.eng.cam.ac.uk/∼tkk22/code.htm.

4.5. A REAL APPLICATION: EEG CLASSIFICATION 63

Figure 4.6: ROC curves

the tested classifiers; it can be noted that O-IPCAC achieves the best results.

Furthermore, these results demonstrate that the first order techniques (Per-

ceptron, Alma, and PA) cannot discriminate the two classes, while O-IPCAC,

SOP, and OISVM, which are second order techniques, achieve good results.

Note that ILDA, despite being a second order method, obtains bad results

since it is not able to manage datasets whose cardinality is lower than their

dimensionality. We underline that our method is able to handle strongly

unbalanced classes thanks to the thresholding method based on the Maha-

lanobis distance that avoids any experimental setup.

Regarding the MLSP competition, the organizers have evaluated the var-

ious approaches by employing a test set that differs from the previously

described training set (see Section 4.5.1). Indeed, during the experiments

performed to acquire the test data, different image durations (50ms, 100ms,

150ms, and 200ms) are used in different activation blocks. While the train-

ing set was distributed by the MLSP organizers, the test set was not.

In the MLSP competition the efficacy of the proposed approaches were

evaluated by estimating the ROC curves, and comparing the AUCs. Our al-

gorithm covered the 80% of the AUC, ranking seventh among the 35 partic-

ipants [48]. It is worth noting that the first 10 algorithms have very close

classification performance (between 82% and 79%). Among the methods

participating to the competition, those based on FLDA achieved the best av-

64 CHAPTER 4. O-IPCAC

Classifier AUC

O-IPCAC 0.9541

OISVM 0.8766

SOP 0.8479

ILDA 0.5315

Alma 0.5110

PA 0.4835

Perceptron 0.4507

Table 4.6: AUC per classifier

erage result (70%), overcoming methods based on SVM, Neural Networks,

and Linear Logistic. Considering that we performed just an high-pass fil-

tering as pre-processing step, avoiding any kind of bootstrap aggregating

technique, we believe that the achieved results are very promising, and they

confirm the good quality of the proposed classifier and its capability to

manage classification problem where the dataset cardinality is smaller than

the space dimensionality, solving the Small Sample Size problem mentioned

in Section 3.2.

4.6 Conclusion

In this chapter we described the Online-IPCAC linear binary classifier (O-IPCAC),

an efficient and effective method that performs a “partial” whitening step re-

covering the residuals. More precisely, the data whitening has been replaced

by a process that whitens the data in a linear subspace πd = Span 〈v1, . . . ,vd〉 , d ≪
D, while maintaining unaltered the information related to the orthogonal

subspace (πd)
⊥ = Span 〈vd+1, . . . ,vD〉.

O-IPCAC has been developed to deal with: high dimensional data, clas-

sification problems where the cardinality of the point set is high or the data

are dynamically supplied, and highly unbalanced training sets whose cardi-

nality is lower than the space dimensionality.

This technique reduces the effect of small sample size problem and, unlike

previous approaches, it considers the case where the number, N , of training

examples is approximately equal to the space dimensionality (N ≈ D). In

such circumstances the sample covariance matrix is nonsingular but it still

4.6. CONCLUSION 65

is not a consistent estimator of the population covariance matrix, as proved

in [55].

The classification results achieved by O-IPCAC are promising and they

outperform those obtained by well-known methods.

66 CHAPTER 4. O-IPCAC

Chapter 5

Kernel-IPCAC and
Perceptron-IPCAC

The classification algorithms proposed in the previous chapters are promis-

ing, but they cannot deal with non-linearly separable classes; to overcome

this weakness, in this chapter we present two improvements of IPCAC.

At first we present a method called Kernel-IPCAC (K-IPCAC) and its

variants (K-IPCACvar and K-TIPCAC), which are kernel versions of IPCAC

exploiting the kernel trick.

Although effective, these classifiers are based on assumptions about the

probability distribution function (pdf) underlying the data, so that their

performance decrease when the considered dataset does not fulfill the re-

quired assumptions. More precisely, IPCAC and their kernel versions cannot

cope with the more general case of classes whose underlying pdf is multi-

modal. To solve this problem, classifiers assuming mixtures of components

as class conditional pdf have been proposed two decades ago, and they have

been studied by few researchers [73, 37, 42]. To our knowledge, the most

important works in this field, which are also related to our approach, are

those by Grim et al.; they are exhaustively summarized in [42]. In their

work, the authors design probabilistic neural networks (PNNs [4]) by assum-

ing that the class conditional distributions are finite mixtures of product

components. In particular, they employ a training dataset for each class,

estimating the mixture parameters by means of Expectation Maximization

(EM, [4]). Furthermore, considering that EM computes mixture parameters

closely related to the training data, and that these parameters uniquely de-

67

68 CHAPTER 5. K-IPCAC AND P-IPCAC

termine the performance of the PNNs, in [42] the authors define a way to

adapt the network weights to a specific input, and a method to adapt the

input to a more probable form. Although the computational cost of the pro-

posed method is too high to be applied in several real problems, the formal

proofs reported in [42] are interesting.

For this reason, in Section 5.4 we define a technique, called Perceptron-

IPCAC (P-IPCAC), that exploits a similar, but more simpler, idea; indeed, this

method employs a neural network to combine different trained linear (IPCAC)

classifiers to address classification problems where each class conditional

distribution is approximated by one Mixture of Gaussians (MoG). Although

this assumption is less general than that of Grim et al., experimental results

have shown that the developed method deals efficiently also with real data

whose underlying distribution is not a MoG.

This chapter is organized as follows: in Section 5.1 related works are

reported; in Section 5.2 K-IPCAC and its improvements are described in

details; in Section 5.3 the performances achieved by K-IPCAC on the Spam

Assassin datasets are reported; in Section 5.4 P-IPCAC is explained in details;

in Section 5.5 experimental results confirming the efficacy of this method are

shown.

5.1 Related Works

In this section we summarize the Kernel Principal Component Analysis

(see Section 5.1.1) and the Kernel Fisher Discriminant (see Section 5.1.2),

which are the kernel versions of PCA and FLDA, respectively. For this reason,

they are strongly related to the kernel version of IPCAC.

5.1.1 Kernel Principal Component Analysis

PCA uses only second order statistics in the form of covariance matrix, so

that the best it can do is to fit an ellipsoid around the data. Kernel Princi-

pal Component Analysis (KPCA, [85]) is an attractive method for extracting

non-linear features from a given set of multivariate data. While Principal

Component Analysis finds the best ellipsoidal fit for the data, KPCA has the

5.1. RELATED WORKS 69

capability of extracting the non-linear features which could represent the

data more naturally (see Figure 5.1).

Figure 5.1: Two dimensional example illustrating KPCA. This example shows
the kernel principal components compared to the principal components.

70 CHAPTER 5. K-IPCAC AND P-IPCAC

The essential idea of KPCA is to employ a non linear mapping to project

data points into a higher dimensional (possibly infinite) space, where they

are represented with non linear features that better describe their peculiar-

ities.

To this aim, the kernel trick [94] is employed since it mitigates the

growth of complexity due to the high dimensionality mapping. The kernel

trick is based on the Mercer’s theorem, which states that any continuous,

symmetric, positive semi-definite kernel function k(x,y) can be expressed

as a dot product in an high dimensional space. More specifically, if the

arguments to the kernel are in a measurable space QD, and if the kernel

is positive semi-definite, i.e.
∑

i,j k(xi,xj)cicj ≥ 0 for any finite subset

{x1, · · · ,xn} of QD and any real numbers {c1, · · · , cn}, then a map φ :

QD → Qh
φ must exist, whose range is in an inner product space of possibly

high dimension, such that

k(x,y) = φ(x) · φ(y).

The kernel trick transforms any algorithm that solely depends on the dot

product between two vectors in an euclidean space ℜD in an equivalent

algorithm operating in the inner product space Qh
φ implicitly defined by the

kernel function k(·, ·), that is the range of the map φ. Notice that once we

have this mapping KPCA is nothing but Linear PCA done on the points in the

higher dimensional space. To this aim, wherever a dot product is used in

the linear algorithm of interest, it can be replaced with the kernel function,

to obtain a linear algorithm operating into a non-linear space. Note that,

the range space of φ may be very high or even infinite dimensional, this is

the reason why the φ map is never explicitly computed.

GivenN data points in ReD let x1,x2, · · · ,xN beD-dimensional column

vectors representing them, the algorithmic steps of KPCA could be summa-

rized as follows:

1. Subtract the mean from all the data points.

2. Choose an appropriate kernel k(·, ·).

3. Calculate the N ×N Gram matrix K = [k (xi,xj)]ij , by applying the

kernel operator to the data points.

5.1. RELATED WORKS 71

4. Compute the centered Gram matrix:

K̃ =

(

I − 1N×N

N

)T

K

(

I − 1N×N

N

)

where 1N×N is an N ×N matrix with all entries equal to 1.

5. Diagonalize K̃ to get its eigenvalues Λ = diag(λ1, · · · , λn) and eigen-

vectors A = [α1, · · · ,αn].

6. Normalize the eigenvectors Â = [α̂i]
N
i=1 =

[
αi√
λ

]N

i=1
.

7. The c eigenvectors retained by KPCA correspond to c largest eigenvalues

such that
∑c

j=1 λj
∑N

j=1 λj
equals the desired variance to be captured.

8. Project the data points on the eigenvectors

y = ÂT

(

I − 1N×N

N

)








k (x1,x)
· · ·

k (xN ,x)



−K
1N×1

N





where 1N×1 is an N × 1 vector with all entries equal to 1.

9. Use the projections y instead of the data points.

5.1.2 Kernel Fisher Discriminant

As described in Section 3.2, the FLDA algorithm cannot cope with non-

linearly separable classes; to overcome this limitation, in [66] the Kernel

Fisher Discriminant (KFD) algorithm, is proposed exploiting the kernel trick

to perform FLDA in a kernel space.

Consider a non invertible map φ : QD → Qh
φ which maps points from

the input euclidean space ℜD to an higher-dimensional inner-product space

Qh
φ, the FLDA algorithm can be applied in Qh

φ to the training points mapped

through φ. Considering the two-class case, we call the following quantities

respectively between and within-class scatter matrix in Qh
φ:

S
φ
Bet = (mφ

b −mφ
a)(m

φ
b −mφ

a)
T (5.1)

S
φ
W =

NA∑

n=1

(φ(xn)−mφ
a)(φ(xn)−mφ

a)
T

+

NB∑

n=1

(φ(xn)−m
φ
b)(φ(xn)−m

φ
b)

T (5.2)

72 CHAPTER 5. K-IPCAC AND P-IPCAC

where m
φ
a = 1

NA

∑NA

i=1 φ(x
a
i), m

φ
b = 1

NB

∑NB

i=1 φ(x
b
i) are the means of class

A and B in the space Qh
φ, NA and NB are the cardinality of class A and

class B, and N = NA +NB.

The computation of the projection vector w by applying FLDA in Qh
φ is

equivalent to solving the following maximization problem:

J(w) =
wTS

φ
Betw

wTS
φ
Ww

(5.3)

To find the Fisher Subspace in Qh
φ, we need to reformulate the Equa-

tion (5.3) in terms of dot products between input points, so that they can be

replaced by some kernel function. In [67] the authors show that any solution

of w ∈ Qh
φ can be written as an expansion of the form:

w =

N∑

i=1

αiφ(xi). (5.4)

Using the definition of mφ
a , m

φ
b , and the Equation (5.4) we obtain:

wTmφ
a =

1

NA

N∑

i=1

NA∑

k=1

αik(xi,x
a
k) = αTMA. (5.5)

wTm
φ
b =

1

NB

N∑

i=1

NB∑

k=1

αik(xi,x
b
k) = αTMB. (5.6)

where k(·, ·) is the kernel function, and we have set:

(MA)i =
1

NA

NA∑

k=1

k(xi,x
a
k) (MB)i =

1

NB

NB∑

k=1

k(xi,x
b
k)

replacing the dot products by the kernel function.

Considering the numerator of Equation (5.3), and using the definition of

S
φ
Bet and Equations (5.5,5.6), we can reformulate:

wTS
φ
Betw = αTMα (5.7)

where M = (MA −MB)(MA −MB)T .

Similarly for the denominator:

wTS
φ
Ww = αTNα (5.8)

5.2. KERNEL IPCAC 73

where N = Ka(I − La)K
T
a +Kb(I − Lb)K

T
b . Notice that Ka is the N ×

NA matrix with (Ka)nm = k(xn,x
a
m), I is the identity matrix, La is the

matrix with all entries N−1
A , and the corresponding quantities for class B

are similarly evaluated.

Combining the Equations (5.7,5.8) we can find the Fisher subspace in

Qh
φ by maximizing:

J(α) =
αTMα

αTNα

As explained in Section 3.2, the solution vector, w, is the leading eigenvector

of N−1M , and the projection of a new point x onto w is performed by

computing:

w · φ(x) =
N∑

i=1

αik(xi,x).

5.2 Kernel IPCAC

To relax the linear separability constraint, imposed by the IPCAC algorithm,

it is possible to exploit the kernel trick as in the Kernel Principal Component

Analysis, thus obtaining a Kernel Isotropic Principal Component Analysis

Classifier (K-IPCAC).

The main idea is that the classes to be separated are non-linearly sep-

arable in the original space QD ⊆ ℜD, but it is possible to map the N

training points pi ∈ P̂ in a higher dimensional space Qh
φ where the classes

are linearly separable; this is done through a non-invertible map φ(·), that is
φ(pi) ∈ Qh

φ. The generated points are then used to compute the PCA in Qh
φ,

thus obtaining a set of N̄ ≤ N relevant principal components {xk}N̄k=1 ∈ Qh
φ;

the subspace spanned by the vectors {xk}N̄k=1 is the KPCA subspace where

the vectors φ(pi) must be finally projected.

In [85] the authors prove that it is possible to compute a weight matrix

A = {αik}N,N̄
i,k=1 that allows to calculate the projection of a point φ(p) on

the principal components {xk}N̄k=1. To this aim, it is firstly assumed that

the mapped points φ(pi) are mean centered in Qh
φ; in this case the following

steps must be performed:

1. compute the design (Gram) matrix K = {Kik}Ni,k=1 with Kik =

k(pi,pk), where the points {pi}Ni=1 are training vectors, and k(pi,pk)

74 CHAPTER 5. K-IPCAC AND P-IPCAC

is the kernel function that allows to compute the dot product of φ(pi)

and φ(pk);

2. compute the eigen-decomposition K = ĀΛ̄ĀT , and remove even-

tual zero-variance components obtaining the new decomposition K =

ÃΛ̃ÃT , where N̄ components are retained;

3. compute the weight matrix A = ÃΛ̃− 1
2 .

Having computed A, the generic point φ(p) ∈ Qh
φ can be projected on

{xk}N̄k=1 as:

xk · φ(p) =
N∑

i=1

αikφ(pi) · φ(p) =
N∑

i=1

αikk(pi,p) (5.9)

When the training points φ(pi) are not mean centered in Qh
φ, the algo-

rithm described above cannot be directly applied; therefore, as shown in [85],

to calculate A the mean centered matrix K̃ must be employed instead of

K. K̃ is obtained as follows:

K̃ = K − 1NK −K1N + 1NK1N (5.10)

where 1N = {N−1}Ni,k=1.

Exploiting these theoretical results, we derived a method to compute

the Fisher subspace on training data projected on the KPCA subspace. To

describe our method we start by considering a training set mean centered

in Qh
φ, and noting that Equation (5.9) can be restated in matrix form as:

{xk · φ(p)}N̄k=1 = AT {k(pi,p)}Ni=1 = ATK(p)

The first step of our method obtains the isotropic components of each train-

ing point pi, by using as scaling factor the inverse square root of the diagonal

elements λk of Λ (where Λ = Λ̃N−1 as shown in [85]), that is:

{λ− 1
2

k xk · φ(p)}N̄k=1 = Λ− 1
2ATK(p) (5.11)

5.2. KERNEL IPCAC 75

Next, we represent the projection of the training points P̂ ⊂ QD on the

principal components {xk}N̄k=1 ⊂ Qh
φ with a matrix Pφ obtained as follows:

Pφ = {λ− 1
2

k xk · φ(pi)}N,N̄
i,k=1

= Λ− 1
2ATK

= (Λ̃N−1)−
1
2 (ÃΛ̃− 1

2)T (ÃΛ̃ÃT)

= N
1
2 Λ̃− 1

2 Λ̃− 1
2 ÃT ÃΛ̃ÃT = N

1
2 ÃT (5.12)

being ÃT Ã = I for the orthogonality of Ã.

Finally, the Fisher subspace is calculated by employing the cluster means

of the points represented by the columns of Pφ.

To relax the hypothesis about mean centering of the training points in

Qh
φ, we consider the projections of the centered points {φ(pi)−µφ}Ni=1, and

we exploit the result reported in Equation (5.10). More precisely, calling

µφ = N−1
∑

iφ(pi) the mean of the training points mapped in Qφ, we

compute the matrix Pφ as follows:

Pφ =

{

λ
− 1

2

k xk · (φ(pi)− µφ)

}N,N̄

i,k=1

(5.13)

=







∑

j

λ
− 1

2

k αik(φ(pi)− µφ) · (φ(pj)− µφ)







N,N̄

i,k=1

=







∑

j

λ
− 1

2

k αik (φ(pi) · φ(pj))







N,N̄

i,k=1

−







∑

j

λ
− 1

2

k αik (φ(pi) · µφ)







N,N̄

i,k=1

−







∑

j

λ
− 1

2

k αik (µφ · φ(pj))







N,N̄

i,k=1

+







∑

j

λ
− 1

2

k αik (µφ · µφ)







N,N̄

i,k=1

= Λ− 1
2AT (K − 1NK −K1N + 1NK1N)

= Λ− 1
2AT K̃ = N

1
2 Λ̃− 1

2 Λ̃− 1
2 ÃT ÃΛ̃ÃT = N

1
2 ÃT

76 CHAPTER 5. K-IPCAC AND P-IPCAC

Note that K̃ = ÃΛ̃ÃT 6= K, and the result reported in Equation (5.13) is

the same as that reported in Equation (5.12) .

Assuming that the first NA column vectors Pφ|1..NA
of Pφ belong to

class A, and that the remaining column vectors Pφ|NA+1..N belong to class

B, and noting that these points are whitened through the KPCA algorithm,

it is possible to use them for a direct Fisher subspace estimation. To this

aim, we must compute the quantities:

µAφ = 〈φ(pi)− µφ〉NA

i=1

µBφ = 〈φ(pi)− µφ〉Ni=NA+1

and their difference:

F̄ = 〈φ(pi)− µφ〉NA

i=1 − 〈φ(pi)− µφ〉Ni=NA+1

= Pφ|1..NA

(

N−1
A · · ·

︸ ︷︷ ︸

NA times

0 · · ·
︸︷︷︸

NB times

)T

−Pφ|NA+1..N

(

0 · · ·
︸︷︷︸

NA times

N−1
B · · ·

︸ ︷︷ ︸

NB times

)T

= Pφ

(

N−1
A · · ·

︸ ︷︷ ︸

NA times

−N−1
B · · ·

︸ ︷︷ ︸

NB times

)T

= N
1
2 ÃTN−1

A|B

where we have defined N−1
A|B =

(

N−1
A · · ·

︸ ︷︷ ︸

NA times

−N−1
B · · ·

︸ ︷︷ ︸

NB times

)T

.

The vector F̄ must be normalized; its norm is:

‖F̄ ‖ =
∥
∥
∥N

1

2 ÃTN−1

A|B

∥
∥
∥ = N

1

2

∥
∥
∥N

−1

A|B

∥
∥
∥

= N
1

2

√

NA

(
N−2

A

)
+NB

(
N−2

B

)
= N(NANB)

− 1

2

thus, the Fisher subspace can be computed as follows:

F =
F̄

‖F̄ ‖ = N− 1
2 (NANB)

1
2 ÃTN−1

A|B (5.14)

In particular, if NA = NB we get:

F =
F̄

‖F̄ ‖ = N− 1
2 ÃT

(
1 · · ·
︸︷︷︸

NA times

−1 · · ·
︸ ︷︷ ︸

NB times

)T

5.2. KERNEL IPCAC 77

Given a testing point p, we must compute its projection on F ; to this

aim we use Equation (5.11) and Equation (5.14):

projF (p) =
(

Λ− 1
2ATK(p)

)T

(F)

=
(

K(p)T ÃΛ̃− 1
2 Λ̃− 1

2N
1
2

)(

N− 1
2 (NANB)

1
2 ÃTN−1

A|B

)

= K(p)T
(

(NANB)
1
2 ÃΛ̃−1ÃTN−1

A|B

)

︸ ︷︷ ︸

w

= K(p)Tw

Note that, since the weight vector w can be precomputed at training time,

the classification algorithm is similar to that obtained by Equation (3.16),

that is w ·K(p) > γ, where the thresholding value γ is estimated using the

same algorithm proposed for IPCAC through Equation (3.17).

The obtained classifier requires, for each testing point, only N kernel

function evaluations more than the IPCAC algorithm, thus remaining very

simple and efficient.

5.2.1 K-IPCAC Retaining Variance

In [102] the authors analyze the kernel Fisher discriminant method, demon-

strating that it is equivalent to KPCA plus Fisher linear discriminant analysis.

Based on this result, they proposed a different KFD algorithm based on a first

step of KPCA followed by LDA for a second feature extraction in the KPCA-

transformed space. K-IPCAC offers a similar representation, guaranteeing a

methodology that reduces the time and space requirements.

Furthermore, to reduce the problems of overfitting that affect the kernel

methods it is possible to retain only a percentage of the variance expressed

by the eigenvalues (and the correlated eigenvectors) calculated during the

diagonalization of the Gram-matrix 1 (see step 2 in Section 5.2), thus per-

forming a kind of dimensionality reduction in the inner-product space and

maintaining only the largest part of the spectrum that is less affected by the

noise. This approach (called K-IPCACvar) allows to achieve better results

1This step is performed by retaining the d eigenvectors corresponding to the d largest

eigenvalues such that
∑d

j=1
λj

∑
N
j=1

λj
equals the desired variance to be captured.

78 CHAPTER 5. K-IPCAC AND P-IPCAC

during the classification task, as it is confirmed by the experimental results

reported in Section 5.3.2.

5.2.2 Kernel Truncated IPCAC

In Section 5.2 we prove that a given point p can be projected on Fs in the

kernel space as follows:

projF (p) = K(p)T
(

(NANB)
1
2 ÃΛ̃−1ÃTN−1

A|B

)

︸ ︷︷ ︸

w

= K(p)Tw

where K(p) = {KerFunction(pi,p)}Ni=1 is the vector of the kernel val-

ues computed between the point p and the set of the training points pi,

N is the cardinality of the training set, NA and NB are the cardinali-

ties of the two classes, Λ̃ are the eigenvalues obtained by the decomposi-

tion of the kernel matrix, Ã are the associated eigenvectors, and N−1

A|B =
(

N−1

A · · ·
︸ ︷︷ ︸

NA times

−N−1

B · · ·
︸ ︷︷ ︸

NB times

)T

. We extend this method by exploiting the same con-

cept at the basis of the algorithm presented in Section 4.3, where we consider

N points in ℜD (N/D ≈ α ≈ 1) and we avoid any dimensionality reduction

technique, by applying a method to whiten the data in the linear subspace

πd = Span 〈v1, · · · ,vd〉, spanned by the first d ≪ D principal components,

while maintaining unaltered the information related to the orthogonal sub-

space (πd)
⊥ = Span 〈vd+1, · · · ,vD〉. More precisely, in this case we select the

largest eigenvalues that represent a fixed amount of variance defined a-priori

(as in Section 5.2.1), and we set the remaining part of the spectrum to 1;

this process reduces the overfitting problems produced by the smallest part

of the spectrum without loosing any kind of information. The advantages of

employing this modified version of K-IPCAC, called K-TIPCAC, are supported

by our experimental results reported in Table 5.3.

5.3 Experimental Results

In this section we at first evaluate the performance of K-IPCAC by applying

it to the task of Spam message classification (see Section 5.3.1); this ex-

periment allows to compare the achieved results to those obtained by well

known classifiers. Secondly, in Section 5.3.2, we employ a synthetic dataset

5.3. EXPERIMENTAL RESULTS 79

to compare the performances of K-IPCAC, K-TIPCAC, and K-IPCACvar when

the cardinality of the training set is approximately equal to the space di-

mensionality, and the data are drawn from two MGDs.

5.3.1 Experiments on the Spam Classification

To evaluate the effectiveness of K-IPCAC2 we test it on the Spam classifi-

cation problem described in Section 3.7, employing the same dataset and

performing the same preprocessing steps3.

Experiment# Classifier Accuracy (std) Precision Recall

Exp1

KNN 95.499 (0.759) 95.922 95.028

IPCACvar 96.817 (0.279) 96.250 97.430

SVM 97.116 (0.213) 96.234 98.057

K-IPCAC 97.566 (0.139) 96.535 98.548

Exp2

KNN 95.449 95.113 95.927

IPCACvar 95.05 93.901 96.374

SVM 97.001 95.958 98.133

K-IPCAC 96.917 95.447 98.533

MM-IPCAC 98.350 97.387 99.367

Table 5.1: Experimental results on the emails belonging to TREC corpus.

Experiment# Classifier Accuracy (std) Precision Recall

Exp1

KNN 96.278 (0.379) 96.773 95.777

IPCACvar 97.444 (1.002) 97.608 97.333

SVM 98.444 (0.602) 98.148 98.778

K-IPCAC 98.889 (0.181) 98.569 99.222

Exp2

KNN 91.222 96.932 85.111

IPCACvar 90.167 93.280 86.667

SVM 93.611 96.444 90.556

K-IPCAC 93.222 94.209 92.111

MM-IPCAC 98.222 98.329 98.111

Table 5.2: Experimental results on the emails belonging to SpamAssassin
corpus.

Results reported in Tables 5.1 and 5.2 are commented below:

Experiment 1: on both corpuses K-IPCAC outperforms the other classi-

fiers, thus proving that it is the best performing classifier when a single

2In these experiments we employ the base algorithm, with a RBF kernel suitably tuned.
3All the tested algorithms are implemented in Python as described in Section 5.3.1.

80 CHAPTER 5. K-IPCAC AND P-IPCAC

training set is available.

Experiment 2: on both corpuses the results show that our MM-IPCAC tech-

nique is promising, since it outperforms all the other algorithms.

Note that, on the TREC corpus (see Table 5.1), the best accuracy over

both the experiments is achieved by the MM-IPCAC algorithm; instead, on the

SpamAssassin corpus (see Table 5.2) K-IPCAC obtains the best results, while

MM-IPCAC obtains anyway a good performance. Moreover, when Experiment

1 is run on both the corpuses, K-IPCAC seems to be the most reliable classifier

since it achieves the smallest standard deviation of the accuracy parameter.

These experiments confirm the effectiveness of the proposed algorithm,

that overcomes the SVM classifier in all the performed tests.

5.3.2 Experimental Comparison between K-IPCAC, K-TIPCAC

and K-IPCACvar

To compare the algorithms proposed in Section 5.2 we have generated three

synthetic datasets in ℜ500. Each dataset is composed by two classes whose

points were drawn from 4 MGDs per class. Each MGD is an isotropic Gaussian

with standard deviation e = 1.

The MGD means of the first class were set to:

• (0, . . . , 0)T : a vector with 500 zeros;

• (1, . . . , 1, 0, . . . , 0)T : a vector with 250 ones and 250 zeros;

• (0.5, . . . , 0.5,−1, . . . ,−1)T : a vector with 250 values fixed to 0.5 and

250 values fixed to −1;

• (0.5, . . . , 0.5, 1, . . . , 1)T : a vector with 250 values fixed to 0.5 and 250

ones.

The means of the MGDs used for the second class were:

• (1, . . . , 1)T : a vector with 500 ones;

• (1, . . . , 1,−1, . . . ,−1)T : a vector with 250 ones and 250 values fixed to

−1;

5.3. EXPERIMENTAL RESULTS 81

• (0, . . . , 0, 1, . . . , 1)T : a vector with 250 zeros and 250 ones;

• (0, . . . , 0,−1, . . . ,−1)T : a vector with 250 zeros and 250 values fixed

to −1.

All the three datasets are balanced and they differ for the cardinality

of the training set. More precisely, Dataset1 is composed by 1000 points

per class (250 points are drawn from each MGD), Dataset2 is composed by

500 points per class (125 points are drawn from each MGD), and Dataset3

is composed by 200 points per class (50 points are drawn from each MGD).

These datasets were employed to compare the results computed by K-IPCAC,

K-IPCACvar, and K-TIPCAC4, when performing 100 runs of 10-fold cross vali-

dation and averaging the obtained results. The adopted evaluation measures

are the Accuracy, Specificity, and Sensitivity described in Appendix A.

All the described experiments were executed by using a MATLAB imple-

mentation of the tested algorithms.

Dataset Classifier Accuracy (std) Specificity Sensitivity

1

K-IPCAC 95.92 (0.738) 94.74 97.10

K-IPCACvar 96.01 (0.882) 95.01 97.01

K-TIPCAC 96.25 (0.949) 95.40 97.10

SVM 95.96 (0.857) 97.01 94.90

2

K-IPCAC 84.88 (2.424) 84.57 85.19

K-IPCACvar 85.20 (2.898) 85.20 85.20

K-TIPCAC 85.83 (2.359) 85.64 86.02

SVM 84.37 (2.542) 84.82 83.92

3

K-IPCAC 79.02 (7.284) 78.00 80.04

K-IPCACvar 79.48 (6.646) 81.46 77.50

K-TIPCAC 80.29 (4.158) 81.53 79.05

SVM 78.75 (6.872) 79.60 77.90

Table 5.3: Experimental results obtained on the datasets generated with
e = 1.

As shown in Table 5.3 the K-TIPCAC obtains the best results and K-IPCACvar

outperforms the base algorithm K-IPCAC and SVM; this confirms the promis-

ing quality of the proposed modification. Furthermore, it is important to

4In these experiments for K-TIPCAC, and K-IPCACvar we retained a percentage of vari-
ance equal to 99%.

82 CHAPTER 5. K-IPCAC AND P-IPCAC

underline that reducing the number of points drawn by each MGD, the gap

between the performance achieved by K-TIPCAC and K-IPCAC increases; this

fact shows that this algorithm has a stronger generalization capability.

5.4 Perceptron-IPCAC

To overcome the limitations of linear classifiers while maintaining a low com-

putational complexity, we developed a new binary classification algorithm,

Perceptron-IPCAC, that is based on the assumption that the pdfs underlying

each class are MoGs. More precisely, P-IPCAC has been designed as a multi-

layer perceptron that combines the classification results of a set of linear clas-

sifiers. In the following the two classes, whose class conditional distributions

are MoGs, will be referred as class A and B; the training points belonging to

these classes are PA = {pA,j}NA

j=1 ⊂ ℜD and PB = {pB,j}NB

j=1 ⊂ ℜD.

In this section we firstly describe a clustering step that estimates the

parameters of each MoG (see Section 5.4.1), secondly we describe the P-IPCAC

method (see Section 5.4.2).

5.4.1 Estimation of MoG Parameters

Given the set of labeled training points P = PA

⋃
PB (with |PA| = NA

and |PB| = NB), we assume that each class is distributed according to a

MoG and we apply a preprocessing step for estimating its parameters.

For the sake of robustness we focus on the definition of a parameterless

algorithm that processes the set of training points belonging to one class as

follows:

1. the X-Means method [28] is applied to cluster the training points in

the considered class, and the resulting number of clusters is considered

as the number of MGDs underlying the class (see Figure 5.2);

2. the EM algorithm is employed to estimate the parameters of each MoG

(see Figure 5.3);

3. a Gaussian merging procedure (see the next Subsection) is applied to

merge those estimated distributions that are strongly overlapped, thus

obtaining the final set of MGDs underlying the class (see Figure 5.4);

5.4. PERCEPTRON-IPCAC 83

4. the estimated MGDs are used to cluster the training data belonging to

the considered class.

−2 −1 0 1 2

−1.5

−1

−0.5

0

0.5

1

1.5

X−Means Clustering of Data, (Step 1)

data
centers

Figure 5.2: Result after Application of X-Means step on 2D data.

−1 0 1 2

−1

−0.5

0

0.5

1

1.5

X−Means Clustering of Data, (Step 2)

data
centers

Figure 5.3: Result after Application of the Expectation Maximization step
on 2D data.

We note that, using the estimated clusters to train P-IPCAC, the achieved

classification results are greater that those computed by using only the clus-

ters extracted by step 1. Nevertheless, to reduce the computational com-

plexity of the preprocessing step, it is possible to apply only X-Means during

this phase.

84 CHAPTER 5. K-IPCAC AND P-IPCAC

−2 −1 0 1 2

−1

−0.5

0

0.5

1

1.5

X−Means Clustering of Data (Step 3)

 data
centers

Figure 5.4: Result after Application of the Merging procedure on 2D data.

We further note that, it would be possible to employ directly the MGDs

to perform classification, but the obtained results would be strongly de-

pending on the quality of the pdfs estimated on the training data, and the

classification time would be quadratic in the space dimensionality.

Gaussian merging procedure

By employing the mean and the covariance estimated during the step 2

described in Section 5.4.1 we consider the following criterion:

Merge criterion 1. Two gaussians are merged if and only if the mean of

one of them is inside the 99.7% of the confidence interval with respect to

the other one. More precisely, consider the probability value p̂ such that
∫

ℜD N (x;µi,Σi)XN (x;µi,Σi)≥p̂dx = 0.997, where N (·;µi,Σi) is the i-th

gaussian function, X is the indicator function, and the value 0.997 is referred

to the confidence interval; the j-th gaussian is merged with the i-th one if

N (µj ;µi,Σi) ≥ p̂.

On the basis of the above mentioned criterion, the merging procedure

proceeds as follows:

1. for each couple of clusters do:

• if the Merge criterion is valid, merge the two clusters and estimate

the new mean and the new covariance matrix;

5.4. PERCEPTRON-IPCAC 85

• otherwise keep the couple of clusters unchanged;

2. repeat step 1 until there are not couples of clusters whereby the Merge

criterion is valid.

5.4.2 P-IPCAC

In this section we describe the Perceptron-IPCAC, that is trained on the

clustered classes A =
⋃MA

n=1An and B =
⋃MB

n=1Bn, where MA and MB are

the numbers of clusters contained in class A and in class B, respectively.

P-IPCAC has been developed exploiting the idea employed by the Deci-

sion Directed Acyclic Graph (DDAG) algorithm [78] for the multiclass clas-

sification. More precisely, MAMB (IPCAC) binary classifiers are initially

trained to perform the comparisons between the training points drawn from

each Gaussian of the first class, with those drawn from each Gaussian of the

second one (we recall that these training points are those belonging to the

subclasses {An}n=1...MA
and {Bn}n=1...MB

), in a one-against-one fashion.

For each binary classifier, the classification of a new point p is accom-

plished by computing:

sign
(
wTp− γ

)
(5.15)

where w is a weight vector, γ is a thresholding value, and sign (·) is the sign
function.

We denote with wij and γij the parameters related to the classifier

trained to distinguish between points belonging to the subclasses Ai (i-th

Gaussian) and Bj (j-th Gaussian); moreover, we define the weight matrix

and the threshold vector as follows:

W = {wij}i=1..MA,j=1..MB

γ = {γij}i=1..MA,j=1..MB

Using this notation, the responses of the MAMB trained classifiers become:

z(p) = {zij}i=1..MA,j=1..MB
= sign

(
W Tp− γ

)
(5.16)

where zij = −1 when p is classified as belonging to subclass Ai, and zij = 1

when p is classified as belonging to subclass Bj .

86 CHAPTER 5. K-IPCAC AND P-IPCAC

Note that the evaluation of the MAMB linear classifiers corresponds to

the computation of a feed-forward neural network with D neurons for the in-

put layer, representing theD features of the input vector p, andMAMB neu-

rons for the first hidden layer (see Figure 5.5). More precisely, the synaptic

weight for the hidden neuron with indexes (i, j) is wij , whilst its activation

threshold is γij , and its activation function is sign (·).

Using the game theory metaphor, the two MoGs can be seen as two teams,

the linear classifiers in the first hidden layer of the network can be seen

as the set of MAMB matches comparing every pair of adversary members

taken from the two teams, and the activation signals stored in z represent

the results of all these matches.

Notice that the network structure described above does not highlight

the behavior of each team member. To avoid the loss of this information a

new neuron layer is required. This second hidden layer contains one neuron

per team member, and each neuron collects its results through the matches

where it participated. More precisely, denoting with xA,n the neuron asso-

ciated to the n-th member of class A, it computes the following value:

xA,n =
1

MB

MB∑

j=1

znj

The results obtained for the members of the team A are negative when

the member collects more victories than losses, and positive otherwise. On

the other hand, the neuron xB,n associated to the n-th member of class B

computes the following value:

xB,n =
1

MA

MA∑

i=1

zin

The results obtained for the members of the team B are positive when the

member collects more victories than losses, and negative otherwise.

The activation signals for the n-th members of the two teams are com-

5.4. PERCEPTRON-IPCAC 87

puted as follows:

yA,n = φ(−xA,n) = φ



− 1

MB

MB∑

j=1

znj





yB,n = φ(xB,n) = φ

(

1

MA

MA∑

i=1

zin

)

where φ(·) is the activation function. To define it we consider the following

particular cases:

xB,n ≤ 0 : as mentioned above, in this case the n-th member of class B

collects more losses than victories during the classification of point p.

Therefore we set φ(xB,n) = 0.

xB,n = 1 ∧ xB,i 6=n = −1 : in this case, only the n-th member wins every

match, while all the other members of class B lose every match. Under

these circumstances we wish to classify the point p as belonging to class

B; to this aim, it must be:

MB∑

n=1

φ(xB,n) >

MA∑

n=1

φ(−xA,n) (5.17)

In this case we consider that: being φ(xB,i 6=n) = 0, as we described for

the case xB,n ≤ 0, it is
∑MB

n=1 φ(xnB
) = φ(1) = 1; moreover, since each

member of the team A won MB − 1 matches, gaining MB − 1 points

and losing only one point, −xA,n = MB−2
MB

.

Choosing as activation function φ(x) = xm, we can re-write Equa-

tion (5.17) as 1 > MA

(
MB−2
MB

)m

. This equation is satisfied for the

following values of m:

m >
1

logMA

MB

MB−2

(5.18)

for MB 6= 2 and MA 6= 1. For this reason setting:

M ′
B = max(MB, 3)

M ′
A = max(MA, 3)

88 CHAPTER 5. K-IPCAC AND P-IPCAC

m can be set to the following value:

m =







1

logM ′

A

M ′

B

M ′

B
−2







+ 1 (5.19)

Analogously, considering the particular case:

−xA,n = 1 ∧ −xA,i 6=n = −1

we can derive m′ as:

m′ =







1

logM ′

B

M ′

A

M ′

A
−2







+ 1 (5.20)

Summarizing, at training time we set the activation function φ(x) = xt,

where t is fixed as follows:

t = max











1

logM ′

A

M ′

B

M ′

B
−2







,







1

logM ′

B

M ′

A

M ′

A
−2









+ 1 (5.21)

The results related to all the members of each team must be processed

by a “jury” to determine the winning team, and producing the classification

result. The jury is represented by the output neuron. This last neuron has

synaptic weights fixed to 1, and sign (·) as its activation function.

Summarizing, the following equation represents the network:

c(p) = sign

(

−

MA
∑

n=1

φ

(

−
1

MB

MB
∑

j=1

sign
(

w
T
njp− γnj

)

)

+

MB
∑

n=1

φ

(

1

MA

MA
∑

i=1

sign
(

w
T
inp− γin

)

))

(5.22)

where c(p) is the classification of a new point p. This quantity takes the

value −1 if p is assigned to class A, and +1 if it is assigned to class B.

Note that the same behavior obtained by this network can be represented

by the following expression:

sign

(
MB
max
n=1

(xB,n)−
MA
max
n=1

(−xA,n)

)

(5.23)

5.4. PERCEPTRON-IPCAC 89

Figure 5.5: The P-IPCAC classifier structure is a three-layer perceptron, its
behavior can be interpreted as that of two teams containing MA and MB

members, matching, collecting results and being evaluated by a jury.

p1 ... pD

data
(D)

IPCAC
w1,1

IPCAC
w1,2

.....

.

.

IPCAC
wMA,MB

matches
(MAMB)

x1 x2

.

.
xM

members
(M = MA +MB)

Σ −1/1 jury

5.4.3 Computational Complexity

In this section we derive the P-IPCAC computational complexity both for

the training and for the classification phase.

The computational complexity of the P-IPCAC’s training phase is domi-

nated by the evaluation of the weights in the first hidden layer of the network;

this step requires the training of MAMB linear classifiers. Choosing IPCAC

as the linear classifier adopted for the nodes in this layer, the training of each

linear classifier requires to compute the eigenvalues and the eigenvectors of

the covariance matrix estimated from the given data. The most efficient

way to derive these informations is the computation of the Singular Value

Decomposition (SVD) of the samples matrix. Representing with N the num-

ber of samples, and with D the space dimensionality, SVD requires at most

O(min
(
D2N,N2D

)
) operations [49].

The P-IPCAC’s training phase requires at mostO(MAMB min
(
D2N,N2D

)
).

This result underlines the linear dependency of the P-IPCAC’s computational

complexity with respect to the number of clusters, that seems to be unac-

ceptable for high values of MA and MB; nevertheless, increasing the number

of clusters reduces the number of points per cluster, thus allowing SVD to be

more efficient.

90 CHAPTER 5. K-IPCAC AND P-IPCAC

The computational complexity of the P-IPCAC’s classification phase is

dominated by the evaluation of Equation (5.16), that is the product of the

matrix W T , having MAMB rows and D columns, times the D-dimensional

point p to be classified, thus requiring O(MAMBD) operations.

5.5 Experimental Results

To evaluate the P-IPCAC performances we executed three tests: two of them

are applied on synthetic datasets (see Section 5.5.1), and one is applied on a

real dataset taken from the UCI Machine Learning Repository [2] (see Sec-

tion 5.5.2).

In order to show the effectiveness of our algorithm, we compared its

results to those obtained by SVM; more precisely, we used the RBF kernel,

and we tuned its hyper-parameters5 (C, σ) by using the grid optimization

with 2-fold cross-validation on the whole dataset. Moreover, we compared

our results with those obtained by employing IPCACvar
6, its kernel version

K-IPCAC, and K-TIPCAC, appropriately tuned.

To evaluate and compare the tested classifiers, we adopted the Accuracy,

Sensitivity, and Specificity measures described in Appendix A.

All the described experiments were executed by using a MATLAB im-

plementation of all the tested algorithms7; moreover we used a Linux 2.6.27

operating system running on an Intel Core(2) Duo T9400 CPU, equipped

with 4GB of RAM.

5.5.1 Experiments on Synthetic Data

To evaluate our classifier, we performed our tests on 500-dimensional syn-

thetic data generated by two different sample generators. To obtain a ro-

bust estimation of the evaluation parameters (Accuracy, Specificity, and

Sensitivity), and to estimate the Execution Time8, we averaged the results

obtained by running each test 10 times, and by using 10-fold cross-validation.

5The hyper-parameter C represents the cost-value, while σ is the RBF kernel-radius.
6We retain the 99% of the variance on the syntethic tests, and the 99.9% of the variance

on the real data tests.
7For the SVM classifier we used a Matlab wrapper to the library “libSVM” [12].
8Execution Time = Training time + Classification time.

5.5. EXPERIMENTAL RESULTS 91

First Generator

The datasets produced by this generator were composed by 500-dimensional

points drawn from 4 MGDs per class. Each MGD was an isotropic Gaussian

with standard deviation e, where e ∈ {1, 2, 3} for the first, the second, and

the third experiment respectively. In these datasets the overlap between the

classes increases with the parameter e, thus producing datasets representing

classification problems with increasing difficulty.

The MGD means of the first class were set to:

• (0, . . . , 0)T : a vector with 500 zeros;

• (1, . . . , 1, 0, . . . , 0)T : a vector with 250 ones and 250 zeros;

• (0.5, . . . , 0.5,−1, . . . ,−1)T : a vector with 250 values fixed to 0.5 and

250 values fixed to −1;

• (0.5, . . . , 0.5, 1, . . . , 1)T : a vector with 250 values fixed to 0.5 and 250

ones.

Whilst, the means of the MGDs used for the second class were:

• (1, . . . , 1)T : a vector with 500 ones;

• (1, . . . , 1,−1, . . . ,−1)T : a vector with 250 ones and 250 values fixed to

−1;

• (0, . . . , 0, 1, . . . , 1)T : a vector with 250 zeros and 250 ones;

• (0, . . . , 0,−1, . . . ,−1)T : a vector with 250 zeros and 250 values fixed

to −1.

The sample generator randomly drew 500 points from each MGD, thus

obtaining two classes with 2000 (500-dimensional) points each.

As shown in Table 5.4, IPCACvar obtained the worst results; this is due

to the fact that the considered classes are not linearly separable. On the

other side, P-IPCAC demonstrated its effectiveness by achieving the highest

accuracy. Moreover, the Execution Time of our algorithm was considerably

lower in comparison with the kernel methods, confirming the efficiency of

the proposed technique.

92 CHAPTER 5. K-IPCAC AND P-IPCAC

Dataset Classifier Acc. (std) Spec. Sens. Time

1

IPCACvar 51.50 (3.08) 51.76 51.24 1.6

SVM 98.38 (0.64) 98.86 97.90 1443.8

K-IPCAC 96.08 (1.16) 94.76 97.40 487.8

K-TIPCAC 97.85 (0.96) 97.30 98.40 493.8

P-IPCAC 99.85 (0.17) 99.91 99.79 170.1

2

IPCACvar 50.28 (3.44) 50.00 50.56 1.6

SVM 75.98 (1.92) 79.99 71.97 1513.4

K-IPCAC 76.10 (1.91) 78.11 74.09 497.8

K-TIPCAC 77.08 (1.96) 77.87 76.29 498.9

P-IPCAC 92.20 (1.11) 92.63 91.77 184.6

3

IPCACvar 49.95 (2.16) 50.63 49.27 1.6

SVM 66.80 (2.73) 69.12 64.48 1513.9

K-IPCAC 67.10 (1.87) 67.42 66.78 496.5

K-TIPCAC 69.18 (1.71) 69.44 68.92 497.1

P-IPCAC 81.02 (2.17) 80.17 81.87 186.3

Table 5.4: Experimental results obtained on the datasets generated with
e ∈ {1, 2, 3}. The last column represents the average Execution Time (in
seconds) for both the training and the classification phase.

Second Generator

A second generator was built to randomly produce data drawn from non-

isotropic MGDs. To achieve this goal, it is necessary to randomly choose the

parameters defining the Gaussian Distributions, that are the mean vectors

and the covariance matrices.

For each MGD, the mean vector coordinates are randomly selected in the

open interval (0, 1) according to the uniform distribution, while the covari-

ance matrix is obtained by randomly generating both the positive eigen-

values, and the orthonormal eigenvectors. More precisely, the eigenvalues

were generated by employing the random generator for the uniform distri-

bution, while the eigenvectors were drawn from the normal distribution and

they were orthogonalized through the Graham-Schmidt orthogonalization

process.

By employing this generator we produced three datasets, each composed

by two classes containing 500-dimensional points:

Dataset1 was composed by a balanced number of points, drawn by a bal-

anced number of MGDs. More precisely, each class contained 2000 points

5.5. EXPERIMENTAL RESULTS 93

taken from 4 MGDs, where 500 points were drawn from each Gaussian.

Dataset2 was composed by points drawn by an unbalanced number of

MGDs. More precisely, class A was composed by 2000 points drawn

from 4 MGDs, (500 points per MGD); whilst class B contained 1500 points

drawn from 3 MGDs (500 points per MGD).

Dataset3 was composed by an unbalanced number of points, drawn by

an unbalanced number of MGDs. More precisely, class A included 1400

points taken from 4 MGDs, where {200, 300, 400, 500} points were drawn

from each of them respectively; whilst class B contained 1200 points

taken from 3 MGDs, where {300, 400, 500} points were drawn from each

of them respectively.

All the datasets were characterized by overlapping classes; moreover, they

were built in order to be not linearly separable.

The results, reported in Table 5.5, are commented below:

• in all the experiments, P-IPCAC outperformed the other classifiers;

• P-IPCAC demonstrated to be robust to an unbalanced number of MGDs

between the classes, as demonstrated by the experiments on Dataset2;

• P-IPCAC showed to be slightly sensitive to the unbalancing of the num-

ber of points between MGDs;

• regarding the Execution Time, P-IPCAC demonstrated its efficiency;

indeed, only the IPCACvar algorithm was faster.

5.5.2 Experiments on a Real Dataset

The Hungarian heart disease dataset9 is obtained from the UCI machine

learning repository [2]. This dataset includes 106 feature vectors related to

patients affected by heart disease, and 188 feature vectors related to patients

without heart disease; moreover, 13 features describe each patient. In our

experiments we used all the given feature vectors, including those containing

9http://archive.ics.uci.edu/ml/datasets/Heart+Disease

94 CHAPTER 5. K-IPCAC AND P-IPCAC

Dataset Classifier Acc. (std) Spec. Sens. Time

1

IPCACvar 91.22 (1.45) 91.29 91.15 1.6

SVM 95.00 (1.39) 95.41 94.59 1818.8

K-IPCAC 94.38 (1.16) 93.92 94.84 492.2

K-TIPCAC 95.43 (1.21) 95.08 95.78 496.3

P-IPCAC 98.08 (0.63) 98.73 97.43 216.4

2

IPCACvar 93.94 (1.09) 93.27 94.61 1.5

SVM 96.77 (0.40) 95.24 98.30 1049.1

K-IPCAC 96.26 (0.80) 94.80 96.72 345.7

K-TIPCAC 97.22 (0.60) 96.60 97.84 360.6

P-IPCAC 98.49 (0.74) 98.63 98.35 154.2

3

IPCACvar 94.23 (1.07) 94.10 94.36 1.5

SVM 96.27 (1.47) 94.91 97.63 1422.3

K-IPCAC 95.23 (1.11) 93.04 97.42 415.7

K-TIPCAC 96.32 (1.01) 94.72 97.92 420.4

P-IPCAC 96.50 (0.93) 97.09 95.61 170.1

Table 5.5: Experimental results obtained on the datasets produced by the
second generator. The last column represents the average Execution Time
(in seconds) for both the training and the classification phase.

missing attribute values; we completed the partially specified samples by

using a fixed value for the missing attributes.

It is important to notice that this dataset does not fulfill the base as-

sumption of P-IPCAC, becoming an important test to demonstrate the gen-

eralization capability of our method.

For the heart disease dataset, 50 runs of 10-fold cross-validation were

performed, and the averaged Accuracy, Specificity, Sensitivity and Exe-

cution Time were computed and reported in Table 5.6.

As shown by the obtained results, P-IPCAC performs well also in this real

case where the data are not drawn from MoGs. This fact, and the qualitative

experiments reported in Figure 5.6, show the “weak” dependency of P-IPCAC

from its assumptions. In our opinion, this is probably due to the fact that

a large class of pdf can be approximated by means of Gaussian Mixtures,

as reported in [32]. Furthermore, representing a multimodal pdf with a MoG

guarantees a better approximation than that achieved by using a single MGD.

Finally, the Execution Time achieved by P-IPCAC was considerably lower

than that of the kernel methods, confirming the results of the previous ex-

5.6. CONCLUSIONS 95

periments.

Classifier Accuracy (std) Specificity Sensitivity Time

IPCACvar 78.96 (6.89) 69.58 88.34 3.3

SVM 80.19 (7.03) 75.72 84.66 129.4

K-IPCAC 81.20 (7.00) 77.28 85.12 162.7

K-TIPCAC 81.72 (7.00) 77.66 85.78 167.6

P-IPCAC 81.92 (6.87) 77.42 86.42 19.0

Table 5.6: Experimental results obtained on UCI heart diseases. The last
column represents the average Execution Time (in milliseconds) for both
the training and the classification phase.

Figure 5.6: Qualitative experiments were executed on two synthetically gen-
erated datasets in ℜ2. The first experiment (left) contains balanced sets
of training points (1000 per class); the second experiment (right) contains
unbalanced sets of training points (1000 and 100 respectively). In both fig-
ures, white background represents points classified as belonging to the “red”
class, whilst black background represents points belonging to the “blue” class.
Notice that, intentionally, the generated classes do not fulfill the MoGs as-
sumption.

5.6 Conclusions

In this chapter we faced the problem of classes that are non linearly separa-

ble, presenting two algorithms (K-IPCAC and P-IPCAC) that generalize the

IPCAC assumptions.

K-IPCAC is a kernel version of IPCAC that exploits the “kernel trick” to

96 CHAPTER 5. K-IPCAC AND P-IPCAC

perform non-linear classification. Furthermore, in this chapter we presented

different improvements of K-IPCAC with the aim of reducing the overfitting

problems that might affect kernel based techniques.

P-IPCAC starts from the base assumption that the feature vectors of each

class are drawn from a Mixture of Gaussians (MoG). Moreover, the clusters

representing the MoG components are automatically determined.

We evaluated the performances of the proposed algorithms by executing

experiments both on synthetic and real datasets. These tests confirm that

the proposed methods are promising.

Chapter 6

DDAG K-TIPCAC for Multiclass
Classification

In this chapter we present an ensemble classifier combining several K-TIPCACs

to perform multiclass classification. More precisely, we focus on the task

of protein subcellular location prediction, which is one of the most diffi-

cult multiclass prediction problems in modern computational biology. Al-

though many methods have been proposed in the literature to solve this

problem, all the existing approaches are affected by some limitations so

that the problem is still open. For this reason the method proposed in this

chapter, called DDAG K-TIPCAC, combines several kernel classifiers through

Decision Direct Acyclic Graph (DDAG). Experimental results clearly indicate

that DDAG K-TIPCAC performs equally, if not better, than state-of-the-art

ensemble methods aimed at multiclass classification of highly unbalanced

data.

This chapter is organized as follows: in Section 6.1 the related works

for protein subcellular localization are summarized; in Section 6.3 the ex-

perimental settings, our method, and the multiclass Fisher subspace esti-

mated on the training vectors by means of a novel technique are described;

in Section 6.4 the results obtained, compared with state-of-the-art ensemble

methods, are reported, and further experiments are shown.

97

98 CHAPTER 6. DDAG K-TIPCAC

6.1 Problem Definition and Related Works

Since many different protein molecules are present in one or more subcel-

lular locations, a better understanding of their distribution and function is

advisable to understand the complex biological systems that regulate the

biological life of each cell. To this aim, the first and fundamental prob-

lem to be solved is the subcellular protein localization. Since biochemical

experiments aimed at this task are both costly and time-consuming, and

new proteins are continuously discovered (increasing the gap between the

newly found proteins and the knowledge about their subcellular location),

an efficient and effective automatic method for protein subcellular location

prediction is required.

This problem can be formulated as a multiclass classification problem

as follows. The training dataset, PTrain, is composed of N protein vectors,

PTrain = {pi}Ni=1, where each protein sequence can be represented as a

vector p = [Rj
s], R

j
s being the amino acid residue whose ordered position

in the sequence is s = 1, · · · , S (S is the protein length, which differs in

each protein), while the superscript j = 1, . . . , 20 indicates which native

amino acid is present in the s-th position of the sequence. The proteins

in PTrain are classified into M subsets S =
⋃M

i=1 Si, where each subset,

Sm (m = 1, 2, . . . ,M), is composed of proteins with the same subcellular

component, and the cardinality of S is |S| = N = N1+N2+ · · ·+NM . The

classifier’s aim is to learn the information provided by PTrain to predict the

subcellular location of a query protein pq.

In the past decade many authors have tried to handle this problem, and

several classification methods have been proposed [21]. Nevertheless, the

problem is still open due to several difficulties that make the task of pro-

tein subcellular location prediction very challenging. At first, the protein

data are usually encoded with high dimensional vectors, so that the em-

ployed classifiers should be designed in order to minimize the computational

complexity. Secondly, the number of subcellular locations that should be

discriminated is at most 22 (that is M ≤ 22), and some proteins, called

multiplex proteins, might be present in more than one cellular component,

or they might move from one location to another. Finally, the protein sub-

6.1. PROBLEM DEFINITION AND RELATED WORKS 99

cellular distribution is highly unbalanced since some cellular components

contain a significantly lower number of protein molecules.

To achieve satisfactory results in such (multiclass, high dimensional, and

highly unbalanced) classification problem, a dataset of high cardinality is

needed. Unfortunately, the training datasets have a limited number of pro-

teins, due to the following reasons: some proteins must be discarded since

they contain less than 50 amino acids, or they are annotated as ‘fragments’;

to avoid homology bias proteins with ≥ 25% sequence identity to any other

in the same subcellular organelle must be eliminated; proteins belonging

to components with less than 20 proteins are generally excluded, because

of lacking statistical significance; several proteins cannot be used as robust

data for training a solid predictor since they have not been experimentally

annotated yet. Finally, further deletions might be performed by some au-

thors focusing on proteins with a unique subcellular location, or belonging to

a specific organism. These difficulties motivate the large number of research

works devoted to the task of protein location prediction; these methods can

be grouped according to either the data representation, or the employed

algorithm.

Representing a protein p with a vector that codes its entire amino acid

sequence is unfeasible since this representation produces too long vectors of

different dimensionality. A more compact representation is provided by the

amino acid composition (AAC) descriptor [17], whose elements are the nor-

malized occurrence frequencies of the 20 native amino acids. Since the AAC

lacks the ability of representing the sequence order effects, several alterna-

tive non sequential descriptors have been proposed in the literature. More

precisely, these descriptors, which represent both single and evolutionarily

related groups of proteins, are:

• PseAAC encodes proteins by taking into account correlations between

pairs of aminoacids at different sequence distance w.r.t a given chemico-

physical property [18];

• the k-peptide encoding vector, which is the normalized occurrence of

the k-letter pattern that appears in a window being shifted along the

sequence, is another popular representation for single proteins [51];

100 CHAPTER 6. DDAG K-TIPCAC

• evolutionarily related groups of proteins can be encoded through the

SeqEvo representation, based on the normalized occurrence of the

changes in the protein sequence for each native amino acid (that is

insertions, deletions, substitutions of amino acid residues) that are

due to proteins evolution [16].

While the aforementioned protein representation schemes are all strictly

based on the protein amino acid sequence, alternative encodings are possible

by considering the availability of large amount of information contained in

public databases like the Functional Domain (FunD) [19] and the Gene On-

tology (GO) [23]. According to the content of FunD it is possible to code each

protein in the form of a boolean vector indicating the presence/absence of

any of the 7785 functional protein domains annotated in the database and

a similar encoding scheme can be adopted by considering the annotations

stored in the Cellular Component division of the Gene Ontology.

Regarding the employed predictors, they are: the Covariant Discrimi-

nant (CD) algorithm [18]; modified versions of the K-Nearest-Neighbor (KNN)

technique [26, 51, 88], or its extension, called Optimized Evidence-Theoretic

KNN (OET-KNN) [104, 20], Support Vector Machines (SVMs) [25, 58, 40], and

the naive Bayes classifier [9]. All the aforementioned methods are depend-

ing on critical parameters, defining both the protein representation mode,

the dataset dimensionality, and different settings of the learning algorithm.

Recently, simple ensemble methods have been proposed: given an engine

learning algorithm (e.g. OET-KNN or SVM), these techniques create different

predictors by changing the values of their parameters, and produce the final

classification result by a simple majority vote algorithm [20, 89, 16].

Although promising results have been obtained, the computational effi-

ciency and the classification performance of all the above mentioned tech-

niques are highly affected both by the high unbalancing of the training set,

and by the low cardinality of some classes compared to the high data di-

mensionality.

To overcome such weaknesses, in this chapter we propose our ensemble

method whose engine algorithm is the Kernel Truncated Isotropic Princi-

6.2. DDAG K-TIPCAC 101

pal Component Analysis Classifier (K-TIPCAC, see Section 5.2.2), an evolu-

tion of the K-IPCAC and the O-IPCAC algorithms; it projects the points on

the Fisher subspace estimated by a novel technique on the training data

(see Section 4.3). The ensemble method combines the results computed by

different K-TIPCAC predictors through a Decision Directed Acyclic Graph

(DDAG) technique [78], as described in the following section.

6.2 DDAG K-TIPCAC

In this section we briefly describe the DDAG technique which allows to com-

bine different methods to create a multiclass classifier (see Section 6.2.1).

Secondly we describe how DDAG has been exploited to develop our technique,

called DDAG K-TIPCAC (see Section 6.2.2).

6.2.1 Decision DAGs (DDAGs)

A Rooted Direct Acyclic Graph (DAG) is a graph whose edges have an orien-

tation, no cycles, and only one root node. A Rooted Binary DAG has nodes

which have either 0 or 2 arcs leaving them. A DDAG [78] is a method that

combines the results of one-against-one classifiers to produce a multiclass

classification. To this aim, considering a N -class problem, the DDAG is im-

plemented using a rooted binary DAG with K = N(N − 1)/2 internal nodes.

Each node represents a classification model trained on two of the K classes,

and it produces a boolean output value ({0, 1}). The nodes are arranged in

a binary tree with the single root node at the top, two nodes in the second

layer and so on until the final layer of leaves. Considering each classifiers as

a boolean function, to perform a classification the DDAG proceeds as follows:

it starts at the root node and it evaluates the boolean function; the node

is then exited via the left edge, if the binary function is zero, or the right

edge, if the binary function is one; the next nodes binary function is then

evaluated; the membership class is the final leaf node reached through this

process.

102 CHAPTER 6. DDAG K-TIPCAC

6.2.2 Decision DAG K-TIPCAC

In Section 4.3 and in Section 5.2.2, an efficient binary classifier (TIPCAC1) and

its kernel version (K-TIPCAC) are described, that are based on the projection

of the data on the one dimensional Fs estimated in a partially whitened

kernel subspace.

The ensemble classifier proposed in this chapter is a C-class classifier that

projects the data on a C−1 dimensional Fs estimated in a partially whitened

subspace, and then applies DDAG to combine many binary K-TIPCACs (de-

scribed in Chapter 5) to obtain the final prediction.

More precisely, the first step of this method evaluates the Fs of the

overall C classes by generalizing the partial whitening approach recovering

residuals, used by T-IPCAC and described in Chapter 4; accordingly to what

observed in Section 4.3, this step reduces the training time complexity.

To this aim, after the partial whitening, the whitened class means {µc}Cc=1

are computed as follows:

µc = WDµ̂c = qdUdQ
−1
d UT

d µ̂c + µ̂c −UdU
T
d µ̂c.

At this stage the orthonormal basis, ΠC−1, composed of C−1 vectors span-

ning the Fs, is computed. More precisely, ΠC−1 is obtained by orthonormal-

izing the C − 1 linearly independent µc vectors through the Gram-Schmidt

procedure. The partially whitened training points PWD
are then projected

on the subspace ΠC−1, obtaining the set of points

PΠC−1
=
{
FsTpi|pi ∈ PWD

}
,

where Fs is the matrix whose columns span Fs.

Exploiting the points in PΠC−1
, C(C − 1)/2 K-TIPCAC binary classifiers

are trained, each discriminating two classes in a one-against-one fashion

(1-vs-1), and their results are combined by means of DDAG.

6.3 Experimental Setting

In this section we firstly remind the multiclass classification method em-

ployed to perform the base-line comparison (see Section 6.3.1); secondly,

1For simplicity the batch implementation of OIPCAC is called TIPCAC in the follows.

6.3. EXPERIMENTAL SETTING 103

we describe in details the employed dataset (see Section 6.3.2); finally, we

report the performance evaluation (see Section 6.3.3).

6.3.1 Methods

Multiclass Support Vector Machine: Since SVM is a binary classifier,

a problem transformation is required before the application of this method

to the considered multiclass prediction problem. The existing approaches

to cast a multiclass classification problem to a series of binary classification

problems can be roughly divided into two main classes: one-against-all and

1-vs-1. We applied the latter, and thus we trained a committee of 231

probabilistic SVMs [77]. The probabilities produced by each classifier were

then reconciled to a multiclass prediction via pairwise coupling [47] and a

simple max rule over all the class probability estimates was applied to make

a final decision.

Ensemble of nested dichotomies (END): Nested dichotomies [34] is a

standard statistical technique applied in polytomous classification problems

where logistic regression is applied by fitting binary logistic regression mod-

els to the internal nodes composing a tree. In absence of domain knowledge

it is difficult to decide, among all the possible trees of nested dichotomies,

the one to be adopted. A possible solution [35] is to consider all the hierar-

chies of nested dichotomies equally likely, and to use an ensemble of these

hierarchies for prediction. In our experiments we used the END implemen-

tation provided in WEKA and we tuned across nd (number of dichotomies)

∈ {5, 10, 20, 40}.

Random Forest (RF): Random Forest [8] has been applied as an effec-

tive tool for biomolecular and bioinformatics research. This method grows

many classification trees. Instances whose class needs to be predicted are

classified using the trees composing the forest. Each tree computes its own

prediction, and the forest employs a plurality voting (over all the trees in

the forest) to choose the final classification. We tuned the method using a

grid search over nt (number of trees of the forest) ∈ {10, 20, 30, 40, 50} and

nf (number of features) ∈ {10, 100}.

104 CHAPTER 6. DDAG K-TIPCAC

Neighbors Voting (NV): The Tensor Voting Framework (TVF, [65])

is a manifold learning technique. More precisely, given a set of training

vectors TVF is generally employed to estimate the normals to the manifolds

underlyning them. This technique could be applied for classification by

learning the manifold describing each class. Although effective, this method

has a too high computational cost that makes its application unpractical. To

overcome this limitation, in [39] the authors proposed a simplified version of

TVF, called Neighbors Voting, that achieves a comparable normal estimation

accuracy with a lower computational complexity.

Exploiting NV we have created a multiclass classifier based on the estima-

tion of the 22 manifolds (one for each class) underlying the data projected

into the C−1 dimensional subspace (estimated as explained in Section 6.2.2).

Given a new point, this classifier assigns it to the class corresponding to the

nearest estimated manifold. We extensively tuned the NV algorithm param-

eters, selecting the best values for: the neighborhood size (σ), the noise

standard deviation (γ), and the number of iterations to be performed.

6.3.2 Dataset

We evaluated the proposed method on a publicly available dataset2 involved

in the training of the EukP-loc method described in [15].

This dataset contains 5618 different proteins, classified into 22 eukary-

otic subcellular locations. Among the 5618 considered proteins, 5091 belong

to one subcellular location, 495 to two locations, 28 to three locations, and

4 to four locations. None of the proteins has ≥ 25% sequence identity to

any other in the same subset. The collection of sequences was then eval-

uated to compute the Pseudo Amino Acid compositions (PseAAC) of each

protein using the PseAAC web server [87]. For each protein we produced a

495-elements vector composed by 20 numbers describing the standard amino

acid composition, 400 values representing the PseAAC based on the dipep-

tide representation of the protein and further 75 values representing three

groups of 25 PseAACs values obtained by setting the λ parameter to 25 and

computing the PseAACs based on three pairs of chemico-physical properties:

2The protein sequences were downloaded in fasta format from the web site
http://www.csbio.sjtu.edu.cn/bioinf/euk-multi/Supp-A.pdf.

6.3. EXPERIMENTAL SETTING 105

Dataset

acrosome proteins 17 cell wall proteins 47
Golgi proteins 157 spindle pole body proteins 17
hydrogenosome proteins 13 synapse proteins 13
lysosome proteins 59 vacuole proteins 91
melanosome proteins 13 centriole proteins 45
microsome proteins 23 chloroplast proteins 497
mitochondrion proteins 488 cyanelle proteins 85
nucleus proteins 1077 cytoplasm proteins 741
peroxisome proteins 92 cytoskeleton proteins 46
plasma membrane proteins 647 endoplasmic reticulum proteins 275
extracell proteins 609 endosome proteins 39

Table 6.1: Protein subcellular localization prediction dataset (5091 proteins
and 22 locations). This table reports the number of annotated proteins per
location; labels are mutually exclusive, thus the problem is multiclass but
not multilabel.

Hydrophobicity-Hydrophilicity, pK1 (alpha-COOH)-pK2 (NH3) and Mass-pI.

In this preliminary investigation we focused on the location prediction of

the 5091 proteins with a single experimentally annotated subcellular loca-

tion. Some characteristics of this dataset are depicted in Table 6.1. It is

worth noting that the problem is highly unbalanced, ranging the number

of proteins associated to a subcellular location from 13 (hydrogenosome,

melanosome and synapse) to 1077 (nucleus).

6.3.3 Performance Evaluation:

All the compared methods were evaluated according to a canonical 10 fold

stratified cross-validation scheme. Given that the considered problem is a

multiclass prediction problem affected by severe unbalance, accuracy is not

suitable for performance evaluation. Performances were thus collected in

form of F-score (that is the harmonic mean of Precision and Recall, as de-

scribed in Appendix A). All the experiments, apart those involving the DDAG

K-TIPCAC, and NV, which are implemented in MATLAB, were performed us-

ing the WEKA machine learning library [44].

106 CHAPTER 6. DDAG K-TIPCAC

Performance evaluation
Method Parameters Precision Recall F-score
DDAG K-TIPCAC kernel=RBF, σ = 8, var = 0.955 0.383 0.408 0.390
Multiclass SVM C = 10.0 G = 0.01 0.369 0.409 0.368
END nd = 40 0.351 0.393 0.355
RF nt = 50 nf = 100 0.349 0.391 0.340
NV σ = 2 γ = 0.2 iterations = 10 0.348 0.348 0.347

Table 6.2: Estimated performances obtained by 10 fold stratified cross vali-
dation.

6.4 Results

The performances achieved by the evaluated approaches averaged across all

the classes are reported in Table 6.2. The table shows, for each method, the

best setting of its parameters, and the achived performance measures, that

are the Precision, Recall, and F-measure. The F-scores obtained by the eval-

uated methods for each subcellular location averaged across the 10 stratified

cross validation folds are reported in Table 6.3. In order to investigate if

the differences between the collected per class performances are statistically

significant we performed a Wilcoxon signed ranks sum (U) test [99]. Results

are reported in Table 6.4 (direction of the comparison is row-vs-column).

Considering the performances averaged across all the classes achieved

by the compared ensemble methods (see Table 6.2) the best performing ap-

proach is DDAG K-TIPCAC (weighted F-score 0.390) immediately followed by

the 1-vs-1 ensemble of SVMs (weighted F-score 0.368). A closer look to this

table highlights that, while all the evaluated approaches produced compa-

rable Recall scores, on average this comes at the cost of a reduced precision,

the only exceptions being represented by the DDAG K-TIPCAC ensemble and

by the NV multiclass classifier. More precisely, while DDAG K-TIPCAC is the

best performing classifier, NV obtains the significantly worst overall results.

We note that input space reduction is present in our approach and also

in other types of ensembles evaluated in this experiment, as in the case of

Random Forest. Nevertheless, the space reduction computed by RF might

be affected by a more relevant information loss, since the input space dimen-

sionality is reduced by means of a random selection of subsets of features of

a priori defined size. We can hypothesize that the data transformation ap-

6.4. RESULTS 107

Per class performance evaluation (F-score)
NV END MCSVM RF DDAG K-TIPCAC proteins location

0.688 0.211 0.000 0.300 0.560 17 acrosome proteins
0.080 0.046 0.000 0.024 0.030 157 Golgi proteins
0.500 0.375 0.375 0.375 0.316 13 hydrogenosome proteins
0.241 0.000 0.000 0.033 0.213 59 lysosome proteins
0.818 0.632 0.000 0.556 0.522 13 melanosome proteins
0.129 0.000 0.000 0.000 0.114 23 microsome proteins
0.288 0.295 0.312 0.241 0.355 488 mitochondrion proteins
0.470 0.529 0.535 0.523 0.533 1077 nucleus proteins
0.166 0.000 0.000 0.000 0.047 92 peroxisome proteins
0.404 0.484 0.522 0.489 0.470 647 plasma membrane proteins
0.396 0.493 0.482 0.494 0.479 609 extracell proteins
0.309 0.175 0.218 0.157 0.267 47 cell wall proteins
0.000 0.000 0.000 0.000 0.306 17 spindle pole body proteins
0.519 0.700 0.700 0.700 0.383 13 synapse proteins
0.086 0.000 0.043 0.000 0.071 91 vacuole proteins
0.045 0.000 0.000 0.000 0.125 45 centriole proteins
0.440 0.424 0.504 0.459 0.518 497 chloroplast proteins
0.369 0.056 0.189 0.022 0.255 85 cyanelle proteins
0.274 0.247 0.235 0.211 0.290 741 cytoplasm proteins
0.070 0.000 0.000 0.000 0.059 46 cytoskeleton proteins
0.185 0.143 0.159 0.027 0.236 275 endoplasmic reticulum proteins
0.060 0.000 0.000 0.000 0.067 39 endosome proteins

Table 6.3: Per class performances obtained by 10 fold stratified cross vali-
dation.

Per class performance evaluation
END MCSVM RF DDAG K-TIPCAC NV

END − 0.6876 0.1317 0.9970 0.9918
MCSVM 0.3375 − 0.1813 0.9950 0.9780
RF 0.8826 0.8348 − 0.9874 0.9950

DDAG K-TIPCAC 2.689E−05 3.073E−05 4.449E−05 − 0.6869
NV 0.0091 0.0238 0.0056 0.3247 −

Table 6.4: Statistical comparison of per class performances through
Wilcoxon test (alternative hypothesis: “greater”, direction of comparison:
rows versus columns).

plied by our approach is able to produce a more informative representation

of the data than feature selection, thus leading to better performances also

in highly unbalanced multiclass classification problems, as the one involved

in our experiments.

This interpretation is supported by the collected per class performances

108 CHAPTER 6. DDAG K-TIPCAC

Performance evaluation

Method Parameters Precision Recall F-score

DDAG K-TIPCAC Fs = “standard” kernel=RBF, σ = 8, var = 0.955 0.330 0.344 0.334

Table 6.5: Estimated performances obtained by 10 fold stratified cross val-
idation and employing the projection on the multiclass Fs estimated with
the “standard” methodology.

(see Table 6.3). As we can see, despite the multiclass SVM ensemble (MCSVM)

ranks second in terms of overall F-score (after a weighted averaging of the

per class F-scores), its performances are often worse that those obtained by

DDAG K-TIPCAC. Moreover, it is important to highlight that all the methods

misclassify at least one class, the only exception being represented by the

DDAG K-TIPCAC approach. Note that NV obtains per class results comparable

to DDAG K-TIPCAC; this is probably due to the fact that it employs the same

input space reduction (on the Fisher subspace) employed in our method.

This fact suggests that the method employed to estimate the Fisher subspace

is promising, as further demonstrated by the experiments reported in the

next subsections. The hypothesis that the performances, on a per class

basis, of DDAG K-TIPCAC are better than those produced by most of the

other evaluated methods is also supported by the Wilcoxon signed ranks

sum test (see Table 6.4).

6.4.1 DDAG K-TIPCAC Employing the Standard Multiclass Es-
timation of Fs

In this section we want evaluate the effectiveness of our “truncated” ap-

proach to estimate the multiclass Fisher subspace. To this aim, we have

performed the same experiment described in Section 6.3 by employing the

points projected on the 21 dimensional Fisher subspace, as described in Sec-

tion 3.2.1 spanned by the 21 eigenvectors corrisponding to the 21 largest

eigenvalues of Σ−1
W ΣBet.

In Table 6.5 the achieved overall performance is reported. It is possible

to notice that the quality of the classification strongly decreases, obtaining

results comparable with those achieved by RBF (see Table 6.2). In Table 6.6,

where the per class F-measures are shown, we can note that some classes are

completely misclassified. This demonstrates that the estimation of the mul-

6.4. RESULTS 109

Per class performance evaluation

F-score proteins location F-score proteins location

0.372 17 acrosome proteins 0.289 47 cell wall proteins
0.044 157 Golgi proteins 0.081 17 spindle pole body proteins
0.363 13 hydrogenosome proteins 0.333 13 synapse proteins
0.000 59 lysosome proteins 0.027 91 vacuole proteins
0.411 13 melanosome proteins 0.110 45 centriole proteins
0.000 23 microsome proteins 0.456 497 chloroplast proteins
0.290 488 mitochondrion proteins 0.110 85 cyanelle proteins
0.500 1077 nucleus proteins 0.226 741 cytoplasm proteins
0.053 92 peroxisome proteins 0.027 46 cytoskeleton proteins
0.474 647 plasma membrane proteins 0.186 275 endoplasmic reticulum proteins
0.334 609 extracell proteins 0.000 39 endosome proteins

Table 6.6: DDAG K-TIPCAC per class F-measures obtained by 10 fold stratified
cross validation employing the projection on the multiclass Fs estimated
with the “standard” methodology.

Performance evaluation

Method Parameters Precision Recall F-score

DDAG K-TIPCAC Fs = No kernel=RBF, σ = 8, var = 0.955 0.398 0.419 0.394

Table 6.7: Estimated performances obtained by 10 fold stratified cross vali-
dation and without employing the projection on the multiclass Fs.

ticlass Fisher subspace described in Section 6.2.2 is less affected by relevant

information loss.

Concluding, the results confirm the quality of the proposed approach

included the importance of the novel estimation of the multiclass Fisher

subspace.

6.4.2 DDAG K-TIPCAC without Projection on Multiclass Fs

In this section we have performed another test using the same experimen-

tal setting described in Section 6.3. More precisely, we have eliminated the

projection on the multiclass Fisher subspace, maintaining as engine clas-

sifier K-TIPCAC and then combining the binary classifiers to obtain the fi-

nal prediction using DDAG methodology. This allows to evaluate the dif-

ference between this approach and the base ensemble method proposed in

Section 6.2.2. The achieved overall performance is summarized in Table 6.7,

while the per class results are reported in Table 6.8.

Even though the overall results obtained are slightly higher than those

shown in Table 6.2 the computational cost of the technique employed in

110 CHAPTER 6. DDAG K-TIPCAC

Per class performance evaluation

F-score proteins location F-score proteins location

0.714 17 acrosome proteins 0.253 47 cell wall proteins
0.056 157 Golgi proteins 0.000 17 spindle pole body proteins
0.471 13 hydrogenosome proteins 0.538 13 synapse proteins
0.282 59 lysosome proteins 0.055 91 vacuole proteins
0.700 13 melanosome proteins 0.098 45 centriole proteins
0.000 23 microsome proteins 0.538 497 chloroplast proteins
0.344 488 mitochondrion proteins 0.167 85 cyanelle proteins
0.537 1077 nucleus proteins 0.290 741 cytoplasm proteins
0.019 92 peroxisome proteins 0.078 46 cytoskeleton proteins
0.489 647 plasma membrane proteins 0.247 275 endoplasmic reticulum proteins
0.477 609 extracell proteins 0.000 39 endosome proteins

Table 6.8: DDAG-K-TIPCAC per class F-measures obtained by 10 fold strat-
ified cross validation without employing the projection on the multiclass
Fs.

this subsection is too high. Anyhow, we would like to highlight that this

performance confirms the quality of the K-TIPCAC engine algorithm.

Furthermore, considering the per class performance (reported in Ta-

ble 6.8) we notice that 3 classes are completely misclassified, while the

method proposed in Section 6.2.2 succeeds to identify all the 22 classes.

6.5 Conclusion

In this chapter we proposed an ensemble method whose engine algorithm

is K-TIPCAC. The K-TIPCAC method deals with the points projected on a

multiclass Fisher Subspace estimated extending the approach proposed in

Chapter 4. The final multiclass classification is performed by combining the

kernel classifiers through Direct Decision Acyclic Graph (DDAG).

This methodology was applied to one of the most difficult multiclass pre-

diction problems in modern computational biology: the protein subcellular

location prediction. The performed experimental tests shown the effective-

ness of the K-TIPCAC algorithm and the quality of the multiclass Fisher

Subspace estimation by means of the proposed approach.

It is worth noting that the ability of the proposed approach to effectively

control the precision-recall trade-off also in the prediction of small classes

is of paramount importance in real applications, when we need to reduce

the costs associated with the biological validation of new protein locations

6.5. CONCLUSION 111

discovered through in silico methods.

Furthermore, considering also the experiments in Sections (6.4.1,6.4.2)

we can affirm that the method proposed in this chapter is an efficient and

effective technique. This is due to the fact that it outperforms state-of-

the-art ensemble methods, and it reduces step the time cost employing a

dimensionality reduction that is less affected by loss of discriminative infor-

mation. Moreover, only this approach guarantees the identification of all

the classes that describe the protein localization.

112 CHAPTER 6. DDAG K-TIPCAC

Chapter 7

Summary, Conclusions and
Future Works

In this work we propose novel classifiers based on a new approach to estimate

the Fisher Subspace. We face different classification tasks with the aim to

stress our methods, to demonstrate their quality and to show that these

classifiers solve the following problems:

1. Manage unbalanced classes;

2. Solve the small sample size problem;

3. Deal with high dimensional data;

4. Manage classification tasks where the space dimensionality is approx-

imately equal to the cardinality of the training set;

5. Relax the linear separability constraint reducing the overfitting prob-

lems.

In Chapter 2 well-known learning techniques and some mathematical

and geometrical tools used in the thesis are defined.

In Chapter 3 the base algorithm (IPCAC) is described in detail, reporting

the results achieved on different datasets, furthermore, a Model Merging

technique (MM-IPCAC) to merge different IPCAC trained models is proposed,

and an improvement of IPCAC that performs an implicit dimensionality re-

duction to guarantee better performance is described.

113

114 CHAPTER 7. CONCLUSIONS

The promising results achieved by the proposed classification algorithms

(and their compact trained models), and their comparison with those ob-

tained by well-known classification methods suggest that these techniques

can be successfully applied as a basis for more complex learning algorithms.

In Chapter 4 we described the Online IPCAC linear binary classifier

(O-IPCAC), an efficient and effective method that deals with dynamically

supplied data in high dimensional spaces. This technique performs a “par-

tial” whitening step recovering the residuals. More precisely, the data

whitening has been replaced by a process that whitens the data in a linear

subspace πd = Span 〈v1, . . . ,vd〉 , d ≪ D, while maintaining unaltered the

information related to the orthogonal subspace (πd)
⊥ = Span 〈vd+1, . . . ,vD〉.

O-IPCAC has been developed to deal with: high dimensional data, clas-

sification problems where the cardinality of the point set is high or the data

are dynamically supplied, and highly unbalanced training sets whose cardi-

nality is lower than the space dimensionality.

We evaluated the performance of this algorithm by executing experi-

ments on EEG data, and on different real and syntethic datasets. It is impor-

tant to underline that, in EEG classification, instead of focusing on complex

features extraction/selection techniques, we propose a classifier that is able

to deal with the employed raw data achieving good results.

In Chapter 5 we faced the problem of classes that are non linearly sep-

arable, presenting two algorithms (KIPCAC and PIPCAC) that generalize the

IPCAC assumptions.

K-IPCAC is a kernel version of IPCAC that exploits the “kernel trick” to

perform non-linear classification. Furthermore, in this chapter we presented

different improvements of KIPCAC with the aim of reducing the overfitting

problems that might affect the kernel based techniques.

PIPCAC starts from the base assumption that the feature vectors of each

class are drawn from a Mixture of Gaussians (MoG). Moreover, the clusters

representing the MoG components are automatically determined.

We evaluated the performances of the proposed algorithms by executing

experiments both on synthetic and real datasets. These tests confirm the

excellence of the proposed methods.

115

In Chapter 6 we proposed an ensemble method whose engine algorithm is

an extension of KIPCAC (K-TIPCAC). The K-TIPCACmethod deals with points

projected on a multiclass Fisher Subspace estimated, from the training set,

extending the approach proposed in Chapter 4. Multiclass classification

is performed by combining the kernel classifiers through Direct Decision

Acyclic Graph (DDAG).

This methodology was applied to one of the most difficult multiclass

prediction problems in modern computational biology: the protein subcel-

lular location prediction. The achieved results show the effectiveness of

both K-TIPCAC technique and of the multiclass Fisher Subspace estimation

method.

It is worth noting that the ability of the proposed approach to effectively

control the precision-recall trade-off also in the prediction of small classes

is of paramount importance in real applications, when we need to reduce

the costs associated with the biological validation of new protein locations

discovered through in silico methods.

Considering that most of the compared methods failed completely to

predict the membership of proteins to particularly difficult subcellular lo-

cations, we conclude that DDAG K-TIPCAC is a promising line of research in

this application domain.

In conclusion, the proposed classifiers, which are also described in [81,

82, 84, 83] obtain results that are usually better that those achieved by

well-known classifiers. These results are of particular importance because

they demonstrate that our methods are valuable tools for real data classifi-

cation, and they offer the possibility to be employed for a wide amount of

applications.

In future works we want to further investigate the PIPCAC algorithm;

more precisely, we will focus on the preprocessing step, to improve the per

class cluster estimation. Moreover, we plan to reduce its classification time

complexity in two ways:

1. Choosing/designing a better clustering algorithm that reduces the

number of discovered MoG components without loosing generality;

116 CHAPTER 7. CONCLUSIONS

2. Pruning the first hidden layer by removing the useless classifiers, and

merging neurons with similar behavior through the MM-IPCAC algo-

rithm.

Furthermore, we want develop a time efficient technique to evaluate (a-

priori) the best value for the number of d eigen values employed for the

“partial” whitening in O-IPCAC (see Section 4.3), and we plan to prove the

mistake bound of the on-line learning algorithm.

Another improvement that we would make is the Online version of the

K-TIPCAC technique, proposing an adaptive kernel-version that copes with

the possibility that the probability distribution underlying the data changes

with time.

Regarding the real applications, we want to test our methods to datasets

characterized by a very large ratio between the space dimensionality and the

number of training points, such as Microarray data, and we plan to extend

the DDAG K-TIPCAC approach for the multiplex classification, to provide a

deeper characterization of its performances in further investigations on the

protein localization problem.

Appendix A

Performance Evaluation
Measures

Considering a confusion matrix for a dichotomic problem, the test results

can be subdivided in 4 categories as shown in table A.1. The columns

refer to the true (expected) values and the rows to the predicted values.

P stands for Positive examples and N stands for Negative examples. True

Positives (TP) are Positive examples correctly classified as Positive; True

Negatives (TN) are Negative examples correctly classified as Negative; False

Positives (FP) are Negative examples incorrectly classified as Positive, and

False Negatives (FN) are Positives incorrectly classified as Negative. Using

these distinct notions of correct and incorrect classification, we can define

different quantities to evaluate the performance of a classifier.

Table A.1: Confusion matrix for a dichotomic problem.

Expected

P N

Predicted P TP FP

N FN TN

The Sensitivity expresses the ratio between the correctly predicted Pos-
itive examples and the total number of the Positive examples:

Sensitivity =
TP

TP + FN
(A.1)

In the literature this quantity is also called Recall.
The Specificity, also called True Negative Rate, expresses the ratio between

117

118 APPENDIX A. PERFORMANCE EVALUATION MEASURES

the correctly predicted Negative examples and the total number of the Neg-
ative examples:

Specificity =
TN

TN + FP
(A.2)

The Precision expresses the ratio between the correctly predicted Positive
examples and the total number of examples predicted as Positive:

Precision =
TP

TP + FP
(A.3)

The complementary of the Specificity (1 - Specificity) is the ratio between
the examples incorrectly predicted as Positive and the total number of Neg-
ative examples, i.e. it expresses the fraction of the incorrectly classified
Negative examples with respect to the total number of Negative examples:

1− Specificity = 1− TN

TN + FP
=

FP

TN + FP
(A.4)

Using the above notation, the Accuracy is the ratio between the number of
correctly classified examples and the total number of examples:

Accuracy =
TP + TN

TP + TN + FP + FN
(A.5)

To obtain a single evaluation measure that accounts of both Recall and
Precision values, the weighted harmonic mean of precision and recall, that
is called F-measure or balanced F-score, can be computed as follows:

F −measure =
2 · Precision ·Recall

Precision+Recall
(A.6)

A.0.1 Basic concepts of ROC curve

The Receiver Operating Characteristics (ROC) curve has been introduced by
the signal processing community in order to evaluate the capability of a hu-
man operator to distinguish informative radar signals from noise [31]. At
the present, it is mostly used in the medical decision making community for
assessing the usefulness of a diagnostic test.
In order to express in a synthetic way the performance of a classifier system,
the Receiver Operating Characteristic (ROC) analysis offers a suitable tool
to jointly evaluate sensitivity and specificity: it can be understood as a plot
of the probability of classifying correctly the Positive examples against the
rate of incorrectly classifying True negative examples. In this sense, one can
interpret this curve as a comparison of the classifier across the entire range
of class distributions and error costs. In ROC analysis the performance of
a classifier is defined through pairs of Sensitivity and 1-Specificity values.

119

Hence, in this two-dimensional ROC space the performance of a certain clas-
sifier is defined by a point, i.e. by its 1-Specificity (X-axis) and Sensitivity
(y-axis). In the case of classifiers obtained by thresholding, such as IPCAC or
SVM, the ROC curve can be computed by varying the decision threshold of the
classifier, which describes the trade-off between Specificity and Sensitivity.
Using ROC curves the performance of different learning systems can be com-
pared: the best point in the ROC plane is (0, 1), i.e. 1 − Specificity = 0
and Sensitivity = 1; the worst point is the opposite (1, 0); ROC curves lying
near the diagonal correspond to random guessing classifiers, and in general
learning systems with ROC curves lying on the the top and leftmost portion
of the ROC plane are the better ones. Figure (A.1) depicts an example of the
ROC curve of a given classifier.
The most frequently used performance measure extracted from the ROC curve
is the value of the Area Under the Curve, commonly denoted as AUC. When
AUC is equal to 1, the classifier achieves perfect accuracy if the threshold is
correctly chosen, and a classifier that predicts the class at random has an
associated AUC of 0.5.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

ROC curve

Figure A.1: Example of ROC obtained with KIPCAC. The solid curve corre-
spond to a gaussian kernel and the dotted one is the ROC curve of a polyno-
mial kernel.

120 APPENDIX A. PERFORMANCE EVALUATION MEASURES

Bibliography

[1] Project SpamAssassin Apache. Public spamassassin corpus, 2002-
2005. Download Page at http://spamassassin.apache.org/

publiccorpus/.

[2] A. Asuncion and D.J. Newman. UCI machine learning repository,
2007.

[3] Peter N. Belhumeur, Joo P. Hespanha, and David J. Kriegman. Eigen-
faces vs. fisherfaces: Recognition using class specific linear projection.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
19(7):711–720, August 1997.

[4] Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[5] Enrico Blanzieri and Anton Bryl. A survey of learning-based tech-
niques of email spam filtering. DIT-06-056, January 2008. University
of Trento.

[6] R. B. Bradford. An empirical study of required dimensionality for
large-scale latent semantic indexing applications. In CIKM ’08: Pro-
ceeding of the 17th ACM conference on Information and knowledge
management, 2008.

[7] Matthew Brand. Fast low-rank modifications of the thin singular value
decomposition. Linear Algebra and Its Applications, 415(1):20–30,
2006.

[8] L. Breiman. Random forests. Machine Learning 45(1), 2001.

[9] S. Briesemeister, J. Rahnenfuhrer, and J. Kohlbacher. Going from
where to why - interpretable prediction of protein subcellular localiza-
tion. Bioinformatics, 2010.

[10] S. Charles Brubaker and Santosh Vempala. Isotropic PCA and affine-
invariant clustering. Foundations of Computer Science, Annual IEEE
Symposium on, 0:551–560, 2008.

121

122 BIBLIOGRAPHY

[11] N. Cesa-Bianchi, A. Conconi, and C. Gentile. A second-order percep-
tron algorithm. SIAM J. Comput., 2005.

[12] Chih Chang and Chih Lin. LIBSVM: a library for support vector
machines, 2001.

[13] L. Chen, H. Liao, M. Ko, J. Lin, and G. Yu. A new LDA-based face
recognition system which can solve the small sample size problem.
Pattern Recognition, 30:1713–1726, 2000.

[14] K.H. Chiappa. Evoked potentials in clinical medicine. In Lippincott-
Raven, 1997.

[15] K. Chou and H. Shen. Cell-ploc: a package of web servers for predict-
ing subcellular localization of proteins in various organisms. Nature
protocol, 2008.

[16] K. Chou and H. Shen. A new method for predicting the subcellular
localization of eukariotic proteins with both single and multiple sites:
Euk-mPLoc. Plos One, 2010.

[17] K.C. Chou. A novel approach to predicting protein structural classes
in a (20-1)-D amino acid composition space. Proteins: Structure,
Function, and Genetics, 1995.

[18] K.C. Chou. Prediction of protein cellular attributes using pseudo
amino acid composition. Proteins: Structure, Function, and Genetics,
2001.

[19] K.C. Chou and K.C. Cai. Using functional domain composition and
support vector machines for prediction of protein subcellular location.
Journal of Biological Chemistry, 2002.

[20] K.C. Chou and H.B. Shen. Predicting eukaryotic protein subcellular
locations by fusing optimized evidence-theoretic K-nearest neighbor
classifiers. Journal of Proteome Research 5, 2006.

[21] K.C. Chou and H.B. Shen. Recent progress in protein subcellular
location prediction. Analitical Biochemistry, 2007.

[22] Peter J. A. Cock, Tiago Antao, Jeffrey T. Chang, Brad A. Chapman,
Cymon J. Cox, Andrew Dalke, Iddo Friedberg, Thomas Hamelryck,
Frank Kauff, Bartek Wilczynski, and Michiel J. L. de Hoon. Biopy-
thon: freely available python tools for computational molecular biol-
ogy and bioinformatics. Bioinformatics, 25(11):1422–1423, June 2009.

[23] The Gene Ontology Consortium. Gene ontology: tool for the unifica-
tion of biology. Nature Genet., 25:25–29, 2000.

BIBLIOGRAPHY 123

[24] V. Gordon Cormack and Thomas R. Lynam. Spam corpus creation
for TREC. In CEAS, 2005.

[25] C. Cortes and V. Vapnik. Support vector networks. Machine learning,
1995.

[26] T.M Cover and P.E. Hart. Nearest neighbour pattern classification.
IEEE Transactions on Information Theory, 1967.

[27] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer.
Online passive-aggressive algorithms. JMLR, 7, 2006.

[28] Andrew Moore Dan Pelleg. X-means: Extending k-means with effi-
cient estimation of the number of clusters. In Proceedings of the Seven-
teenth International Conference on Machine Learning, pages 727–734,
San Francisco, 2000. Morgan Kaufmann.

[29] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification.
Wiley-Interscience Publication, 2000.

[30] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Recognition, 2nd
edition. Wiley-Interscience, New York, 2001.

[31] J. Egan. Signal decision theory and ROC analysis. Academic Press,
1975.

[32] Mario A.T. Figueiredo. On gaussian radial basis function approxi-
mations: Interpretation, extensions, and learning strategies. Pattern
Recognition, International Conference on, 2:2618, 2000.

[33] William H. Press Saul A. Teukolsky William T. Vetterling Brian P.
Flannery. Numerical Recipes in C. Cambridge University Press, second
edition, 1992.

[34] J. Fox. Applied regression analysis, linear models, and related meth-
ods. Sage, 1997.

[35] E. Frank and S. Kramer. Ensembles of nested dichotomies for multi-
class problems. Proceedings of the 21st ICML, 2004.

[36] J.H. Friedman. Regularized discriminant analysis. Journal of the
American Statistical Association, 84:165–175, 1989.

[37] K. Fukunaga and R.R. Hayes. Effects of sample size in classifier de-
sign. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 11(8):873–885, 1989.

[38] Keinosuke Fukunaga. Introduction to statistical pattern recognition
(2nd ed.). Academic Press Professional, Inc., San Diego, CA, USA,
1990.

124 BIBLIOGRAPHY

[39] P. Campadelli G. Lombardi, E. Casiraghi. The neighbors voting al-
gorithm. ECAI 2008 - Workshop on Supervised and Unsupervised
Ensemble Methods and their Applications, May 2008.

[40] A. Garg, M. Bhasin, and G.P. Raghava. Support vector machine-based
method for subcellular localization of human proteins using amino acid
compositions, their order, and similarity search. Journal of Biological
Chemistry, 2005.

[41] C. Gentile. A new approximate maximal margin classification algo-
rithm. JMLR, 2002.

[42] J. Grim and J. Hora. Iterative principles of recognition in probabilistic
neural networks. Neural Networks, 21(6):838–846, 2008.

[43] R. Haeb-Umbach, D. Geller, and H. Ney. Improvements in connected
digit recognition using linear discriminant analysis and mixture den-
sities. Acoustics, Speech, and Signal Processing, IEEE International
Conference on, 2:239–242, 1993.

[44] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.H.
Witten. The WEKA data mining software: An update. SIGKDD
Explorations, 2009.

[45] Peter Hall, David Marshall, and Ralph Martin. Merging and split-
ting eigenspace models. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 22:2000, 1998.

[46] P. C. Hansen. The truncated SVD as a method for regularization.
Technical report, Stanford University, Stanford, CA, USA, 1986.

[47] T. Hastie and R. Tibshirani. Classification by pairwise coupling. Pro-
ceedings of Adv. in Neural Information Processing Systems, 1998.

[48] K. Hild, M. Kurimo, and V. Calhoun. The sixth annual mlsp compe-
tition. In MLSP ’10, Sept. 2010.

[49] Michael Holmes, Alexander Gray, and Charles Isbell. Fast SVD for
large-scale matrices. In Workshop on Efficient Machine Learning at
NIPS, 2007.

[50] Z.Q. Hong and J.Y. Yang. Optimal discriminant plane for a small
number of samples and design method of classifier on the plane. Pat-
tern Recognition, 24:317–324, 1998.

[51] Y. Huang and Y. Li. Prediction of protein subcellular locations using
fuzzy K-NN method. Bioinformatics, 2004.

BIBLIOGRAPHY 125

[52] Diaz. J., F. Diaz, C. Hernandez, E.M. Rodriguez, C. Diaz, and
L. Serra. Application of linear discriminant analysis to the biochem-
ical and hematological differentiation of opiate addicts from healthy
subjects: a case-control study. Eur. J. Clin. Nutr, 58:449–455, 2004.

[53] Anil K. Jain, Robert P. W. Duin, and Jianchang Mao. Statistical pat-
tern recognition: A review. IEEE Transactions on Pattern Analysis
and Machine Intelligence, pages 4–37, 2000.

[54] Hua Yu Jie, Hua Yu, and Jie Yang. A direct LDA algorithm for
high-dimensionaldata – with application to face recognition. Pattern
Recognition, 34:2067–2070, 2001.

[55] I. M Johnstone and A. Y. Lu. Sparse principal components analysis.
Journal of the American Statistical Association, 2004.

[56] T. Kim, S. Wong, B. Stenger, J. Kittler, and R. Cipolla. Incremental
linear discriminant analysis using sufficient spanning set approxima-
tions. In CVPR. IEEE Computer Society, 2007.

[57] Thomas K. Landauer, Peter W. Foltz, and Darrell Laham. An in-
troduction to latent semantic analysis. Discourse Processes, pages
259–284, 1998.

[58] Z. Lei and Y. Dai. An SVM-based system for predicting protein sub-
nuclear localizations. BMC Bioinformatics, 2005.

[59] Tao Li, Shenghuo Zhu, and Mitsunori Ogihara. Using discriminant
analysis for multi-class classification: an experimental investigation.
Knowl. Inf. Syst., 10(4):453–472, 2006.

[60] K. Liu, Y. Cheng, and J. Yang. Algebraic feature extraction for im-
age recognition based on an optimal discriminant criterion. Pattern
Recognition, 26:903–911, 1993.

[61] F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, and B. Arnaldi. A
review of classification algorithms for eeg-based brain-computer inter-
faces. Journal of neural engineering, 4(2), June 2007.

[62] Julie B. Lovins. Development of a stemming algorithm. Massachusetts
Inst of Tech Cambridge Electronic Systems Lab, June 1968.

[63] Juwei Lu, K. N. Plataniotis, and A. N. Venetsanopoulos. Regular-
ized discriminant analysis for the small sample size problem in face
recognition. Pattern Recognition Lett., 24(16):3079–3087, 2003.

126 BIBLIOGRAPHY

[64] Juwei Lu, K. N. Plataniotis, and A. N. Venetsanopoulos. Regulariza-
tion studies of linear discriminant analysis in small sample size sce-
narios with application to face recognition. Pattern Recogn. Lett.,
26(2):181–191, 2005.

[65] G. Medioni et al. Tensor voting: Theory and applications. Proceed-
ings of the French conference on Pattern Recognition. and Artificial
Intelligence (RFIA), 2000.

[66] S. Mika, G. Ratsch, J. Weston, B. Scholkopf, and K.R. Muller. Fisher
discriminant analysis with kernels. Neural Networks for Signal Pro-
cessing, 1999.

[67] S. Mika, G. Ratsch, J. Weston, B. Scholkopf, and K.R. Muller. Con-
structing descriptive and discriminative onlinear features: Rayleigh
coefficients in kernel feature spaces. IEEE Trans. on Pattern Analysis
and Machine Intelligence, 25, 2003.

[68] Tom M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

[69] Javier M. Moguerza and Alberto Muñoz. Support vector ma-
chines with applications, Dec 2006.

[70] F. Orabona. DOGMA: a MATLAB toolbox for Online Learning, 2009.
Software available at http://dogma.sourceforge.net.

[71] F. Orabona, C. Castellini, B. Caputo, J. Luo, and G. Sandini. Indoor
place recognition using online independent support vector machines.
In BMVC ’07, pages 1090–1099, 2007.

[72] F. Orabona, J. Keshet, and B. Caputo. The projectron: a bounded
kernel-based perceptron. Int. Conf. on Machine Learning, 2008.

[73] H.C. Palm. A new method for generating statistical classifiers assum-
ing linear mixtures of gaussian densities. Proceedings of the 12th IAPR
conference: Computer Vision and Image Processing, 2:483–486, 1994.

[74] D. Paul. Asymptotics of sample eigenstructure for a large dimensional
spiked covariance model. Statistica Sinica, 2007.

[75] D. Paul. Asymptotics of sample eigenstructure for a large dimensional
spiked covariance model. Statistica Sinica, 2007.

[76] T.W. Picton. The p300 wave of the human event related potential. In
Journal of Clinical Neurophysiology, 1992.

[77] J. Platt. Probabilistic outputs for support vector machines and com-
parisons to regularized likelihood methods. Adv. in Large Margin Clas-
sifiers, MIT press, 1999.

BIBLIOGRAPHY 127

[78] John C. Platt, Nello Cristianini, and John Shawe-taylor. Large margin
DAGs for multiclass classification. In Advances in Neural Information
Processing Systems, pages 547–553. MIT Press, 2000.

[79] J.J. Prieto, A. Talevi, and L.E. Bruno-Blanch. Application of linear
discriminant analysis in the virtual screening of antichagasic drugs
through trypanothione reductase inhibition. Mol Divers, 10(3):361–
75, 2006.

[80] F. Rosenblatt. The perceptron: A probabilistic model for information
storage and organization in the brain. Psych. Rev., 1958. (Reprinted
in Neurocomputing (MIT Press, 1988)).

[81] A. Rozza, G. Lombardi, and E. Casiraghi. Novel IPCA-based classi-
fiers and their application to spam filtering. In Proceedings of the 9th
International Conference on Intelligent System Design and Applica-
tions (ISDA09). IEEE Computer Society, 2009.

[82] A. Rozza, G. Lombardi, and E. Casiraghi. PIPCAC: A novel binary
classifier assuming mixtures of gaussian functions. In AIA ’10. ACTA
press, 2010.

[83] A. Rozza, G. Lombardi, M. Re, E. Casiraghi, and G. Valentini. DDAG
K-TIPCAC: an ensemble method for protein subcellular localization.
In Proceedings of ECML PKDD - SUEMA 2010 workshop. LNCS -
Springer, 2010.

[84] A. Rozza, G. Lombardi, M. Rosa, and E. Casiraghi. O-IPCAC and
its application to eeg classification. In Proceedings of Workshop on
Applications of Pattern Analysis (WAPA10). JMLR, 2010.

[85] Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller.
Nonlinear component analysis as a kernel eigenvalue problem. Neural
Comput., 10(5):1299–1319, 1998.

[86] John Shawe-Taylor and Nello Cristianini. Support Vector Machines
and other kernel-based learning methods. Cambridge University Press,
2000.

[87] H. Shen and K. Chou. PseAAC: a flexible web server for generating
various kinds of protein pseudo amino acid composition. Analytical
Biochemistry, 2008.

[88] H.B. Shen and K.C. Chou. Virus-PLoc: a fusion classifier for pre-
dicting the subcellular localization of viral proteins within host and
virus-infected cells. Biopolymers 85, 2006.

128 BIBLIOGRAPHY

[89] H.B. Shen and K.C. Chou. Hum-mPLoc: an ensemble classifier for
large-scale human protein subcellular location prediction by incorpo-
rating samples with multiple sites. Biochemical and biophysical re-
search communications, 2007.

[90] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. MIT press, Massachusetts, 1998.

[91] Daniel L. Swets and John (Juyang) Weng. Using discriminant eigen-
features for image retrieval. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 18:831–836, 1996.

[92] Q. Tian, Z. Barbero, M.and Gu, and S. Lee. Image classification by
the foley-sammon transform. Optical Engineering, 25:834–840, 1986.

[93] G. Valentini and T.G. Dietterich. Bias–variance analysis of support
vector machines for the development of SVM-based ensemble methods.
Journal of Machine Learning Research, 5:725–775, 2004.

[94] V. Vapnik. Statistical Learning Theory. Wiley Interscience, 1998.

[95] Vladimir Vapnik. The Nature of Statistical Learning Theory. Springer-
Verlag, 1995.

[96] G. Voronoi. Nouvelles applications des parametres continus a la the-
orie des formes quadratiques. Journal fur die Reine und Angewandte
Mathematik, 1907.

[97] G. Wahba. Spline models for observational data. SIAM, Philadelphia,
USA, 1990.

[98] Q. Wei, Y. Wang, X. Gao, and S. Gao. Amplitude and phase coupling
measures for feature extraction in an EEG-based brain computer in-
terface. Journal of Neural Engineering, 2007.

[99] F. Wilcoxon. Individual comparisons by ranking methods. Biometrics,
1:80–83, 1945.

[100] Jigang Xie and Zhengding Qiu. The effect of imbalanced data sets
on LDA: A theoretical and empirical analysis. Pattern Recogn.,
40(2):557–562, 2007.

[101] Jing-Hao Xue and D. Michael Titterington. Do unbalanced data have
a negative effect on LDA? Pattern Recogn., 41(5), 2008.

[102] Jian Yang, Zhong Jin, Jing yu Yang, David Zhang, and Alejandro F.
Frangi. Essence of kernel fisher discriminant: KPCA plus LDA. Pat-
tern Recognition, 37(10):2097 – 2100, 2004.

BIBLIOGRAPHY 129

[103] W. Zhao, R. Chellappa, and J. Phillips. Subspace linear discriminant
analysis for face recognition. Technical Report CS-TR4009, University
of Maryland, 1999.

[104] L.M. Zouhal and T. Denoeux. An evidence theoretic K-NN rule with
parameter optimization. IEEE Transactions on System, Man, and
Cybernetics, 1998.

