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The focus  of this  thesis is  the application of  novel  advanced computational methods  to

specifically  interpret  data  from  biophysical  experiments  performed  on  particular

macromolecular structures: microtubules and tubulin.

Microtubules (MTs) are macromolecular protein  assemblies with well-known key roles in

all eukaryotic cells. It is assumed however that they also have an important role in intercellular

communication over long distances,  especially in the network of neurons.  This feature  may

explain  mechanisms  little-known  so  far,  such  as  the  immediate  involvement  of  the  entire

immune system to local damage,  or may help to clarify some unsolved questions about the

mind-body  problem.Taking  into  account  the  connection  between  structural  and  physical

properties  in  Carbon  Nanotubes  (CNTs)  and  their  structural  similarity  to  MTs,  our  basic

assumption  in  this  research  was  that  when  tubulin  and  MTs  show  different  biophysical

behaviours, this should be due to the peculiar dynamical organization of MTs.

In order to investigate the biophysical properties of the macromolecular structure object of

this study, microtubules and tubulin, an innovative approach has been applied:

-  ad hoc  experimental procedures have been prepared, from which the experimental data

have been obtained;

-  ad  hoc computational  methods  have  been  developed  specifically  to  interpret  the

experimental data.

The theoretical assumptions of the computational methods used are based on the theory of

dynamic  evolution  of  complex  systems  and  on  the  properties  originating  from  their  self-

organization capacity.

The physical properties of birefringence, resonance and superradiance were measured, and

data  from  biophysical  experiments  were  analysed  using  ad  hoc computational  methods:

dynamic simulation of MTs and tubulin was performed, and their level of self-organization was

evaluated using artificial neural networks. The results from dynamic simulations were submitted

to two different self-organizing artificial  neural  networks:  the first  one for the evaluation of

specific parameters, and the second one for the evaluation of dynamic attractors. We developed

a procedure that processes in the form of attractors the series of winner neurons resulting from

the output of the neural network.

Both tubulin and MTs show dynamic stability, but only MTs exhibit a significant behaviour

in presence of electric field, in the direction of a stronger structural and spatial organization. The

Artificial Intelligence approach supports the experimental evidences at the microscopic level,

allowing a more correct and accurate interpretation of the results. 
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The research we carried out reveals the existence of a dynamic and organized response of

MT to  electromagnetic  fields,  which  could  justify  their  role  in  receiving  and  transmitting

information even at long distances. The innovative computational methods implemented in this

work revealed to be very useful for the dynamic analysis of such complex structures. 
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AIM OF THE WORK
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This research project  aims at the understanding of the anomalous properties of particular

biological  structures,  called microtubules,  by means of  the  synergistic use of  computational

methods for the analysis of data from biophysical experiments.

In the study of the physical properties and dynamic organization of MTs compared with

those of CNTs, it is desired to search and analyze a possible reaction to the electromagnetic

field, observing any ability of MTs to absorb or emit like antennas. The MTs, as well as CNTs,

may behave as oscillators, and this could make them superreactive receivers able to amplify the

signals. 

We carried out a set of in vitro experiments on MTs and tubulin, in order to evaluate if their

different  structures  could  be responsible  of  different biophysical  behaviours and  properties.

Then we explored the possible meaning of the obtained findings by simulating and comparing

the dynamic evolution of MTs, tubulin and CNTs. Molecular Dynamics and physico-chemical

simulations were performed, in order to analyse the dynamic evolution of the physical system at

the atomic and molecular level.

To study the evolution of the dynamic organization of the examined structures under the

influence  of  electromagnetic  fields  two  different  procedures  based  on  Artificial  Neural

Networks  (ANNs)  models  were  developed  and  applied.  The  coordinate values  xyz  of  the

molecules after dynamic simulation were used as input value for neural networks, whereas the

output of the ANNs was analysed by using the occupancy – conflicts method and the attractor’s

method.

It has been possible to justify the experimental results in light of structural  and dynamic

models,  highlighting the actual  existence,  so far  only a hypothesis,  of  substantial  effects of

electromagnetic fields on the dynamic evolution of microtubules. As prevoiusly discussed by

Albrecht-Buehler, radial microtubules around the centrosome show reduced stability in response

to pulsating near-infrared signals of 1 s pulse length (Albrecht-Buehler, 1998). The results are

consistent with the interpretation that the centrosome responded to the light by sending signals

along its radial array of microtubules whose stability was then altered.

Evidence of anomalous behaviour of microtubules in the presence of electromagnetic field

and  its  explanation  in  terms  of  dynamic  organization  is  an  important  step  towards  the

understanding of the important role of microtubules in cell communication over long distances,

since  the  long-range  intracellular  communication  may  explain  some  of  the  biological

mechanisms still unsolved, both at neuronal and immune system level.
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1.1 INTRODUCTION TO BIOINFORMATICS

1.1.1 Definition

Bioinformatics aims to describe biophysical and biological phenomena from the numerical

and statistical point of view, by applying computational methods to problems of biophysics and

biology.

In the last years the use of increasingly advanced technologies for the study of biological

systems  has  resulted  in  huge  amounts  of  data  and  information,  which  is  greatly  amplified

because these data represent only very small pieces of larger and more complex systems. All

this information represents an invaluable resource for understanding the molecular mechanisms

underlying the functioning of cells and organisms, but on the other hand it generates serious

issues  in terms  of  their  management and  interpretation.  Because of  this  reason,  along with

molecular biology a new branch of computer science has developed: bioinformatics. 

The field of bioinformatics is growing rapidly for several reasons. First of all, it is necessary

to create, manage and maintain specialized databases able to store the huge amount of data that

modern biological research produces thanks to the recent technological progress. Moreover, in

addition  to  archiving  data,  it  is  fundamental  to  automatically  mine  information  from  the

databases. Bioinformatics is therefore very helpful for biological and biotech research, which

can  be  directed  and  focused,  with  considerable  reduction  in  the  costs  of  implementation.

Bioinformatics focuses on:

- Providing statistical models valid for the interpretation of data from experiments in molecular

biology and biochemistry, to identify trends and numerical laws;

- Creating new models and mathematical tools for analyzing DNA, RNA and proteins to create

a set  of  knowledge concerning  the frequency of relevant  sequences,  their  development  and

possible function;

- Organizing a global knowledge on genome and proteome into suitable databases in order to

make such data accessible to all, and optimizing the algorithms for data searching and mining.

The term bioinformatics is also used for the development of computational algorithms that

mimic biological processes, such as neural networks or genetic algorithms.  The availability of

entire genome sequences from different species makes it possible to investigate the function of

conserved non-coding regions of DNA. The distribution of data in coding (genes) and non-

coding sequences and their subsequent organization in special database for DNA and proteins
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are a key objective of bioinformatics (Li et  al.,  2006.). The development of these databases

allows the realization of software for the analysis of nucleotide (DNA and RNA) and protein

sequences, such as FASTA (Pearson et al., 1988) and PSI-BLAST (Altschul et al., 1997). These

tools  greatly  facilitate  the search  for  homologous sequences  and  the understanding  of  their

mutual  relations,  thus  causing  an  increase  of  functionally  annotated  database.  There  are

bioinformatics tools, such as Genebuilder,  Grail,  GenScan, GenesH, able to predict  putative

biological functions with a variable degree of accuracy: splicing sites, exons, introns, coding

regions, promoters, polyadenylation sites, etc.

With modern so-called "high-throughput” technologies of molecular biology it is possible to

determine gene expression of thousands of genes simultaneously in a single experiment: this is

called the microarray technology (Eisen et al., 1999; Schena et al., 1995; Hanai et al., 2006).

The microarray technology makes use of bioinformatics in several phases: experimental design,

annotation of sequences, image and raw data acquisition, data analysis, database mining (Olson

et al., 2006).  The gene annotation software is web based and allows the viewing, editing and

storing of annotations for both prokaryote and eukaryote genomes. The identification of genes

and their assignment to functional families is based on several  genomic analysis tools: Gene

Ontology (GO)  classification (Boyle et  al., 2004), search for sequences by BLAST, MIAME

(Minimal Information About a Microarray Experiment), MAGE-ML (European Bioinformatics

Institute), GeneX-Lite (National Center for Genome Resources), Manatee (TIGR),  GenMapp

(University of California at San Francisco). Image acquisition and analysis is a crucial step in

microarray analysis. Dedicated software processes the fluorescence data from the array image:

TIFF files created by scanners are read and, through the semi-automatic construction of a grid,

the area of the slide containing the spots is defined. Two different methods for segmentation

(histogram method and Otsu segmentation) are available to define the boundary between each

spot and local background. The intensity of the spots is  counted as integral  of not-saturated

pixels, or by calculating the value of the median or the average of the spot. Local background

subtraction is then applied to each value. Microarray data can be analyzed using different ap-

proaches (Claverie et al., 1999). Data analysis software consists essentially of a combination of

tools aimed at clustering, pattern discovery, Gene Ontology search, analysis and visualization of

gene expression data and of other genomic data. This also allows the linking of data obtained

from  tools  and  external  databases.  The  search  for  functional  cluster  is  usually  performed

through correlation with database of functional annotations (e.g. Gene Ontology).

Database mining techniques are defined as a series of computational tools for exploring and

analyzing large amounts of data in order to extract characteristic and persistent motifs (patterns)

and rules. The algorithms for database mining are derived from the fields of statistics, pattern
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recognition,  artificial intelligence and signal analysis;  they use information directly obtained

from data to create empirical models able to describe the behaviour of a  complex system.  In

gene expression profiles data mining techniques are a useful tool for identifying and isolating

specific  patterns  of  expression,  which  represent  genetic  fingerprinting  of  a  specific

physiological state. Data analysis of cDNA arrays is usually based on the synergistic use of

hypothesis testing  and of systems for  knowledge discovery.  Hypothesis testing  methods are

basically  top-down  approaches  that  scan  the  data  seeking  experimental  confirmation  to

previously formulated hypotheses. The knowledge discovery, instead, can be considered as a

bottom-up approach where the data itself provide the information necessary for the formulation

of new hypotheses. A crucial aspect of the application of these procedures is the identification of

all those genes that show high activity in a particular physiological state. These active genes,

and  their  network  of  relationship,  can  be  identified  by  using  techniques  such  as  Mean

Hypothesis Testing (MHT), Cluster Analysis (CA) Principal Component Analysis (PCA) and

Decision Tree (DT).

The  genome  sequencing  projects  and  the  other  high-throughput  approaches  generate

thousands  of  new  protein  sequences  from  different  organisms.  Bioinformatics  is  therefore

essential for proteomic studies aimed at assigning a function to each protein: it can establish

similarity  correlations  with  already  characterized  proteins  by  homology  analysis  and

evolutionary  inference,  and  rationalize the function from the structural  point  of  view, using

experimental  structural  data  or  model-derived  data.  By  looking  separately  at  sequences  or

protein folding,  little can be said about the function. Instead,  taking into consideration both

sequences  and  structures  together,  the  emerging  conserved  patterns,  called  motifs,  provide

important functional information.

Another  field  strongly  implemented  by  using  bioinformatics  is  that  of  combinatorial

chemistry: in vitro chemical synthesis of hundreds of modified molecules and their subsequent

tests  of interaction with potential  pharmacological  targets  has been increased by virtual  3D

reconstructions of molecules and their in silico screening searching for the best pharmacological

ligands. Only molecules with high score of interaction are then synthesized and tested in vitro,

with significant cost savings. 

Bioinformatics also plays an important role in the field of meta-analysis. Meta-analysis is

the  statistical  procedure  for  combining  data  from  multiple  studies.  It  is  useful  for  the

identification of homogeneous sets of information across different data, for example microarray

studies on different species or different treatments. It allows a more objective appraisal of the

evidence  than  traditional  narrative reviews,  provides  a  more  precise  valuation  of  data  (for

example the estimate of a treatment effect), and may explain heterogeneity between the results
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of individual studies.

A useful tool for meta-analysis is represented by Pointillist, which is a set of four software

programs  (Data  Manager,  Data  Normalizer,  Significance  Calculator,  Evidence-Weighted

Inferer) for inferring the set of elements affected by a perturbation of a biological system based

on multiple types of evidence. The inference is based on a weighted statistical method, in which

each evidence type is given a distinct  trustworthiness weight.  The method is robust  against

missing and inconsistent data. Pointillist is written in Java, and is based on the ISB Java library.

All four programs read data files in which the columns are evidence types and the rows are

elements  of  the system (e.g.,  genes  or  proteins).  The Data Manager  is  used  for  data  sub-

selection and averaging. The Data Normalizer is (optionally) used to perform normalization of

microarray  expression  data.  The  Significance  Calculator  is  used  to  obtain  P-values  for

measurements based on a distribution of observations for negative control(s). Both parametric

and nonparametric methods can be used to obtain the P-values. The Evidence-Weighted Inferer

is  used  to  combine the P-values  for  observations  of different evidence types,  and  obtain a

consensus P-value for each element of the system. The elements are classified into the "null

hypothesis" (likely unaffected) set, and the set of likely affected elements, using an iterative

procedure (Hwang et al., 2005).

1.1.2 Structural Bioinformatics 

Structural Bioinformatics is the field of bioinformatics aiming at the analysis and prediction

of the morphology and structure of biological  macromolecules such as proteins and nucleic

acids. Macromolecules are fundamental for all the functions of the cell, and it is only by taking

appropriate three-dimensional shapes that  proteins and sub-cellular components can  perform

their functions.

Proteins are one of the fundamental macromolecules forming the cells. One of the central

topics  of  modern  research  in  molecular  biology,  biochemistry  and  biophysics  is  the

understanding of how these functions are related to the molecular structure. Proteins are linear

polymers made of hundreds of elementary units, the amino acids, characterized by a carboxy-

terminal  end  (acid)  and  an  amino  terminal  end  (basic)  and  exist  in  nature  in  20  different

varieties. The study of the structural organization of proteins takes place at 4 different levels:

- Primary structure: it corresponds to the sequence of the amino acids and to the position of

disulfide bonds, if any, and therefore reflects all the covalent bonds of a protein.
14



- Secondary structure: it refers to the space conformation of adjacent amino acid residues in

linear  sequence.  Some  of  these  steric  connections  are  regular  and  give  rise  to  periodic

structures, such as α-helix and β-sheet. When steric relationships are not regular, they are called

random-coil.

- Tertiary structure: it is related to the position in the space (3D coordinates) of amino acid

residues that are far apart in the linear sequence.

-  Quaternary  structure:  proteins  that  contain  more than  one polypeptide chain  have  an

additional  level  of  structural  organization:  each  polypeptide  chain  is  called  a  subunit  and

quaternary structure refers to the spatial arrangement of these subunits into complexes.

Predicting the three-dimensional arrangement of proteins,  namely their tertiary structure,

from the linear sequence of the component amino-acids (primary structure), has become a topic

of great relevance since the techniques of molecular biology (recombinant DNA) are able to

collect  information on primary structure at  a much higher rate than traditional spectroscopic

techniques (X-ray diffraction, NMR, etc.) respectively do for the three-dimensional structures.

Before the advent  of structural  genomics  the main interest  in solving the structure  of  a

protein was to understand and better analyse the determinants of its function, which was already

assigned after biochemical or genetic experiments were performed. The increasing number of

fully  sequenced  genomes  together  with  the  progress  in  homology  modelling  of  protein

structures shifted the interest on characterizing the largest number of different folds to have the

best possible sampling of structure space. The rationale is that,  as more and more structural

folds  are  characterized,  homology  modelling  of  an  increasing  number  of  proteins  should

become possible and more reliable. In light of this goal, targets for structure determination are

selected among proteins with very low sequence identity to proteins of known structure. As a

consequence, a large number of structures belong to proteins of unknown function. This fact has

enormously  increased  the interest  in  computational  methods  for  structure-guided  functional

inference.  Structural  comparison  methods  are  potentially  able  to  identify  very  distant

evolutionary  relationships  between  proteins.  Moreover,  only  structural  data  makes  the

identification of independently evolved functional sites possible [Via et al., 2000; Ausiello et al.

2007; Gherardini et al. 2007].

A first group of functional annotation methods uses a comparative approach searching for

common features  between the query protein  and  some database of protein  structures;  other

methods analyse the physicochemical characteristics of a protein surface to identify patches that

have features (e.g. shape, electrostatic properties, etc.) characteristic of functional sites.
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Comparative  Approaches are  similar  to  sequence  comparison  methods,  and  can  be

classified as global or local. Global comparison algorithms are mainly used in protein structure

classification to identify evolutionary links between distant homologues. They can also be used

for function prediction but the relationship between fold and function is extremely complex and

numerous examples are known of folds hosting a great variety of functions [Gerlt et al., 2001].

It should indeed be noted that the function of a protein usually depends more on the identity and

location of a few residues comprising the active site than on the overall  fold. Therefore, the

usefulness of global comparison methods is essentially indirect and lies in their capability of

identifying  remote  homology  relationships.  In  order  to  directly  analyse  and  compare  the

residues effectively involved in protein function, local structural comparison methods have been

developed.  Local  structural  comparison  refers  to  the  possibility  of  detecting  a  similar  3D

arrangement of a small set of residues, possibly in the context of completely different protein

structures. Such algorithms can either compare two entire protein structures in search for local

similarities, without any a priori assumption, or use a pre-defined structural template to screen a

structure.  A template  represents  the  spatial  arrangement  of  the  residues  involved  in  some

biochemical  function  and  can  be regarded  as  a  3D extension  of  the linear  sequence  motif

concept.  In  general,  local  structural  comparison  methods  can  also  be  used  to  search  for

templates.  The JESS [Barker  et  al.,  2003]  algorithm gives  the possibility of  expressing  the

template  as  a  set  of  high-level  constraints  of  arbitrary  nature.  The  program  DRESPAT

[Wangikar et al., 2003] uses a graph theoretic method to enumerate patterns recurring in a set of

structures. The problem of assessing the statistical significance of a local structural similarity is

complex. The biggest gap, in terms of statistical  analysis, between sequence comparison and

structure comparison is that in the latter case there is no universally accepted random model that

can be used as a basis for significance assessment.

Since  no  definitive  way  exists  to  identify  statistically  significant  matches,  it  is  very

important to integrate  structural  comparison methods with detailed functional annotations in

order to steer the search towards functionally significant residues. When a match between two

proteins involves residues for which functional annotations are available, one can more easily

derive clues  about  the significance  of  a  correspondence even  in  the absence of  a  rigorous

statistical framework. Various tools have been developed to ease the functional annotation of

protein structures. 

The E-MSD structure database [Boutselakis et al., 2003] aggregates an enormous amount of

functional information about protein structures, coming from a variety of sources. 

SPICE [Prlic et al., 2005] is a graphical client for the DAS system [Dowell et al., 2001] that

allows annotations from different laboratories hosting a DAS server to be mapped and displayed
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on the structure of a protein of interest. 

The pdbFun webserver [Ausiello, Zanzoni et al., 2005] integrates functional annotations at

residue level with the Query3d local structural comparison method so that the residues to be

used in a comparison run can be selected on the basis of functional information. [Ausiello, Via

et al., 2005]. 

SWISS-MODEL is  an  environment  for  comparative  protein  modelling.  It  consists  of

SWISS-MODEL,  a  server  for  automated  comparative  protein  modelling,  of  the  SWISS-

PdbViewer, a sequence to structure workbench that also provides a large selection of structure

analysis and  display  tools,  and  of  the SWISS-MODEL Repository,  a  database of  annotated

three-dimensional  comparative  protein  structure  models  generated  by  the  fully  automated

homology-modelling  pipeline  SWISS-MODEL.  The current  release of  the  SWISSMODEL-

Repository (10.2.2) consists of 3,021,185 model entries for 2,244,854 unique sequences in the

UniProt database.

3D-Jury is a metaserver that aggregates and compares models from various protein structure

prediction  servers.  It  integrates  groups  of  predictions  made  by  a  collection  of  servers  and

assigns each pair a 3D-Jury score, based on structural similarity. The 3D-Jury system generates

meta-predictions from sets  of models created using variable  methods.  It  is  not necessary  to

know prior  characteristics  of  the  methods.  The  system is  able  to  utilize  immediately  new

components (additional prediction providers). The accuracy of the system is comparable with

other  well-tuned  prediction  servers.  The  algorithm resembles  methods  of  selecting  models

generated using  ab initio folding  simulations.  It  is  simple and offers a  portable  solution  to

improve the accuracy of other protein structure prediction protocols.

Methods  Based  on  Structural  Calculations are  founded  on  the  observation  that  the

functional patches of a protein have physicochemical characteristics that set them apart from the

surface as  a  whole.  Indeed,  these peculiarities  ultimately  are  the reason why these patches

possess a function at all. The aim of these methods is usually to predict either the location of a

ligand-binding site or that of an enzyme active site. Countless algorithms exist that employ the

notion that functional sites are usually located in clefts on the protein surface. This simple fact is

used  either  directly  to  predict  the location  of  functional  sites,  or  as  a  first  step  to identify

candidate  residues  before  further  scoring  procedures  are  applied.  Methods  for  identifying

cavities  in  a  protein  surface  include  LIGSITE [Hendlich  et  al.,  1997],  a  program  for  the

automatic and time-efficient detection of pockets on the surface of proteins that  may act  as

binding  sites  for  small  molecule  ligands.  Pockets  are  identified  with  a  series  of  simple
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operations on a cubic grid. Using a set of receptor-ligand complexes we show that LIGSITE is

able  to  identify the binding sites  of  small  molecule  ligands  with  high  precision.  The main

advantage of  LIGSITE is its  speed.  Typical  search times  are  in the range of 5  to 20 s for

medium-sized proteins. LIGSITE is therefore well suited for identification of pockets in large

sets of proteins (e.g., protein families) for comparative studies. For graphical display LIGSITE

produces VRML representations of the protein-ligand complex and the binding site for display

with a VRML viewer such as WebSpace from SGI. Another program for detection of cavities in

macromolecular structures is VOIDOO [Kleywegt et al., 1994]. It uses an algorithm that makes

it  possible to detect even certain types of cavities that are connected to "the outside world".

Three  different  types  of  cavity  can  be  handled  by  VOIDOO:  van  der  Waals  cavities  (the

complement  of  the molecular  van  der  Waals  surface),  probe-accessible  cavities  (the  cavity

volume  that  can  be  occupied  by  the  centres  of  probe  atoms)  and  MS-like probe-occupied

cavities (the volume that can be occupied by probe atoms, i.e. including their radii). VOIDOO

can be used for:  detecting and delineating cavities, measuring cavity volumes and molecular

volumes, identifying non-protein atoms inside cavities, identifying protein atoms that line the

surface of cavities, randomly rotating molecules for assessing the accuracy of cavity volumes

(by repeated calculations using differently oriented copies of a molecule).

PocketPicker [Weisel et al., 2007] is an automated grid-based technique for the prediction of

protein binding pockets that  specifies the shape of a potential  binding-site with regard to its

buriedness. The performance of the pocket detection routine of PocketPicker is comparable to

that of LIGSITE and better than the other tools.   It produces a convenient representation of

binding-site shapes including an intuitive description of their accessibility. The shape-descriptor

for  automated  classification  of  binding-site  geometries  can  be  used  as  an  additional  tool

complementing elaborate manual inspections. 

The  THEMATICS [Ondrechen  et  al.,  2001]  program  shows  the  power  of  computing

chemical properties of the structure in order to predict the location of active sites. This method

starts with the observation that  amino acids involved in catalysis usually have pKa (the acid

dissociation constant at logarithmic scale) values that differ from the standard values in solution.

Therefore, a computational procedure is used to calculate the theoretical pKa of each amino acid

side chain of  a  given protein  structure.  Clusters of  residues  with  perturbed pKa values  are

assumed to identify the location of the active site. The main improvement of THEMATICS with

respect to other methods is an increase in precision, i.e. the predictions are less spread out on the

protein surface and more tailored towards the real  active site. The high success rate for the

prediction of catalytic sites shows that this method can be useful for functional annotation of

proteins from structural genomic projects, at least in providing clues to the location of the active
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site.

Several methods exist that take into account a combination of structural features, such as

hydrophobicity,  surface curvature, electrostatic properties, etc.  to infer  the location of active

sites.  One of  the earliest  examples  of  this approach  is a  method to  predict  protein–protein

interaction  sites  taking  into  account  six  structural  parameters:  solvation  potential,  residue

interface propensity, hydrophobicity, planarity, protrusion and accessible surface area [Jones et

al.,  1997].  A preliminary analysis is  first  performed and it is  verified that  different types of

protein–protein  interfaces  have  different  properties.  This  notion  is  used  to  construct  three

scoring functions, one for each category of interface, that are different linear combinations of

the six parameters. When dealing with small molecule binding cavities, size and shape seem to

be more important than electrostatic interactions.

The  ProMateus server [Neuvirth et  al.,  2007] allows the user to propose new structural

characteristics that  may be useful  in predicting protein–protein and protein–DNA interaction

sites.  Researchers  can  download a  database and  upload  back  the values of  the new feature

whose usefulness they want to explore. ProMateus will perform a series of statistical analyses

and train a logistic regression model using the features already present together with the new

one that  is  being  proposed.  A feature  selection  procedure  will  determine  whether  the  new

property  is  irrelevant,  is  relevant  but  overlaps  with  existing  features  or  provides  new

information  that  effectively  improves  the  prediction.  This  server  is  also  an  interesting

experiment on the applicability of an open and community-driven research approach. Several

methods used to predict ligand binding sites calculate the interaction energy between the surface

of the protein and a chemical probe. Cluster of regions with favourable interaction energy are

then predicted to be ligand binding pockets.  Q-SiteFinder [Laurie et al., 2005] uses a methyl

group to probe the structure.  Conversely the method by Silberstein et  al.  [Silberstein et  al.,

2003]  uses  a  variety  of  hydrophobic  compounds  to  scan  the  structure  and  identifies  a

‘consensus’ site that binds the highest number of probes. Ruppert et al. [Ruppert et al., 2003]

developed a method that scans the surface with three molecular fragments (hydrophobic probe,

hydrogen bond donor and acceptor). Clusters of points with high affinity for the probes are used

to define the ‘stickiest’ regions of the surface. This representation of molecular surface can be

used directly for small molecule docking, using the probes virtually bound to the binding pocket

as anchors for the chemical groups of the ligand. Since structural genomics is going to increase

the number of sequences amenable to homology modelling, it is interesting to apply structure-

based function prediction methods to models.

PSORT is a computer program for the prediction of protein sorting signals and localization

sites in cells. It receives the information of an amino acid sequence and its source origin, e.g.,
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Gram-negative bacteria, as inputs. Then, it analyzes the input sequence by applying the stored

rules  for  various  sequence features  of  known protein sorting  signals.  Finally,  it  reports  the

possibility  for  the  input  protein  to  be  localized  at  each  candidate  site  with  additional

information.

TMpred (Prediction of Transmembrane Regions and Orientation) is a program that makes a

prediction of membrane-spanning regions and their orientation. The algorithm is based on the

statistical analysis of TMbase, a database of naturally occurring transmembrane proteins and

their helical membrane-spanning domains. TMbase is mainly based on SwissProt, but contains

informations from other sources as well. All data is stored in different tables, suited for use with

any relational database management  system The prediction  is made using a combination of

several weight-matrices for scoring.

1.1.3 Molecular Dynamics

Molecular dynamics simulations of proteins, which began about 25 years ago, are by now

widely used as tools to investigate structure and dynamics under a variety of conditions; these

range from studies of ligand binding and enzyme reaction mechanisms to problems of denatura-

tion and protein refolding to analysis of experimental data and refinement of structures.

Simulation bioinformatics is used to study complex physical systems from a microscopic

point  of  view.  It  is  useful  for  the  prediction  of  the structural  and  dynamical  evolution  of

biomolecules as a function of the interaction of every atom of the system with all the other

atoms present in the simulation environment, and for the comparison of the average values of

physical measures for systems consisting of a large number of particles with the corresponding

thermodynamic quantities.

Monte Carlo (MC) simulation, which uses pseudo-random numbers [Newman et al., 1999]

can  be  distinguished  from  Molecular  Dynamics  (MD) simulation,  based  on  principles  and

methods of classic and quantum physics [Allen et al., 1987].

The MD simulation is a set of computational techniques that, by integrating the Newtonian

equations of motion,  analyses the dynamic evolution of a physical system at  the atomic and

molecular level. In order to perform realistic molecular dynamics experiments in a reasonable

time the simulations should be performed in parallel computing environments. Multiprocessor

systems or clusters are used to this purpose. 
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In MD simulations atoms and molecules interact for a predetermined time period and in a

controlled environment.  Their system configuration evolves according to the laws of classical

motion.  As  molecular  systems  typically  consist  of  a  very  large  number  of  particles,  it  is

impossible to follow the evolution of these complex systems analytically. MD experiments can

help to interpret experimental results, representing  an interface between theory and laboratory

experiments. 

In classical  MD simulations, the interactions between the particles of the system are de-

scribed using the concept of force field, whose parameters are determined using semi-empirical

methods and/or on the basis of first principles calculations. 

The latter are performed according to methods widely used in quantum chemistry, to de-

scribe the behaviour of matter at the molecular scale, according to the concepts of quantum

mechanics. In theory, it is possible to describe any system using these methods. In practice, giv-

en the complexity of the calculations involved, it is possible to analyze only very simple sys-

tems. However, these systems can serve as a paradigm to determine the parameters of force field

relating to interactions between atomic groups.

Current applications of MD simulation cover a very wide spectrum of disciplines. In partic-

ular, it represents a valuable tool in the field of interdisciplinary research aimed at determining

the structure of proteins, refining the results produced by experimental measurement methods

such as X-ray crystallography or Nuclear Magnetic Resonance (NMR).

The design of an MD simulation should try to use all the computing power available to

ensure that the physical system simulated explore all configurations available at the temperature

of the simulation at the so-called ergodic hypothesis. A critical point is to solvate the system

properly with water and ion molecules. The ergodic hypothesis states that, after a sufficiently

long time, the time spent by a particle in a volume in the phase space with microstates of equal

energy is proportional to the volume itself, equivalently, at the thermodynamic equilibrium, its

state can be any of those that meet the conditions of the macroscopic system. In general, the

complexity of the simulation (evaluated by the number of particles making up the system), the

temporal interval and the simulation time must be carefully selected so that the experiment has a

reasonable  duration.  It  is  also  useful  to note  that  the duration  of  the simulation should  be

sufficient  to  provide data  comparable  with  the characteristic  times  of  the systems  that  are

analyzed. Many scientific publications dealing with the dynamics of proteins and DNA show

data  for  simulation  times  that  are  of  the  order  of  nanoseconds  and,  more  rarely,  of

microseconds. The computation time of these simulations ranges from a few days to several

months depending on the power of computers used and the complexity of the system. 

21



During  a  molecular  dynamic  simulation  the  most  challenging  computation  phase  is

represented by the calculation of the interaction forces, which are functions of the Cartesian

coordinates of atoms and of the internal molecular coordinates. Moreover, within this phase, the

most time-consuming part is the one relating to non-bonded interactions.

Another factor that greatly affects the overall duration of the simulation is determined by the

value of the step of integration of the underlying equations of finite difference equations. This

parameter  represents  the  time  between  the  sampling  to  gather  information  about  the

configurations that the system can take. In general, the integration step should be small enough

to avoid accumulation of discretization errors. In addition, the timestep should be smaller than

the reciprocal of the highest frequency of vibration of the system. The magnitude of the typical

integration step of a MD simulation is the femtosecond (10−15s). This value can be moderately

extended through the use of algorithms such as SHAKE and its variants. In simulations of large

stages, the size of the simulation box containing the system must be resized so as to avoid

artefacts associated with periodic boundary conditions [Allen et al., 1987]. These issues can be

bypassed by choosing a box size larger than the diameter of cut-off used for the calculation of

non bonded interactions.

The conceptual  basis of  the MD simulation  has to be sought  in the Born-Oppenheimer

approximation, which states that the description of the motion of the electrons and the one of the

nucleus  of  atoms  in  a  molecule  can  be  separated.  This  statement  leads  to  the  following

functional relation: Ψmolecule (ri, Rj ) = Ψelectron (ri , Rj ) Ψ nucleus (Rj ), where:

• Ψ is the wave function describing the atom j

• ri is the position of its electron

• Rj  is the position of the nucleus of the atom j

It can be demonstrated that the electron wave function depends on the atomic position Rj

but not on its speed. Since the motion of the nucleus of an atom is much slower than that of an

electron, the nucleus can be considered steady, even because its motion, measured in terms of

rotation  and  vibration,  is  little  influenced  by  the  surrounding  electrons.  Within  the  Born-

Oppenheimer approximation it  is possible to say that  the atoms can be represented as point

particles governed by Newton's mechanics. In the case of classical MD simulations, the effect of

the electrons is approximated with the potential that governs the interactions between atoms.

The simulations are commonly carried out by monitoring the relative thermodynamic quantities

of the specific statistical-mechanical assembly.

In  the  microcanonical  system,  also  defined  as  NVE,  the system under  consideration  is

isolated from the environment, keeping the number of particles (N), the volume (V) and total

mechanical  energy  (E)  constant.  In  general  a  molecular  trajectory  observed  throughout
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microcanonical  setting can be viewed as an exchange of potential  energy and kinetic energy

without energy loss. The potential energy function depends on the coordinates of the particles of

the system and is evaluated using the terms of the force field chosen for the simulation. At each

integration  step,  the position  and  speed  vectors  are  calculated  by  integrating  the system of

differential equations. The time evolution of these vectors is the so-called simulation trajectory

of the system. Within  molecular  dynamics  simulations the temperature  is a  thermodynamic

quantity that can be evaluated by making the average kinetic energy of the particles constituting

the system equal to the term n/2 kBT,  where n is the number of degrees of freedom of the

particles and kB is the Boltzmann constant.

In the canonical system, also known as NVT, the number of particles (N), volume (V) and

temperature (T), are kept constant. In NVT systems, the energy associated with the exothermic

and endothermic processes is in fact exchanged with a thermostat.

In the isothermal-isobaric system, also known as NPT, the number of particles (N), pressure

(P) and temperature (T) are kept steady. In this type of simulation the temperature is maintained

constant  using  a  thermostat  as  in  the  canonical  system.  In  addition  a  barostate  is  used  to

maintain  the pressure as  constant  as  possible.  This  is  done  by  varying  the volume of  the

simulation box, which is reduced to correct for a decrease in pressure, or increased to correct for

an  increase  in  pressure.  Corrective  action  on  temperature  and  pressure  are  regulated  by

appropriate time constants.

A MD simulation requires the use of potentials of appropriate shape in order to describe the

type of  interaction  between  the  particles  composing  the  simulated  system.  The  force  field

models  allow  calculating  such  potentials.  According  to  the  method  of  determining  the

parameters describing the interaction between pairs of atoms, the force fields can be divided

into: empirical, semi-empirical or quantum-mechanical. In the empirical force-field, parameters

are obtained from experimental measurements, in the quantum-mechanical force-field they are

derived by quantum calculations on simple systems containing the relevant pairs of atoms. In

the case of semi-empirical potentials the parameters are determined partly in an experimental

way and partly by the quantum-mechanical calculations.
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1.2 COMPUTATIONAL METHODS: MOLECULAR DYNAMICS

1.2.1 Amber 

Amber (Assisted Model Building and Energy Refinement) refers to two things: a set of mo-

lecular mechanical force fields for the simulation of biomolecules (which are in the public do-

main, and are used in a variety of simulation programs); and a suite of molecular simulation

programs which includes source code and demos and allows users to carry out and analyze mo-

lecular dynamics simulations, particularly for proteins, nucleic acids and carbohydrates [Case et

al., 2005].

Amber consists of three main steps: system preparation, simulation, and trajectory analysis.

Encoding these operations in separate programs has some important advantages. First, it allows

individual pieces to be upgraded or replaced with minimal impact on other parts of the program

suite; this has happened several times in Amber’s history. Second, it allows different programs

to be written with different coding practices: LEaP is written in C using X-window libraries,

pTraj and Antechamber are text-based C codes, mm-Pbsa is implemented in Perl, and the main

simulation programs are coded in Fortran 90. Third, this separation often eases porting to new

computing  platforms: only  the principal  simulation  codes  (Sander  and pMemd) need  to  be

coded for parallel operation or need to know about optimized libraries. Typically, the prepara-

tion and analysis programs are carried out on local machines on a user’s desktop, whereas time-

consuming simulation tasks are sent to a batch system on a remote machine; having stable and

well-defined file formats for these interfaces facilitates this mode of operation. Finally, the code

separation facilitates interaction with programs written by others.

The main preparation programs are antechamber (which assembles force fields for residues

or organic molecules that are not part of the standard libraries) and LEaP (which constructs bi-

opolymers from the component residues, solvates the system, and prepares lists of force field

terms and their associated parameters). The result of this preparation phase is contained in two

text files: a coordinate (prm-crd) file that contains just the Cartesian coordinates of all atoms in

the system, and a parameter-topology (prm-top) file that contains all other information needed

to compute energies and forces; this includes atom names and masses, force field parameters,

lists of bonds, angles, and dihedrals, and additional bookkeeping information. The nucleic acid

builder (NAB) program integrates well with Amber to construct initial models for nucleic acids,

and the Amber/GLYCAM configuration tool serves a similar purpose for carbohydrates. Tools

for manipulating protein structures (e.g., for constructing homology models) are widespread,
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and the resulting PDB-format files can generally be processed by LEaP with little or no modi-

fication. 

The main molecular dynamics program is called Sander. This code is written in Fortran 90,

and uses the Fortran name list syntax to read user-defined parameters as label-value pairs. There

are many possible options, and about 150 possible input variables. Of these, only 32 generally

need to be changed for most simulations.

Sander is a parallel program, using the MPI programming interface to communicate among

processors. It uses a replicated data structure, in which each processor “owns” certain atoms, but

where all processors know the coordinates of all atoms. At each step, processors compute a por-

tion of the potential energy and corresponding gradients. A binary tree global communication

then sums the force vector, so that each processor gets the full force vector components for its

“owned” atoms. The processors then perform a molecular dynamics update step for the “owned”

atoms, and use a second binary tree to communicate the updated positions to all processors, in

preparation for the next molecular dynamics step. Because all processors know the positions of

all atoms, this model provides a convenient programming environment, in which the division of

force-field tasks among the processors can be made in a variety of ways. The main problem is

that the communication required at each step is roughly constant with the number of processors,

which inhibits parallel scaling. In practice, this communication overhead means that typical ex-

plicit solvent molecular dynamics simulations do not scale well beyond about eight processors

for a typical cluster with gigabit ethernet, or beyond 16–32 clusters for machines with more effi-

cient (and expensive) interconnection hardware. Implicit solvent simulations, which have many

fewer forces and coordinates to communicate,  scale significantly better.  For these relatively

small numbers of processors, inequities in load-balancing and serial portions of the code are not

limiting factors, although more work would have to be done for larger processor counts.

1.2.2 Molecular Workbench

Molecular Workbench (Concord Consortium. Molecular Workbench Software) is a learning

environment for science based on Java, which simulates the behaviour of atoms and molecules

from basic principles. Molecular dynamics simulations with Molecular Workbench demonstrate

at  the  atomic  scale  the  mechanisms  of  the  fundamental  physical,  biological  and  chemical

phenomena.  The  movement  of  atoms  and  molecules  caused  by  interatomic  forces  can  be

observed in real time, and by changing the parameters of the model (such as temperature or

charge) the effects can be analysed. The software is constantly evolving, and users can easily
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adapt existing activities to their own needs or develop new models [Tinker and Xie, 2008]. The

activities are grouped into an online database that contains almost 200 models searchable by

keyword,  concept  or  topic.  In  order  to  use the proprietary  format for  the simulations,  it  is

necessary to recreate the model of the molecule by extrapolating from the PDB definition its

DNA.  DNA (DesoxyriboNucleic  Acid)  is  a  nucleic  acid  containing  the  necessary  genetic

information (the so-called genetic code) for the biosynthesis of RNA and proteins, which are

essential molecules for the development and proper functioning of most living organisms. DNA

extrapolation  was  performed  through  DNADynamo  [BlueTractorSoftware.  DNA Sequence

Analysis  Software.  http://www.bluetractorsoftware.co.uk.]  also  working  through  the  Java

console. The user interface of this software is based on the visualization of DNA of uploaded

proteins or  enzymes.  The conformation  of  each  amino acid  of  the imported  model  can  be

selected through the implemented features.

Molecular Workbench offers a variety of models and simulation applets.  To recreate the

experimental conditions used in the laboratory, a physical environment of the model is used;

through the Options menu it is possible to select the characteristics of the dielectric in which

suspending the molecular models, the temperature for the simulation and the type of light source

to be applied. Emission and absorption spectra can be connected to the physical environment, in

order to check the behaviour of the model. Then, it is possible to create an element in the model

defined according to the biophysical characteristics of spatial distribution and size selected in

the previous steps.  At this point all  the parameters are defined and it is possible to run the

simulation.

1.2.3 Ascalaph

Ascalaph  is  a  simple  molecular  dynamics  simulation  program.  The  main  use  is  for

modelling of biomolecules, especially proteins, lipids and nucleic acids. The software is similar

to  the  others  of  this  type,  but  it  has  distinguishing  properties  such  as:  ability  to  perform

simulations for long periods, support for a hierarchy of methods of varying accuracy, support

for the development of force fields, molecular graphics and various interactive methods for the

construction of molecular models.

Ascalaph is composed of four packages: Graphics, Dynamics, Quantum and Designer.

- Ascalaph Graphics provides a graphical interface, including the window interface and the

three-dimensional graphics of molecular models.

- Ascalaph Dynamics is a program for molecular dynamics.
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- Ascalaph Quantum is an interface for the package of quantum mechanics.

- Ascalaph Designer allows the generation and editing of molecular models, the geometric

optimization and the molecular dynamics simulation.

In particular,  Ascalaph Designer  is  a  software allowing to build and simulate molecular

models  and  turn  them  into  a  three-dimensional  environment.  It  also  provides  a  graphical

environment  for  classical  and  quantum  modeling  of  molecules  based  on  Fire  y  and

MDynaMix/MGE (Lyubartsev and Laaksonen, 2000). Both graphical  environments on which

the simulator is based provide dedicated implementations for the interaction of a large number

of  atoms  but  don't  reach  the  computational  power  that  these  rendering  engines  have  on

implementations based on cluster systems [Lyubartsev and Laaksonen, 1998] or with dedicated

hardware,  such  as  NVIDIA Corporation-Molecular  Dynamics.  To link  together  the various

software used it is necessary to use a format converter: Avogadro. Avogadro is an open source

multi-platform project  recently  created  under  the Open Molecules  project.  Avogadro  allows

drawing simple and complex molecules with a high speed and with good user-friendliness. The

molecules can be represented in different ways, such as “balls & sticks”, orbital, Van der Waals

spheres, surfaces, rings and hydrogen bonds. A wide range of fragments is available, most part

of them are available immediately in a drop down menu with  the possibility to choose the

single, double or triple bonds. The molecules created can be manipulated at will, interatomic

distances can be read, bond angles can be oriented, molecular centers can be precisely defined.

The  molecules  can  be  saved  in  several  formats,  including  the  most  popular  PDB,  MDB,

Gaussian, and can be exported in a graphical format such as JPG, BMP and PNG. Regarding the

uploading, the program is based on the Open Babel and is able to read and convert over 80

formats.

1.3 COMPUTATIONAL METHODS: SOFTCOMPUTING

Biological  sequences,  such  as  those of  proteins,  DNA or RNA, given  their  variety  and

complexity,  can  be treated with  probabilistic  models.  The biological  sequences are,  in  fact,

strings of characters of an alphabet of definite cardinality (20,  in the case of protein,  4 for

nucleic acid sequences). In a very general description a probabilistic model M can be seen as an

object capable of generating each string s with probability P (s | M). The distribution of such

probability, over the space of all possible sequence, determines the specificity of the model: an

ideal specific model for a given class should generate all and only the sequences of this class
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with high probability by excluding others. The practical use of probabilistic models in the field

of computational biology requires the operational definition of the rules by which evaluating the

value of P (s | M) for each sequence: in this sense a model is an object that associates a real

number to each sequence. In addition, the use is limited to those classes of models for which

there are algorithms to train the parameters from a set  of sample sequences. A probabilistic

model trained on a particular class of sequences is, for example, able to search sequences that

most probably belong to that class in the complete proteome of an organism (the proteome is the

entire set of proteins produced by a genome,  cell, tissue or organism). In this sense it is useful

for data mining problems, in order to select sequences related to those on which the model was

trained. Another problem that the prediction models help to solve is the allocation of a sequence

s to a class that is the choice among several alternative models of the best one to describe the

sequence.

1.3.1 Kernel Methods

The  kernel  defines  a  similarity  measure  between  two  data  points  and  thus  allows

incorporating  prior  knowledge  of  the  problem  domain.  The  kernel  contains  all  of  the

information  about  the  relative  positions  of  the  inputs  in  the  feature  space  and  a  learning

algorithm based only on the kernel function can thus be carried out without explicit use of the

feature space. 

Kernels  not  only  increase  the  flexibility  by  increasing  the  class  of  allowed  similarity

measures but also make it possible to work with non vectorial data. This is due to the fact that

kernels automatically provide a vectorial representation of the data in the feature space. Kernels

can be used to construct generalizations of any algorithm that can be carried out in terms of dot

products. 

Kernel  methods  are  based  on  a  radically  different  answer  to  the  question  of  data

representation.  Data  are  not  represented  individually  any  more,  but  only  through a  Kernel

representation set of pair-wise comparisons. The dataset is represented by a square matrix. All

kernel methods are designed to process such square matrices. The representation as a square

matrix  does  not  depend on  the  nature  of  the  objects  to  be analysed.  They can  be  images,

molecules,  or sequences,  and the representation of  a dataset  is  always  a real-valued square

matrix. This suggests that an algorithm developed to process such a matrix can analyse images

as  well  as molecules  or  sequences,  as  long  as  valid  functions  k  can  be defined.  This  also

suggests that a complete modularity exists between the design of a function k to represent data
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on the one hand, and the design of an algorithm to process the data representations on the other

hand. These properties turn out to be of utmost importance in fields like computational biology,

where data of different nature need to be integrated and analysed in a unified framework. 

The size of the matrix used to represent a dataset of n objects is always n × n, whatever the

nature or the complexity of the objects. For example, a set of ten tissues, each characterized by

thousands of gene expression levels, is represented by a 10 × 10 matrix, whatever the number of

genes. Computationally,  this is very attractive in the case when a small number of complex

objects are to be processed. 

The comparison function k is a critical component of any kernel method, because it defines

how the algorithm “sees” the data.  Most  kernel  methods can  only  process square matrices,

which are symmetric positive definite. Kernel methods can roughly be defined as those methods

for which the data to be analyzed only enter the algorithm through the kernel function; in other

words, algorithms that take as input the similarity matrix defined by a kernel. The choice of

kernel function is crucial for the success of all kernel algorithms because the kernel constitutes

the available prior knowledge about a task. 

A concept that underlies most kernel methods is the kernel trick. The kernel trick is any

algorithm for vectorial data that can be expressed only in terms of dot products between vectors

and can be performed implicitly in the feature space associated with any kernel, by replacing

each  dot  product  by  a  kernel  evaluation.  It  is  a  very  convenient  trick  to  transform  linear

methods, such as linear discriminant analysis or principal component analysis (PCA), into non

linear methods, by simply replacing the classic dot product by a more general kernel, such as

the Gaussian  RBF kernel.  Non  linearity  is  then  obtained  at  no  computational  cost,  as  the

algorithm remains exactly the same.  The operation that transforms a linear algorithm into a

more general kernel method is often called kernelization. The combination of the kernel trick

with kernels defined on non vectorial data permits the application of many classic algorithms on

vectors to virtually any type of data, as long as a kernel can be defined. 

Examples  of  the  usefulness  of  kernel  methods  in  computational  biology  are  pattern

recognition problems: predicting  whether a  protein is expressed  or not from its amino acid

sequence, predicting whether a tissue is healthy from a gene profiling experiment, or predicting

whether a chemical compound can bind a given target or not from its structure. In each case, a

positive prediction is associated with the label +1, and a negative prediction with the label −1.

In order to perform pattern recognition, a data set of objects with known tags is needed, such as

a database of proteins known to be expressed or not, in order to learn a prediction function that

can then be applied to proteins without annotation. 
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1.3.2 Bayesian Networks

Bayesian networks (BNs) are  graphical  structures used to represent knowledge about an

uncertain  domain [Jordan 1999].  In  particular,  each  node in  the graph represents  a  random

variable,  while the edges between the nodes represent probabilistic dependencies among the

corresponding  random  variables.  These  conditional  dependencies  in  the  graph  are  often

estimated  by  using  known  statistical  and  computational  methods.  Hence,  BNs  combine

principles from graph theory, probability theory, computer science, and statistics. They are used

for  applications  in  various  areas,  such  as  machine  learning,  text  mining,  natural  language

processing, speech recognition, signal processing, bioinformatics, error-control codes, medical

diagnosis,  weather  forecasting,  and  cellular  networks.  BNs  are  ideal  for  combining  prior

knowledge, which often comes in causal form, and observed data, and can be used, even in the

case of missing data, to learn the causal relationships and gain an understanding of the various

problem domains and to predict future events.

Bayesian networks have shown to be remarkably effective for some data-analysis problems,

because  they  can  readily  handle  incomplete  data  sets.  For  example,  in  a  classification  or

regression problem where two of the input variables are strongly anti-correlated, if one of the

inputs is not observed most models will produce an inaccurate prediction, because they do not

encode the correlation between the input variables. Bayesian networks instead offer a natural

way to encode such dependencies. Moreover, BNs allow the learning about causal relationships,

which is useful to gain understanding about a problem domain, for example during exploratory

data analysis, and to make predictions in the presence of interventions. 

Bayesian  networks  in  conjunction  with  Bayesian  statistical  techniques  facilitate  the

combination  of  domain  knowledge  and  data.  Prior  or  domain  knowledge  is  of  primary

importance in a real-world analysis,  especially when data are scarce or expensive.  Bayesian

networks  have  a  causal  semantics  that  makes  the  encoding  of  causal  prior  knowledge

particularly straightforward. In addition, BNs encode the strength of causal relationships with

probabilities.  Consequently,  prior  knowledge  and  data  can  be  combined  with  well  studied

techniques from Bayesian statistics.

Bayesian methods in conjunction with Bayesian networks and other types of models offer

an efficient and principled approach for avoiding the over-fitting of data. There is no need to

hold out some of the available data for testing. Using the Bayesian approach, models can be

“smoothed” in such a way that all available data can be used for training.

In the Bayesian approach to probability and statistics, the Bayesian probability of an event x

is a person's degree of belief in that event. Whereas a classical probability is a physical property
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of the world, a Bayesian probability is a property of the person who assigns the probability. One

important difference between physical probability and personal probability is that, to measure

the latter,  we do  not  need  repeated  trials.  The  process  of  measuring  a  degree of  belief  is

commonly referred to as a probability assessment. 

The probabilities  encoded by  a  Bayesian  network  may be Bayesian  or  physical.  When

building Bayesian networks from prior knowledge alone,  the probabilities will  be Bayesian.

When learning these networks from data,  the probabilities will  be physical  (and their values

may be uncertain). Once a Bayesian network has been constructed (from prior knowledge, data,

or a combination), various probabilities of interest from the model need to be determined. This

probability is not stored directly in the model, and hence needs to be computed. In general, the

computation of a probability of interest given a model is known as probabilistic inference.

To refine the structure and local probability distributions of a Bayesian network given data,

a  set  of  techniques  for  data  analysis  that  combines  prior  knowledge  with  data  to  produce

improved knowledge is used. A local distribution function is nothing more than a probabilistic

classification or regression function. Thus, a Bayesian network can be viewed as a collection of

probabilistic  classification/regression  models,  organized  by  conditional-independence

relationships. The local distribution functions are essentially classification/regression models.

Therefore, if we are doing supervised learning where the explanatory (input) variables cause the

outcome  (target)  variable  and  data  is  complete,  then  the  Bayesian-network  and

classification/regression  approaches  are  identical.  When  data  is  complete  but  input/target

variables  do  not  have  a  simple  cause/effect  relationship,  trade-offs  emerge  between  the

Bayesian-network approach and other methods. BN can also be used for unsupervised learning. 

In real learning problems the interest is in looking for relationships among a large number of

variables:  BN is a graphical  model that  efficiently encodes the joint  probability distribution

(physical or Bayesian) for a large set of variables. 

1.3.3 Hidden Markov Models 

Hidden Markov Models are mathematical models that describe the probability of finding a

given sequence in a database (which can also be a dataset of multi-aligned protein) knowing the

contents of the database. A Markov chain is a set of numbers where each number depends only

on the k numbers that precede it (k is defined as the order of the chain). These numbers may

represent probabilities, and in this case a Markov chain is a model describing the conditional

probabilities of having a residue given a previous series of compounds. The most widely used
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program based on these models is HMMER: as input it uses a previous multi-alignment (or a

database search) and it is able to search the database using the profiles generated.

The  Markov  models  are  a  class  of  very  simple  and  useful  probabilistic  models.  Each

element of a sequence is generated with a probability that depends only on a finite number of

elements of the previous sequence. This number is called “order” and determines the degree of

approximation made by the model in describing the sequences. A Markov model of order 0,

where the probability of generating a character depends only on the character itself, can only

describe the overall composition of a set of sequences; a first-order model may instead treat the

statistics of pairs of characters, a second-order can deal with triplets, and so on, increasing with

the order of the model the amount of information that can be processed.

The HMM are probabilistic models in which the sequences are generated by two concurrent

stochastic processes. The first is a Markov model that can be considered of the first order. The

second process  is  the emission  by  any  state  of  a  character  of  an  alphabet  according  to  a

probability distribution that depends only on the state.

1.3.4 Support Vector Machines

Support vector machines (SVM) are a group of Kernel-based supervised learning methods

that  can  be  applied  to  classification  or  regression.  SVM  find  numerous  applications  in

chemistry, such as in drug design (discriminating between ligands and non-ligands, inhibitors

and  non-inhibitors,  etc.),  quantitative  structure-activity  relationships  (QSAR,  where  SVM

regression is used to predict various physical, chemical, or biological properties), chemometrics

(optimization  of  chromatographic  separation  or  compound  concentration  prediction  from

spectral data as examples), sensors (for qualitative and quantitative prediction from sensor data),

chemical engineering (fault detection and modelling of industrial processes), and text mining

(automatic recognition of scientific information). The SVM algorithm is based on the statistical

learning  theory  and  the  Vapnik–Chervonenkis  (VC)  dimension  [Vapnik  and  Chervonenkis,

1974].

SVM models were originally defined for the classification of linearly separable classes of

objects. For any particular set of two-class objects, an SVM finds the unique hyperplane having

the maximum margin. A special characteristic of SVM is that the solution to a classification

problem is represented by the support vectors that determine the maximum margin hyperplane.

SVM can also be used to separate classes that cannot be separated with a linear classifier. In
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such cases,  the coordinates of  the objects are  mapped into a feature space using non-linear

functions called feature functions. The feature space is a high-dimensional space in which the

two classes can be separated with a linear classifier. The non-linear feature function combines

the input space (the original coordinates of the objects) into the feature space, which can even

have an infinite dimension. Because the feature space is high dimensional, it is not practical to

use directly feature functions in computing the classification hyperplane. Instead, the non-linear

mapping induced by the feature functions is computed with special non-linear functions called

kernels. Kernels have the advantage of operating in the input space, where the solution of the

classification problem is a weighted sum of kernel functions evaluated at the support vectors.

The  use  of  non-linear  kernels  provides  the  SVM  with  the  ability  to  model  complicated

separation hyperplanes. However, because there is no theoretical tool to predict which kernel

will give the best results for a given dataset, experimenting with different kernels is the only

way to identify the best function. An alternative solution to discriminate the patterns is offered

by using a polynomial kernel that has a certain number of support vectors. Finding an SVM

model with good prediction statistics is a trial-and-error task. The objective is to maximize the

predictions statistics while keeping the model simple in terms of number of input descriptors,

number of support vectors, patterns used for training, and kernel complexity.

1.3.5 Genetic Algorithms

Genetic  Algorithms  (GAs)  are  adaptive  heuristic  search  algorithm  premised  on  the

evolutionary ideas of natural selection and genetics. The basic concept of GAs is designed to

simulate processes in natural system necessary for evolution, specifically those that follow the

principles first laid down by Charles Darwin of survival of the fittest. As such they represent an

intelligent exploitation of a random search within a defined search space to solve a problem.

The genetic  algorithm is a  heuristic  method that  operates  on pieces of  information  like

nature does on genes in the course of evolution. Individuals are represented by a linear string of

letters  of  an  alphabet  (in  nature  nucleotides,  in  genetic  algorithms  bits,  characters,  strings,

numbers or other data structures) and they are allowed to mutate, crossover and reproduce. All

individuals of one generation are evaluated by a fitness function. Depending on the generation

replacement mode a subset of parents and offspring enters the next reproduction cycle. After a

number of iterations the population consists of individuals that are well adapted in terms of the

fitness  function.  Although  this  setting  is  reminiscent  of  a  classical  function  optimisation

problem genetic  algorithms  were originally  designed to  demonstrate  the  benefit  of  genetic
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crossover in an evolutionary scenario, not for function optimisation. It cannot be proven that the

individuals of a final generation contain an optimal solution for the objective encoded in the

fitness function but it can be shown mathematically that the genetic algorithm optimises the

effort of testing and producing new individuals if their representation permits development of

building  blocks  (also  called  schemata).  In  that  case,  the genetic  algorithm is  driven  by  an

implicit parallelism and generates significantly more successful progeny than random search. In

a number of applications where the search space was too large for other heuristic methods or too

complex  for  analytic  treatment  genetic  algorithms  produced  favourable  results.  Genetic

algorithms  find  their  application  in  biogenetics,  computer  science,  engineering,  economics,

chemistry, manufacturing, mathematics, physics and other fields. 

The  mathematical  foundation  of  genetic  algorithms  is  the  schemata  theorem  of  J.  H.

Holland. It makes a statement about the propagation of schemata (or building blocks) within all

individuals  of  one  generation.  A  schema  is  implicitly  contained  in  an  individual.  Like

individuals, schemata consist of bit strings (1, 0) and can be as long as the individual itself. In

addition, schemata may contain “don’t care” positions where it is not specified whether the bit is

1 or 0, i.e. schemata H are made from the alphabet {1, 0, #}. In other words, a schema is a

generalisation  of  (parts  of)  an  individual.  For  example,  the  individuals

01010010100101010101110101010101  and  01011010100101110001110111010111  can  be

summarised  by  the  schema:  0101#010100101#10#011101#10101#1,  where  all  identical

positions are retained and differing positions marked with a “#” which stands for “don’t care”.

The length of the above schema is 31 which is one minus the distance from the first to the last

fixed symbol (i.e. 1 or 0 but not #). 

Effectively, many different schemata are sampled implicitly in parallel and good schemata

will persist and grow. This is the basic rationale behind the genetic algorithm. It is suggested

that if the (linear) representation of a problem allows the formation of schemata then the genetic

algorithm can efficiently produce individuals that continuously improve in terms of the fitness

function. The basic outline of a genetic algorithm is as follows:

- Initialisation of a population of individuals, which can be done either randomly or with

domain  specific background knowledge to start  the search  with  promising  seed individuals.

Where available the latter is always recommended. Individuals are represented as a string of

bits. A fitness function must be defined that takes as input an individual and returns a number

(or a vector)  that  can be used  as a measure for  the quality (fitness) of that  individual.  The

application should be formulated in a way that the desired solution to the problem coincides

with the most successful individual according to the fitness function. 

- Evaluation of all individuals of the initial population.
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-Generation  of  new  individuals.  The  reproduction  probability  for  an  individual  is

proportional to its relative fitness within the current generation. Reproduction involves domain

specific genetic operators. Operations to produce new individuals are: mutation, variation and

crossover.

Mutation substitutes one or more bits of an individual randomly by a new value (0 or 1);

variation changes the bits in a way that the number encoded by them is slightly incremented or

decremented; crossover exchanges parts (single bits or strings of bits) of one individual with the

corresponding parts of another individual. Originally, only one-point crossover was performed

but theoretically one can process up to L - 1 different crossover sites (with L as the length of the

individual).  For  one-point  crossover,  two individuals  are  aligned  and one location  on  their

strings  is randomly chosen  as  the crossover  site.  Now the parts  from the beginning  of  the

individuals to the crossover site are exchanged between them. The resulting hybrid individuals

are taken as the new offspring individuals. Analogously, more than one crossover point can be

selected and only the fragments between those positions exchanged (two-point crossover for

two  crossover  points;  uniform  crossover  for  as  many  crossover  sites  as  positions  in  the

individual).

- Selection of individuals for the new parent generation. In the original genetic algorithm the

complete offspring  was selected  while  all  parents  were discarded.  This is  motivated by the

biological  model  and  is  called  Total  Generation  Replacement.  More  recent  variations  of

generation replacement compare the original parent individuals and the offspring which are then

ranked by their fitness values. Only the n best individuals (n is the population size,  i.e.  the

number of individuals in one generation) are taken into the next generation.  This method is

called Elitist Generation Replacement. It guarantees that good individuals are not lost during a

run. With total generation replacement it can happen that good individuals “die out” because

they produce only offspring inferior  in terms of the fitness function. Another variant is  the

Steady  State  Replacement.  There,  two  individuals  are  randomly  selected  from  the  current

population. The genetic operators are applied and the offspring is used to replace the parents in

the population. Steady state replacement often converges sooner because on average it requires

fewer fitness evaluations than elitist or total generation replacement. 

- Going back to the step of evaluation until either a desired fitness value is reached or until a

predefined number of iterations is performed. 
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1.3.6 Artificial neural networks 

Artificial neural networks are a class of algorithms modelled on biological neural networks.

They were initially developed and designed to simulate the processing of information and the

learning  mechanism  in  the  brain  of  living  organisms,  and  later  they  became  a  powerful

analytical and predictive tool in many different field of application. 

The base  constituent  of  artificial  neural  networks  is  the  artificial  neuron,  proposed  by

McCulloch and Pitts in 1943 [Pitt and Mc Culloch, 1943], who summarized a linear threshold

combinatory, with multiple binary input data and a single binary output: an appropriate number

of such elements connected to form a network, can compute simple Boolean functions.

The  first  learning  hypothesis  were  introduced  by  Hebb  in  1949  [Hebb,  1949],  who

suggested  connections with neural  complex models. In 1958 Von Neumann [Von Neumann,

1958]  examined the solutions previously proposed,  underlining  that  the inaccuracy of  these

structures  made  them  not  suitable  for  complex  computing.  In  the  same  year   Rosenblatt

[Rosenblatt, 1958] introduced the first scheme of a neural network, called perceptron, for the

recognition  and  classification  of  shapes,  in  order  to  give  an  interpretation  of  the  general

organization of biological systems. The perceptron is the forerunner of current neural network.

The probabilistic model of Rosenblatt is focused on the mathematical analysis of functions such

as the storage of information and their influence on pattern recognition: this is  an important

progress compared  to the binary model of McCulloch and Pitts,  since the variable synaptic

weights make the perceptron able to learn.  The work of Rosenblatt stimulated further studies

and research for a decade, and aroused a keen interest and high expectations in the scientific

community  that,  however,  were  significantly  reduced  in  1969  when  Marvin  Minsky  and

Seymour A. Papert [Minsky and Papert, 1969], showed the operative limits of simple two-layer

networks based on perceptron, and the impossibility to solve many classes of problems in this

way, namely those characterized by non-linear separability of the solutions: this type of neural

network is not powerful enough, and it can not even calculate the exclusive OR function (XOR).

The mathematical context to train Multi-Layers Perceptron (MLP) networks was established

by the American mathematician Paul Werbos in 1974. His work didn’t generate much consensus

because of the strong confutation previously demonstrated by Minsky and Papert, and only in

1982 Hopfield reopened the chances for research in this field, with his study on general models

of pattern recognition that was directly opposed to Minsky’s confutation.

One of the best known and effective methods for training this class of neural networks is

called  the  error  back-propagation  algorithm,  proposed  in  1986  by  Rumelhart,  Hinton  and
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Williams  [Rumelhart,  1986],  which  systematically  changes  the  weights  of  the  connections

between nodes, so that the response of the network gets closer and closer to the desired one.

This work was produced by incorporating the model created by Werbos. The back-propagation

algorithm (BP)  is  a  technique of  learning  by  example,  constituting  a  generalization  of  the

algorithm for the learning of the perceptron developed by Rosenblatt. The learning algorithm is

based on the gradient descent method which allows us to find a local minimum of a function in

a space with N dimensions. The weights associated with connections between layers of neurons

are initialized to small and random values (i.e. much lower than the actual values that will be

assumed) and then the learning rule is applied by submitting sample patterns as examples to the

network.  These  neural  networks  are  able  to  generalize  in  an  appropriate  way,  i.e.  to  give

plausible answers for inputs that they’ve never seen.

The training  of  a  BP neural  network  occurs  in  two different  stages:  forward  pass  and

backward pass. In the first phase the input vectors are applied to the input nodes with a forward

propagation of signals through each level of the network (forward pass). During this phase the

values  of  synaptic  weights are  all  set.  In  the second stage,  the response of  the network  is

compared to the desired output and a signal error is obtained. The calculated error is propagated

in the opposite direction with respect to that of synaptic connections. The synaptic weights are

then modified to minimize the difference between actual and desired output (backward pass).

This algorithm helped researchers overcome the limitations of the perceptron and solve the

problem of non-linear  separability (and thus calculate the XOR function), marking the final

recovery of neural networks, as demonstrated by the wide variety of commercial applications.

Neural  networks  can  have  many  different  forms,  called  architectures:  recurrent  (if  it

contains cycles), feed-forward (if each layer receives information only from the state just below

and transmits  information  only to  the layer  above)  and  stratified  (if  units are  divided  into

classes,  called  layers,  with  well  defined  connectivity).  In  most  bioinformatics  applications

neural networks have layered feed-forward architecture. The visible units are those in contact

with the outside world, for example the input and output of the neural network. Hidden units are

often grouped into layers and the number of layers determines the depth of the neural network.

A peculiar feature of neural networks concerns their ability to "learn" in an attempt to simulate

the behaviour of the human brain. Learning takes place against a set of data (called a training

set).  During the learning the network processes the training set  for  possible,  even if  weak,

signals which can correlate the input sequence with that  of the output. The learning process

consists in the development of parameters that measure the "weight" of each of the paths linking

the nodes. At first, the parameters can take random values, but then all the training data are

presented to the network to allow the algorithm to learn the known answers. The weights are
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changed at  each  cycle according to standard techniques in order  to minimize the difference

between the output obtained and the correct desired output. The final validation of the learning

process is performed on a set of sequences, experimentally assigned to one or another layer,

which does not have elements in common with the training set used in the previous learning.

The  neural  network  has  acquired  the  necessary  information  to  make  predictions  on  new

sequences and is not limited merely to restore what has been used to train it  in the learning

phase. Once trained, the neural network can be used for different types of prediction.

A particular type of neural network is the Hopfield Neural Network, proposed in 1982 by the

physicist  John J. Hopfield [Hopfield, 1982]. This network is characterized by the spontaneous

emergence of new computational properties as collective properties of systems having a large

number of simple equivalent components (or neurons). The collective properties of this model

produce a content-addressable memory suitable for the recognition of corrupt configurations

and the recovery  of  missing  information.  In  addition,  Hopfield  considers  that  any  physical

system can be considered as a potential memory device, provided that it has a number of stable

states acting as an attractor for the system [Hopfield, 1984]. Based on this consideration, he

strives  to articulate  the thesis that  stability and  location of  these attractors  are  spontaneous

properties of systems consisting of large quantities of mutually interacting neurons.  Hopfield

neural  network  reversed  the  relationship  between  computation  and  numbers:  while  it  was

universally known that calculation produced numbers, conversely, Hopfield's observation that

conversely numbers could spontaneously generate calculation and that this could emerge as a

collective attribute of such interactive systems was far less trivial.

The applications of Hopfield networks mainly concern the implementation of associative

memories, resistant to the alteration of operating conditions, and the solution of problems of

combinatorial optimization. From a structural point of view, the Hopfield network is a recurrent

and symmetric neural network, whose convergence is guaranteed.

A recurrent network is a neural model in which there is a two-way flow of information; in

other  words,  while  in  the  feed-forward  networks  the  propagation  of  signals  is  unique,

continuous  in  the  direction  leading  from  inputs  to  outputs,  in  recurrent  networks  this

propagation  can  also  occur  from a  following  neural  layer  to  the previous one,  or  between

neurons belonging to the same layer, and even inside a neuron itself.

Artificial  neural  networks  are  intrinsically  non-linear  models  able  to  classify  complex

patterns. In particular, the self-organizing networks as the  Kohonen’s Self Organizing Map
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(SOM) are well-known as a natural non-linear classifier [Kohonen, 1990; Ritter and Schulten,

1988]. This innovative type of neural networks has been developed by Kohonen, University of

Technology  of  Helsinki;  its  learning  algorithm  is  a  brilliant  formulation  of  unsupervised

learning, and gave rise to a large number of applications in classification problems. A SOM

map,  or  network,  is  based  essentially  on  a  grid  of  artificial  neurons  whose  weights  are

continuously adapted to the presented input vectors in its training set. These vectors can be

generic in size, although in most applications their dimension is rather high. The outputs of the

network, on the other hand, are usually limited to a maximum size of three, which can give rise

to 2D or 3D maps. In more analytical terms, the algorithm can be described as a set of artificial

neurons, each with a precise location on the map representing the output. This set of artificial

neurons takes part in a process known as “Winner Takes All Law”, after which the node with a

weight  vector  that  is  closer  to  a  certain  input  is  declared  the  winner,  while  the  weights

themselves  are updated  in order  to bring them closer to the input vector.  Each node has a

number of adjacent nodes. When a node wins a competition, the weights of neighbouring nodes

are modified, according to the general rule that the farther a node is from the winner node the

less marked its weight change should be. The process is then repeated for each vector of the

training set  for a certain,  usually large, number of cycles.  Different inputs produce different

winners.  The map is  therefore  able  to associate  the output  nodes  with  recurrent  groups  or

patterns in the set of input data. If these patterns are recognizable, they can be associated with

the corresponding nodes of the trained network.

In a similar way to that of the majority of artificial neural networks, also the SOM map, or

network, can operate in two distinct ways:

- During the training phase the map is being built, so that the network is configured and

organized through a competitive process. A set of input vectors as wide as possible has to be

provided to the network, such as to accurately represent the type of carrier that will be submitted

in the second phase;

- During the second phase, each new input vector can be quickly classified or categorized,

by placing automatically on the map obtained in the previous phase. There will always be a

single winning neuron, the one whose weight vector lies closer to the vector subjected to the

network; this neuron can be determined simply by calculating the Euclidean distance between

the two vectors

In  the  study  of  proteins,  neural  networks  have  shown  to  be  a  successful  tool  in  the

development  of  methods  for  prediction  of  secondary  structure,  transmembrane  regions,
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interactions of proteins and many others.

In the case of supervised learning, if for example we have a number of molecules whose

structure and function is known, we can use them to classify new molecules of which we know

only  the  structure  but  not  function.  Neural  networks  can  be  used  to  predict  the  three-

dimensional structure from the secondary one, to find the binding affinities of new ligands from

the  characteristics  of  known  ligands,  to  predict  the  behaviour  in  specific  electromagnetic

conditions of a new molecule with known structure, comparing it to a set of other molecules

whose behaviour and structure are known.

In the case of unsupervised learning,  this allows one to find a classifier for a data set a

priori, without knowing a correlation between a specific cause and an effect. For example, it is

possible to classify by similarity a set  of proteins of which only the structure is known and

without knowing anything else.

The use of supervised learning neural networks in the study of three-dimensional structure

of proteins is relatively recent and limited to the prediction of secondary structures [Holley and

Karplus, 1989]. Some methods show the results in a tabular way, which is similar to the tables

of  "propensity"  values  for  amino  acids  in  the  different  conformations,  produced  by  some

statistical procedures. These results can be applied to the prediction of secondary structure of

any polypeptide.  The  functional  outline  for  a  perceptron  used  in  the prediction  of  protein

secondary structures is based on two phases: learning and question phase.

In the  learning phase, a number of significant cases, for which the exact correspondence

between primary and secondary structure of the protein is known, is submitted to the network,

and the geometry and intensity of connections and threshold value for the neurons is optimized

based on this correspondence (Fig. 1.1).

In the question phase, a primary structure is subjected to the input layer of the network and,

on the basis of the values for the connections and the thresholds optimized in the previous phase

of "Learning",  the layer of output proposes a  corresponding secondary structure.  Figure 1.2

illustrates the architecture of a generic perceptron used in the prediction of secondary structure

of proteins.

There are however many variations on this scheme. An important observation is that the

performance of a network does not depend simply on the size of the "training set" used in the

learning phase. In particular, the degree of homology between the proteins of the "training set"

and those of the "testing set" used during the interrogation phase is of great importance, and the

better the network "learns to recognize" the protein training set, the worse its predictive ability

against "unknown" proteins will be.
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Neural networks are particularly promising in the prediction of protein structures compared

to  traditional  approaches,  because  there  is  no  need  for  pre-theoretical  assumptions,  the

flexibility  in  defining  network  architecture  allows  the  finding  of  optimal  arrangements  for

particular problems and situations, and the possibility to fully exploit some recent developments

in computer technology, such as the simultaneous use of several processors in parallel, results in

computational improvements measurable in orders of magnitude.

The limitations encountered  in the applications performed until  now show however  that

substantial  improvements  in  the  solution  of  the  problem  can't  be  expected  from  an

indiscriminate  use  of  the method in  terms  of  a  black  box.  It  should  be  seen  as  a  further

investigative  tool,  powerful  and  flexible,  in  addition  to  others  already  in  our  possession,

supplemented with new and original features. 
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Figure 1.1 Cyclic Learning  algorithm for  a  perceptron  to  be used in the prediction  of  

protein secondary structures. Learning consists in minimizing the function C of 

the differences between  expected and found results of output units at every  

neuronal layer (number of interactions).
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Figure 1.2 Architecture  of  a  generic  perceptron  used  in  the  prediction  of  secondary  

structure of proteins.
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2. MATERIALS
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2.1 MICROTUBULES AND TUBULIN

Microtubules (MTs) are cylindrical protein polymers and are key constituents of all cells of

the eukaryotic cytoskeleton. They are involved in the regulation of essential cellular functions

such as the transport  of materials within  the cell,  the movement of cytoplasm organelles or

vesicles and cell division [Hyams and Lloyd, 1994].

MTs are  stiff  cytoskeletal  filaments  characterized  by  a  tubelike structure;  they  are  also

relatively fragile  and more liable to break than cytoskeletal  microfilaments or intermediate-

filaments. The building block of a MT is a 110-kDa heterodimeric protein called tubulin that is

the association product of two different subunits, designated  α and  β tubulin [Postingl et  al.,

1981]  and  encoded by separate  genes  (Fig.  2.1).  The term tubulin  always  refers  to  the  αβ

heterodimer, that is usually considered as one unit, although the association is only due to non-

covalent interactions. Each monomer of α and β tubulin is a compact ellipsoid of approximate

dimensions 46x40x65 A° (width, height, and depth, respectively); while dimensions of an αβ-

heterodimer are 46 x 80 x 65 A°. Both  α- and  β- tubulin are composed of approximately 450

amino  acids  and,  in  spite  of  their  sequence  identity  (approximately  40%),  slight  folding

differences  can  be  seen.  The  two  tubulins  exhibit  homology  with  a  40,000-MW bacterial

GTPase, called FtsZ, a ubiquitous protein in eubacteria and archeobacteria. Like tubulin, this

bacterial  protein  has the ability  to polymerize and  participates  in cell  division.  Perhaps the

protein carrying out these ancestral functions in bacteria was modified in the course of evolution

to fulfil the diverse roles of MTs in eukaryotes [Lowe and Amos, 1998]. 

In 1998 Nogales et al. obtained the structure of the αβ-heterodimer at 3,7 Å resolution by

electron  crystallography  of  zinc-induced  crystalline  sheets  of  tubulin  stabilized  with  taxol

[Nogales et al., 1998]. In 2001 this structures has been refined [Lowe et al., 2001]. The core of

each monomer contains two β-sheets of 6 and 4 strands that are surrounded by α-helices, and a

pair of globular domains set on either side of a central (core) helix H7. The monomer structure

is very compact, but can be divided into three functional domains: the amino-terminal domain

containing the nucleotide-binding region, an intermediate domain containing the Taxol-binding

site, and the carboxy-terminal domain, which probably constitutes the binding surface for motor

proteins  and  is  responsible  for  the  interaction  with  several  microtubule-associated  proteins

(MAPs) (Nogales et al., 1998; Luchko et al., 2008; Sackett ae al., 1985).

Calculations of the electrostatic charge distribution displayed that  tubulin is quite highly

negatively charged at physiological pH and that much of the charge is concentrated on the C-

terminus of each tubulin monomer. The C-terminal end forms two long helices (H11 and H12)

connected by a U-turn while the final 13 residues of α-tubulin and 9 residues of β-tubulin are
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too disordered in the 2D crystals to show up as electron density but are assumed to project out

into the solution. A detailed map of the electric charge distribution on the surface of the tubulin

dimer  showed that  the C-termini,  which  extend outward,  carry a  significant  electric  charge

[Tuszynski et al., 2005.]. In physiological conditions (neutral pH), the negative charge of the

carboxy-terminal region causes it to remain extended due to the electrostatic repulsion within

the  tail.  Under  more  acidic  conditions,  the  negative  charge  of  this  region  is  reduced  by

association of hydrogen ions. The effect is to allow these tails to acquire a more compact form

by folding. 

Each tubulin hetero-dimer binds two molecules of guanine nucleoside phosphates (GTP)

and exhibits GTPase activity that is closely linked to assembly and disassembly of MTs. One

GTP- binding site is located in α-tubulin at the interfaces between α- and β- tubulin monomers;

in this site GTP is trapped irreversibly and it is not hydrolyzable. The second site is located on

the surface  of  the  β-tubulin  subunit;  in  this  site  GTP is  bound  reversibly  and  it  is  freely

hydrolysable  to GDP. The GTP bound to  β-tubulin modulates the addition  of  other  tubulin

subunits at the ends of the MT (Fig. 2.2 and 2.3). 

Recently  important  information  about  tubulin  conformational  changes  during  the  MTs

polymerization  has  been  obtained through X-ray  crystallography [Ravelli  et  al.,  2004].  The

general structure of MTs has been established experimentally [Amos and Amos, 1991; Chrétien

and Wade, 1991]. MTs are helical polymers and they are built by the self-association of the αβ-

heterodimer.  In those polymers tubulin subunits are arranged in a hexagonal lattice which is

slightly  twisted,  resulting  in  different  neighbouring  interactions  among  each  subunit.  The

polymerization occurs in a two-dimensional process that involves two types of contacts between

tubulin subunits. The first process involves head-to-tail binding of hetero-dimer and it results in

polar proto-filaments that run along the length of the MT. The second process involves lateral

interactions between parallel proto-filaments and it completes the MT wall to form a hollow

tube [Nogaleset al., 1999]. The longitudinal contacts along proto-filaments appear to be much

stronger than those between adjacent proto-filaments [Mandelkow et al., 1991].  The head-to-

tail arrangement of the α- and β-tubulin dimers in a proto-filament confers an overall polarity on

a MT. All  proto-filaments in  a  MT have the same orientation.  The longitudinal  interactions

between tubulin subunits in the proto-filament seem to involve exclusively heterologous (α-β)

subunits. In contrast, the lateral interactions involve predominantly homologous subunits (α-α,

β-β) but  heterologous  interactions (α-β)  occur also.  Tubulin can  polymerize in two distinct

arrangements:  “B-lattices” in which  the  α-tubulins  of  one proto-filament  lie  next  to the  α-

tubulins in the neighbouring proto-filaments;  or the “A” configuration,  where  α-tubulins  lie

beside β-tubulins. It has been shown that 13 proto-filament microtubules with B-lattices must
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include a “seam”, one lateral  domain where adjacent dimers are in the A-configuration. The

seam is the point in the microtubule lattice in which two proto-filaments align such that an  α

monomer meets a β monomer. It follows that such microtubules are not cylindrically symmetric;

they  have  two  distinct  faces,  which  may  influence  the  binding  patterns  of  functionally

significant microtubule-interacting proteins. Their seam defines a line parallel to the MT axis

where adjacent  tubulins are  arranged differently from all  other tubulins on the MT surface,

because  the  tubulins  on  either  side  of  this  seam  meet  their  neighbours  with  the  A-lattice

configuration. As a result, they might be able to bind MT-associating proteins in a unique way.

[Chrétien et al., 1991; McIntosh et al. 2009].

Assembly mechanism of  α- and  β- tubulin gives rise  in vitro to a variety of cylindrical

structures  that  differ  by  their  proto-filament  and  monomer  helix-start  numbers  [Binder  and

Rosenbaum, 1978; Pierson et al., 1978]. In contrast, most MTs assembled  in vivo seem to be

composed of 13 proto-filaments, although many exceptions have been noted in different species

and  cell  types;  for  example  in  neurons  of  the  nematode  Caenorhabditis-elegans some

specialized MTs have 15-proto-filaments (Fig. 2.4) [Savage et al., 1989]. The lengths of MTs

vary but commonly reach 5-10 micron dimensions; and their diameter depends on the proto-

filament number. For example in the case of 13 proto-filaments the tube has an outer diameter

of 23 nm and an inner diameter of roughly 15 nm.

Figure 2.1 Tubulin structure
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Figure 2.2 Spatial distribution of tubulin in the microtubule 

Figure 2.3 Microtubule assembly

Figure 2.4 Structure of a microtubule with 15 proto-filaments
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2.2 MICROTUBULES AND TUBULIN PREPARATION

Stabilized microtubules (#MT001-A), tubulin (#TL238), taxol (# TXD01), GTP (#BST06)

and General Tubulin Buffer (# BST01) are supplied by Cytoskeleton Inc. Denver, CO. USA. 

 Preparation of buffer for microtubule: MTs resuspension buffer is obtained by adding 100 µl

of 2mM taxol stock in dry DMSO to 10 ml of room temperature PM buffer (15 mM PIPES pH

7.0, 1 mM MgCl2). It is important to make sure that PM buffer is at room temperature as taxol

will precipitate out of solution if added to cold buffer. Resuspended taxol should be stored at -20

°C. 

 Preparation of  tubulin buffer:  GTP stock solution (100mM) is added to General  Tubulin

Buffer (80 mM PIPES pH 6.9, 2 mM MgCl2, 0.5 mM EGTA) at a final concentration of 1mM

GTP. The tubulin buffer will be stable for 2-4 hours on ice. 

 Microtubules Reconstitution. 1 ml of buffer MT is added to 1 mg of lyophilized MTs and

mixed gently. Resuspended MTs are left at room temperature for 10–15 minutes with occasional

gentle mixing. The MTs are now ready to use. They are at a mean length of 2 µm and the tubulin

concentration  is  1mg/ml.  MTs will  be stable  for  2-3 days  at  room temperature,  although it

should be noted that  the mean length distribution will increase over time.  MTs can be snap

frozen in liquid nitrogen and stored at -70 °C. 

 Tubulin Reconstitution. 1 mg of lyophilized tubulin is resuspended in 1 ml of buffer T at 0-4

°C (final tubulin concentration is 1 mg/ml). The reconstituted tubulin solution is not stable and

needs to be used soon after its preparation. 

2.3 BUCKYBALLS

The buckyballs are hollow molecules composed of 60 carbon atoms structured like a ball

and held together by single and double chemical bonds. Because of its structure made entirely

of carbon and due to its extraordinary chemical stability, carbon-60 has often been considered as

the third most important form of pure carbon, after diamond and graphite.

The buckyballs are named after the American R. Buckminster Fuller,  architect, inventor,

preacher,  who  designed  a  geodesic  dome  with  similar  form.  In  fact  the  official  name  of

buckyballs is buckminsterfullerenes.
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Before the discovery of buckyballs, the only known forms of pure carbon were graphite and

diamond, which are both crystalline materials. 

Graphene, which provides the structural basis of all other graphitic materials, from graphite

itself to fullerenes (carbon nanotubes, buckeyballs, etc.) was first isolated as individual planes

by a team of the University of Manchester in 2004. It is a sheet of carbon atoms bound together

with double electron bonds (called a sp2 bond) in a thin film only one atom thick. Atoms in

graphene  are  arranged  in  a  honeycomb-style  lattice  pattern.  Graphene  is  extracted  from

graphite, which is how it gets its name. The term  graphene was coined as a combination of

graphite and the suffix -ene by Hanns-Peter Boehm, who described single-layer carbon foils in

1962.

Perfect  graphene is in  hexagonal form, although imperfections  can  cause heptagonal  or

pentagonal structures. Obtaining pure graphene in planar form is difficult and, until 2004, it was

assumed by many to be impossible. Since its discovery, graphene has grown central to much of

the research into nanotechnology, due to its unusual electrical and magnetic properties

The buckyballs  form molecular  solids,  consisting  of  single  and  self-contained  fullerene

molecules, which are not chemically bound to each other. The buckyballs are stacked lattices

and are arranged in a structure similar to the aggregation of individual atoms in a crystal.

The  buckyballs  are  normally  obtained  by  causing  an  electrical  discharge  between  two

graphite electrodes with a device similar to an arc welder.  The heat  generated at the contact

points between the electrodes makes  carbon evaporate and  form ash,  buckyballs,  and  other

carbon  compounds.  The  buckyballs  are  then  extracted  from  the  ash  through  sophisticated

chemical separation techniques.

Since the fullerene crystals consist of buckyballs, which interact weakly, the properties of

these solids  depend on  the  structure  and  properties  of  individual  molecules  of  buckyballs.

Studying these molecules is therefore important to understand the properties of various useful

materials that can be generated by carbon-60. The sixty carbon atoms of carbon-60 are located

at the vertexes of a truncated icosahedron.

Although research  on  fullerenes  and  related  materials  is  still  in  the early  stages,  these

materials  have  shown  many  outstanding  properties,  some  of  which  will  certainly  lead  to

practical applications. 

Interesting  applications  of  buckyballs  that  are  being  developed include those  related  to

completely new equipment, such as diamond films, life-saving drugs, such as AIDS vaccines,

and complex micro-fabrication techniques, like production of computer chips [Dresselhaus and

Pevzner, 1996].
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2.4 NANOTUBES

The time required to process and transfer information faster has reached the point at which

quantum effects can  no  longer  be neglected.  The electronics  industry  will  evolve from the

technology based on silicon towards innovative materials with new physical properties. These

new  materials  include  the  carbon  nanotubes  which  currently  represent  one  of  the  most

promising alternatives to overcome the current limitations of silicon.  

Currently, with a large commitment of academic and industrial  scientists, the research is

developing nanotubes with extremely advanced and useful properties, as they can act both as

semiconductors and as superconductors. Thanks to the structure of these nanoscale materials,

their properties are  not restricted  to classical  physics,  but present  a  wide range of quantum

mechanical effects. These may lead to an even more efficient tool for information transfer.  

Quantum transport properties of CNTs have been reviewed by Roche et al., 2006, both from

a theoretical and experimental view. Recently, it has been described that the low-temperature

spin relaxation time measurement in a fully tuneable CNT double quantum dots.  This is an

interesting study for new microwave-based quantum information processing experiments with

CNTs [Sapmaz et al., 2006].

CNTs originate from fullerenes, whose spherical structures, after a subsequent relaxation,

tend to roll up on themselves, resulting in the typical cylindrical structure of carbon nanotubes

(Figure 2.5). Similarly to fullerene, nanotubes can be seen as allotropic forms of carbon.

Nanotubes can be subdivided in two main types:  Single-Wall Carbon Nanotube (WCNT),
made up of a single graphitic sheet rolled up on it; and Multi-Wall Carbon Nanotube (MWCNT),
formed by several sheets wound coaxially on each other. 

The core of the nanotube consists of only hexagons, while the closure structures are formed

by  pentagons  and  hexagons,  just  like  the  fullerenes.  For  this  reason,  nanotubes  can  be

considered  as  a  kind  of  giant  fullerenes.  Because  of  this  conformation  of  hexagons  and

pentagons, nanotubes often have structural defects or imperfections deforming the cylinder. The

diameter of a nanotube ranges from a minimum of 0.7 nm and a maximum of 10 nm. The high

ratio of length  to diameter  (in the order  of  104)  allows considering  them as virtually  one-

dimensional nanostructures, and gives them very peculiar properties.

The first to discover a nanotube was in 1991 the Japanese Sumio Iijima, a researcher at NEC

Corporation.  Since  the  discovery  of  nanotubes,  several  studies  have  been  performed  to

determine their physical and chemical properties, by using both direct testing on samples, and

computational simulations. At the same time researchers are developing effective systems to
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take advantage of these properties for  future practical applications.

The  single-wall  nanotube  is  highly  resistant  to  traction.  It  has  interesting  electrical

properties: depending on its diameter or its  chirality (ie the way in which the carbon-carbon

bonds re placed along the circumference of the tube) it can be either a current conductor, such as

a  metal,  or  a  semiconductor,  as  silicon  in  microchips.  Because  of  these  characteristics,

nanotubes  stimulate the research  on new construction methods in electronics,  such  as  chips

smaller and smaller in size and fast in performance.

Nanotubes can be treated to become extremely sensitive to the presence of high voltage

electric fields. In fact, they react to such fields bending up to 90°, and then resume their original

shape as soon as the electric field is interrupted. The experiments performed have shown that it

is possible to influence the natural resonant frequency of the nanotube, which depends on the

length, diameter (as for any dynamic system) and morphology. This interesting property can be

exploited in numerous applications in nanotechnology.

The electronic structure of nanotubes is very similar to that of graphite. Since graphite has

good  conductive  properties  in  planar  direction,  it  would  be  reasonable  to  expect  a  similar

behaviour from nanotubes.  Instead nanotubes have shown surprising  conductivity properties

that change according to their geometry: some show a metallic  behaviour,  other metallic or

semi-conducting behaviour depending on the case.  Moreover, multi-walled carbon nanotubes

are shown to be ballistic conductors at room temperature, with mean free paths of the order of

tens  of  microns.  The  measurements  are  performed  both  in  air  and  in  high  vacuum  in  the

transmission electron microscope on nanotubes that protrude from unprocessed arc-produced

nanotube containing fibres which contact with a liquid metal surface (Poncharal P, 2002). 

These properties  make  nanotubes  very  interesting  for  the development of  nanowires  or

quantum wires, which could support the silicon in the field of electronic materials, and allow the

transition from microelectronics to nanoelectronics. It has been estimated that a processor made

of nanotube transistors could easily reach 1000 GHz, overcoming all barriers of miniaturization

and heat dissipation that the current silicon technology requires. To do so, however, a technique

to  produce  nanotubes  of  different  size  and  shape  in  controlled  conditions  should  be

implemented. Moreover it would be necessary to produce large quantities of contact junctions

and circuits,  in order  to achieve reduce the production  costs.  The conductive properties  of

nanotubes can be varied by doping them, or by inserting in their structure some atoms with the

required characteristics. Among the most interesting results in this field there is a nanometer

diode consisting of two nanotubes, which precisely allows the current to flow in one direction

but not in the opposite direction.
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Figure 2.5 Structure of Carbon Nanotubes. 

2.6 COMPARISON BETWEEN MICROTUBULES AND NANOTUBES 

Microtubules  are  structures  with  excellent  mechanical  properties,  which  combine  high

strength and  stiffness.  Such a  combination  enables  these polymers to perform their  cellular

functions.  The high  stiffness  is  required  during  the elongation  of  the mitotic  spindle;  high

resistance allows MTs to bind to other cytoplasmic structures and to change direction without

stopping if they encounter obstacles during the elongation process. According to Pampaloni

[Pampaloni  and  Florin,  2008]  CNTs are  the  closest  equivalents  to  MTs among the  known

nanomaterials.  Although  their  elastic  modules  are  different,  MTs  and  CNTs  have  similar

mechanical  behaviours.  They  are  both  exceptionally  resilient  and  form  large  bundles  with

improved stiffness (in the case of MTs, by using MAPs for interconnections).

Due to their extreme resistance they can be folded to a small radius of curvature and restore

their  original  shapes  without  suffering  permanent  damage.  Moreover,  their  hollow  tubular

structure provides greater flexibility and efficiency in the transport,  compared to other solid

forms.  A third  similarity  between  these materials  is  the ability  to  form large  bundles.  For

example, CNTs form nested structures (multi-walled carbon nanotubes, MWCNTs) and parallel

bundles (nanocorde carbon). Despite many similarities, a fundamental difference between MTs

and CNTs is that the former are materials that self-assemble under conditions of moderate pH

and temperature,  while the latter are  stiff  materials  made by  centrifugation,  stratification or

other procedures.

An interesting target in the research on nanotubes is to examine the behaviour of assembled
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carbon nanotubes, and to attempt the construction of grids of these macroscopic populations of

carbon atoms that can then be used to send information without signal loss.

In  the  field  of  industrial  engineering  major  focus  is  that  the  microtubules  are,  from a

structural point of view, very similar to carbon nanotubes. Both structures are characterized by a

hollow cylindrical shape, the diameter of a microtubule is 25 nm and can reach lengths up to

few microns, the diameter of a nanotube ranges from a minimum of 0.7 nm and a maximum of

10 nm.

It is theoretically postulated that these structures can maintain thermally isolated areas, that

can  operate  quantum  mechanics  in  a  similar  way  to  that  of  cavities  in  quantum  optics,

maintaining  quantum  coherent  states  for  a  sufficient  long  time  to  transfer  energy  and

information along their moderate size (few micrometers), and probably along the microtubule

network [Mavromatos, 1999].

Nanobiotechnology can move towards a next generation of materials with a wide range of

functional properties. As suggest by Michette et al, 2004, MTs associated with carbon chemistry

will  allow  building  complex  macromolecular  assemblies  for  sharing  the exciting  electronic

properties of semi- and super-conductors.

2.7 HYPOTHESIS ABOUT QUANTUM PROPERTIES OF MTs

In the last decade many theories and papers have been published concerning the biophysical

properties of MTs including the hypothesis of MTs implication in coherent quantum states in the

brain evolving in some form of energy and information transfer. 

It  must be said that  up to now no conclusive experimental  evidence has been drawn to

validate any of these theories in a definitive way.  

The  most  discussed  theory  on  quantum  effects  involving  MTs  has  been  proposed  by

Hameroff  and  Penrose that  published  the OrchOR Model  in  1996 [Hameroff  and  Penrose,

1996].  These  authors  supposed  that  quantum-superposed  states  develop  in  tubulins,  remain

coherent and recruit  more superposed tubulins until a mass-time-energy threshold, related to

quantum gravity, is reached (up to 500 msec). This model has been discussed and refined for

more than 10 years,  mainly focusing attention on the decoherence criterion after the critical

paper by Tegmark [Tegmark 2000] and proposing several methods of shielding MTs against the
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environment of the brain [Hagan et al., 2002; Hameroff  2007]. In the Hameroff model MTs

perform a kind of quantum computation through the tubulins working like cellular automata.

The MTs interior works as an electromagnetic wave guide, filled with water in an organized

collective states, transmitting information throughout the brain [Hameroff 2007]. 

In the same years Nanopoulos et al adopted the string theory to develop a so called QED-

Cavity  model  predicting  dissipationless  energy  transfer  along  MTs  as  well  as  quantum

teleportation of states at near room temperature [Mavromatos et al., 2002]. 

The Tuszynski approach is based on the biophysical aspects of MTs. Tubulins have electric

dipole moments due to asymmetric charge distributions and MTs can be modeled as a lattice of

orientated  dipoles  that  can  be  in  random  phase,  ferroelectric  (parallel-aligned)  and  an

intermediate weakly ferroelectric phase like a spin-glass phase [Tuszynski, 1998]. The model

has been extended by  Faber et  al  [Faber  et  al.,  2006] who considered a  MT as a  classical

subneuronal information processor. 

In 1994 Jibu and Yasue suggested that the Fröhlich dynamics of ordered water molecules

and the quantizated electromagnetic field confined inside the hollow MT core can give rise to

the collective  quantum optical  modes  responsible  for  the phenomenon of  superradiance by

which  any  incoherent  molecular  electromagnetic  energy  can  be  transformed  in  a  coherent

photon inside the MTs [Jibu et al., 1994]. These photons propagate along the internal hollow

core as  if the optical  medium was transparent and  this quantum theoretical  phenomenon is

called “self-induced transparency”. A decade before, applying quantum field theory (QFT), Del

Giudice et al [Del Giudice et al., 1983; Del Giudice et al., 1982] reported that electromagnetic

energy penetrating into the cytoplasm would self-focus inside filaments whose diameter depend

on symmetry breaking (Bose condensation) of ordered water dipoles. The diameter calculated

was exactly the inner diameter of MTs (15 nm). 

The  next  step  made  by  Jibu  was  to  characterize  in  detail  how  this  biophotonic

communication system could be organized,  and he also tried to characterize the 'generating

source' of light. The spatial region V inside the MT is not an empty space, but is filled with

water molecules and also with other molecules even if in relatively low concentration. We can

consider the ideal case where these impurities can be overlooked since it is quite likely that the

density of water confined inside the MT remains mostly constant. It is therefore possible to set

the total  number  of  molecules  of  water  within the region  V to a  generic  value N.  From a

physical point of view, the water molecule is characterized by a constant electric dipole that

makes it interact strongly with the quantum electromagnetic field, which is always present in the

spatial region V inside the MT. The forces acting on a single water molecule and affecting its

quantum dynamics are essentially of three types: the movements of spin of the molecule, the
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quantum electromagnetic field, the interaction between the quantum electromagnetic field and

all the molecules of water involved in energy exchange for creation and annihilation of photons.

These considerations could lead to expect for MTs a coherent optical activity like a laser

device. Actually, although MTs show the same quantum-dynamic behaviour as laser devices,

there is a substantial difference. In laser devices there is a mechanism of pumping (represented

for example by a xenon flash lamp), which allows to trigger the emission of coherent photons in

a continuous manner. Since within neurons there is no light that can accomplish the pumping

operation,  the emission  of  coherent photons  should  be triggered  by  a  different  mechanism.

Through  spatial  phenomena  of  long-range  interactions  that  characterize  a  given  region,  a

mechanisms able to influence the collective dynamics of water molecules inside the cylinder

and  then  give  rise  to  spontaneous  emissions  of  photons  could  be  verified  among  all  the

hypothetical  mechanisms.  All  incoherent  and  disordered  energies,  transferred  to  water

molecules  from  the  thermal  and  macroscopic  dynamics  of  the  polymerized  tubulin  in  a

microtubule, can be assembled in a coherent and ordered dynamic, in order to emit consistent

photons with a pumping mechanism that is without light and is called superradiance.

Because  of  the  limited  length  of  the  microtubule  c  (102 -  103 nm),  the  pulsing  that

propagates along the cylinder in the direction of the z axis, would be located in the inner cavity

only  for  a  very  short  period  of  time.  As  this  transition  time  is  much  smaller  than  the

characteristic  time of  thermal  interaction,  the system  of  water  molecules  and  the  quantum

electromagnetic field would therefore be free from thermal dissipation and can be regarded as a

closed  system  so  effectively  described  by  the  Heisenberg  equations  (it  is  not  possible  to

simultaneously know the momentum and position of a particle with absolute certainty).

Figure 2.6 is a schematic representation of the phenomenon of superradiance in a MT. In

this figure, each oval without an arrow indicates a water molecule that is in its lowest rotational

energy state (steady state), and each oval with an arrow indicates, instead, a water molecule that

is the first state of rotational excited energy. The process is cyclical, moving from state “a” to

state “b”, “c” and “d”, and then back again to the state “a” to start over. The situation in “a”

expresses the initial state of water molecules in a MT system. The energy supplied by thermal

fluctuations of tubulins results in the passage of water molecules from the fundamental state to

the first excited energy state. Then the water molecules reach a state of long-range quantum

coherence through a spontaneous symmetry breaking (state “b”). At this point (state “c”) excited

and  consistent  water  molecules  collectively  lose  the  energy  acquired  and  create  coherent

photons in the quantum electromagnetic field inside the MT. Finally (state “d”) water molecules

that dissipated the energy of their first excited rotational energy level by superradiance, begin to

regain energy from thermal fluctuations of tubulins, and the system of water molecules goes
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back to the initial state “a”.

In  summary,  the  quantum  collective  dynamics  of  water  molecules  and  the  quantum

electromagnetic field inside the MT show coherent and long-range superradiance phenomena.

The process  originates  by the excitement  of  water  molecules inside the MT, which  can be

induced  by  disordered  and  incoherent  perturbations  arising  from  the  macroscopic  thermal

dynamics of protein molecules constituting the wall. This implies that each MT in neurons and

in  astrocytes  can  play  a  major  role  in  development  and  in  biophotonic  communication

mechanism.  In  addition  to  the  process  of  superradiance,  the  phenomenon  of  self-induced

transparency turned out to be very important in MTs. As mentioned earlier, superradiance is a

phenomenon characterized by a much shorter duration than thermal interaction between water

and tubulin. Since it was not clear whether the pulsing activity of MT would create coherent

photons that could be transmitted in a secure manner, preserving their coherence at a long range,

or  if  they  lose their  consistency  immediately  after  being generated  because of  surrounding

noise, it was suggested that MTs could also function as photonic waveguides. It is assumed that

the pumping activity is created in a small cylindrical segment of the MT by superradiance and

that the generated photons can propagate along the longitudinal axis (z axis). If the V region

inside the cylinder was kept empty, the pumping mechanism described above would send the

photons in a perfectly consistent way throughout the length of the microtubule. However, the V

region  is  filled  with  water  molecules,  and  with  other  impurities,  and  this  could  lead  to

phenomena of  absorption  or  loss  of  coherence that  would  disturb  the  photon transmission.

Therefore,  by  introducing  special  approximations  (Semi-Classical  Approximation,  the  Sine-

Gordon equation), it is possible to consider that the photons spread as if they were immersed in

a completely “transparent” microtubular dielectric. This non-linear phenomenon is called “self-

induced transparency”.

The  physical  activity  of  superradiance  combined  with  self-induced  transparency  could

explain  long-range  quantum-dynamic  phenomena  of  the  brain.  These  phenomena  could

characterize not only the quantum activity of the MTs of a single neuron, but also the activity of

neuronal cells hundreds of micrometers away.

Following  these  considerations  and  thanks  to  other  experimental  evidence,  many

neuroscientists  and  theoretical  physicists  speculated  that  interference  between  the  coherent

sources of MTs could occur in the brain. 

In any case, all phenomena occurring within the brain, both at macroscopic or microscopic

levels, can be related to some form of phase transition and a number of authors [Pessa, 2007;

Alfinito et al.,  2001] pointed out the inconsistency of a quantum mechanical framework based

only  on  traditional  computational  schemata.  It  is  to  be  recalled,  in  this  regard,  that  these
57



schemata have been introduced to deal with particles, atoms, or molecules, and are unsuitable

when applied to biological phenomena.

Figure 2.6 Schematic representation of the phenomenon of superradiance in a MT
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3. METHODS
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3.1 EXPERIMENTAL AND THEORETICAL METHODS

The biophysical  properties  of fluorescence,  resonance,  birefringence and superradiance have

been investigated in the macromolecular structure object of this study, microtubules and tubulin.

To  this  purpose  ad-hoc  experimental  procedures  have  been  prepared,  from  which  the

experimental data have been obtained.

3.1.1 Fluorescence

Some particular molecules, when excited with certain energy, after a first non-radiative de-

excitation, re-emit the received radiation at lower energy. This physical phenomenon is called

fluorescence.

It is possible to excite a luminescent molecule, by hitting it with a radiation energy exactly

equal to the energy difference (E=hν) between the fundamental state, S0, and the state excited at

a higher energy,  S1. Since the excited state is  unstable,  the molecule tends to return to the

fundamental  state S0 by losing energy in different ways. In most cases,  emitted light has a

longer wavelength (λem), and therefore lower energy, than the absorbed radiation (λass): λem >

λass. For example, a substance can absorb ultraviolet radiation and emit radiation in the visible

spectrum.  This  phenomenon  is  known  as  the Stokes shift.  However,  when  the  absorbed

electromagnetic radiation is intense, it is possible for one electron to absorb two photons; this

two-photon absorption can lead to emission of radiation having a shorter wavelength than the

absorbed  radiation.  Fluorescence  is  one  of  the  two  radiative  processes,  together  with

phosphorescence, which can occur with the relaxation of an excited molecule.

Originally, the distinction between the two processes was made on the basis of the lifetime

of the radiation. Fluorescence is a phenomenon that develops in a very short time (10-9-10-8 s)

and gives rise to an intense and short  luminescence which ceases almost immediately after

removal of the exciting radiation. The phosphorescence is, instead, a phenomenon that develops

in much longer time (10-3 s) and gives rise to a weaker but longer light, which continues to be

emitted, at least for a short period of time, even after removal of the exciting source. Currently it

is  possible  to  distinguish  the two processes  on  the basis  of  the  nature  of  electronic  states

involved in the transitions responsible for the emission of radiation: the fluorescence radiation is

generated by transitions between states with the same spin multiplicity (S1 → S0), while in the

phosphorescence there is a transition between states with different spin multiplicity (the most

frequent case is represented by the singlet-triplet transitions).
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Many organic molecules absorb in the visible and UV spectra, but only few of them are

fluorescent (many of biological interest). Fluorescence is in fact influenced by the structure of

the molecule.  Stiff  molecules characterized  by systems of conjugated double bonds such  as

aromatic structures, are fluorescent. Of the twenty natural amino acids, only three have intrinsic

fluorescence: Tryptophan, Tyrosine, and Phenylalanine (Fig. 3.1). Each of these amino acids is

activated at a specific wavelength, but its luminescence is strongly influenced by the polarity of

the surroundings.  This  means that  the maximum of  the emission of  these amino acids  can

change: for example, a tryptophan excited between 270-280 nm, emits at 350 nm in water, while

well-protected inside a protein it emits at 330 nm. Since amino acids constitute the skeleton of

all proteins, many proteins are intrinsically fluorescent because of the presence of such aromatic

compounds.

The fluorescence emission spectra are different for the proteins that maintain the tertiary

structure compared to the same proteins that are denatured or unfolded. The phenomenon is so

influenced by experimental  conditions:  concentration,  temperature,  pH, phase of the sample,

way of supplying energy to the molecule, nature of the excited electronic state, pressure (in the

case of a molecule in the gas phase) and presence of other chemical species that can promote or

inhibit  physical  quenching  and intermolecular  energy  transfer.  Fluorescence quenching  is  a

process which decreases the intensity of the fluorescence emission. The accessibility of groups

on a protein molecule can be measured by use of quenchers to perturb fluorophores. Quenching

by small  molecules  either  in  the solvent  or  bound to  the protein in  close proximity  to the

fluorophore can  greatly decrease the quantum yield of  a  protein.  Quenching  may occur by

several mechanisms: collisional or dynamic quenching, static quenching, quencing by energy

transfer, charge transfer reactions [Morrison, 2008].

Temperature affects fluorescence because the vibration state of the molecule depends on

temperature, so it can contribute to the internal conversion. The fluorescence varies with the

variation of the solvent used: a non polar solvent ensures the emission of an extra quantum of

energy than a polar solvent.

The intrinsic fluorescence of tryptophan, tyrosine and phenylalanine (excited respectively at

295, 280 and 270 nm) is different depending on the more or less polar characteristics of protein

environment in which they are. They are also directly affected by the quenching effect, that is

the energy transfer to other structures, created by interactions with other aromatic molecules or

other chemical protein structures such as disulphide bridges, having the task of stabilizing the

tertiary structure. Therefore, the fluorescence emission spectra are different for the proteins that

maintain  the  tertiary  structure  compared  to  the  same  proteins  denatured  or  unfolded.  This

difference is both in terms  of  quantum yield of fluorescence and in terms of energy of  the
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emitted photon and of wavelength.  The denaturation results in a lengthening of the shift  of

Stokes of a few nm and a change of the intensity of the emission spectrum. Very often,  the

fluorescence emitted increases because the quenching effects involving aromatic residues are

reduced. Other times the intensity of the fluorescence emitted is reduced during the process of

unfolding, because the protein in native form did not show quenching factors and the shift of

aromatic amino acids to a more polar environment reduces the quantum yield.

In the case of  microtubules,  the quantum yield (that  is  the ratio between absorbed  and

emitted  photons)  increases  in  the  chromophores  that  are  not  exposed  to  the polar  solvent

(water). The peak of the emission can change. For example, a tryptophan, which is one of the

aminoacid constituent of tubulin, in water emits at 350 nm whereas a tryptophan well protected

in the protein emits at 330 nm. Within the microtubule cytoskeleton may occur quantum laser-

like  coherent  phenomena  at  long-range.  The  measurement  of  the  fluorescence  within

microtubules is introductory to the superradiant experiment.

The  instrument  used  to  measure  the  fluorescence  is  the  spectrofluorometer.  Its  key

component is  the   light source that is usually a mercury lamp or a xenon arc that emits a

polychromatic  radiation  that  is  sent  to a  monochromator  with  continuous spectrum, M1, to

select the λ of the incident light beam [Lakowicz, 2002.]. The light is then sent to the cuvette

containing  the  sample,  which  once  excited  emits  radiations  at  a  λ greater  than  that  of

excitement. This is sent to a second monochromator, M2, that select a specific  λ of emission

(i.e., an incident radiation with fixed wavelength) thus determining the fluorescence spectrum of

the sample by sending it to a detection system (which is usually a highly sensitive photocell),

where a photomultiplier amplifies the signal that is finally registered. In a spectrophotometer,

the incident light I0, and the emitted light, I, follow the same direction. Instead, in a standard

spectrofluorimeter, the geometry changes,  because this instrument allows light to penetrate the

sample through a portion on a face of the cell, and the emitted photon to exit at an angle of 90°

respect to the incident radiation (spectrofluorimeter at 90°).
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Figure 3.1 Emission spectra of fluorescence on aromatic aminoacids in water

3.1.2 Resonance

Antennas are devices able to transform an electromagnetic field into an electrical signal, or

to  radiate,  in the form of electromagnetic field,  the electrical  signal they are fed by.  When

powered  by  an  electrical  signal  to  their  ends,  antennas  absorb  energy  and return  it  in  the

surrounding space as electromagnetic waves (transmitting antenna), or absorb energy from an

electromagnetic wave and generate a voltage to their ends (receiving antenna). On theoretical

bases  any  conductive  object  acts  as  an  antenna,  regardless  of  the  electromagnetic  wave

frequency  they  are  hit  or  the  signal  that  is  fed  by.  The magnitude  of  the  effect  becomes

significant when the frequency corresponds to the resonance frequency and in this case the

output voltage can  be used  for  receiving and transmitting  radio  waves.  The resonance is  a

physical  condition that  occurs when a  damped oscillating  system is subjected to a  periodic

solicitation with a frequency equal to the system oscillation. A resonance phenomenon causes a

significant  increase  in  the  extent  of  the  oscillations  that  corresponds  to  a  remarkable

accumulation of energy within the oscillator.  

Recent observations and experiments on CNTs have led to the development of an array of
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CNTs able to act as antennas [Wang et al., 2004]. Instead of transmitting and receiving radio

waves (measured in meters), these structures capture wavelengths at the nanoscale (measured in

nanometers) due to their small size.  

In the study of the physical properties of MTs compared with those of CNTs, it is desired to

search and analyze a possible reaction to microwaves, observing any ability of MTs to absorb or

emit  like  antennas.  Our  experimental  approach  was  intended  to  verify  the  existence  of

resonance in MTs, in analogy with the CNTs, at the frequency that amplifies the wave. 

The bench for the MTs resonance experiment consisted of a microwave generator with two

1⁄4 wave dipole custom antennas centered on a frequency of 1.5 Ghz (Fig.3.2). The antennas

have been placed on the same horizontal plane and spaced 4 cm. The test-tube containing the

solution was placed between the antennas. The system was placed in a Mu-metal container in

order  to  shield  the  measurement  system  from  any  external  signal.  The  first  antenna  was

connected  with  a  shielded  cable  to  a  Polarad  mod.  1105  Microwave  Signal  Generator,

generating frequencies between 0.8 GHz and 2.5 GHz. The second antenna shielded cable was

connected with an Avantest mod. TR4131 Spectrum Analyzer. The experiment displays changes

in the resonance reference peak of the tested material. If the peak is lower the analyzed sample

is absorbing, if higher it is emitting electromagnetic energy.

We  compared  the  responses  of  samples  of  MTs,  tubulin  and  buffer  solutions  without

proteins when subjected to high frequency electromagnetic stimulations. 

One  ml  of  tubulin  solution  was  placed  in  a  plastic  test  tube  positioned  between  the

transmitting  and  receiving  antennas.  In  order  to  detect  possible  resonances  on  specific

frequencies,  we  carried  out  a  frequency  scan  between  800  MHz and  2500  MHz using  a

radiofrequencies generator and checking the presence of an absorption resonance, visible by

means of a difference in the peak amplitude, with an Avantest TR-3130 spectrum analyzer. The

same analysis was also performed on 1 ml of MTs solution and on 1 ml of Buffer MT.
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Figure 3.2 Microwave Signal Generator. 

3.1.3 Birefringence

Birefringence is an optical property of materials that arises from the interaction of light with

oriented  molecular  and  structural  components  [Huang  et  al.,  2005].  Birefringence  is  the

decomposition of a beam of light into two rays that  occurs  when the light crosses  specific

anisotropic media depending on the polarization of the light. The interaction between light and

magnetic field in a medium results in the rotation of the plane of polarization proportional to the

intensity of the magnetic field component in the direction of the beam of light (Faraday effect).

The birefringence experiment was performed on solutions of tubulin and MTs, each in its

own  stabilizing  buffer.  The  final  concentration  for  both  tubulin  and  microtubules  was  0.5

mg/ml.  Then we repeated the tests with tubulin in MTs buffer and with the buffer alone as

control. The preparation of the buffers and the reconstitution of tubulin and microtubules are

described in section 2.2.

Each sample solution was submitted to four tests:  

- Transverse electric field (1 volt/cm) 

- Transverse magnetic field  

- Longitudinal magnetic field  
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- No field  

For each test the value displayed on the polarimeter directly measures the current in the

photodiode,  expressing  the intensity  of the laser beam after  passing through the cuvette.  In

presence of a strong scattering, indicating a lack of organization in the sample, the intensity

decreases. To minimize spurious effects, the windows of the cuvettes are made of cover slip

glass about 18 microns thick. The spectrum analyzer window was set to see a width of 50 Hz,

within which range the frequencies of the two samples are included, the distilled water 610 Hz

reference and the analyzed 632 Hz solution.

We used  two cells simultaneously;  a  first  cell  was  always  present with a  low intensity

longitudinal magnetic field at 610.1Hz frequency and filled with distilled water. This allowed a

reference signal in all the various measures on the second cell, excited at a 632 Hz frequency.

The choice of almost static fields permitted the highest sensitivity. The frequency (632 Hz) is

sufficiently low to exclude dynamic effects. An important point is that for longitudinal magnetic

fields a strong Faraday Effect is present due to the water contained in the analyzed solution and

producing a consistent background noise. 

For the measurement a polarimeter was prepared. In a classic polarimeter a monochromatic

source radiates a beam of light (initially not polarized) that is sent on a pair of polarized filters

(normally Nicol prisms) oriented so as to polarize light. The beam of polarized light crosses a

cuvette containing the test solution which, if optically active, rotates both polarization planes of

light. Finally, the beam passes through a polarized filter, the analyzer, whose main section is

rotatable. A more descriptive schema is depicted in figure 3.3.
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Figure 3.3 Schematic of the polarimeter 

A: Elio-Neon Laser (Hughes 3222H-P,  633 nm; 5 mW max; Polarizing Nicol;  

beam splitter  

B: cuvette and 610.1 Hz coil for the reference cell 

C cuvette and 632 Hz coil for the sample 

D: electric field cell 

E: analyzer filter 

F: lens that focuses the beam on the photodiode 

G: photodiode and amplifier 

HP: spectrum analyzer (HP 3582A) for on-line check 

COMP: data acquisition system 

The light source consists of a Hughes 3222HP Helium-Neon Laser, 633 nm, and power 5

mW. The magnetic field is 18 Gauss RMS for the 632 Hz test cuvette and 9.8 Gauss RMS for

the 610.1 Hz cuvette, while the applied electric field (632 Hz) is 1 Volt/cm RMS. The cuvettes

used for the magnetic field measured 15 mm, while that for the electric field was 23 mm long.

The transverse electric field was achieved with simple aluminium electrodes, 3 mm long and 5

mm high. The magnetic field (longitudinal or transverse) was obtained by a pair of Helmholtz

coils  powered  by  sinusoidal  generators.  Electric  field  and  transverse  magnetic  field  were

oriented according to the horizontal  and  the first  polarizer was  oriented at  45 degrees  with

respect to the direction of the transverse fields. The laser beam after the cuvette was examined

by a polarization analyzer oriented at 45 degrees with respect to the first polarizer and finally

sent to the photodiode: with this orientation the maximum signal is achievable by modulation

due to the Faraday Effect (longitudinal magnetic field). The photodiode was a HP 5082-4220

and the spectrum analyzer was an HP 3582A; the signal was sampled at 8000 samples/sec (Fig.

3.4). 
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Figure 3.4 Spectrum analyzer HP 3582A

The analysis of the signals was performed with Hamming windowing using home-made

analysis software written in FORTRAN at the Department of Physics (University of Milan).

Other tests have been performed using the Sigview® SignalLab software and have exploited

Hann and Hamming windowing, with or without Hann smoothing. 

3.1.4 Superradiance

Superradiance phenomenon was first described by R. H. Dicke [Dicke, 1954], and consists

in  the  cooperative  emission  of  an  electro-magnetic  radiation  by  a  set  of  dipole  coherently

coupled.

A single dipole oscillate at a frequency corresponding to the transition between two electric

states (S0 → S1); during oscillation a radiation is emitted, of intensity I proportional to the ratio

between the square of its charge q and its mass m: I ∝  q2/m. In a system made up of two dipoles

oscillating separatly, each one emits a radiation of intensity I = q2/m. Instead if the two dipoles

oscillate in phase, the radiation intensity emitted corresponds to that of an oscillating object with

charge 2q and mass 2m: I = (2q)2/2m → I  = 2q2/m Therefore,  in a system consisting of N

dipoles oscillating in phase, the total intensity of the radiation emitted is equal to: 
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I = (Nq)2/Nm → I = Nq2/m 

From an experimental point of view, a radiation is sent to the sample to be analysed in order

to  determine the excitation  that  is  the transition form the fundamental  state,  S0,  to the first

excited state, S1. Like all excited systems,  it  tends to return to the fundamental state S0, by

releasing energy. 

This can happen through radiative decay, that is by emission of light; through inter-system

crossing, ISC, that is a decay on another excited state with different multiplicity; or through

non-radiative decay, that is via a return to the fundamental state without emission of photons,

and therefore with thermal dissipation of excess energy.

The expression [N(q2  /m)] indicates the speed of radiative decay of the system, but not its

intensity, that depends on the ratio of the speed of radiative decay as a function of the speed of

total decay. In order to demonstrate that the system is superradiant we should determine if there

are dipoles oscillating in phase, and if yes, how many they are. In a system of N molecules the

superradiance can be demonstrated experimentally by measuring the radiative lifetime of the

optical  transition  as  a  function  of  the  number  of  the  molecules  where  the  excitation  is

delocalized. This number theoretically overlaps the number of molecules of the system, but in

practice  it  is  much  lower  because  both  static  (defects,  impurities)  and  dynamic (vibration)

disorder limit the length of delocalization of the excitement.

The efficiency of emission (Q.Y o Φ) is measured, corresponding to the ratio between the

number of photons emitted and the number of absorbed photons. Q.Y. depends on the number of

states decaying radiatively, with emission of a photon, and on the total number of states that

decay both radiatively and non-radiatively. Q.Y. is proportional to the luminescence intensity

experimentally observed (IPL). By measuring the lifetime of an emission and its intensity as a

function of  temperature,  it  is  possible  to obtain the strength  of the oscillator  of the optical

transition, or in an equivalent way the radiative decay rate, which is inversely proportional to

temperature  itself.  This  is  the main  proof  that  an  emission  is  superradiant  (necessary  and

sufficient condition).

Since  superradiance  comes  from  the  delocalization  of  the  excitation,  it  has  to  be

accompanied by other effects. In particular, if excitation is delocalized over N molecules, the

square  of  the  line  width  of  a  superradiant  emission  should  be  directly  proportional  to

temperature.  This  is  a  necessary  but  not  enough condition  for  superradiance,  since  similar

effects may also be due to different phenomena.

The superradiance experiment requested in advance to verify the spectroscopic behaviour of

MTs, which is the study of their absorption in UV-VIS field. The measurement was made using
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a single beam UV-VIS spectrophotometer (UV-1601) of SHIMADZU.

The  analysis  was  performed  only  on  a  solution  of  microtubules  in  MT  buffer  at  a

concentration of MTs of 0.250 mg/ml. The sample of MTs was prepared as described in Section

2.2. The measurements were performed using as negative control the buffer MT alone, in order

to remove the absorption not attributable to MTs.

To measure the luminescence we used an apparatus having as light source a high pressure

Xenon lamp with 75 Watts power. The source was coupled to a  Gemini Jobin-Yvon double

monochromator  with  bandwidth  (wavelength of excitation)  of  about  1.5 nm. The light  was

focused on the cuvette in which the sample was contained by using a doublet of lens. A second

doublet  of  lens  was  used  to collect  the luminescence  and  send it  to a  Jobin-Yvon TRIAX

monochromator to be decomposed into its different spectral components. A CCD detector SPEX

2000 was directly connected to the exit of the monochromator. On the detection was applied an

optical filter cutting the wavelength at 280 nm. After having verified that the sample absorbs

UV, prior to the measurements of superradiance, it was necessary to check the luminescence in

order to detect any wavelength of emission in the next superradiance experiment. The analysis

was conducted by comparing a solution of MTs in MT buffer at a concentration of 0250 mg/ml

with a buffer solution consisting only of the MT buffer as negative control.

The equipment  used  for  the measurement  of  superradiance,  shown in  figure 3.5,  has  a

doubled laser Nd: YAG diode-pumped as light source (Model Verdi V10-Coherent). YAG laser

(acronym  for  Yttrium-Aluminium-Garnet)  is  a  synthetic  crystal,  which  in  our  case  is

neodymium-doped  and  used  in  solid  state  lasers  with  the  active  medium operating  in  the

infrared. The source emits radiation at a wavelength of 532 nm with a power of 10 watts. It

pumps a laser pulsed every 100 fs (10-15 s), consisting of an oscillator (Mira100-Coherent) and

a crystal of titanium/sapphire (Ti: Sapphire) as the active medium, emitting light pulses with a

wavelength  of  810  nm,  duration  of  100 femtoseconds  (fs),  power  of  1.4  watts,  and  pulse

repetition frequency of 76 Mhz.

These pulses (810 nm), called "first harmonic" or fundamental radiation, are sent to a triple

(or harmonic generation) Super Tripler of the Optronic. The fundamental radiation (Figure 3.6)

hits a first nonlinear crystal and is splitted into two laser beams:

- The first (ω) retains the wavelength of the first harmonic (810 nm);

-  The second (2ω)  halves  the wavelength  of  the fundamental  radiation  at  405  nm and

doubles the frequency. This is the second harmonic.

The two laser beams move at different speeds (the one with λ = 810 nm is the fastest), but

reach a second crystal at the same time, and they recombine because they follow two different
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paths through a system of mirrors.

From this second crystal 3 different lasers are drawn:

- Fundamental radiation, ω (λ = 810 nm);

- Second harmonic 2ω (λ = 405 nm);

- The third harmonic, TGH, which triples the fundamental frequency of the radiation and

divides it by 3, at 270 nm.

The third  harmonic is focused with a  spherical  mirror on the sample,  where packets of

photons arrive at a frequency of 76 MHz spaced from one another by 14 ns and 150 fs wide.

The sample absorbs light and luminescence just a result of this pulsed excitation.

The  luminescence  is  collected  by  a  lens  system  and  sent  to  the  entrance  slit  of  a

spectrograph from Chromex, namely a polychromator with a bandwidth of about 5 nm, coupled

with a Streak Camera (SC) from Hamamatsu. When the light reaches the lattice, it is split in the

plan in its different spectral components and is sent to the SC.

The  SC  is  an  electronic  device  capable  of  analyzing  the  temporal  evolution  of

electromagnetic  radiation  on  scales  up  to  a  few picoseconds  (Figure 3.7).  Schematically  it

consists  of  a  photocathode  of  cesium  iodide  (CsI),  a  50/40  intensifier  and  a  camera  with

appropriate  focusing  optics  that  amplify  and  collect  the  light  coming  from  a  screen  of

phosphors.  The photocathode,  which is the element of the SC sensitive to visible radiation,

converts photons into electrons on the sensitive plate of CsI via the photoelectric effect. The

electrons are then accelerated by a strong electric field, they enter between two parallel plates of

a capacitor and all get through it with the same time length. Inside the capacitor a “saw tooth”

voltage is applied, which serves to split  the different electrons:  electrons arriving before are

affected by a low electric field and are deflected less than the electrons that arrive later and are

more deflected. The information time (Δt) is thus encoded in terms of spatial coordinates (Δx).

A signal extended in time is converted into a strip of electrons on the detector. A magnetic lens

focuses the emitted electrons. The split electrons impact on a phosphor screen that reconverts

them  into  photons.  The  photons,  in  turn,  impress  a  CCD (Charge-Coupled  Device)  which

“photographs” the  phosphor  screen.  Finally,  the  software  package converts  the  position  of

several photons on the CCD in a graph showing the wavelength on the abscissa and time in

ordinate. The SC has a temporal resolution of up to 2 ps; in our case, however, it has been used

with a lower resolution (30 ps) because the time of luminescence of MTs was much longer.

The analysis was conducted on a solution of MTs in MT buffer at a concentration of 0.250

mg/ml. The sample was placed inside the cryostat apparatus and frozen in an atmosphere of
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inert gas (N2 gas) up to a temperature of 80 Kelvin. At this temperature a first acquisition was

performed by exciting the sample with a radiation at λ of 270 nm and measuring the lifetime of

the  luminescence  emitted.  Then  gradually  increasing  the  temperature  up  to  the  melting

temperature  of  the  sample  other  acquisitions  were  performed,  measuring  at  each  time  the

lifetime of the emitted signal.

Figure 3.5 Equipment used for the measurement of superradiance

Figure 3.6 System for tripling a laser pulse
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Figura 3.7 Scheme for the functioning of the Streak Camera

3.2 COMPUTATIONAL AD HOC METHODS

In order to analyse the experimental results and draw conclusions on the issue of abnormal

biophysical properties of microtubules computational methods were used in synergy:

- Physico-Chemical Simulation Environment

- Dynamic Simulation Environment

-  Self-organizing  Artificial  Neural  Networks  for  the study of  the evolution of  the dynamic

organization of microtubules and tubulin under the influence of electromagnetic fields

- Analysis of the outputs of neural networks through the method of conflict and occupation and

the method of attractors

3.2.1 Molecular Dynamics

The molecular models of the elements used for the simulation were obtained through the

online consultation  of  two databases:  Research  Collaboratory  for  Structural  Bioinformatics,

RCSB, which is in charge of the archiving and document digitization of 3D molecular structures

obtained by  X-ray  crystallography and spectroscopy,  and PubChem, a database of  chemical

molecules, maintained and funded by the National Center for Biotechnology Information. The

PubChem database is access free, and millions of compounds structures and descriptive data can

be downloaded via FTP. PubChem contains descriptions of molecules with less than 1000 atoms

and  1000  bonds.  X-ray  crystallography  is  the  main  method  for  determining  molecular

conformations of biological macromolecules, in particular of proteins and nuclei acids such as

DNA and RNA. The format obtained from the consultation of the RCSB is called Protein Data
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Bank (PDB) [Berman et al., 2007]. It is a text file describing the three-dimensional structure of

all the molecules of the system. Most of the information contained in the database is related to

proteins  and  for  this  reason  the  intramolecular  bonds  are  rich  in  descriptive  properties.

Typically, a file of this type is defined by a set of information:

-  ATOM  field:  describing  the  coordinates  of  the  atoms  constituting  the  proteins.  For

example, the first line is the first atom compound, the first three floating point numbers are the

coordinates X, Y, Z expressed in Angstrom (unit of measurement that indicates the length of

chemical bonds) [Protein Data Bank Atomic, PDB, Coordinate Entry Format Version 3.2. ]. The

next three columns show respectively the occupation, the temperature factor and the name of the

element.

- HETATM field: describes the coordinates of the hetero-atoms, ie atoms that are not part of

the protein molecule.

- SEQRES field: giving the sequence of peptide chains.

- REMARK field: this is a comment field containing information in free form. It is usually

referred to research papers that led to the creation of the model but also to the sequence of the

coordinates of the calculation useful to create the model.

- HEADER, TITLE and AUTHOR field: showing the name of the researchers who defined

the structure.

Through the years, the file format has undergone many changes and revisions. Its original

size was dictated by the width of the device for the punch cards (80 columns) previously used

for the upload of models. A XML version of this format, called PDBML, was described in 2005

[Westbrook et al., 2005].

The PDB files  have as identifier  a  file  name consisting  of  alphanumeric characters  (i.e.

1TUB or tubulin). Each published structure is then identified through its PDB ID, but this can

not be used as an identifier for biomolecules, because often there are different structures for the

same molecule (in different environments or conformations). Figure 3.8 shows the PDB file for

tubulin.

The molecular models archived in the database are presented in the format PubChem SDF

(Structure Data  File).  It  organizes the molecule through biophysical  features separated  by a

separator.  The first  line of the file contains a unique identifier of the item. This number is

closely related to the structure and is the definition and the search key in the database.  The

bonds are described by indicating the position in three dimensional space and charges through

the numerical data in the field partial charges.
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By using this archive of molecules the models of microtubule and tubulin were obtained. To

verify  that  these  models  did  meet  the  specifications  recreated  in  the  laboratory,  Ascalaph

Designer  was  used  [http://www.agilemolecule.com/Ascalaph/Ascalaph_Designer.html.

BlueTractorSoftware. Agile Molecule], a software that allows to build and simulate molecular

models  and  turn  them  into  a  three-dimensional  environment.  It  also  provides  a  graphical

environment for classical and quantum modelling of molecules based on Firefly [Gordon and

Schmidt,  2005]  and  MDynaMix/MGE  [Lyubartsev  and  Laaksonen,  2000].  Both  graphical

environments  on  which  the  simulator  is  based  provide  dedicated  implementations  for  the

interaction of a large number of atoms, even if they can not reach,  for obvious reasons, the

computational  power  that  they  can  have  with  implementations  based  on  cluster  systems

[Lyubartsev and Laaksonen, 1998] or with dedicated hardware Molecular Dynamics-NVIDIA

Corporation.

In  order  to  link  together  the  various  software  used,  it  was  necessary  to  use  a  format

converter, such as Avogadro. Avogadro is an open source platform recently created as part of the

project Open Molecules. Avogadro allows us to deal with simple and complex molecules with a

high speed and good usefriendliness. The molecules can be represented in different ways, such

as balls and sticks, orbitals, Van der Waals spheres, surfaces, rings and hydrogen bonds. A wide

range of fragments are available immediately in a drop down menu with the ability to choose

the single,  double and triple bonds. The molecules created  can be manipulated, inter-atomic

distances can be viewed, bond angles can be oriented. The molecules created can be handled in

several formats, including the most popular such as PDB, MDB, Gaussian, and can be exported

in a graphical format JPG, BMP and PNG. Regarding the upload, the program is based on Open

Babel and is able to read and convert over 80 formats.
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HEADER MICROTUBULES 23� SEP� 97 1TUB

TITLE TUBULIN ALPHA�BETA DIMER, ELECTRON DIFFRACTION
. . .
KEYWDS MICROTUBULES, ALPHA�TUBULIN, BETA�TUBULIN, GTPASE
EXPDTA ELECTRON DIFFRACTION
AUTHOR E.NOGALES,K.H.DOWNING
. . .
JRNL AUTH E.NOGALES, S .G.WOLF,K.H.DOWNING
JRNL TITL STRUCTURE OF THE ALPHA BETA TUBULIN DIMER BY
JRNL TITL 2 ELECTRON CRYSTALLOGRAPHY.
JRNL REF NATURE V. 391 199 1998
JRNL REFN ASTM NATUAS UK ISSN 0028�0836
REMARK 1
REMARK 1 REFERENCE 1
REMARK 1 AUTH E.NOGALES, S .G.WOLF,K.H.DOWNING
REMARK 1 TITL ERRATUM. STRUCTURE OF THE ALPHA BETA TUBULIN DIMER
REMARK 1 TITL 2 BY ELECTRON CRYSTALLOGRAPHY
REMARK 1 REF NATURE V. 393 191 1998
. . .
REMARK 500 ATM1 RES C SSEQI ATM2 RES C SSEQI
REMARK 500 CD GLU B 71 CB ALA B 99 0.41
REMARK 500 OG SER A 170 SD MET A 203 0.54
REMARK 500 CB SER A 165 OD2 ASP A 199 0.88
REMARK 500 CG PRO B 184 CD2 PHE B 399 0.91
REMARK 500 O VAL A 363 OD2 ASP A 367 0.94
REMARK 500 NH1 ARG A 2 OD2 ASP A 251 1.01
REMARK 500 O MET A 154 NE2 HIS A 197 1.04
REMARK 500 OD2 ASP A 205 CG1 VAL A 303 1.04
. . .
SEQRES 1 A 440 MET ARG GLU CYS ILE SER ILE HIS VAL GLY GLN ALA GLY
SEQRES 2 A 440 VAL GLN ILE GLY ASN ALA CYS TRP GLU LEU TYR CYS LEU
SEQRES 3 A 440 GLU HIS GLY ILE GLN PRO ASP GLY GLN MET PRO SER ASP
SEQRES 4 A 440 LYS THR ILE GLY GLY GLY ASP ASP SER PHE ASN THR PHE
SEQRES 5 A 440 PHE SER GLU THR GLY ALA GLY LYS HIS VAL PRO ARG ALA
SEQRES 6 A 440 VAL PHE VAL ASP LEU GLU PRO THR VAL ILE ASP GLU VAL
. . .
ATOM 1 N MET A 1 �26.006 52.343 �25.121 1.00 20.00
N
ATOM 2 CA MET A 1 �25.759 52.677 �23.728 1.00 20.00
C
ATOM 3 C MET A 1 �26.559 53.689 �24.177 1.00 20.00
C
ATOM 4 O MET A 1 �26.668 54.651 �23.359 1.00 20.00
O
ATOM 5 CB MET A 1 �24.344 52.329 �23.334 1.00 20.00
C
ATOM 6 CG MET A 1 �24.068 50.890 �23.389 1.00 20.00
C
. . .
HETATM 6792 PG GTP A 500 �57.551 49.025 �35.493 1.00 20.00
P
HETATM 6793 O1G GTP A 500 �56.753 49.937 �34.642 1.00 20.00
O
HETATM 6794 O2G GTP A 500 �57.704 49.788 �36.825 1.00 20.00
O
. . .

Figure 3.8 PDB file for tubulin (1TUB.pdb). Only the first rows are shown.
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3.2.2 Dynamic System Evolution

The theoretical assumptions of the computational methods used in this thesis are based on

the theory of dynamic evolution of complex systems and on the properties originating from their

self-organization capacity. Both tubulin and MTs behave as complex systems and we are able to

examine their dynmic evolution by means of suitable computational mehods. 

The theory  of  complex  systems  deals with the study of  the organization  spontaneously
emerging from the interaction of many elementary components [Heylighen 1992; Gell-Mann,
1995].  Complex  systems  respond  to  changes  in  the  external  environment  reorganizing
themselves in order to exhibit novel properties [Standish, 2002].

The  self-organization  is  a  space-time  structure  that  is  not  imposed  from  outside  but

spontaneously emerges from the evolution of the system as a function of its  dynamics. The

emerging organization can be observed at a different and much higher time-space scale than the

molecular one. The construction of mathematical models for such systems [Rosen, 1972] shows

that the equations that  govern them are generally very sensitive to initial conditions, so that

extremely small fluctuations give rise to completely different dynamic stories. This is called

"deterministic chaos": the system has an overall regular behaviour, which is irregular in detail,

and so it is impossible to predict its behaviour in the next instants.

Chaos can be defined as an unpredictable behaviour of a deterministic dynamical system

due to its sensitivity to initial conditions.  The behavior of a dynamical deterministic system is
predictable once the initial conditions are known. But there are cases when the motion of the
system  has  very  different  behaviours,  according  to  the  precision  with  which  the  initial
conditions are measured. More specifically, a set S exhibits sensitivity to initial values if there is

a ρ so that for any ε > 0 and for any x in S, there is a y so that |x - y| <ε, and |xn – yn | > ρ for
some n> 0. Then there exists a fixed distance r so that there are nearby states that in the end
move away to  a  distance r,  even  if  the initial  state  has  been  exactly  defined.  This is  what
happens in chaotic systems. A chaotic system exhibits sensitivity to initial conditions behaving
as a complex system.

A typical example of self-organization and is present in all biological systems [Green, 1994]

and in their most advanced expression, that is intelligent life. A promising attempt to reproduce

advanced features through the collective behaviour of simple elements is represented by the

artificial neural networks. Several interconnected elements continually exchange information on

the basis of a range of input from outside, and reach a form of functional organization that is not

caused by a default algorithm defined from the outside, but emerges from the same structure as

the neural system. 
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In the traditional approach complex systems are treated analytically, namely reducing them

to the linear combination simple elements. In nature many systems are linear or approximable to

linearity (i.e. electromagnetic waves: every periodic mathematical function can be represented

as a series of pure sigmoids by the Fourier transform). This has enabled the modelling of many

natural phenomena. But for many physical systems the linearity is not sustainable, and their

modelling becomes very complex: nearly all dynamic systems are chaotic, that doesn't mean

they are inherently indeterministic, but that they are not predictable [Kaplan and Glass, 1995;

Jackson,  1989].  The  development  of  strictly  time-varying  and  nonlinear  spatial-temporal

pattern,  such  as  those from the acquisition  of  experimental  data,  is  an  issue of  increasing

importance, and its complexity has to involve the use and the development advanced tools. The
typical adaptivity of artificial neural networks and their ability of generalization make them a

tool of choice for the analysis of this issue. No real model is truly linear, but often a linear

function can  be approximated.  The non-linear  systems  exhibit  complex  effects  that  are  not

inferable with linear methods. This is particularly evident in dynamic systems [Atmanspacher

and Kurths, 1992].

A dynamic system is a system that expresses the variability of a state over time (ie a point in

a vector space). 
dX/dt = F(X,t)      (1)

F: W Rn  Rn   differentiable

The solution of the system is the set of trajectories as a function of initial conditions. A dynamic

system is completely defined by a space of phases or states, whose coordinates describe the

system at all times, and by a rule that specifies the future development of all the variables of the

state.

Dynamical systems can be defined as deterministic if there is only one result for each state,

stochastic if there is more than one consequent with a certain probability distribution. The phase

space is the collection of all possible states of a dynamic system. It can be finite or infinite. If

some trajectories converge at some point, the set of initial states of these trajectories generated

is called region of attraction of the point. A region of attraction is a set of points in the state

space  of  finite  diameter  such  that  every  trajectory  enters  and  doesn't  come out  any  more.
Mathematically, a dynamic system is described by an initial value problem. The trajectory in the
phase space traced out by a solution of an initial value problem is call the trajectory of the
dynamic system.

We define as constant trajectory a constant solution x (t) = x (0) of (1), i.e. a vector x (0) so
that each component of the right side of (1) is zero. A constant trajectory is considered stable if
the following conditions are satisfied:
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- there must exist a positive number ε such that any trajectory that starts within ε of x (0)
should asymptotically get close to x (0)

- for every positive number ε there must be a positive number  δ ε ) such that a trajectory

that is initiated within δ ε ) remains within ε of x (0)

The set of all points which may have initial trajectories that asymptotically approach to a
stable trajectory is called region of attraction of the stable trajectory. A limit cycle,  or  cyclic
attractor, is a closed curve in the n-dimensional space characterised by the following properties:

- no consistent trajectory is contained in the limit cycle

- any trajectory that begins at a point in the limit cycle should stay within the limit cycle

- there must be a positive number ε such that each trajectory of the cycle that starts within ε

 should asymptotically approach the limit cycle

- for every positive number ε there must be a positive number δ ε  such that a trajectory

that is initiated within δ ε  of the limit cycle stays within the limit cycle

In summary, if some trajectories converge at some point, the set of initial states of these

trajectories is called region of attraction of the point. A region of attraction is defined as a set of

points in the state space of finite diameter such that every trajectory enters and doesn't exit. A

very common type of self-organization established in nature  is the deterministic chaos.  The

long-term behaviour of chaotic systems follows organised pattern detectable  by viewing the

trajectory of the system in the state space. These trajectories show a spatial structure in which

they are  confined in  an  odd attractor,  which is  exhibit  some regularity,  but  are  not  strictly

recurrent [Peitgen et al. 1992]. An odd attractor is geometrically a fractal [Mandelbrot, 1983],

that is a structure with a not entire size.

A neural  network  can be considered as  a  dynamic system of  n-dimensional  differential

equations describing the dynamics of n neurons. Each neuron is mathematically defined by its

state x(i)  and by its  gain  function  gi=gi(xi)  differentiable everywhere and  not decreasing.  A

typical gain function is for example the logistic function

g(x) = (1 + e -x)-1 

biologically motivated because it simulates the refractory phase of real neurons. This function

returns  values  between 0  and  1.  It  is  often useful,  however,  the use of  a  transfer  function

symmetric respect to zero, in order to maintain the symmetry of input values. It is then used the

hyperbolic tangent function (between -1 and +1), or the function
F(P) = A (ekp –1) / (ekp +1) 

where A and k are positive constant. 
The variation speed of each  xi  is determined by a function depending on  xi and on the output
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gi(xi). In general, such variation can be expressed with the system of differential equations 
dxi/dt = -ki xi + pi (g(x))    (2) 

where ki is a positive constant and each pi  is a polynomial function of the n variables g1(x(t),

g2(x(t),...,  gn(x(t)),  that  behave well  enough to ensure that  the trajectories  for the system of

equations exist and are unique.

The  purpose  of  the  neural  network  is  to  generate  trajectories  in  n-dimensional  space

approaching asymptotically some of the attractor trajectories. Activity levels of n neurons are

represented  by  a  point  in  n-dimensional  space [Jeffries,  1991].  A n-dimensional  dynamical

system is therefore built and its solutions are trajectories representing constant attractors (stable

equilibrium) or cyclic attractors (limit cycles). The Hopfield network is a prominent example of

how a neural network is a dynamic system that can tend to a number of stable attractors.
In additive neural models, such as MLP, each pi is a linear function of the component of g:

pi = Σnj Tij gi     (3)  

where Tij are real constants forming a matrix nxn. 

Recently, however, alternative more efficient neural networks of higher order have emerged
in  which  each  pi  is  a  polynomial  function  of  the  components  of  g,  typically  of  the  form

g1
e1g2

e2...gn en where each exponent ei is equal to 0 or 1.

For linear networks of the type (3) the theorem of Cohen-Grossberg [Hecht-Nielsen, l990]

ensures the existence of stablepoints (i.e. points for which dx(p)/dt = 0).

According to the theorem of Cohen-Grossberg, each dynamic system with the form

dxi/dt = ai(xi) [bi(xi) -  Σj wij  Sj  (xj )]

such that
1) the matrix wij  is symmetrical and every wij >=0 

2) the function aj (x) is continuos if x>=0 and aj (x)>0 if x>0 

3) the function bj (x) is continuos and finite for every open interval when x>0 

4) the function Sij (x) is differentiable and S’ij (x)>0 if x>=0 

5) bj(x) – wiSi(x)<0 if x--> 

6) lim u-->0+  bi(x) < and ∫ 1/a(s) ds  =  for some x>0 

has at least a countable set of stable points p such that dx (p)/dt = 0.

If the network status at time 0 is such that xi(0)>0, then the network will almost always
converge at some stable point p (such that dx(p)/dt=0), and there will be at least one countable

set of such points. Even if such conditions are restrictive, they match with those supported by

many self-associating networks (i.e. the Hopfield network, with fully interconnected nodes and

symmetrical weights).  The memories are placed in the attractors, and the theorem guarantees
their existence, in spite of the existence of many spurious attractors.
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Each state of a network can be associated with a Lyapounov energy function that  helps
determining certain properties of the trajectories. A Lyapounov function (L) is a function:

L : {0,1} n ---> R    such that 

L(T(x))  L(x)   for each x {0,1}n 

where T is the function of the transition made by the network. Therefore L is a monotone non-
increasing  function  along each  trajectory.  There  follows  that  the  equilibrium points  of  the

system correspond to the points of minimum of L. For networks with square connection matrix,

the function L is called energy function and is chosen as

E(x) = -1/2  ΣiΣxj wij xj  xj

clearly indicating that it is monotone non-increasing and that ∆E is always <=0 (i.e. the system
is  overall stable).
The Hopfield network is a prominent example of how a neural network is a dynamic system that
can  tend  to  a  number  of  stable  attractors.  It  is  a  fully  connected  network  with  symmetric
weights, bipolar input (+/-1 or 0,1). The inputs are simultaneously applied to all nodes and the
weights are set according to the law

wij  = Σ xii xj if i< >j 

wij = 0 if i=j 
In the learning cycle each output of a neuron is a new input for the same neuron. The calculation
of the new value is determined by the function:

f(xi )= xi     se  Σwij  xj = Ti   (possibly null threshold) 
 

f(xi ) = +1   se  Σwij  xj > Ti 
 

f(xi ) = -1   se  Σwiij  xj   <  Ti  

A pattern of input can be seen as a point in the space of states, that while the network iterates it

moves towards the valleys, representing the stable states of the network. The ultimate values of

the weights represent the output of the network. The solution comes out when the point moves

in the lowest region of the basin of attraction. In fact, for symmetric matrices with null diagonal 

ΔE/Δxi = - Σwij xj 

if Δxi >0, that Σwij xj  >0

if Δxi <0, then Σwij  xj <0 

that is always ΔE <=0. 

After a certain number of iterations the network stabilizes in a state of minimum energy.

Each minimum correspond to a pattern stored in the network. An unknown pattern is a point on

this hyper plane,  which gradually moves towards a minimum point.  There may be so-called

meta-stable  states,  i.e.  minimum  points  which  do  not  match  any  stored  pattern  (spurious

attractors).
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More generally the following theorem (4) can be demonstrated: each neural network model

of type (2) has a finite region of attraction (Fig. 3.9).

 
 

Figure 3.9 Typical trajectories in two-dimensional space with two memories and limit cycle 
model.

Once  a  particular  dynamic  model  and  its  attractors  have  been  identified,  a  learning

algorithm  varying  the  locations  of  the  fixed  points  to  encode  information  needs  to  be

established. A sufficient condition for the existence of this algorithm is therefore the existence in

the system of stable isolated attractors, i.e. fixed points. The matrix of weights will be adjusted

so that, given an initial state x0=x(t0)), a given input corresponds to a fixed point  x∞ = x(t∞),

whose components have a desired set of values Dj in the units of the output. A typical method

used in back-propagation networks, is to minimize a function E measuring the distance between

the desired fixed point (attractor) and the current fixed point: 

E = 1⁄2(Σi Ji ) where Ji = (Di – xi ∞ ) Qi

Qi is a function that is 1 or 0 depending on whether the i-th unit belongs to the subset of the
output of the network units or not. Then the learning algorithm moves the fixed points so as to
satisfy on the output units the equation

x(t∞) = Di 

A typical  way to do this is to make the system evolve in the space of the weights along the
trajectories that are antiparallel to the gradient of E:

τ dwij/dt = - dE/dwij 

where τ is a numerical constant defining the time scale for the changing of w; τ should be low,
so that x is always at a steady state, i.e. x (t) = x ∞.

When on the output layer the error between the desired and the actual output is calculated,
this error is propagated backwards in the various layers, in order to adjust the weights of each
node.  This algorithm, called the decreasing gradient and used by back-propagation networks
[Rumelhart et al., 1986], is not the only possible one but is without doubt the most efficient and

simple equation minimizing E.  If the initial network is stable, the dynamics of the decreasing
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gradient does not change the stability of the network. This allows us to state the reliability of the

back-propagation  algorithm,  which  provides  the  necessary  robustness  to  the  deviations

produced by interference and present in real systems.

An example of self-organizing dynamic system is represented by the unsupervised neural

networks [Carpenter et al., 1991; Cohenet et al., 1987] as the Self-Organizing Map (SOM) of T.

Kohonen.  The  structure  of  a  Kohonen  network  consists  of  a  layer  of  N  elements,  called

competitive layer.  Each layer  receives n  signals x1, ...,  xn coming from an input layer  of n

elements, whose connections have weight wij. If the competitive layer is matrix-type, neurons

are interconnected  in a  square,  hexagonal  or  rhomboidal  scheme.  If  it  is  a  vector-type,  the

neurons are simply connected together to form a chain (Fig. 3.10).

Figure 3.10 Kohonen network.

To estimate the intensity Ii of the input of each element of Kohonen layer the procedure is
the following:
Ii = D(wi,x)  

wi=(wi1,...,win)T  

xi =(xi,...,xn)T 

where D (w, x) is a distance function, such as the Euclidean one. At this point a competition is
performed to identify the element with the lowest input intensity (that is which w is the closest
to x).  

The SOM provides a procedure known as lateral inhibition that is present also in nature in

the form of chemical changes at the synaptic level (fig. 3.11). In the cortical region of the brain,

in fact, neurons in close physical proximity to an active neuron show stronger links, while at

some distance from the active neuron start to show inhibitory connections. In this architecture,

each  element  receives  both  excitatory  stimuli  by  adjacent  elements  (the  so-called

neighbourhood), and inhibitory stimuli by farther neurons. The existence of the neighbourhood

is useful because it doesn't let the network to polarize on a few winning neurons. 
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Figure 3.11 Lateral Inhibition

In this way only the elements with a distance below a certain level are activated, and in

restrictive cases only the unit with minimal distance.

The learning process occurs in the so-called “Winner Take All Law” (WTA); the training

data consist of a sequence of input vectors x. Kohonen layer then decides the winner neuron

based on the minimum distance. The SOM performs a vector quantization that is a mapping

from a space of many dimensions in a space with fewer dimensions, while preserving the initial

topology. In other words a form of Nearest Neighbour (NN) clustering is performed, in which

each element of the competitive layer represents the membership class of the input elements.

The NN classification classifies a pattern according to the minimum value obtained among

all the distances from a set of reference pattern. This method is useful for separating classes that

can be represented by segments of hyper planes. For this reason, the SOM is useful to classify

patterns topologically well-distributed, but it is not good at classifying non-linear distributions.

There are however several reasons that limit the performance of the SOM in the case of non-

linear and time-varying input. First, the competitive layer is not able to unravel on the shape of

the topology if the non-linearity of the input topology is too accentuated. The second reason is

the difficulty of reaching a certain convergence, in the absence of the possibility of establishing

an error for each epoch of the network. The third reason is the low cardinality of the output,

limited to the number of the neurons of the competitive layer. Another problem of the SOM,

which is typical of any clustering algorithm, is the lack of explanation the output. Once the

classification of the input has been obtained, the user has to extrapolate the meaning with an ad
hoc procedure, which in real-time applications can further penalize the computational load. One

solution successfully tested was found following the analysis of time series of winning neurons

to changing times.  That series tends to organize into a chaotic attractor that  keeps stable as

epochs increase and whose characteristics uniquely identify the input pattern that created it (Fig
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3.12). 

Figure 3.12 Series of winning neurons in 2D state space;  x-axis:  from 0 to 20 (order  
number of the weight); y-axis: from -5 to +5 (value of the weight) 

Based  on  this  evidence  the ITSOM (Inductive  Tracing  Self-Organizing  Map)  has  been

developed. The time line of the winning neurons in a SOM tends to repeat itself, creating a time

series constituting chaotic attractors or precise limit cycles that uniquely characterize the input

element that produced them (Figure 3.13).

In fact, because of the learning rule, the winning weight represents an approximation of the

input value. At any epoch,  the new winning weight along with the weight that  has won the

previous epoch, form a second order approximation of the input value. It is therefore possible to

derive the value of the input by comparing the characteristic configurations of each input with a

set of reference configurations, whose value is known. A real process of induction is thus made,

since once a vector quantization many-to-few is produced from the input onto the weights layer,

a step few-to-many is performed from the reference configuration to the whole of the inputs. 
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Figure 3.13 ITSOM architecture 

This form of induction is much more subtle than the one derived from the sole winning

neuron of a SOM network led to convergence to the corresponding input, because the neurons

of the competitive layer are too few to provide a significant classification. 

The characteristic of this network is that  it does not need to be brought to convergence,

because configurations of the winning neurons achieve the necessary stability within about tens

epochs. For best results the network shouldn't polarize on too few neurons, but shouldn't even

disperse itself throughout the whole layer.

The algorithm that resulted optimal to recognize the configurations created by the network

is based on the method of z-score. 

The cumulative scores for each input are normalized according to the distribution of the
standardized variable z given by

z= (x – μ ) / σ 

where μ is the average of the scores on the neurons of the weights layer and σ is the standard
deviation.

Once a threshold 0 < τ <= 1 is set, which is therefore one of the parameters of this network,
these values are then set: 

z= 1  per z > τ 

z= 0 per z <= τ. 

In  this  way,  each  configuration of  winning  neurons  is  represented  by  a  binary  number

composed of strings of  1 and  0,  as many as are the weights of the output layer.  It  is then

straight-forward to compare these binary numbers.

Other methods are possible for discriminating winning configurations, always taking into

account that the fuzzyfication of their numerical strength is necessary, as they describe chaotic
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attractors consisting of a repetitive nucleus with many variations in their surroundings.

The  lateral  inhibition  mechanism  of  the  SOM  was  written  taking  into  account  the

mechanisms of  neurophysiological  mapping of  sensory  stimuli  on  the neocortex:  therefore,

similar inputs are mapped to nearby locations of  the cortex in an  orderly  and conservative

topology.

Both in the SOM and in the other artificial neural networks the learning process is based on

cyclical repeating of input stimulus. Even in the brain there is evidence of reverberating circuits

that reinforce the impression of the input information on the cortical map. However, it appears

unlikely that these loops can be repeated thousands of times in search of a fixed target, also

because it is difficult to imagine that the brain can then recognize only the last active neurons as

the most important. It seems rather more reasonable to assume that reverberation naturally gets

exhausted  with the unwinding of the electrical discharge activation, and that the cortical maps

are  formed  by  a  constellation  of  active  neurons,  the  so-called  memory  trace,  which  will

subsequently  retrieve  information.  For  this  reason,  the  ITSOM  mechanism  seems  more

physiologically justified. Also the inductive mechanism, learning a very large number of new

information using the primer track of a nucleus of existing information, seems reasonable and

confirmed by neurophysiological experiments. Both daily experience and several studies seem

to confirm that learning is neither a fully supervised (i.e. based on examples), nor a completely

unsupervised process, and therefore it needs at least one set of known reference points.

SOM  can  also  be  expressed  as  a  nonlinear  dynamic  model  expressed  by  differential

equations  dxi/dt  =  Ii –  µ (xi),  where the output  variable  xi  can  correspond  to  the average

frequency of discharge of the neuron i, Ii is the combined effect of all inputs on the neuron i, and

µ(xi) is  the sum of all  the non-linear  losses encountered by discharge [Ritter and  Schulten,

1988].
The  SOM  architecture  has  been  studied  by  Kohonen  as  a  result  of  his  studies  of
neurophysiology [Kohonen, 1993],  and .other authors observed the WTA functionality at  the
cortical level. Ermentrout [Ermentrout, 1992] studied a model of the cortex in which the WTA
process has the dual role of selecting the more important stimulus and reinforcing the pattern
after the stimulus has disappeared. Every time a cell is active for some time and then turns off,
the network oscillates between different states. The occurring limit cycles are the result of the
bifurcation solutions of the system

dxj/dt = -μxj + F(xj, u(t); α)    j = 1,..., N 

for N activated neurons xj, where F (x, y; α) is a function of two variables parameterized by α
and such that F/dx>0 and F/dy<0, u (t) is the inhibitory feedback of the form

u(t)=G (Σxk), 
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G is monotonically increasing.  The overall  activity  x1(t) + ...  .+ xj(t) almost lie on a closed
trajectory, which means that the total excitatory activity of the network remains almost constant.
Also Traub [Traub et al., 1991] introduces a biophysical model of this effect in which, even if
the  individual  neurons  randomly  discharge,  the  entire  system  has  a  regular  behaviour,
constituting "limit cycles that preserve order".

In order to evaluate the results of the dynamical simulations, we conceived a novel method

based on Artificial Neural Networks (ANNs), which are effective non-linear classifiers, useful

for complex patterns. We submitted the structural data obtained by the MD evolution to two

different SOM-based models:  SONNIA, a SOM-based algorithm developed in the SONNIA

environment,  for  the  evaluation  of  specific  parameters,  and  ITSOM  for  the  evaluation  of

dynamic  attractors.  Their  results  were  then  compared.  Values  of  xyz  coordinates  of  the

molecules  after  dynamic simulation  and  with minimized  energy are used as input value for

neural networks.

For our case study we chose a Kohonen rectangular network structure with 9x6 neurons and

a random initialization. This map represents the number of neurons affected by the evolution of

the network and the values involved.

The  first  adopted  model  was  a  SOM-based  algorithm  developed  in  the  SONNIA
environment.  SONNIA is a powerful Artificial Neural Networks environment, very useful in

the field of drug discovery and protein prediction. It allows classifying a series of data sets,

providing both supervised and unsupervised learning.  

In  this  research  project  we have instead  decided  to use the analysis  tools  provided  by

SONNIA to develop a SOM network and evaluate specific parameters to assess the degree of

dynamic organization reached by the examined molecules when subjected to electromagnetic

fields.

The output maps of a SOM network are represented in SONNIA by a set of coloured boxes,

one for each output neuron. The boxes configuration highlights two interesting parameters: 

1 -  Occupancy, i.e. the number of patterns that have been mapped onto the same neuron,

indicating similarities in the input domain. 

2 -  Conflicts or  conflict  neurons,  i.e.  neurons that  refer  to inputs belonging to different

classes. 

In  general,  there  are  always  at  least  a  few  conflicts  such  as  with  any  other  modelling

technique there are false positives or false negatives. 
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The  main  features  that  make  the  SOM-based  algorithm  developed  in  the  SONNIA

environment  SONNIA environment a useful tool for our analysis are: the processing of data

from projects of high dimension of space in two dimensions, the procedures for classification

and clustering, the modelling and prediction of structures, the planar or toroidal selection of the

topology of the network, the visualization of data as chemical structures, reactions and spectra.

Through the graphical  interface of the SONNIA environment it  is possible to upload the

appropriate data file, and a neural  network can be created by defining the parameters of its

architecture:  the  algorithm  to  be used,  the  topology  of  the  network,  the dimension  of  the

neurons, the dimension of the network and the initialization process. Once the definition of the

parameters is  completed,  the neural  network  can  be trained.  The first  phase of  the training

activates the learning speed, the length of learning, the error checking and the threshold arrest,

and the values for the epochs and for the intervals to be set.

After the training has been completed it is possible to start working with the network. The

SOM-based algorithm developed in the SONNIA environment permits to visualize the changing

of dynamic errors during training and to select maps, such as the Kohonen map.

Several operations can be carried out with maps, including: zoom, horizontal and vertical

rotation, deletion mapping and tiling. It is also possible to change the number of visible and

background rows and columns.

SONNIA environment displays a series of maps identifying:

- the most common output;

- the occupancy of the grid (rectangular or toroidal choice)

- the average output;

- the minimum output;

- the output of the centroid of the grid;

- the average distance and the variance between the inputs and the neurons of the lattice.

The maps are represented by coloured boxes, one for each occupancy neuron. For each map a

colour scale identifies the numeric value of each box.

Besides,  we used another self-organizing  artificial  network  developed by  our group,  the

ITSOM (Inductive Tracing Self-Organizing Map), to discriminate the dynamical behaviour of

the structures  under  investigation,  on  the basis  of  the  chaotic  attractors  determined  by  the

sequences of its winning neurons [Pizzi et al., 2007].  

In fact  an analysis on the SOM has shown that  such  a sequence,  provided  to keep  the

learning rates steady (instead of gradually decreasing them), constitutes chaotic attractors that
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repeat “nearly” exactly  in time with  the epochs succeeding,  and  that,  once codified  by the

network,  uniquely  characterize  the  input  element  that  has  determined  them.  ITSOM is  an

evolution of Kohonen SOM. The sequence of winning neurons forms a series of numbers that

are repeated almost periodically (chaotic attractors). Each attractor uniquely identifies the input

pattern. The graphical representation of the chaotic attractor provides a graphical representation

of the dynamic organization of the pattern. We developed in Matlab - Simulink a procedure that

processes in the form of attractors the series of winner neurons resulting from the output of

ITSOM

An attractor can be defined as a generalization of the steady state point, and represents the

trajectory in a portion of state space where a dynamical system is attracted to [Ruelle, 1981].  

We tried  to  highlight  the presence of dynamical  attractors  in the described structures using

MATLAB  and  its  SIMULINK  module  for  the  dynamical  systems  simulation.  We  have

developed an evolution of the SOM because for time-variable and not strictly linear inputs the

performance of the SOM is limited by different factors: 

- if the non-linearity of the input topology is too marked, the competitive layer is not sufficiently

able to unravel the shape of this topology;

- it is difficult to reach a reliable convergence since it is not possible to establish a network error

for each epoch;

- the low cardinality of the output, that is limited to the number of neurons of the competitive

layer.

The method of chaotic attractors can solve the lack of explanation of the output present in

the SOM and typical of any clustering algorithm. Once the input is classified, its significance

has to be extrapolated with ad hoc procedures that in real time application may further penalize

the computational load.

At any epoch, the new winning weight along with the weight that has won the previous

epoch, form a second order approximation of the input value. It is therefore possible to derive

the value of the input by comparing the characteristic configurations of each input with a set of

reference configurations, whose value is known.

A real process of induction is thus made, since once a vector quantization many-to-few is

produced from the input onto the weights layer,  a  step few-to-many is performed from the

reference configuration to the whole of the inputs. This form of induction is much more subtle

than the one derived from the sole winning neuron of a SOM network lead to convergence to

the corresponding input, because the neurons of the competitive layer are too few to provide a

significant classification. 
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The characteristic of this network is that  it does not need to be brought to convergence,

because configurations of the winning neurons achieve the necessary stability within about tens

epochs. For best results the network shouldn't polarize on too few neurons, but shouldn't even

disperse itself throughout the whole layer. 

The algorithm that resulted optimal to recognize the configurations created by the network is

based on the method of z-score. The cumulative scores for each input are normalized according

to the distribution of the standardized variable z given by: z = (x − µ)/σ, where µ is the average

of the scores on the various neurons of  the layer  of  weights  and the standard  deviation.  A

threshold τ<1 is set, which is therefore one of the parameters of this network, and it is therefore

obtained that:

z = 1 per z > τ 

z = 0 per z ≤  τ

In this way, each configuration of winning neurons is represented by a binary number composed

of strings of 1 and 0, as many as are the weights of the output layer. It is then straight-forward to

compare these binary numbers.

Other methods of discrimination of winning configurations are possible, taking into account

that  the  “fuzzyfication”  of  their  numerical  strength  is  necessary,  as  they  describe  chaotic

attractors that consist of a repetitive nucleus with a lot of changes in their surroundings.

The  mechanism  of  lateral  inhibition  of  SOM  has  been  set  taking  into  account  the

neurophysiological  mechanisms  of  mapping  of  sensory  stimuli  on  the neocortex:  in  fact  it

appears that  similar  inputs are  mapped to nearby locations  of the cortex  in an orderly and

conservative topology.

The learning process of both the SOM and the other artificial neural networks is based on

looping  of  the  input  stimulus.  In  the  brain  as  well  there  is  evidence  of  the  existence  of

reverberating circuits that reinforce the impression of the input information on the cortical map.

However, it appears unlikely that the loop can be repeated thousands of times in search of a

fixed target, partly because it is difficult to imagine that the brain can then recognize only the

last activated neuron as the most important. It seems rather more reasonable to assume that the

activity of reverberation runs out spontaneously with the exhaustion of the electrical discharge

of activation, and that the cortical maps are formed of a constellation of active neurons, the so-

called  amnestic  trace,  which  is used  later for  recovery  of  information.  For this reason,  the

mechanism of  ITSOM seems more physiologically justified.  The inductive mechanism that

learns a very large number of new information using the amnestic trace of a core of existing

information  seems  reasonable  and  is  confirmed  by  neurophysiological  experiments.  The
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learning is not a fully supervised process (ie based on examples), but it is not even completely

unsupervised, and therefore it needs at least one set of reference known points. This seems to be

confirmed both from daily experience and by several studies.

3.2.2 ANN processing: the ad hoc ITSOM implemented

We have implemented a version of the network ITSOM written in C language, which uses

as input values the spatial coordinates of molecular structures, obtained using the simulation

software Ascalaph.

In this way it is possible to set manually the values of the following parameters:

• Number of input units

• Number of samples to be taken

• Epsilon: learning rate

• Delta: Delta z-score

• Number of mapping units

Once the intervals are defined on which parameters will vary, a pace is specified. The value of a

parameter takes on the minimum value of the interval, added in multiple of the pace specified.

In a file named output.txt are then reported:

• Name of the processed file 

• Values of the parameters used

• Sequence of winning neurons

• z-score

After testing many combinations we have reached the best configuration:

• number of input units: 500

• number of samples to be taken: 500

• Mapping Unit: 15

• learning rate: 0.03

• Delta: 0

• Number of epochs: 100/200

The output of this network provides a single sequence of places of the various weights of

the winning neurons. It may happen that over the epochs the neurons randomly win or organize

themselves in order to be repeated more or less regularly. This will show us that we are in the

presence of chaotic and non-cyclical attractors.

92



4. RESULTS
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4.1 BIOPHYSICAL EXPERIMENTS

4.1.1 Schemata of the Biophysical experiments

Analysis Hypothesis Result

Resonance Spectrum analysis up
to 2,7 Ghz 

If MTs, as well as NTs,
may behave as
oscillators, this could
make them
superreactive receivers
able to amplify the
signals

- Microtubules: sharp
(0,30 Hz) peak of
mechanical resonance at a
frequency of 1510 Mhz 
- Tubulin and control
solution did not show any
reaction 
MT molecular tubular
structure can be
responsible for the
observed amplification of
the signal

Birefringence Birefringence analysis
of polarized light
passing through: MTs,
tubulin and control
samples submitted to
electric and magnetic
field 

Differences between
MTs and Tubilin
indicate that the
molecular structure of
MTs could be the cause
of their reaction to
electro-magnetic fields

MTs react to
electromagnetic fields in
a different way than
tubulin and control:
birefringence effect is
always higher in MTs
than in tubulin and
control, with statistical
significance

Superradiance Excitation by solid-
state lasers operating in
the infra-red;
wavelength applied =
270 nm (luminescence
conditions for
microtubules) 

Investigation of the
presence of coherence
phenomena related to
the microscopic
structures of
microtubules

Emission doesn't change
with the changing of the
temperature:
luminescence doesn't
come from delocalized
states, but from non-
superradiant conditions.
The observed emission
can be due to Tryptophan 
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4.1.2 Resonance Experiment

In the study of the physical properties of MTs compared with those of NTs we analyzed a

possible reaction to microwaves, observing any ability of MTs to absorb or emit like antennas.

If MTs, as well as NTs, may behave as oscillators, this could make them superreactive receivers

able to amplify the signals [Mavromatos,  2000].  Microtubules are  electrical  polar structures

with  energy  supplied  from  hydrolysis  of  guanosine  triphosphate  (GTP)  to  guanosine

diphosphate (GDP). At least a part of the energy supplied from hydrolysis can excite vibrations.

Energy is  mainly lost  by  viscous  damping of  the surrounding  cytosol.  Viscous  damping is

diminished by a slip layer which is formed by an attracted ionic charge layer and by a thin

surface layer of the microtubule. Pokorny found that relaxation time caused by viscous damping

may be several orders of magnitude greater than period of vibrations at  10 Mhz,  and in his

experiments he detected resonance in MTs at around 8 Mhz [Pokorny, 2004].

We carried  out  an experiment  intended to verify the existence of resonance in MTs,  in

analogy with the CNTs, at the frequency that amplifies the wave. 

During  the electromagnetic resonance experiment we identified a difference in the peak

amplitude of the solution with MTs at a frequency of 1510 MHz, whereas the solution with

tubulin and the control solution did not show any change in the peak. The lack of response in

tubulin and control can be considered a hint that the peculiar structure of microtubules could be

the cause of the observed signal.

In the tubulin  analysis no significant changes have been detected in the amplitude of the

signal received by the spectrum analyzer; while in the MTs analysis we observed at 1510 MHz a

sharp 0.3 Hz lowering of the reference peak of absorption (Fig. 4.1), and between 2060 MHz

and 2100 MHz a small lowering of the reference peak (absorption). The analysis of MT buffer

without microtubules gave no evidence of absorption.

The outcome of the last analysis is  important; the fact  that the MT buffer did not cause

changes in the reference peak means that the fluctuation found in the test tube with microtubules

and MT buffer depends only on the protein assembling in the tube-like structure typical of MTs.

We can't show raw data for these analysis because, even using professional tools, they had no

digital  interface so it  was  not possible to  record  the data,  but only  detect  them during the

experiment. The Q factor was very high, but we could not take note of the values.

Considering the nanoscopic size of MTs, the resonance analysis would be more effective if

carried out on much higher frequencies (up to 100 GHz), with suitable instrumentation. But the

presence of a small but sharp resonance effect at a low frequency could be the hint of a much
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evident effect  at  higher  frequencies.  In fact  the magnitude of the effect  becomes significant

when  the  frequency  corresponds  to  the  resonance  frequency.  The  energy  supplied  from

hydrolysis  of  guanosine  triphosphate  (GTP)  to  guanosine  diphosphate  (GDP)  can  excite

vibrations in microtubules, which become damped oscillating system. When MTs are subjected

to  a  periodic  solicitation  with  a  frequency  equal  to  the  system  oscillation  a  resonance

phenomenon causes a significant increase in the extent of the oscillations that corresponds to a

remarkable accumulation of energy within the oscillator. 

Figure 4.1 Difference in the peak amplitude of the solution with MTs at a frequency of 1510 

MHz 

4.1.2 Birefringence Experiment

We analyzed the MTs behaviour in birefringence conditions. By means of a polarized light

and a suitable detection apparatus, it  is possible to observe the associated birefringence and,

therefore, the index of orientation of MTs subjected either to transverse electric fields or to

transverse and longitudinal magnetic fields [Oldenbourg et al., 1998]. 

We performed in vitro experiment on different samples of MTs and tubulins, in stabilizing

buffer solution, and measured the polarization under controlled conditions in order to determine

different effects in the interaction of almost static electromagnetic fields. For our comparative

experiments the variation of the refraction index is important because it is a function of the

wavelength of the electromagnetic radiation and the nature of the crossed material.  Behavioural

differences observed between samples of tubulin and MTs, would lead us to understand whether

the cavity structure in the MT reacts in a peculiar way in response to specific stimuli or not.  

The tests were performed on solutions of tubulin and MTs, each in its own stabilizing buffer.
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Then we repeated the tests with tubulin in MTs buffer and with the buffer alone as control. Each

sample solution was submitted to four tests:  

- Transverse electric field (1 volt/cm) 

- Transverse magnetic field  

- Longitudinal magnetic field  

- No field  

We used  two cells simultaneously;  a  first  cell  was  always  present with a  low intensity

longitudinal magnetic field at 610.1Hz frequency and filled with distilled water. This allowed a

reference signal in all the various measures on the second cell, excited at a 632 Hz frequency.

The choice of almost static fields permitted the highest sensitivity. The frequency (632 Hz) is

sufficiently low to exclude dynamic effects. An important point is that for longitudinal magnetic

fields a strong Faraday Effect is present due to the water contained in the analyzed solution and

producing a consistent background noise. 

Already at an early stage we noticed a strong response to the longitudinal magnetic field of

all samples submitted to a frequency of 632 Hz, due at least in large part to the Faraday Effect,

while  without  field  no  reaction  peaks  were  visible.  Figure 4.2  shows raw data  spectra  for

microtubules and negative control.

The analysis of the results  of birefringence experiment highlights  that  the MTs react  to

electromagnetic  fields  in  a  different  way  than  tubulin.  In  particular,  electric  field  and

longitudinal magnetic field show opposite effects in the two types of proteins. Anyway in spite

of the effect  under electric field is the same as with no field,  an unexpected and interesting

effect is shown in the case of longitudinal magnetic field. The achieved results, supported by

statistical significance, suggest that the tubular structure of MTs might be responsible for the

different behaviour in respect to free tubulins. It should also be noted that it has been reported

by Dombeck [Dombeck et al., 2003] that second harmonic generation was only found in parallel

MT bundles,  but not in anti-parallel  bundles,  which are  inversion symmetric structures. The

uniform polarity of parallel MTs leads to the observed signal, whereas the mixed polarity leads

to destructive interference.
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Figure 4.2 Raw data from Birefringence experiment

a) Spectrum of Microtubules in Buffer MT

b) Spectrum of Tubulin in Buffer MT

c) Spectrum of Buffer MT (negative control)

FFT Analysis of the acquired signals  

In Table 4.1 we show the values obtained with different set-ups, normalized by the value of

the control sample at 610 Hz [value (632 Hz) / value (610 Hz)] allowing a direct comparison

between the analyses. All values have been multiplied by a factor of 105. The 632 Hz signal is

shown normalized for the presence of changes in measurements due to scattering, by comparing

this value to the value of the 610 Hz signal of the control sample containing distilled water. The

parameter choices were different for each of the four tests shown. Since the signal was sampled

at  8000  Hz,  the  bandwidth  per  channel  is  4000/131072  =  0.003052  Hz/channel  and  the

transformed FFT was performed on 18 bits, or 262,144 points. 

The Hann windowing is useful for analysing transients longer than the length of the window

and for general purpose applications. The Hamming windowing is very similar to the previous

one; in the time domain it does not come so close to zero near the peak, as the Hann windowing

does.  For the Hann window function analysis we did not use smoothing; we used instead a 15

pts smoothing trying to remove noise without altering the possible relevant data.. The Hamming
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window function analysis had no smooth, while a 5 pts smoothing have been applied. We did

not deepen the analyses on tubulin in tubulin buffer, since the different buffer would affect the

possible comparison with the other samples. By comparing the results we observe that there are

major differences in values over the third decimal place. 

Considering the relationship between the responses of the solutions in each context, we note

that for all the analyses the MTs solution gave higher responses. There is a significant difference

between the readings of the solution without protein, which gives values about ten times lower

than that of the solution with MTs,  which suggests a degree of response due to the tubular

structure of microtubules and not to the tubulin protein itself. 

The MTs solution always shows higher values than the tubulins solution when crossed by

electric field. The tubulins solution always shows larger values than the control solution when

an electric field is applied. Tests with buffer alone show values equal to the tests with proteins

which  suggests  that  there  was  no  significant  response  for  MTs  and  tubulins  subjected  to

transverse magnetic field.  

The comparison among the same tests with different windowing and smoothing highlighted

the difference in the response of the MTs samples, while for the other solutions the values are

virtually identical. The MTs solution has always lower value of both the tubulins solution and

the solution alone when crossed by a longitudinal magnetic field. We can also observe that the

solution with MTs has always a higher value if compared with the solution with tubulins and the

solution alone in absence of electromagnetic field. The value of the tubulins solution results to

be lower than the value of the solution alone in the cases of longitudinal magnetic field and no

field.  

It should be noted that the various parameterizations lead to small differences in absolute

value, but substantially retain the ratio values. The uniformity of the different analysis suggests

that these differences are not random or due to noise and, given this correlation, we do not need

to evaluate a best choice among possible parameterizations. 

 Statistical analysis

Below  the  statistical  analysis  is  reported  to  verify  possible  significances.  With  8000

samples/sec run for 32 seconds, we provided more than 262,000 entries for each set-up.  The

analysis  was  performed  using  the  paired  t-test.  Given  the  substantial  equivalence  between

parameterizations,  the  analysis  was  performed  on  the  significance  of  data  processed  with
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Hamming windowing and Hamming smoothing (5 pts). Comparisons were made on the most

interesting portion of data that includes the frequencies from 600 Hz to 650 Hz. We compared

with Paired T test the data where we had observed different behaviours (Table 4.2).  

Among all the tests just the Paired T for S2 (Electric Field) normalized at 610 Hz and S3

(Electric Field) normalized at 610 Hz, which compares tubulin in microtubules buffer and buffer

without cellular matter, both subjected to electric field, shows a value above the 5% threshold.

All the other comparisons show a good statistical significance, for which the P-Value is always

<0.0005, suggesting that the already highlighted differences in the behaviour, allow us to draw

some conclusions on the achieved results.  

Hann
window
function 

Hann window
function
(smooth 15 pts)

Hamming
window
function

Hamming
window function
(smooth 5 pts)  

Electric Field (EF) 
Microtubules in MT buffer 0.0267 0.0249 0.0283 0.0238 
Tubulin in MT Buffer 0.0177 0.0175 0.0197 0.0169 
MT Buffer (control) 0.0099 0.0089 0.0123 0.0083 
Tubulin in Tubulin Buffer 0.0025 0.0018 
Transverse Magnetic Field (TMF) 
Microtubules in MT buffer 0.0810 0.0781 0.0837 0.0766 
Tubulin in MT Buffer 0.0996 0.0966 0.1018 0.0946 
MT Buffer (control) 0.0925 0.0893 0.0953 0.0872 
Tubulin in Tubulin Buffer 0.0895 0.0849 
Longitudinal Magnetic Field (LMF) 
Microtubules in MT buffer 1.828 1.7717  1.8480 1.7320 
Tubulin in MT Buffer 2.327 2.2544 2.3567 2.2025 
MT Buffer (control) 2.336 2.2628 2.3654 2.2115 
Tubulin in Tubulin Buffer 2.311 2.1883 
No Field (NF) 
Microtubules in MT buffer 0.00860 0.01069 NP * 0.00389 
Tubulin in MT Buffer 0.00285 0.00135 NP * 0.00088 
MT Buffer (control) 0.00585 0.00353 NP * 0.00245 
Tubulin in Tubulin Buffer 0.00353 0.00112 

Table 4.1 Values  obtained  with  different set-ups,  normalized  by the value of  the control  

sample at 610 Hz. *NP: No Peak in 632 Hz 
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95% CI T-Value 
(P-Value) 

Electric Field (EF) 
Microtubules; Tubulin* (-1,1188; -0,9555) -24,91   (0,000) 
Microtubules; Tubulin*; Normalized at 610 Hz (0,000733; 0,000873) 22,53 (0,000) 
Microtubules; MT Buffer (-2,2282; -2,0130) -38,66 (0,000) 
Microtubules; MT Buffer; Normalized at 610 Hz (0,000680; 0,000827) 20,12 (0,000) 
Tubulin*; MT Buffer (-1,2012; -0,9658) -18,06 (0,000) 
Tubulin*; MT Buffer; Normalized at 610 Hz (-0,000105; 0,000006) -1,76  (0,078) 
Longitudinal Magnetic Field (LMF) 
Microtubules; Tubulin* (-0,5861; -0,3924) -9,91 (0,000) 
Microtubules; Tubulin*; Normalized at 610 Hz (0,000570; 0,000724) 16,56 (0,000) 
Microtubules; MT Buffer (-2,0424; -1,7779) -28,33 (0,000) 
Microtubules; MT Buffer; Normalized at 610 Hz (0,000427; 0,000593) 12,07 (0,000) 
No Field (NF) 
Microtubules ; Tubulin* (0,5588; 0,7656) 12,56 (0,000) 
Microtubules; Tubulin*; Normalized at 610 Hz (0,001982; 0,002171) 43,08 (0,000) 
Microtubules; MT Buffer (-0,7297; -0,4794) -9,47 (0,000) 
Microtubules; MT Buffer; Normalized at 610 Hz (0,001831; 0,002027) 38,74 (0,000) 
Tubulin*; MT Buffer (-1,3829; -1,1508) -21,41 (0,000) 
Tubulin*; MT Buffer; Normalized at 610 Hz (-0,000204; - ,000091) -5,14 (0,000) 

Table 4.2 Statistical analysis performed using the paired t-test on birefringence experimental 

data.

CI: confidence interval for mean difference; 

T-Value: T-Test of mean difference = 0 (vs. not =0)

* Tubulin in MT buffer solution

In summary, we can say that MTs react to electromagnetic fields in a different way than

tubulin and control: birefringence effect is always higher in MTs than in tubulin and control,

with statistical  significance.  This suggests that  the molecular structure of MTs could be the

cause of their reaction to electro-magnetic fields.
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4.1.3 Superradiance Experiment

The prior evaluation of the absorption of MTs in the portion of the electromagnetic spectrum

corresponding  to  the  UV-VIS  range  was  necessary  to  ascertain  the  feasibility  of  the

superradiance experiment, because if these polymers had not demonstrated absorption in this

range of wavelengths the subsequent measurements could not be performed.

The analysis showed no significant peaks in the visible range (380-780 nm) while it showed

a maximum absorption in the UV around 278 nm and a secondary peak around 234 nm.  The

energy corresponding to 278 nm is 4,46 eV; the energy corresponding to 234 nm is 5,29 eV.

GTP hydrolysis releases 0.42 eV of energy per molecule in free tubulin and a few times less that

amount when embedded in a MT.

Luminescence

Once the presence of an absorption in the UV field was established, it was necessary to

verify the ability of luminescence of MTs in order to detect any wavelength of emission in our

sample during the superradiance experiment.

The wavelength we have chosen was 270 nm. In fact  the solution of MTs in MT buffer

excited at  270 nm recorded an emission of light with a wavelength of 430 nm. For higher

wavelengths  the sample showed a  different  luminescence,  which  is probably  attributable to

taxol instead  of  MTs.  It  has been  reported  that  taxol (paclitaxel),  a  compund that  binds  to

microtubule with a stabilizing effect, causes the appearance of a new fluorescence peak at 645

nm in microtubules solutions at concentrations as low as 125 nM, the intensity of which is a

function  of  the  paclitaxel  concentration  [Morais  et  al.  2003].  In  fact,  comparing  the

luminescence of the sample (MTs in MT buffer) with the luminescence of the negative control

(MT buffer alone) we observed that in the absence of MTs only the emission excited at 270 nm

disappears, while the one excited at greater wavelengths remains.

Superradiance

Since experimentally it is much easier to check if the square of the line width is inversely

proportional  to  the temperature,  we began our  analysis with  line width  measurements as a

function of temperature.  We analysed microtubules in MT buffer (Figure 4.3). The spectrum

shows a tail towards 400 nm, which however is not related to the emission of light from MTs. 
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Figure 4.3 Wavelength vs Normalized PL Intensity at different temperature for microtubules 

in MT buffer.

All  the normalized  luminescence spectra  measured  at  all  the temperatures  at  which  the

solution is frozen have exactly the same shape and therefore the same width. This means that

the  emission  does  not  arise  from  delocalized  states  and  therefore  that  the  system  is  not

superradiant. The small difference in shape and position of the spectrum, following the thawing

of  the  solution,  probably  depends  on  the small  conformational  changes  around the unit  of

emission. This effect is quite common, but is not connected to superradiance.

The superradiance  we evaluated  derives  from the  interaction  between  optical  transition

dipoles  and  requires  that  the  emitting  state  is  delocalized  among  all  transition  dipoles

contributing  to  the  emission.  The  fact  that  energy  can  move  between  the  dipoles  through

mechanisms of transfer of resonant energy or other processes of migration is not enough, but it

is also necessary that the emiting units are substantially in contact one with each other, which

does not happen in the case of tubulin. This suggests that the observed photoluminescence is not

derived from the tubular structure of MTs but from tryptophan, an aromatic amino acid that is
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part of the polypeptide chain of tubulin. Each heterodimer of αβ-tubulin has a total of eight

tryptophan residues, four for each monomer. The indole nucleus of tryptophan is responsible for

the phenomenon of luminescence in MTs, but however it can not show resonance because the

radical is present only periodically on the surface of the heterodimer. The role of tryptophan is

supported  by  the  observations  made  by  Hameroff  [Hameroff  et  al.,  2002],  who  discussed

exicitation pathways in MTs. The distance between the various indolic radical is too large to

suppose that among them there may be interactions sufficiently large to allow the relocation of

the excitement. Delocalisation mustn't be confused with energy transfer and migration, since the

latter are not coherent phenomena and don’t produce superradiance. Furthermore it is difficult to

imagine that all the tryptophan together can form an ordered set of transmitters.

In light of the attribution of the observed luminescence to tryptophan, and not to the tubular

structure of the MT, it is absolutely reasonable that superradiance is not observed. However, we

also tried to analyze the time-resolved measurements, as shown in Figure 4.4,  to verify the

presence of  anomalous trends. The lifetimes observed are quite long,  with values typical  of

isolated molecules. They range from 1970 ps at the temperature of 89 K to 1250 ps at 236 K.

These long times are  not  favorable to the emergence of superradiance.  In fact,  the thermal

decoherence typically operates on faster time scales (in thiophenes, for example, the interaction

is quite strong and coherence is lost in less than 100 ps even at temperatures below 50 K). The

decays are not perfectly exponential. This is probably due to the scattering of both incident and

emitted light by the solution. The initial part of decay curves almost certainly depends on this

effect. The little non-exponential part of the curve at longer times, however, is probably real and

may indicate a migration of excitation, which is not related to the delocalisation).  Since the

effect is more pronounced at high temperatures it may be a thermally assisted process like the

hopping one.

To  measure  the  radiative  lifetime,  as  explained  before,  it  is  necessary  to  evaluate  the

intensity of  luminescence.  This  measurement  was  extremely  difficult  because of  the strong

inhomogeneity of the solution frozen and the small movements of the sample as a function of

temperature.
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Figure 4.4 Normalized PL Intensity vs. time for microtubules in MT solution. 
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4.2 COMPUTATIONAL ANALYSIS

4.2.1 Analysis of Superradiance results with Molecular Workbench

Digital formats of the molecules were subjected to the Molecular Workbench simulation

software. In order to use the proprietary format for the simulations, it was necessary to recreate

the model of the molecule by extrapolating from the PDB definition its nucleotide sequence

coding. This was possible through DNADynamo, also working through the Java console.

In order to perform the simulation according to the chemical and physical characteristics

used in the laboratory it was necessary to select the most suitable model among the available

models online by making them interact with the simulator. We searched for molecular models of

our interest in RCSB Protein Data Bank and in PubChem. The search showed a multitude of

results that were analysed in detail using Ascalaph Designer and Avogadro (Figure 4.5). The

individual models were evaluated mainly for their spatial geometry and their similarity with the

actual model used in the biophysical experiments.

In order to submit the chosen models to Molecular Workbench, it is necessary to extrapolate

the nucleotide sequence and recreate the molecules within the protein simulator provided by the

environment.  The reading of  DNA sequence occurs through DNADynamo. The amino acid

sequence is supplied when uploading the model, as shown in Figure 4.6.

The program shows the genetic structure in beta-sheets and alpha-helices. By selecting the

structure and using a tool included in the viewer, it is possible to reconstruct the sequence of the

nucleotides forming the DNA, as shown in Figure 4.7.

The sequence of  the aminoacids  forming the  protein  is  then  reconstructed,  by  using  a

software  available  online  [Benjamin  Esham.  DNA to  Amino Acid  Conversion.  http://www.

geneseo.edu/~eshamb/php/dna.php].  The  molecular  weight,  expressed  as  kDa,  is  then

calculated.  The  global  spatial  dimension  of  the  molecule  is  an  important  feature  to  be

considered for the simulation. It is expressed in Ångström, and is calculated by Avogadro during

the upload. In Table 4.4 the data obtained are shown.
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Molecule Dimension (Ångström) Molecular Weight (kDa)
Tubulin 1,5 110
Microtubule 250 16.250
Tryptophan 1,26 0,204

Table 4.4 Biophysical characteristics of the analysis models.

All  the data  are  then  uploaded in the simulator  and  the simulator  can  be personalised.

Molecular  Workbench  offers  different  simulation  models  and  applets.  Through the Options

menu it  is  possible to set  the characteristics  of  the dielectric  field to be used  as buffer  for

molecular models, the temperature and the light source to be applied. Emission and absorption

spectra were connected to the physical  environment,  in order  to check the behaviour of the

model. Two examples are shown in Figure 4.8 and 4.9.

Subsequently an element is defined in the model by the biophysical characteristics of spatial

distribution and size searched in the previous steps. At this point all the parameters are defined

and the simulation can be performed.

The simulation  was  carried  out  by  dividing  the samples  in  the three  available  models:

microtubule, tubulin and tryptophan. We used water as dielectric field.  A light source having a

wavelength of  270 nm was applied,  the temperature of  the sample was  set  at  89K and the

simulation time was equal to 30000fs.

To  determine  if  there  was  any  unconventional  response  related  to  the  lifetime  of  the

solution, we first verified that the sample undertook abnormal behaviour at higher temperatures.

However, it was shown that the response taken by the system can be considered equal in all the

set of temperatures analyzed, from 89K to 236K.

By analyzing the emission spectrum, values around 270 nm, 470 nm and 600 nm can be

noted. These values are justified by the emission performed on the sample, which was chosen in

order to have conditions of luminescence defined enough not to have false signals. Particular

attention was paid to the analysis of the absorption spectrum of individual models. By analyzing

the  spectra,  we  can  note  that  the  absorption  at  270  nm is  constant.  Therefore,  it  can  be

concluded  that  the  emissions  observed  are  attributable  to  tryptophan,  whose  absorption

spectrum and fluorescence are reported in Figure 4.10.

A detailed  analysis of the biophysical  characteristics of this amino acid,  highlights  that

tryptophan  emits  fluorescence  in  the  wavelength  range  experimentally  observed  in  the
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simulator.

Investigating the spatial arrangement of tryptophan through DNADynamo we found that it

is  placed  outside  in  the  geometric  shape  of  all  proteins.  Figure  4.11  shows  the  spatial

arrangement on the outer profile of the molecule. In conclusion, we can say that the simulation

is  consistent  with  the  results  obtained  in  the  biophysical  experiments.  The  results  of  the

simulations are shown in Figure 4.12.

Figure 4.5 Analysis of the models with Ascalaph (tubulin is shown).
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Figure 4.6 Aminoacid sequence for tubulin.
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Figure 4.7 Nucleotide Sequence of tubulin.

Figure 4.8 Personalization of the simulator.  Selection of the dielectric field to be used as  

buffer for molecular models.
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Figure 4.9 Personalization of the simulator.
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Figure 4.10 Absorbance and Fluorescence spectra of Tryptophan.
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Figure 4.11 Place of Triptophan residues in Tubulin geometry.
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Microtubules Tubulin

Tryptophan Microtubulies with Tryptophan

Figure 4.12 Results of Computational Simulation with Molecular Workbench.

4.2.2 Molecular Dynamics for the interpretation of experimental results: Ascalaph MD  
Simulation 

In  order  to  constitute  a  significant  progress  in  the comprehension  of  the hypothesized

peculiar properties of MTs, the estimations of a consistent model must match the experimental

findings. To this purpose, we performed a dynamic simulation of the molecular structures of

tubulin and MTs subjected to different levels of electromagnetic field and in the absence of

field, compared with the similar behaviour in terms of carbon nanotubes (CNTs) and buckyballs

(BBs), globular nanostructured elements [Kroto et al., 1985] whose relationship with CNTs can

be compared to the relationship between tubulin and MTs.  

We  adopted  the  simulation  environment  Ascalaph  due  to  the  possibility  to  perform

simulations  for  wide  molecular  structures  with  a  large  number  of  parameterizations.  The
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simulations were carried out as follows:

- 1st simulation: zero electric field, A = 0 

- 2nd simulation: A = 2 V/cm, F = 90 Hz 

- 3rd simulation: A = 90 V/cm, F = 90 Hz 

The structures were immersed in water at 298.15 °K. The simulation duration was 7000 ps.

We adopted the AMBER (Assisted Model Building  and Energie  RefinemeNT) default  force

field.

The tertiary  structure  of  tubulin  was  obtained  from  Protein  Data  Bank;  MTs  from the

website of the NANO-D research group at INRIA Grenoble-Rhone-Alpes, BBs and NTs were

directly obtained from Ascalaph. 

After  the  end  of  simulation  and  a  suitable  dynamical  optimization,  the  graphical

visualization of the structures appears as in Fig. 4.13 – 4.16. The individual models are mainly

evaluated  for  their  spatial  geometry  and  their  similarity  with  the actual  model  used  in  the

laboratory experiments. 

The simulations are consistent with the results obtained in the biophysical experiments.

Figure 4.13 Tubulin dimer. Final step of simulation. T = 298,15K; A=90V/cm; F=90Hz
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Figure 4.14 Microtubule. Final step of simulation. T = 298,15K; A=90V/cm; F=90Hz
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Figure 4.15 Simulation of Buckyballs.

a) Initial configuration

b) Simulation at T = 298,15 K; A = 2V/cm; Frequency = 90Hz

c) Simulation at T = 298,15 K; A = 90 V/cm; F = 90Hz
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Figure 4.16 Simulation of Nanotube.

a) Initial configuration of nanotube

b) Simulation with T = 298,15 K; A = 2V/cm; F = 90Hz

c) Simulation at T = 298,15 K; A = 90 V/cm; F = 90Hz
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4.3 ARTIFICIAL NEURAL NETWORKS

A novel method based on Artificial Neural Networks (ANNs) was conceived for evaluating

the results of the dynamical simulations. Structural data obtained by the MD evolution were

submitted to two different SOM-based models: SONNIA, a SOM-based algorithm developed in

the  SONNIA environment,  for  the  evaluation  of  specific  parameters,  and  ITSOM  for  the

evaluation of dynamic attractors. Their results were then compared.

We have decided to use the analysis tools provided by SONNIA to develop a SOM network

and evaluate specific parameters to assess the degree of dynamic organization reached by the

examined molecules when subjected to electromagnetic fields.

The output maps of a SOM network are represented in SONNIA by a set of coloured boxes,

one for each output neuron. The boxes configuration highlights two interesting parameters: 

1 -  Occupancy, i.e. the number of patterns that have been mapped onto the same neuron,

indicating similarities in the input domain. 

2 -  Conflicts or  conflict  neurons,  i.e.  neurons that  refer  to inputs belonging to different

classes. 

Besides,  we used another self-organizing  artificial  network  developed by  our group,  the

ITSOM (Inductive Tracing Self-Organizing Map), to discriminate the dynamical behaviour of

the structures  under  investigation,  on  the basis  of  the  chaotic  attractors  determined  by  the

sequences of its winning neurons. An attractor represents the trajectory in a portion of state

space where a dynamical system is attracted to. 

In  the SONNIA environment,  in  the conditions  of  zero  field  the  tubulin shows  a  high
occupancy value, and a rather consistent number of conflicts (Fig. 4.17). The stabilization of the
neural  network  is  achieved  with  the  greatest  difficulty  with  respect  to  all  other  examined
structures,  to  highlight  a  lack  of  native  dynamic  organization  in  relationship  to  the  other
structures. By applying a weak electric field the tubulin tends to restrict its configuration space,
while maintaining similar rates of occupancy and conflict with respect to the absence of field.
With a 90 V/cm field the configuration space and the occupancy don’t change, but the number
of conflicts is increased, showing a decrease in structural organization. 

The ITSOM-MatLab analysis shows that tubulin generates a stable attractor in absence of
field, that tends to become less structured when applying E-M field (Fig.4.18).

The  analysis  with  the  SOM-based  algorithm  developed  in  the  SONNIA  environment
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revealed that in absence of field the MT shows a much more restricted occupancy than tubulin,
especially considering that  its  dimensions are  much greater. The configuration space is well
confined. With weak electric field the situation does not change, the MT appears spatially and
structurally  stable.  With  a  stronger  electric  field  the  occupancy  does  not  change,  while
decreasing the number of conflicts (Fig. 4.19). 

In the MatLab Visualization of the ITSOM-analysis  microtubules show the same strong
organization as tubulin in absence of field, but on the contrary their attractors tend to become
more compact when electric field is applied, focusing on a restricted spatial configuration, after
a short transition phase (Fig. 4.20).

The low occupancy values and the absence of conflicts in all configurations of BB and NT is
due to the low number of their components if compared to the size of the network and to their
extremely regular structure. 

By applying a weak electric field to the BB, occupancy tends to decline, the BB tends to
stabilize in a range of values. The spatial configuration tends to shrink. But as the electric field
grows, the occupancy tends to return to the same levels as in the absence of field (Fig. 4.21). 

Although the NT structure is bigger than that of a BB, the occupancy is low and similar to
the BB one,  symbolizing  the strong stability  of  the structure.  With  weak electric  field  the
situation does not change, even though there is a spatial displacement of the structure. With
higher field the structure tends to go back to the positions obtained without field, although in a
more distributed way, as occupancy tends to be more distributed (Fig 4.23). The ITSOM-Matlab
analysis shows that buckyballs have a regular behaviour, which is not modified by electric field. 

Nanotubes have a more complex structure, but their occupancy is low, indicating very high
stability (Fig. 4.22). Occupancy (regularity) increases with the growing of the electric field. 

In the MatLab Visualization of the ITSOM-analysis nanotubes show an increase of spatial
occupancy, with an interesting increase of order when electric field is applied (Fig. 4.24).
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Figure 4.17 Tubulin. Visualization with SONNIA, a SOM-based algorithm developed in 

the SONNIA environment, for the evaluation of specific parameters

Figure 4.18 Tubulin. Visualization with MatLab of the ITSOM analysis
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Figure 4.19 Microtubules. Visualization with the SOM-based algorithm developed in the 

SONNIA environment.

Figure 4.20 Microtubules. Visualization with MatLab of the ITSOM analysis
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Figure 4.21 Buckyballs. Visualization with the SOM-based algorithm developed in the 

SONNIA environment.

Figure 4.22. Buckyballs. Visualization with MatLab of the ITSOM analysis
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Figure 4.23 Nanotube. Visualization with the SOM-based algorithm developed in the 

SONNIA environment.

Figure 4.24 Nanotube. Visualization with MatLab of the ITSOM analysis
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5. DISCUSSION 
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This research presents a novel use of Artificial Neural  Networks in the evaluation of the

dynamical organization of MTs versus tubulin and CNTs. 

After  performing a  MD simulation,  we compared  it  with the evolution  of two different

models  of  self-organized  neural  networks.  The results  obtained  using the output  parameters

(conflicts and occupancy) of the SOM-based algorithm developed in the SONNIA environment

reflect the same behaviour observed during the Ascalaph dynamical simulation. In fact during

the dynamical simulations we observed that CNTs tend to move with a dynamic axial motion,

which becomes a real regular pulse in the presence of electric field. The behaviour of the neural

network reflects this trend, which shows the extreme regularity of these nanostructures and an

interesting already known behaviour of CNT in the presence of electric field. BBs instead are

insensible to electric field.

Microtubules, which in the dynamic evolution at zero field tend to move off their initial

position, with the influence of the electric field tend to return to the starting position and to

stabilize.

The tubulin seems to have different internal forces that tend to resist a dynamic stabilization.

However,  in the presence of electric field, although it tends to squash, it does not show any

particular  reaction. This  behaviour  is  influenced  by  the  intrinsic  electric  charge  of  the

molecules: microtubules are electrical polar structures, tubulin dimers are taken as quantum well

structures containing an electron that can exist in either its ground state or first excited state.

These  excitonic  states  together  with  MT  lattice  vibrations  determine  the  state  space  of

individual  tubulin  dimers  within  the  MT  lattice.  The  tubulin  dipole  is  not  perfectly

symmetrically aligned, so it tends to squash, and when an electric field is applied it tends to

resist a dynamic stabilization. It is also important to consider the role of the surface ionic charge

layer of the microtubule: recent results suggest that ions, condensed around the surface of the

major filaments of the cytoskeleton, flow along and through microtubules in the presence of

potential differences, thus possibly acting as transmission lines propagating intracellular signals

in a given cell (Craddock et al., 2010).

The  dynamic  simulation  confirms  the  lack  of  specific  characterization.  The  neural

simulation shows final graphs that clearly indicate a MT’s dynamic organization much stronger

than the tubulin one that  is  not altered by  the presence of electric  field even  in its  spatial

configuration.  It  is  worth  noting,  however,  a  very  significant  reduction  of  conflicts,  which

would indicate a dramatic increase in the spatial organization.  On the other hand, the graphs

obtained  by  the  ITSOM network  confirm the  SOM analysis  performed with  the  SONNIA
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parameters (conflicts and occupancy) and the dynamic simulations. The attractors generated by

BB both in the absence of field and with low electric field are extremely cyclical and regular,

even though with higher field it  tends to present a regular  compactness,  and to broaden its

values.

The attractor regularity is clearly present even in the CNTs, and the electric field tends to

increase  both  spatial  range  and  regularity.  The  tubulin,  which  is  initially  well-structured

(although with a much more complex pattern of NT and BB), maintains a structured shape even

in presence of electric field, although with an increase of disorder. The MTs, however, despite

their structural complexity, show a strong dynamic stability, which the electric field, after an

initial  transient,  improves  significantly.  The  field  increase  further  stabilizes  the  structural

dynamics and the spatial configuration of MTs.  

All three methods converge in emphasizing the dynamic stability of these four structures,

but show that only CNTs and MTs exhibit a significant behaviour in presence of electric field, in

the direction  of  a  stronger  structural  and  spatial  organization.  These  results  confirm those

obtained in the experiments on real samples of tubulin and MTs in conditions of resonance and

birefringence. 

In  the  electromagnetic  resonance  experiment  we  identified  a  difference  in  the  peak

amplitude of the solution with MTs at a frequency of 1510 MHz, whereas the solution with

tubulin and the control solution did not show any reaction. The lack of response in tubulin and

control can be considered a hint that the peculiar structure of microtubules could be the cause of

the observed signal. Considering the nanoscopic size of MTs, the resonance analysis would be

more  effective  if  carried  out  on  much  higher  frequencies  (up  to  100  GHz),  with  suitable

instrumentation. The presence of a small but sharp resonance effect at a low frequency could be

the hint of a much evident effect at higher frequencies. 

The analysis of the results  of birefringence experiment highlights  that  the MTs react  to

electromagnetic  fields  in  a  different  way  than  tubulin.  In  particular,  electric  field  and

longitudinal  magnetic  field  show  opposite  effects  in  the  two  types  of  protein  assemblies.

Anyway, in spite of the effect under electric field is the same as with no field, an unexpected

and interesting effect is shown in the case of longitudinal magnetic field. The achieved results,

supported  by  statistical  significance,  suggest  that  the  tubular  structure  of  MTs  might  be

responsible for the different behaviour in respect to free tubulins. Intrinsic electric charge of
127



tubulin and MTs has a role in their different observed response. In fact, the exposed charges

determine the isoelectric  point,  which is the pH value where a  molecule doesn’t  show any

electric charge.  The taxol-stabilized microtubules have an  isoelectric point  of  about pH 4.2

which is significantly lower than that known for the tubulin monomers, which is 5.2 (Strake et

al., 2002). This indicates that microtubule formation is accompanied by substantial changes of

charge distribution within the tubulin subunits. Constant electric fields were shown to affect also

the orientation of microtubules. Both molecules are placed in a buffer solution with a pH value

of 7, which is higher than the isoelectric point of both tubulin and MTs and emphasizes their

acidic behaviour: the dissociation of basic groups is inhibited, the molecules assume a positive

charge behaving as acids and move towards the positive electrode. In this reasoning we should

also take into consideration the size of the analysed molecules, which is considerably different,

and influence their reaction. 

Regarding  superradiance  experiment,  the  data  obtained  showed  that  the  system  is  not

suitable to highlight this phenomenon. However, it should be underlined that the coherent states

we searched have nothing  to  do  with  the form of  coherence  between the  water  molecules

suggested by Jibu et al., 1994. In the measurements performed, in fact, water is not optically

active and, therefore, it is as if there wasn't any water. In the case of MTs, the presence of the

eight tryptophan residues on the surface of each tubulin justifies for the experimental results

obtained; in fact, the absorption recorded at 270 nm corresponds exactly to the absorption of

indole nuclei of this amino acid, so as the luminescence that follows is attributable to the return

of tryptophan molecule to its basal state. Although this system does not appear promising and

all the evidences indicates that it can not be superradiant, it would be appropriate to repeat the

same measures on a different set-up that is able to keep the sample much more stable and to

reach a temperature below 2 K. In this way it would be possible to see if by strongly minimizing

the  thermal  disorder  a  system  that  is  so  little  inclined  to  be  superradiant  can  become

superradiant.
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6. CONCLUSIONS AND FUTURE TRENDS
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The computational methods developed in  this work have proved to  be valuable  for the

analysis of  complex biophysical  phenomena.  The approach of  artificial  intelligence that  has

been used supports the experimental evidences at the microscopic level, allowing a more correct

and accurate interpretation of the results.

It has been possible to justify the experimental results in light of structural  and dynamic

models,  highlighting the actual  existence,  so far only hypothesized, of substantial  effects of

electromagnetic fields on the dynamic evolution of microtubules.  For this reason, the research

on these interesting structures will continue with further studies.  Besides, the use of simulation

methods can help to motivate at a microscopic level the experimental evidences and justify the

agreement with theoretical assumptions. 

The experiment of superradiance phenomena led to the conclusion that there is no quantum

coherence phenomena connected with the microscopic structures of the microtubule, while the

effects of fluorescence are largely justified by the presence of the tryptophan residue in the

amino acid chain. This result is useful in order to exclude other hypotheses about the quantum

behaviour of microtubules present in literature. However, some quantum theories which involve

microtubules assume a consistent behaviour of the water contained in a specific molecule and

not  in  the microtubule  itself.  This type of experiments  and  simulations  do  not exclude this

concept, even if he evidence is against it. In fact this theory is often flanked by the hypothesis

that the microtubule itself has an active role in superradiance transmission. In the future the

experiments and simulations will continue in order to validate the remaining assumptions on

quantum features of microtubules.

The  positive  results  obtained  from  the  synergistic  approach  combining  computational

methods to biophysical experiments of resonance and birefringence encourage us to continue

our experimental  research.  In particular  we will  carry  out in  the future  a  replication of  the

already  performed  tests  on  MTs  and  tubulins  interacting  with  different  ligands.  The

experimental  results will be coupled with the MD simulation of the protein folding binding

different  ligands,  to  study  the  emerging  conformational  differences.  These  studies  would

support  hypotheses on  the origin of the different biophysical  behaviour  in relationship with

conformational changes. This work aims to deepen the knowledge on the behaviour of MTs and

tubulin  and  to  deduce  a  number  of  reasonable  assumptions  on  the  function  of  MTs  as

information or quantum information communication structures. 
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Another future objective can be the study of the difference between classical and quantum

simulation of biomolecular reactions. These problems are currently much studied because of the

clear connections both with the theoretical  problems of the transition between classical  and

quantum approach, and in view of possible applications to micro and nanomechanics. The case

of nanomechanics is particularly important because the fast experimental progress in this field

makes  feasible  some  experimets  considered  as  only  theoretical  experiments  until recently.

These experiments allow full control of  the various experimental situations,  and  thus  to

discriminate between different  hypotheses. A  very  important  point is  how  to  deal with

credibility  with the liquid state in which the biomolecules of the study are immersed. In the past

this medium  has  been  modeled frequently  as a dilute gas,  obviously leading to  results in

discordance to common sense and experimentation.

A second point of fundamental importance when quantum effects are taken into account, is

represented by the decoherence. In fact, if the phenomenon of decoherence is overlooked, that is

by  only solving the Schroedinger equation of the problem,  amazing effects can be expected

which anyway are not observed in real systems. The difficulty is that an elementary dealing of

decoherence involves the calculation of infinite values of these effects, that consequently has to

be renormalized, thus losing any chance of theoretical prediction, as these infinite values has be

replaced by the empirical values. Other models, first of all the spin-boson model of Caldeira and

Leggett, do not require renormalization, but the fundamental parameters of the model, typically

the intensity of the interaction between the studyied system and the thermostat and the density

of states of the thermostat, should be adjusted so that the final values obtained are in agreement

with the experimental  data (Benenti et al., 2007).  In this situation it is better to study  more

realistic models than the standard in order to understand in detail and reliably the difficulties of

the problem.

Regarding  the  transition  from  classical  to  quantum  model,  on  one  side  there  are  the

molecular systems that have a quantum behaviour in interacting with a thermostat. It is presum-

able that considering larger and larger molecules, quantities well-described by classical methods

will certainly appear more and more markedly. On the opposite side, with modern micro/nano

techniques devices and systems showing quantum behavior can be produced. The effort to unify

in a unique context the theory of macromolecules and of nanomachines is very useful to the

understanding  of  the  borderline  between  classical  and  quantum  model.  There  are  enough

experimental data to work on in both cases.
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7. APPENDIX
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SOFTWARE FOR SECONDARY STRUCTURE PREDICTION BASED ON NEURAL
NETWORKS

JNet

Secondary structure prediction methods attempt to infer the likely secondary structure for a

protein based on its amino acid composition and similarity to sequences with known secondary

structure.  The JNet method uses  several  different neural  networks and decides on the most

likely  prediction  via  a  jury  network.  The  function  available  does  two  different  kinds  of

prediction, dependent upon the currently selected region: 

- If  nothing is  selected,  and  the displayed  sequences  appear  to  be aligned,  then  a  JNet

prediction  will  be run  for  the first  sequence in  the alignment,  using the current  alignment.

Otherwise the first sequence will be submitted for prediction.  

- If just one sequence (or a region on one sequence) has been selected, it will be submitted

to the automatic JNet prediction server for homologue detection and prediction.  

- If a set of sequences are selected, and they appear to be aligned, then the alignment will be

used for a Jnet prediction on the first sequence selected in the set (that is, the one nearest the top

of the alignment window).  

JNet secondary structure prediction is based on the sequence profile of contiguous stretches

of amino-acid sequence.  The result  of a JNet prediction for a sequence is  a  new annotated

alignment window: the sequence for  which  the prediction was  made is  the first  one in the

alignment.  If  a  sequence  based  prediction  was  made then  the  remaining  sequences  in  the

alignment are the aligned parts of homologs which were used to construct a sequence profile for

the prediction. If the prediction was made using a multiple alignment, then the original multiple

alignment will be returned, annotated with the prediction. 

Jpred

Jpred  is  a  web  server  that  takes  a  protein  sequence  or  multiple  alignments  of  protein

sequences and from these predicts secondary structure using Jnet algorithm. Jpred integrates the

Jnet algorithm and make even more accurate predictions: in addition to the definition of each

amino acid residue into either alpha helix or beta sheet, Jpred also makes predictions of coiled

coil  regions,  using  the 'COILS' algorithm developed by Lupas and co-workers,  and relative

solvent accessibility. Using the 0%, 5% and 25% cut-offs it predicts whether a residue is buried

('B') or exposed ('-') with three relative solvent accessibilities. The Jpred web server has been
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written  in  standards  compliant  XHTML 1.0  and  CSS 2.0,  and  runs  in  two  modes:  single

sequence and multiple sequences. The latest  version of Jpred in addition to maintaining the

characteristics of the previous ones has new features: more than 81% accuracy of predictions,

possibility  of  setting  working  groups,  and  better  control  of  input  sequences  or  alignments,

predictions returned by e-mail, incorporation of all the predictions in PDF format.

ProQ

Protein Quality Predictor is a software package for the prediction regarding neural network,

based on a number of structural features that predict  the quality of a model protein. ProQ is

optimized to find correct methods, in contrast to other methods that are optimized to search for

native structure.  There are  two different types  of measurement for  prediction: LGscore and

MaxSub. LGscore is a P value, while MaxSub varies from 0 to 1, where 0 means "insignificant"

and 1 means "very significant".

The different values for prediction are:

- Correct: LGscore > 1.5 and MaxSub > 0.1

- Good: LGscore > 3 and MaxSub > 0.5

- Very good: LGscore > 5 and MaxSub > 0.8

Pcons

Pcons is a Model Quality Assessment Program (MQAP) which means that it ranks protein

models by assessing their quality. Pcons uses a set of possible protein models as input. These

models  can,  and  should,  be  produced  using  various  methods  and  approaches.  The  Pcons

protocol analyzes the set of protein models and looks for recurring three-dimensional structural

patterns. Based on this analysis each model is assigned a score reflecting how common its three-

dimensional structural patterns are in the whole ensemble of models. The idea is that recurring

patterns are more likely to be correct as compared to patterns than only occur in one or just a

few models. The result from the Pcons protocol is one score reflecting the overall global quality,

and a score for each individual residue in the protein reflecting the local residue quality.

PSI-PRED 

The  PSI-PRED method allows the prediction of elements of proteins secondary structure

(Fig. 1.3). It is a third generation method which achieves an accuracy of prediction of 77%. The

innovation consists in the use of evolutionary information on a family of homologous proteins
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and in the use of a system of two neural networks for the prediction of secondary structure. PSI-

PRED is based on the specific position scoring matrix generated by PSI-BLAST on the input

sequence, and includes three distinct steps:

1) building the sequence profile;

2) first prediction of the secondary structure made by the neural network;

3) second prediction  obtained by  filtering the output of the first  neural  network with  a

second network.

First of all  a database of non-redundant protein sequences is compiled by extracting not

identical  sequences  from public  databases.  This  database is then  filtered  to remove regions

containing low information content, the transmembrane segments and regions that form coiled-

coil structure. The scoring and position-specific matrix from PSI-BLAST (after three iterations

with  BLOSUM62) is used as  input for  the neural  network.  The window that  results  to  be

optimal is identified; an extra amino acid is used to indicate where the window crosses the N or

C-terminus of the protein chain. The output layer consists of three units, representing the three

states of secondary structure (helix, strand or coil). A second neural network is used to filter the

output of the first: it considers the predictions of each amino acid based on its propensity to

alpha-beta-coil.  Also for the second neural  network  the output layer  consists of three units,

representing the three possible states for secondary structure (helix, strand or coil).

DISOPRED

DISOPRED is the method for predicting non-ordered regions of a protein. As PSI-PRED,

DISOPRED  uses  a  system  of  neural  networks  to  analyze  sequence  profiles  generated  by

PSIBLAST,  but  instead  of  the  three-state  prediction  (helix,  strand  or  coil),  DISOPRED

considers only two: ordered or disordered. It may contain a single neural network and identify

disordered  regions  by  aligning  the  sequence  of  the  polypeptide  chain  as  specified  by  the

SEQRES records in PDB files, with the sequence specified by the ATOM records.  Residues

present in SEQRES record but not in the ATOM, are considered disordered. For each protein a

sequence profiles is calculated using three iterations of PSI-BLAST searching in databases of

not overlapping sequences. Since the neural network predicted disordered regions also where

PSI-PRED had identified elements of secondary structure, the secondary structure prediction

was included as input in the neural network in addition to the sequence profiles.
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PHD

PHD is software for secondary structure prediction, based on  the observation of protein

whose structure  is  known.  Neural  network  method is  used  for  the prediction of  secondary

structure for each residue of a protein. A reliability index (from 0 to 9) for secondary structure

corresponding to a specific residue is calculated, and this value is related to the accuracy of the

prediction. Reliability indexes equal to 9 correspond to an accuracy of 90%. 

Figure 1.3 The  PSI-PRED method.  It  is  based  on the specific  position  scoring  matrix  

generated  by  PSI-BLAST on the input  sequence.  After  the building  of  the  

sequence profile a system of two neural networks is used for the prediction of 

secondary structure.
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