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1. INTRODUCTION

In nutritional epidemiologic research, the use of dietary pattern methods has
increased substantially over the past several years [1-4]. Patterning methods
consider multiple foods, beverages, and/or nutrients and therefore create dietary
variables that more realistically resemble actual eating behavior. As a result, these
methods have grown in popularity as a valuable complement to the traditional
approach. In addition, research using the traditional approach, which often studies
single nutrienté or foods, is limited because of collinearity among nutrients and
the inability to detect small effects from single nutrients. Studies using empirically
derived patterns are based only on dietary intake data and therefore are better
poised to provide an understanding of actual diets.

Use of explorative statistical methods is one way to examine dietary patterns in
populations. Of these, exploratory factor analysis (EFA) is a data aggregation
procedure used to reduce dietary data into meaningful food or nutrient patterns
based on inter-correlations between dietary items. The factors are then named,
usually according to those foods or nutrients that most heavily contribute to the
pattern, and the patterns can then be used as the primary exposure variables in
dietary studies.

The EFA is a posteriori appréach since is based on empirical data and not on a
priori hypothesis. It does not require a theoretical basis and uses only the data to

derive food/or nutrient patterns empirically.



Several studies have used factor analysis to identify dietary patterns in
epidemiological studies [1-4] as an alternative to the analyses on single foods or
single nutrients, but few have validated the factors in a larger population. Indeed,
there are limited data on the reproducibility of this method [5-10]. Studying the
reproducibility of patterns derived by the use of factor analysis is an important
step in establishing the validity of this method.

Confirmatory factor analysis (CFA), by contrast, based on a priori hypothesis, can
be used to assess the reproducibility and validity of dietary patterns identified by
an EFA. It may be guided both by results from an EFA and by knowledge of
nutritional behavior.

This a priori approach is intuitively appealing because it may be based in theory
and also reduces some of the subjectivity involved in exploratory procedures.
However, few studies have used confirmatory factor analysis in nutritional
epidemiology. More research is required to understand how this method is used in
nutritional epidemiology, as well as how solutions derived from the use of

confirmatory factor analysis differ from those using exploratory factor analysis.

The purpose of my PhD thesis is to further knowledge of factor analysis methods
in nutritional epidemiologic research. In particular, I studied the application of the
CFA to validate nutrient-dietary patterns derived from EFA. In the chapter 2, 1
will describe the steps whereby identify different nutrient dietary patterns

throughout EFA, and the steps to validate the explored factor solutions by testing



CFA models, in which only the observed variables decided a priori, are included
(e.g. by the magnitude of their explored factor loading in previous EFA). In the
chapter 3, 1 will present an application to a case-control study of gastric cancer
conducted in northemn Italy, by comparing the results from different explored

factor solutions, characterized by different numbers of specified factors.



2. STATISTICAL METHODS

2.1 Exploratory factor analysis

This paragraph aims to describe the steps of exploratory factor analysis to identify

different nutrient dietary patterns, as a posteriori approach.

2.1.1 Factorability of the original matrix

The correlation matrix R of the original data is used to assess its factorability.

Variables should not be:

1) too highly correlated (»>0.80); this reflects problems of multicollinearity, so
that one or more of these variables would be dropped from the analysis;

2) not sufficiently correlated (r<0.30) with one another; this means these
variables will not share much of the common variance, thus potentially leading
to solution with as many factors as variables.

Then, matrix factorability is evaluated through statistical procedures. Measures of

sampling adequacy that compare the simple and partial correlation coefficients

may be defined either overall or for single variables. The overall measure, called

Kaiser-Meyer-Olkin statistic (KMO), is defined as follows [11]:

Z 2.7
KMO =

2.2 +2.2.9
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where ZZ are the sum over all variables in the matrix when variable i #

variable j, r; is the Pearson correlation coefficient between i and j, and aj the
partial correlation coefficient between 7 and j. Individual measures of sampling
adequacy are computed using only the simple and partial correlation coefficients
involving the specific variable under consideration. The overall and individual
measures range between 0 and 1. Smaller values indicate that the squared
correlation coefficient is small relative to the squared correlation coefficient and
therefore a factor analysis may be imprudent. If the sum of the squared partial
correlation coefficients is small compared with the sum of the squared correlation
coefficients, the measures approach 1.

Bartlett's test of sphericity tests the null hypothesis that the correlation matrix is

an identity matrix. It is a chi-square test [11], whose statistic is defined as follows:

2= —[(N - 1)—(2"6“*“ > ﬂ log||

where y° is the calculated chi-square value for Bartlett’s test, N is sample size, k is

the number of variables in the matrix and |R| the determinant of the correlation
matrix. The degrees of freedom for this chi-square are k(k-1)/2. Larger values of
the test suggest that the null hypothesis should be rejected.

Since Bartlett’s test is influeniced by the sample size, N, for larger samples this test
tends to indicate that the correlation matrix is not an identity matrix. For this
reason, it should be used only as a minimum standard for assessing the quality of

the correlation matrix.



2.1.2 Identification of factors through factor analysis

This approach assumes that the variables included in the analysis can be perfectly
calculated by the extracted components or factors. Because each standardized
variable has a mean of 0 and variance of 1, the initial estimate of communality
(i.e., the explained variance) for each variable is 1.00. This is what will be placed
initially on the diagonal of the correlation matrix. The first principal component is
a linear combination of the original variables, such that it explains the maximum
amount of the variance among the variables. After the first extraction, a residual
correlation matrix is created. This matrix contains the variances not explained by
the first factor on the diagonal and the partial correlations of the variables with
each other after extracting the first factor on the off-diagonal. The second one is
extracted from this residual matrix, so it will be uncorrelated to the first one. This
process of extracting principal components is repeated on subsequent residual
matrices, until the elements in the residual variance-covatiance matrix are reduced

to random error.

2.1.3 Choosing the number of factors to retain

A crucial aspect of factor analysis is the choice of the number of factors to retain.
The choice was based on three main criteria. The first one is to retain those factors
with eigenvalues greater than 1.00. The eigenvalues is defined as 4 of R. An
eigenvalue for R is a value for which the following polynomial equation, holds:

p(i) = Det(R-AI) =0



where Det is the determinant of the matrix (R—AI), R is the correlation matrix, 2 is
the eigenvalue of R, and I is the identity matrix of the same size as the correlation
matrix with s on the diagonal and 0s on the off diagonal. The polynomial is
called the characteristic polynomial of the matrix R, and the eigenvalues of R are
the nontrivial solutions to the characteristic equation, p(4)=0. With a matrix Rnx
n, there is at most # solution for A [11].

The second criterion is to add successive factors until the cumulative percentage
of variance explained by the retained factors is satisfactory. To terminate the
factor extraction process, we considered 75-80% to be a valid threshold for the
cumulative variance extracted. The third one, suggested by Cattell [12], is to plot,
by the option SCREE in SAS, the extracted factors against their eigenvalues in
descending order of magnitude to identify distinct breaks in the slope of the plot,
called “scree plot”. To determine where the break occurs, a straight line should be
drawn with a ruler through the lower values of the plotted eigenvaiues. That point
where the factors curve above the straight line drawn through the smaller
eigenvalues identifies the optimal number of factors to retain.

Finally, to determine the number of factors to retain, a researcher should not be
based only on statistical criteria, but also on subjective motivations. In fact, the
other criterion to take in account is factor interpretability. In nutritional
epidemiology, the identified factors represent potentially uncorrelated dietary
habits that, considered altogether, summarize the overall dietary profile of a given

population.



2.1.4 Estimating factor scores

Factor scores are estimated for each subject and factor. They indicate the degree
to which each subject’s diet conforms to one of the identified factors [13], and can
be calculated using the weighted least square method, where variables that have
lower loadings on the factor are given less weight than those with higher loadings

in the calculation of factor scores.

2.1.5 Rotating the identified factors

To improve the interpretation of the generated factors, suggestions have been
made to rotate them. If a rotation is not performed, the first unrotated factor is
most often a general factor on which most variables load highly in absolute value.
The rotation consists in turning the reference axes of the factors about their origin
to achieve a simple structure where variables should load highly (in absolute
value) on one factor only, and each factor should have high absolute loadings only
on some of the variables.

There are two methdds of rotation: orthogonal and obligue. In the first one, pairs
of axes are kept at right angles (90°) to one another during rotation, so that they
are still uncorrelated after rotation. In the second one, each axis may be rotated
independently, so that they are not necessarily perpendicular after rotation.

We préferred forms of orthogonal rotation. An important statistical assumption of
this method of rotation is that the rotated factors remain statistically uncorrelated.
This is an advantage associated with representing a complex set of

interrelationships among several correlated variables in terms of a few
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uncorrelated indices. This is a crucial aspect in nutritional epidemiology, where
one may deal with severe multicollinearity problems. Another property of
orthogonal rotations is that the amount of the total variance accounted for by the

factors under consideration is unaffected by the rotation itself [14].

2.1.6 Naming the identified factors

To name the identified factors, it is suggested to consider only those ones having
factor loadings greater or equal to |0.63] on a given factor. The contribution that a
factor gives to a nutrient’s sample variance is equal to the square of its loading on
that factor, so if we choose a [0.63] cut-off, we expect a minimum contribution of

the factor on the nutrient’s variance of approximately 0.40 [13].

2.2 Confirmatory factor analysis

In contrast to exploratory factor analysis (EFA) there i.s confirmatory factor
analysis (CFA).

CFA is a type of structural equation modeling (SEM) [15] that deals specifically
with measurement models, that is, the relationships between measured variables
and latent variables. A measured variable, also called observed variable or
indicator, is a variable that have been directly observed in the study, whereas a
latent variable, also called lafent facfor is a hypothetical construct that is not
directly measured or observed in the study. In this context, the factors derived

from an EFA are examples of latent variables.
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A fundamental feature of CFA is its hypothesis-driven nature. Unlike EFA, the
researcher must pre-specify all aspects of the CFA model. Thus, the researcher
must have a firm a priori sense, based on past evidence and theory, of the number
of factors that exist in the data, of which indicators are related to which factors,
and so forth.

The CFA is a statistical technique that allows the researcher to test and verify a
particular model or factor structure that they believe underlies the variables
measured in the study. The researcher can use knowledge of the theory, empirical
research, or both, to assume that a relationship between observed variables and
their underlying latent construct exists, and then test the hypothesis statistically.

In the present thesis, CFA was applied to test the validity of the underlying
dimensions of a construct identified through previous EFA [11, 16-19].

In addition to its greater emphasis on theory and hypothesis testing, the CFA
framework provides many other apalytic possibilities that are not available in
EFA. These possibilities include the evaluation of method effects and the
examination of the stability or invariance of the factor model over time or
informants.

CFA has become one of the most commonly used statistical procedures in applied

research.

2.2.1 The structure of Confirmatoery Factor Analysis

The CFA models are represented by “flow” diagrams. By tradition, causal models

have three kinds of elements: text inside geometric shapes, lines with arrows
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pointing fo or away from these shapes, and coefficients on the lines. Measured
variables are represented by squares or rectangles; latent variables are represented
as circles or ovals; regression paths or, in the case of factor analysis, pattern
coefficients, are represented by one-headed arrows. These lines are drawn from
latent factors fo measured variables to reflect the hypothesis that the latent
variables are in fact an underlying influence on the manifestation of the factors in
the form of scores on the measured variables. Correlations (and covariances) are
represented as two-headed arrows drawn to connect either measured or latent
variables in pairs for which correlations or covariances are freed to be nonzero
and are estimated in the analysis. In the following paragraphs, details on the CFA

model will be described.

Parameters of a CFA Model

All CFA models contain factor loadings, unique variances, and factor variances
[17]. Factor loadings are the regression slopes for predicting the indicators from
the latent factor, Unique variance for each measured variable is the variance in the
indicator that is not accounted for by the latent factors and is typically presumed
to be measurement error. Factor variance, in an unstandardized solution,
expresses the sample variability or dispersion of the factor.

A CFA may include error covariances (referred to as “correlated residuals,” or
“correlated errors™), which suggest that two indicators covary for reasons other
than the shared influence of the latent factor.

When the CFA solution consists of two or more factors, a factor covariance (a

“factor correlation” being the completely standardized counterpart) is usually
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specified to estimate the relationship between the latent dimensions. However,
one may fix factor covariances to zero, like an orthogonal EFA solution.

CFA 1is often confined to the analysis of variance—-covariance structures. In this
instance, the above-mentioned parameters (factor loadings, error variances and
covariances, factor variances and covariances) are estimated to reproduce the
input variance-covariance matrix.

Latent variables in CFA may be either exogenous or endogenous. An exogenous
variable is a variable that is not caused by other variables in the solution.
Conversely, an endogenous variable is caused by one or more variables in the
model. Thus, exogenous variables can be viewed as synonymous to X,
independent, or predictor (causal) variables. Similarly, endogenous variables are
equivalent to Y, dependent, or criterion {outcome) variables. However, in the case
of structural models, an endogenous variable may be the cause of another

endogenous variable.

As an example, a two-factor CFA model is represented in the following “flow”

diagram:
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Figure 1. A two-factor CFA model.
Latent factors are a weighted composite of all the measured variables. Each factor

is represented by a different set of weights, called also factor loadings, symbolized
by lambdas (1) with x subscripts in the case of exogenous latent variables. The
unidirectional arrows (—) from the factors (e.g., &;) to the indicators (e.g., X1)
depict direct effects (regressions) of the latent dimensions onto the observed
measures; the specific regression coefficients are the lambdas (4). Theta-delta (®5)
represent matrices of indicator error variances and covariances; for notational
ease, the symbol 8 is often used in place of 0; in reference to elements of ;. @; is
symmetric variance-covariance matrices consisting of error variances on the
diagonal, and error covariances, if any, in the 6ff~diagonai.

Factor variances and covariances are notated by phi (¢). Curved, bidirectional

arrows are used to symbolize covariances (correlations). In the Figure I, curved
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arrows indicate the covariance between the factors (021) and the error covariance
of the X5 and X6 indicators (8ss). |

The parameters in Figures 1 also possess numerical subscripts to indicate the
specific elements of the relevant matrices. For example, A indicates that the X1
measure loads on the first exogenous factor (§)), and ke indicates that X2 also
loads on &1, and so on. This numeric notation assumes that the indicators were
ordered X1, X2, X3, X4, X5, and X6 in the input variance—covariance matrix. If

the input matrix was arranged in this way, the lambda X matrix (Ay) would be as

follows:
& &
X1 A O
X2 Aoy O
3 Ay, O
x4 0 Ao
X5 0 Aesa
X6 0 Agea

where the first numerical subscript refers to the row of Ay (i.e., the positional
order of the X indicator) and the second numerical subscript refers to the column
of Ay (i.e., the positional order of the exogenous factors, &); €.g., Axs2 conveys that
the fifth indicator in the input matrix (X5) loads on the second latent X factor (§;).
Thus, A, is full matrices whose dimensions are defined by p rows (number of
indicators) and m columns (number of factors). The zero elements of Ay (e.g.,
hxi2, Aat) indicate the absence of cross-loadings (e.g., the relationship between X1
and & is fixed to zero). This is also showed in Figures 1 by the absence of
directional arrows between certain indicators and factors (e.g., no arrow

connecting &; to X1).
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A similar system is used for variances and covariances among factors (@) and
indicator errors (6). However, because these aspects of the CFA solution reflect
variances and covariances, they are represented by mxm symmetric métrices with
variances on the diagonal and covariances in the off-diagonal.

For example, the phi matrix (@) in Figure 1 would look as follows:

oy &
Sy Gy
";53 {bll d}z'l

where ©;) and @2, are the factor variances, and ¢»; is the factor covariance.
Similarly, the theta-delta matrix (®;) is the following pxp symmetric matrix:

X1 X2 X3 X4 x5 Ab
Xi
X2
X3
X4
X5
X6

OGQOOP&
[

QQQD?
(]

Lo B o R v

QO'{Z}?

X
u‘Q'i
k¥

565 8&6

where ;) through 8¢ are the indicator errors and 8¢s is the covariance of the
measurement errors of indicators X5 and X6. The zero elements of 85 (e.g., 821)
indicate the absence of error covariances (i.e., these relationships are fixed to
Zero).

Unlike in EFA, in which all parameters implicit in a factor model must be
estimated, in CFA, the researcher can “constrain” or “fix” certain parameters to
mathematically “permissible” values (e.g., a variance may be constrained to equal
any positive number; a correlation » may be constrained to equal -1, +1, or any
number in between), while at the same time “freeing” the use of the input data to

derive estimates of other model parameters (e.g., factor pattern coefficients, factor
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variances). Moreover, a researcher must declare as input into the analysis one or

more specific models, each containing some “fixed” and some “freed” parameters.

Fundamental equations of a2 CFA model

CFA aims to reproduce the sample variance—covariance matrix by the parameter
estimates of the measurement solution (e.g., factor loadings, factor covariances,
etc.). Considering the Figure 1, the first set éf measures (X1, X2, X3) are
indicators of one latent factor (£)), whereas the second set of measures (X4, X3,
X6) are indicators of another latent factor (&;). It is said, for example, that
indicators X4, X5, and X6 are congeneric {17] because they share a common
factor (&). An indicator would not be considered congeneric if it loaded on more
than one factor. In the case of congeneric factor loadings, the variance of an
indicator is reproduced by multiplying its squared factor loading by the variance
of the factor, and then summing this product with the indicator’s error variance.
The predicted covariance .of two indicators that load on the same factor is
computed as the product of their factor loadings times the variance of the factor.
The model-implied covariance of two indicators that load on separate factors is
estimated as the product of their factor 10adings times the factor covariance. For
example, based on the parameter estimates in the solution presented in Figure 1,
the variance of X2 would be reproduced by the following equation:

VAR(X2) = o2 = e’ Q11 + 82
In the case of completely standardized solutions, one can reproduce the variance

of an indicator by simply squaring its factor loading and adding its error, because
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the factor variance will always equal 1.00. The factor variance must be included in

this calculation when dealing with unstandardized solutions.

The squared factor loading represents the proportion of variance in the indicator
that is explained by the latent factor (often referred to as a communality). For
example, the communality of X2 is:

En® = ht”

Similarly, in the completely stagdardized solution, the errors represent the
proportion of variance in the indicators that is not explained by the latent factor.
These errors (residual variances) can be readily calculated as 1 minus the squared
factor loading. Using the X2 indicator, the computation would be:

8= 1 —ht”

The predicted covariance (correlation) between X2 and X3 would be estimated as
follows:
COV(X2, X3) =032 = ha) 011 A1

In the case of completely standardized solutions the factor variance will always
equal 1.00, so the predicted correlation between two congeneric indicators can be
| calculated by the product of their factor loadings.

In Figure 1, the covariation between the indicators is not accounted for fully by
the latent factor (&); that is, X5 and X6 Sha,ré additional variance due to
influences other than the latent construct. Thus, the equation to calculate the

predicted correlation of X5 and X6 includes the correlated error:
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- COV(XS5, X6) = 055 = (Axs20220x62) + D65

2.2.2 CFA Model Identification

In order to estimate the parameters in CFA, the measurement model must be
identified. A model is identified if, on the basis of known information (i.e., the
variances and covariances in the sample input matrix), it is possible to obtain a
unique set of parameter estimates for each parameter in the model whose values
are unknown (e.g. factor loadings, factor correlations, etc.). Model identification
pertains in part to the difference between the number of freely estimated model
parameters and the number of pieces of information in the input variance-
covariance matrix.

The parameteré in a CFA model are the pattern or structure coefficients relating
the independent to the dependent variables, correlation coefficients relating the
independent variables to each other, and the variance of the independent variables.
These parameters can be estimated only if the number of freely estimated
parameters does not exceed the number of pieces of information in the input

variance-covariance matrix.

1) A model is under-identified when the number of unknown (freely estimated)
parameters exceeds the number of pieces of known information (i.e., elements
of the input variance—covariance matrix). An under-identified model cannot be
solved because there are an infinite number of parameter estimates that result

in perfect model fit.
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2) A model is just-identified when the number of known pérameters would equal
the number of those unknowns. To obtain a just-identified model, for instance,
the researcher could add the restricﬁon of constraining the factor loadings to
equality. Because the number of knowns equals the number of unknown
parameters, in just-identified models, there exists a single set of parameter
estimates that perfectly fit the data.

3) A model is over-ideniified when the number of known parameters (i.e.,
number of variances and covariances in the input matrix) exceeds the number

of freely estimated model parameters.

The difference in the number of knowns and the number of unknowns (i.e., freely
estimated parameters) constitutes the model’s degrees of freedom (df). Over-
identified solutions have positive df, just-identified models have 0 df (because the
number of knowns equals the number of unknowns), and under-identified models
have negative df (cannot be solved or fit to the data).
If we subtract the number of unknown parameters from the number of known or
nonredundant elements, we obtain the degrees of freedom for the analysis:

df = n. of nonredundant elements — n. of unknown parameters
The number of known parameters is equal to the number of unique or
nonredundant entries in a matrix that represents the covariances or correlations of
the indicator variables:

N. of nonredundant elements = p (p+1)/2

where p is the number of the measured variables in the study
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Model identification also requires that the measurement scale (i.e., the variance or
the standard deviation) of each latent variable is specified or constrained. This is
because latent variables, by definition, have no intrinsic scaling, and so there are
infinitely many plausible scales for these variables, each suggesting a
corresponding plausible set of estimates for the other model parameters.

In effect, if the researcher wants to estimate scores of a latent variable, he must
first declare a metric for the estimate. It is usually irrelevant what this metric is,
but some metric must be selected. There are two cornmon ways to identify CFA
models.

First, any factor pattern coefficient on each factor can be fixed to any number. The
number “1” is a common choice. But it could be used any number. In effect, this
means that the researcher wants to scale the scores on the latent variable as some
multiple of the selected measured variable.

The decision of which measured variable’s pattern coefficient on a factor has to be
selected to fix to some number (usually “1”) makes no real difference. However,
some researchers stylistically prefer for model identification purposes to pick the
measured variable thought to most reflect the factor or to have scores that are the
most reliable from a measurement point of view.

Second, in case of a first-order factor model, it is possible constrain the factor
variances to be any mathematically plausible number (i.e., positive). When this
strategy is selected, it is useful to use the same number to constrain all factor
variances, and usually the number “1” is used for these purposes. One advantage

of doing so is that the covariances of the factors become factor correlation
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coefficients, because when computing the factor correlations as r=COV/(SDxSD)
all pairs of computations will then have denominators of one.

The selection of scaling for the latent variables will not affect the model fit
statistics. The scaling decisions are basically arbitrary and can reasonably be made

as a function of the researcher’s stylistic preferences.

2.2.3 Estimation of CFA Model Parameters

The objective of CFA is to obtain estimates for each parameter of the
measurement model (i.e., factor loadings, factor variances and covariances,
indicator error variances and possibly error covariances) that produce a predicted
variance—covariance matrix (symbolized as X) that resembles the sample
variance—covariance matrix (symbolized as S) as closely as possible.
To minimize the difference betweeﬁ ¥ and §, the fitting function most widely used
in applied CFA research (and SEM, in general) is maximum likelihood (ML). the
fitting function that is minimized in ML is:

Furw = In|S] - In|Z] + trace[(S)E )] - p
where |S| is the determinant of the input variance—covariance matrix, 2| is the
determinant of the predicted variance—covariance matrix, p is the order of the
input matrix (i.e., the number of input indicators).
The determinant and trace summarize important information about matrices such
as S and L. The determinant is a single number (i.e., a scalar) that reflects a
generalized measure of variance for the entire set of variables contained in the

matrix. The trace of a matrix is the sum of values on the diagonal (e.g., in a
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variance—covariance matrix, the trace is the sum of variances). The objective of
ML is to minimize the differences between these matrix summaries (i.e., the
determinant and trace) for S and 2.

The underlying principle of ML estimation in CFA is to find the parameter values
that make the observed data most likely (or conversely, maximize the likelihood
of the parameters given the data). Finding the parameter estimates for an over-
identified CFA model is an iterative procedure. That is, the computer program
begins with an initial set of parameter estimates (referred to as starting values or
initial estimates, which can be automatically generated by the software or
specified by the user) and repeatedly refines these estimates in an effort to reduce
the value of Fyy (i.e., minimize the difference between T and 8). Each refinement
of the parameter estimates to minimize Fyy is an iteration. The program conducts
internal checks to evaluate its progress in obtaining parameter estimates that best
reproduce S (i.e., that result in the lowest Fyp value). Convergence of the model is
reached when the program arrives at a set of parameter estimates that cannot be
improved upon to further reduce the difference between X and S.

Occasionally, a latent variable solution will fail to converge. Convergence is often
related to the quality and complexity of the specified model (e.g., the number of
restrictions imposed on the solution) and the adequacy of the starting values. In
the case of complex models, convergence may not be reached because the
program has stopped at the maximum number of iterations, which is set by either
the program’s default or a number specified by the user. This problem may be
rectified by simply increasing the maximum number of iterations or possibly

using the preliminary parameter estimates as starting values. However, a program
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may also cease before the maximum number of iterations has been reached
because its internal checks indicate that progress is not being made in obtaining a

golution thai minimizes Fu.

2.2.4 Descriptive Goodness-of-fit Indices

CFA relies on several statistical tests to determine the adequacy of model fit to the
data.
The classic goodness-of-fit index is the Chi-square (¥). The ¥ test indicates the
amount of difference between expected and observed covariance matrices. The
null hypothesis is that the model fits the data. If the model provides a good fit, the
+* value will be relatively small (close to 0), indicating little difference between
the expected and observed covariance matrices. In addition, the probability level
will be relatively large: above 0.05 and preferably closer to 1.00 when ¢ is close
to 0 [20].
Under typical ML model estimation, ¥’ is calculated as:

xo=FuuN-1)
Because this model is associated with 1 47, the critical 37 value (& = 0.05) is 3.84
(i.e., ¥ =z° = 1962 = 3.8416). Thus, a statistically significant +* supports the
alternate hypothesis that § # I, meaning that the model estimates do not
sufficiently reproduce the sample variances and covariances (i.e., the model does
not fit the data well). |
Although #° is steeped in the traditions of ML and SEM (e.g., it was the first fit

index to be developed), it is rarely used in applied research as a sole index of
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model fit. Indeed, important criticisms of ¥’ include the following: (1) in many
instances (e.g., small N, non—normal‘data) its underlying distribution is not x2
distributed (compromising the statistical significance tests of the model ¥°); (2) it
is inflated by sample size, and thus large N solutions are routinely rejected on the
basis of ¥* even when differences between S and ¥ are negligible; and (3) it is
based on the very stringent hypothesis that S = X. Many alternative fit indices are
based on less stringent standards such as “reasonable” fit and fit relative to an
independence model. Nevertheless, ¥° is used for other purposes, such as nested
model comparisons and the calculation of other fit indices. While »° is routinely
reported in CFA research, other fit indices are usually relied on more heavily in
the evaluation of model fit.

Although a host of fit indices are available, only a handful is described here.
These fit indices were selected on the basis of their popularity in .the applied
literature.

Fit indices can be broadly characterized as falling under three categories: absolute

fit, fit adjusting for model parsimony, and comparative or incremental fit.

Absolute Fit

Absolute fit indices assess model fit at an absolute level; in various ways, they
evaluate the reasonability of the hypothesis that S = X without taking into account
other aspects such as fit in relation to more restricted solutions. Thus, ¥° is an
example of an absolute fit index. Another index that falls in this category is the
standardized root mean square residual (SRMR). Conceptually, the SRMR can be

viewed as the average discrepancy between the correlations observed in the input
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matrix and the correlations predicted by the model (though in actuality, the SRMR
is a positive square root average). Accordingly, it is derived from a residual
correlation matrix. A similarly named index, the root mean square residual
(RMR), reflects the average discrepancy between observed and predicted
covariances. However, the RMR can be difficult to interpret because its value is
affected by the metric of the input variables; thus, the SRMR is generally
preferred. In most instances (e.g., models involving a single input matrix), the
SRMR can be calculated by (1) summing the squared elements of the residual
correlation matrix and dividing this sum by the number of nonredundant elements
in this matrix (on and below the diagonal), that is, & = p(p + 1) / 2, and (2) taking
the square root (SQRT) of this result.
SRMR = SQRT[(sum(element of the residual correlation matrix)z)/b}

The SRMR can take a range of values between 0.0 and 1.0, with 0.0 indicating a

perfect fit (i.e., the smaller the SRMR, the better the model {it).

Parsimony Correction

A widely used and recommended index from this category is the root mean square
error of approximation (RMSEA). The RMSEA is a population-based index that
relies on the non-central X2 distribution, which is the distribution of the fitting
function (e.g., Fvr) when the fit of the model is not perfect. The non-central y°
distribution includes a non-centrality parameter (NCP), which expresses the
degree of model misspecification.

The NCP is estimated as )(2 —df (if the. result is a negative number, NCP = 0).

When the fit of a model is perfect, NCP = 0 and a central ¥’ distribution holds.
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When the fit of the model is not perfect, the NCP is greater than 0 and shifts the
expected value of the distribution to the right of that of the corresponding central
¥, The RMSEA is an “error of approximation” index because it assesses the
extent to which a model fits reasonably well in the population (as opposed to
testing whether the model holds exactly in the population). To foster the
conceptual basis of the calculation of RMSEA, the NCP is rescaled to the quantity
d= (" ~df) I (N-1).
The RMSEA is then computed:

RMSEA = SQRTI[d/ df]
where df is the model df. The RMSEA compensates for the effect of model
complexity by conveying discrepancy in fit (d) per each df in the model. Thus, it
is sensitive to the number of model parameters; being a population-based index,
the RMSEA is relatively insensitive to sample size.
Although its upper range is unbounded, it is rare to see the RMSEA exceed 1.0.
As with the SRMR, RMSEA values of 0 indicate perfect fit (and values very close
to 0 suggest good model fit).
The non-central ¥’ distribution can be used to obtain confidence intervals for
RMSEA .(a 90% interval is typically used). The confidence interval indicates the
precision of the RMSEA point estimate. Methodologists recommend including
this confidence interval when reporting the RMSEA. However, researchers should
be aware that the width of this interval is affected by sample size and the number
of freely estimated parameters in the model (e.g., unless V is very large, complex

models are usually associated with wide RMSEA confidence intervals).
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Comparative Fit
Comparative fit indices evaluate the fit of a user-specified solution in relation to a
more restricted, nested baseline model [21]. Typically, this baseline model is a
“null” or “independence” model in which the covariances among all input
indicators are fixed to zero, although no such constraints are placed on the
indicator variances. As you might expect, given the relatively liberal criterion of
evaluating model fit against a solution positing no relationships among the
variables, comparative fit indices often look more favorable (i.e., more suggestive
of acceptable model fit) than indices from the preceding categories, Nevertheless,
some indices from this category have been found to be among the best behaved of
the host of indices that have been introduced in the literature.
One of these indices, the Bentler’s comparative fit index (CFI), is computed as
follows:

CFI = 1 —max[(xf — dfr), 0] /max [(xF — dfr), (g — dfs), 0]
where y# is the x?' value of the target model (i.e., the model under evaluation), dfr
is the df of the target model, y& is the x2 value of the baseline model (i.e;, the
“null” model), and dfs is the df of the baseline model; max indicates to use the
largest value — for example, for the numerator, use (y# — dfr) or 0, whichever is
larger, The x3 and dfp of the null model are included as default output in most
software programs. If the user wishes to obtain these values in programs that do
provide this information, y% and dfz can be calculated by fixing all relationships
to 0 (but freely estimating the indicator variances). The CFI has a range of
possible values of 0.0 to 1.0, with values closer to 1.0 implying good model fit.

Like the RMSEA, the CFI is based on the non-centrality parameter (i.e., A
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= y2 — df;), meaning that it uses information from expected values of y# or x5
(or both, in the case of the CFI) under the non-central v* distribution associated
with S # T (e.g., central ¢ is a special case of the non-central +* distribution when
A=0).

Bentler and Bonnett’s normed-fit index (NFI) has also been proposed. Values on
this index may range from 0 to 1, with values over 0.9 indicative of an acceptable
- fit of the mpdel to the data. This index may be viewed as the percentage of
observed-measure covariation explained by a given measurement or structural
model. Although, the NFI has the advantage of being easily interpreted, it has the
disadvantage of sometimes underestimating goodness of fit in small samples.

A variation on the NFI is the non-normed fit index (NNFI). The NNFI has been
shown to better reflect model fit at all sample sizes. NNFI values over 0.90 are
also viewed as desirable, although, unike the NFI, the NNFI may assume values
below 0 and above 1. |

Finally, Bentler’s CFI is similar to the NNFI in that it provides an accurate
assessment of fit regardless of sample size. In addition, the CFI tends to be more
precise that the NNFI in describing comparative model fit. Values of the CFI will ~

always lie between 0 and 1, with values over 0.9 indicating a relatively good fit.

2.2.5 Modification Indices

Often a CFA model will need to be revised. The most common reason for
respecification is to improve the fit of the model. In this case, the results of an

initial CFA indicate that one or more of the three major criteria used to evaluate

30



the acceptability of the model are not satisfied: that is, the model (1) does not fit
well on the whole, (2) does not reproduce some indicator relationships well, or (3)
does not produce uniformly interpretable parameter estimates. Based on fit
diagnostic information (e.g., modification indices) and substantive justification,
the model is revised and fit to the data again in the hope of improving its goodness
of fit.

Modification indices can be computed for each fixed parameter (e.g., parameters
that are fixed to zero such as indicator cross-loadings and error covariances) and
constrained parameter in the model. The modification index reflects an
approximation of how much the overall model ¥° would decrease if the fixed or
constrained parameter was freely estimated. Indeed, if the parameter is freely
estimated in a subsequent analysis, the actual decrease in model XZ may be
somewhat smaller or larger than the value of the modification index. In other
words, the modification index is roughly equivalent to the difference in the overall
+° between two models, where in one model the parameter is fixed or constrained
and in the other model the parameter is freely estimated.

In general, a good-fitting model should also produce modification indices that are
small in magnitude. Because the modification index can be conceptualized as a e
statistic with 1 4, indices of 3.84 or greater (which reflects the critical value of ¥
at p<0.05, 1 df) suggest that the overall fit of the model could be significantly
improved (p<0.05) if the fixed or constrained parameter was f{reely estimated.
Like overall model y° and standardized residuals, modification in&ices are

sensitive to sample size. For instance, when N is very large, a large modification
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index may suggest the need to add a given parameter despite the fact that the
magnitude of the parameter in question, if freely estimated, is rather trivial.

It is recommended that model modification begin by freely estimating the fixed or
constrained parameter with the largest modification index if this parameter can be
interpreted substantively. If there does not exist a substantive basis for relaxing
the parameter with the largest modification index, consider the parameter
associated with the second largest modification index, and so on.

Revisions of a model should always focus exclusively on parameters justified by
prior evidence or theory. Re-specified models should be interpreted with caution,
especially in instances where substantial changes have been made to the initial
model, modified solutions should be replicated in independent samples.

Models can be revised by eliminating statistically non-gignificant parameters. The
presence of unnecessary parameters may be reflected by large, negative
standardized residuals that indicate that the model is overestimating the observed
relationship between a pair of indicator variables.

Two modification indices are to consider in this stage of the CFA:

1) Wald test: identifies parameters that should possibly be dropped from the
model. It provides an estimate of how much the overall model ;(2 would
increase if a freely estimated parameter were fixed to zero. A non-
significant Wald test value (e.g., < 3.84 in the case of a single parameter)
would indicate that removing the freely estimated parameter (e.g., fixing it
to zero) would not result in a significant decrease in model fit.

2) Lagrange multiplier test: identifies parameters that should possibly be

added. It estimates the reduction in model ¥° that would result from freeing
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a fixed parameter and allowing it to be estimated. In other words, for a
CFA the Lagrange multiplier estimates the degree to which )(2 would
improve if a new factor loading or covariance were added to the model.
Two matrices of Lagrange multiplier tésts are provided. First, the phi
matrix that contains indices for every possible combination of latent
factors and residual terms. The second matrix is the gamma matrix that
indicates whether it should be added a new path from some latent factor to

some indicator variable.
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3. APPLICATION TO A CASE-CONTROL
STUDY OF GASTRIC CANCER

3.1 Design and participants

Data were derived from a case-control study of stomach cancer conducted
between 1997 and 2007 in the Greater Milan area, Italy [22]. Briefly, cases were
230 patients (143 men and 87 women; median age 63 years, range 22-80 years),
admitted to major teaching and general hospitals in the study area with incident,
histologically confirmed stomach cancer (ICD IX, 151.0-151.9), diagnosed no
longer than 1 year before the interview, and with no previous diagnosis of cancer.
The control group included 547 patients (286 men and 261 women; median age
63 years, range 22-80 years) frequency matched to cases by age and sex (with a
ratio of 2:1 for men, and 3:1 for women), admitted to the same hospitals as cases
for a wide spectrum of acute, non neoplastic conditions, unrelated to known or
potential risk factors for stomach cancer and long term diet modification.

For both cases and controls, data were collected during their hospital stay by
centrally trained interviewers. The questionnaire included information on socio-
demographic characteristics, anthropometric measures, selected lifestyle habits, a
personal medical history and a family history of cancer. A satisfactorily
reproducible [23] and valid [24] food frequency questionnaire (FFQ) was used to
assess the patients” usual diet in the two years preceding diagnosis (for cases) or
hospital admission (for controls). The FFQ included questions on 78 f‘oods and
beverages, including a range of the most common recipes in Italian diet. Subjects

were asked to indicate the average weekly raw frequency and corresponding
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portion size (small, medium, large) of consumption for each dietary variable. To
estimate micro- and macro-nutrients, an Italian food composition database was

used, integrated with other sources, when needed [25, 26].

3.2 Statistical Analysis

I applied EFA analyses to derive nutrient-dietary patterns, based on a set of 28
selected micro- and macro-nutrients, and tested their validity throughout CFA
analyses. Statistical details of both procedures are described in Chapter 2.

Briefly:

Exploratory factor analysis

EFA was performed according to the PROC FACTOR procedure in SAS (version
9.1, SAS Institute), which uses principal components; uncorrelated factors were
derived using orthogonal rotation. Varimax rotation that consists in rotating the
axes to orientations that maximize Variances of the loadings within the factors,
while maximizing differences between the high and low loadings on a particular
factor. Varimax orthogonal rotation provided a relatively clear information about
which items correlated most strongly with a given factor. Factor scores generated
for each individual were also more interpretable because explained variances
among the factors do not overlap and are therefore independent of each other [11].
The factors are weighted combinations of nutrients, which best explain the
variance in the nutrient intake (the correlation matrix). Factor loadings are the
correlations between nutrients and the factor, and the individual factor scores are
estimates of factor relationship to the individual’s nutrient intake, and hence, the

factor scores reflect the values of each of the nutrients that identify the factors.
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Solutions from 2 to 6 factors were derived and rotated, and the scree plots and the
factors themselves were observed to see which solution was most meaningful.
Confirmatory factor analysis

To decide how many factors to extract, | compared and verified the different CFA
models that tested structures from 2 to 6 latent factors derived from EFA, in
which I included nutrients decided on a priori, on the basis of the magnitude of
their loadings in the previous EFA [17, 20]. Therefore, in contrast to EFA, I
decided to retain only nutrients with factor loadings above a defined cutupoint,.in
order to determine if a nutrient-dietary pattern could be represented and
interpreted only by a set of nutrient variables, i.e., those nutrients highly
correlated with the pattern. Therefore, each of the explored factors was tested in
separate confirmatory models, considering only those nutrients having factor
loadings greater or equal to [0.63| on a given factor. The contribution that a factor
gives to a nutrient’s sample variance is equal to the square of its loading on that
factor. If we choose é |0.63] cut-off, we expected a minimum contribution of the
factor on the nutrient’s variance of approximately 0.40 [13]. Thus, in CFA
models, the included nutrient items were allowed to load on only one factor, and
loadings were fixed at zero for the other factor. Since, through the exploratory
model with two factors, considering 0.63 as cut-off, there were nutrients having
large loadings with more than one factor, a cut-off of 0.70 was also considered.
Moreover, since the latent factors in CFA models were derived from orthogonal
EFA solution, in a first step I fixed to zero the factors’ covariance. Then, to

improve the parsimony and interpretability of a CFA solution, 1 carried out
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revised models, i.e. factors’ covariance was specified to estimate the relationship
between the latent dimensions.

In CFA, the observed correlation matrix, which takes into account the
correlations, means, and variances of all nutrients, is used to calculate confirmed
factor loadings. The maximum-likelihood parameter estimation method was used
to estimate the variances of residual terms for nutrient item variables, covariance
between factors, if any, and the estimated factor loadings.

The goodness of fit for a CFA is determined by using the comparative fit index
(CFY), the normed and non-normed fit indices (NFI and NNFI). By convention, a
CF1 20.90 and NNFI >0.90 indicate an acceptable fit [20]. The fit of the model is
also judged by the root mean square residual (RMR) and by the root mean square
error of approximation (RMSEA). By convention, RMR and RMSEA values close
to 0 indicates a good fit [20]. To assess the fit of a CFA model, the chi-square test
was also used. This test has as null hypothesis that the model fits the data. If the
model provides a good fit, the chi-square value will be relatively small, and the
corresponding p-value will be relatively large (above 0.05 and preferably closer to
1.00). However, with large samples and real-world data, the chi-square statistic is
very frequently signiﬁcant even if the model provides a good fit. This is
particularly true with CFA models, which tend to be more complex than simple
path analysis models. For these reasons, it is frequently appropriate to conclude
that a CFA model fits the data even if p is significant [20].

CFA was performed according to the PROC CALIS procedure in SAS software

(version 9.1, SAS Institute).
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3.3 Results and conclusions

Using the EFA, the cumulative percentages of variance explained by six-, five-,
four-, three-, and two-factor solutions approximately were equal to 84%, 80%,
75%, 69% and 63%, respectively (Appendix1-Appendix5). I excluded from CFA
models the six-factor solution, since it showed a pattern based only on a single
nutrient.

Diagram 1 shows the CFA model according the five-factor solution, in which only

those nutrients with factor loading >0.63 are included.
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Diagram 2 shows the CFA model according the four-factor solution, in which

only those nutrients with factor loading >0.63 are included.
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Diagram 3 shows the CFA model according the three-factor solution, in which

only those nutrients with factor loading >0.63 are included.
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Diagram 4.1 shows the CFA model according the two-factor solution, in which

only those nutrients with factor loading >0.63 are included.
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Since, through the two-factors solution considering 0.63 as cut-off, there was a
nutrient loading on both the factors, a cut-off of 0.70 was also considered.
Therefore, Diagram 4.2 shows the CFA model, in which only those nutrients with

factor loading >0.70 are included.

AnimaiP:méiﬁ .
Cholesterol
L Potassittm
" Satirated ity scids
i il Total folate
Linoteic acid .
. - Vitamin €
Cther polyuns. fatty acids
- i Total fiber
Sodiam
Soluble carbofiydsates
Pﬁow&ms ) |
" Zine

Diagram 4.2. Two-factors CFA model: nutrients with factor loading > 0.70.

42




In the following table, the goodness of fit indices from the different CFA models

considered, were reassumed.

Table 1. Goodness of fit indices for different confirmatory factor analysis (CFA) including nutrients
with explored factor loadings >0.63.

CFA Model Fy, RMR ChSQuare  paieps  CFI NNFI NFI
(p-value)
Five-factor solution
Factor covariance fixed 9270.39
to zero 11.95 0.41 (<.0001) 0.26 0.57 0.52 0.57
Factor covariance free 719798
to cstimate 9.28 0.11 (<.0001) 0.24 0.67 0.61 0.67
Four-factor solution
TFactor covariance fixed 9351.10
to 7610 12.05 0.41 (<.0001) 0.26 0.59 0.55 0.59
Factor covariance free 7741.16
to sstimate 9.98 0.09 (<.0001) 024 0.67 0.61 0.66
Three-{factor solution
Factor covariance fixed 5566.51
to zero 7.17 0.35 (<.0001) 0.26 0.65 0.60 0.65
Factor covariance free 4680.70
to estimate 6.03 .11 (<.0001) 0.24 0.71 0.65 0.70
Two-factor solution
Factor covariance fixed ; 695033
{0 2610 8.96 0.29 (<.0001) 0.23 0.66 0.62 0.66
Factor covariance free 6346.79 ‘
to estimate 8.18 0.09 (<.0001) 0.22 0.69 0.65 (.69
Two-factor solution *
Factor covariance fixed 2788.30
to 2610 3.59 0.31 (<.0001) 0.23 0.76 0.71 0.73
Factor covariance free 2279.07
to estimate 2.94 0.09 (<.0001) 0.21 0.80 0.76 0.80

*Nutrients with explored factor loadings >0.70 were also included.

Fu = Maximum-likelihood estimation of Fit Funetion.

RMR = Root mean square residual; RMSEA = Root mean square error of approximation.
CFI = Comparative fit index; NNFI = Non-normed fit index; NFI = Normed fit index.

The maximum-likelihood estimation of fit functions decreased from five- to two-
factor solutions, to reach a small value of 2.94 in the CFA model including two

~ factors with covariance among factors free to estimate. The chi-square test gives p-
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values highly significant for each CFA model, that 1eéd to reject that the models fit
the data. However, because of the problems with this significance test, these findings
by itself did not cause to reject the models.

Throughout the different CFA models with covariance among factors free to estimate,
the RMR values were around the 0.1 threshold for an acceptable fit. The RMSEA
values were around 0.2, somewhat higher than the threshold for an acceptable fit.
Considering the CFA models with covariance among factors fixed to zero, the CFI
values were 0.57 for the five-factor model, 0.59 for the four-factor one, 0.65 for the
three-factor one, and 0.66 for the two-factor model including nutrients with loadings
> (.63 and 0.76 for that including nutrients with loadings > 0.70. The CFI values for
the CFA models with covariance among factors free fo estimate, were higher
compared to those with covariance among factors fixed to zero, to reach 0.80 for the
two-factor model including nutrients with loadings > 0.70, close to the 0.90 threshold
for an acceptable fit. The NFI values were very similar than those of the CFI, while
the NNFI values were lower,

Finally, all confirmed standardized coefficients, i.e. factor loadings, from CFA
models, ranged from 0.5 to 1. The associated f tests (greater than 3.291 with p<0.001)
indicated that the loading of each nutrient was significantly different from zero (data
not shown).

It could conclude that the two-factors model was confirmed with moderately
satisfactory values of goodness of fit indices (around 0.8, quite close to the 0.90

threshold for an acceptable fit). From this solution, it could emerge that the diet of the
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study population could be characterized by two major profiles. The first confirmed
dietary pattern, named “Animal protein”, that had the greatest loadings on animal
protein, cholesterol, saturated fatty acids, linolenic acids, other polyunsaturated fatty
acids, sodium, phosphorus and zinc. The second one, named “Vitamins and fiber”,
had the greatest loadings on potassium, total folate, vitamin C, total fiber and soluble
carbohydrates. These two dietary patterns are consistent with those of previous
studies on gastric cancer [27-32], but also on cancers of other sites [33-36].

Nevertheless, results from all CFA models are not satisfactory. For this reason, to
better understand the behavior of the goodness-of-fit indices, results from CFA

applications on simulated data will be shown in the next paragraph.

3.4 CFA application on simulated data

In this paragraph, I will present results from CFA models applied on simulated
datasets, in order to better understand the behavior of the goodness-of-fit indices
computed by this statistical technique.

I simulated a new dataset characterized by a structure generated “ad hoc™: 1 defined
24 variables (X1-X24), such as each variable was highly correlated only to one factor
and a normally diétributed random-error component. I defined four orthogonal factors
in this way: the first factor was correlated to the variables from X1 to X9, the second
one to those from X10 to X16, the third one to those from X17 to X21, the fourth one
to those from X22 to X24. For this dataset, I generated 5,000 and 10,000 random

samples with sample sizes of 100, 500, 750 and 1,000, respectively, in order to better
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understand the behavior of the goodness-of-fit indices when the sample size increases.
I tested confirmatory four-factor models in each of the 8 datasets. For each CFA
model, a set of goodness-of-fit indices was computed. Moreover, the proportion of
significant parameters was calculated by each factor, among the 8 datasets. |
performed these simulations (Appendix 6) with the SAS software (version 9.1, SAS

[nstitute).
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Trbie 2. Effect of saniple size on selected goodness-of-fit mdices,
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=41 0 0 g 0 G 0 & 0
GEI
<.90 100 0 0 ¢ 166 ¢ 0 0
0.90-0.95 g (.3 1] 0 ¢ 8.5 ¢ ¢
=083 0 9.5 100 106G It 2.5 100 100
AGFL
4,80 100 Q 0 g 130 0 g 0
090095 0 07 ¢ & ] 307 G 0
=093 0 69.3 L] 100 0 §9.3 140 106
Prohabiiity of Close Fit
<090 449 G G 0 458 o 4] &
060083 15.1 0 4 a 144 0 0 g
>0 0% 40.0 100 100 100 30,8 100 100 160
Bentler's CFI
<« (.90 13.53 3.7 0.4 g 736 3.6 .3 G
090093 6.1 177 8.3 3z 6.1 7.8 2.4 3.3
=095 0.4 786 891.2 968 03 786 O3 987
NNFI
<490 747 3.1 0.3 ¢1 4.7 50 4.6 a.1
0.90-0,935 53 184 10.9 4.8 34 188 0.7 4.3
20,03 6.0 763 28.6 953 159 6.4 88.7 95 4
NF1
<090 O 100 100 100 166 E00 106 R
GR0-085 0 0 0 0 G G 0 0
> 4,95 0 ] 0 0 ¢ G 4] 0

EMR = Root miean square residual; RMSIEA = Root mean sqouase eror of approsimanon; GF=Goodness-of-fic
index:; AGFFAdiusted GFL CFL= Comparative fit fodex;, NNFL = Non-nosmed fiv index: NF = Normmed it index.

Table 2 shows the effect of sample size on selected goodness-of-fit indices,
throughout the 8 simulations. The Chi-square test gave p-values >0.05, that lead to do
not reject that the models fit the data, in 69.7% of the 5,000 samples with 100

observations, 92.3% with 500, 93.4% with 750, to reach a proportion of 94.3% with
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1,000 observations. The 100% of the 5,000 samples, from 500 to 1,000 observations,
showed values of RMR‘. <0.1. Also the GFI, AGFI, the Probability of Close Fit, CFI,
NNFI were close to 1, leading to confirm that the tested models fit the data, in
particular when the sample size increases from 500 to 1,000. Similar results were

obtained when 10,000 samples were considered.

Table 3. Effect of sample size on the proportion of significant parameters by each factor.

2.000 samples 10,000 samples
120 ohs. 500cobs. 750 0bs. 1000 obs. 198 cbs, S00obs, 780 obs.  1.0G) obs.

%% b % % % %4 %4 90
Latent Factor 1
] 3.4 - - - 34 - - -
i 1.2 - - - 1.3 - - -
2 3.6 - - - 3.7 - - -
3 il - - - 9.9 - - -
4 181 - - - 193 - - -
3 237 0.02 - - 231 0.01 - -
5 211 (.2 - - 207 0.2 - -
7 131 2. 0.2 .02 122 2.6 0.2 0.01
kS 4.5 21.6 4.8 098 4.4 21.6 4.6 0,90
2 1.1 75,8 64,9 09.02 0.9 75.6 95,2 0006
Latent Factor 2
D 0.8 - - - 3.9 - - -
1 0.3 - - - 0.3 - - -
2 1.1 - - - 1.1 - - -
3 A7 - - P 8.0 - - -
4 160 - - - 17.3 - N -
3 32.6 - - - 32.1 - -
G 301 2.0 0.3 - 209 235 0.2 -
7 12.5 974 8.7 100 12.4 97.5 89,8 100
Lateni Factor 3
o} 18.8 0,04 - B 180 0.02 - “
1 8.7 - - - 8.5 - - -
2 4.6 - - - 143 0.G2 - -
3 26.1 4.2 -« - 137 0.2 - -
4 224 4.3 a3 (.02 223 4.2 8.3 001
3 0.3 5.8 86,7 20,08 2.9 23,6 9.7 oD .99
Latent Factor 4
0 183 - - - 18.4 0.61 - -
H . - . - 3.7 - B -
2 7.3 - - - 7.3 - - -
3 704 100 100 100 70.8 5000 160 100

Table 3 shows the effect of sample size on the significance of the estimated confirmed

factor loadings, in terms of proportion of significant factor loadings by each factor,
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among the 8 simulations. Also the proportion of significant parameters increased
systematically as sample size increased from 500 to 1,000.
In summary, the simulations showed that the goodness-of-fit indices improve

systematically as sample size increases.

49



4. DISCUSSION

In my PhD thesis, I studied factor analyses methods in nutritional epidemiology.
Initially, T applied EFA on a set of 28 nutrients in a case-control study of gastric
cancer, conducted in northern Italy, to reduce a set of factors that summarizes and
describes the structural interrelationships among the items in a concise and
understandable way.

The choice of number of factors to retain is influenced by three major statistical
criteria [11]: factor eigenvalue greater or equal to 1, scree plot construction and factor
interpretability. The first mentioned criterion is to be considered with due caution,
because the researcher may over or under-estimate the correct number of factors. For
example, if there are large numbers of items in the data set, there will also be large
numbers of eigenvalues that satisfy this criterion. Nevertheless, there is no precise
solution to determining the number of factor to extract. Given the same data set, a
team of researchers might arrive at very different solutions,

CFA has among its objectives overcome the ambiguity because it is designed to test a
hypothesis about the relation of certain hypothetical common factor variables, whose
number and interpretation are given in advance, to the observed variables [17]. To
decide how many valid factors to retain, I compared and verified the different CFA
models that tested structures from 2 to 6 latent factors derived from EFA, in which 1
included nutrients decided on a priori, on the basis of the magnitude of their loadings

in the previous EFA, I excluded from this analysis the six-factor solution, since it
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showed a pattern based only on a single nutrient. Throughout the comparison among
the different solutions from 2 to 5 latent factors, with the help of the application of
CFA, the two-factors model was confirmed with moderately satisfactory values of
goodness of fit indices around 0.8,. close to the 0.90 threshold for an acceptable fit.
Nevertheless, results from CFA models are not satisfactory.

Subsequently, in order to better understand the performance of this statistical
technique, I tested and compared results from CFA applied on simulated datasets
characterized by a structure “ad hoc”, (such as each variable was highly correlated
only to one factor, for a total of four orthogonal factors). In this case, I verified that
CFA technique provides satisfactory results, in particular when the sample size is at

least of 500, although limitations regarding some goodness-of-fit indices remain [37].

In general, CFA, allowing the researcher to test the hypothesis that a relationship
between the observed variables and their underlying latent construct exists, has the
fundamental advantage over EFA in that it allows to control every aspect of the model
specification (e.g., generate an unstandardized solution, specify correlated errors,
place various constraints on the solution, such as fixing cross-loadings to zero or
holding model parameters to equality). This method is more rigorous than EFA
because the researcher is able to create a pattern using prior theory and therefore
requires fewer subjective decisions. CFA is an intuitively appealing method because it
can be based in theory and also reduces some of the subjectivity involved in

explorative procedures [18]. Unfortunately, CFA cannot confirm that this is the best
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ﬁt from the infinity of possible models that might have been tried [17] and it cannot
test the degree of model agreement. On the other hand, there are several limitations.
As emerged by the application described in the previous chapter, goodness-of-fit
indices did not demonstrate satisfactory values. Several causes may have reduced
these values, among these: 1) a relatively large number of indicator variables, i.e.,
nuirients, 2) large residuals and 3) a part of not explained variance. The large number
of indicator variables often results in large y* values that make it difficult to fit the
model with data [20]. Another reason for the less-than-perfect fit of the model is
measurement error, which remains a problem in all dietary studies [38] even when a
validated dietary instrument is used [24].

In conclusion, using confirmatory factory analysis together with exploratory factor
analysis overcomes major methodological problems and subjective aspects, in
determining a valid latent factor structure under a set of observed variables.
Moreover, a different use of the CFA could be particularly useful. For example if the
confirmed factors were tested in a different study as true @ priori factors: the factors
identified in one group could be applied in a different group using CFA based on the
same nutrienis to compute scores. Hence, the factor scores could be acceptable and
robust as markers of nutrient intake pattern on group levels and may prove useful in
studies of diet—disease relationships. Nevertheless, until factor analysis gains more
experience in nutrition, it will be difficult to define valid criteria for a good fit in this

discipline and methodologies for improving fit.
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APPENDIXES

Appendix 1. Factor loading matrix', explained variances from principal component factor analysis: six-
factor solution.

Nutrient Facior1 Factor2 Factor3 Factor4 Factor3 Factoro
Animal protein 0.10502  0.68759 021256  0.25475 034771 0.09762
Vegetable protein 0.35223  0.16516  6.85339 024491  0.0834¢  0.06107
Cholesterol 0.05586 057604  0.28965 030705  (0.45487  0.24816
Saturated fatty acids 0.11270  0.63723  0.27658  0.57198  (.23493 0.05116
Monocunsaturated fatty acids 0.25643  0.319302 023244 075703 0.24841 0.06773
Linoleic acid 0.1195%  0.21927 024680  0.78915  0.18683 0.05964
Linolenic acid 0.23023  0.36882 023537  6.77327 020624  0.08377
Other polyunsaturated fatty acids 0.01851  0.13793  0.12848  0.36882  0.8264%  0.09173
Soluble carbohydrates 0.65693  0.45358  0.13892  0.02088  0.10479  -0.03732
Starch 0.06963 022725 690008  0.22872  0.06051 $.06245
Sodium 0.01334  0.50491  0.74018  0.19190 005780  0.06974
Calcium 031012  0.84878  0.07725  0.19184¢  0.03133  -0.04107
Potassium 0.75503 035648 033151  0.18836  0.29519  0.03955
Phosphorus 0.35475  0.67289 041055 025878 033575  0.10975
fron 0.47551  0.22762 047141 (025158 036043 0.29297
Zinc 0.28008  0.50350  0.50890  0.31176 044959  0.18003
Thiamin ' 0.48918%  0.50743 044647 023853  0.27459  0.08700
Riboflavin 0.43996  0.68654  0.18426  0.16570  0.18227  0.40464
Vitamin B6 0.58447 037243 037435 023912 044720  0.14667
Total folate 0.68997 027961 030211  0.23785  0.13045  0.38734
Niacin 038952  0.22753 038729  0.16020  0.63080  0.24236
Vitamin C 0.8548%  0.09385 -0.07058 0.1083%0  0.10136  0.00076
Retinol 0.05651  0.08796¢  0.05077 0.06168  0.11281 0.94883
Beta-carotene equivalents 0.65635  0.04631  0.01306 027385  -0.0089%  0.07978
Lycopene 0.27442 .17580  0.48346  0.25387 035562  -0.11103
Vitamin D 0.10213  0.18948  -0.03353 0.10434  0.85491  0.00929
Vitamin E 0.49876  0.08735 0.17857 0.78877  0.19205  0.02085
Total fiber 0.83742  0.09885  0.34835  0.14993  0.01773  -0.03179
Proportion of variance explained (%) 19.36 16.77 15.27 13.93 12.80 5.60

Cumulative variance explained (%) 19.36 36.13 51.40 65.33 78.13 $3.73

"Loadings greater or equal to 0.63 (in absolute value) were shown in bold typeface.
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Appendix 2. Factor loading matrix', explained variances from principal component factor

analysis: five-factor solution.

Nutrient Factor1 Factor2? Factor3 Factor4d Factor5
Animal protein 0.10635  0.63208  0:20554 032300  0.56646
Vegetable protein 036358  0.14535  6.88319 023999  0.10550
Cholesterol 0.06828  0.35365  0.29738  0.31680¢  0.52948
Saturated fatty acids 0.12674  0.62206  0.28398  0.58269 023882
Monounsaturated fatty acids 0.27381 (.19260 0.23784 0.74784 0.22140
Linoleic acid 0.13914 022684  0.25638  0.,77135  0.16077
Linolenic acid 0.25031 0.37324 024619  0.75494 0.19726
Other polyunsaturated fatty acids 0.0141%  0.06754  0.10684 047131 0.78228
Soluble carbohydrates 0.65392 041843 0.12942  0.05219  0.10995
Starch 0.68210 021092 090401 022359  0.08899
Sodium 0.02536  0.48851 0.74805  0.18956  0.10468
Calcium 031414  0.82757  0.08114  0.21103 0.04994
Potassium 8.75615 0.31276 0.31956 0.22353 0.30140
Phosphorus 036216  0.63481 041003 028755 037803
fron 049022 0.2154] 047703 022972 0.44749
Zinc 028988  0.46560  0.50920  0.33772 0.49794
Thiamin 0.49585  0.4723% 044343 026059  0.30613
Riboflavin 0.46203  6.70572 021004  0.09342  0.35277
Vitamin Bé 0.58928 032909  0.36624  0.27160  0.47977
Total folate 471318  0.30570  0.32301 0.15054  0.27385
Niacin 039304  0.17807 037747 020204  0.68180
Vitamin C 0.85358  0.07636  -0.08054  0.11568  0.09404
Retinol 0.10320 020188  0.11537  -0.16788  0.46614
Beta-carotene equivalents §.66620 0.05954 0.01748 0.23456 0.00978
Lycopene 026847  -0.23272  0.45826 0.33118 0.26671
Vitamin D 0.08576  0.0964%  -0.06646  0.24513 0.79487
Vitamin E 0.51485  0.08817  0.18021 0.77677  0.14403
Total fiber 483963 007759 033896  0.15357  0.00744
Proportion of variance explained (%) 19.93 15.50 15.32 14.61 14.46

Cumulative variance explained (%) 19.93 3543 50.73 65.36 79.82

"Loadings greater or equal 1o 0.63 (in absotute value) were in bold typeface.
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Appendix 3. Factor loading matrix’, explained variances from principal component factor
analysis: four-factor solution.

Nutrient Factor1 Factor? TFactor3d  Factor4
Animal protein 0.80333 0.10154 0.40815 0.22550
Vegetable protein 0.14804  0.38682 0.29293 0.80321
Cholesterol 0.71851 0.06580 0.41052 0.30168
Saturated fatty acids 0.56207  0.15062 0.49742 0.41443
Monoungaturated fafty acids 0.20189 0.28%964 0.72480 0.28199
Linoleic acid 0.18528 (116115 0.71117 0.33357
Linolenic acid 0.32586  0.27308 0.68115 0.34333
Other polyunsaturated fatty acids 0.48012  -0.01790  0.74702 -0.04280
Soluble carbohydrates 0.39883 0.66117 0.01810 0.16741
Starch 0.18438  0.10982 0.2584¢6 0.88278
Sodium 0.41425  0.05526 0.16226 0.80298
Calcium 0.65450  0.34035 0.03274 0.27707
Potassium 0.41506  0.75731 0.29003 0.27915
Phosphorus 0.69606  0.37244 (0.31218 (.44890
Iron 042188  0.48436 0.39104 0.37379
Zine 0.63032  0.29195 0.45272 0.47479
Thiamin 0.53095 0.50584 0.29657 0.44893
Riboflavin $4.76249  0.46568 0.10243 0.26141
Vitamin B6 0.52849  0.58265 0.40886 0.25149
Total folate 0.40016  0.71418  0.21604 0.28151
Niacin 0.54013  0.363873 0.46978 0.21047
Vitamin C 0.12224  0.84836 0.12649  -0.1090%
Retinol 046556  0.07790 0.02563 0.00432
Beta-carotene equivalents 0.03823 8.67176 0.20207 0.02329
Lycopene -0.05420  0.26433 0.49406 0.31707
Vitamin D 0.54019  0.04342 0.53723 -0.22896
Vitamin E 007509 0.53126 0.73636 0.21555
Total fiber 0.06030  0.85101 0.15368 0.30607
Propertion of variance explained (%) 21.67 20.30 18.02 15.10

Cumulative variance explained (%) . 21.67 41.97 59.99 75.09

"Loadings greater or equal to 0.63 (in absolute value) were shown in bold typeface.



Appendix 4. Factor loading matrix', explained variances from principal component factor
analysis: three-factor solution.

Nutrient Factor1 Factor2  Factor3
Animal protein ¢.82616  0.36030 0.18082
Vegetable protein 0.08790  0.86283 0.38626
Cholesterol - 0.74592 0.43109 0.13520
Saturated fatty acids 0.63200 0.56346 0.20196
Monounsaturated fatty acids 0.46268 0.30407 0.30724
Linolsic acid 0.44390  0.54655 0.17671
Linolenic acid 0.53303 0.55080 0.30201
Other polyunsaturated fatty acids 0.79433  0.20421 0.03595
Soluble carbohydrates 0.24853  0.18202 0.69520
Starch 0.11062  0.92428 0.11278
Sodium 027173 0.82217 0.08293
Calcium 047706 029133 0.40018
Potassium 037274 0.37539 0.79182
Phosphorus 0.62074  0.54368 0.43459
Iron 043777 0.49327 0.51980
Zinc 0.64129  0.61004 0.34811
Thiamin 046340  0.53732 0.55037
Riboflavin 0.59422  0.30240 0.53651
Vitamin B6 0.54197  0.42436 0.63008
Total folate 0.32563 0.35341 0.74697
Niacin 0.61791 0.36388 0.42035
Vitamin C 0.10980  -0.04914  0.83897
Retinol 039182  0.02275 0.12499
Beta-carotene equivaients 0.07038 0.09605 0.67267
Lycopene 0.12656 045910 0.25406
Vitamin D 0.76518  -0.03640  0.10544
Vitamin E 035380  0.44352 0.53594
Total fiber , -0.00587  0.35209 0.84763
Proportion of variance explained (%) 24.00 22.64 22.64

Cumulative variance explained (%) 24.00 46.64 69.28

"Loadings greater or equal to 0.63 (in absolute value) were shown in bold typeface.



Appendix 5. Factor loading matrix', explained variances from principal component factor
analysis: two-factor solution.

Nutrient Factor1  Factor 2
Animal protein 0.86456  0.19663
Vegetable protein 0.55794  0.53408
Cholesterol 0.84528  0.16966
Saturated fatty acids 0.82825  (.26630
Monounsaturated fatty acids 0.65035  0.36831
Linoleic acid 0.66907 024924
Linolenic acid | 0.73485 036780
Other polyunsaturated fatty acids 0.75576  0.02737
Soluble carbohydrates 0.26194 6.70139
Starch 0.63054  0.27592
Sodium §.70007  0.21839
Calcium 0.52939 041913
Potassium 047010 0.82493
Phosphorus 0.79226  0.49147
Iron 0.61006  0.57625
Zine 0.85383  0.41777
Thiamin 0.65479  0.61293
Riboflavin 0.62097  0.54815
Vitamin B6 0.64343  0.66560
"Totat folate 0.42221 0.77956
Niacin 0.68408  0.44426
Vitamin C 0.00266  0.82711
Retinol 031944  0.10422
Beta-carotene equivalents 0.06951 0.67361
Lycopene 0.35766 0.32718
Vitamin D 0.58487  0.05253
Vitamin E 0.51332  0.58805
Total fiber 0.14910  0.89718
Proportion of variance explained (%) 37.04 26.11
Cumulative variance explained (%) 37.04 63.15

"Loadings greater or equal to 0.63 (in absolute value) were shown in bold typeface.



Appendix 6

SAS Program for the simulations

Flet s=12101951;

DATA CASUALI;
DO CAMP=1 TO 5000;
DO CAS=1 TO 100;

x1=2.464%rannor |
x2=2,387*rannor (
x3=2.245*rannor {

{

&s)

&s)

&s8);
xd=2 Q87*rannor{&s);
y1ll=x1+1,97*2.464*rannor
y12=x1+2.38*2 . 464*rannor(
y13=x1+2,82*2 . 46d*rannor(
y14=x1+3.04*2 . 464*rannoxr {
y15=x1+3.45*2.464*rannor (
y16=x1+3,70*2.464*rannor |
y17=x1+4.38*2 464*rannor (&
y18=x1+4.60*2.464*rannor{&

v19=x1+4.60%2,464*rannor (&

y21l=x2+1.49*2.387*rannor {&s);
y22=x2+1.52%2.387*rannor (&s)
y23=x2+2 43*%2 387 *rannor (&s);
y24=x2+2.86%2.387*rannor (&3);
y2h=x2+3.28%2.387*rannor (&38);
y26=x2+3.38%2.387*rannor (&s);
y2T=x244 . 17*%2 . 387*rannor (&3) ;

r

¥

y31l=x3+2.53*2, 245*rannor (&s);
y32=x 342 . 84%2 248 *rannor (&s8) ;
y33=x3+2 ,78*2, 248*rannor (&s8) ;
)i
)i

y34=x3+2,.89%2.248*rannor (&s
y35=x3+3,29%2.245%rannor (&=

¥

r

ydl=x4+1.27%2.057*rannor{&s) ;
y42=x4+1,97*2.057*rannor {&s) ;
y43=x4+1.987*2. 057 rannor {&s);

QUTPUT;

END; END;
RUN;

proc sort data=casuall; by canp; run;



proc calis data=casuvali corr residual pall modification
outram=provaram;

by camp;

linegs

vii = pl £f1 + el,
ylz = p2 £1 + eZ,
vl3 = p3 £1 + e3,
vid = pd £1 + e4,
y1l5 = ph £f1 + e5,
yie = p6 fl + e6,
yl7 = pl £1 + &7,
y1l8 = p8 £l + e8,
y1l9 = p9% £1 + &9,
y2l = pl0 £2 + el0,
v22 = pll £2 + ell,
y23 = pl2 £2 + 12,
y24 = pl3 £f2 + el3,
v25 = pld £2 + eli4,
y26 = plbh £2 + el5,
va? = ple £f2 + el6,
v3l = pl7 £3 + el?,
y32 = pl8 £3 + el8,
y33 = plo £3 + el9,
v34 = p20 £3 + 20,
y35 = p2l £3 + e21,
ydl = p22 £4 + e22,
yd2 = p23 £4 + e23,

vd3 = p24 4 + e24;

std
el-eZi=varl-varzd,
fl=1, f2=1, f£3=1, f4=1;
cov

fl £f2 =
£1 £3 =
£1 £4
£2 £3
f2 £f4 =
£f3 f4 =

[
[N e elele o)

- =™

-

var
yil-y19 y2l-y27 y31~y35 ydl-y43;

ran;
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