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SOMMARIO 
 

Il cuore è il primo organo a formarsi e a funzionare durante lo sviluppo embrionale, 
e tutti gli eventi successivi nella vita dell'organismo dipendono dalla sua funzione. 
La morfogenesi del cuore e lo sviluppo delle diverse linee cellulari cardiache sono 
processi molto complessi che si basano sull’interazione di network di fattori di 
trascrizione che attivano geni cardiaco-specifici. Mutazioni dei fattori di trascrizione 
cardiaci, dei geni che li regolano e dei geni che questi controllano, risultano in molti 
difetti cardiaci, evidenziando l’importanza dello studio delle basi molecolari alla 
base di questi processi. 
Le alterazioni chimiche a carico del DNA e degli istoni, note come modifiche 
epigenetiche, sono sempre più studiate per la loro importanza durante 
l’organogenesi. Recentemente diversi studi hanno riportato l’importanza delle 
modifiche istoniche durante il differenziamento cardiaco in vitro, distinte 
conformazioni della cromatina sono state associate all’espressione di geni 
importanti per il differenziamento cardiaco. Tuttavia, nonostante il crescente 
interesse a riguardo, il ruolo degli enzimi che catalizzano queste modifiche rimane 
ancora poco compreso e in modo particolare durante la cardiomiogenesi in vivo. 
In questo studio è stato dimostrato che l’espressione della metiltransferasi DOT1L 
porta a un cambiamento della distribuzione sul genoma della dimetilazione di 
H3K79, e che l’azione di questo enzima è fondamentale per la corretta 
espressione dei geni cardiaci durante il differenziamento dei cardiomiociti. 
L'espressione di DOT1L aumenta nei cardiomiociti allo stadio embrionale e 
neonatale rispetto a cellule staminali embrionali indifferenziate e a cardiomiociti 
adulti, inoltre, H3K79me2 correla con l'attivazione trascrizionale caratteristica dei 
cardiomiociti durante il differenziamento. Inoltre i loci dei geni espressi solo in fasi 
tardive di sviluppo presentano un arricchimento di questo marker attivatorio anche 
nelle fasi precoci dello sviluppo, suggerendo un ruolo per H3K79me2 nella pre-
attivazione di questi geni. I risultati emersi da questo studio dimostrano come la 
metilazione degli istoni, e in particolare H3K79me2, regola la trascrizione genica 
nello sviluppo di cardiomiociti e che DOT1L svolge un ruolo centrale in questo 
processo. Oltre ad aumentare la comprensione dell’epigenetica nel controllo dello 
sviluppo cardiaco, questa mappa genomica di H3K79me2 potrebbe portare 
all'identificazione di nuovi geni e a comprendere nuovi meccanismi di regolazione 
della trascrizione coinvolti nel differenziamento cardiaco. 
Nel complesso questo studio illustra l'importanza della regolazione epigenetica 
nelle prime fasi dello sviluppo al fine di stabilizzare l’espressione genica cardiaca e 
di delineare il destino di una cellula. È stata aggiunta un’informazione importante al 
complesso processo di attivazione trascrizionale dei cardiomiociti. Per la prima 
volta è stata definita una mappa ad alta risoluzione di H3K79me2 nei cardiomiociti, 
che potrebbe essere il punto di partenza per prevedere nuovi pathway 
trascrizionali durante il differenziamento cardiaco, nonché potrebbe fornire 
l'opportunità per identificare nuovi geni utili per comprendere nuovi programmi di 
sviluppo e per identificare meccanismi alla base dei molti difetti congeniti cardiaci e 
di malformazioni dello sviluppo ancora sconosciuti. 
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ABSTRACT 
 

The heart is the first organ to form and function in the embryo, and all subsequent 
events in the life of the organism depend on its function. Cardiac lineage 
specification and subsequent morphogenesis of the early developing heart are 
complex processes that rely on networks of interacting DNA-binding transcription 
factors and targeted activation of cardiac-specific genes. Mutations in cardiac 
transcription factors, the genes they regulate and the genes that regulate them, 
result in many inherited congenital heart defects and point to the importance of 
understanding the molecular basis behind these processes. 
Chemical alterations on DNA and histones, known as epigenetic modifications, are 
being increasingly studied for their importance in organogenesis, such as that of 
the heart. Recently, a dynamic landscape of histone modifications has been 
reported to occur during cardiac differentiation in vitro: distinct chromatin patterns 
were associated with stage-specific expression of genes functionally relevant to 
the heart. However, despite the growing number of reports, the role of the 
enzymes that catalyze these modifications remains poorly understood in cardiac 
differentiation in vivo. Here, we show that a definite temporal expression pattern of 
DOT1-like histone H3 methyltransferase (DOT1L) drives a transitional pattern of 
H3K79 di-methylation in the genome of differentiating cells, and that the function of 
this enzyme is obligatory for the correct differentiation of cardiomyocytes. In fact, 
we found that expression of DOT1L was increased in ex vivo embryonic and 
neonatal cardiomyocytes with respect to undifferentiated embryonic stem cells and 
adult cardiomyocytes; moreover, H3K79me2 was highly correlated with 
transcriptional activation in differentiating cardiomyocytes. We also found that the 
loci of genes expressed only in later stages of development were enriched in this 
activating mark, suggesting a role for H3K79me2 in the pre-activation of genes. 
Our results demonstrate how histone methylation, and in particular H3K79me2, 
regulates the transcription in developing cardiomyocytes and the central role 
played by DOT1L in this process. Apart from the increase in our understanding of 
how epigenetics controls development, our genome-wide data on H3K79me2 
could lead to the identification of novel genes and transcriptional regulatory 
networks involved in cardiac differentiation.  
Altogether our study illustrates the importance of epigenetic regulation early in 
development to delineate the fate of a cell and in particular the role of methylation 
of H3K79 in cardiomyocytes stabilizing the signature for cardiac gene expression. 
Furthermore, this study add an important information to the intricate process of 
transcription activation that make a cardiomyocyte; for the first time we built an 
high resolution map of H3K79me2 in cardiomyocytes that could be the starting 
point to predict novel transcriptional regulatory networks during cardiomyocyte 
differentiation, as well provide the opportunity to identify novel genes that might be 
informative to understand developmental regulatory programs. Indeed we shed 
light on an additional fundamental enzyme involved in defining the epigenetic code 
associated with the complex process of heart development and establish a 
platform useful to identify new mechanisms underlying many congenital heart 
defects and cardiac developmental malformations. 
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1. INTRODUCTION 

1.1 Heart Development 
The heart is the first organ to form and function in the embryo, and all subsequent 
events in the life of the organism depend on its function. Abnormalities in heart 
formation, the most common form of human birth defects, afflict nearly 1% of 
newborns, and their frequency in spontaneously aborted pregnancies is estimated 
to be tenfold higher [1, 2]. The proper formation and function of the heart are 
essential for embryonic survival, and defects in heart formation cause significant 
morbidity and mortality in prenatal or postnatal life. 
During the past decade, our understanding of the development of the embryonic 
heart has been improved by a number of discoveries. This concerted effort has 
produced ground breaking achievements, allowing us to have nowadays a better 
understanding of the genetics of congenital heart disease, innovative genetic tests 
for diagnostic purposes and a much deeper comprehension of critical events and 
signal transduction pathways involved in the cardiogenic process [3, 4]. 

1.1.1 Anatomy of the heart during development 
The developing heart arises from lateral plate mesoderm early in embryogenesis 
and begins to emerge shortly after gastrulation. The mesoderm, one of the three 
germ layers, can differentiates into many discrete cell types and organs, including 
bone, blood and the three types of muscle: smooth, skeletal and cardiac. 
Following rapid specification and initiation of differentiation into the specific cell 
types that will form the heart, a series of complex morphogenetic events ensues.  
From an anatomical perspective, it is now well established that pools of progenitor 
cells arising from at least four distinct embryonic populations orchestrate on a 
series of finely regulated migratory events to give rise to what is the first functional 
organ in the mammalian embryo [3, 5]. 
Following gastrulation, cardiac progenitors reside within the anterior lateral 
mesoderm in a bilaterally symmetrical region to form “the cardiac crescent”. During 
ventral morphogenesis, the most lateral portions of the cardiac crescent are 
brought together at the midline to form “the linear heart tube” (Figure 1). At this 
stage the heart begins its slow peristaltic contractions that will later become more 
rhythmic and regular. The cardiac progenitors that merge in the ventral embryonic 
midline to form the linear heat tube can be generally divided into two distinct fields: 
the first heart field (FHF) that will give rise to the atria and to the left ventricular and 
the second heart field (SHF) that will generate the outflow tract, the right ventricle, 
the inter-ventricular septum and part of the atria [6]. Consecutive mitotic rounds 
from the second heart field progenitors generate new cardiac progenitors that are 
permanently added to the venous and arterial poles of the heart. As a 
consequence of this permanent cell migration, localized proliferation and stimuli 
resulting from blood flow, the heart tube starts to undergo a rightward looping 
process that constitutes the first step for chamber morphogenesis. This looping is 
concomitant with the establishment of an anterograde unidirectional blood flow and 
immediately precedes the incorporation of other two sources of cardiac progenitors 
– the epicardium and the cardiac neural crest [7]. 
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The following processes involve the establishment of the atrial and ventricular 
septa and the development of bi- and tri-cuspid valves from the endocardial-
derived mesenchymal cushions that originated the totally divided four chambers 
(two atria and two ventricles). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 - Heart Development. 
 
 
 
At this stage cardiac development exits a cycle dominated by the occurrence of 
critical morphogenic events to enter a maturation stage in which the coronary 
circulatory system is formed and in which the cells conclude their differentiation 
into the lineages they had previously committed to [8]. 
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1.1.2 Lineage specification and cardiac cell types 
Heart development is an elaborate process requiring cell specification, cell 
differentiation, cell migration and interactions among cells from several embryonic 
origins. 
Cellular differentiation involves a complex sequence of events that progressively 
commits a cell to a defined lineage. It is now clear in fact that precursor cells in the 
embryo have the potential to differentiate into the various types of cardiac cells, 
however the potential of differentiate into various types of cells become 
progressively restricted after lineage decisions. The specification of the 
cardiovascular lineages involves a transition through a sequence of increasingly 
restricted progenitor cells, proceeding from a pluripotent state to mesoderm and 
then to cells committed to cardiovascular fates [9]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 - Cardiac lineage specification 
 
 
In the mesoderm lineage, decreased activity of pluripotency factors is 
accompanied by increased activity of lineage-specific transcriptional activators 
such as Brachyury T and MESP [10]. 
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Mesodermal cells have the potential to differentiate into hematopoietic lineages, 
endothelial cells, epicardial cells as well as bipotential myogenic progenitors. 
Epicardial cells constitute the outermost protective epithelial layer of the heart, 
dividing the myocardial wall from the fluid filling the pericardial cavity. In embryonic 
development epicardial cells originate from the mesenchyme of the septum 
transversum. After creating a continuous monolayer of epithelial nature, a subset 
of these epicardial cells undergoes epithelial-mesenchymal transition (EMT) and 
invades the myocardial wall, contributing with several distinct cellular identities to 
the developing cardiac tissue: endothelial cells, vascular support cells (pericytes 
and vascular smooth muscle), fibroblasts, and, more controversially, a subset of 
cardiomyocytes [11-13]. Epicardial cells are readily distinguishable from the 
adjacent myocardial cells as they exhibit strong expression of epicardial-
characteristic genes: TCF21 or Epicardin, WT1 and Tbx18. 
However, cardiac progenitor cells segregate into two distinct populations referred 
to as the primary and secondary heart fields that express unique markers: Isl1 is 
involved in the differentiation of secondary heart field cells, whereas the Nkx2.5 is 
a marker of both heart fields. The pool of potential cardiac progenitor cells are 
involved in continual maintenance of the heart by differentiating into several types 
of cardiac cell including endothelial cells, vascular smooth muscle cells, conduction 
cells and ventricular and atrial cardiomyocytes. 
Cardiac conduction cells develop and form the cardiac conduction system of the 
heart. Electrical impulses are propagated through the heart by the cardiac 
conduction system and by direct cell-cell coupling of cardiac myocytes. Important 
component of conduction system include Sinoatrial Node, Atrioventricular Node 
and Purkinje fibers. These cells derive from mycardial progenitor and are 
specialized myocardial fibers, modified cardiac myocytes, not neurons, which 
conduct an electrical stimulus that enables the heart to contract [14]. 
Even if non-myocytes cell type observed in the heart (fibroblasts, endothelial cells, 
pericyes, vascular muscle cells) make up over 75% of the total number of the cells 
in the heart, approximately 75% of the total volume of the heart in mammals is 
make up of cardiac myocytes. Unlike skeletal muscle cells with a analogous, 
striated appearance, cardiac myocytes have widespread, branching 
interconnections. Myofilaments are organized into sarcomeres, the fundamental 
contractile unit of striated muscle cells. During contraction, thick and thin filaments 
slide past one another resulting in reduced sarcomere length, thus, providing the 
pumping action of the heart. From immature myocyte, cardiac cells differentiate 
into chamber specific cardiomyocytes with defined morphology and function; atrial 
myocytes are striated but much smaller than working ventricular myocytes that are 
also multinucleated. 
In cardiomyocytes two ventricular myosin heavy chains, α-MYH and β-MYH, which 
exhibit different levels of ATPase activity, are differentially expressed during 
cardiac development. The β-MYH gene, predominantly expressed in late fetal live, 
is located 4kb upstream from the α-MYH gene, that is predominantly expressed in 
the adult. Both types of MYHs, α-MYH and β-MYH, are almost always expressed 
together in the normal animal, although their respective level varies during 
development. During heart development in mice and rat the ventricular β-MYH 
mRNA, dominant in the late fetal life, is almost completely replaces after birth by α-
MYH mRNA which is dominant in the adult, leading to parallel changes in the MYH 
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isozyme distribution [15]. Interestingly, the expression of these genes is not limited 
to the ventricular cells since α-MYH mRNA is accumulated in the atrial myocardium, 
whereas β-MYH mRNA is present in slow-twitch skeletal muscle fibers [16]. 
In the myocyte the essential contractile structure that contain the components of 
the contractile apparatus is the sarcomere. The sarcomere is composed of thick 
and thin inter-digitating filaments. The fundamental proteins of the contractile 
apparatus are myosin, actin, tropomyosin, and the troponin complex. In the 
presence of increased extracellular Ca2+, interactions occur between these 
proteins, causing the hydrolysis of ATP and changes in physical-chemical 
dynamics. These processes result in the development of tension within the 
myocyte. Myosin, the thick filament, is composed of a filamentous tail and a 
globular head region [17]. This globular head contains the site for actin binding, as 
well as a catalyzing site for ATPase activity. Actin is the major contractile protein 
found in the thin filament. Tropomyosin is another protein found in the thin filament. 
This rigid molecule lies on either side of actin, adding rigidity to the thin filament. 
Tropomyosin influences actin-myosin cross-bridge formation by physically inter-
digitating between the actin-myosin cleft, thus preventing Ca2+ binding [17]. 
The troponin complex, also present in the thin filament, is formed of three proteins: 
troponin T, I, and C. Troponin is an key component in that it regulates the extent of 
cross-bridge formation, as well as contributing to the structural integrity of the 
sarcomere. Troponin T binds the troponin complex to tropomyosin and anchors the 
complex to the thin filament. Under normal conditions, phosphorylated troponin I 
weakens the affinity of Ca2+ for troponin C. Ca2+ binding to troponin C results in a 
conformational change of the complex, with subsequent actin-myosin interaction, 
thus initiating cross- bridge formation. 
Indeed the cardiomyocyte is one of the most structurally elegant and functionally 
complex cells in nature. Understanding the molecular mechanism and the 
transcriptional program that outline lineage commitment and cardiomyocyte 
specification and function could be important to explain potential defect in cardiac 
developmental biology, to diagnose potentially lethal conditions but also a potential 
perspective for tissue engineering and regenerative medicine owing to the 
extremely reduced regenerative potential of cardiac tissue. 

1.2 Transcriptional control of cardiogenesis 
1.2.1. Transcription regulation 
In the nucleus the DNA-protein complex that forms a chromosome is called 
chromatin The packaging of chromatin take place in an well-ordered modus in this 
way the genes present on the DNA are available for the transcription or replication. 
Hundreds of different cell types play a whole range of specialized functions that 
depend on the genes expressed and which are activated only in one type of cell. 
The cells of an organism are not different because they contain different genes, but 
because they express the genes differently. 
The cell can control which proteins produced in various ways: by controlling when 
and how often a gene is transcribed, checking how occur the process of maturation 
of the primary transcript RNA at the level of cutting and welding, choosing which 
mRNA the ribosomes translate, and selectively activating or inactivating proteins 
already produced. The transcription control is exerted generally in the stage of 
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initiation of transcription. The promoter region of a gene attracts the enzyme RNA 
polymerase and directs it properly, so it can make a copy the gene to RNA. The 
promoters of eukaryotes include an initiation site, and a sequence of about 50 
nucleotides that extends upstream from the initiation site [18-20]. 
This region contains sites necessary for RNA polymerase to bind to the promoter. 
Almost all the genes have, in addition to the promoter, regulatory sequences of 
DNA that serve to activate and deactivate a gene. The regulatory sequences don’t 
work independently; to work proteins called regulatory proteins of genes that bind 
to DNA must recognize them. Within the promoter is located a short DNA 
sequence that is recognized by a regulatory protein. When the protein binds to this 
nucleotide sequence blocks access of RNA polymerase to the promoter, which 
prevents transcription of harmful enzymes [18-20]. 
Eukaryotic cells have 3 RNA polymerase enzymes that are not capable of initiating 
transcription without the aid of additional proteins. They require the intervention of 
a large group of proteins called transcription factors, that be must associate with 
the polymerase to the promoter site, because the enzyme can start to transcribe. 
The regulatory proteins may affect the initiation of transcription positioning itself 
vary distant. This means that a single promoter can be controlled by an almost 
unlimited number of regulatory sequences scattered along the DNA. Anyway the 
start of transcription must take account of a DNA organized into nucleosomes and 
thickened in compact chromatin structures. 
Almost all eukaryotic promoters also require activator proteins that facilitate the 
association between RNA polymerase and transcription factors. The nucleosomes 
are likely to be present in the promoter regions, when activated gene transcription, 
these nucleosomes are moved. The option to turn on and off many genes with only 
one protein is not only in the regulation of cell function: it is also one of the means 
by which eukaryotic cells differentiate into various types during embryonic 
development. 

1.2.2 Cardiac transcription factors  
Intensive studies have revealed numerous genes that control the intricate process 
of heart development in humans and mice [21, 22]. Most of the inherited forms of 
congenital heart disease are a result of mutations in cardiovascular transcription 
factor genes. Cardiac lineage specification and subsequent morphogenesis of the 
early developing heart are a complex process that relies on networks of interacting 
DNA-binding transcription factors and targeted activation of cardiac-specific genes. 
Mutation in cardiac transcription factors, the genes they regulate and the genes 
that regulate them result in many inherited congenital heart defects and point to the 
importance of understanding the molecular basis behind these process. 
At a molecular level, complementary studies revealed a vast list of genes with 
critical function in cardiac development. From this indeed transcription factors 
acquire special importance as components of a regulatory core responsible to 
make a cardiomyocyte and, simultaneously, to orchestrate the morphogenetic 
events with the non-myocyte cell fraction of the heart – endothelial cells, vascular 
support cells, epicardial cells and fibroblasts. 
Entry of cells into the cardiac lineage in response to the appropriate signals is 
coupled to the expression of a set of transcription factors that initiates the program 
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for cardiac gene expression and drives the morphogenic events involved in 
formation of the multichambered heart [23]. 
Members of the GATA, Nkx, T-box (Tbx), MADS box, basic helix-loop-heliz, 
Iroquois (irk) and Forkhead (Fox) families interact and have critical transcriptional 
regulatory roles at distinct stages of heart development in multiple cardiogenic 
processes. 
The earliest expressed transcription factors that initiate cardiac fate are the 
homeobox transcription factor Nkx2-5 and members of the GATA (GATA Binding 
Protein) family of zinc finger transcription factors, GATA4, GATA5 and GATA6. 
(GATA Binding Protein-4), Equally important roles in heart development have been 
shown for members of the T-box (Tbx5, Tbx20), basic helix-loop-helix (DHAND, 
EHAND), and MADS (MCMI, agamous, deficiens, serum response factor) domain 
(MEF2) families. LIM (a cysteine-rich motif identified in the homeobox genes lin-11, 
Isl-1, and mec-3) homeodomain transcription factor, which is expressed in a 
distinct population of cardiac precursor cells, is essential for the formation of the 
outflow tract and the right ventricle [24]. Other transcription factors involved in 
lineage decisions include HF-1b and HOXB5 (Homeobox B5). HOXB5 is 
necessary to activate the cell-intrinsic events that regulate the differentiation of 
angioblasts and mature endothelial cells from their mesoderm-derived precursors. 
HF-1b plays a critical role in conduction system lineage formation and the loss of 
HF-1b leads to a confused electrophysiological identity in Purkinje and ventricular 
cell lineages, resulting in cardiac sudden death and marked tachycardia and 
bradycardia. The transcription factor GATA4 is a critical regulator of cardiac gene 
expression and plays an essential role in promoting cardiac development and 
differentiation of the myocardium, as well as in regulating survival and hypertrophic 
growth of the adult heart [25-33]. In addition to these genes, several members of a 
family of 18 transcription factors that share a common DNA binding domain – the 
T-Box - have emerged as critical regulators of multiple cardiogenic events [34]. 
And their activity is crucial for cardiac morphogenesis [35-41]. 
Disruption of these genes in model organisms produces extremely severe cardiac 
phenotypes culminating in embryonic development arrest. 
In many cases, systemic loss of individual transcription factors through targeted 
mutagenesis in mice leads to defective heart tube formation and subsequent 
embryonic lethality. Loss of GATA4 leads to defective endoderm development and 
failure of heart primordial fusion, but cardiomyogenic differentiation is initiated, 
apparent in contractile protein gene expression. Nkx2.5-deficient mice develop a 
primitive heart tube that differentiates, but these embryos fail to develop a looped 
heart. Similarly, mice lacking MEF2c or Hand2 (dHand) arrest at the primitive heart 
tube stage with defects in outflow tract (OFT) and right ventricle (RV) 
morphogenesis. Loss of Tbx20 prevents heart chamber maturation and leads to 
reduce cell proliferation with embryonic lethality by embryonic day 10.5. Loss of 
Tbx5 preferentially affects the caudal region of the primitive heart tube, with loss of 
venous pole structures and localized gene expression in embryos that do not 
survive beyond E11. In general, cardiomyogenic differentiation and activation of 
contractile protein gene expression is apparent in each of these mutant mouse 
embryos. 
Targeted conditional loss-of-function of cardiac transcription factors reveal 
additional roles in cardiomyocyte differentiation, heart chamber maturation, 
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morphogenesis, cell proliferation, and conduction system development. Likewise, 
loss of both GATA4 and GATA6 in embryos after tetraploid rescue of extra-
embryonic defects results in complete loss of cardiac differentiation Conditional 
loss of GATA4 expression later in differentiated cardiomyocytes leads to 
decreased cell proliferation and thinning of the myocardium. Tbx5 heterozygous 
mutant mice have congenital heart malformations, including atrial septal defects 
(ASD), as well as conduction system anomalies [42]. 
In specialized cardiomyocyte populations, other transcription factors, more locally 
expressed, confer lineage restricted gene expression. In many cases, localized 
regulation of transcription factors by signaling pathways in specific regions of the 
heart drives the specialization of cardiac lineages and morphogenesis. 
Although there is apparently no single factor responsible for each cardiomyogenic 
lineage determination, multiple transcription factors in fact work in concert to 
regulate the initial differentiation and the subsequent specialization of 
cardiomyocyte cell lineages in the developing heart. We could say that these 
multiple transcription factors work combinatorially as a “core” to induce cardiac 
muscle differentiation. 
Importantly, these factors mutually activate each other’s transcription to reinforce 
cardiac differentiation through a series of overlapping feed-forward and positive-
feedback loops. For example, in vertebrates, Nkx2-5 and Mef2c are directly 
activated by GATA factors and GATA genes, such as Gata6, are activated by 
Nkx2-5. The numerous reinforcing transcriptional pathways among the core 
cardiac transcription factors provide robustness to the cardiac differentiation 
program by amplifying the level of the transcription factors responsible for 
activating genes necessary to make a functional sarcomere. Not surprisingly, the 
majority of cardiac structural genes and genes involved in energy metabolism in 
cardiac myocytes contain binding sites for more than one cardiac transcription 
factor in their promoters and enhancers. For instance, GATA-responsive regulatory 
elements have been identified in Nkx2.5, Hand2, and GATA6 genes. Nkx2.5-
responsive regulatory elements are present in GATA6 and Hand1 genes, while 
Tbx20 represses expression of Tbx2. In differentiated cardiomyocytes, regulatory 
elements that control expression of contractile protein genes often contain multiple 
binding sites enabling combinatorial regulation by multiple cardiac transcription 
factors [43, 44]. 
Cell differentiation is associated with a specific gene expression program, where a 
specific subset of cell-type genes is expressed, leaving the rest of the genome in a 
repressed state. Gene expression reprogramming is a key feature of cardiac 
differentiation and heart development and is characterized by activation of specific 
genes. Changes in the gene transcription program may play a significant role in the 
cardiac commitment, thus understanding the molecular mechanisms and the 
signaling events underlying gene transcription in these process could be important. 
Indeed there are extensive cross-regulatory interactions among cardiogenic 
transcription factors and the genes that encode them, which have been described 
as a reinforcing regulatory network, however this tightly controlled expression 
pattern together with the notion that the gene regulatory networks of coordinately 
acting and cross-regulating transcription factors control various aspects of 
cardiogenesis through regulation of target gene expression, was sufficient to 
activate cardiac gene expression but only in the presence of the cardiac chromatin 
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remodeling complex that re-modulate the chromatin structure in order to unwrap 
the DNA and let the promoter accessible to the transcription factor and activate 
cardiac gene expression [45]. 
In addition to key signaling and transcriptional events that directs the cardiac 
lineage, chromatin remodeling and epigenetic modifications are also believed to be 
necessary in initiating the cardiogenic program. In fact the level of transcriptional 
control conferred by the structure of chromatin accounts for how cells with the 
same DNA sequence can form complex organisms 

1.3 Epigenetics 
An exciting finding of the past 20 years is that transcription regulation in eukaryotic 
cells does not depend solely on elements of DNA that control gene expression (e.g. 
promoter and enhancer sequences) but also on the state of the chromatin in which 
a gene is located. In this scenario, the main player is epigenetics – a complex 
network of mechanisms that control gene expression in a potentially heritable way 
but without altering the primary nucleotide sequence. These mechanisms regulate 
gene expression by modulating chromatin structure and DNA-based biological 
processes such as the binding of transcription factors to promoters and 
transcription elongation [46, 47].  
Regions of the genome that are transcriptionally active have an open chromatin 
structure (euchromatin) that facilitates binding of transcription factors, whereas 
inactive regions have a more condensed conformation (heterochromatin) that 
inhibits the binding of transcription factors. 

1.3.1 Origin of Epigenetics 
The conceptual origins of epigenetics arise from Aristotele (384-322 BC), who in 
the fourth century BC in his book “On the Generation of Animals” express the 
theory of epigenesis as the development of organic individual form from the 
unformed. 
Later in the mid-nineteenth century other are the traces of epigenetics in literature.  
The first believer of this theory was the german physiologist Caspar Friedrich Wolff 
(1734-1794) who exposed it in 1759 in his work "Theoria Generationis". Wolff's 
theory was in contrast with the preformist theory, supported in previous times, 
according to which human beings developed from miniscule fully-formed bodies. 
However, during the late 18th century an extended and controversial debate by 
biologists finally led epigenesis to eclipse the long-established preformationist view. 
To date, there exists several definitions of epigenetics, and as a result, there are 
disagreements as to what epigenetics should mean. The term “Epigenetics” was 
coined by C. H. Waddington in 1942, as a portmanteau of the words “genetics” and 
“epigenesis”, to describe the differentiation of cells from their initial totipotent state 
in embryonic development. When Waddington coined the term the physical nature 
of genes and their role in heredity was not known; he used it as a conceptual 
model of how genes might interact with their surroundings to produce a phenotype. 
Robin Holliday defined epigenetics as "the study of the mechanisms of temporal 
and spatial control of gene activity during the development of complex organisms. 
Therefore epigenetic can be used to describe anything other than DNA sequence 
that impacts on the development of an organism [48]. 
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The modern usage of the word in science is more narrow; it is, as defined by 
Arthur Riggs and colleagues, as "the study of mitotically and meiotically heritable 
changes in gene function that cannot be explained by changes in DNA sequence”. 
The Greek prefix epi- in epigenetics implies features that are "on top of" or "in 
addition to" genetics; thus epigenetic traits exist on top of or in addition to the 
traditional molecular basis for inheritance. 
In the modern scientific language the term Epigenetic refers to inherited traits that 
do not match changes in the DNA sequence. 
The "epigenome" refers to the overall epigenetic state of a cell. The "epigenetic 
code" has been used to describe the set of epigenetic features that create different 
phenotypes in different cells and could represent the total state of the cell, the gene 
expression, DNA methylation and histone modification status of a particular 
genomic region. Epigenetic mechanisms can be grouped in three main categories: 
DNA methylation, histone modifications, nucleosome positioning. 
1.3.2 DNA Methylation 
DNA methylation was the first epigenetic mechanism discovered. It is always 
associated with gene silencing. DNA methylation occurs preferentially on the 
cytosine of CpG dinucleotides, which tend to cluster in regions called CpG islands. 
In mammals, 50-70% of CpG sites are methylated. The formation of 5-
methylcytosine (5meC) residues leads to gene silencing either by directly blocking 
the binding of transcription factors to DNA or by binding of methyl-binding proteins 
(MBPs, e.g. MBD1, MECP2, MBD3, and MBD4), which in turn recruit chromatin 
remodeling co-repressor complexes [49, 50]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 – DNA Methylation 
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The degree of DNA methylation is regulated by the rate of two events: DNA 
methylation on one hand – catalyzed by DNA methyl-transferase enzymes such as 
Dnmt1, Dnmt3a, and Dnmt3b – and DNA demethylation on the other – which can 
occur either passively, by blocking methylation of newly synthesized DNA during 
DNA replication, or actively, by the deamination of cytosines following DNA repair 
[51-53]. 

1.3.3 Histone Modifications 
Most eukaryotic cells contain five main histone proteins: histone H2A, H2B, H3, 
and H4 – known as the core histones – and H1 – called a linker histone. Histones 
are small, basic proteins (11-20 kDa in molecular weight) and are formed from a 
globular domain and charged tails enriched in lysine and arginine residues that are 
subject to a large number of post-translational modifications such as acetylation, 
methylation, ubiquitylation, phosphorylation, SUMOylation, and ADP-ribosylation. 
Among the various histone modifications, acetylation and methylation are the best 
investigated [51]. Acetylation of the lysine residues of the tails of histone H2B, H3, 
and H4 is a signal for transcription activation, whereas hypoacetylated histones are 
found in transcriptionally inactive regions of the genome. Indeed, acetylation, which 
neutralizes the positive charge of lysine residues, causes an opening up of 
chromatin, which in this way becomes accessible to transcription factors. 
Acetylated histones also promote transcription, favoring the binding of transcription 
factors that have a bromo-domain as a docking site. On the other hand, 
deacetylation increases the positive charge on histone tails and, thus, strengthens 
the binding of histones to DNA, resulting in a more compact and less accessible 
structure for transcription factors [54, 55]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 – Histone Modifications 
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Differently to acetylation, histone methylation can be associated with either 
activation or repression of transcription depending on the particular residue 
methylated (lysine or arginine) and on the degree of methylation (mono-, di-, and 
tri-methylation) [56]. 
Generally, high levels of acetylation on lysines 9 and 14 and tri-methylation on 
lysines 4 and 36 of histone H3 are detected in genes that are transcriptionally 
active, whereas elevated levels of deacetylated histones, histone H3 tri-methylated 
on lysines 9 and 27, and histone H4 tri-methylated on lysine 20, are associated 
with transcriptionally inactive regions [57].  
1.3.3.1 Epigenetic enzymes encoding histone modifications 
An important characteristic of the histone code is dynamicity which depends upon 
the reversibility of the modifications and on the activities of the many enzymes 
involved. Histone acetylation is catalyzed by histone acetyl-transferases (HATs), 
such as E1A-associated protein p300 (p300), CREB-binding protein (CBP), and 
p300/CBP-associated factor (P/CAF). On the other hand, deacetylation of histones 
is controlled by histone deacetylases (HDACs), a large family composed of 18 
members clustered into three distinct structural classes [58]. Similarly, the 
methylation of histones is regulated by histone methyl-transferases (HMTs, e.g. 
G9a and SUV39h1-2) and histone demethylases (HDMs, e.g. LSD1, JmjC, and 
JARID) [59]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 – Epigenetic Enzymes  
(a) Histone Acetylation (b) Histone Methylation 

 



 13 

1.3.4 Nucleosome positioning and chromatin remodeling factors 
The basic unit of chromatin is called the nucleosome. This is formed from a 
segment of 145-147 base pairs of DNA wrapped around a histone octamer 
consisting of two molecules of each core histone [60]. The position of the histone 
octamer on DNA is not random but, rather, is influenced by the rigidity and 
curvature of the DNA sequence. This phenomenon, known as nucleosome 
positioning, has an important role in the regulation of several biological processes, 
including gene transcription. The formation of the nucleosome prevents the binding 
of proteins, such as transcription factors, to DNA and, thus, acts as a transcription 
repressor. Indeed, recent studies in yeast suggest that transcriptionally active 
genes have an “open” promoter, characterized by a nucleosome-depleted region 
(NDR) directly upstream of the transcription start site (TSS) and, thus, one that 
favors the binding of transcription factors. In transcriptionally inactive genes, 
instead, the nucleosome often covers the transcription start site, preventing the 
binding of transcription activators [61]. The position of the nucleosome is regulated 
by ATP-dependent chromatin remodeling (RCS) enzymes (e.g. SWI/SNF, ISWI, 
CHD, and INO80), multiprotein complexes that mobilize or alter the nucleosome 
structure and, thus, influence gene transcription regulation by using the energy 
derived from ATP hydrolysis. 

1.3.5 Epigenetic technologies 
Over the past few years, several studies combining chromatin immunoprecipitation 
(ChIP) with DNA-microarray analysis (Chip-on-chip) or massive DNA sequencing 
(ChIP-Seq) techniques have defined the histone modifications occurring within the 
genome [62]. The general picture emerging from these studies is that a 
combination of histone modifications creates a “histone code” that influences the 
transcriptional status of genes. 
Determining how proteins interact with DNA to regulate gene expression is 
fundamental for completely understanding many biological processes and disease 
states. This epigenetic information is complementary to genotype and expression 
analysis. 
Two are the main techniques used to analyze the histone modification signature 
and to study how transcription factors and other chromatin-associated proteins 
affect phenotype-influenced mechanisms. The microarray based ChIP technology 
(ChIP-chip) includes the hybridizations of the DNA fragments on an array and 
requires large sets of tiling arrays for lower resolution, however this method is 
restricted to a fixed number of probes and could introduce some bias and 
disadvantages. 
The modern post-genomic era open the door to the ChIP-seq technology that is 
currently seen as the best alternative to ChIP-chip; with the ChIP-seq in fact is 
possible to analyze protein interaction with DNA on a genomic scale in order to 
map the global binding sites for the protein of interest associated with the DNA. 
Specific DNA sites in direct physical interaction with transcription factors and other 
proteins can be isolated by chromatin immunoprecipitation. ChIP produces a 
library of target DNA sites bound to a protein of interest in vivo. Massively parallel 
sequence analyses are used in conjunction with whole-genome sequence 
databases to analyze the interaction pattern of any protein with DNA or the pattern 
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of any epigenetic chromatin modifications. This can be applied to the set of ChIP-
able proteins and modifications, such as transcription factors, polymerases and 
transcriptional machinery, structural proteins, histone modifications, and DNA 
modifications. As an alternative to the dependence on specific antibodies, also 
different methods have been developed to find the superset of all nucleosome-
depleted or nucleosome-disrupted active regulatory regions in the genome. 
The workflow of ChIP-seq could be divided into three principal processes: ChIP, 
sequencing, bioinformatics analysis. 
1) The Chromatin Immunoprecipitation (ChIP) is a powerful method to selectively 
enrich for DNA sequences bound by a particular protein in living cells. The 
crosslinked chromatin is sonicated in order to obtain mono-nucleosome-fragments. 
The ChIP process enriches specific crosslinked DNA-protein complexes using an 
antibody against the protein of interest. The enriched DNA-protein complexes are 
then decrosslinked and the DNA fragment analyzed. 
2) Sequencing: after size selection, all the resulting ChIP-DNA fragments are 
sequenced simultaneously using a genome sequencer. A single sequencing run 
can scan for genome-wide associations with high resolution, meaning that features 
can be located precisely on the chromosomes. There are many new sequencing 
methods used in this sequencing step. Some technologies that analyze the 
sequences can use cluster amplification of adapter-ligated ChIP DNA fragments on 
a solid flow cell substrate to create clusters of approximately 1000 clonal copies 
each. The resulting high density array of template clusters on the flow cell surface 
is sequenced by a Genome analyzing program. Each template cluster undergoes 
sequencing-by-synthesis in parallel using novel fluorescently labelled reversible 
terminator nucleotides. Templates are sequenced base-by-base during each read. 
Then, the data collection and analysis software aligns sample sequences to a 
known genomic sequence to identify the ChIP-DNA fragments. Sensitivity of this 
technology depends on the depth of the sequencing run (i.e. the number of 
mapped sequence tags), the size of the genome and the distribution of the target 
factor. The sequencing depth is directly correlated with cost. If abundant binders in 
large genomes have to be mapped with high sensitivity, costs are high as an 
enormously high number of sequence tags will be required. By integrating a large 
number of short reads, highly precise binding site localization is obtained. 
Compared to ChIP-chip, ChIP-seq data can be used to locate the binding site 
within few tens of base pairs of the actual protein binding site. Tag densities at the 
binding sites are a good indicator of protein–DNA binding affinity, which makes it 
easier to quantify and compare binding affinities of a protein to different DNA sites. 
3) Bioinformatic analysis. Because the data are sequence reads, ChIP-seq offers a 
rapid analysis pipeline, as well as the potential to analyze the enriched sequences 
with respect to all the genomic information available, is possible to analyze the 
immunoprecipitated DNA sequence respect the trascription start site (TSS) of the 
genes, to study the specific distribution of the protein in the region of the gene 
(upstream TSS, downstream TSS, intra-genic, extra-genic, intronic or exonic, in 
enhancer or other regolatory regions...), to clusterize the enriched region in 
functional related pathways, and find differential expressed region within differnet 
samples. 
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Figure 6 – Epigenetic Technologies: ChIP-seq 
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1.4 Epigenetics in cardiac differentiation and heart 
development 

Most environmental factors could influence the regulation of gene transcription 
processes that dictate cell specification during the morphogenic process of heart 
development and epigenetic mechanisms seems to have a key role in these 
regulations. 

1.4.1 The Waddington’s Epigenetic Landscape 
The genome sequence is static, but cells differentiate into many different types, 
which play different functions, and respond differently to the environment and 
intercellular signaling. Thus, as individuals develop, morphogenesis activates or 
silences genes in an epigenetically heritable manner, giving cells a "memory". In 
mammals, most cells terminally differentiate, with only stem cells preserving the 
capability to differentiate into several cell types ("totipotency" and "multipotency").  
Developmental Biology is a relatively young scientific domain resulting from the 
blending of concepts derived from classic embryology and genetics. For many 
years these disciplines were mutually exclusive with geneticists disregarding the 
importance of embryological findings and vice-versa. As described in the 
paragraph above this hostile environment lasted until the end of the 1930s when 
critical contributions from two scientists - Salome Gluecksohn-Schoenheimer and 
Conrad Hal Waddington – opened intercommunication channels between these 
fields. Their findings provided the first solid proof that mutations in genes can 
induce abnormalities in early organogenic processes. 
Besides the lessons derived from his work on mutations affecting Drosophila wing 
development, in two of his most influential books (Organizers and Genes, 1940 
and The Strategy of Genes, 1957), Conrad coined or emphasized concepts such 
as competence (the capacity of a cell or tissue to react to an inductive signal), 
epigenetics (then used to mean external manifestations of genetic activity) and 
epigenetic landscape (a metaphoric representation cell-fate acquisition processes 
as a succession of developmental bifurcations controlled by genetic mechanisms) 
and is, for this reason , regarded by many as the father of modern developmental 
biology [63-66]. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7 – The Waddington’s Epigenetic Landscape 
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The modern idea of cell differentiation involved the concept of a specific gene 
expression program associated with a defined cell specification where a specific 
subset of cell-type genes is expressed, leaving the rest of the genome in a 
repressed state. But this hypothesis, now milestone of the modern science starts in 
the fifties with the epigenetic landscape of Waddington and his idea of how gene 
regulation modulates development and differentiation. 
In this metaphor view a totipotent cell is like a marble on the top of a hill. This 
marble rolling down from the hill can choose different canyons and decide to 
differentiate to specific cell type, arriving at the bottom of the hill with the gene 
expression program that characterize a differentiated cell. This is possible thanks 
to epigenetic decisions that activate or repress specific genes and enable lineage 
commitment. 
In the last decades thanks to the Waddington hypothesis several studies and 
discoveries have expanded the knowledge in this field and is now a common 
theory that epigenetics play a central role in the programming of genomes that 
underlie the establishment and maintenance of differentiated cell states, but how 
genomic programs are progressively deployed and what are the chromatin 
regulatory mechanisms that coordinate their deployment still need to be uncovered. 

1.4.2 Epigenetics in heart development 
The heart is a complex organ whose development requires cell specification and 
differentiation of several cell types (e.g. cardiomyocytes, fibroblasts, and 
endothelial cells). Gene transcription regulation plays a critical role in orchestrating 
these processes [1]. Epigenetics, chromatin modifications, and remodeling, are 
well-known key regulatory elements of gene expression and transcription during 
development [67, 68]. In fact, the accessibility of the regulatory elements of DNA to 
transcription factors is controlled by chromatin remodeling complexes that alter 
chromatin structure in order to activate transcription of cardiac-specific genes and 
repress the transcription of non-cardiac ones. 
1.4.2.1 Chromatin Remodeling During Heart Development 
Chromatin remodeling complexes are important players in the modulation of gene 
transcription in heart development. In particular, Brg1/Brm-associated factor (BAF) 
complexes play a critical role in regulating cardiac growth, differentiation, and gene 
expression. BAF complexes act in two opposite ways: they loosen chromatin and 
facilitate the access of RNA polymerase II to transcriptional initiation sites, thereby 
activating transcription; at the same time, they associate with proteins involved in 
transcriptional repression, such as HDACs and methylases [69]. This dual 
mechanism of action is possible thanks to the several subunits that form the 
complexes (Figure 8). The ATPase component of the complexes is encoded by 
one of two genes: either Brg1 or Brm. It appears that during organogenesis, Brg1 
may be the primary effector of the function of BAF complexes, whereas Brm is 
dispensable for embryonic development. All the other subunits of the complexes 
(e.g. Baf60a, Baf60b, Baf60c) are expressed in a tissue-specific manner and act 
as a bridge with different DNA binding factors. Baf60c, a cardiac-enriched BAF 
complex subunit, is expressed very early in pre-cardiac mesoderm and, specifically, 
in the heart and somites of mouse embryo, in particular in the looping heart tube at 
the poles of the heart, which give rise to the outflow tract and to the atria [70]. 
Indeed, the deletion or the downregulation of either Baf60c or Brg1 in mouse 
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models leads to severe defects in heart formation (hypoplastic atrium, single 
ventricle, abnormal outflow tract, impaired trabeculation, etc.) [70, 71]. 
The importance of BAF complexes and the transcriptional activation mechanisms 
driven by Baf60c and Brg1 is highlighted by studies that have demonstrated the 
role of Baf60c in promoting interactions between BAF complexes and specific 
cardiac transcription factors involved in heart development (such as Gata4, Nkx2.5, 
and Tbx5) (Figure 8). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8 – Chromatin Remodeling and Heart development 
 
 
In the presence of Brg1, Baf60c induces cardiac differentiation by enhancing the 
Gata4-dependent activation of Nkx2.5 (the cardiac transcription factor that marks 
the primary and the secondary heart fields) [70]. The interaction of Baf60c with 
Gata4 was shown to initiate the cardiac-gene expression program and the 
differentiation of mesoderm into cardiomyocytes; however, the addition of Tbx5 
was required to induce genes responsible for cardiac contraction and to repress 
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non-cardiac mesodermal genes. Thus, Baf60c potentiates the function of Gata4 
and Tbx5, allowing the binding of Gata4 to cardiac loci and, as a result, the 
induction of a full cardiac-differentiation program [71]. As mentioned above, BAF 
complexes can also associate with proteins involved in transcriptional repression: 
in fact, a recent study demonstrated that Brg1 preserves fetal cardiac 
differentiation by interacting with two other classes of chromatin-modifying 
enzymes - transcriptional repressor HDACs and poly (ADP-ribose) polymerase 
(PARP) (Figure 8). Brg1 maintains cardiomyocytes in an embryonic state and 
regulates the expression of α- and β-myosin heavy chain (MHC) during cardiac 
growth and differentiation. Brg1, PARP, and HDACs physically form a chromatin-
remodeling complex on the α-MHC promoter in order to co-repress α-MHC, 
whereas Brg1 complexes with PARP on the β-MHC promoter to activate β-MHC. 
Thus, Brg1 governs two parallel pathways to independently control myocardial 
growth and differentiation in embryos [72, 73]. 
1.4.2.2 Histone Acetylation and Heart Development  
The function of histone acetylation in heart development has been investigated 
mainly through the generation of knockout mouse models of genes encoding 
HDACs and HATs: the study of these models has revealed that both class I and 
class II HDACs and p300 HAT have a crucial role in heart development. Loss-of-
function of HDAC2, a class I HDAC, produced altered myocardial phenotypes and 
excessive proliferation of cardiomyocytes. Knockout of HDAC1, another class I 
HDAC, produced severe proliferation defects and general growth retardation but 
no specific phenotypes. However, the conditional deletion of HDAC1 and HDAC2 
together resulted in neonatal lethality, accompanied by cardiac arrhythmias, dilated 
cardiomyopathy, and upregulation of genes encoding skeletal muscle-specific 
contractile proteins and calcium channels in the heart, pointing to the redundant 
roles of HDAC1 and HDAC2 in cardiac growth and development [74-76]. Mice 
lacking HDAC5 and HDAC9 were also found to have defective heart 
morphogenesis, with lethal ventricular septal defects and thin-walled myocardium, 
which typically arise from abnormalities in growth and maturation of 
cardiomyocytes [72, 77]. Moreover, the targeted deletion of HDAC7 resulted in 
embryonic lethality due to vascular dilation and rupture. Through the repression of 
cardiac transcription factors, such as myocyte enhancer factor 2 (MEF2), serum 
response factor (SRF), nuclear factor of activated T-cell (NFAT), and the zinc-
finger protein GATA, HDACs are involved in the coordination of the gene 
expression programs required for the cardiomyocyte differentiation, proliferation, 
and morphogenesis mechanisms that underlie heart formation [78]. In particular, a 
series of studies demonstrated that MEF2 is a critical target of class II HDACs: in 
fact, these enzymes form a complex with MEF2 on gene regulatory elements, 
causing the repression of genes harboring MEF2-binding sites [73] (Figure 9). 
(Indeed, abnormal cardiac growth in HDAC knockout mice correlated with super-
activation of MEF2-mediated transcription. In addition to HDACs, the importance of 
p300 HAT has also been shown for heart development: indeed, p300 knockout 
mice presented cardiac defects (impaired expression of muscle structural proteins 
such as b-MHC and a-actinin, as well as reduced ventricular trabeculation) and 
died between days 9 and 11.5 of gestation. As for class I and class II HDACs, 
p300 HAT also controls fetal cardiac-gene expression through combinatorial 
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interactions with the transcription factors involved in heart development [79]. In 
particular, the interaction of p300 HAT with MEF2D promoted the transcription of 
cardiac genes required for cardiac development, such as cardiac a-actin. The 
acetylation of GATA4 was also involved in the differentiation of embryonic stem 
cells into cardiomyocytes, and Tbx5, critical for early cardiac morphogenesis, 
mediated the histone acetylation and transactivation of the Nppa promoter. Thus, a 
mechanism proposed to explain the function of HDACs and p300 HAT in heart 
development involves the mutually exclusive association of HDACs and HATs with 
the MEF2 transcription factor, which, consequently, acts either as a transcription 
repressor or a transcription activator (Figure 9). In this way, p300 HAT could bind 
to MEF2 during the early stage of heart development in order to activate the 
transcription of factors critical for cardiac morphogenesis during this period; later 
on, the interaction of MEF2 with HDACs would represses them. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9 – Histone Acetylation and Heart Development 
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1.4.2.3 Histone Methylation and Heart Development  
Compared to histone acetylation, the role of histone methylation during heart 
development is less clear. Two classes of enzymes are involved in this process: 
HDMs and HMTs. HDMs belonging to the jumonji (Jmj) family act mostly as 
transcriptional repressors and are essential for normal heart development and 
function. In fact, Jmj is expressed in all stages of normal developing heart from the 
pre-cardiac mesoderm to the adult mouse heart. The phenotype of Jmj knockout 
mice was characterized by critical congenital heart malformations (ventricular 
septal defects, noncompaction of the ventricular wall, double-outlet right ventricle, 
and dilated atria) and dysregulation of cardiac markers (a-MHC, b-MHC, ANF, 
MLC2V, MLC2A) and myocardial contractile proteins [80-82]. Therefore, Jmj may 
interact with transcription factors to modulate target gene expression. Epigenetic 
regulation via histone modifications stabilizes transcriptional programs in 
embryonic progenitors and differentiated cells and is likely to be crucial for 
establishing and maintaining gene expression and stress responses throughout life, 
on the other hand, the functions of HMTs in the embryonic heart are completely 
unknown. 
1.4.2.4 DNA Methylation and Heart Development  
Most studies to date have focused on the role of DNA methylation in the 
differentiation processes (e.g. neuronal differentiation). However, it is currently 
unknown whether DNA methylation is involved in heart development. 

1.5 The H3K79 Histone Methyltransferase DOT1L 
Until now histone methylation has not been clearly implicated in cardiovascular 
development, but mouse genetics findings indicate that histone methylation could 
be a major regulator of heart development, as it is in other organ systems. 
Histone methylation is catalyzed by group of histone methyltransferases (KMTs). 
The KMTs can be divided into two main classes based on their catalytic domains: 
with SET domain and without SET domain. The only KMT enzyme belonging to the 
second class is Dot1/DOT1-Like (disruptor of telometic silencing, also called Kmt4) 
[83]. 
Within all the post-transcriptional modifications that occur on the histones, Lysin 79 
of the histone H3 is the only globular domain subject to methylation. Knockout 
models in yeast, flies and mice reveal that Dot1 is the only enzyme that catalyzes 
H3K79 mono-, di- and tri- methylation, in fact the absence of Dot1 results in the 
complete lost of methylation at the level of H3K79 [84-86]. 
While the establishment of H3K79methylation is well described and is highly 
regulated by multiple processes, the reversibility of this marker is less well studied, 
few studies suggest mechanisms of H3K79 demethylation [87]. However, several 
lines of evidence suggest that H3K79methylation might be reversible and 
subjected to dynamic regulation and dioxygenase may catalyze the removal of 
H3K79me2 marks. 
Dot1 was identified in a genetic screen for genes whose overexpression disrupts 
telomeric silencing in saccharomyces cerevisiae [88]. The establishment of 
telomere and telomere-proximal DNA silencing is achieved through the recruitment 
and binding of Sir proteins and Sir3 inhibits H3K79 methylation by competing with 
Dot1L. 
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A part from this function, genome-wide analysis link methylation of H3K79 to active 
transcription. All H3K79 methylation markers are localized within the body of 
transcribed gene and the amount of enrichment correlates with expression level, 
suggesting a role of DOT1L in transcription activation and elongation [57, 89, 90]. 
DOT1L is recruited to elongating RNA Pol II through its association with a network 
of proteins that include the elongation factors ELL, AF4, AF10; AF9 and ENL and 
function as transcription memory to maintain active the transcription machinery. 
In mammals besides regulating heterochromatin formation at telomeres [91], 
indeed several others are the functions that arise from Dot1L’s enzymatic activity. 
It plays a role in cellular and biological processes such as DNA repair and cell 
cycle regulation [86, 92]. DOT1L-mediated H3K79 methylation is believed to play 
two distinct roles in Rad9-mediated DNA damage response: the activation of the 
G1-S checkpoint and the repair of DNA damage at late G2 phase. Beyond its role 
in DNA damage response, DOT1L is also important for meiotic checkpoint control 
and cell cycle regulation in fact H3K79 methylation levels fluctuate with the cell 
cycle phases [93]. Deficiency of DOT1L caused a G0-G1 cell cycle arrest and 
induced apoptosis in erythroid progenitor, blocking differentiation. A part from 
these functions DOT1L is broadly involved in leukemogenesis, particularly those 
mediated by MLL fusion protein [94, 95], and in cell differentiation/reprogramming 
and in embryonic development. 
Inhibition of Dot1L histone methyltransferase activity significantly increased the 
efficiency of reprogramming of differentiated cells to induced pluripotent stem cells 
(iPS) with the down-regulation of mesenchymal regulators indicating a potential 
role for DOT1L in cell differentiation through this lineage [96]. 
In addition, during embryogenesis H3K79me2 is absent in the mouse zygotes and 
is present at very low levels until the blastocyst stage, suggesting that loss of the 
epigenetic marks is important for early embryogenesis, in fact germline disruption 
of DOT1L in mice is lethal at embryonic day E10.5 during the organogenesis of the 
cardiovascular system. Consistently, knockout embryos display growth impairment, 
cardiovascular defects including heart enlargement, cardiac dilatation, yolk sac 
angiogenesis defects, decreased vasculature and anemia [86]. 
In fact, DOT1L is highly expressed in the heart, and a cardiac-specific knockout of 
mDOT1L (Dot1Lf/f:αMHC-Cre) caused dilated cardiomyopathy (DCM) with 
chamber dilatation and systolic dysfunction [97]. The mechanism behind this 
process consists in the transcriptional regulation of dystrophin mediated by 
DOT1L-H3K79 methylation. 
The cardiac phenotype associated with the loss of DOT1L is complex, besides 
dystrophin activation many other cardiac genes seems to be regulated be H3K79 
methylation, however, studies are needed to shed light on how Dot1L achieved 
specificity to temporally regulate its catalytic activity at specific chromatin domains. 
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2. AIM OF THE STUDY 

Insights into cardiac development promise to have impact on human disease in 
many ways, most of which have yet to be realized. The identification of cardiac 
control genes permits genetic screening for mutations in affected individuals and 
families. Research on the basic principles of cardiogenesis is believed to have an 
important impact on the understanding of many cardiac malformations and may 
give inroads into therapeutic strategies. 
A deeper understanding of the regulatory mechanisms controlling cardiovascular 
gene expression is critical for deciphering the mechanisms underlying congenital 
heart defects, as well as for helping to design more powerful and specific 
regenerative therapies for heart disease. Controlling gene expression in specific 
tissues and developmental windows is essential for cardiovascular development in 
embryos. 
Cardiac lineage specification and subsequent morphogenesis of the early 
developing heart are complex processes that rely on networks of interacting DNA-
binding transcription factors and targeted activation of cardiac-specific genes. 
Mutations in cardiac transcription factors, the genes they regulate and the genes 
that regulate them, result in many inherited congenital heart defects and point to 
the importance of understanding the molecular basis behind these processes. 
However, mutations on a given transcription factor may result in different types of 
heart defects, suggesting that other mechanisms related to gene expression are 
involved in normal and pathologic heart development. It is now clear that 
epigenetics plays a central role in the programming of genomes that underlie the 
establishment and maintenance of differentiated cell states, but how genomic 
programs are progressively deployed and what chromatin regulatory mechanisms 
coordinate their deployment in cardiomyocytes fate decisions still need to be 
uncovered. To date, most studies on organ development have focused on the role 
of remodelling chromatin structure complexes and histone acetylation in defining 
the transcription program during cardiomyogenesis. Less clear is the importance of 
other histone modifications and, in particular, the dynamic interactions between 
histone methyltransferases and demethylases. 
To this end the aim of my PhD study was to define the transcriptional regulation 
profiles in the cardiovascular system and to identify the “epigenetic code” 
associated with histone methylation in order to identify genes encoding epigenetic 
enzymes that are regulated during cardiac development and differentiation and to 
elucidate the signaling events underlying gene transcription during embryonic stem 
cell cardiac differentiation and heart development. 
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3. MATERIAL AND METHODS 

3.1. Isolation of heart tissues and CMs purification 
All the experiments were performed according to the Guide for the Care and Use 
of Laboratory Animals published by the US National Institutes of Health (NIH 
Publication no. 85–23, revised 1996) and approved by the local ethical committee. 
The study was performed on embryonic (E14.5), neonatal (1 day after birth) and 
adult (2 months old) CD1 mice. Animals were housed in a controlled environment 
on an illumination schedule of 12h light/dark and fed with chow diet. Mice were 
sacrificed according to the protocol of the internal ethics committee, the hearts 
were isolated and primary embryonic, neonatal and adult and cardiomyocytes were 
isolated and cultured as described elsewhere [98-100]. 

3.2. mES culture and differentiation protocol 
The TBV2 cell line of mouse Embryonic Stem (mES) cells was used throughout 
this study. Cells were cultured on a feeder layer of mitotically inactivated Mouse 
Embryonic Fibroblast (MEFs) in order to keep them undifferentiated in pluripotent 
state. The propagation medium was high glucose DMEM supplemented with 
sodium pyruvate, L-glutamine, penicillin–streptomycin, 2-mercaptoethanol, 15% 
ES-screened FBS (Hyclone) and 103 U/mL LIF (Millipore). mES were passed twice 
on 0.1% gelatin-coated tissue culture dishes without MEFs before starting the 
experiment.  
Differentiation of mES into the cardiac lineage was carried in feeder-free conditions 
using standard techniques [101]. In differentiation medium (high glucose DMEM 
supplemented with sodium pyruvate, L-glutamine, penicillin–streptomycin, 2-
mercaptoethanol, 15% FBS (GIBCO) without LIF) Embryoid Bodies (EBs) were 
aggregated using the “Hanging Drop” method (300cells/drop) and cultured for 2 
days (d0-d2) as hanging drop and for 3 days (d2-d5) in suspension in low 
attachment petri dish (Falcon). The 5-day-old EBs were plated onto 0.1% gelatin-
coated tissue culture dishes in differentiation medium and cultured at different time 
points for mRNA analysis, ChIP experiment, immunoblotting and FACS. 

3.3. Viral production and infection 
Different shRNA against DOT1L and non-target shRNA cloned into the lentiviral 
vector plK0.1 were tested (OpenBiosystems). Viral particles were produced in 
293T cells by co-transfection with plasmids pCMV-VSVG AND psPAX2. 

3.4. FACS analysis 
FACS procedure was carried out using standard protocols. The cells fixed in 4% 
PFA were stained with the following antibodies: anti-TNNI (Millipore) and anti-
SSEA-1 PE (Miltenyi Biotec) and detected with a FACS Canto Cell Analyzer 
(Becton Dickinson). 
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3.5. Immunoblotting 
Immunoblotting procedure was carried out using standard protocols. The following 
primary antibodies were used overnight at 4°C: anti-KMT4 DOT1L (abcam), anti-
histone H3 dimethyl Lys79 (abcam), anti-histone H3 (abcam), anti-Pou5F1 
(abcam), anti-MYH (Chemicon) anti-Lamin B (Santa Cruz). 

3.6. ChIP assays 
The ChIP assays were carried out according with standard procedure. Briefly 5 x 
106 cells were used for each immunoprecipitation. Cells were cross-linked for 10 
min at RT using 1% formaldehyde. Cross-linking was quenched by adding glycine 
to a final concentration of 0.125M. The cells were then collected, resuspended in 
lysis buffer (5mM PIPES pH8, 85mM KCl, 0.5% NP40 and protease inhibitors) and 
incubated on ice for 15 minutes before proceed to sonication to generate fragment 
of 200-400bp. The efficiency of sonication was assessed through agarose gel. 
Chromatin samples were pre-cleared for 1 hours with protein G beads and then IP 
overnight at 4°C with specific antibodies: anti-histone H3 dimethyl Lys79 (abcam), 
anti-histone H3 trimethyl Lys4 (Active Motif), anti-histone H3 trimethyl Lys 27 
(Millipore-Upstate), anti-histone H3 trimethyl Lys9 (Millipore-Upstate), anti-histone 
H3 (abcam) and rabbit IgG (Millipore-Upstate). After incubation the immuno-
complexes were bound to protein G beads for 2 hours and subsequently washed 
with low-salt wash buffer (0.1% SDS, 2mM EDTA, 20mM Tris HCl pH8, 1% Triton 
X-100, 150mM NaCl and protease inhibitors), high-salt wash buffer (0.1% SDS, 2 
mM EDTA, 20mM Tris HCl pH8, 1% Triton x-100, 500mM NaCl  and protease 
inhibitors) and TE buffer. Immuno-complexes were eluted in elution buffer (1% 
SDS, 100mM NaHCO3 and protease inhibitors) and the crosslinking was reverted 
overnight at 65°C. Samples were treated with proteinase K, extracted with 
phenol/cloroform and precipitated with ethanol. 
Purified DNA was evaluated by qPCR on ABI 7900HT with SYBR green PCR 
master mix (Applied Biosystem) using specific primer designed close to the 
promoter region and the TSS of the gene (A = -1000bp/-500bp to TSS, B = 
+500bp/+1000bp to TSS, C = +3500bp/+4000bp to TSS). Values obtained were 
normalized to the input and to the H3 content. The sequences of primer used for 
ChIP-qPCR are available upon request. ChIP DNA fragment were sequenced and 
libraries were by high throughput sequencing with SoLiD 5500 (Life Technologies). 

3.7. ChIP-seq analysis pipeline 
The ChIP-seq data analysis was performed using several bioinformatic tools.  
For H3K4me3, H3K27me3 and H3K9me3 histone modifications in ES cells, bed 
files were downloaded from Gene Expression Omnibus (H3K4me3: GSM307618; 
H3K27me3: GSM307619; H3K9me3: GSM307621).  Genome coordinates were 
converted from mm8 to mm9 mouse reference genome using Batch Coordinate 
Conversion (liftOver) created by the UCSC Genome Bioinformatics Group. 
For H3K79me2 histone modification in ES cells raw sequencing reads were 
downloaded from Gene Expression Omnibus (GSM307150-GSM307151) and 
mapped to the mouse genome (version mm9) using  BOWTIE (version 0.12.8). 
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To profile histone modifications in cardiomyocytes, sequencing reads were 
mapped to the mouse genome (version mm9) using  BOWTIE (version 0.12.8).  
Uniquely mapped reads with no more than 2 mismatches were used for binding 
peak detection. To identify peaks, two peak calling software’s were used: MACS 
and SICER. Both software detected binding peaks by comparing IP and input 
control. For MACS and SICER, we used the following parameters. 
MACS; effective genome size = 1.87e+09,band width = 300,model fold = 
5,30,pvalue cutoff = 1.00e-05. SICER; windows size =200, gap size = 600, 
redundancy threshold = 1, FDR = 0.05. Occupancy analysis and differential 
binding affinity analysis was assessed with R Bioconductor package DiffBind. The 
final set of binding peaks contains those that are called by both software. The 
averaged levels of epigenetic marks within ±4 kb of the TSS was used to plot the 
genome-wide distribution of histone modifications with respect to TSS [102-104]. 
Identification of ChIP enriched genomic regions and genes: Genomic bins with a 
normalized ChIP-Seq density greater than a defined threshold were considered 
enriched. The genomic coordinates of the full set of transcripts from the RefSeq 
database (http://www.ncbi.nlm.nih.gov/RefSeq/) from the July 2007 version of the 
mouse genome sequence (Mouse NCBIv37, mm9) was downloaded from the 
UCSC Genome Browser (http://genome.ucsc.edu/cgi-bin/hgTables). Genes were 
associated with H3K4me3 and H3K27me3 occupied genomic regions if the gene 
transcription start site (TSS) occurred within the region or if the distance from the 
TSS to the boundary of the region was less than or equal to 2 kb. If multiple 
regions were associated with a single gene, all of these gene are reported the 
region with the greatest peak ChIP-Seq density used. 
Analysis of Chromatin Marks at TSSs: Chromatin marks at promoters were 
evaluated by computing the ratio of ChIP to input within a 4kb region centered on 
the TSS of each Ensembl transcript. ChIP values were evaluated as the sum of the 
depth of reads of every base in the 4kb window, normalized to the total number of 
ChIP reads in the given sample. 

3.8. Total RNA extraction, cDNA synthesis and qRT-PCR gene 
expression analysis. 
RNA was extracted from mES cells and CMs using TRIzol (Invitrogen). 1µg of RNA 
was reverse transcribed to cDNA using Super Script VILO cDNA Syntesis Kit 
(Invitrogen) and amplified by real-time quantitative PCR with SYBR Green PCR 
master mix (Applied Biosystem) and using specific primers for pluripotency and 
cardiac markers (Appendix Table II). Each sample was analyzed in triplicated 
using ABI 7900HT (Applied Biosystems). 18s gene was used as housekeeping for 
expression normalization. 

3.9. Epigenetic enzyme TaqMan assay cards. 
RNA was extracted from mES cells and CMs using TRIzol (Invitrogen). RNA was 
reverse transcribed to cDNA using Super Script VILO cDNA Syntesis Kit 
(Invitrogen). 1.2µg of cDNA of each sample is used to analyze the expression of 88 
genes encoding important epigenetic enzymes. Custom microfluidic gene 
expression cards were drawn using TaqMan probes (Applied Biosystems). 
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TaqMan probes information available upon request. Each sample was analyzed in 
triplicated using ABI 7900HT (Applied Biosystems). Data were analyzed with 
DataAssist software using the median normalization method. 

3.10. Illumina gene expression microarray. 
RNA was extracted from mES cells and CMs using TRIzol (Invitrogen). 500ng of 
RNA is transcribed to cRNA by Illumina TotalPrep RNA Amplification Kit (Ambion). 
A total of 700ng of cRNA is hybridized at 58°C for 16 hours to the Illumina 
MOUSEWT-6V BreadChips (Illumina). Bred-Chips are scanned using Illumina 
BedArray Reader and the Bead Scan software (Illumina). Data is processed with 
BeadStudio version 3 (Illumina). 

3.11. Gene expression microarray analysis pipeline. 
The expression levels of transcripts were analyzed by means of genome wide 
expression analysis with a MouseWG-6 v2.0 Expression BeadChip (Illumina) 
according to the manufacturer's instructions. 
The BeadChips were scanned with the Illumina iScan system. Raw data were 
background-subtracted and normalized using the quantile normalization method 
(lumi software package). Normalized data were filtered for genes with significant 
expression levels compared to negative control beads. Selection for differentially 
expressed genes was performed on the basis of arbitrary thresholds for fold 
changes plus statistical significance according to the Illumina t-test error model 
(limma software). The transcript with the highest median expression was selected 
to represent the expression of the gene if it was represented with several 
transcripts.  
Functional Annotation and Molecular Network Analysis: Functional annotation of 
significant genes identified by microarray analysis was searched by the web-
accessible program named Database for Annotation, Visualization and Integrated 
Discovery (DAVID) version 2009, National Institute of Allergy and Infectious 
Diseases (NIAID), National Institutes of Health (NIH) (david.abcc.ncifcrf.gov). 

3.12. Correlation studies between ChIP-seq and gene 
expression. 
For heatmap display expression data genes are ordered by the magnitude of 
expression analysis between samples. Genes with higher histone modifications 
occupancy than average expression are shown in red and samples with lower than 
average expression are shown in green (scale in standard deviations). 
Scatter plots were produced to see how the expression level agreed with degree of 
histone modification. The Pearson correlation coefficients between histone 
modifications and the expression level of genes was calculated using R. 

3.13. Statistical analysis. 
Data are presented as mean ± s.d. P values were determined by two-tailed t-test. 
P<0.05 was considered statistically significant. 
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4. RESULTS 

4.1 High resolution maps of histone methylation markers in 
embryonic stem cells, neonatal cardiomyocytes and adult 
cardiomyocytes. 
4.1.1 The Post-Genomic Era and the ChIP-seq databases. 
The beginning of the post-genomic era, the development of bioinformatics software 
and the improvement of all the molecular biology techniques generate all around 
the research world an enormous amount of information about the expression and 
the regulation of genes within different species and different physiological and 
pathological conditions. The effort that the research community is now trying to do 
in order to share important discoveries and information and keep money and time 
for future research is to produce a big atlas of genomic and epigenomic information. 
This is possible thanks to several databases available online where researchers 
deposit datasets of gene expression profiles and DNA and RNA sequencing, which 
allowed people to explore, view and download results from already published 
studies and to perform metanalysis with new data. 
One of these sources is the “NIH Roadmap Epigenomics Project” where genome-
wide maps of DNA and histone modification from diverse collections of epigenomic 
data sets are available (http://www.ncbi.nlm.nih.gov/epigenomics). 
In order to investigate the histone methylation profile that regulates gene 
transcription during cardiomyocytes differentiation we conduct a preliminary 
bioinformatic analysis browsing all the already deposited ChIP-seq experiments in 
the GEO profile datasets. ChIP-sequencing (ChIP-seq), is used to analyze protein 
interactions with DNA. This new method combines chromatin immunoprecipitation 
(ChIP) with massively parallel DNA sequencing in order to analyze the interaction 
pattern of any protein with DNA or the pattern of any epigenetic chromatin 
modifications that regulate gene transcription. 
4.1.1.1 The mouse embryonic stem cells ChIP-seq. 
Several studies are available on undifferentiated embryonic stem cells and several 
features have been analyzed with different antibodies. Comparative analysis 
between several datasets revealed that different mouse embryonic stem cell lines 
have a characteristic epigenetic signature of histone markers associated at the 
activation of stem cell genes and the repression of genes involved in late stages of 
differentiation. Relying on the type of cell line used, the sequencing method applied, 
the type of the antibody used and the different histone modification analyzed we 
select two different studies to conduct our metanalysis. From the GSE12241 series 
published from Mikkelsen TS, Ku M, Lander ES and Bernstein BE in 2008 in the 
study “Genome-wide maps of chromatin state in pluripotent and lineage-commites 
cells” we select the samples GSM307618 (ES_H3K4me3_ChIPSeq), GSM307619 
(ES_H3K27me3_ChIPSeq), GSM307621 (ES_H3K9me3_ChIPSeq) and 
GSM307625 (ES_WCE_ChIPSeq) and from the GSE11724 series published from 
Young RA in 2008 in the study “Connecting microRNA genes to the core 
transcriptional regulatory circuitry of embryonic stem cells” we select the samples 
GSM307150 (ES_H3K79me2_ChIPSeq) and GSM307155 (ES_WCE_ChIPSeq) 
[105, 106]. 
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However no ChIP-seq experiments have been conduct in cardiac progenitor cells, 
cardiomyocytes or heart tissues. 

4.1.2 Chromatin imunoprecipitation and sequencing (ChIP-seq) of 
neonatal and adult cardiomyocytes. 
In order to investigate the genomic regions regulated by histone methylation during 
cardiomyocyte differentiation, we isolated cardiomyocytes from neonatal and adult 
mice and performed ChIP-seq experiments to compare the distribution of 
H3K4me3 and H3K79me2 (associated with transcription activation), and H3K9me3 
and H3K27me3 (associated with transcription repression) within the genome of 
cells at different stages of heart development. Indeed chromatin is not a static 
structure. The post-translational modification of H3 e H4 affect the structural 
dynamic of nucleosomes and thus determine the chromatin structure and folding, 
which in turn leads to gene expression or silencing. 
4.1.2.1 Cardiomyocytes isolation from neonatal and adult mice. 
Neonatal cardiomyocytes (CMp) have been isolated from 1-day-postnatal CD1 
mice. Briefly from 40 hearts CMs have been dissociated at single cell through 
sequential enzymatic digestions. Mice were sacrificed according to the protocol of 
the internal ethics committee; the hearts were isolated, washed in HBSS for 1h on 
ice and kept in agitation over night in trypsin solution in order to dissociate the 
endothelial cells from the hearts. The hearts were then processed in successive 
collagenase IV digestions and the obtained suspension of cells plated for the 
purification process. After 1h in culture at 37°C cardiac fibroblast (CFs) attach to 
the dish and leave in suspension CMs cells. The efficiency of isolation was tested 
through FACs analysis staining the cells with TNNI antibodies as marker of CMs; a 
mean of 84% of purity was obtained from 4 different primary CMs cell preparation 
experiments, one representative experiment is shown in Figure 10A. 
Adult cardiomyocytes (CMa) have been isolated from 2-month-old CD1 male mice. 
After the incanulation of the heart through the aorta an enzymatic solution of 
collagenase IV was applied by the Langendorf method using a retrograde flow. 
This method allowed the matrix and collagen dissociation within the cells. CMa in 
physiological condition could reach dimension of 100µm and display rod-shape 
morphology, these allowed us to purify CMa from other cells by gravitometry 
centrifugation. The efficiency of cell separation was verified throughout the 
counting of rod-shape cells in the hemocytometer chamber and by the analysis of 
TNNI positive cells at the cytoflourimetry. CMa where isolated from 8 heart with a 
mean of 1x106 cells per heart and an efficiency of purification of 90% (Figure 10B). 
 
 
 
 
 
 
 
 
 
Figure 10 – FACs analysis to access CM purification: A) neonatal CM, B) adult CM 
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4.1.2.2 ChIP and libraries preparation. 
The chromatin obtained after nuclei isolation from neonatal CMs and adult CMs 
was sonicated to obtain an average chromatin length of 300bp, corresponding to a 
mono-nucleosome fragment size. IP was performed by incubating the chromatin at 
4°C overnight with antibodies anti-tri-methylated H3K4 and anti-di-methylated 
H3K79, histone modifications associated to transcriptional activation, and anti-tri-
methylated H3K9 and anti-tri-methylated H3K27, markers of transcriptional 
repression. After the evaluation of the quantity and of the quality of the DNA 
enriched with each antibody in comparison with input, ChIP DNA fragment were 
sequenced using Next Generation Sequencing techniques and the distribution of 
these marker on the genomes was studied. 
The DNA fragments sequenced, also called “reads” were aligned and mapped to 
the Mouse Genome (mm9) using two different programs of annotation, MACS 
(Model-based Analysis) and SICER. The reads could be imagined as breaks that 
form a peak in the portion of the genome where there is an enrichment of that 
modification, these peaks were than normalized versus the input (DNA from each 
samples before immunoprecipitation) and sort with statistical parameters such as 
Fold Discovery Rate (FDR) and P-value. The most significant enriched regions 
were then analyzed with respect to the Transcription Start Site (TSS) of each gene 
and with respect to the different genomic regions. The peaks annotated were than 
associated with genes, visualized on genome browser and clustered into functional 
related pathways (Figure 11). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11 – Workflow of sequencing and bioinformatic analysis. 
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As ChIP-seq is considered an absolute quantification of histone methylation, this 
experiment allowed us to generate a high-resolution map of H3K4me3 H3K79me2, 
H3K27me3 and H3K9me3 histone methylation markers in neonatal and adult CMs 
that could be analyzed in comparison with the already published datasets of ChIP-
seq in mouse embryonic stem cell. This analysis revealed the acquisition or the 
lost of makers on the locus of differential expressed genes during the cardiac 
differentiation process. 

4.1.3 ChIP-seq analysis and metanalysis. 
Comparative analysis was performed to evaluate differences in the distribution of 
histone markers and in the transcription regulation of genes between mouse 
embryonic stem cell (mES), neonatal cardiomyocytes (CMp) and adult 
cardiomyocytes (CMa). 
The datasets generated for H3K4me3, H3K79me2, H3K27me3 and H3K9me3 in 
CMp and CMa from our ChIP-seq experiments have been analyzed in relation with 
mES ChIP-seq datasets for the same histone methylation markers downloaded 
from the GSE12241 and the GSE11724 series already published [105, 106]. 
4.1.3.1 Histone modification distribution respects gene 
transcription start site (TSS). 
To access the distribution of each marker of interest, we first calculate the average 
coverage around the transcription start site (TSS) across all marked genes. 
ChIP-seq libraries from mES cells, CMp, and CMa were compared through SICER 
software of analysis in order to find differences in marker distribution. The 
significant-peak lists were identified sorting the peak lists by three parameters: 
number of tags per peak, fold enrichment, and the False Discovery Rate. 
The TSS plot was create by taking a fixed length (in bp) around the TSS, with all 
genes in the same orientation (5’ to 3’ open reading frame), and then averaging the 
signal across all the selected genes. A sampling frequency of 25bp/points was 
used to cover a region of +/- kb around the TSS of all the genes. 
In accordance with previously published data, we found that each histone 
modification had a characteristic distribution not only within the genome but also 
with respect to TSSs [57, 105]. When we assessed the distribution of H3K4me3 
with a TSS centered plot, we observed a sharp peak of enrichment at the TSS, 
which extends over a 2kb interval. Additionally the signal was stronger upstream of 
the TSS, than in the downstream region. By considering the difference between 
cell types (mES blue line, CMp red line and CMa green line), we observed that 
H3K4me3 was progressively redistributed during development, becoming more 
present inside the gene body and less associated with TSSs in CMs with respect 
to mES. Considering the association in bivalent domains of H3K4me3 and 
H3K27me3 during differentiation processes we found a similar distribution also for 
H3K27me3. H3K27me3 had a similar, highly dense and narrow distribution profile 
close to TSSs; in mES cells there was a strong enrichment of H3K27me3 around 
the TSS, whereas the signal was much lower in CMp and CMa cells. A common 
feature of the TSS centered plots is a sharp dip in H3H27me3 around the TSS, 
corresponding to the position of the nucleosome-depleted zone.  
At the level of the TSS we noticed stark differences in the enrichment profile 
between the cell types, the nucleosome-depleted zone was less evident in the 
mES cell plots both for H3K4me3 and H3K27me3, suggesting that the distribution 
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of these markers across the gene could be important for regulating the binding 
profile of RNApol-II occupancy and transcription during CM cells differentiation. 
Analyzing the distribution of H3K79me2 in the region +/-4kb to the TSS, we found 
a strong signal across the gene body which may indicate the presence of active 
transcription during termination. Considering the presence of this marker into the 
gene body we analyzed a wider region of +/- 25kb to the TSS. From this analysis 
we observed an enrichment of H3K79me2 downstream the TSS and the absence 
of the marker upstream. The enrichment in the gene body is gradually lost from 
mES to CMp and CMa indicating a progressive reduction of transcription activation 
during cell differentiation (Figure 12). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12 - ChIP-seq analysis of H3K79me2, H3K4me3, H3K27me3 and 
H3K9me3 in mouse Embryonic Stem cells (mES), cardiomyocytes from post-natal 
day 1 (CMp) and cardiomyocytes from 2 month-old mice (CMa). The averaged 
levels of histone modifications are plotted within a region of ± 25Kb around the 
annotated Transcription Start Sites (TSS) (H3K79me2) and a region ± 4Kb around 
the annotated TSS (H3K79me2, H3K4me3, H3K27me3 and H3K9me3), each 
graph shows the distribution of mES (blue line), CMp (red line) and CMa (green 
line). 
 

0.0% 

0.5% 

1.0% 

1.5% 

2.0% 

-4000 

-3000 

-2000 

-1000 

0  +1000 

 +2000 

 +3000 

 +4000 

H3K79me2 

0.0% 

1.5% 

3.0% 

4.5% 

6.0% 

-4000 

-3000 

-2000 

-1000 

0  +1000 

 +2000 

 +3000 

 +4000 

H3K4me3 

0.0% 

0.5% 

1.0% 

1.5% 

2.0% 

-4000 

-3000 

-2000 

-1000 

0  +1000 

 +2000 

 +3000 

 +4000 

H3K27me3 

0.0% 

0.5% 

1.0% 

1.5% 

2.0% 

-4000 

-3000 

-2000 

-1000 

0  +1000 

 +2000 

 +3000 

 +4000 

H3K9me3 

Distance to TSS (bp) 

%
 o

f p
ea

ks
 

0.0% 

0.3% 

0.6% 

0.9% 

1.2% 

-25000 

-20000 

-15000 

-10000 

-5000 

0  +5000 

 +10000 

 +15000 

 +20000 

 +25000 

H3K79me3 mES 
CMp1 
CMa 



 33 

4.1.3.2 Histone modification distribution respects genomic regions. 
Although regulation at TSS is important for gene regulation, understanding the 
distribution of these markers in the different region of the genome could identify 
important regulators for tissue specific gene expression patterns during lineage 
commitment and cardiac development. 
We also analyzed the distribution of the histone methylation markers with respect 
to the different genomic regions, quantify the relative presence of each 
modification downstream the gene body, upstream the gene body, at the level of 
the TSS, inside the gene, in the region overlapping the start and in the region 
overlapping the end. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13 - Distribution of histone marks across the genome. ChIP-seq analysis of 
H3K79me2, H3K4me3, H3K27me3 and H3K9me3 in mouse Embryonic Stem cells 
(mES), cardiomyocytes from post-natal day 1 (CMp) and cardiomyocytes from 2 
month-old mice (CMa). Results are expressed in percentage and show the 
average distribution of each marks downstream the gene, upstream the gene, at 
the level of the Transcription Start Site (TSS), inside the gene and in the region 
overlapping the end and the start of the gene. 
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According with the profile observed in figure 12 the presence of H3K4me3 
significantly decreased into the gene overlapping start region from mES to CMs 
(78% in mES, 30% in CMp and 5% in CMa) and increased in the region inside the 
gene in CMs compared to mES (6% in mES, 42 % in CMp and 62% in CMa). 
A similar modification in the distribution results also for H3K27me3, where the 44% 
presence of this marker in mES cells is completely redistributed in CMs. On the 
other end this marker in both neonatal and adult CMs is enriched in the region 
upstream the gene body. 
The changes in H3K79me2 were only in part observed, both in mES cells and CMs 
H3K79me2 is manly present inside the gene and it appear to be partially relocated 
upstream and downstream during differentiation. 
This analysis suggest a dynamic redistribution of the epigenetic markers upon 
differentiation, indicating a role of H3K4me3 and H3K27me3 in the regulation of 
the transcription of cell specific genes and maintaining the chromatin in a “poised” 
state, ready to be remodeled (Figure 13). 
4.1.3.3 Binding affinity correlation and principal component 
analysis (PCA). 
To identify the genomic loci enriched in the ChIP-seq data where a specific histone 
methylation is present we perform an analysis with the R Bioconductor package 
DiffBind using the peak callers and aligned sequence read datasets obtained with 
the SICER and MACS analysis. 
The DiffBind program is designed to work with multiple peak sets simultaneously 
as well as managing the results of multiple peak callers; this allowed us to identify 
sites that are differentially bound between the three samples groups, to identify 
overlapping and merging peak sets, to count sequencing reads overlapping 
intervals in peak sets, and to identify statistically significantly differentially bound 
site based on evidence of binding affinity, measured by differences in read 
densities. 
First DiffBind finds all overlapping peaks and originates a single set of unique 
genomic intervals covering all the supplied peaks from the different peak-sets, this 
allowed to examine how well similar samples cluster together and to enable 
overlaps to be examined, counting how many reads overlap each interval for each 
unique sample. 
Figure 14 displays the result of these analyses in which a binding affinity matrix 
containing a normalized read count for each sample at every potential binding site 
is shown. With this analysis the samples are clustered using statistically differential 
binding affinity rather than occupancy data. 
In fact, correlation analysis heatmap using affinity data, reveals that the four 
modifications analyzed (H3K4me3, H3K27me3, H3K79me2 and H3K9me3) in the 
three samples (mES, CMp and CMa) clustered into two major hierarchical clusters, 
which according with general epigenetic roles, divided the modifications into an 
activating group and a repressing group. Using the differentially bound sites we 
see that, within these two major groups, the same modification in the three 
different samples create a narrower cluster. 
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Figure 14 - Correlation heatmap using occupancy (peak caller score) data. 
 
 
While the correlation heatmaps showed clustering, a Principal Component Analysis 
(PCA) was used to show how different samples (mES, CMp and CMa) and 
different histone modifications associate. PCA plot using affinity data for all the 
sites normalized per read count reveals that the differential analysis identifies in a 
statistically significant way (FDR < 0.1) several sites that are common for 
H3K4me3 and H3K27me3 in all the three samples. These results is supported by 
the fact that H3K4me3 and H3K27me3 in differentiating cells are present in the 
same moment on the same loci, forming bivalent domains that work together in the 
regulation of gene expression. On the other hand H3K79me2 seems to be present 
in other sites respect to H3K4me3 and H3K27me3 suggesting a potentially 
different and specific role of transcriptional activation associate at this histone 
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modification. Finally this analysis identify for H3K9me3 sites that separate the 
three samples associated at this marker in a region opposite to both the 
H3K79me2 group and the H3K4me3/H3K27me3 group of samples, according with 
its transcriptional repression activity (Figure 15). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15 - PCA analysis revealed association within different samples. Affinity 
data plotted for H3K79me2 (£), H3K4me3 (�), H3K27me3 (¯) and H3K9me3 (r) 
in mouse Embryonic Stem cells (mES blue), cardiomyocytes from post-natal day 1 
(CMp red) and cardiomyocytes from 2 month-old mice (CMa green). The graph 
displays on x and y axis the first two principal components identified by Principal 
Component Analysis (PCA) and reveals potential association between samples 
and modifications. 
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CMa, whereas less than 10% of the sites identified were common between the 
samples. On the other hand H3K4me3 surprisingly results more present in shared 
region between the samples and H3K9me3 instead was present in a few sites in 
the condition analyzed. Even if some sites belonging to all the three different 
samples could be useful to investigate the role of the bivalent domains in the 
cardiac differentiation, our main interest was in finding binding sites differently 
present between the three groups of samples, this is the reason way we start 
studing the differential binding sites associates specifically to mES, CMp and CMa. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 16 - Histone methylation marks have common and exclusive peaks in 
cardiomyocytes. Venn diagrams displaying the number of overlapping and 
mutually exclusive peaks associated with H3K79me2, H3K27me3, H3K4me3 and 
H3K9me3 in mouse Embryonic Stem cells (mES), cardiomyocytes from post-natal 
day 1 (CMp) and cardiomyocytes from 2 month-old mice (CMa). 
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In order to investigate the exclusive binding sites belonging to a specific cell type 
and a specific differentiation stage we carried out a comparative analysis 
comparing each one of the three samples within each other: mES with CMp, mES 
with CMa, and CMp with CMa for each one of the for histone modification analyzed 
(H3K79me2, H3K4me3, H3K27me3 and H3K9me3). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 17 - Differential binding affinity of histone marks. The MA plots show the 
differentially bound sites for H3K79me2, H3K27me3, H3K4me3 and H3K9me3 that 
results from three different comparative analyses: mES vs CMp (left), mES vs CMa 
(middle) and CMp vs CMa (left). Each point represent a binding site, with point in 
red having an absolute log fold difference of at least 2. 
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A useful way to visualize which of the data-points are being identified as 
differentially bound is the analysis with MA plots. Each point represents a binding 
site, the red points represents the binding sites that have an absolute log fold 
difference of at least 2 resulting differentially presented in the two samples 
compared. From this analysis results evident that more sites are differentially 
presented between mES and CMs both neonatal and adult; then between CMp 
and CMa is highlighted the intermediate stage of differentiation of the 1day-old 
CMs compared with the adult CMs, in which the transcription profile should be 
already defined (Figure 17). 
4.1.3.5 Statistical association of the genomic region identified with 
nearby genes (GREAT) and GO pathways identification 
To identify the genes that were proximal and distal to the differential peaks we 
have analyzed the data set of the most significant ChIP-seq peaks with GREAT: 
Genomic Regions Enrichment of Annotation Tool software which predict functions 
of cis-regulatory regions (http://bejerano.stanford.edu/great/public/html/) [107]. 
GREAT calculates statistics by associating genomic regions with nearby genes 
and applying the gene annotations to the regions. Association is a two-step 
process: first, every gene is assigned to a regulatory domain, then, each genomic 
region is associated with all genes whose regulatory domain it overlaps. Each 
gene is assigned to a basal regulatory domain of a minimum distance of 5kb 
upstream and 1kb downstream of the TSS (regardless of other nearby genes). The 
regulatory domain is extended in both directions to the nearest gene’s basal 
domain but no more than the maximum extension in one direction. 
From an input file of genomic regions GREAT associates both proximal and distal 
input genomic regions with their putative target genes and uses gene annotations 
from numerous ontologies to associate genomic regions with annotations. 
Furthermore this analysis allowed us to calculate statistical enrichment for 
associations between genomic regions and annotations and to create track of the 
more significant pathways. This permitted us to have information on the specific 
function of the genomic regions regulated by H3K79me2, H3K4me3 H3K27me3 
and H3K9me3 in mES compared with CMp compared with CMa and to clustered 
the associated genes in GO related pathways. We found relevant changes in the 
genome-wide distribution of the histone modifications analyzed. This revealed that 
histone modifications might regulate the expression of genes involved in 
fundamental cardiac functions: H3K79me2 and H3K4me3 were modulated in 
putative regulatory regions involved in RNA metabolism in mES cells vs. CMp and 
CMa, whereas in CMs these modifications were enriched in genes encoding 
cardiomyocyte structural proteins and in regions involved in cardiac phenotype 
specification; H3K79me2 underwent a change in distribution between CMp and 
CMa stages, being more present in regions involved in cellular metabolism in CMa 
and in genes regulating cytoskeleton assembly in CMp; in contrast, when 
comparing mES vs. CMp or CMa, the repressor mark H3K27me3 was lost in 
genomic regions harboring genes involved in actin filament organization and was 
acquired in regions involved in nervous system formation. GO analysis revealed 
that H3K79me2 became progressively enriched in cardiomyocyte-specific genes 
involved in cardiomyocyte structure and function. This finding underscores the 
importance of these epigenetic modifications in directing cell fate decisions for 
cardiac differentiation (Figure 18). 
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Figure 18A - Functional annotation of differentially enriched modifications was 
performed using GREAT. The top 5 over-represented categories belonging to the 
Gene Ontology (GO) Biological Process are shown. The x axes values (in 
logarithmic scale) correspond to the binomial raw (uncorrelated) P-values. For 
each marks (H3K79me2, H3K4me3, H3K27me3 and H3K9me3), Blue histograms 
represent mES, red histograms CMp and green histograms CMa 
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GO Molecular Functions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 18B - Functional annotation of differentially enriched modifications was 
performed using GREAT. The top 5 over-represented categories belonging to the 
Gene Ontology (GO) Molecular Functions are shown. The x axes values (in 
logarithmic scale) correspond to the binomial raw (uncorrelated) P-values. For 
each marks (H3K79me2, H3K4me3, H3K27me3 and H3K9me3), Blue histograms 
represent mES, red histograms CMp and green histograms CMa 
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Figure 18B - Continued 
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Figure 18B - Continued 
 
 
 
 
 
 

CMp vs CMa 

0 2 4 6 8 10 12 14 16 18 20 22
sm all conjugat ing protein ligase act ivity

ubiquit in-protein ligase act ivity
acid-am ino acid ligase act ivity

protein t ransporter act ivity
unfolded protein binding

p53 binding
protein phosphorylated am ino acid binding
protein-lysine N-m ethylt ransferase act ivity
histone-lysine N-m ethylt ransferase act ivity

m icrotubule binding
m RNA 3'-UTR binding

nuclear horm one receptor binding
t ranslat ion init iat ion factor act ivity

sm all conjugat ing protein binding
histone m ethylt ransferase act ivity
protein m ethylt ransferase act ivity

N-m ethylt ransferase act ivity
ligand-dependent  nuclear receptor t ranscript ion coact ivator act ivity

ubiquit in binding
histone acetyl-lysine binding

GO M olecular Funct ion
-log10(Binom ial p value)

Job ID: 20120824-public-SChed7
Display nam e: user-provided data

0.0 0.5 1.0 1.5 2.0 2.5 3.0
RNA polym erase II distal enhancer sequence-specific DNA binding

GO M olecular Funct ion
-log10(Binom ial p value)

Job ID: 20120824-public-BxIGdX
Display nam e: user-provided data

0.0 0.5 1.0 1.5 2.0 2.5 3.0
RNA polym erase II distal enhancer sequence-specific DNA binding

GO M olecular Funct ion
-log10(Binom ial p value)

Job ID: 20120824-public-BxIGdX
Display nam e: user-provided data

0 1 2 3 4 5 6 7 8
histone-lysine N-m ethylt ransferase act ivity
protein phosphorylated am ino acid binding

phosphotyrosine binding
t ransform ing growth factor beta-act ivated receptor act ivity

14-3-3 protein binding
protein phosphatase type 2A regulator act ivity

GO M olecular Funct ion
-log10(Binom ial p value)

Job ID: 20120902-public-2.0.2-JJoTRa
Display nam e: user-provided data

0 5 10 15 20 25
sequence-specific DNA binding

sequence-specific DNA binding t ranscript ion factor act ivity
nucleic acid binding t ranscript ion factor act ivity

regulatory region DNA binding
t ranscript ion regulatory region DNA binding

sequence-specific DNA binding RNA polym erase II t ranscript ion factor act ivity
t ranscript ion regulatory region sequence-specific DNA binding

sequence-specific distal enhancer binding RNA polym erase II t ranscript ion factor act ivity
DNA bending act ivity

double-st randed DNA binding
st ructure-specific DNA binding

GO M olecular Funct ion
-log10(Binom ial p value)

Job ID: 20120902-public-2.0.2-wVAuCA
Display nam e: user-provided data

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
platelet -derived growth factor binding

GO M olecular Funct ion
-log10(Binom ial p value)

Job ID: 20120902-public-2.0.2-JUFjri
Display nam e: user-provided data

0.0 0.5 1.0 1.5 2.0 2.5 3.0
protein kinase inhibitor act ivity

GO M olecular Funct ion
-log10(Binom ial p value)

Job ID: 20120902-public-2.0.2-kMzbyo
Display nam e: user-provided data

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
histone-lysine N-m ethylt ransferase act ivity
protein-lysine N-m ethylt ransferase act ivity

protein m ethylt ransferase act ivity

GO M olecular Funct ion
-log10(Binom ial p value)

Job ID: 20120902-public-2.0.2-WKJp4b
Display nam e: user-provided data

H
3K

9m
e3

   
   

   
   

   
H

3K
27

m
e3

   
   

   
   

  H
3K

4m
e3

   
   

   
   

   
H

3K
79

m
e2

 



 46 

GO Cellular Component 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 18C - Functional annotation of differentially enriched modifications was 
performed using GREAT. The top 5 over-represented categories belonging to the 
Gene Ontology (GO) Cellular Component are shown. The x axes values (in 
logarithmic scale) correspond to the binomial raw (uncorrelated) P-values. For 
each marks (H3K79me2, H3K4me3, H3K27me3 and H3K9me3), Blue histograms 
represent mES, red histograms CMp and green histograms CMa 
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Figure 18C - Continued 
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Figure 18C - Continued 
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Figure 18D - Functional annotation of differentially enriched modifications was 
performed using GREAT. The top 5 over-represented categories belonging to the 
Gene Ontology (GO) Mouse Phenotype are shown. The x axes values (in 
logarithmic scale) correspond to the binomial raw (uncorrelated) P-values. For 
each marks (H3K79me2, H3K4me3, H3K27me3 and H3K9me3), Blue histograms 
represent mES, red histograms CMp and green histograms CMa 
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Figure 18D - Continued 
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GO Mouse Phenotype 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 18D - Continued 
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4.1.3.6 IGV genomic map visualization 
Moreover, ChIP-seq data from single genes modulated during cardiac 
differentiation (e.g. Nanog, Pou5F1, Gata4, Nkx2-5, Myh6, Myh7, TnnI3) were 
inspected with either the UCSC Genome Browser (http://genome.ucsc.edu/) or the 
IGV2.1 bioinformatics program (http://www.broadinstitute.org/software/igv/home) 
[108]. These tools allowed us to generate a genomic scale high-resolution map of 
histone methylation markers differentially expressed in stem cells and 
cardiomyocytes and to clearly visualize the presence of these modification on 
regions of the genome that are associated with gene transcription regulation (e.g 
microRNA, non-coding RNA, enhancer). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 19 - Genome browser representation of H3K79me2, H3K4me3, H3K27me3 
and H3K9me3 enrichment profiles in mES (blue), CMp (red) and CMa (green) are 
shown for key gene loci of pluripotency (Nanog, Pou5F1), cardiac transcription 
regulation (Gata4, Nkx2-5) and cardiomyocyte specification (Myh6, Myh7, TnnI3). 
The peak height is set to correspond to the maximum enriched peak in the region 
for each mark. 
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An alteration in the profile of these markers is shown during cardiac differentiation, 
analyzing key genes of pluripotency and heart development, H3K79me2 and 
H3K4me3 are present on the locus of Nanog and Pou5F1 in mES and are lost in 
CMp and CMa and H3K27me3 is acquired in CMp and CMa on the locus of 
Pou5F1 in CMs. On the contrary the cardiac genes Gata4, Nkx2-5, Myh7, Myh6 
and TnnI3 acquired the activation markers H3K79me2 in CMs and lose the 
repressor marker H3K27me3, this is a typical example of transcriptional activation 
through the lost of a repressive marker involved in the bivalent domain (Figure 19). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 19 - Continued 
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Figure 19 – Continued 
 
 
 
 

4.2 The epigenetic code associated with histone methylation 
correlate with the transcriptional program of cardiomyocytes at 
different stages of development. 
4.2.1 mRNA microarray gene expression analysis 
To investigate whether changes in the distribution of the histone modifications 
analyzed are associated with gene reprogramming accompanying heart 
development, we analyzed the mRNA gene expression profile of mES, CMp and 
CMa. Neonatal and adult CMs were purified as described in sections 3.1 and 
4.1.2.1. Total RNA was extracted from undifferentiated mES cells (TBV2 line), 
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neonatal and adult CMs using TRIzol method (Invitrogen). The mRNA obtained 
was quantified with NanoDrop Spectrophotometer and the quality was tested 
through Agarose gel and Agilent, only samples with RIN number > 8 were used. 
Gene expression profiling of mES, CMp and CMa were obtained by Illumina 
microarray. Briefly, 500ng of RNA were transcribed to cRNA by Illumina TotalPrep 
RNA Amplification Kit (Ambion) and a total of 500ng of cRNA was hybridized at 
58°C for 16 hours on the Illumina MOUSEWT-6V BeadChips (Illumina). Bead-
Chips were scanned using Illumina BeadArray Reader and the Bead Scan 
software. Data were processed with BeadStudio version 3 and successively 
analyzed with MeV_3 software. Three independent biological replicate were 
analyzed for each samples. PCA analysis shows a significant correlation within the 
samples of each group (Figure 20). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 20 – PCA plot Illumina analysis 
 
 
 
Statistical analysis of raw data revealed that 4607 genes significantly modulated in 
mES vs. CMp, 5258 genes in mES vs. CMa, and 2163 genes differentially 
expressed between CMp and CMa. Heararchical clustering shown three main 
groups, wuth a closer proximity between CMp and CMa compared with mES. In 
red are presented gene whose expression is up regulated and in green genes 
down regulated; is evident that genes highly expressed in mES are not expressed 
in CMp and CMa, within this group of genes no big difference are shown between 
neonatal and adult CMs (Figure 21). 
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Figure 21 - Gene expression profile of cardiomyotytes at different stages of 
differentiation. Illumina mRNA gene expression datasets are presented for mouse 
Embryonic Stem cells (mES), post-natal cardiomyocytes (CMp) an adult 
cardiomyocytes (CMa). Genes were Z-score normalized and data were subjected 
to hierarchical clustering (centered correlation distance, centroid linkage). The 
results from three biological replicates are presented, samples with higher than 
average expression are shown in red and samples with lower than average 
expression are shown in green. 
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As described in the section 4.1.3.4 a comparative analysis was performed within 
the groups (mES vs CMp; mES vs CMa; CMp vs CMa) in order to identify the up-
regulated genes characteristic for each cell type analyzed. Figure 22 revealed that 
a high percentage of genes resulted differentially expressed within mES and CMs 
(both neonatal and adult), whereas a lower percentage of genes are differentially 
expressed within CMp and CMa. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 22 – MA plot resulting 
from Illumina gene expression 
analysis. Three comparative 
analysis are presented: mES vs 
CMp, mES vs CMa and CMp 
vs CMa 
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4.2.2 Functional clustering of differential expressed genes. 
Kegg pathway classification, performed with DAVID bioinformatics software 
(http://david.abcc.ncifcrf.gov/), revealed that the up-regulated genes in CMs are 
involved in a variety of cellular processes implicated in heart development and 
cardiac structure and function; down-regulated genes were found to be part of 
cellular and signal transduction pathways involved in stem cells metabolism 
(Figure 23). 
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mES vs CMa 
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CMp vs CMa 
 
 
  GO Biological Process   GO Molecular Function 
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Figure 23 - Functional and molecular characterization of mRNA expression in 
cardiomyocytes during differentiation was performed using DAVID. The top 10 
over-represented categories belonging to the Gene Ontology (GO) Biological 
Process, GO Cellular Component and GO Molecular Function and to the KEGG 
Pathway are shown. The x axes values correspond to the P-values. For each 
category results from three different comparative analyses are shown: mES vs 
CMp, mES vs CMa and CMp vs CMa. Blue histograms represent mouse 
Embryonic Stem cells (mES), red histograms post-natal cardiomyocytes (CMp) 
and green histograms adult cardiomyocytes (CMa). 
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4.2.3 Statistical correlation between ChIP-seq data and mRNA gene 
expression profile data. 
To investigate whether changes in the distribution of the histone modifications 
analyzed are associated with gene reprogramming accompanying heart 
development, we cross-compared ChIP-seq libraries from mES and CMs with 
Illumina gene expression data and we found that many genes up-regulated in CMs 
are also enriched in histone methylation markers associated with transcriptional 
activation. 
The heatmaps of figure 24 show a significant correlation (H3K79me2, H3K4me3) 
and anti-correlation (H3K27me3 and H3K9me3) between the enrichment of a 
histone methylation modification and the transcriptional profile. Genes are ordered 
by the magnitude of differential histone methylation occupancy and the relative 
gene expression is shown, genes up-regulated are shown in red and genes down-
regulated are shown in green. 
The comparison between ChIP-seq fold change and Illumina gene expression fold 
change revealed that H3K79me2 is highly correlated with the transcriptional 
activation profile in CMs. Pearson correlation (R) in mES vs CMp results R=0.698; 
and in mES vs CMa R=0.607 (R values of correlation and anti-correlation are 
between +1 and -1) (Figure 25). 
This result proves that histone methylation regulates the transcription program in 
developing cardiac cells and that H3K79me2 play a central role in this regulation. 
Supporting this idea and according with previously published studies in other 
differentiating systems H3K4me3 and H3K27me3 correlate and anti-correlate 
respectively with the expression profile, however no significant correlation was 
found for H3K9me3, this was expected because a small number of genes are 
regulated by this marker in our experimental conditions. Taken together this results 
showed a really significant correlation between histone methylation and 
transcription regulation. 
The bivalent domain H3K4me3 and H3K27me3 defined as “poised” markers 
characteristic of differentiating cells, also in the cardiac differentiation model plays 
a key role and of particular attention is the role of H3K79me2, marker of 
transcriptional activation, that results enriched on the locus of the genes that are 
activated during heart development. 
This result proves that histone methylation regulates the transcription program in 
developing cardiac cells and that H3K79me2 plays a central role in this regulation; 
moreover, histone marks distinguish functionally distinct genes with a similar 
expression pattern. 
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Figure 24 - Expression data for genes differentially occupied by H3K79me2, 
H3K4me3, H3K27me3 and H3K9me3 in mouse Embryonic Stem cells (mES), 
cardiomyocytes from post-natal day 1 (CMp) and cardiomyocytes from 2 month-old 
mice (CMa). Genes are ordered by magnitude of differential marks occupancy and 
relative gene expression is shown. Samples with higher than average expression 
are shown in red and samples with lower than average expression are shown in 
green. Results from three different comparative analyses are shown: mES vs CMp 
(left), mES vs CMa (middle) and CMp vs CMa (left). 
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Figure 25 - Correlation analysis between ChIP-seq fold change values (ChIP-
seq_FC) and gene expression fold change values in logaritmic scale 
(Illumina_logFC). The correlation index R for each comparison is indicated inside 
each graph. Red line indicates correlation or anti-correlation between the histone 
methylation marks enrichment and the expression level. Results from three 
different comparative analyses are shown: mES vs CMp (left), mES vs CMa 
(middle) and CMp vs CMa (left) for H3K79me2, H3K4me3, H3K27me3 and 
H3K9me3. 
 

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

! !

!

!

!

!

!
!

!! !
!

!

!

!

!!
!

!

!

!

!
!

!
!

!

!

!

!
!

!

!

!!

!

!

!

!

! !

!

!

!
!

!
!

!
!

!

!

!

!

!

!

!

!

! !

!!

!

!

!

!
!

!

!

!

!

!

!

!

!
!

!

!

!
!

!

!!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!
!

!

!
!

!

!

!

!

!

! !

!

!

!
! !

!
!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!
!

!!!

! !

!

!
! !

!

!!

!

!

!

!

! ! !

!

!

!
!

!
!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!
!

!
!

!

!

!

!

!

!

!

!!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!!

!

!

!
!

!

!

!

!

!!

!
!

!

!
!

!

!

!

!

!

!
!

!

!
!

!

!
!

! !

!

!

!

!

!

!

!
!

!

!

!

!
!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!
! !

!

!
!

!

!

!

!

!!

!

!

!

!

!
!

!

!

!

!

!

!

!

!
!

!

!

!
!

!
!

! !

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

! !

!

!

!

!

!

!

!

!
!

!

!

!
!

!

!

!

!

!

!

!

!
!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!!

!

!

!

!
!

!

!

!

!

!

!
!!

!
! !

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!
!

!

!

!

!

!

!

!

!
!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!!

!

!

!

!
!

!

!

!

!

!

! !

!

!
!

!
!

!

!
!

! !

!

!
!

!

!

!

!

!

!

!

!

!

! !

!

!

!
!

!

!

!

!

!
!

!

!

!

!
!

!

!

!

!

!

!

!!

!

!

!

!

!!

!
!

!

!
!

!
!

!

!!

!

!

! !

!

! !

!

! !

!
!

! !
!

! ! !

! !

!

!

!

!

!

!
!

!

!

!

!
!
!

!

!

!

!

!
!

!

! !

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !
!

!

!
!

!

!!!
!

!

!!

!

!
!

! !

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!
!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!
!

!

!

!
!

!

!

!

!

!

!

! !!
!!

!

!
!

!

!
!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!
!

!

!
!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!
!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!
!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!
!

!

!

!!
!!

!

!

!

!

!

!!

!

!

!

!

!
!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!! !
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!
!

!

!
!

!

!

!

!

!

!

!

! !

!

!
!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!
!

!

!!

! !

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!
!

!

!

!

!

!

!
!

!

!
!

! !

!

!

!

!
!!

!

!

!

! !

! !

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!
!

!
!

!
!

!

!

!

!

!

!
!

!

!
!

!

!

!

!

!

!

!

!

!

!

!
!
!

!

!

!

!

! !

!

!
!

!

!

!

!

!
!

!

!

!
!

!
!

!

!

!!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!
! !

!

!

!

!
! !

!

!

!

!

!
!

!

!
!

!
!

!
!

!!!

!

!

!

!

!

!

!

!

!

!

!
!

!

!
!

!

!

!

!

!

!

!! !
! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!
!!

!

!

!

!

!

!
!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

! ! !
!

!

!

!

!

!

!

!

!

!!

!
!! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!
!

!!

!

!

!

!!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!
!

!

!

!
!

!

!

!

!

!
!

!
!!

!

!

!

! !

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

! !!

!

!

!!

!

!

!

!
!

!

!

!

!!

!
!

!

!

!

!
!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!
!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!
!

!

!

!
!

!

!

!

!

!

! !

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!
!

!

!

!

!
!

!

!

!

!

!

!
!

!

!

!

!

!
!
!

!

!

!
!

!

!!

!

!

!

! !

!

!

!
!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!
!

!
!

!

!

!

!

!

!

!
!

!

!

!
!!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!
!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!!

!

!

!

!

!

!

!

!!
! !

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!
!

!!
! !!
!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!!

!

!!

!

!
!

! !

!

!

!

!!

!
!

!!
!!

!

!
!

!

!

!

!

!

!

!
!

!

!

! !!
!

!

!

!!!

!

!

!

!

!

!

!

!
!

!

!!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!
! !

!

!

!

!

! !

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!!

!

!

! !
!

!

!
!

!
!

!

!

!

! !

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!
!

!

!

!

!

!

!

!

!
! !

!

!

!
! !

!

!

!

!
!!
!

!
!

!

!

!

!
!!

!

!

!
!

!

!

!

!! !

!

!

!

!

!
!

!

!

!
!!

!

!

!

!
!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!
!

!!

!

!
!

! !

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

! !
!

!

!

!

!

!

!

!
!

!

!

!
!

!

!

!!

!!

!

!

!
!

!

!

!

!

!

!

!

! !

!

!
!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

! !

! !

!

!

!

!

!

!
!

!

!

!

!

!

!

!
!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!
!

!
!

!

!

!

!

!

!

!
!

!

!!

!

!
!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!!

!!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!
!

!
!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!
!

!

!

!

!

!

!

!

!
!

!

!

!

!
!

!

!

!

!

! !

!

!

! !

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!
!

!

!
!

! !

!
! !

!! !

!
!

!

!

!

!

!

!
!

!

!

!

!

!
! !!

!

!

!
!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!
!

!

!
!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

! !

!

!

!

!

!
!

!

!! !

!

!

!

!

!

!

!

!

!

!

!

!

!
!
!

!!

!

!

!

!!

!!

!
!

!

!

!

!

!

!

!

!!

!

!

!!
!

!

!

!

!

!

!

!

!!

!

!

!

!
!

!
!

! !

!

!

!

!

!
!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!! !
!

!

!!

!

!

!
!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!
!

!

!

! !
!

!

!

!

!

!

!

!
!

!

!

!
!

!

!

!

!
!

!

!!

!

!

!

! ! !
!

!

!

!

!

!

!

!

!

!

!
!!!

!
!

!

!

!
!!

−5 0 5

−5
0

5

Illumina_logFC

C
hi
p−
Se
q_
FC

0.607

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!
!

!

!

!

!

!

!!

!

!

!

!

!

!!
!

!

!
!

!

!

!

!

!

!

!
!

!

!!

!!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!!
!

!
!

!

!

!

!

!

!

!

!

!

!!

!

!
!

!

!

!

!

!
!

!

!

!

!

!

!

!
!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!
!

!

!
!

!

!

!

!

!

!

!
!
!
!

!

!

!!

!

!
!

!

!

!
!

!

!

!

!

!

!
!!

!

!

!!

!

!

!

!
!

!

!

!

!

!

!

!

!

!
!
!

!

!

!
!

!
!

!

!

!

!

!

!!
!

!!

!!

!

!
!

!

!

!
!

!

!!!

!

!

!

!

!

!!

!

!

!

!!!!!

!

!
!

!

!

!

!
!
!

!

!

!!

!

!

!

!

!
!

!

!

!!
!

!

!

!

!!

!
!
!

!

!

!!

!

!

!!

!

!

!!

!

!

!

!

!

!

!

!
!

!

!!

!
!

!!

!

!

!

!!

!

!
!

!

!

!
!

!

!

!

!

!

!

!

!
!!

!

!

!

!!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!!

!

!
!

!!

!

!

!

!

!

!

!

!!!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!!
!

!

!

!

!

!

!!

!

!

!

!
!

!
!!

!

!

!

!

!

!

!

!!

!

!!

!

!

!
!

!

!

!!

!

!

!
!
!

!

!

!
!

!

!

!

!

!!

!
!

!

!

!

!

!

!
!
!!
!

!

!

!

!

!

!

!
!

!
!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!!

!
!!

!

!

!
!

!

!
!

!

!!

!
!
!

!
!
!

!

!

!

!

!

!

!!

!

!!
!
!

!

!

!

!
!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!
!

!

!

!

!

!

!

!!
!

!

!

!

!!

!

!

!

!
!
!
!

!

!

!

!

!

!

!

!!

!

!

!

!
!!
!

!

!

!

!

!

!

!
!

!

!

!!

!

!

!

!
!

!

!
!
!
!

!
!

!

!

!

!

!

!!

!

!

!
!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!!!

!

!

!

!

!

!

!

!

!

!

!!

!
!

!!

!

!

!

!

!

!

!

!

!
!!!
!

!

!

!
!

!

!

!!

!

!!
!

!

!

!
!

!!
!!

!
!

!

!
!

!

!

!!
!!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!!

!!!

!

!

!
!!
!

!

!

!!
!
!

!

!

!!
!!!

!

!

!

!!

!

!
!

!

!!

!

!
!

!

!

!

!

!

!!

!

!

!
!!!!

!

!
!

!

!

!
!!

!

!
!
!!

!!!

!

!

!!
!

!

!!

!
!!!

!

!

!

!

!

!
!
!

!!

!

!

!

!
!

!

!
!

!

!

!!

!

!

!

!

!

!
!!

!

!

!!
!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!!

!

!!

!
!

!

!

!
!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!
!

!

!

!

!
!

!
!

!

!

!

!

!!
!

!

!

!
!

!

!

!
!

!

!

!

!

!
!

!

!

!

!

!

!

!

!
!!
!!

!

!

!

!
!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!
!

!

!
!

!

!!
!
!

!

!

!

!

!

!

!
!

!!
!
!
!

!

!

!

!!

!

!
!
!

!

!

!

!!

!

!

!

!

!
!
!

!

!

!
!
!

!

!
!

!

!

!

!
!
!

!!

!!
!

!

!
!!
!
!
!

!
!

!
!!!!
!

!

!

!

!
!
!!
!!

!!

!

!
!!!!
!!
!!
!

!
!

!

!

!

!

!

!

!!

!

!

!
!

!

!

!

!

!
!
!

!

!!!

!

!!

!

!

!
!

!

!
!

!

!

!

!
!

!
!
!

!

!

!

!

!

!

!!

!

!

!

!!
!
!

!
!

!
!!

!

!
!

!

!

!

!

!

!
!!

!

!
!

!
!

!!

!

!

!

!

!

!

!

!

!
!
!

!

!

!

!

!
!

!

!
!!

!

!

!

!!!!

!

!
!

!

!

!!
!

!

!

!

!

!
!!
!!

!!

!

!!

!

!

!

!

!

!

!
!
!

!
!

!

!

!
!
!

!

!

!!

!

!

!

!
!

!

!
!
!
!

!

!!!
!

!

!

!
!
!

!!
!

!
!

!

!

!!

!!
!

!
!

!

!

!

!

!!
!

!
!

!

!

!!!

!

!
!

!
!

!

!

!!

!!!

!

!
!
!

!

!!
!

!

!

!

!
!

!

!

!

!

!
!
!!

!
!

!

!

!

!

!!

!

!

!
!!

!

!

!

!

!
!

!

!

!

!

!!

!

!!

!

!!

!

!

!

!

!

!

!!

!

!!
!

!
!

!

!!

!

!

!!!

!
!

!

!

!
!
!
!

!

!

!

!

!!
!

!

!

!
!!

!!!
!!

!

!

!!
!
!

!

!

!
!

!!!

!!

!
!

!

!

!

!!
!

!

!

!
!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!
!

!
!
!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!
!

!!!!

!

!

!

!

!

!!

!!

!

!

!

!
!

!

!

!

!

!

!

!

!

!
!!

!!
!

!!

!
!

!

!!

!

!

!

!

!

!
!!!

!

!
!

!

!

!!
!!

!

!

!

!!
!

!

!

!

!

!

!
!!

!

!
!

!

!

!

!

!

!
!

!

!

!

!!

!

!

!

!
!

!

!

!

!!

!

!

!
!
!

!

!

!
!
!
!

!

!!

!!

!
!

!

!

!
!!

!

!

!

!
!

!!

!

!
!
!

!

!
!
!

!

!

!

!

!

!

!

!

!

!

!!

!

!!!!!!

!

!

!
!

!

!
!

!

!

!

!

!

!

!

!

!

!
!!

!

!!

!

!

!

!

!

!
!

!

!

!

!
!

!

!

!!
!

!

!

!
!

!

!

!

!

!

!!

!

!

!!

!

!
!

!

!
!!
!

!!

!

!

!

!

!

!

!
!

!
!
!

!

!

!

!

!

!
!!
!!

!

!!!

!

!

!!
!
!!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!
!

!
!!

!

!

!

!

!

!

!

!
!

!!
!!
!

!

!

!
!

!

!
!
!

!

!

!

!!

!

!!!

!

!

!

!

!!!

!

!
!

!

!

!

!!

!

!

!
!

!
!

!!!
!
!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!!

!
!
!
!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!
!

!

!

!
!

!

!

!

!

!

!

!

−5 0 5 10

−5
0

5

Illumina_logFC

C
hi
p−
Se
q_
FC

0.698

!

!

!

!

!

!
!

!

!
!!

!

!

!

!

!!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!
!! !

!
!

!

!

!

!

!

!

!
!
!

!

!

!

!

!
!

!

!

! !

!!

!

!
!!

!

!

!

!

!

!

!

!

!
!

!

!

!!
!

!

!
!

!

!

!

!

!

!

!

!
!

!
!

!!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!!

!

!

!
!

!

!

!

!

!

!
!

!

!

!

!
!

!

!

!

!
!

!

!

!

!

!!

!

!

!

! !

!

!

!

!! !

!

!

!

!

!

!

!

!
!

!

!

!

!
! !

!

!

!

!

!

!

!

!

!
!

!

!
!

!

!

!

!
!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !
!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!
!

!!

!

!

!

!

!!
!

!

!

!!

!

!

!

!

!

!

!

!

!
!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!
!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!
!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

! !
!

!

!

!

!

!

!
!

! !

!

!

!

!

!

!
!

!

!! !
! !!

!

!
!

!

! !

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !
!

!

!

!

!

!

!

!

! !!

!!

!

!!

!

!

!

!

!

!
!

!

!!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !!

!

!

!

!

!

!

!

!

! !

!

!!

!

!

!
!

!
!
!

!

!

!

!
!

!

!

!

!
!

!

!
!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

! !
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!
!!!

!

!
!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!!
!

!

!

!

!

!

!

!!

!

! !

!

!

!

!

!

!

!
!

!

!

!

!

!!

!

!
!

!

!

!

!
!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!
!

!
!

!!

!

!

!

!

!!

!

!

! !

!

!
!

!

!

!

!

!

!

!

!

−5 0 5

−2
0

2
4

Illumina_logFC

C
hi
p−
Se
q_
FC

0.235

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

! !

!

!

!

!

!

!

!

!

!
!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!
!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!
!

!

!

!
!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!
!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!
!

!

!
!

!

!

!

!

!

!
!

!

!

!
!

!

!

!

!
!

!!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!!

!
!

!
!

!

!

!
!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!! !

! !

!

!

!

!

!

!
!

!

!

!

!!
!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!
!

!
!

!

!

!

!

!

!

!

!
!

!

!
!

!

!

!
!

!

! !

!

!
!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !
!

!! !

−6 −4 −2 0 2 4 6

−2
0

2
4

Illumina_logFC

C
hi
p−
Se
q_
FC

0.362

mES vs CMp mES vs CMa CMp vs CMa 
H

3K
79

m
e2

 
H

3K
4m

e3
 

H
3K

27
m

e3
 

H
3K

9m
e3

 

!

!

!

!
!

!

!

!

!

! !

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!
!!
!

!
!

!!
!

!

!
!

!

!

!
!
!
!

!!

!
!

!

!

!

!

!

!!
!

! !
!

!

!

!

!

!
!

!

!

!

!

!

!
!

!
!

!

!!

!

!

!
!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!
!

!

!

!

! !

!

!
!

!

!

!

!!
!

!

!!

!

!

!

!

!

!

!

! !

!

! !

!

!
!

!

!

!
!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!
!

!

! !

!

!

!

!

!
!

!

!

!
!

!

!!

!

!!

!
!

!

!

!!

!

!

!

!

!!

!

!
!

!
!
!

!!!
!

!

!
!

!

!

!

! !
!

!
!

!

!

!

!

!

!

!

!

!
!

!

! !

!

!

!

!

!

!

!

!!
!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!
!

!

!

!

!

!!
!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
! !

!

!
!

!

! !

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!
!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!!

!

!

!

!!
!

!

!

!

!

!!

!
!

!

!!

!

!

!

! !

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!
!

!

!!

!

!

!

! !!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!!
!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!
!

!

!
!

!

!

!!
!

!!

!

!

!
!!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!
!

!

!!

!

!

!

!
!

!

! ! !

!

!

!

!

!!

!

!

!

!

!

!

!
!

!

!

!
!

!

!

!

!

!

!

! !

!!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!
!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!
!

!

!
!

!

!

!

!

!

!

! !

!

!!

!

!

!

!

!

!

!

!

!

!

!
!!!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!
!

!

!

!
!

!

!

!
!

!

!

!

!

!

!!

!

!

!

!

!

!
!!!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!
!

!!

!

!

!

!
!

!

! !

!

!

!!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!!

!

!

!

!

!

!

!

!
!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!
! !

!

!
!

!

!

!

!

!

!

!
!

!!!

!

!

!

!

!

!

!

!

!

!
!

!

!
!

!

!

!

!

!

!

!

!

!!
! !

!

!

!

!!

!

!

!

!

!

!!

!

!!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!
!
!

!

!

!

!

!

!

!

!

!

!!
!!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!!

!

!

!
!

! !

!
!

!

!

!!

!

!
!

!!!

!

!

!

!
!

!

!

!

!

!

!

! !

!

!

!!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!
!

!

!

!

!
!

!

!

!! !

!

!!

!

!

!

!
!

!
!

!
!

!

!

!
!

!

!

!
!

!

!!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!
!!

!

!

!

!

!

!

!

!

!
!

!

!

!
!

!

!
!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!
!

!

!

!

!

!

!

!

!

!
!

!

!

!

!!
!

!
!

!

!

!

!

!
!

!

!
!

!

!

!

!

!

!

!

!
!

!
!! !

!

!

!

!

!

!

!

!
!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!
!

!!

!

!
!

!

!

!

!

!

!

!

!
!!

!

!

!

!
!

!
!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!
!
!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!!

!

!

!
!

!

!

!

!

!

!

!
!

!
!

!

!

!!

!

!

!
!

!

!

!

!

!

!

!
!

!

!

!

!!
!

!

!

!

!

!
! !

!

!

!

!
!!

!
!
!

!

!

!
!!

!

!

!

!

!

!

!

!!
!

!

!

!

!

!!!

!

!!

!

!

!

!

!

!

!

!

!
!

!

!

!

!!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

! !

!!

!

!

!

!

! !

!
!

!

!

!

! !

!!
!

!

!

!

!

!

!

!

!

!

!
! !

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!
!

!!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!
!

!

!!

!
!

!

!
!

!

!

!

!

!

!

!!

!

!

!!

!
!

!

!

!

!

!

! !

!

!

!

!

!

!

!
!

!

!

!

!

!
!

!
!

!
!

!

!

!

!

!

!

!

!

!

!

!

! !

!!

!

!

!

!

!

!!
!

!

!!

!
!

!

!!

!

!

!

!

!!

!
!

!

!

!

! !

!

!

!

!

!

!

!
!

!

!

!

!
!

!
!

!

!

!
!

!

!

!

!

!!
!

!

!

!

!

!

!

!!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

! !

!
!

!

!

!

!
!

!

!

!

! !

! !

!

!

!

!

!
! !

!

!

!

!

!

!

!

!

!

!

!
!

!

!

! !!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!
!

!

!

!

!

!

!!

!

!

!
!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!!
!!

!

!
!

!

!
!

!

!!

!

!
!

! !

!!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!
!

!

!

!

!
!

!

!

!

!

!

!

!

!

!!
!

!

!

!
!

!!

!

!

!!!!

!
!

!

!

! !

−10 −5 0 5

−5
0

5

Illumina_logFC

C
hi
p−
Se
q_
FC

0.549

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

! !

!

!

!
!

!

!

!
!

!
! !

!

!

!!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

! !

!

!

!

!
!

!
!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!!

!
!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!!

!

!

!

!

!

!

!

!
!

!!

!

!
!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!
!

!

!

!

!

!

! !

! !

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!! !

!
!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!!
!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

! !

!

!

! !

!

!

!

!

!

!

!

! ! !

!
!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!
!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!
!

!

!

!

!
!

!

!

!
!

!

!

!

!

!

!

!
! !

!
!

!

!

!

!

!

!

!

!

!

!

! !!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

! !

!

!

!

!

!

!

!

!

!

!

!!
!

!
!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!
!

!

!

!
!

!
!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

! !

!

!

!

!

!

!

!

!
!

!!

!

!

!

!

!

!

!

!

!! !

!
!!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!
! !

!

!

!
!

!!

!

! ! !

!

!

!!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

! !

!!!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!
!

!

!

!

! !

!

!

!

!

!! !

!

!

!
!

!

!!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!
!

!!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

! !

!

!
!

!

!

!

!

!
!

!

!

!

!
!

! !

!

!

!
!

!

!

!
!!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!!

!!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!
!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!
!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

! !

!
!

!

!

!

!

!

!

!

!

!!

!

!

!

!
!

!

!

!

!

!
!

!

!

!
!

!
!

!

!!

!

!

!

!

!

!

!

!

!

!

!
!
!

!

!

!

!

!
!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!
!

!

!
!

!

!

!

! !

!
!

!
!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

! !

!

!
!!

!!
!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!
! ! !

!

!

!!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!!

!

!
!

!

!

!

!

!

!
!

!

!!
!

!

!

!

!

!

!
! !

!

!

!

!

!
!

!

!
!

!

!

!
!

!

!
!

!

!

!

!

!

!

! !

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!
!

!

!

!

!

!

!

!

! !
!

!
!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!
!

!
!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!
!!

!

!

!
!

!!
!

!!
!

!!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!
! !

!

!

!

!

!

!

!

! !
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!
!

!

!

!

!

!

!
!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!
!

!

!

!

!

!

!!
!

!

!
!

!

!

!

!

!

!!

!
!

!

!

!

!

!

!

!

!
!

!

!

!

!

!
!

!!

!

!

!

!

!

!

!

!

!

!

!

!
!

!!
!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

−5 0 5

−8
−6

−4
−2

0
2

4
6

Illumina_logFC

C
hi
p−
Se
q_
FC

0.56

!

!

!

!

!

! !

!

!

!

!

!

!

!

!
!

!

!

!

!

!!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!
!

!

!

!

!

!

!

!

!

!

!
!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! ! !

!

!

! !

!

!

!

!

!
!

!
!!

!

!

!

!

!
!

!

!

!
!

!
! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!
!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!
!

!
!

!

!
!

!

!

! !

!

!

!

!!
!

!

!

!

!

!

!
!

!

!
!

!
!

!!

!!
!!

!

!

!

!

!

!

!
!

!!

!

!

!

!

!

!

!

!
!

!

!

!

! !!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

! !

!

!

!
!

!

!

!

!

!

!

!

!
!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!
!

!
!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

! !

!

!

!

!!

!

!

−6 −4 −2 0 2 4

−2
0

2
4

Illumina_logFC

C
hi
p−
Se
q_
FC

−0.184

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!
!

!

!!

!

!

!

!

!
!

!

!

!

!

!

! !

!

!

!
!

!

!

!
!

!

!

!

!

!!

!

!

!

!

!

!

!
!!

!

!

!

! !

!
!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!
!

!

!

!
!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!
!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!!

!
!

!

!

!

!
!

!

!

!

!

!

!

!

!

!!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!!

!

!
!

!

!
!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!
!

!

!

!

!

!

!

!!

!

!

!

!

!

!!

!

!

!

!

! !

!

!
!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!
!!

!
!

!

!

!

!

!

!

!
!

!

!

!

!
!

!
!

!

!

!

!

!!
!

!

!

! !

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

! !
!

!!

!

!

!

!

!

!!

!

!
!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!
!

!

!

!

!

!

!

!

!!!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!
!

!

!

!

!

!!

!

!!
!

!

! !

!

!!

!

!

!

!
!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!
!

!

!

!

!

!

!
!

!

!!

!

!

!

!
!

!

! !

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

! !
!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!
!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!!

!

!

!

!
!

!
!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

! !

!

!

!

!
!

!

!

!

!

!

!

!
!

! !

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!!

!

!

!
!

!

−5 0 5

−6
−4

−2
0

2
4

Illumina_logFC

C
hi
p−
Se
q_
FC

−0.097

!

!

!!

!

!

!

!

!

!!

!!

!

!

!

!
!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!!
!

!
!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!
!

!

!!

!

!

!

!

!

!

!

!

!

!

!
!

!
!
!

!

!

!!

!

!

!

!

!

!

!!

!!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!!
!

!

!

!

!

!

!

!

!

!
!
!
!

!

!

!

!!
!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!
!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!!

!

!

!
!

!

!

!
!

!

!

!!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!
!
!

!

!

!

!

!

!

!!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!
!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!!

!

!

!

!

!

!

!

!

!

!!
!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!
!

!

!

!

!

!

!

!!

!

!

!

!

!
!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!
!

!

!

!
!

!

!

!
!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!!

!

−6 −4 −2 0 2 4 6

−4
−2

0
2

4

Illumina_logFC

C
hi
p−
Se
q_
FC

0.002

!
!

!

!

!

!

!

!

!
! !

!
!

!

!

!

!

!

!
!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

! !

!

!
!

!

!

!
!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!
!

!!

!

!

!
!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

−10 −5 0 5

−2
0

2
4

Illumina_logFC

C
hi
p−
Se
q_
FC

−0.128

!

!

!

!

!

!!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!
!
!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!
!

!

!

!

!

!

!

!
!

!

!

!

!
!

!

!
!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!!

!

!

!
!

!

!

!
! !

!

!

!

!

!

!

!!

!

!

!!

!
!

!!
!

!

!

!

!

!

!

!

! !

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!
!!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!
!

!

!

!

! !

!

!

!

!

! !

!

!

!

!

!!

!

!

!

!
!

!!

!

!

!

!

!

!

!

!

!

!

!
!

!

!
!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!
!!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!
!

!!!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!!
!

!

!

!
!

!

!

!

!

!

!

!

!

!
!

!!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!
!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!
!!

!

!

!

!

! !

!

!

!

!

!
!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!!

!!

!!

!

!

!

!

!

!

!

!

!

!

! !

!!

!

!

!

!
!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

! !
!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!
!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

! !
! !

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!
! !

!

!

!

!

!!!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!
! !

!

!

!

!

!

!

!

! !

!

!

!
!

!

!

!

!

!

! !

!

!

!!

!!

!

!
! !
!

!

!

! !

!
!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!!

!

!
!

!

!

!

!
! !!

!

!
!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!
!

!
!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!
!

!
!

!

! !!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!!

! !

!

!

!

!

!
!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!!
!

!

!

!

!!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

−5 0 5

−5
0

5

Illumina_logFC

C
hi
p−
Se
q_
FC

−0.518

!

!

!

!

!

!

!

!

!

! !

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!
!

!

!
!

!

!
!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!
!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!
!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!
!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!
!

!!

!
!!

!

!!

!

!

!!
!

!
!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

! !

!

!

!

!

!

!
!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

! !

!

!

!

!

!!

! !

!

!

!

!

!

!

!

!

!

!!
!

!

!

!

!

!

!

!

!

!

!
!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!
!

!

!

!

!

!

!

!

!

!

!

!

!
!

!
!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!
!!

!
!

! !
!

!
!

!

!

!

!

!
!

!

!
!

!

!

!

!

!

!

!!

!!

!

!

!

!

!

!!
!

!

!

!

!
!

!
!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

−6 −4 −2 0 2 4 6

−8
−6

−4
−2

0
2

4

Illumina_logFC

C
hi
p−
Se
q_
FC

−0.574

Illumina log FC 

C
hIP

-seq FC
 

b 

0.698 0.607 0.235 

0.560 0.549 0.362 

-0.574 -0.518 -0.128 

0.002 -0.097 -0.184 

+5 

0 

-5 

+5 

0 

-5 

+5 

0 

-6 

+5 

0 

-5 

+4 

0 

-2 

+4 

0 

-6 

+5 

0 

-5 

+4 

0 

-2 

+4 

0 

-4 

+4 

0 

-6 

+4 

0 

-2 

+4 0 -4 +4 0 -4 +5 0 -5 

+4 0 -4 +5 0 -5 +5 0 -5 

+5 0 -5 +5 0 -5 +5 0 -5 

+5 0 -5 +5 0 -5 +5 0 -5 

+4 

0 

-2 



 64 

 4.2.4 RealTime qPCR gene expression and qPCR-ChIP validation. 
Real Time qPCR was performed in order to validate the gene expression profile 
obtained through Illumina microarray. Neonatal and adult CMs were purified as 
described in sections 3.1 and 4.1.2.1. Total RNA was extracted from 
undifferentiated mES cells (TBV2 line), neonatal and adult CMs using TRIzol 
method (Invitrogen). The mRNA obtained was quantified with NanoDrop 
Spectrophotometer and the quality was tested through agarose gel. 1 µg of total 
RNA were reverse transcribed to cDNA (SuperScript VILO – Invitrogen) and 
amplified by real-time qPCR with Syber Green PCR master mix (Applied 
Biosystem). Each samples was analyzed in triplicated using the 7900HT (Applied 
Biosystem). In Appendix Table II are indicated the specific primer used for the 
analysis of the gene expression of cardiac markers of differentiation and markers 
of pluripotency. Relative mRNA expression profiling in mES, CMp and CMa 
revealed that Nanog and Pou5f1 are enriched in mES compared with CMp and 
CMa, the expression of the transcription factors Gata4 and Nkx2-5 increase in 
CMp compared to mES and remain at high level also in CMa. Cardiac structural 
genes were also investigated; the fetal isoform of myosin heavy chain (Myh7) is 
significantly upregulated in CMp, whereas the adult isoform Myh6 is progressively 
up-regulated in CMp and CMa compared to mES, as well as TnnI3 (Figure 26 A). 
To validate the ChIP-seq enrichment also qPCR-ChIP was performed. Chromatin 
isolation and ChIP was performed as previously described in sections 3.6 and 
4.1.2.2. Appendix Table I show the list of the antibodies used. After DNA 
purification the enrichment of H3K79me2, H3K4me3, H3K27me3 and H3K9me3 
was evaluated on the promoter region of Nanog, Pou5F1, Gata4, Nkx2-5, Myh7, 
Myh6 and TnnI3. Three primer sets were analyzed for each gene: -4000/-3500bp 
to TSS, -1000/-500bp to TSS and +500/+1000bp to TSS (Appendix Table III). The 
enrichment profile was compared to negative control (IgG) and normalized to the 
relative presence of unmodified histone H3. According with ChIP-seq data 
H3K79me2 results enriched on the locus of gene active transcribed during 
cardiomyocyte differentiation, as well as H3K4me3, whereas H3K27me3 is 
associated with transcription repression and H3K9me3 results not involved in the 
differentiation of cardiac cells (Figure 26B). 
 
Figure 26 - Histone methylation enrichment and mRNA expression on key genes of 
cardiac differentiation. A, Relative mRNA expression was access through qRT-
PCR in mouse Embryonic Stem cells (mES), post-natal cardiomyocytes (CMp) an 
adult cardiomyocytes (CMa). mRNA levels for Nanog, Pou5F1, Gata4, Nkx2-5, 
Myh7, Myh6 and TnnI3 are normalized to 18s and expressed as the mean ± s.d. 
from three independent experiment. ** P<0.01 vs mES, ## P<0.01 vs CMp. B, 
ChIP assay shows H3K79me2, H3K4me3, H3K27me3 and H3K9me3 binding to 
the gene locus of Nanog, Pou5F1, Gata4, Nkx2.5, Myh7, Myh6 and TnnI3. Levels 
were determined by qPCR and are expressed as fold change to the input and 
relative to H3. Three different regions were analyzed for each gene locus: -
1000bp/-500bp to TSS (A), +500bp/+1000bp to TSS (B) and +3500bp/+4000bp to 
TSS (C). Data are the result of 3 three independent experiments. The enrichment 
levels for IgG (neg ctrl) and the unmodified H3 relative to input are showed as ctrl. 
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4.3 Wide gene expression analysis of epigenetic enzymes in 
cardiomyocytes reveals that DOT1L is highly expressed at 
embryonic and neonatal stages. 
4.3.1 Epigenetic enzymes differentially expressed in cardiac 
development. 
The differential RNA expression of several epigenetic enzymes genes and 
conventional genes involved in cardiac differentiation genes has been analyzed in 
undifferentiated mES cells and CMs isolated at different stage of heart 
development (embryos E14.5, neonatal 1 day post natal and adult 2 month old 
mice. Cardiomyocytes from neonatal and adult mice were isolated as previously 
described in sections 3.1 and 4.1.2.1; embryonic CMs were isolated from 40 
embryos at embryonic day E14.5. Briefly after surgical procedures that allowed us 
to isolate the heart from the embryos, 40 heart were rinse in HBSS and processed 
in a collagen IV solution at 37°C for 5 consecutive digestions, the single cells 
isolated were plated for 1 hour in order to allowed the fibroblast and the endothelial 
cells to attach to the plate; the suspension of CMs were then collect: 1 million of 
cells were stained with TNNI and analyzed at FACs to verify the efficiency of 
isolation and the purity of CMs population, 2 million were collected in Leamli for 
protein analysis and 2 million were collected in TRIzol for RNA extraction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 27 Gene expression profile of marker of CMs during development. qRT-
PCR showing relative mRNA expression of pluripotency (Pou5F1, Nanog), and of 
early (Nkx2-5, GATA4, and Myh7) and late stages of heart development (Myh6 
and TnnI3) in mES, CMe, CMp and CMa. Bars represent the mean ± s.d. from 
three biological replicates. ** P<0.01 vs mES, ## P<0.01 vs CMe , §§ P<0.01 vs 
CMp. 
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The RNA from mES, CMe, CMp, CMa was extracted using the TRIzol method 
(Invitrogen) following the manufacture instruction. The RNA obtained was 
quantified with NanoDrop Spectrophotometer and the quality tested through 
agarose gel. 2 µg of RNA was retro-transcribed to cDNA. First realtime qPCR 
analysis was conduct in order to access the expression of control genes of 
pluripotency (Pou5F1, Nanog), markers of early stages of heart development 
(MEF2C, Isl1, Nkx2-5, GATA4 and Myh7) and late stages (Myh6 and TnnI3). Data 
are the results of three independent experiment and are presented as mean ± SD, 
18s gene has been used as housekeeping gene for the normalization levels. 
(Figure 27). 
To interrogate the role of specific enzymes involved in the modulation of the 
epigenetic code associated with DNA and histone modification pathways and to 
identify potential molecular targets that drive CMs through heart development, 
using the Applied Biosystem technology, we design a 384well Taqman microfluidic 
epigenetic card that allowed us to compare the expression of 88 specific epigenetic 
enzymes coding for 3 DNA methyltransferases (DNMTs), 16 histone 
acetyltransferases (HATs), 12 histone deacetylases (HDACs), 31 histone 
methyltransferases (HMTs), 15 histone demethylases (HDMs) and 11 chromatin 
remodeling factors involved in polycomb repressive complex (Pcgf) and in DNA 
binding (Mbd). The cDNA derived from 1.2µg of mRNA was loaded on the cards; 
quantitative realtime PCR, from three independent experiments, was performed 
and the results were normalized using the median method of normalization, this 
method correlate the expression level of a target gene with the median expression 
of a group of genes, showing in this way the trend of expression within a group. 
This analysis revealed that, out of 88 genes, the expression of the epigenetic 
enzymes analyzed clustered in 4 main different groups: in the first one 25 enzymes 
results up-regulated during heart development compared to mES levels indication 
a role of this enzymes in the differentiation process and an association with the 
transcription regulation of genes involved in the structural and functional 
characterization of adult CMs; in the second group of genes, 17 enzymes results 
up-regulated in the embryonic/neonatal stage compared to adult CMs and mES, 
this peak of expression reveal a potential role for these enzymes in the definition of 
cardiac specification and commitment. An opposite pattern of expression is present 
for 21 enzymes that results down-regulated in the embryonic/neonatal stage 
compared to adult CMs and mES, whereas the last group of 25 genes were 
progressively down-regulated during development indicating a fundamental role for 
this enzymes in the maintenance of pluripotency (Figure 28). The results of the 
epigenetic card have been also validated on different samples via conventional 
realtime qPCR using primer designed intra-spanning for Syber Green chemistry 
(Appendix Table II). 
Figure 28 – Wide expression profiling of epigenetic enzyme genes reveals a 
potential role for DOT1L in cardiomyocyte differentiation. Custom qRT-PCR card 
showing the relative expression of 88 epigenetic enzymes in mES, CMe CMp and 
CMa, the mean of three biological replicates is shown, data are presented as –
ΔΔCt relative to mES expression. On the left heatmap showing differential 
expression levels, on the right graphs highlight 4 groups of differentially expressed 
genes. 
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4.3.2 The histone methyltransferase DOT1L espression and function 
in cardiomyocytes. 
Within the third group of genes up-regulated during the embryonic/neonatal stages 
of heart development we identify the histone methyltransferases DOT1L as one of 
the most significant enzymes differential expressed. 
The RNA level of expression analyzed through conventional realtime qPCR 
reveals that in CMs DOT1L expression is markedly up-regulated during embryonic 
and neonatal stages compared to undifferentiated mES cells, the expression level 
decreased than in a significant way in adult CMs (Figure 29). This result indicates 
a potential role of DOT1L in the definition of important mechanisms involved in 
cardiac development. 
 
 
 
 
 
 
 
 
 
 
Figure 29 - qRT-PCR showing relative mRNA expression of DOT1L. Bars 
represent the mean ± s.d. from three biological replicates. * P < 0.05 vs mES, ** 
P<0.01 vs mES, ## P<0.01 vs CMe , §§ P<0.01 vs CMp 
 
The mRNA expression is also confirmed at the protein level where the expression 
of DOT1L is higher in embryonic and neonatal CMs compered to adult CMs and 
mES cells (Figure 30 top panel). The expression of DOT1L enzyme correlate also 
with its histone methyltransferase function; the up-regulation of DOT1L enzyme 
reflects at the protein levels with the progressive up-regulation of the di-methylation 
of Lys 79 in embryonic CMs, neonatal CMs and adult CMs (Figure 30 low panel). 
This indicates the importance of a time dependent expression of the enzyme that 
results in a consecutive expression of its function. 
 
 
 
 
 
 
 
 
 
 
Figure 30 - Western blot protein expression analysis of DOT1L (normalized to 
LaminB expression level) and H3K79me2 (normalized to unmodified H3). One 
representative experiment out of three is shown.  
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4.4 Dimethylation of H3K79 mediate by DOT1L is increased 
during embryonic stem cells differentiation. 
4.4.1 In vitro model of mES differentiation into cardiomyocytes 
To investigate the mechanism involved in the activation of the specific cardiac 
signature activated during cardiac development and differentiation, following our 
data on histone methylation profile, we focused our studies on DOT1L, the only 
known methyltrasferase of lysine 79 of histone H3 associated with transcriptional 
activation. 
We used an in vitro model of embryonic stem cell differentiation to further 
investigate the expression of DOT1L and the methylation of H3K79. 
The TBV2 cell line of murine embryonic stem cells (mES) was used throughout this 
study. mES Cells were cultured on a feeder layer of mitotically inactivated mouse 
embryonic fibroblast (MEFs) in order to keep the pluripotency. The propagation 
medium was composed of high glucose DMEM supplemented with sodium 
pyruvate, L-glutamine, penicillin-streptomycin, 2-mercaptoethanole, 15% ES-
screened FBS (Hyclone) and 103 U/mL LIF (Millipore). The time course of the 
differentiation experiment is presented in figure 31. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 31 - Time course scheme and phase-contrast microscopy images of mES 
differentiation in vitro using the hanging drop method.  
 
 
mES cells were passed twice on gelatin-coated (0.1%) tissue culture dishes in 
order to deplete the contaminant of the MEFs feeder before starting the experiment. 
In order to generate cardiomyocytes from mES cell, the “hanging drop” 
methodology and embryoid bodies (EBs) aggregation approach was used to 
differentiate mES cells in vitro. At d0 a suspension of mES cells in differentiation 
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media (15% FBS without LIF) was used to form hanging drops at the concentration 
of 300cells/drop in which EBs were formed. EBs were cultured for 2 days in 
hanging drops (d0-2) and subsequently in suspension for 3 days (d2-d5) in 
bacterial Petri dish to avoid attachment. The 5-day-old EBs were plated onto 0.1% 
gelatin-coated tissue culture dishes with fresh medium every two days. 
During the differentiation process mES start to show spontaneous beating activity 
between day 6 and day9. The efficiency of differentiation into the cardiac lineage 
was monitored using FACs analysis and realtime qPCR analysis at different time 
points of differentiation. Citofluorimetry results showed a drastic reduction of the 
number of cells positive for SSEA-1 (marker of staminality) from 98% at day0 to 
2% at day9 and an enrichment of TNNI positive cells at day6 (17%) and day9 
(27%) (Figure 32). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 32 - FACS analysis to determine the percentage of cells expressing SSEA1 
and TNNI at day 0 of differentiation, day 6 and day 9. Three independent 
experiment analyses were carried out; one representative analysis is shown. 
 
 
Gene expression analysis revealed that differentiating cultures lose, after the first 
two days of differentiation, the pluripotency markers Nanog and Pou5f1; marker of 
cardiac commitment (Brachyury) and cardiac transcription factors (Nkx2-5, Gata4) 
are enriched at early stages (day 5), whereas marker of functional cardiomyocytes 
(Myh7, Myh6, TnnI3) become highly expressed at day 9, with evident beating 
areas (Figure 33). 
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Figure 33 - Relative qRT-PCR of genes differential expressed during mES 
differentiation through the cardiac lineage; mRNA levels are normalized to 18s and 
expressed as the mean ± s.d. of three independent experiments. 
 
 
POU5F1 and α/βMYH expression is also confirmed at the protein level with 
Western Blot experiments, with the complete lost of the protein expression of 
POU5F1 after day 2 and the acquisition of α/βMYH at day 9 (Figure 34). 
 
 
 
 
 
 
 
 
 
 
 
Figure 34 - Protein levels detected by western blotting from mES cell at 0, 1, 2, 5, 9 
days of differentiation. One representative experiment out of three is shown; the 
expression levels for POU5F1, α/βMYH are normalized to that of Lamin B (LAM b). 
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4.4.2 DOT1L and H3K79me2 expression during mES differentiation 
into CMs. 
To test the role of Dot1L during in vitro differentiation of mES into CMs the level of 
expression of mRNA was evaluated. This analysis revealed that Dot1L results 
increased at day 1 and day 2 compared to day 0 and than decreased at day 5 and 
day 9 (Figure 35). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 35 - Relative qRT-PCR of DOT1L expression at day 0, 1, 2, 5 and 9 of 
differentiation; mRNA levels are normalized to 18s and expressed as the mean ± 
s.d. from three independent experiment.  
 
 
The mRNA expression is translated also at the protein level where the level of 
Dot1L, results increased at day 1 and day 2, resulting in the progressive 
enrichment of H3K79 di-methylated at day 2, day 5 and day 9. The expression 
levels are normalized with respect to the nuclear marker Lamin B and the 
unmodified H3 (Figure 36). 
 
 
 
 
 
 
 
 
 
 
 
Figure 36 - Protein levels detected by western blotting from mES cell at 0, 1, 2, 5, 9 
days of differentiation. One representative experiment out of three is shown; the 
expression levels DOT1L are normalized to that of Lamin B (LAM b) and the 
expression levels of H3K79me2 to that of unmodified histone 3 (H3). 
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4.4.3 During mES differentiation into CMs DOT1L activates cardiac 
specific loci through di-methylation of H3K79. 
To test if the expression of Dot1L and the di-methylation of H3K79 occur at gene 
loci involved in cardiac differentiation we performed chromatin immunoprecipitation 
experiments. qPCR-ChIP was performed as previously described in section 
4.1.2.2, the immunoprecipitation was performed over night using IgG, H3K79me2 
and H3 antibodies (Appendix Table I). Through real time-qPCR the enrichment of 
H3K79me2 was analyzed in two different regions of the gene locus of Nanog, 
Pou5F1, Brachyury, Myh7, Myh6 and TnnI3, specific primers were designed in the 
region -1000bp / -500bp to TSS and in the region +500bp / +1000bp to TSS 
(Appendix Table III). According with gene expression analysis, H3K79 results di-
methylated from day 2 at the locus of Brachyury and at day 9 at the locus of Myh7, 
Myh6 and TnnI3 genes in all the regions analyzed (Figure 37). 
 
 

H3K79me2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 37 - ChIP assay showing H3K79me2 binding to the gene locus of Nanog, 
Pou5F1, Brachyury, Myh7, Myh6 and TnnI3. Levels were determined by qPCR and 
are expressed as fold change to the input and relative to H3. Three different 
regions were analyzed for each gene locus: -1000bp/-500bp to TSS (A), 
+500bp/+1000bp to TSS (B) and +3500bp/+4000bp to TSS (C). Data are the result 
of three independent experiments. 
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4.5 DOT1L methyltransferase activity is essential to activate 
cardiac genes commitment. 
4.5.1 DOT1L silencing in mES differentiation into CMs. 
To test if the activity of DOT1L is mandatory for the transcriptional activation of 
genes involved in cardiac commitment we use a lentiviral-mediated knock-out 
approach during mES cells differentiation in vitro. The variation of the efficiency of 
differentiation elucidates the function of DOT1L in the specific gene reprogramming 
occurring during cardiac commitment. mES cells were cultured and differentiated 
as described in sections 3.2. and 4.4.1. At day 0 we infected the cells with a 
lentiviral vector carrying an shRNA that silence DOT1L for 2 hours before the 
hanging drops procedure and then the differentiation protocol has been carried out 
as previously described. In parallel we performed an infection with an empty vector 
as control. Comparing the mRNA level of Dot1L during differentiation, we observed 
that at day 1 and day 2 the expression of Dot1L was efficiently silenced with the 
shRNA compared to the shCtrl (Figure 38) 

 
Figure 38 - mRNA levels of 
DOT1L gene in undifferentiated 
day 0 mES cells and at day 1, 2, 
5 and 9 after differentiation in 
control (sh-Ctrl grey line) and 
DOT1L-knowkdown cells (sh-
Dot1L black line). Levels are 
normalized to 18s and plotted 
as relative mRNA expression. 
Three independent experiments 
were carried. 

 
 
At the protein level Western Blot experiments showed that the down-regulation of 
DOT1L in the shRNA differentiation (shDOT1L) is evident at day 1 and day 2 and 
therefore the cells don’t gain the activating marker H3K79me2 at day 2, day 5 and 
day 9 (Figure 39). 

Figure 39 – Protein levels 
detected by western blotting 
from mES cell at day 0, 1, 2, 5, 
9 days of differentiation in 
control (sh-Ctrl) and DOT1L-
knowkdown cells (sh-Dot1L). 
One representative experiment 
out of three is shown; the 
expression levels DOT1L are 
normalized to that of Lamin B 
(LAM b) and the expression 
levels of H3K79me2 to that of 
unmodified histone 3 (H3).  
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4.5.2 The absence of DOT1L results in less efficiency of cardiac 
differentiation. 
Differentiation of mES cells in the absence of DOT1L (shDOT1L) results, at the 
protein level through Western Blot experiments, in the down-regulation of the 
expression of α/βMYH at day 9 whereas no effects are observed on the expression 
of pluripotency markers such as POU5F1 (Figure 40).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 40 - Protein levels detected by western blotting from mES cell at day 0, 1, 2, 
5, 9 days of differentiation in control (sh-Ctrl) and DOT1L-knowkdown cells (sh-
Dot1L). One representative experiment out of three is shown; the expression levels 
for POU5F1, α/βMYH are normalized to that of Lamin B (LAM b). 
 
At the mRNA level we analyzed the expression of several genes important in each 
step of cardiac differentiation in order to individuate the specific moment in which 
DOT1L plays its role. 
Comparing the level of expression of Pou5F1 and Nanog important for maintain 
pluripotency no difference were observed in sh-Dot1L differentiation compared to 
sh-Ctrl differentiation. We analyzed then the expression of markers of the three 
germ layers: Brachyury as marker of mesoderm, Sox17 as marker of ectoderm and 
Nestin as marker of endoderm. Interestingly we found that the expression of 
Brachyury is significantly down-regulated in the absence of Dot1L whereas the 
expression of Sox17 and Nestin are not affected, this suggest a specific role of this 
epigenetic enzyme in mesodermal commitment. 
We than examined the expression of transcription factors involved in the activation 
of cardiac genes but we didn’t observed any significant change of expression for 
Mef2C, Gata4, Isl1 and Nkx2-5 at any time of differentiation in the absence of 
Dot1L, this results is explained by the fact that at the moment of the 
methyltransferase activity of Dot1L the transcription factors are already synthetized 
and present on the locus of the gene that is going to be activated. But the absence 
of Dot1L was observed to modulate the expression of Myh7, Myh6 and TnnI3 
genes, which in the shDo1IL differentiation resulted down-regulated respect the sh-
Ctrl (Figure 41). 
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Figure 41 - mRNA levels of pluripotency and developmental genes in 
undifferentiated day 0 mES cells and at day 1, 2, 5 and 9 after differentiation in 
control (sh-Ctrl grey line) and DOT1L-knowkdown cells (sh-Dot1L black line). 
Levels are normalized to 18s and plotted as relative mRNA expression. Three 
independent experiments were carried out and one representative experiment is 
shown. 
 
To test is the lower expression of cardiac genes results also in a less efficiency of 
differentiation in term of number cardiomyocytes we perform a FACs experiment 
staining the cells with TNNI antibody as marker of CMs and we found that in the 
absence of Dot1L during differentiation at day 6 and day 9 less cells are positive in 
the sh-Dot1L compared to sh-Ctrl. In control condition, at day 6, 20% of cells are 
TNNI positive and a percentage of 25% of TNNI positive cell is reached at day 9. 
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The absence of Dot1L (sh-Dot1L) result in the lost of 25% of the efficiency of 
differentiation: at day 9 only 15% of the cells are TNNI positive and at day 9 only 
18% (Figure 42). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 42 - FACS analysis shows the percentage of cells expressing TNNI at d0, 
d6 and d9 of differentiation in in control (sh-Ctrl) and DOT1L-knowkdown cells (sh-
Dot1L). Three independent experiments were carried out; one representative 
analysis is shown. 
 
 
The possibility to silence Dot1L during differnetiation helped us to indientify the 
moment in which this enzyme explicate its methyltransferase activity, di-methylate 
H3K79 resulting in transcriptional activation. From our results it seem that it plays a 
central role in the activation of mesodermal and cardiac specific commitment. 
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5. CONCLUSION 

During development, cells proceed from totipotency through lineage commitment 
to terminal differentiation. From essentially identical genomes cells choose their 
fate, establishing developmental commitments that can be transmitted to daughter 
cells. This is possible thanks to epigenetic decision that control gene expression 
through the modification of chromatin conformation but without modifying the 
actual DNA sequence. 
Cell differentiation is associated with the activation of a specific gene expression 
program in which a defined subset of lineage-restricted genes is expressed, 
leaving the rest of the genome in a repressed state. Within this context, epigenetic 
decisions either activate or repress specific genes to enable lineage commitment. 
Histone post-traslational modifications are implicated in influencing gene 
expression and genome function by establishing global chromatin environment and 
orchestrating DNA-based biological processes [109]. The general picture emerging 
is that differentially expressed genes are also epigenetically distinguishable. 
Remarkable progress has been made during the past few years in the 
characterization of histone modifications on a genome-wide scale [46, 110]. 
Several large-scale chromatin immunoprecipitation (ChIP) combined with massive 
DNA sequencing studies (ChIP-seq) have revealed interesting insights into the 
complex relationship between gene expression and histone modifications. The 
general picture emerging from these studies is that high level of histone 
acetylation, methylation of H3K4, H3K36 and H3K79 are detected on active genes, 
whereas elevated methylation of H3K9 and H3K27 correlates with gene repression 
[111-113]. Generally the apparently opposite modifications H3K4me3 and 
H3K27me3, colocalize in regions termed “bivalent domains” in embryonic stem 
cells, which have been suggested to function in the differentiation of these cells 
[113]. 
Chromatin-state maps for a variety of cell types, showing the genome wide 
distribution of important chromatin modifications, have been done, but no whole-
genome ChIP studies in cardiac cells have been reported. 
Hitherto, some studies on cell differentiation during cardiomyogenesis have 
focused on the roles of remodeling chromatin structure complexes and histone 
acetylation in defining the transcription program [114, 115], less clear in this 
process is the importance of other histone modifications and, in particular, the 
dynamic interaction between histone methyltransferases and demethylases. These 
mechanisms create a specific and complex “epigenetic code”, an important 
characteristic of which is its dynamicity, which depends upon the reversibility of the 
modifications and on the activities of the enzymes involved.  
Histone methylation is catalyzed by group of histone methyltransferases (KMTs). 
The KMTs can be divided into two main classes based on their catalytic domains: 
with SET domain and without SET domain. The only KMT enzyme belonging to the 
second class is Dot1/DOT1-Like (disruptor of telometic silencing, also called Kmt4) 
[83]. 
Knockout models in yeast, flies and mice reveal that Dot1 is the only enzyme that 
catalyzes H3K79 mono-, di- and tri- methylation, in fact the absence of Dot1 results 
in the complete lost of methylation at the level of H3K79 [84-86]. The reversibility of 
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this marker is less well studied; few studies suggest mechanisms of H3K79 
demethylation [87]. 
Indeed genome-wide analysis link methylation of H3K79 to active transcription. All 
H3K79 methylation markers are localized within the body of transcribed gene and 
the amount of enrichment correlates with expression level, suggesting a role of 
DOT1L in transcription activation and elongation [57, 89, 90]. 
Dot1 was identified in a genetic screen for genes whose overexpression disrupts 
telomeric silencing in saccharomyces cerevisiae [88], in mammals besides 
regulating heterochromatin formation at telomeres [91] indeed several others are 
the functions that arise from Dot1L’s enzymatic activity: it play a role in cellular and 
biological processes such as DNA repair and cell cycle regulation [86, 92], 
embryonic development [116] [86], MLL-associated leukemogenesis [94, 95], 
hematopoiesis [93] and cardiac function [97]. In fact, DOT1L is highly expressed in 
the heart, and germline disruption of DOT1L in mice is lethal at embryonic day 
E10.5, generating growth impairment, yolk sac angiogenesis defects, and cardiac 
dilatation [86]. A cardiac-specific knockout of mDOT1L (Dot1Lf/f: αMHC Cre) 
caused dilated cardiomyopathy (DCM) with chamber dilatation and systolic 
dysfunction [97]. However, studies were needed to shed light on how Dot1L 
achieved specificity to temporally regulate its catalytic activity at specific chromatin 
domains. 
While it is now clear that epigenetics plays a central role in the programming of 
genomes that underlie the establishment and maintenance of differentiated cell 
states, how genomic programs are progressively deployed and what chromatin 
regulatory mechanisms coordinate their deployment in cardiomyocytes fate 
decisions still need to be uncovered. Here, we have generated high-resolution 
maps of histone methylation in neonatal and adult cardiomyocytes, clarifying the 
signaling events underlying gene transcription associated with histone methylation 
in cardiomyocyte differentiation. Indeed we have identified a specific role of H3K79 
methylation mediated by Dot1L in the activation of specific genes involved in 
cardiac commitment. 
Our results prove that histone methylation regulates the transcription program in 
developing cardiac cells and that H3K79me2 plays a central role in this regulation; 
moreover, DOT1L is fundamental to establish the epigenetic signature needed for 
cardiac commitment. 
The genomic profile of histone methylation and the epigenetic enzymes involved 
have fundamental roles in defining the characteristics of cardiac cells during 
differentiation. Epigenetic mechanisms are intimately associated with 
transcriptional networks, adding a layer of complexity and fine-tuning to the 
regulation of cardiac commitment and differentiation. 
In a differentiating cell, the maintenance of the proper balance between H3K4 and 
H3K27 methylation levels at the promoter regions of poised developmental genes 
is important to govern the highly dynamic regulation of gene expression needed to 
define a differentiated cell. In addition to the methylation of the bivalent domain that 
govern a differentiating cell, the whole program of gene expression can be driven 
by the methylation of H3K79 as a signature needed to define cardiac lineage 
commitment and the subsequent activation of key cardiac genes. 
We have identified a large number of genes that show H3K79 methylation 
enrichment in cardiomyocytes; the tiny correlation with the transcription profile 
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prove that histone methylation regulates the transcription program in developing 
cardiac cells and that H3K79me2 plays a central role in this regulation. Indeed the 
genes associated with H3K79me2 functionally clustered in pathways involved in 
the definition of different aspect of cardiac structure and function. The rich dataset 
generated in our study has allowed us to identify DOT1L as a key actor that play 
an important role in defining cardiac commitment through the control of the levels 
of H3K79 methylation at the locus of cardiac-specific genes. This pre-activation 
pattern defined by DOT1L is consistent with the idea that molecular events in early 
lineage commitment mark gene for subsequent activation. This pre-activation 
pattern is likely important for genes that are not regulated by polycomb complexes. 
We propose that early deposition of H3K79me2 at specific cardiac genes is a 
regulatory step that facilitates later activation of these genes and that DOT1L is 
fundamental and absolutely required for defining the epigenetic signature that 
drives a cell to cardiac commitment. Our results demonstrate that high levels of 
DOT1L are needed to activate cardiac specific genes and that this is achieved 
through tight control of the level of H3K79 methylation at the regulatory regions of 
cardiac differentiation genes. Thus, the downregulation of DOT1L during 
differentiation constitutes a critical mechanism that lacks a fundamental part for the 
transcriptional program of activation of cardiac gene. In fact our idea is supported 
by the fact that mice lacking DOT1L in cardiomyocytes during development show 
sever cardiac phenotype [86] [97]. 
 
We propose the following mechanism: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Altogether our study illustrates the importance of epigenetic regulation early in 
development to delineate the fate of a cell and in particular the role of methylation 
of H3K79 in cardiomyocytes stabilizing the signature for cardiac gene expression. 
Furthermore, this study add an important information to the intricate process of 
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transcription activation that make a cardiomyocyte; for the first time we built an 
high resolution map of H3K79me2 in cardiomyocytes that could be the starting 
point to predict novel transcriptional regulatory networks during cardiomyocyte 
differentiation, as well provide the opportunity to identify novel genes that might be 
informative to understand developmental regulatory programs. Indeed we shed 
light on an additional fundamental enzyme involved in defining the epigenetic code 
associated with the complex process of heart development and establish a 
platform useful to identify new mechanisms underlying many congenital heart 
defects and cardiac developmental malformations. 
Pharmacological modulation of epigenetic mechanisms has a great therapeutic 
potential. Epigenetic therapy, feasible on account of the reversibility of the 
epigenetic profile of cells, consists in restoring correct gene expression in affected 
cells through the use of drugs that inhibit the activity of epigenetic enzymes [117]. 
Recently, it was shown that HDACi prevent cardiac hypertrophy and heart failure, 
suggesting the possibility of epigenetic therapy also for the management of heart 
disease [118, 119]. 
However, the development of epigenetic therapy for cardiovascular disease is 
limited, at the moment, by the pleiotropic effect of these drugs and by a lack of 
knowledge on the epigenetic mechanisms involved. A better definition of the 
epigenetic mechanisms implicated in cardiovascular disease could help to 
overcame these problems and to develop more specific therapeutic strategies for 
heart diseases based on the identification of new molecular targets (e.g. DNA and 
histone methyltransferases and demethylases). 
Epigenetics could also play an important role in the diagnosis of cardiovascular 
defects. Indeed, a distinguishing feature of epigenetic changes with respect to 
those of a genetic nature is that they tend to be acquired in a gradual, rather than 
an abrupt, manner. This makes epigenetic alterations a good target for prevention 
strategies. 
An important application of epigenetics could be in modulating the efficiency and 
specificity of cardiac differentiation and to explain defects underlying cardiac 
developmental malformation. However, due to a lack of knowledge on the 
mechanisms involved, at present we are far from a clinical application of epigenetic 
mechanisms to control heart development. Therefore, further studies are 
necessary in order to shed light on the signaling events underlying transcription in 
cardiac differentiation and development. To this end high-resolution maps of 
histone methylation in neonatal and adult cardiomyocytes were generated, 
clarifying the signaling events underlying gene transcription associated with 
histone methylation in cardiomyocyte differentiation and development. 
Indeed we have identified a specific role of H3K79 methylation mediated by Dot1L 
in the activation of specific genes involved in cardiac commitment. 
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7. APPENDIX 

 
Table I – List of antibodies used for Western Blot, FACs and ChIP 

 
 
 
Antibody Specie Brand Catalog # WB FACs ChIP 
a/b MHC Ms Chemicon MAB 1552 1:200     
cTNNI Ms Millipore-Upstate MAB3150   1:100   
DOT1L Rb Abcam ab64077 1:1000     
H3 Rb Abcam ab1791 1:5000     
H3K27me3 Rb Millipore-Upstate 07-449 1:2000   3ug 
H3K4me3 Rb Active Motif 39159 1:1000   3ug 
H3K79me2 Rb Abcam ab3594 1:1000   3ug 
H3K9me3 Rb Millipore-Upstate 07-442 1:1000   3ug 
Oct4 Rb Abcam ab19857 1:2000     
Rb IgG Rb Millipore-Upstate 12-370     3ug 
SSEA1 Ms Millipore-Upstate MAB4301   1:100   
Lamin B Gt Santa Cruz sc6216 1:500     
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Table II – List of primer used for Gene expression realtime qPCR (Sybr Green) 
 

  

Primer 5'-3' Category 
qRT_m18S_Fw AAATCAGTTATGGTTCCTTTGGTC house keeping 
qRT_m18S_Rev GCTCTAGAATTACCACAGTTATCCAA house keeping 
qRT_mGAPDH_Fw GGCAAATTCAACGGCACA house keeping 
qRT_mGAPDH_Rev GTTAGTGGGGTCTCGCTCTG house keeping 
qRT_mGAPDH_Fw AATGTCAGCAATGCATCCTG house keeping 
qRT_mGAPDH_Rev ATGGACTGTGGTCATGAGCC house keeping 
qRT_mDot1L Fw GCGGCTGTGTGACAAATACA Epigenetic Enzyme 
qRT_mDot1LRev GGCTGTGTAGTGCCCTTCC Epigenetic Enzyme 
qRT_mSOX2_Fw GCACATGAACGGCTGGAGCAACG Stem Marker 
qRT_mSOX2_Rev TGCTGCGAGTAGGACATGCTGTAGG Stem Marker 
qRT_mSOX2_Fw TCAAGCATGTCCTACTCGCAG Stem Marker 
qRT_mSOX2_Rev GAGGAAGAGGTAACCACGGG Stem Marker 
qRT_mOCT3/4_Fw CCCTCTGTTCCCGTCACTG Stem Marker 
qRT_mOCT3/4_Rev ACCTCCCTTGCCTTGGCT Stem Marker 
qRT_mNANOG_Fw CAGGTGTTTGAGGGTAGCTC Stem Marker 
qRT_mNANOG_Rev CGGTTCATCATGGTACAGTC Stem Marker 
qRT_mBrachyury_Fw CAGCCCACCTACTGGCTCTA Mesoderm Marker 
qRT_mBrachyury_Rev GAGCCTGGGGTGATGGTA Mesoderm Marker 
qRT_mNestin_Fw CTGCAGGCCACTGAAAAGTT Endoderm Marker 
qRT_mNestin_Rev AGGTGTCTGCAAGCGAGAGT Endoderm Marker 
qRT_mSox17_Fw CTTTATGGTGTGGGCCAAAG Esoderm Marker 
qRT_mSox17_Rev GGTCAACGCCTTCCAAGACT Esoderm Marker 
qRT_mMEF2C_Fw ACTGGGAAACCCCAATCTTC Cardiac Marker 
qRT_mMEF2C_Rev ATCAGACCGCCTGTGTTACC Cardiac Marker 
qRT_mGATA4_Fw TCTCACTATGGGCACAGCAG Cardiac Marker 
qRT_mGATA4_Rev GCGATGTCTGAGTGACAGGA Cardiac Marker 
qRT_mISL1_Fw GCAACCCAACGACAAAACTAAT Cardiac Marker 
qRT_mISL1_Rev CCATCATGTCTCTCCGGACT Cardiac Marker 
qRT_mNkx2.5_Fw CAAGTGCTCTCCTGCTTTCC Cardiac Marker 
qRT_mNkx2.5_Rev GGCTTTGTCCAGCTCCACT Cardiac Marker 
qRT_m_cTnI3_Fw GCAGGTGAAGAAGGAGGACA Cardiac Marker 
qRT_m_cTnI3_Rev CGATATTCTTGCGCCAGTC Cardiac Marker 
qRT_m_aMYHC6_Fw CGAAACTGAAAACGGCAAG Cardiac Marker 
qRT_m_aMYHC6_Rev TGGCCATGTCCTCGATCT Cardiac Marker 
qRT_m_bMYHC7_ Fw GAGGAGAGGGCGGACATT Cardiac Marker 
qRT_m_bMYHC7_ Rev ACTCTTCATTCAGGCCCTTG Cardiac Marker 
qRT_m_aMYOSIN_Fw CGCATCAAGGAGCTCACC Cardiac Marker 
qRT_m_aMYOSIN_Rev CCTGCAGCCGCATTAAGT Cardiac Marker 
qRT_m_bMYOSIN_Fw CGCATCAAGGAGCTCACC Cardiac Marker 
qRT_m_bMYOSIN_Rev CTGCAGCCGCAGTAGGTT Cardiac Marker 
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Table III – List of primer used for ChIP-realtime qPCR (Sybr Green) 
 
Primer 5'-3' Category 
mPOU5F1_A_Fw CCTGGACAACACAAGATGGA Stem Marker 
mPOU5F1_A_Rev CCCAGAGACCCCAGAGAAGT Stem Marker 
mPOU5F1_B_Fw AGTGAAGGGAATTGGGAACA Stem Marker 
mPOU5F1_B_Rev ACACTGCGTCGTGCTTCTC Stem Marker 
mPOU5F1_C_Fw GCAGGATGTGTGCAATGTCT Stem Marker 
mPOU5F1_C_Rev GAGTTTCAAGCCAGGAATGG Stem Marker 
mNANOG_A1_Fw AGCCGACTTAAGCTGGGTTAG Stem Marker 
mNANOG_A1_Rev AAAGTTTGCCGATCAGTCCTT Stem Marker 
mNANOG_A2_Fw GGGTAGGGTAGGAGGCTTGA Stem Marker 
mNANOG_A2_Rev CGGCTCAAGGCGATAGATT Stem Marker 
mNANOG_B_Fw TTGGTGAGGTTATACAGTTAGTTTGC Stem Marker 
mNANOG_B_Rev CCCAAAGGTTGAGAGAAATGC Stem Marker 
mNANOG_C_Fw GCTGGGACTAAAGGTATGTACCAC Stem Marker 
mNANOG_C_Rev GCGAGGAGAGGCTGTTAGAA Stem Marker 
Brachyury_A_Fw GGACGTGTCCCAAAGCTG Mesoderm Marker 
Brachyury_A_Rev GGTCTCCTTGACCTCTCCAA Mesoderm Marker 
Brachyury_B_Fw GGAATGACCAGGTTTGCCTA Mesoderm Marker 
Brachyury_B_Rev CACTAAGCCCACGGGTTCT Mesoderm Marker 
mBrachyury_C_Fw GGAAATGGACCCATTAGCTATTCT Mesoderm Marker 
mBrachyury_C_Rev TTCCCACTCCCCAGCTACT Mesoderm Marker 
mNkx2-5_A_Fw GAGAATCCAGGCAGACAACC Cardiac Marker 
mNkx2-5_A_Rev GCATTGTTGGGGAATTGACT Cardiac Marker 
mNkx2-5_B_Fw GCGGGGAGTTTGGAGTATAA Cardiac Marker 
mNkx2-5_B_Rev AAATTCGGCGTTCCCTCTAA Cardiac Marker 
mNkx2-5_C_Fw TACCCCTACCCCAGCTACG Cardiac Marker 
mNkx2-5_C_Rev GCCAAAGTTCACGAAGTTGC Cardiac Marker 
mGATA4_A_Fw GGGCTGGTGGAGGTTCTC Cardiac Marker 
mGATA4_A_Rev TCAGTGCCTAGAGACGCAAG Cardiac Marker 
mGATA4_B_Fw CTACCCACATACACCGCTTTC Cardiac Marker 
mGATA4_B_Rev GCCGACTACCCAAGACTATCC Cardiac Marker 
mGATA4_C_Fw CTCAGGGTGTTCGAGACCAG Cardiac Marker 
mGATA4_C_Rev GGTTGCTCCAGAAATCGTG Cardiac Marker 
mMyh7_A_Fw CCCCCTAAAGCAAAGCACTTA Cardiac Marker 
mMyh7_A_Rev GTCCCTGGGATCATGGTG Cardiac Marker 
mMyh7_B_Fw TGTAGGTGGCTCCGAGAAAG Cardiac Marker 
mMyh7_B_Rev GGGGCTGTTCTACCCTTACC Cardiac Marker 
mMyh7_C_Fw TGTCACAACAGCGGAGAATC Cardiac Marker 
mMyh7_C_Rev TTGGATGACCCTCTTAGTGTTG Cardiac Marker 
mMyh6_A_Fw GGGATGGGAGCTTGTGTG Cardiac Marker 
mMyh6_A_Rev TGGGTAAGGGTCACCTTCTCT Cardiac Marker 
mMyh6_B_Fw GGTCAGGATCTCTGGATTGG Cardiac Marker 
mMyh6_B_Rev GCTGGACGGAGAGAGGAAC Cardiac Marker 
mMyh6_C_Fw ATGGAAGATAAACCCCCACA Cardiac Marker 
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mMyh6_C_Rev AGCCTGGATAATCTGGTCCTC Cardiac Marker 
mTNNI3_A_Fw TGAATTTCACAGGAGTGAAGGA Cardiac Marker 
mTNNI3_A_Rev CCACGTTTCTGTCGGTTTC Cardiac Marker 
mTNNI3_B_Fw GGGCTTCTGGGTTCAAGAAT Cardiac Marker 
mTNNI3_B_Rev CTCTGCCCATCACCCTACC Cardiac Marker 
mTNNI3_C_Fw GAGACAGGAAGTGCTCTAGAATCAT Cardiac Marker 
mTNNI3_C_Rev CCCTTTCTGGTCTCTATCTACCC Cardiac Marker 



 


