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Chapter 1: Introduction 

Chapter 1 

Introduction 

 

On July 28, 2010 the United Nations General Assembly, with 122 votes in favor to none against 

and 41 abstentions, adopted a historical resolution recognizing access to clean water and 

sanitation as a human right (UN, 2010a). The passed text on “The human right to water and 

sanitation” (UN, 2010b) clearly states that: “The General Assembly, (omissis) Deeply concerned 

that approximately 884 million people lack access to safe drinking water and that more than 2.6 

billion do not have access to basic sanitation, and alarmed that approximately 1.5 million 

children under 5 years of age die (omissis) each year as a result of water- and sanitation-related 

diseases, Acknowledging the importance of equitable, safe and clean drinking water and 

sanitation as an integral component of the realization of all human rights, (omissis) Bearing in 

mind the commitment made by the international community to fully achieve the Millennium 

Development Goals, and stressing, in that context, the resolve of Heads of State and 

Government, as expressed in the United Nations Millennium Declaration, to halve, by 2015, the 

proportion of people unable to reach or afford safe drinking water, and to halve the proportion of 

people without access to basic sanitation, as agreed in the Plan of Implementation of the World 

Summit on Sustainable Development (“Johannesburg Plan of Implementation”), 

 

• Declares the right to safe and clean drinking water and sanitation as a human right that is 

essential for the full enjoyment of life and all human rights; 

• Calls upon States and international organizations to provide financial resources, capacity-

building and technology transfer, through international assistance and cooperation, in 

particular to developing countries, in order to scale up efforts to provide safe, clean, 

accessible and affordable drinking water and sanitation for all; 

• (omissis).” 

 

Freshwater represents about 2.5% of all water on earth and is mostly trapped in glaciers and 

snow packs, leaving only 0.77% of it available for being used (Shiklomanov, 1993). 

Groundwater accounts for about 98% of the available freshwater (about 0.76% of all water on 

earth) whereas the remaining 2% is present as surface water (i.e., streams and lakes) and 
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distributed in the soil and atmosphere (Shiklomanov, 1997). Thus, not surprisingly, in many 

regions of the world groundwater represents the main, if not the only, source of drinking water, 

especially where surface water resources are limited and/or contaminated to some degree (WHO, 

2006). Some of these regions however are rapidly depleting their aquifers, consuming 

groundwater faster than it is naturally replenished (Postel, 1993), and population growth is 

expected to stress water availability even more in the near future (Shiklomanov, 1999), 

especially in underdeveloped and developing countries where most of the people already being 

unable to access safe drinking water are located (Bidlack et al., 2004). To further complicate this 

matter, it has to be considered that all aquifers are vulnerable to contamination to some degree 

(NRC, 1993) and that, once groundwater is contaminated, its remediation is very challenging, 

costly, time-consuming, and sometimes even unfeasible (e.g., USEPA, 1990). 

In such context, it is clear the importance of developing and adopting, at national and 

international level, an integrated water resources management approach (GWP, 2000) in which 

groundwater quality protection must be one of the first aspects to be considered in order to tackle 

the problem of global freshwater scarcity (WHO, 2004 and previous editions). 

To effectively and properly protect groundwater, it is crucial being able to identify areas where 

groundwater may be most vulnerable to contamination and translate this information into 

vulnerability maps that can be used by potential end-users, such as land and water-resources 

managers, to prevent or minimize harmful impacts on groundwater quality (Arthur et al., 2007). 

To this end, various methods, based on different approaches and using diverse input parameters, 

have been developed to perform groundwater vulnerability assessment. However, in order to be 

considered effective tools to be used in environmental planning and management, the end-

products of such methods (i.e., groundwater vulnerability maps) must be scientifically sound, 

meaningful and reliable. In fact, a groundwater vulnerability map must allow taking 

scientifically defensible decision to protect groundwater resources, must represent the study area 

through a limited number of vulnerability classes consenting to meet policy and management 

objectives, and must depict the actual spatial distribution of the contamination in the study area 

(Focazio et al., 2002). 

To this regard, the use of statistical methods to assess groundwater vulnerability represents a 

reasonable compromise, among model complexity and costs, in order to produce scientifically 

defensible end-products (Focazio et al., 2002). Indeed, statistical methods provide the possibility, 

over various spatial scales, ranging from catchment (e.g., Worral and Kolpin, 2003) to sub-

national (e.g., Arthur et al, 2007) and national (e.g., Nolan, 2001), to objectively identify the 
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factors influencing the vulnerability in the study area and to quantify the uncertainty inherent in 

the assessment. Nevertheless, it has to be highlighted that the meaningfulness of their outputs is 

not always straightforward and that additional interpretation is often required to obtain functional 

(reclassified) vulnerability maps (Focazio et al., 2002), which reliability need to be careful 

addressed before being used in environmental planning and management. Thus, as also stated by 

Fabbri and Chung (2008), at present the research effort in this field should primarily be aimed 

not at implementing new statistical modeling techniques but rather at evaluating the robustness 

of the already available ones and the reliability of their end-products (i.e., reclassified 

groundwater vulnerability maps). 

 

 

1.1 Purpose of this study 

 

Mostly using the Weights of Evidence (WofE) modeling technique, the main purpose of this 

study was to define its strength as exploratory and predictive tool and address more general 

issues associated with the use of statistical methods, modeling binary-response variables, for 

assessing groundwater vulnerability. 

In particular, this study allowed to: 

 

• evaluate the robustness of the WofE modeling technique in accurately assessing groundwater 

vulnerability and its strength in appropriately selecting the explanatory variables (i.e., 

predictor factors) to be used in the statistical analysis; 

• develop an objective semi-guided procedure to generalize the evidential themes (representing 

the selected explanatory variables) to be used as inputs in the WofE model; 

• suggest a suitable method to reclassify statistical model outputs (initially expressed as relative 

probability maps) in order to obtain meaningful groundwater vulnerability maps (henceforth 

referred as “reclassified maps”); 

• observe that even reclassified maps being apparently similar in terms of predictive power can 

exhibit poor agreement in terms of  predicted vulnerability spatial pattern; 

• suggest a series of validation techniques that can be used to estimate the reliability of the 

reclassified maps; 
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• evaluate the effect of using different threshold values, to distinguish between positive and 

negative evidences of contamination, on the predicted vulnerability spatial pattern and on the 

importance of each considered predictor factor in influencing groundwater vulnerability; 

• identify limits and drawbacks of statistical methods, highlighting possible new challenges. 

 

 

1.2 Study areas 

 

The WofE modeling technique was used for assessing groundwater vulnerability to nitrate 

contamination in two study areas characterized by very different hydrogeological settings and 

land use conditions, both located in Italy within the Po Plain area (Fig. 1.1), classified as a 

Nitrate Vulnerable Zone by the European Union since 1991 (EU, 1991): 

 

• the porous shallow unconfined aquifer located in the Province of Milan (panel A on the left in 

Fig. 1.1), Lombardia Region; 

• the porous shallow mixed (confined-unconfined) aquifer located within the Province of 

Piacenza (panel B on the right in Fig 1.1), Emilia-Romagna Region. 

 

 

 

Figure 1.1 – Location and piezometric levels of the two porous shallow aquifers (light grey areas) 

considered in this study. 
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Chapter 2 

Groundwater vulnerability 

 

The term “vulnerability” indicates the degree to which a system is likely to experience harm due 

to perturbation or stress. Vulnerability can be conceptualized in different ways in different fields, 

or even within the same field (Füssel, 2007), and can be identified for a given system exposed to 

a specific hazard or to a group of hazards (Brooks, 2003). 

When considering an aquifer system exposed to a potential source of contamination, the concept 

of vulnerability has to be derived from the assumption that soil and aquifer characteristics may 

provide some degree of protection, especially against sources located on the land surface (WHO, 

2006). 

Although the concept of groundwater vulnerability is obviously central in assessing the relative 

ease with which troublesome concentrations of contaminants could reach groundwater (Worrall 

and Besien, 2005), at present there is no single standardized definition for it (Liggett and Talwar, 

2009). Indeed, hydrogeologists have failed to reach a consensus concerning the definitions of 

groundwater vulnerability and consequently also to provide a reference term for groundwater 

vulnerability assessment (Gogu and Dassargues, 2000). Furthermore, within the scientific 

community, there is still an on-going debate about whether groundwater vulnerability should be 

considered as an intrinsic property of the aquifer, being only a function of its chemical and 

physical characteristics, or whether it should be considered also as a function of contaminant 

properties (Liggett and Talwar, 2009). To this regard, however, it has to be pointed out that, at 

present, the general concept of groundwater vulnerability entailing the two notions of intrinsic 

and specific vulnerability is widely recognized and considered useful by most hydrogeologists. 

Nevertheless, it is important to be aware that a clear distinction between intrinsic and specific 

vulnerability is not always possible (NRC, 1993), and that, even when explicitly referring to 

either one or the other, several different definitions exist. 
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2.1 Definitions of groundwater vulnerability 

 

One of the first definitions of groundwater/aquifer vulnerability that can be found in the 

literature is the one from Albinet and Margat (1970) that described it as “the penetrating and 

spreading abilities of the pollutants in aquifers according to the nature of the surface layers and 

the hydrogeological conditions”. 

Since then, the concept of groundwater vulnerability has considerably evolved (Popescu et al, 

2008) and many other definitions have been proposed. 

Civita (1987) defined the intrinsic (i.e., natural) aquifer vulnerability to contamination as “the 

specific susceptibility of aquifer systems, in their parts, geometric and hydrodynamic settings, to 

receive and diffuse fluid and/or hydro-vectored contaminants, the impact of which, on the 

groundwater quality, is a function of space and time”. 

Foster (1987) defined aquifer pollution vulnerability as “the intrinsic characteristic which 

determine the sensitivity of various parts of an aquifer to begin adversely affected by a 

contaminant load”. 

The US Environmental Protection Agency (1993) first distinguished between aquifer sensitivity 

and groundwater vulnerability, respectively as independent and dependent on land-use and 

contaminant properties. Accordingly, aquifer sensitivity was defined as “the relative ease with 

which a contaminant (in this case a pesticide) applied on or near the land surface can migrate to 

the aquifer of interest as a function of the intrinsic characteristics of the geological materials of 

interest, any overlying unsaturated zone”; groundwater vulnerability as “the relative ease with 

which a contaminant (in this case a pesticide) applied on or near the land surface can migrate to 

the aquifer of interest under a given set of agronomic management practices, pesticide 

characteristics and hydrogeologic sensitivity conditions”. 

The US Committee on Techniques for Assessing Ground Water Vulnerability (NRC, 1993) 

acknowledged that “vulnerability assessments may or may not account for different behaviors of 

different contaminants” and, exclusively referring to contamination resulting from non-point 

sources and/or areally distributed point sources of pollution, defined groundwater vulnerability 

to contamination as ”the tendency or likelihood for contaminants to reach a specified position in 

the groundwater system after introduction at some location above the upper most aquifer”. 

Vrba and Zoporozec (1994) explicitly introduced the concepts of “relative, non measurable and 

dimensionless” in the definition of groundwater vulnerability identified as an “intrinsic property 
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of a groundwater system, depending on the sensitivity of that system to human and/or natural 

impacts”. Consequently, intrinsic vulnerability was defined as a “relative, non measurable and 

dimensionless property of the groundwater cover, determined by its thickness, the lithologic 

properties of the vadose zone, the aquifer properties and the recharge”; specific vulnerability as 

“the vulnerability of groundwater to certain pollutants taking into account land use practices”. 

Most recently, the working group of the European COST Action 620 (EU, 2003), in an effort to 

develop “an improved and consistent European approach for the protection of karst 

groundwater”, agreed that “the intrinsic vulnerability of groundwater to contaminants takes into 

account the geological, hydrological and hydrogeological characteristics of an area, but is 

independent of the nature of the contaminants and the contamination scenario”, while “the 

specific vulnerability takes into account the properties of a particular contaminant or group of 

contaminants and its (their) relationship(s) to the various aspects of the intrinsic vulnerability of 

the area”. Hence, the terminology proposed by the European COST Action 620 (EU, 2003) 

simply identifies what has to be considered when referring to intrinsic and specific vulnerability; 

without indicating the possibility of a quantitative assessment (Voigt et al., 2004) or including 

the concepts of “relative, non measurable and dimensionless” introduced in the definition by 

Vrba and Zoporozec (1994) and earlier discussed by the NRC (1993). 

At this point, it is obvious that groundwater vulnerability represents an ambiguous concept 

(Stigter, 2006; Frind, et al., 2006) that probably cannot be easily defined in a unique and rigorous 

way (Daly et al., 2002). 

Thus, from a practical point of view, in absence of a standard and unanimously accepted 

definition, when performing a groundwater vulnerability assessment it is extremely important to: 

 

• carefully establish the objectives that must be achieved; 

• explicitly refer to the definition of groundwater vulnerability to be used; 

• select the proper assessment method according to the established objectives and the adopted 

definition. 

 

This has to be done in order to avoid misunderstandings in the interpretation of the results and a 

consequently improper use of them. 
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2.2 Groundwater vulnerability assessment methods 

 

Bearing in mind that groundwater vulnerability is not a physical property measurable in the field 

(NRC, 1993) and that “some areas are more vulnerable to groundwater contamination than 

others” (Vrba and Zaporozec, 1994), according to Gogu and Dassargues (2000) vulnerable areas 

can be divided in: 

 

• naturally vulnerable areas where neither the soil/subsoil nor the bedrock provide an adequate 

protection against groundwater contamination (e.g., recharge areas of shallow aquifer); 

• well-protection zones where contaminant can quickly reach and mix with the pumped 

groundwater; 

• potential problem areas (e.g., areas being close or coincident to/with non-point or aerially 

distributed point sources of contamination). 

 

Considering the type of parameters being used to assess groundwater/aquifer vulnerability to 

contamination, three main approaches can be identified (Gogu and Dassargues, 2000): 

 

• an approach accounting only for soil and vadose zone properties without considering any 

transport process within the saturated zone (in this case, the assessment is clearly limited to 

the relative probability that troublesome concentrations of contaminants reach the saturated 

zone); 

• an approach in which groundwater flow and contaminant transport processes within the 

saturated zone are considered to some extent (mostly used to delineate well-protection zones); 

• an approach accounting for soil, vadose zone, saturated zone, and contaminant properties. 

 

Then, all groundwater/aquifer vulnerability assessment methods, based on the above described 

approaches, can be divided in two major groups (Focazio et al., 2002; Arthur et al., 2007): 

 

• subjective methods (also referred as knowledge-driven models); 

• objective methods (also referred data-driven models). 
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2.2.1 Subjective methods 

 

Subjective methods include overlay and index methods and hybrid methods producing subjective 

categorization of the vulnerability. Overlay and index methods can be divided in two main 

categories (Gogu and Dassargues 2000): 

 

• Hydrological Complex and Settings methods (HCS); 

• Parametric System methods (including Matrix System, Rating System, and Point Count 

System Models). 

 

 

2.2.1.1 HCS methods 

 

HCS methods are generally used to assess groundwater/aquifer vulnerability at spatial scale 

ranging from medium (e.g., Ferrara, 1990) to broad (e.g., Margat, 1968). Such methods are 

primarily based on the identification of homogeneous zones in terms of being characterized by 

similar hydrogeological, hydrographical and/or geomorphological settings. The degree of 

vulnerability of each homogeneous zone is then qualitatively evaluated considering the relative 

importance of each setting in influencing groundwater vulnerability. 

An example of HCS method is the GNDCI-CNR basic method (Civita, 1987) that provides a 

qualitative description of the main hydrogeological settings that can be found in Italy, along with 

their corresponding degree of intrinsic vulnerability. Lithological, structural, piezometric and 

hydrodynamic indexes were used to identify the main hydrogeological settings later 

characterized by the main factors controlling groundwater vulnerability (e.g., depth to 

groundwater, porosity, fracturing index, karst index, linkage between stream and aquifer). At this 

point, taking into account the dynamics and the frequency of groundwater contamination in Italy 

and abroad, a different degree of vulnerability distributed over six classes, ranging from 

null/very low to extremely high, was assigned to each hydrogeological setting previously 

identified. 

 

 

 

 



10 

 

Chapter 2: Groundwater vulnerability 

2.2.1.2 Parametric System methods 

 

Parametric system methods include Matrix System (MS), Rating System (RS), and Point Count 

System Models (PCSM). All these methods are based on quite similar procedures that, relying 

on expert judgment, allow assessing the degree of vulnerability of zones that can be considered 

homogeneous in terms of unique combinations of classes of different parameters. 

In general, the parameters to be used are subjectively selected, arranged in classes and somehow 

rated in an effort to reflect their importance in controlling groundwater vulnerability in the study 

area. 

Matrix System methods take into account a restricted and carefully selected number of 

parameters being arranged into classes, rated and then combined following diverse strategies 

specifically developed for local case studies (e.g., Gossens and Van Damme, 1987; Carter et al., 

1987). 

Rating System methods take into account a variable numbers of parameters (depending on the 

considered method) being arranged into properly predefined classes, rated using a fixed range of 

values divided according to the variation interval of the considered parameter, and then 

combined in a predefined way in order to obtain vulnerability indexes corresponding to different 

degrees of vulnerability. 

The GOD and AVI method are two examples of RS methods, both based on the assumption of 

considering a generic contaminant. 

The GOD method (Foster, 1987) takes into account three parameters: the groundwater 

occurrence, the depth to groundwater, and the lithology of the overlying layers (considered only 

in the case of unconfined aquifer). Parameter are arranged into classes, rated and combined 

according to the scheme in Figure 2.1 in order to calculate, for each homogeneous zone, the 

vulnerability index expressing the corresponding degree of vulnerability. 

 



11 

 

Chapter 2: Groundwater vulnerability 

 

 

Figure 2.1 – The GOD method scheme (from Foster, 1987). 

 

The AVI method (Van Stempvoort et al., 1993) takes into account only two parameters: the 

thickness and the estimated hydraulic conductivity of each sedimentary layer above the saturated 

zone. 

The two parameters are used to calculate the hydraulic resistance, c, for each homogeneous zone 

as: 

 

)/(
1

∑
=

=
n

i

ii kdc            (2.1) 

 

where di and ki are respectively the thickness and the hydraulic conductivity of the layer i. 

The hydraulic resistance, c, is then related to a qualitative aquifer vulnerability index by a 

relationship table allowing to obtain different AVI zones, each one characterized by a different 

degree of vulnerability. 
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Point Count System Models (also known as Parameter Weighting and Rating methods) are RS 

methods that introduce the use of weight factors, usually referred as weight strings, to correctly 

reflect the relative importance of each considered parameter in controlling groundwater 

vulnerability with respect to specific land use practices and/or hydrogeological conditions. 

The DRASTIC method (Aller et al., 1987), developed by the US EPA, is the worldwide most 

used method to assess groundwater vulnerability at various scale, ranging from national (Kellogg 

et al., 1997) to township (Shukla et al., 2000). The DRASTIC method assumes that the 

contaminant is applied on the surface, that is introduced in the aquifer system by precipitation 

and that has the mobility of the water. It takes into account seven parameters: Depth to water, net 

Recharge, Aquifer media, Soil media, Topography, Impact of vadose zone media, and Hydraulic 

Conductivity of the aquifer. To each class of each considered parameter is assigned a rate 

ranging from 1 to 10 following predefined schemes such as the one in Table 2.1. 

 

Class Rating Typical Rating 

Massive Shale 1-3 2 
Metamorphic/Igneous  2-5 3 

Weathered Metamorphic/Igneous  3-5 4 
Glacial Till  4-6 5 

Bedded Sandstone, Limestone and Shale Sequences  5-9 6 
Massive Sandstone  4-9 6 
Massive Limestone  4-9 6 
Sand and Gravel  4-9 8 

Basalt  2-10 9 
Karst Limestone  9-10 10 

DRASTIC Weight 3 – PESTICIDE DRASTIC Weight 3 

 

Table 2.1 – Ranges and rating for the parameter aquifer media (modified from Aller et al., 1987). 

 

The DRASTIC method provides two weight strings, one to be used for general conditions and 

another for intensive cultivated areas (generally referred as PESTICIDE DRASTIC; Table 2.1). 

For each homogeneous zone the DRASTIC vulnerability index, Di, is computed as: 

 

∑
=

=
7

1

)/(
j

jji RWD           (2.2) 

 

where Wj is the weighting factor for the parameter j and Rj is the rating value for the parameter 

j. 
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The DRASTIC index, Di, ranging from 23 to 226, is then usually divided in intervals, each one 

corresponding to a different degree of vulnerability. Several modifications of the original 

DRASTIC method, such as fuzzy DRASTIC (Shouyu and Guangtao, 2003) and visual 

DRASTIC (Bojorquez-Tapia et al., 2009), have been proposed by different authors, mainly in 

order to obtain improved results. 

 

The SINTACS method (Civita, 1994) considers seven parameters: Depth to groundwater 

(Soggiacenza), effective infiltration (Infiltrazione), unsaturated zone attenuation capacity (Non 

saturo), soil/overburden attenuation capacity (Tipologia della copertura), hydrogeologic 

characteristics of the aquifer (Aquifero), hydraulic Conductivity range of the aquifer 

(Conducibilità), and hydrologic role of the topographic slope (Superficie topografica). To each 

class of each considered parameter is assigned a rate ranging from 1 to 10 following predefined 

schemes such as the one in Figure 2.2. 

 

 

 

Figure 2.2 – Ranges and rating for Depth to water (from Civita and De Maio, 2004). 

 

The SINTACS method provides five different weight strings, which can be used in series or in 

parallel, for a specific hydrogeological and land use condition/situation, allowing considering the 
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different influence of each parameter in five different hydrogeological and land use situations. 

For each homogeneous zone the SINTACS vulnerability index, Iv, is computed as: 

 

∑ ×= )( ,1)7,1( ni WPD           (2.3) 

 

where P(1,7) is the rating of each parameter, W(1,n) is the associated weight, and n is the number of 

weight strings used. 

The SINTACS index, ranging from 26 to 260, is then divided in 6 intervals, each one 

corresponding to a different degree of vulnerability (Civita, 1994) varying from null/very low to 

extremely high. 

 

The EPIK method (Doerfliger and Zwahlen, 1997) was specifically developed to assess 

groundwater vulnerability in karst hydrogeological contexts. It considers four parameters: 

Epikarst, Protective cover, Infiltration conditions and Karst network development. To each class 

of each considered parameter is assigned a rate and a predefined weight string is used to balance 

their importance. 

The EPIK vulnerability index, Fp, is computed as: 

 

)2()3()1()3( lkjip KIPEF ×+×+×+×=        (2.4) 

 

where Ei is the rating value for the epikarst parameter, Pj is the rating value for the protective 

cover parameter, Ik is the rating value for the infiltration condition parameter, and Ki is the rating 

value for the karst network development parameter. 

The EPIK index, ranging from 9 to 34, is then divided in 3 intervals each one corresponding to a 

different degree of vulnerability (high, medium and low); a forth degree, corresponding to very 

low vulnerability, is identified by the presence of a soil protective cover of thick detrital having 

very low hydraulic conductivity and a minimum thickness of 8 meters. 
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2.2.1.3 Subjective hybrid methods 

 

Subjective hybrid methods combine different components of Overlay and Indexing methods and 

statistical and physically process-based methods in order to produce subjective, usually project-

specific, categorization of the vulnerability. 

An example of subjective hybrid methods is “the Italian combined approach” method (Civita and 

De Maio, 2004) that combine the SINTACS (Civita, 1994) and the GNDCI-CNR basic method 

(Civita, 1987) in order to cover vast areas where the SINTACS alone cannot be used due to lack 

of data. 

 

 

2.2.2  Objective methods 

 

Objective methods produce objective, normally site specific, categorizations of groundwater 

vulnerability and include: 

 

• physically processed-based methods; 

• statistical methods; 

• hybrid methods (mostly physically processed-based methods that include statistical 

components to model complex physical and chemical processes). 

 

 

2.2.2.1 Physically process-based methods 

 

Physically process-based methods either simulate or consider one or many physical and chemical 

processes of groundwater flow and the fate and transport of potential associated contaminants in 

order to somehow assess groundwater vulnerability (Focazio et al., 2002). 

Thus, they comprise the use of both deterministic process-simulation models and physically-

based techniques such as direct field observations of environmental tracers and/or isotopic 

analyses, mostly used to determine source and age of groundwater (e.g., Coplen et al., 1999). 

Deterministic models include analytical and/or numerical solutions of mathematical equations 

that are usually solved through computer programs such as SEEP, MODFLOW and/or SWAT. 
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Physically process-based methods are typically applied at small scales, mostly to define well-

protection zones, rather than to assess groundwater vulnerability at broader scales (Frind et al., 

2006). 

 

 

2.2.2.2 Statistical methods 

 

Statistical methods range from the use of simple descriptive statistics (e.g., Welch et al., 2000) to 

more complex techniques, such as regression (e.g., Eckardt and Stackelberg, 1995) and 

conditional probability analyses (e.g., Alberti et al, 2001; Worral and Besian, 2005; Masetti et 

al., 2009), allowing to objectively determine the importance of each predictor factors in 

influencing/controlling the vulnerability. 

Statistical methods correlate, at various spatial scale, contaminant occurrences within a given 

study area with intrinsic properties of the aquifer system and potential sources of contamination 

in an attempt to predict contaminant concentrations (e.g., Gardner and Vogel, 2005) or 

probabilities of contamination, with respect to one (e.g., Tesoriero and Voss, 1997) or more 

thresholds (Muller et al., 1997; Greene et al., 2004; Masetti et al., 2009). 

When enough water quality data are available, Logistic Regression analysis (Hosmer and 

Lameshow, 1989) is the most common statistical method used for assessing groundwater 

vulnerability in terms of probability of contamination occurrences. 

The basic assumption is that the natural logarithm of the odds ratio is linearly related to the 

considered explanatory variables (Afifi and Clark, 1984). Thus, once identified the statistically 

significant explanatory variables (p<0.05), probability P that contaminant concentration exceed a 

given threshold, expressed as the log of its odds ratio, (P/1–P), can be computed as: 

 

∑
=

+=−
n

i

ii XbbPP
1

0))1/(log(         (2.5) 

 

where b0 is a scalar parameter (intercept), bi is a statistically derived coefficient (slope) and Xi is 

the value of the i explanatory variable. 
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2.2.3  Discussion 

 

Aquifer/groundwater vulnerability can be assessed using different methods ranging from simple, 

qualitative, and relatively inexpensive to rigorous, quantitative, and costly approaches. The best 

method to be chosen for assessing vulnerability should be a function of the spatial scale, cost 

(data availability), time, scientific defensibility, and acceptable uncertainty in relation to the 

requirements of the end-user. 

However, groundwater vulnerability assessment should maintain objectivity with an appropriate 

level of complexity and an acceptable uncertainty. Moreover, objective methods should be 

preferred because, being based on ground data and not on expert opinion, help to scientifically 

defend end-user decisions (Focazio et al., 2002). 

At present, overlay and index methods are the methods most commonly used to assess 

groundwater/aquifer vulnerability mostly because they are relatively easy to implement and 

require a limited amount of data. Despite almost every year a new method of such type is 

developed and proposed (Popescu et al, 2008), their results can be questioned because they rely 

more on expert opinion than on actual hydrogeological process (Frind et al., 2006). Moreover, 

overlay and index methods present a number of proved significant flaws as showed, among 

others, by Rosen (1994), Rupert, (2001) and Stigetr et al. (2001). Indeed, final vulnerability 

maps obtained using such methods showed large discrepancies between predicted vulnerability 

pattern and the actual spatial distribution of the contamination. Also, Gogu et al. (2003) and 

Frind and Martin (2004) showed that using different index and overlay methods on the same 

study area dramatically dissimilar results are obtained. 

One of the main limitations is that even using weight strings to balance the importance of each 

parameter in controlling the vulnerability, the rating score to be assigned to each class of each 

parameter and thus their correlation with the vulnerability is pre-constituted, regardless of 

specific contaminants or hydrogeological conditions of the study area. 

For example, while increasing depth to water is considered to inhibit contamination and thus in 

all the index and overlay method described above the rating score increase with decreasing of the 

depth to water, using different statistical methods, Nolan (2001) and Masetti et al. (2007) found 

that in shallow aquifer, both in US and in Milan, nitrate contamination is positively correlated 

with increasing of depth to water. Although counterintuitive, such correlation can be explained in 

the case of nitrate contamination, by the fact that, as showed in Figure 2.3, other organisms could 

outcompete the nitrifying organisms in the shallower part of the aquifer. 
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Figure 2.3 – Changes in concentration of redox parameters (modified from Appello and Postma, 1996). 

 

Another explanation could be that shallow depth to water creates anoxic condition and thus 

promote denitrification (Nolan, 1999). 

Thus, in terms of scientifically defensibility, both physically process-based and statistical method 

should be preferred. 

However, although physically process-based are able to provide the most accurate representation 

of interacting physical and chemical processes controlling groundwater vulnerability, they are 

very complex to use and their use is limited at small scale. Furthermore, it has to be considered 

that results of physically process-based methods rely on model assumption, that such methods 

produce reliable results only when a large amount of data is available and that even in this case 

uncertainty of the results is very difficult to determine (Focazio et al., 2002). Moreover, 

physically process-based methods even if extremely useful to highlight the most important 

factors controlling groundwater vulnerability (e.g., Holtschlag and Luukkonen, 1997) they can 

account only for one or few processes controlling it (Focazio et al., 2002). 

In conclusion, when comparing statistical methods to both subjective and physically process-

based methods, the formers present several advantages that can be summarized as follow: 

 

• statistical methods are based on field observations (and thus, neither on expert/professional 

judgment nor on model assumptions); 

• can be successfully used to assess groundwater vulnerability over various spatial scales 

ranging from catchment to national; 

• allow to objectively identify the most appropriated explanatory variables controlling 

groundwater vulnerability in the study area; 

Depth 
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• can easily combine multiple information derived from multiple sources of information and 

different in type, accuracy, and survey scale; 

• are developed in a probabilistic framework allowing to evaluate the uncertainty of the results; 

• can be easily updated as new information become available; 

• allow to readily test the results against further observations; 

• allow to test the consistency of the assumptions made in building the conceptual model; 

• ultimately, help land and water-resources managers to defend their decisions. 

 

Nevertheless, even when using statistical methods care must be always taken in the selection of 

the parameters to be used and in testing and interpreting the results. Indeed, assumption and 

simplification of the conceptual model or inadequate description of the hydrogeological system 

(i.e., of the considered parameters) could greatly affect the reliability of the results and thus of 

the final (i.e. reclassified) groundwater vulnerability maps. 

To this regard, it is important to draw attention to the fact that the best way to evaluate the 

reliability of a groundwater vulnerability map, is not to analyze the consistency of the results 

obtained using different methods as suggested in Stigter et al. (2006), but rather to validate them 

against field observations (i.e., concentrations of a given contaminant, or group of contaminants, 

measured in the field). 

 

 

2.3 Use of groundwater vulnerability maps 

 

The first attempt to produce groundwater vulnerability map was made in France by Margat 

(1968), with the intention to show where contamination was more likely to occur as a function of 

different hydrogeological settings. 

Both the NCR (1993) and Vrba and Zaporozec (1994) demonstrate the useful role of 

groundwater vulnerability maps in protecting groundwater. Indeed, although vulnerability maps 

represent the vulnerability as a relative value and not in terms of an absolute value, when 

reliable, they are able to provide key information allowing planning land use and human 

activities in general as an integral part of an overall environmental policy including groundwater 

protection. 
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The importance of groundwater vulnerability maps was then implicitly reaffirmed by the water 

framework directive of the European Union (EU, 2000) requiring to characterize catchments 

areas in order to evaluate “to what extent the groundwater bodies are used and the risk is as high 

that they not fulfill the targets for each individual groundwater body in accordance with article 4 

(environmental targets)”. 

In this context however, it has to be highlighted that groundwater vulnerability maps are 

intended for identify and thus reduce the number of situations needing a deeper investigation and 

never should be used to substitute or avoid specific site analysis. 
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Chapter 3 

The Bayes’ Theorem and Weights of 

Evidence (WofE) 

 

Bayes' Theorem, named after Reverend Thomas Bayes (1702–1761), describes how new 

information can be used to update probability estimates (Bayes, 1763). 

As a logical consequence of the product rule of probability, Bayes' Theorem assumes that, given 

two events A and B, the probability of the two events happening is equal to the conditional 

probability that the event A happens given that the event B has already happened (henceforth just 

conditional probability of A given B) multiplied by the unconditional probability that the event B 

happens (henceforth just unconditional probability of B) and to the conditional probability of B 

given A multiplied by the unconditional probability of A. 

Mathematically, the probability of A and B both happening, P{A∩B}, can be written as: 

 

P{A∩B} = P{A|B}×P{B} = P{B|A}×P{A}       (3.1) 

 

where P{A|B} is the conditional probability of A given B, P{B} is the unconditional probability 

of B, P{B|A} is the conditional probability of B given A and P{A} is the unconditional 

probability of A. 

Thus, considering the event A, the conditional (or posterior) probability of A given B can be 

expressed as a function of a new evidence, P{B|A}, and of a previous knowledge, P{A}, and can 

be written as: 

 

P{A|B} = P{B|A}×P{A}/P{B}        (3.2) 

 

where P{B|A} is called the likelihood, P{A} is the prior probability of A and P{B} ≠ 0 acts as a 

normalizing constant. 

Nowadays, various methods based on the Bayes’ Theorem are used in many disciplines to 

combine evidences to test hypotheses. Since early 1970s, Bayes’ Theorem was successfully used 

in quantitative medical diagnosis to combine clinical evidences in order to predict disease or/and 



22 

 

Chapter 3: The Bayes’ Theorem and Weights of Evidence (WofE) 

determine genetic predisposition (e.g., Lusted, 1968; Aspinall and Hill, 1983 and subsequent 

editions; Spiegelhalter and Knill-Jones, 1984). Later on, Aspinall (1992) and then Tucker at al. 

(1997) among others, used modeling procedures based on Bayes’ Theorem in ecology for spatial 

pattern analysis. 

Similarly, in geosciences, a Bayesian non-spatial method, mostly relying on expert opinion, was 

initially applied in mineral exploration to combine geological and geochemical evidences to 

predict deposit occurrences (e.g., Reboh and Reiter, 1983; McCammon, 1989) and then 

implemented within a Geographic Information System (GIS) environment in order to combine 

evidence in map form. More recently, different methods based on the Bayes’ Theorem were also 

used in many other fields of earth and environmental sciences including landslides susceptibility 

assessment (e.g., Gritzner et al., 2001; Lee et al., 2002) and groundwater vulnerability 

assessment (e.g., Alberti et al., 2001; Worrall and Basien, 2005). 

In particular, if enough survey data are available, the Bayes’ Theorem is commonly applied in 

his log-linear form, data-driven model, known as Weights of Evidence (WofE), in order to 

objectively estimate the relative importance of multiple evidences in influencing the occurrence 

of an event (Bonham-Carter, 1994). 

 

 

3.1 The WofE modeling technique 

 

When using the WofE modeling technique, the importance of each considered evidence (i.e., 

explanatory variable) in the occurrence of an event, is not arbitrary estimated but objectively 

determined, within a probabilistic framework, through the calculation of weights representing the 

existing correlation between the observed events and the considered evidences. 

The calculation of the weights is described below considering a raster based approach within a 

GIS environment. 

If N{T} is the total numbers of pixels T in a given study area and N{A} is the number of pixels 

containing an occurrence A, the prior (unconditional) probability that a pixel contains an 

occurrence, P{A}, can be expressed as the density of N{A} in the study area (i.e., the probability 

that a pixel contains an occurrence based only on the total number of occurrences observed 

within the study area) and thus can be computed as: 
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Considering a spatial pattern B, being either present or absent within the study area, it is possible 

to update the prior probability of A, P{A}, as a function of either P{B|A} or }|{ ABP depending 

on if B is either present or absent, respectively. 

Indeed, according to the Bayes’Theorem, the posterior probability of A given B, }|{ BAP , or of 

A not given B, }|{ BAP , can be expressed as: 
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where P{B|A} and P{ B |A} are, respectively, the likelihood of a pixel of being and not being 

within the spatial pattern B when it contains an occurrence (i.e., the conditional probability of B 

given A and of non-B given A, respectively). 

Defining the odds probability as O = P/(1-P), then Equations (3.4) and (3.5) can be written in 

odds formulation as: 
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where }|{ BAO  and }|{ BAO  are the posterior odds probabilities that a pixel contains an 

occurrence, respectively, depending on if B is either present or absent (i.e., the conditional odds 

probabilities of A, respectively, given and not given B), and O{A} is the prior odds probability 

that a pixel contains an occurrence (i.e., the unconditional odds probability of A). 

It is now possible to define the positive and negative weight, +
W  and −

W , as: 
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where P{B|A} and P{B| A } are the probabilities that a pixel is within B, respectively, given that 

it contains and does not contain an occurrence A, while P{ B |A} and P{ B | A } are the 

probabilities of a pixel of not being within B, respectively, given that it contains and does not 

contain an occurrence A. 

 

Hence, equations (3.6) and (3.7) can be rewritten as: 

 

++= WAOBAO ee }{log}|{log         (3.10) 

−+= WAOBAO ee }{log}|{log         (3.11) 

 

Considering two spatial patterns, B1 and B2, it is thus possible to calculate the posterior 

probability that a pixel contains an occurrence, given that both spatial patterns are present, as: 
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Considering that A and A  are the only two mutual exclusive hypotheses, for the law of total 

probability, the Equation (3.12) can be also expressed as: 
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Assuming that B1 and B2 are conditionally independent of each other with respect to A, for the 

multiplication rule of independent events, the numerator and denominator of Equation (3.12) 

become respectively: 

 

{ } }|{}|{| 2121 ABPABPABBP =I         (3.14) 
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and 

 

{ } }{}{ 2121 BPBPBBP =I          (3.15) 

 

Thus, the Equation (3.12) becomes: 
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where 
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ABP
 are two multiplication factors used to update the prior 

probability of A, P{A}, if B1 and B2 are both present.  

Thus, depending on if B1 and B2 are both present, both absent, the former present and the latter 

absent or vice versa, the prior probability that a pixel contains an occurrence A, expressed as the 

{ }AO
e

log , can be respectively updated as: 

 

{ } ++ ++= 2121 }{log|log WWAOBBAO ee I        (3.17) 

{ } −− ++= 2121 }{log|log WWAOBBAO ee I        (3.18) 

{ } −+ ++= 2121 }{log|log WWAOBBAO ee I        (3.19) 

{ } +− ++= 2121 }{log|log WWAOBBAO ee I        (3.20) 

 

Consequently, considering more than two spatial patterns, Bn, conditionally independent of each 

other with respect to A, the prior probability that a pixel contains an occurrence A, again 

expressed as the { }AO
e

log , can be updated as: 
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where m is either a plus (+) or a minus (–) depending on if the prediction spatial pattern, Bn, is 

either present or absent, respectively. 
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3.2 Practical aspects of the WofE modeling technique 

 

Thus, the WofE modeling technique can be used to combine diverse spatial data sets in a GIS 

environment for the purpose of analyzing and describing their interactions and generating 

predictive models (Bonham-Carter, 1994). WofE can be defined as a data-driven Bayesian 

method, in a log-linear form, that uses known occurrences of an event (response variables) as 

training sites (training points) to generate a predictive probability output (response theme) from 

weighted evidences (evidential themes representing different explanatory variables) influencing 

the spatial distribution of the occurrences in the study area (Raines, 1999). 

An evidential theme is a raster representing a set of continuous or categorical spatial data 

presumably associated with the location of the occurrences. Ordered evidential themes may have 

to be generalized prior to carrying out the analysis because of the number and location of the 

occurrences used as training points (TPs) and the presence of random processes (Arthur et al., 

2005). Generalizing an ordered evidential theme means defining the ranges of values that can be 

grouped into classes having a statistically significant correlation with the TPs. 

Hence, TPs are used to calculate the prior probability of occurrence of an event within the study 

area, the positive and negative weights for all classes of each evidential theme and the posterior 

probability of occurrence of an event (i.e., the response theme). 

Thus, for each given class of each evidential theme, the positive and negative weight, +
W  and 

−
W , can be, respectively, positive and negative or negative and positive, depending on whether 

in the given class there are more or fewer TP than would be expected by chance. 

The contrast, C, of each class of each evidential theme, calculated as the positive minus the 

negative weight, represents the overall degree of spatial association between the class itself and 

the TPs and is a measure of the class usefulness in predicting the location of the TPs (Raines, 

1999). 

The confidence value (C divided by its standard deviation) corresponds approximately to the 

statistical levels of significance and provides a useful measure of the significance of the contrast 

(Raines, 1999). 

It is important to highlight that the posterior probability represents the relative probability that a 

pixel contains an occurrence based on the evidences provided by the evidential themes, meaning 

that a pixel of a higher posterior probability is more likely to contain an occurrence than a pixel 
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of a lower one (Raines, 1999). Thus, the posterior probability does not represent the actual 

probability that a pixel contains an occurrence. 

In this study, the WofE modelling technique was applied within the Environmental Systems 

Research Institute (ESRI) ArcMap 9.2 environment using the Spatial Data Modeller (SDM) 

software (Sawatzky et al., 2008). 

 

 

3.3 Application fields of the WofE modeling technique 

 

The Weights of Evidence (Bonham-Carter et al., 1989) has been successfully applied both in 

geosciences and in many other fields such as archaeology (Duke and Steele, 2010), ecology 

(Romero-Calcerrada and Luque, 2006), wildfire (Romero-Calcerrada et al., 2008) and 

epidemiology (Lynen et al., 2007). Applications in geosciences have mainly focused on mineral 

exploration and resource appraisal (Agterberg et al. 1993; Raines and Mihalasky 2002; Cheng 

2004; Corsini et al. 2009), landslide hazard zonation (Lee et al. 2002; Poli and Sterlacchini, 

2007; Dahal et al. 2008), and groundwater quality/vulnerability assessment (Alberti et al., 2001; 

Arthur et al., 2007; Masetti et al., 2007, 2008). Other applications in geosciences include the 

evaluation of risk of slope failure in open mines (Nelson et al., 2007) and most recently the 

evaluation of ground subsidence spatial hazard near abandoned underground coal mines (Oh and 

Lee, 2010). 
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Chapter 4 

Hydrogeological setting 

 

Both areas considered in this study are located in northern Italy within the Po Plain and present 

very different hydrogeological settings both considering the type of shallow aquifers being 

present (unconfined in the Province of Milan and mixed within the Province of Piacenza), their 

thickness and scale. 

 

 

4.1 Shallow aquifer in the Province of Milan 

 

The first study area covers approximately 2000 km
2
 and is coincident with the administrative 

Province of Milan (Fig. 4.1). From the hydrogeological point of view, the Milan plain is 

characterized by the presence of several aquifers with various degrees of mutual interaction. 

Moreover, conditions of superficial recharge are complex because of the presence of an 

extensive irrigation network and a great number of different soils and land use types. 

 

 

 

Figure 4.1 – Study area coincident with the Province of Milan, piezometric levels of the shallow aquifer, 

and location of the hydrogeological sections in Figure 4.4. 
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The Milan plain subsoil is characterized by Pliocene-Pleistocene sediments that represent 

considerable groundwater resources. The upper units of this stratigraphic sequence are of alluvial 

and/or alluvial-glacial origin (constituted by gravels and sands with few interbedded layers of silt 

and clay) whereas the deeper units are of sea origin (mostly constituted by clay and silt). Toward 

the end of the Pliocene the Alpine orogenic processes promoted the sea regression and created a 

delta-lagoon environment where sedimentation was characterized by fine sediments alternated 

with coarse materials. During Quaternary, the rivers flowing out from the southern borders of the 

glacial moraines deposited the coarse sediments constituting the upper units of the stratigraphic 

sequence. In general, the presence of clay and silt in the study area increases not only with the 

depth but also from north to south due to the fact that the quaternary rivers progressively lost 

their transport energy southward away from the glacier. 

The groundwater flow is generally oriented north-south toward the base level represented by the 

Po River, while is influenced by the drainage effect of the Ticino and Adda Rivers near the 

eastern and western boundary of the study area, respectively (Fig 4.1). The groundwater depth 

decreases from north to south, ranging from values higher than 50 to less than 5 meters 

(becoming null in correspondence of many natural springs in the south called “fontanili”). 

 

 

4.1.1 Hydrogeological setting of the study area in the Province of 

Milan 

 

According to the classification based on the study conducted by the Regione Lombardia and Eni 

Divisione Agip (2002), four major hydrogeological units, each one delimitated at the bottom by 

a regional unconformity stratigraphic surface, can be identified in the study area. 

Figure 4.2 allow to correlate such four hydrogeological units, denominated Group A, Group B, 

Group C, and Group D from the shallower to the deeper one, with other classifications derived 

from previous studies (e.i., Martinis and Mazzarella, 1971; Francani and Pozzi, 1981; Avanzini 

et al., 1995). 
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Figure 4.2 – Stratigraphic relationships among the hydrogeological units identified in different studies 

(from Regione Lombardia and Eni Divisione Agip, 2002). 

 

• The Group A identifies aquifers mainly constituted by medium-to-very-thick layers of 

polygenic coarse gravel and pebbles, from gray to yellowish-grey, in a medium-to-coarse 

sandy matrix. Few yellow layers constituted by medium-to-very-coarse (often pebbly) sand 

are interbedded. The Group A has an average thickness of 60 meters and is characterized by 

high values of hydraulic conductivity (ranging from 10
-4

 to 10
-3

 m/s) and transmissivity 

(usually higher than 10
-2

 m
2
/s). Just northward the city of Milan two subgroups (A1 and A2) 

can be distinguished within the Group A, according to the grain size and the stratigraphical 

position: 

 

• the Subgroup A1 constituted by coarse and slightly sandy gravel, unconfined all over the 

study area; 

• the Subgroup A2 constituted by coarse-to-fine sand with interbedded silty layers, semi-

confined or confined in the study area. 
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The Group A is separated from the underlying Group B by a clay-silt layer, of variable thickness 

and of continuous extension over the study area. 

 

• The Group B identifies aquifers, totally confined in the study area, mainly constituted by 

gravel and medium-coarse sand in a sandy matrix. Limited to the lower part of the aquifer, 

very few silty-clay and silty layers, of thickness ranging from few decimeters to few meters, 

are interbedded. At the bottom of the Group B it is possible to find conglomerates locally 

slightly cemented and the “Ceppo” (an autochthon kind of conglomerate). The Group B has 

almost the same average thickness (40-50 meters) of  the Group A but, due to the higher 

presence of clay and silt, it is characterized by lower values of hydraulic conductivity (ranging 

from 10
-5

 to 10
-4

 m/s) and transmissivity (ranging from 10
-3

 to 10
-2

 m
2
/s). Considering the 

characteristics of the aquifers being part of the Group B three subgroups (B1, B2 and B3) can 

be distinguished: 

 

• the subgroup B1 identifying a higher unconfined aquifer; 

• the subgroup B2 identifying a lower confined aquifer; 

• the subgroup B3 constituted by conglomerates. 

 

• The Group C (lower part of the Middle-Pleistocene) is constituted by sediments from marine 

and transitional environments. Sediments of the continental shelf are constituted by sandy-

silty clay and fossiliferous grey clay; sediments of the coastal environment are constituted by 

fossiliferous, laminate or massive, bioturbated, fine-to-very-fine grey sand, and by medium-to-

thick strata of laminate, medium well-sorted grey sand containing organic matter. The Group 

C is characterized by a variable thickness incresing southward (ranging from 100 meters in the 

northern part to 1000-1200 meters in the southern one) and low values of both hydraulic 

conductivity (ranging from 10
-6

 to 10
-5

 m/s) and transmissivity (usually lower than 10
-3

 m
2
/s). 

No subdivisions are identified within the Group C. 

 

• The Group D is represented by facies coarsening upward and is constituted by silty-clay and 

silt interbedded by thin layers of fine and very fine sand at the base, medium and fine 

bioturbated grey sand in the middle part, and polygenic grey gravel alternating with sand at 

the top. As for the Group C, no subdivisions are identified within the Group D. 
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Below the Group D there are Upper and Middle Pliocene sediments, which top is located at 

about 700 meters below the sea level, essentially constituted by clay. 

As can be inferred also from the hydrogeological sections in Figure 4.3, the subdivision in 

Aquifer Groups is easier to be identified in the area coincident with the middle and low plain. 

Indeed, in the high plain and in the area coincident with the hilly zones, characterized mainly by 

fluvial terraces, the hydrogeologic setting results more complex and some of the Groups 

described above could not be present everywhere. For example, the Group A may be absent in 

correspondence of ancient terraces while being present only in the valley of the main rivers. 

 

 

 

Figure 4.3 – Hydrogeological sections with N-S and W-E direction through the study area in Figure 4.1 

(modified from Provincia di Milano and Politecnico di Milano, 1995). 

 

The Subgroup A1 or the corresponding shallow unconfined aquifer in the northern part of the 

study area (Fig. 4.3) is the portion of aquifer that was used in this study to assess the 

groundwater vulnerability to nitrate contamination. 
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4.2 Shallow aquifer within the Province of Piacenza 

 

The second study area is located in a sector of the southern Po Plain close to the Appennine 

domain an it is located within with the administrative Province of Piacenza and covers 

approximately 1000 km
2
 (Fig. 4.4). 

 

 

 

Figure 4.4 – Study area (light-grey) within the Province of Piacenza and piezometric levels of the shallow 

aquifer. 

 

This area contains in a relative short distance the complete evolution of an alluvial aquifer, from 

the high energy sedimentary environment close to the hilly recharge sectors to the low energy 

domain of the Po River. 

The groundwater flow is generally oriented south-north toward the base level represented by the 

Po River, which acts as a completely efficient draining boundary in the southern sector of the 

area. 

 

 

4.2.1 Piacenza hydrogeological setting 

 

According to the conceptual model elaborated by Regione Emilia Romagna and Eni divisione 

Agip (1998), three major overlapping hydrostratigraphic units, each one of thickness up to few 

hundred meters, can be identified in the study area. 



34 

 

Chapter 4: Hydrogeological setting 

These units, named Aquifer Group A, B and C from the top to the bottom, respectively, can be 

subdivided into 14 units of lesser rank (Fig. 4.5) with a thickness ranging from few tens to about 

a hundred meters. The maximum thickness of the entire aquifer is about 600 meters. 

 

 

 

Figure 4.5 – Stratigraphic and hydrogeological setting of the study area in Figure 4.4 (from Regione 

Emilia Romagna and Eni Divisione Agip, 1998). 

 

• The Aquifer Group A is mainly constituted of alluvial deposits and can be subdivided into 

four main subunits denominated Aquifer Complexes (A1, A2, A3, and A4). Within each 

Aquifers Complex, grain sizes fine upwards and it is possible to identify a lower and an upper 

portion constituted mainly of fine and course sediments, respectively. In addition to the four 

subunits described above it has to be noted that a fifth subunit, denominated Aquifer Complex 

A0, can be discontinuously identified above the Aquifer Complex A1. The Aquifer Complex 

A0, having an average thickness up to 25 meters, is constituted of non-continuous sandy lens 

and is often connected with the superficial water bodies. 

• The Aquifer Group B is mainly constituted of alluvial deposits and can be subdivided into four 

Aquifer Complexes (B1, B2, B3, and B4). 
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• The Aquifer Group C is constituted of marine and coastal sediments and can be subdivided in 

five Aquifer Complexes (C1, C2, C3, C4, and C5). 

 

All Aquifer Groups described above extend through two different hydrogeological domains 

being, approximately form south to north, the one constituted of multiple Appennine alluvial 

fans and the one represented by the alluvial Po plain (Fig. 4.6). 

Thus, in the southern part of the study area, in correspondence of the Appenine alluvial fans, the 

sediments are mainly constituted of coarse gravel deposited by the Appenine rivers. In this area, 

the gravel deposits belonging to the different subunits (i.e., Aquifer Complexes) can be welded 

together, forming an unconfined single-layer aquifer of thickness ranging from few tens to 

hundreds of meters. This sector corresponds to the main recharge area of the whole aquifer 

(interdigitated fans). Otherwise, especially in the distal part of the alluvial fans, the gravel 

deposits can be distributed in extensive tabular bodies, covered and separated by layers of fine 

sediments, and thus forming a confined or semi-confined multi-layer aquifer (multi-layered 

fans). Above the gravel deposits and not connected with them, it is possible to find the 

unconfined aquifer previously identified as the Aquifer Complex A0. Moving northward, away 

from the Appennine toward the Po River, the thickness of the layers constituted of fine 

sediments increases considerably and the gravel deposits are gradually replaced by non-

continuous thin sand deposits (which thickness is up to few meters). They become thicker (up to 

20-30 meters) and very continuous within the alluvial Po plain (i.e., in the area close to the Po 

river). 

 

 

 

Figure 4.6 – Schematic representation of a hypothetical hydrogeological section with SW-NE direction 

through the study area in Figure 4.4 (modified from Regione Emilia-Romagna, 2009). 

SW 

NE 
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Thus, if not considering the Aquifer Complex A0 and the southernmost area of the floodplain 

coincident with the apical part of the alluvial interdigitated fans, the aquifer located within the 

study area can be defined as a confined or semi-confined multilayer aquifer, with each Aquifer 

Complex having different quantitative and qualitative characteristics. Considering the Aquifer 

Complex having similar quantitative and qualitative characteristics and referring to the 

2000/60/CE and 2000/118/CE Directives, the entire aquifer was divided into two portions, each 

one subject to a different degree of antrophogenic impacts and representing two different 

paleogeographic contexts: 

 

• un upper portion constituted by the Aquifer Complexes A1 and A2; 

• a lower portion constituted by the Aquifer Complexes A3 and A4 as well as the Aquifer 

Groups B and C. 

 

The upper aquifer portion identified above (Aquifer Complex A1 and A2) is the one that was 

used in this study to assess the groundwater vulnerability to nitrate contamination. 
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Chapter 5 

Response and explanatory variables 

 

The choice of using nitrate concentration as the response variable was based on the fact that, 

from an ideal point of view, when assessing groundwater vulnerability by statistical techniques 

the indicator of contamination should be ubiquitously present in the study area in relation to 

homogeneously distributed non-point sources. To this regard, Spalding and Exner (1993) 

suggested that nitrate may be the most ubiquitous and persistent contaminant in groundwater 

worldwide and thus a perfect candidate to be used as an environmental indicator of groundwater 

vulnerability to contamination (Tesoriero and Voss, 1997). 

Moreover, it was considered that elevated concentrations of nitrate are usually caused by 

anthropogenic activities (e.g., domestic sewage disposal, crop fertilization, and animal breeding) 

extensively present in both study areas. 

From the hydrogeological conceptual model of each study area the most important variables 

thought to being important in controlling nitrate contamination of shallow groundwater were 

considered for being included in the analysis. 

 

 

5.1 Response variables 

 

Nitrate contamination of shallow groundwater, both within the Province of Milan and the 

Province of Piacenza, is monitored by a monitoring network constituted of more than 300 and 

about 40 wells, respectively. 

 

 

5.1.1 Monitoring of the shallow aquifer in the Province of Milan 

 

As part of the groundwater monitoring program carried out by the Province of Milan between 

2000 and 2002, one shallow-groundwater sample per well was collected in 2000, 2001, early 

2002, and late 2002 through four different surveys. Basic descriptive statistics (Table 5.1) reveal 

that, during the entire considered monitoring period, the nitrate-contamination spatial pattern of 
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the shallow aquifer (identified as the Subgroup A1 described in Chapter 4, Paragraph 4.1) 

remained almost unchanged. 

 

Nitrate concentration 
Survey Year No. of wells 

Min Max Mean Median Std. Dev. 
Skewness 

1 2000 324 0.9 71.0 22.6 21.0 15.0 0.56 

2 2001 323 0.8 63.0 22.5 19.5 15.1 0.43 

3 Early 2002 307 1.0 70.0 22.4 20.0 15.3 0.36 

4 Late 2002 249 1.0 52.0 21.5 20.0 14.1 0.42 

 

Table 5.1– Basic descriptive statistics of water-quality dataset collected in 2000, 2001, early 2002 and 

late 2002. 

 

The most impacted sector is located in the north-eastern part of the study area (Fig. 5.1), where 

concentrations exceed 50 mg/l, even if almost the whole northern sector shows values equal to or 

greater than the guide value of 25 mg/l. Nitrate concentration progressively decreases from north 

to south where values are consistently lower than 10 mg/l. it is interesting to note how the 

southward inflexion of the isoconcentration curves located in the correspondence of the city of  

Milan (light-grey area in Fig. 5.1) represents a local anomaly within the spatial distribution of 

groundwater nitrate concentration in the study area. 

 

 

 

Figure 5.1 – Nitrate distribution in shallow groundwater in the Province of Milan. 
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5.1.2 Monitoring of the shallow aquifer within the Province of 

Piacenza 

 

The Emilia-Romagna Region started to qualitatively monitor its aquifer system in 1976 and then 

quantitatively in 1987 through 62 wells sampled twice per year, 39 of which are used to monitor 

the upper portion of the aquifer system (identified as the Aquifer Complexes A1 and A2 

described in Chapter 4, Paragraph 4.2). 

The nitrate distribution in the upper portion of the aquifer remained quite unchanged during the 

whole monitoring period with the most impacted sectors located in the western part of the study 

area, in the north-central part around the municipality of Piacenza and in the south-eastern part 

where concentration greatly exceed 50 mg/l whereas the less impacted sector is coincident with a 

corridor extending from the south central part to the north-western one where concentration is 

lower than 15 mg/l (Fig. 5.2). 

 

 

 

Figure 5.2 – Nitrate distribution in shallow groundwater within the Province of Piacenza (from Regione 

Emilia-Romagna, ARPA, and Provincia di Piacenza, 2004). 

 

The water-quality data set from the survey carried out in 2008 was used in order to assess the 

vulnerability of the study area and to compare the assessment with nitrate concentration long 

term trends evaluated for each monitoring well, using the available time series covering 22 years 

(Fig. 5.3). 
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Figure 5.3 – Examples of time series used to evaluate the long term trend of nitrate concentration in two 

wells used to monitor the upper part of the aquifer system within the Province of Piacenza. 

 

 

5.2 Explanatory variables 

 

The main sources of nitrate in both study areas are linked to the presence of urban, agricultural 

and industrial areas. 

Raster maps, with a pixel resolution of 50 meters, describing explanatory variables to be used as 

evidential themes in the WofE model, were derived from multiple sources of information and are 

different in type, accuracy, and survey scale. 

 

 

5.2.1 Population density 

 

Population density represents a surrogate of the actual nitrate loading primarily caused by sewer 

system losses in urban areas (e.g., Tesoriero and Voss 1998; Nolan et al. 2002). 
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Milan: the population density map at scale 1:25000 for the Province of Milan, referring to 2001, 

was created using population count data at municipality level from the census database of the 

Italian National Statistical Institute (Istat, 2001). The higher density is observable within the 

municipality of Milan (dark grey area in Fig 5.4) and in general in the north-eastern part of the 

Province. 

 

 

 

Figure 5.4 – Population density at municipality level within the Province of Milan. 

 

Piacenza: the population density map at scale 1:25000 for the study area located within the 

Province of Piacenza, referring to 2009, was created using population count data at municipality 

level the census database of the Italian National Statistical Institute (Istat, 2009). The higher 

density is observable within the municipality of Piacenza (dark grey area in Fig 5.5) and in 

general in the eastern part of the Province. 

 

 

 

Figure 5.5 – Population density at municipality level in the study area located within the Province 

of Piacenza. 
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5.2.2 Nitrogen loading 

 

Nitrate loading accounts for anthropogenic sources of nitrate not related to urban and industrial 

areas being both the organic and the chemical load correlated with animal breeding and 

agricultural activities, respectively. 

Milan: the nitrogen loading map, at scale 1:25000, for the Province of Milan, referring to 2003, 

was created using the data prepared by Acutis and Provolo (2003) at municipality level. The 

higher values of nitrogen load result located in the south-eastern and western part of the study 

area (Fig. 5.6). 

 

 

 

Figure 5.6 – Nitrogen load distribution at Municipality level in the Province of Milan. 

 

Piacenza: the nitrogen loading map for the Province of Piacenza, referring to 2008, was created 

using the data prepared by the Environmental Agency of (ARPA) Emilia-Romagna Region 

(2003) at a scale given by the intersection between municipality and catchment areas. The higher 

values of nitrogen load result located in the north-western part of the study area (Fig. 5.7). 
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Figure 5.7 – Nitrogen load distribution in the study area within the Province of Piacenza. 

 

 

5.2.3 Soil protective capacity 

 

The soil protective capacity represents the soil capacity to degrade water-soluble contaminants 

leaching from the surface.  

This explanatory variable was considered only for Milan: the map, consisting of three classes 

representing different degrees of protective capacity, was prepared, at scale 1:25000, by the 

Regional Agency for Agriculture and Forestry Services, for the whole Po plain and the 

surrounding hill areas within the Lombardia Province (ERSAF, 2004). It was produced 

considering the soil filtering and buffering capacity, due to mechanical, biological and 

microbiological activity. 

 

 

 

Figure 5.8 – Soil protective capacity in the Province of Milan. 
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Soils having mostly high and medium protective capacity are mostly present in the north-eastern 

sector whereas soils having low protective capacity are present in the central, southern and 

eastern sector (Fig. 5.8). 

 

 

5.2.4 Groundwater depth 

 

Groundwater depth determine the time of travel of a hydro-vectored contaminants and thus the 

duration of the attenuation process within the vadose zone. 

Milan: the groundwater depth map, referring to 2001, which represents the level of unconfined 

aquifer identified with the Subgroup A1 (see Chapter 4, Paragraph 4.1), was generated 

interpolating the piezometric measurements made in 364 wells (about 18 wells per km
2
) sampled 

four times per year and distributed as homogeneously as possible over the study area. 

The groundwater depth decreases from north to south over the whole study area, highest values 

are observable in the north central part whereas the lowest values, even equal to zero, are 

observable close to the southern border of the Province where are present numerous natural 

springs (Fig. 5.9). 

 

 

 

Figure 5.9 – Groundwater depth of the Subgroup Aquifer A1 in the Province of Milan. 

 

Piacenza: the groundwater depth map, which represents the level of the upper portion of the 

aquifer identified with the Aquifer Complexes A1 and A2, was generated interpolating 

piezometric measurements made in 40 wells (courtesy of Direzione Tecnica ARPA Emilia-
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Romagna), sampled twice per year, and 20 control points representing the elevation of surface 

water. Groundwater depth is higher in the south-central part of the study area and from there 

generally decreases eastward, westward and northward. 

 

 

 

Figure 5.10 – Groundwater depth of the upper part of the aquifer system within the Province of Piacenza. 

 

 

5.2.5 Unsaturated hydraulic conductivity 

 

Unsaturated hydraulic conductivity represents the capacity of groundwater to move inside the 

vadose zone and thus the mobility potential of a hydro-vectored contaminant.  

This explanatory variable was considered only for Milan: the map representing the distribution 

of the unsaturated hydraulic conductivity in the Province of Milan was generated interpolating 

experimental data from borehole tests conducted in 606 wells (about 30 wells per km
2
) 

distributed as homogeneously as possible over the study area. 

In each well, being the flux through the vadose zone mainly vertical and very sensible to low 

permeability layers, the following formula has been used: 
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where S1 and Sn are, respectively, the thickness of the first and n_th layer, S is the total depth, 

and k1 and kn are respectively the hydraulic conductivity of the first and n-th layer. 
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Figure 5.11 – Distribution of the unsaturated hydraulic conductivity in the Province of Milan. 

 

Unsaturated hydraulic conductivity is higher in the north western and north-eastern part of the 

study area whereas is generally lower in the southern part. 

 

 

5.2.6 Groundwater velocity 

 

Groundwater velocity is related to the concept of instantaneous dilution occurring when 

contaminants reach groundwater (Calabrese and Kostecki, 1988). 

This explanatory variable was considered only for Milan: the groundwater velocity map for the 

Province of Milan was obtained by interpolating the results of a numerical models, realized with 

a finite difference code (MODFLOW), that was calibrated and validated on 1200 km
2 

within the 

study area (Alberti et al., 2000). 

The obtained groundwater velocity data was aggregated with other available data (for those areas 

outside the model) and then interpolated in order to obtain a spatial distribution of the analyzed 

parameter over the entire study area. Two zones of high velocity are located in the central- 

northern and southern sectors while low values are mainly concentrated in the north-western and 

south-eastern part of the study area. Difference in velocity can be equally attributed to hydraulic 

conductivity and hydraulic gradient changes with the last generally higher in the northeastern 

sector. 
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Figure 5.12 – Groundwater velocity within the Province of Milan. 

 

 

5.2.7 Effective infiltration (irrigation, rainfall and land use) 

 

Effective infiltration is responsible for transporting contaminants in groundwater but also for 

their dilution, first during the travel through the vadose zone and then within the saturated zone. 

Milan: the effective infiltration (EI) map for the Province of Milan was generated by combining 

mean annual irrigation (I), rainfall (R), and land use through a simple function being: 

 

EI=(R + I)* Ci          (5.1) 

 

where Ci represents an infiltration coefficient being a function of the land use (USSCS 1964; 

Schwab et al. 1993). 

Effective infiltration results greatly influenced by the presence of the extensive irrigation net 

mainly located in the central-southern sector of the study area where indeed the effective 

infiltration values are the highest (Fig. 5.13). 
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Figure 5.13 – Effective infiltration in the Province of Milan. 

 

The mean annual irrigation map for Milan (Fig. 5.14), at a scale 1:25000, was generated at the 

Consortium level, by using the average incoming and outgoing discharge values recorded at each 

flow gauge by each Consortium (Table 5.2). 
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Figure 5.14 – Location of each consortium within the Province of Milan. 
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Consortium Canal Code Area (m
2
) Avg. monthly discharge (m

3
/s) 

Villoresi  1-18 803219.985 282.624 
Castano I and 

Castano II 
1 20169.473 5.085 

Cuggiono 2 27031.155 17.795 
Magenta 3 434081.848 21.268 
Corbetta 4 60964.658 25.210 

Parabiago 5, 6, 7, 8, 9 18207.000 68.959 
Rho 10 16877.000 1.229 

Passirana and 
Arese 

11 55237.734 9.205 

Garbagnate 12 31482.300 2.867 
Val Seveso 13 35234.100 2.319 

Nova and Cinisello 14 31011.100 0.654 
Brugherio 16 18921.500 1.605 

Carugate and 
Cernusco 

17 27653.617 7.914 

 

Gorgonzola and 
Pessano 

18 26348.500 3.472 

Martesana  19, 20, 21 224696.396 148.010 
Nav. Grande 

and Nav. Pavia 
 22 778822.422 218.776 

Nav. 
Bereguardo 

 23 324400.000 59.957 

 

Table 5.2 – Main characteristics of each canal within the irrigation net in the Province of Milan. 

 

The rainfall map for Milan (Fig. 5.15) was generated by interpolating the mean annual rainfall 

values registered by seven stations located within the study area with records longer than twenty 

years (courtesy of the Hydrographic Service of Po River). 

Isohyets show a decreasing trend in rainfall from NW to SE according to altitude changes in the 

same direction. 

 

 

 

Figure 5.15 – Rainfall distribution in the Province of Milan. 



50 

 

Chapter 5: Response and explanatory variables 

For Milan the land-use map was obtained modifying the map, at scale 1:10000, prepared by the 

Regional Agency for Agriculture and Forestry Services as part of the DUSAF project (ERSAF, 

2003). In particular, different land uses where reclassified as urban, urban green, cultivated, and 

natural areas. Most of the southern and western sector of study area is occupied by agricultural 

areas whereas urban areas are mainly located in the central and northern sector (Fig. 5.16). 

 

 

 

Figure 5.16 – Land use in the Province of Milan. 

 

Piacenza: the effective infiltration (EI) map was generated by combining rainfall (R), and land 

use through a simple function being: 

 

EI=R * Ci           (5.2) 

 

where Ci represents an infiltration coefficient being a function of the land use (USSCS 1964; 

Schwab et al. 1993). 

Effective infiltration results highly influenced by the land use being the lowest effective 

infiltration values located in correspondence of the urban areas (Fig. 5.17). 
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Figure 5.17 – Effective infiltration in the study area within the Province of Piacenza. 

 

The rainfall map for Piacenza was generated interpolating the 2008 mean annual rainfall values 

registered in 8 stations located within and outside the study area (Regione Emilia Romagna, 

2008). 

Isohyets show a decreasing trend in rainfall from SW to NW according with altitude changes in 

moving away from the Appenine toward the Po plain (Fig. 5.18). 

 

 

 

Figure 5.18 – Rainfall distribution in the study area within the Province of Piacenza. 

 

For Piacenza the land-use map, was obtained modifying the map, at scale 1:25000, prepared by 

the Region of Emilia-Romagna (2006). In particular, different land uses where reclassified as 

urban, cultivated, natural areas and wetlands. Almost the whole study area is occupied by 
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agricultural and subordinated urban areas, the biggest one located in correspondence of the 

municipality of Piacenza (Fig. 5.19). 

 

 

 

Figure 5.19 – Land use in the study area within the Province of Piacenza. 

 

 

5.2.8 Aquifer confinement 

 

Confinement represents a protection against contaminants leaching from the surface. 

This explanatory variable was considered only for Piacenza: the aquifer confinement map for 

Piacenza was generated considering the upper portion of the aquifer, identified as the Aquifer 

Complexes A1 and A2, in terms of being confined or unconfined (courtesy of Direzione Tecnica 

ARPA Emilia-Romagna).  

The aquifer results unconfined in the central part of the study area and confined in the western 

and eastern part of it (Fig. 5.20). 
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Figure 5.20 – Upper portion of the aquifer within the Province of Piacenza classified in terms of being 

confined or unconfined. 
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Chapter 6 

Using positive and negative evidences 

of contamination 

 

Since the early 1990s, following the rapid development of computer and Geographic Information 

System (GIS) technology, there has been a growing interest in applying GIS-based statistical 

techniques to model spatially-related issues (Raines and Bonham-Carter, 2007) in geosciences 

(Bonham-Carter, 1994) as in many other fields (e.g., Kulldorff et al., 1997; Duke and Steele, 

2010). Applications in geosciences have mainly focused on mineral exploration and resource 

appraisal (e.g., Agterberg et al., 1993; Raines and Mihalasky, 2002; Harris et al., 2003; Cheng, 

2004; Corsini et al., 2009), landslide susceptibility assessment (e.g., Carrara et al., 1991; Lee et 

al., 2003a; Lee et al. 2007, Dahal et al., 2008), and groundwater quality/vulnerability assessment 

(e.g., Rupert, 1998; Lee et al., 2003b; La Motte and Greene, 2007; Masetti et al., 2008). 

All statistical techniques used for predicting undiscovered resources and future landslides, and 

most of the techniques used to assess groundwater vulnerability use binary-response variables 

(representing either occurrences or non-occurrences of an event) as a function of one or more 

explanatory variables to depict the probability of being in a response category (usually expressed 

as the probability of the occurrence of an event). Thus, in terms of groundwater vulnerability 

assessment, the modeled response gives the probability of contamination and not the actual 

concentration of the contaminant being considered (Helsel and Hirsch, 1992). For this reason, 

statistical techniques that model binary-response variables are extremely well-suited for 

assessing groundwater vulnerability (Tesoriero et al., 1998), even when water-quality data sets 

contain several concentrations reported as being below the detection limit (e.g., Nolan et al., 

2002). In predicting undiscovered resources and especially future landslides it is relatively easy 

to distinguish between occurrences and non-occurrences. However, such distinction becomes 

less clear-cut when considering groundwater contamination, mostly because the concentration of 

a contaminant is a continuous variable that can potentially range from zero to an unknown value. 

Thus, there is a need to select an arbitrary threshold allowing distinguishing between positive 

and negative evidences of contamination indicating, respectively, where groundwater has to be 

considered impacted and non-impacted by a given contaminant. When using statistical methods 
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estimating the conditional probability of occurrence of an event, such as the Weights of Evidence 

(e.g., Arthur et al., 2007; Masetti et al., 2007) or the Likelihood Ratio Function (Masetti et al., 

2009), regardless of the selected threshold, only the water-quality data subset constituted by the 

positive evidences of contamination (henceforth just positive evidences) is considered for being 

used in the modeling process. Indeed, such methods model binary-response variables using only 

known occurrences. Negative evidences are then sometimes used solely in the validation process 

to test the capability of the model output to correctly predict known non-occurrences (model 

output specificity; i.e., Nolan 2002). One potential limit of this approach is that the entire data 

subset constituted by the negative evidences of contamination (henceforth just negative 

evidences) is completely neglected. 

In this Chapter, both subsets of evidences were used as TPs in the WofE model to assess 

groundwater vulnerability to nitrate contamination in the porous, unconfined, shallow aquifer 

located in the Province of Milan (which hydrogeological characteristics and nitrate distribution 

are described in Chapter 4, Paragraph 4.1 and Chapter 5, Paragraph 5.1, respectively). Positive 

and negative evidences were alternatively identified as occurrences and thus used as TPs in two 

different models in order to generate two different probability outputs (with both models and 

outputs hereafter referred to as positive and negative depending on the type of evidences 

identified as occurrences) expected to be quasi-complementary in terms of the probability of 

occurrences and similar in terms of groundwater vulnerability. This was done to better 

understand the individual and the combined role of the considered explanatory variables in 

protecting/exposing shallow groundwater from/to nitrate contamination in the study area and to 

further test the robustness of the WofE modeling technique. The idea behind this approach is 

that, for a given aquifer, each explanatory variable must have a univocal effect on the physical 

process of groundwater contamination. Indeed, according to Goldscheider (2005), “the terms 

vulnerability to contamination and natural protection against contamination can be used 

alternatively, where high vulnerability means low natural protection”. Thus, if a continuous 

explanatory variable shows a direct relationship with the presence of positive evidences, the 

same variable is expected to show an inverse relationship with the presence of negative 

evidences. Additionally, if a class of a categorical explanatory variable shows a positive 

correlation with the presence of positive evidences, the same class is expected to show a negative 

correlation with the presence of negative evidences. 
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6.1 Training points and evidential themes 

 

The water-quality data set collected in 2001 (described in Chapter 5, Paragraph 5.1) is the one 

used in the study presented in this Chapter. Because the frequency histogram of nitrate 

concentrations showed a non-normal (slightly right-skewed) distribution (Table 6.1), the median 

of 19.5 mg/l was identified as the most appropriate value to be used as threshold. 

 

Nitrate concentration 
Survey Year No. of wells 

Min Max Mean Median Std. Dev. 
Skewness 

2 2001 323 0.8 63.0 22.5 19.5 15.1 0.43 

 

Table 6.1 – Basic descriptive statistics of water-quality dataset collected in 2001. 

 

Thus, wells from which samples showed a nitrate concentration higher than or equal to the 

threshold value were identified as impacted wells (positive evidences) and used as TPs (162 

positive TPs) in the positive model, whereas wells from which samples showed a nitrate 

concentration lower than the threshold value were identified as non-impacted wells (negative 

evidences) and used as TPs (161 negative TPs) in the negative model (Fig. 6.1). 

 

 

 

Figure 6.1 – Locations of the wells in the 2001 monitoring network: nitrate concentration in samples from 

impacted and non-impacted wells is, respectively, greater than or equal to and lower than 19.5 mg/l. 

 

From the hydrogeological conceptual model, seven explanatory variables (described in Chapter 

5, Paragraph 5.2), already proved to control nitrate contamination of shallow groundwater in the 
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study area (Masetti et al., 2007), were considered for being used as evidential themes in the 

analysis (Table 6.2). 

 

Explanatory variable Type Minimum Maximum 

Population density [persons/km
2
]
a
 Continuous 43 8027 

Nitrogen load [kg/ha per year]
a
 Continuous 0 289 

Soil protective capacity Categorical - - 

Groundwater depth [m] Continuous 0 70 

Unsaturated hydraulic conductivity [m/s] Continuous 3.21E-10 8.40E-02 

Groundwater velocity [m/s] Continuous 8.79E-09 2.10E-05 

Effective infiltration [mm/year] Continuous 178 1866 
a
 computed at municipality level 

 

Table 6.2 – Explanatory variables considered for being used in the analysis. 

 

 

6.1.1 Generalization of the evidential themes 

 

To facilitate unbiased comparisons between positive and negative model outputs, an objective 

(semi-guided) procedure for multiclass generalization was developed as part of the study 

presented in this Chapter. Because the contrast represents the measure of the class usefulness in 

predicting the location of the TPs (Raines, 1999; Chapter 3, Paragraph 3.2), for each continuous 

explanatory variable statistically significant high contrasts were used to identify breaking points 

(i.e., explanatory variable values) delineating classes having a strong spatial association with the 

TPs. 

The steps in identifying breaking points and generalizing all ordered evidential themes, 

alternatively using positive or negative evidence as TPs, were as follows: 

 

1 using either the cumulative ascending or descending method (Raines, 1999), contrasts and 

confidence values were calculated for all cumulative classes (Table 6.3); 

2 statistically significant contrasts representing relative peaks in the “Contrast-Cumulative 

class” graph (e.g., black dots in Fig. 6.2) were identified, and the corresponding values 

(breaking points) were used to generalize the evidential theme being considered (e.g., 

unsaturated hydraulic conductivity values of 1136 and 1143 [-100×ln(m/s)] in Table 6.3); 

3 using the categorical method (Raines, 1999), contrasts and confidence values were calculated 

for all classes identified in step 2 (Table 6.4); 



58 

 

Chapter 6: Using positive and negative evidences of contamination 

4 to reduce the initial amount of statistically non-significant classes, contiguous classes  with 

confidence values below the chosen statistical level of significance were merged together 

(e.g., from class 3 to class 22, from 24 to 28, and from 31 to 40 in Table 6.4); 

5 using the categorical method again, contrasts, and confidence values were calculated for all 

classes that were obtained in step 4 (Table 6.5); 

6 classes with confidence values that still below the chosen statistical level of significance 

were merged either: 

 

6.1 with the contiguous significant class that had the same contrast sign, if only one 

significant contiguous class had the same contrast sign as the class being merged (e.g., 

class 3 with class 2, and 8 with 9 in Table 6.5); 

6.2 or with the contiguous significant class that kept the lower contrast as high as possible 

in terms of absolute value (in an effort to delineate spatial associations between classes 

and TPs as strongly as possible), if the contrasts of both of the contiguous significant 

classes had the opposite or the same sign as the class being merged (e.g., class 5 with 

class 4 in Table 6.5); 

 

7 steps 5 and 6 were repeated until all obtained classes became statistically significant. 

 

 

 

Figure 6.2 – Cumulative ascending unsaturated hydraulic conductivity values plotted against contrasts 

calculated using positive training points: black dots represent the breaking values used to generalize the 

unsaturated hydraulic conductivity evidential theme. 
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Cumulative class Contrast Confidence First step generalized class 

210 0 0 1 

… … … … 

1128 -0.279 -1.764 

1129 -0.283 -1.788 

1130 -0.287 -1.813 

1131 -0.291 -1.837 

… … … 

1134 -0.303 -1.913 

1135 -0.307 -1.935 

1136 -0.311 -1.961 

25 

1137 -0.289 -1.824 

1138 -0.268 -1.687 

… … … 

1142 -0.284 -1.788 

1143 -0.288 -1.814 

26 

... ... ... ... 

2186 -8.486 -0.6 41 

 

Table 6.3 – Selected “cumulative classes” of the unsaturated hydraulic conductivity evidential theme (1
st
 

column), their corresponding contrasts and confidence values  calculated using positive training points 

(2
nd

 and 3
rd

 column, respectively), and selected “first step generalized classes” delineated by the breaking 

points identified in Figure 6.3 (4
th
 column). 

 

First step generalized class Contrast Confidence Second step generalized class 

1 1.878 1.871 1 

2 -0.323 -1.801 2 

3 -1.162 -1.159 

... ... ... 

22 -0.454 -0.452 

3 

23 1.273 1.788 4 

24 -0.892 -0.889 

25 -0.278 -0.277 

26 0.655 0.920 

27 0.490 0.689 

28 0.141 0.198 

5 

29 0.614 3.607 6 

30 2.120 2.976 7 

31 1.462 1.457 

... ... ... 

40 0.087 0.087 

8 

41 -1.648 -2.316 9 

 

Table 6.4 – Selected “first step generalized classes” defined in Table 6.3 (1
st
 column), their corresponding 

contrasts and confidence values calculated using positive training points (2
nd

 and 3
rd

 column, 
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respectively), and all “second step generalized classes” obtained by merging together the contiguous 

non-statistically significant “first step generalized classes” (4
th
 column). 

 

Second step generalized class Contrast Confidence Third step generalized class 

1 1.878 1.871 1 

2 -0.323 -1.801 

3 -0.056 -0.315 
2 

4 1.273 1.788 

5 0.033 0.091 
3 

6 0.614 3.607 4 

7 2.120 2.976 5 

8 -0.203 -0.650 

9 -1.648 -2.316 
6 

 

Table 6.5 – All “second step generalized classes” defined in Table 6.4 (1
st
 column), their corresponding 

contrasts and confidence values calculated using positive training points (2
nd

 and 3
rd

 column, 

respectively), and all “third step generalized classes” obtained by merging each non-statistically 

significant “second step generalized class” with a contiguous, statistically significant one (4
th
 column). 

 

A confidence value of |1.654|, corresponding approximately to a 95% level of significance, was 

chosen as the minimum acceptable value to consider a class as statistically significant. 

The above described procedure was designed to obtain (through an objective method) the 

maximum number of statistically significant classes for each ordered evidential theme, both 

when using positive and negative TPs in the analysis. Here, it is important to note that the above 

procedure lead to obtain different multiclass generalizations of the same evidential theme, 

regarding both/either the number of identified classes and/or their range of values, when 

alternatively using positive or negative TPs in the analysis. However, using either the equal-

interval or natural-breaks classification method to generalize the evidential themes would have 

not guaranteed that all identified classes were statistically significant (due to the diverse spatial 

distribution of the positive and negative evidences). On the other hand, a knowledge-driven 

generalization would introduce a degree of subjectivity that could ultimately affect the 

comparison between positive and negative model outputs. 
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6.2 Results and discussion 

6.2.1 Contrasts 

 

The individual role of each explanatory variable in influencing groundwater contamination in the 

study area was examined by considering, for each evidential theme, the contrasts of each 

statistically significant class identified alternatively using positive or negative TPs. 

All classes of the evidential theme representing the soil protective capacity were found to be 

statistically non-significant, when correlated with the presence of both positive and negative 

evidences. 

The statistically significant classes of the evidential themes representing the population density 

and the groundwater depth showed a general direct relationship with the presence of positive 

evidences (histogram A in Fig. 6.3) and a general inverse relationship with the presence of 

negative evidences (histogram B in Fig. 6.3). This result indicates that the probability of nitrate 

contamination generally increases with increasing of population density and groundwater depth 

values. 

 

 

 

Figure 6.3 – Contrasts of each statistically significant class of the generalized evidential themes 

representing population density, groundwater velocity and effective infiltration: histograms A, C, and E (on 

A B 

C D 

E F 
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the left) represent contrasts calculated using positive TPs; histograms B, D and F (on the right) represent 

contrasts calculated using negative TPs. 

 

On the contrary, the statistically significant classes of the evidential themes representing the 

unsaturated hydraulic conductivity, groundwater velocity, and the nitrate loading showed a 

general direct relationship with the presence of negative evidence (histogram C in Fig. 6.3) and a 

general inverse relationship with the presence of positive evidences (histogram D in Fig. 6.3). 

This result indicates that the probability of nitrate contamination generally increases with 

increasing of unsaturated hydraulic conductivity and groundwater velocity, and decreasing of 

nitrogen loading values (indeed, to avoid dealing with very large decimal values, the evidential 

themes representing the unsaturated hydraulic conductivity and the groundwater velocity are 

expressed as the natural logarithm of the actual values of the variables to be represented 

multiplied by minus 100). 

The statistically significant classes of the evidential themes representing the effective infiltration 

showed a general direct relationship with the presence of both positive and negative evidences 

(histograms E and F, respectively, in Fig. 6.3). This result indicates, incongruously, that the 

probability of nitrate contamination seems to increase with both increasing and decreasing of 

effective infiltration values. 

The unexpected behavior of the explanatory variable representing the effective infiltration could 

be due to the presence of a bias affecting the results both when using the positive and the 

negative TPs in the analysis. In this case, the bias with respect to the effective infiltration 

evidential theme could be related to a single variable used to generate it (namely irrigation, 

rainfall, and land use) or it could have been introduced when combining them. 

Due to its non-univocal relationship with the presence of positive and negative evidences, the 

effective infiltration evidential theme (hereafter referred as a “puzzling” evidential theme) was 

first included and then excluded from both the positive and the negative model to test how its 

presence/absence would have affected the model outputs in terms of vulnerability assessment. 
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6.2.2 Response themes and reclassified groundwater vulnerability 

maps 

 

All generalized evidential themes with all of their classes that were found to be statistically 

significant were combined to evaluate their simultaneous influence on nitrate contamination of 

shallow groundwater in the study area. 

Thus, four response themes, in terms of predictive probability outputs, were generated (a 

negative and a positive response theme including the effective infiltration evidential theme in the 

analysis, and a negative and a positive response theme not including the effective infiltration 

evidential theme in the analysis). 

Typically, groundwater vulnerability maps represent a limited number of classes; subjective 

rating methods, such as GOD (Foster, 1987) and EPIK (Doerfliger and Zwahlen, 1995), 

individuate from four to five classes. Vulnerability scores, ranging from 23 to 226, obtained 

through the widely known DRASTIC method (Aller et al., 1987), are generally reclassified into 

fewer classes (Rupert, 2001; Hamza et al., 2007). Indeed, scientifically defensible aquifer 

vulnerability response themes, expressed as probability maps, require additional interpretation 

before being usable for most of the end-user purposes (Focazio et al., 2002). This need for 

additional interpretation is mainly due to the excessive number of classes, which is inappropriate 

for land-use regulations and/or prescriptive purposes. In fact, final maps obtained from statistical 

methods tend to be represented by a limited number of classes, rarely more than six (Tesoriero 

and Voss, 1997; Nolan et al., 2002). 

Furthermore, a vulnerability map depicting few classes of vulnerability is also a useful way to 

smooth uncertainty. Indeed, often the necessity to cover the whole study area with the evidential 

themes requires a pre-interpolation process to define the spatial distribution of the variables. 

Therefore, it does not appear reasonable to represent a map with as many classes as the number 

of probability values, given that the statistical significance of a single value can be very low. 

Thus, the response themes were reclassified to obtain four vulnerability maps consisting of five 

classes, each one reflecting a different degree of vulnerability increasing from class 1 to class 5 

(Fig. 6.4). 
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Figure 6.4 – Positive and negative model outputs as vulnerability maps in which the degree of 

vulnerability increases from class 1 to 5: maps A and B (on the left) were obtained by including the 

effective infiltration evidential theme in the positive and negative model, respectively; maps C and D (on 

the right) were obtained by not including the effective infiltration in the positive and negative model, 

respectively. 

 

All response themes were reclassified using the Geometrical Interval Classification method 

(ESRI, 2007) which ensures that each class contains approximately the same number of different 

post probability values. This reclassification method was preferred to the equal area method, 

proposed by other authors, considering a practical aspect to be faced when dealing with 

vulnerability or hazard in general. In a five-class reclassification procedure, for example, the 

identification of the most vulnerable area does not imply that it must cover 20% of the area. 

Zones with high probability values could easily be concentrated on a smaller amount of surface. 

Consequently there is no need to artificially extend the surface to occupy the 20% of the total 

A 

B 

C 

D 
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area, considering the practical consequences it would have in terms of environmental planning 

and management. The same would be true if the most vulnerable area is actually larger than the 

20%. The geometrical interval allows the identification of classes as a function of the actual 

values and ranges of probability obtained in the response theme and can be considered 

equivalent to the equal interval method if the probability values are transformed using the dense 

ranking method (Fig. 6.5). 

 

 

 

Figure 6.5 – Comparison between outputs obtained using different Reclassification method on the same 

input. 

 

To this regard, it is important to note that the probability values represent the probability of 

contamination and the probability of non-contamination in the positive and the negative response 

themes, respectively. Thus, even if the degree of vulnerability increases from class 1 to 5 in all 
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vulnerability maps, the probability values increase from class 1 to 5 in the positive maps while 

they increase from class 5 to 1 in the negative ones. 

The effect of including the effective infiltration evidential theme in the analysis was evaluated by 

considering the spatial agreement between the positive and negative reclassified vulnerability 

maps, both of which were alternatively obtained by including or not including the effective 

infiltration in the analysis and by validating separately each reclassified vulnerability map. 

 

 

6.2.3 Spatial agreement 

 

At first, the spatial agreement between positive and negative maps was evaluated through a 

simple pixel-by-pixel comparison. The results, expressed as the percentage of  pixels being in the 

same vulnerability class in both compared maps, showed that there was a lower agreement 

between the maps obtained including the effective infiltration evidential theme in the analysis (A 

and B in Fig. 6.4) than between the maps obtained not including it (C and D in Fig. 6.4). Indeed, 

in the first case, the percentage of pixels being in the same vulnerability class in both maps is 

approximately 14% while, in the second case, this percentage increased to approximately 36% 

(Table 6.6). 

 

Including the effective 
infiltration 

Not including the effective 
infiltration 

Vulnerability increasing/decreasing 
factor (n) 

No. of pixels % of pixels No. of pixels % of pixels 

3 47031 6.05 - - 

2 224847 28.92 49945 6.42 

1 208855 26.86 287188 36.94 

0 105433 13.56 280260 36.05 

-1 80864 10.4 140926 18.13 

-2 96807 12.45 18585 2.39 

-3 13391 1.72 551 0.07 

-4 227 0.03 - - 

 

Table 6.6 – Number and percentage of pixels in the negative vulnerability maps B (2
nd

 and 3
rd

 column, 

respectively) and D (4
th
 and 5

th
 column, respectively) in Figure 6.4, that are in the same vulnerability class 

(n=0), in an n-degrees higher (n>0) and in an n-degrees lower (n<0) vulnerability class when compared, 

respectively, with positive maps A and C in Figure 6.4. 

 

Furthermore, in terms of a more general comparison, it is important to note that, when the 

effective infiltration evidential theme was included in the analysis, the percentage of pixels that 
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were in the same or in a 1-degree higher or lower vulnerability class in both maps was 

approximately 50%. This percentage increased to approximately 91% when the effective 

infiltration evidential theme was not included in the analysis (Table 6.6). 

The degree of inter-class agreement was subsequently evaluated through the Cohen's Kappa 

coefficient, κ, which represents a more robust measurement of spatial agreement, than the simple 

percent calculation previously illustrated, due to the fact that it takes into account the agreement 

occurring by chance (Cohen, 1960). 

The Cohen's Kappa coefficient can be calculated as: 

 

)(1

)()(
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ePaP

−

−
=κ            (6.1) 

 

where P(a) is the relative observed agreement between two raters (i.e., reclassified vulnerability 

maps) and P(e) is the probability that the agreement is due to pure chance. 

Kappa statistics expresses the degree of agreement between different classified maps and not the 

agreement between a map and the measured or observed data. Indeed, Cohen's Kappa measures 

the agreement between two raters, each one classifying N items into v mutually exclusive 

classes. The procedure for calculating the Kappa statistic is based on the creation of a confusion 

matrix of the class frequencies of two maps. 

Thus, if two maps are in complete agreement then κ = 1 while if there is no agreement (other 

than that that would be expected by chance) then κ ≤ 0. 

Because the calculation of κ is not symmetric, as P(a) in Equation (6.1) may change due to 

differences in the relative area of each class in the two compared maps, κ values ware calculated 

using the ratio of agreement of the positive over the negative maps and vice versa, both for the 

positive and negative maps obtained including the effective infiltration evidential theme in the 

analysis and for the positive and negative maps obtained without including it (Fig. 6.6). 
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Figure 6.6 – Degree of inter-class agreement between vulnerability maps A and B in Figure 6.4, both 

obtained including the effective infiltration evidential theme in the analysis (leftmost and second 

histogram), and between vulnerability maps C and D in Figure 6.4, both obtained not including the 

effective infiltration evidential theme in the analysis (third and rightmost histogram): in both cases, the 

Cohen's kappa coefficient was computed both by considering the negative vulnerability map with respect 

to the positive one (leftmost and third histogram) and vice versa (second and rightmost histogram). 

 

Again, the results showed that there is a lower agreement between the maps obtained including 

the effective infiltration evidential theme in the analysis (maps A and B in Fig. 6.4) than between 

the maps obtained not including it (maps C and D in Fig. 6.4). Indeed, in the first case, κ values 

were generally very low for all classes and even negative for classes 2, 3, and 4 (histograms on 

the left in Fig. 6.6), which indicates spatial disagreement between these classes. In contrast, in 

the second case, κ values were always positive and relatively high, especially for vulnerability 

classes 1, 2, and 5 (histograms on the right in Fig. 6.6). 

 

 

6.2.4 Validation 

 

The predictive power of each vulnerability map was evaluated by computing the density of 

known non-occurrences in each vulnerability class, meaning that negative evidences were used 

with the positive maps while positive evidences were used with the negative maps. 
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Because the study area was divided into pixels having all the same size (50 meters of resolution), 

the density of known non-occurrences, D, can be expressed as: 

 

}{/}{ vv TNEND =           (6.2) 

 

where N{Ev} is the number of pixels containing known non-occurrences within the vulnerability 

class v and N{Tv} is the total number of pixels within the same vulnerability class v. 

The density of positive and negative evidences is expected to monotonically increase and 

monotonically decrease from vulnerability class 1 to 5, respectively. Furthermore, the density 

value of both positive and negative evidences in the medium-vulnerability class (class 3 in Fig. 

6.4) is expected to be as close as possible to the prior probability value. 

Both maps obtained including the effective infiltration evidential theme in the analysis (maps A 

and B in Fig. 6.4) performed very poorly (histograms A and B in Fig. 6.7), whereas both maps 

obtained not including it (maps C and D in Fig. 6.4) performed fairly well in terms of predicting 

the location of known non-occurrences (histograms C and D in Fig. 6.7). 

 

 

 

Figure 6.7 – Density of known non-occurrences within each vulnerability class (the degree of vulnerability 

increases from class 1 to 5); histograms A, B, C and D refer, respectively, to maps A, B, C and D in 

Figure 6.4. 

A 

B 

C 
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The performance of each map was also evaluated considering the average nitrate concentration 

of all samples collected in the wells located within each vulnerability class (Chowdury, 2003). 

The average nitrate concentration, Cavg, referring to each vulnerability class can be expressed as: 
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=          (6.3) 

 

where Civ is the nitrate concentration of a sample i collected within the vulnerability class v and 

N{Sv} is the total number of samples collected within the same vulnerability class v. 

The average nitrate concentrations were calculated using all collected samples (with nitrate 

concentration either above or below the selected threshold). 

However, these data can be used without falling into an internal validation. In fact, the statistical 

procedure applied to produce the positive and negative vulnerability maps only used information 

concerning the location of the impacted or non impacted wells respectively, that is, where wells 

had concentrations higher, or lower, than the threshold value. No additional information on the 

actual value of concentration was used to produce the final maps, although this is the variable on 

which this validation procedure is based. 

The advantage of using all data is that a quasi equal number of non-impacted and impacted wells 

does not unbalance the mean concentration value toward low values. 

The average nitrate concentration is expected to monotonically increase from vulnerability class 

1 to 5. Furthermore, because all of the samples were used to calculate the average concentration, 

in the medium-vulnerability class (class 3 in Fig. 6.4), it is expected to be as close as possible to 

the selected threshold value of 19.5 mg/l. 

The positive map obtained including the effective infiltration evidential theme in the analysis 

(map A in Fig. 6.4) and both maps obtained not including it (maps C and D in Fig. 6.4) 

performed fairly well (histograms A, C, and D in Fig. 6.8). In this case, only the negative map 

obtained including the effective infiltration evidential theme in the analysis (map B in Fig. 6.4) 

performed poorly, showing neither a general monotonic trend nor an average concentration in 

the medium-vulnerability class fairly close to the selected threshold value (histogram B in Fig. 

6.8). 
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Figure 6.9 – Average nitrate concentration of samples collected in the wells located within each 

vulnerability class (the degree of vulnerability increases from class 1 to 5); histograms A, B, C and D 

refer, respectively, to maps A, B, C and D in Figure 6.4. 

 

 

6.3 Conclusions 

 

In the study presented in this Chapter, both positive and negative evidences were alternatively 

identified as TPs. All ordered evidential themes considered for being included in the analysis 

showed opposite relationships with the presence of positive and negative evidences, with the 

exception of the effective infiltration evidential theme. Hence, even if an evidential theme 

appears to be a good and statistically significant predictor of occurrences, it can yield a non-

univocal relationship with the presence of positive and negative evidences. Thus, in the study 

presented in this Chapter, the effective infiltration evidential theme can be defined as a 

“puzzling” evidential theme characterized by a contradictious relationship with the presence of 

positive and negative TPs.  This result may be caused by the presence of a bias, between the 

location of the TPs and the evidential theme, that could be subtle and thus difficult to identify 

A 

B 

C 
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(Coolbaugh et al., 2007), particularly when an evidential theme is generated combining diverse 

explanatory variables (i.e., effective infiltration evidential theme in this Chapter). Regardless of 

the reason for the non-univocal relationship, its present should suggest to not include the 

“puzzling” evidential theme in the analysis. Using both positive and negative evidences as TPs 

allowed to determine the presence of a “puzzling” evidential theme and to make comparisons 

between maps that had to be similar in terms of vulnerability, highlighting whether they 

presented a significant disagreement in terms of their vulnerability pattern. 

The drawbacks caused by including “puzzling” evidential themes in the analysis are shown by 

results of the pixel-by-pixel analysis and by the global Kappa value. Indeed, the global Kappa 

value was approximately 0.16 when considering the maps obtained not including the effective 

infiltration evidential theme in the analysis and approximately -0.09 when considering the maps 

obtained including it. 

Furthermore, the validation of all maps considering the density of known non-occurrences 

showed that both positive and negative maps performed well in terms of prediction only when 

the “puzzling” evidential theme was not included in the analysis. 

Thus, when the evidential themes to be used are appropriately selected through a deep analysis 

of their impact on the results, WofE proved to be a reliable modeling technique for assessing 

groundwater vulnerability. The results obtained and the validation tests indicated excellent 

performance of the WofE in identifying different vulnerability classes, when the final map was 

produced either using positive or negative evidences as TPs. Furthermore, following the 

principle upon which each explanatory variable must have a univocal effect on the physical 

process of groundwater contamination, the robustness of the WofE was confirmed by the good 

spatial agreement between the two final maps obtained not including the “puzzling” evidential 

theme in the analysis. Indeed, the two final vulnerability maps obtained not including the 

“puzzling” evidential theme in the analysis are nearly identical, being more than 90% of the 

study area classified within the same degree or within a difference of one degree of vulnerability 

in both maps. 

The approach presented in this Chapter was demonstrated to be extremely powerful for 

appropriately selecting the explanatory variables to be used in the analysis and for testing the 

robustness of the modeling technique employed. It can be easily applied to other statistical 

techniques, such as the likelihood ratio function, that model binary-response variables using only 

one type of evidences (occurrences or non-occurrences). 
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Chapter 7 

Reliability of vulnerability maps obtained 

using statistical methods 

 

Hazard maps determined through statistical methods are extremely useful tools to support 

decisions necessary for environmental planning and management. The final results of these 

studies are represented by maps of the study area identifying zones with different degree of 

susceptibility to hazardous events. Various methods, such as logistic regression (Tesoriero and 

Voss, 1997, Nolan et al., 2002, Gardner and Vogel, 2005), discriminant analysis (Carrara, 1983), 

likelihood ratio functions (Chung, 2006) and Weights of Evidence (van Westen et al,. 2003, 

Neuhäuser and Terhorst, 2007, Poli and Sterlacchini, 2007, Masetti et al., 2008) have been used 

either as a single approach to a specific study area or for comparison (Harris et al., 2003; 

Antonakos and Lambrakis, 2007). One of the key features in all these studies is the validation of 

the model outputs (Brenning, 2005). Validation is usually performed through the application of 

several techniques to analyze the quality and reliability of the final results and to evaluate the 

model that has the best performance. These techniques are crucial to evaluating the quality of the 

results and as reported by Fabbri and Chung (2008), the current emphasis in the field should be 

on the development and application of reliable and robust procedures rather than in new 

methods. 

Although many validation techniques can be used (Fabbri and Chung, 2008), little attention has 

been paid to the comparison of results obtained using the same technique, especially in terms of 

the spatial agreement of predicted hazard patterns (Sterlacchini et al., 2011). Final maps from 

different combinations of predictors can lead to maps with very different spatial distributions 

vulnerability but having a quality that is apparently similar (Fabbri et al., 2003). This concept is 

extremely important because it may happen that two or more maps with similar predictive power 

show poor agreement in terms of the predicted spatial patterns. This discrepancy generates 

numerous problems when disseminating the final results to the users including how to use maps 

to develop efficient land use policies. 

Groundwater vulnerability assessment requires a particular approach to evaluating the quality of 

the final results. In landslide hazard assessment, validation procedures can be rightfully 
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concentrated on the ability of the method to correctly identify classes with the highest hazard 

values, with less interest on the classes with low values. However the situation is different in 

groundwater vulnerability assessment, which is not a property that can be directly measured or 

surveyed in the field (Gogu and Dassargues, 2000). Every aquifer can be considered vulnerable, 

even if some areas are more vulnerable to groundwater contamination than others (Vrba and 

Zaporozec, 1994). Therefore, the reliability of a model that allows vulnerability assessment 

should be evaluated for the entire study area and not only on its ability to correctly identify the 

most vulnerable zones. 

The study presented in this Chapter focus on two main aspects such the application of a series of 

validation techniques to evaluate the best groundwater vulnerability map in terms of representing 

the nitrate distribution in the study area and the spatial agreement among maps showing similar 

performances but different spatial predicted patterns. This was done in order to demonstrate that 

a rigorous validation procedure is fundamental to identify the map best representing the actual 

distribution of the nitrate contamination in the study area and thus the most suitable one to be 

used for environmental planning and management. 

Because statistical modeling techniques are widely recognized as providing scientifically 

defensible outputs (Focazio et al., 2002), with WofE among them (Arthur et al., 2007), their 

meaningfulness and reliability have been the key aspects considered in the process of final 

product selection. 

 

 

7.1 Training points and evidential themes 

 

In this Chapter, the WofE model was used to assess groundwater vulnerability to nitrate 

contamination in the porous, unconfined, shallow aquifer located in the Province of Milan 

(which hydrogeological characteristics and nitrate distribution are described in Chapter 4, 

Paragraph 4.1 and Chapter 5, Paragraph 5.1, respectively). 

The water-quality data set from the 2001 survey (described in Chapter 5, Paragraph 5.1) is the 

data set that was used in the study presented in this Chapter. 

Because the frequency histograms of nitrate concentration in the study area revealed a light 

right-skewed (non-normal) distribution (Fig. 7.1), the median of 19.5 mg/l was identified as the 

best measure of its central tendency and thus selected to be used as the threshold. 
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Figure 7.1 – Frequency histograms of nitrate concentration of water-quality dataset collected in 2001. 

 

Wells showing concentrations higher than the median value were considered as impacted wells 

(162) and those below as non-impacted wells (161) (Fig. 7.2). 

 

 

 

Figure 7.2 – Locations of the wells in the 2001 monitoring network: nitrate concentration in samples from 

impacted and non-impacted wells is, respectively, greater than or equal to and lower than 19.5 mg/l. 

 

Impacted wells were divided into two mutually exclusive subsets (each one containing 81 wells) 

through a spatially random selection performed by the Hawth's Analysis Tools for ArcGIS 

(Beyer, 2004). One subset (training subset) was used to calibrate the response themes obtained 

through the WofE modelling technique, the other one (predictive subset) to evaluate the 

predictive power of the response themes (Chung and Fabbri, 1999). 
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From the hydrogeological conceptual model, five explanatory variables (described in Chapter 5, 

Paragraph 5.2), already proved to control nitrate contamination of shallow groundwater in the 

study area (see Chapter 6), were included in the analysis and thus used as evidential themes 

(Table 7.1). 

 

Explanatory variable Type Minimum Maximum Alias 

Population density [persons/km
2
]
a
 Continuous 43 8027 pop 

Nitrogen fertilizer loading [kg/ha per year]
a
 Continuous 0 289 nfl 

Groundwater depth [m] Continuous 0 70 gwd 

Unsaturated hydraulic conductivity [m/s] Continuous 3.21E-10 8.40E-02 uhc 

Groundwater velocity [m/s] Continuous 8.79E-09 2.10E-05 gwv 
a
 computed at municipality level 

 

Table 7.1 – Explanatory variables used as evidential themes. 

 

 

7.2 Response themes 

 

Six groundwater vulnerability response themes, showing different spatial vulnerability patterns 

in terms of post probability, were generated using six different combinations of evidential 

themes (Table 7.2). 

 

Combination of explanatory variables Model output name 

gwd, gwv, nfl, pop, uhc A 

gwd, gwv, pop, uhc B 

gwd, gwv, nfl, uch C 

gwv, nfl, pop, uhc D 

gwd, nfl, pop, uhc E 

gwd, gwv, nfl, pop F 

 

Table 7.2 – Combination of explanatory variables used to generate response themes (variable alias are in 

Table 7.1). 

 

The general quality of each response theme, expressed as post probability output, was evaluated 

by the predictive rate curve (PRC) method (Chung and Fabbri, 1999). For each combination, 

PRC was performed by plotting on the X-axis the cumulative percentage of vulnerable areas 

(from the highest probability values to the lowest) and, on the Y-axis, the cumulative percentage 

of occurrences being in the predictive subset. The percent of events falling into each cumulative 
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post probability class gives the prediction rate, which is useful for supporting the result of each 

model and assessing their robustness. According, steeper is the curve, better is the capability of 

the model to adequately describe the groundwater vulnerability of the study area. 

PRCs are represented in Figure 7.3, which shows that all of the curves had a similar performance 

except for response theme D, which performed relatively worse in correspondence of the middle-

low post-probability values. 

 

 

 

Figure 7.3 – Predictive rate curves of the response themes in Table 7.2. 

 

The curves have a high degree of overlap crossing each other at many points, so that it becomes 

difficult to establish which has the best performance. It must be considered that the technique for 

determining the best model based on the percentage of cumulative occurrences in a specified 

percentage of cumulative area (Fabbri et al., 2003; van Westen et al., 2003) should not be used 

for groundwater vulnerability. Indeed, as already mentioned, the reliability of a model for 

vulnerability assessment should be evaluated over the entire study area and not only its ability to 

correctly identify the most vulnerable zones. Furthermore, this method could lead to an arbitrary 

selection of the best response theme, being the selection based on the specific percent of area 

considered for evaluating the predictive power. In other words, the model having the higher 

percentage of cumulative occurrences in a given percent of area could be a different one if a 

diverse percent of area is considered. While these curves are extremely useful in discriminating 

models of greatly varying quality, they are not always able to sort models that are not greatly 
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different; this is especially the case when a good performance is preferred for every range of post 

probability values. These limitations have important consequences on how to select the response 

theme, and so the groundwater vulnerability map to be proposed as the best one to be used for 

environmental planning and management. 

 

 

7.3 Results and discussion 

7.3.1 Spatial agreement 

 

The spatial variability among different groundwater vulnerability maps, obtained reclassifying 

the best performing response themes in (Fig. 7.3), was assessed to evaluate whether different 

model outputs, showing apparently similar quality, can be considered equivalent in terms of the 

spatial distribution of vulnerability classes. 

As already described in Chapter 6, Paragraph 6.2, response themes were reclassified using the 

Geometrical Interval Classification method (ESRI, 2007). 

Cohen's Kappa coefficient (Cohen, 1960) was then used in this case to compare maps with the 

same thematic classification which results are in Figure 7.4 the heatmap indicating the spatial 

agreement among the six reclassified maps. 

 

 

 

Figure 7.4 – Heatmap of reclassified vulnerability maps indicating their spatial agreement in terms of 

spatial distribution of their vulnerability classes: the colors from white to black indicate respectively the 

degrees of coincidence going from high to low. 
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The graph indicates that two pairs of maps, B with E and F with A, are in a very good mutual 

agreement although map B also shows a good agreement with the other pair of maps. Map D, 

already identified as the worst one by the PRCs (Fig. 7.3), shows a poor agreement with all other 

maps. Map C indicates a spatial agreement that is extremely variable, from good with E to poor 

with A and F, and very poor with D. 

 

 

7.3.2 Validation of the reclassified groundwater vulnerability maps 

 

Not considering map D, the analysis of spatial agreement indicates the need to provide a deeper 

insight into the validation procedure to give more quantitative evidence to adequately support the 

selection of the best performing map, or at least to help in reducing the indecision in choosing 

the best one. 

Thus, the reliability of each reclassified vulnerability map was evaluated by considering its 

global performance in classifying the occurrences (i.e., not only its performance considering a 

percentage of the most vulnerable area). Three statistical validation procedures were used to 

select, among the different models, the vulnerability map that better represents the actual nitrate 

distribution in the study area. 

The first procedure used to evaluate the global prediction performance of the reclassified maps, 

was the evaluation of the density of impacted wells in each vulnerability class, already described 

in Chapter 6, Paragraph 6.2. 

Histograms were derived using the group of impacted wells from the predictive subset. The 

density of impacted wells is expected to monotonically decrease according to the degree of 

vulnerability, being as close as possible to the prior probability value for the central vulnerability 

class. The performance of each map was evaluated by considering the density value for each 

class (density trend), the angular coefficient of the regression line, the regression coefficient and 

the density agreement with the prior probability value (Fig. 7.5). 
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Figure 7.5 – Histograms of the density of impacted wells in the vulnerability classes for each map (the 

degree of vulnerability increases from class 1 to class 5). 

 

The second validation technique adopted was the evaluation of the frequency of impacted wells, 

Fiw, expressed by the ratio: 

 

}{/}{ vcviw WNWNF =           (7.3) 

 

where N{Wcv} is the number of impacted wells in a vulnerability class v and N{Wv} is the total 

number of wells in the same vulnerability class v. This technique adds some important 

information to the validation process because it includes the use of all the wells having 

concentrations lower than the threshold value, which were not used to perform the simulations. 

The histograms were derived using all non-impacted wells and the group of impacted wells in 
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the predictive subset. Frequency is expected to increase monotonically as the degree of 

vulnerability increases (Fig. 7.6). 

 

 

 

Figure 7.6 – Histograms of the frequency of impacted wells in the vulnerability classes for each map (the 

degree of vulnerability increases from class 1 to class 5). 

 

The third and last technique was based on the evaluation of the average nitrate concentration of 

all wells, Ca, within each vulnerability class (Fig. 7.7), already describe in Chapter 6, Paragraph 

6.2. Due to the poor performances of maps A and D considering the results obtained applying the 

first two techniques, Ca was evaluated only for maps B, C, E, and F. 
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Figure 7.7 – Histograms of the average nitrate concentration in the vulnerability classes for maps B, C, E, 

and F (the degree of vulnerability increases from class 1 to class 5). 

 

As in Chapter 6 this analysis was performed using all wells stored in the database. 

Again, considering the results obtained applying the three techniques described above, the 

quality of each vulnerability map was evaluated considering the angular coefficient of the 

regression line and the regression coefficient. In all histograms, the degree of vulnerability 

increased from class 1 to class 5. A map should be considered reliable if it passes all three of the 

above mentioned procedures. 

 

 

7.3.3 Discussion 

 

The analysis of the density of the impacted wells (Fig. 7.5) confirms the relatively poor global 

performance of map D in identifying areas reflecting different vulnerability degrees; the density 

does not monotonically increase according to the degree of vulnerability. Map A expresses the 

same result, but its main drawbacks are in the identification of the highest vulnerability classes 

instead of the lowest. It should also be noted that the density value of class 4 is closer to the prior 

probability value than the density value of class 3. The global performances of the reclassified 

vulnerability maps B, C, E and F are excellent and are quite similar to each other. For all these 
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maps, the density values of the central class is the closest to the prior probability value, which 

suggests that the method used to reclassify the maps is quite good because it has accurately 

identified the average vulnerability class and has accurately distinguished higher from lower 

classes. 

According to the criteria adopted to evaluate density histograms, map B can be considered the 

one that performs best, closely followed by map F. Both maps show the best angular coefficient 

of the regression line and regression coefficient values. 

The histograms representing the frequency of impacted wells (Fig. 7.6), confirm the similar 

global performances of all maps. Once again, maps D and A do not show a monotonic increase 

with the increase of the degree of vulnerability, while the other four maps have nearly the same 

result. The evaluation of angular and regression coefficients still seems to highlight map B and F 

as the best. 

The histograms representing the average nitrate concentration (Fig. 7.7) clearly show that maps 

B and F represent the actual spatial distribution of nitrate contamination better than maps E and 

C. The average concentration for classes 1 and 2 in map E is quite the same, whereas it is the 

higher one for class 1 in map C. Map F gives the best angular and regression coefficients. It is 

worth mentioning that the average concentration of the central vulnerability class of the best 

maps is very close to the median concentration used as the threshold, 19.5 mg/l. This result 

confirms that the used reclassification technique is suitable for identifying different classes each 

one characterized by a different degree of vulnerability (i.e., very low, low, medium, high and 

very high). 

Among the best performing maps showed in Figure 7.8, the spatial variability assessment was 

quantitatively evaluated by performing a pixel-by-pixel analysis showing the difference, 

expressed as a percentage, in the unit cell classification for the selected maps. 
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Figure 7.8 – Vulnerability maps of simulation B and F (the degree of vulnerability increases from class 1 

to class 5). 

 

A comparison between maps B and F (Fig. 7.9) shows that, in terms of vulnerability degree, 63% 

of the area is classified with the same degree of vulnerability in both maps whereas 36.6% of it 

difference for one degree of vulnerability. Only 0.4% of the total area shows differences in the 

classification of two degrees of vulnerability. These results show that, even if B and F are not the 

most similar maps resulting from the Kappa analysis, their global spatial agreement is excellent 

and the areas of high uncertainty are highly limited. 

 

 

 

Figure 7.9 – Variation of vulnerability between map F and B, expressed as the study area vulnerability 

depicted in map F with respect to the one depicted in map B. 
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Because Kappa calculation is not symmetric (see Chapter 6, Paragraph 6.2), Figure 7.10 shows 

the Kappa values for both combinations of maps B and F. “B on F” and “F on B” means that the 

value of per class Kappa was calculated using the ratio of agreement of B over F and of F over B 

respectively. 

 

 

 

Figure 7.10 – Degree of agreement (Kappa) between vulnerability classes of maps B and F calculated 

considering map B with respect to map F (left) and vice versa (right). 

 

As shown in Figure 7.10, all classes seem to be in mutual agreement, but vulnerability class 1 

seems to have a high degree of concordance in map B over map F. This result could be due to the 

partial inclusion of class 2 into class 1, a hypothesis that is confirmed by the lower Kappa value 

for class 2 and the relatively low value of the Kappa of class 1 in the “F on B” comparison (the 

relative values of Kappa tend to have opposite trends in the two comparisons). 

It should also be noted that the two best performing models were obtained using only four of the 

five considered evidential themes. The three explanatory variables present in both the 

simulations are population density, groundwater depth and groundwater velocity. The hydraulic 

conductivity of the vadose zone and nitrogen fertilizer loading are present in simulations B and F 

respectively. Population density, groundwater depth and groundwater velocity therefore, seem to 

be the most important factors influencing groundwater quality in the area, and they represent 

respectively a source of nitrate, a feature of the vadose zone, and one of the saturated zone, 

ideally following the path of contamination from the topographical surface to its spreading in 
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groundwater. Moreover, the nitrate sources from urban areas are more prevalent to those that are 

due to breeding and agricultural activities. 

 

 

7.4 Conclusions 

 

Characterizing the vulnerability of shallow aquifers to nitrate contamination should help decision 

makers evaluate current land use practices and make recommendations for regulation changes 

and/or the introduction of new prescriptions to better prevent or decrease groundwater 

contamination. Using statistical techniques can greatly support this activity through the 

production of vulnerability maps obtained by statistical methods. Obtained groundwater 

vulnerability maps should then be used to facilitate land-use planners and other potential end-

users, such as environmental professionals and local governments, to minimize impacts on 

groundwater quality. 

However, to be effective tools, groundwater vulnerability maps must be scientifically defensible, 

meaningful and reliable. Little attention is generally paid to the evaluation of the spatial 

variability of different maps that have similar performances in identifying areas reflecting 

different degrees of vulnerability (spatial predictive patterns). 

In the study presented in this Chapter, different vulnerability maps were generated using the 

WofE modelling technique, with each map using different combinations of predictor factors. A 

spatial variability assessment between a pair of well performing maps showed that variability in 

vulnerability patterns is always present to some degree. It is important to determine which map 

(and, thus, which combination of explanatory variables) gives the most reliable results. Because 

a vulnerability map is meaningful and useful only if it represents the study area in a limited 

number of classes with different degrees of vulnerability, the spatial agreement of different 

reclassified maps was determined, and a series of validation procedures were applied to evaluate 

the reliability of the results. 

The comparison shows that map performance is not directly related to the number of input 

predictor factors used and that it is possible to identify, among apparently similar maps, the 

one(s) that best represent groundwater vulnerability in a specific area. 
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The proposed validation procedures also indicate that the adopted reclassification method seems 

to correctly reflect the spatial distribution of the vulnerability as depicted in the pre-reclassified 

probability maps. 

In conclusion, vulnerability maps represent essential tools to minimize impacts on groundwater 

quality only if they are reliable. Thus, vulnerability maps generated using statistical modeling 

techniques must be carefully handled before they are disseminated. 

Indeed, the results may appear to be excellent and the final maps perform well while the spatial 

distribution of vulnerability might be very different from the actual distribution. For this reason, 

it is necessary to carefully evaluate the obtained results using multiple statistical techniques 

capable of giving quantitative insight in the analysis of the results. This should be done to at least 

to reduce the number of potential choices. 
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Chapter 8 

Influence of thresholds in assessing 

groundwater vulnerability 

 

The use of statistical methods to assess groundwater vulnerability, especially due to non-point 

sources of contamination, has increased considerably during the last few years. As already 

mentioned in Chapter 6, the most used statistical techniques to assess groundwater vulnerability 

model binary-response variables, as a function of one or more explanatory variables, to depict 

the probability of being in a response category. Hence, the necessity to select a threshold, 

allowing distinguishing between occurrences and non-occurrences of an event (i.e., impacted and 

non-impacted wells, respectively), represents a key issue in their application. Even if the 

threshold can be ideally selected form the complete range of the measured contaminant 

concentration values, it should be considered that using different thresholds very different 

results, depending on the adopted value were obtained for the same area (Muller and Helsel, 

1997; Frans, 2000; Greene et al., 2004). 

The European Groundwater Directive 2006/118/CE established that threshold values, defining 

groundwater quality, will be important instruments to assess the status of groundwater bodies. 

Furthermore, the definition of threshold values indirectly point out where groundwater has to be 

considered contaminated and thus where remediation measures have to be implemented to 

improve its status. In this context, it is extremely important to analyze the impact of different 

threshold values on the level of environmental protection (Hinsby et al., 2008). 

In this Chapter, using three different threshold values, two different statistical methods were used 

to assess groundwater vulnerability to nitrate contamination in the unconfined, porous shallow 

aquifer located in the Province of Milan (which hydrogeological characteristics and groundwater 

nitrate distribution are described in Chapter 4, Paragraph 4.1, and Chapter 5, Paragraph 5.1, 

respectively) in order to compare the obtained reclassified maps, check their reliability and 

evaluate how the importance of each explanatory variable changes when using a different 

threshold. 

In fact, while many research papers focused mainly on evaluate the technique which give more 

reliable estimation of background and threshold values (see Panno et al., 2006; Reimann and 
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Garrett, 2005; Reimann et al., 2005; for an extended bibliography), less attention has been given 

to the effect, on environmental planning and management, that could derive from the use of 

different threshold values. 

 

 

8.1 Threshold analysis 

 

Presently, several studies reported the difficulty of determining the natural background value of a 

contaminant in a specific environmental matrix due to the strong human influence on the whole 

planet. Background nitrate concentration in groundwater is among the most difficult to determine 

because of its multiple natural and anthropogenic, especially non-point, sources. Therefore, 

many techniques, ranging from evaluation of large data sets, analysis of historical data, sampling 

in pristine areas or in areas relatively uninfluenced by human activities (see Panno et al., 2006 

for an extended bibliography), to statistical techniques (see Reimann and Garrett, 2005; 

Reinmann et al., 2005 for an extended bibliography), have been developed for determining 

significant background and threshold values. Although, all these techniques require making 

assumptions and present limitations, statistical techniques seem to be the most used in the 

scientific community due to the fact that allow performing rigorous analysis minimizing the 

subjective interpretation of the results. 

A statistical technique borrowed from geochemistry exploration (Sinclair, 1974; 1991) was used 

to determine threshold values on the base of the actual distribution of nitrate contamination in the 

study area. The use of cumulative probability plots allows identifying two or more populations 

within the dataset of nitrate concentration in groundwater (Panno et al., 2006). The populations 

identified in the plot represent the background value and one or more anomalies, and inflection 

points identified the threshold values. This is based on the fact that the values of a single 

normally or log-normally distributed population will form a straight line on the plot while two or 

more mixed populations will result in a curved line showing inflection points. Thus, the 

inflection points can be considered as the threshold values distinguishing different populations. 

The main limitations of this technique are that at least 100 values are needed and that as any 

other statistical procedure it is subject to random and systematic error (Sinclair, 1991). However 

it is important to highlight that the aim of this work is to evaluate the effects on the vulnerability 

assessment due to the use of different threshold values for distinguishing between occurrence 

and non-occurrences and not to analyze which technique would give more reliable results in 
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terms of identifying background and threshold values. In the study area, four populations can be 

distinguished in the cumulative probability graph (Fig. 8.1). 

 

 

 

Figure 8.1 – Probability graph and threshold values representing the background value and two 

anomalies in the study area. 

 

The identified threshold values were 2.2, 4.5 and 22.0 mg/l. According to Panno et al. (2006) 

these values can be roughly identified as “natural background”, “present day background” and 

“anthropogenic impact”. 

 

 

8.2 Statistical analysis and evidential themes 

 

Two different statistical methods were used in order to evaluate the effect on groundwater 

vulnerability assessment to nitrate contamination of using the three different threshold values 

identified in Figure 8.1. 
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• The Likelihood Ratio Function method (briefly described in the next section) was preliminary 

used to evaluate the effect on obtaining different vulnerability patterns in the reclassified 

maps. 

• The WofE method (described in Chapter 3, Paragraph 3.2) was then used to evaluate the effect 

on the importance of the explanatory variables in controlling the vulnerability. 

 

A different combination of explanatory variables, already proved to control nitrate contamination 

of shallow groundwater in the study area (Masetti et al., 2007), were used in the analysis with the 

LRF and the WofE method (Table 8.1). In particularly land use, rainfall and irrigation were not 

considered as inputs in the WofE method. 

 

Explanatory variable Type Min Max Alias 

Population density [persons/km
2
] 

a,b
 Continuous 43 8027 pop 

Nitrogen load [kg/ha per year]
a,b

 Continuous 0 289 nfl 

Soil protective capacity 
b
 Categorical - - spc 

Groundwater depth [m] 
b
 Continuous 0 70 gwd 

Unsaturated hydraulic conductivity [m/s]
 b
 Continuous 3.21E-10 8.40E-02 uhc 

Groundwater velocity [m/s]
 b
 Continuous 8.79E-09 2.10E-05 gwv 

Land use
 c
 Categorical - -  

Rainfall [mm/year]
 c
 Continuous 816 1249  

Irrigation [mm/year]
 c
 Continuous 0 1532  

a
 computed at municipality level; 

b 
used in both methods; 

c 
used only in the LRF method 

 

Table 8.1 – Explanatory variables considered for being used in the analysis. 

 

 

8.2.1  Likelihood Ratio Function 

 

Vulnerable areas can be identified by the LRF of the multivariate frequency distribution 

calculated for each considered explanatory variables. Each pixel with k pixel values (a1,..., ak), 

one for each explanatory variables in the study area, where the subarea T is represented by those 

pixels where nitrate concentration in a well is higher than the a given threshold, while the 

remaining non vulnerable area T  is represented by those pixels where no events are surveyed 

(i.e., measures of nitrate concentration are not available or below the selected threshold). LRF 

(Kshirsagar, 1972; Press, 1972; Cacoullos, 1973) is defined as: 

 



92 

 

Chapter 8: Influence of thresholds in assessing groundwater vulnerability 

}|,...,{

}|,...,{
),...,:(

1

1

1
Taaf

Taaf
aaa

h

h

h =λ         (8.1) 

 

where }|,...,{ 1 Taaf h  and }|,...,{ 1 Taaf h  represent the frequency distribution functions of the 

considered explanatory variables. Factors used were both categorical and continuous. Because 

the LRF is based on two multivariate distribution functions, there is the need neither to simplify 

the data nor to unify two data types into one data type. The multivariate generalization of the 

LRF is: 
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where the first h and the last m values represent categorical and continuous variables, 

respectively. Based on the assumption of the conditional independence among factors, the (h + 

m) = k dimensional multivariate frequency distribution function, the final LRF is simply a 

multiple of two LRF: 

 

),...,(),...,(),...,,,...,( 1111 mhmh bbaabbaa λλλ ∗=       (8.3) 

 

Thus, the LRF estimation is a multiplication of two estimated LRF, the first for categorical and 

the second for continuous variables, respectively. 

The two functions can be estimated by each single categorical and continuous variable in 

conjunction with the distribution of the occurrences (Chung, 2006). 

It is important to note that also in this case, as when using the WofE method, the vulnerability 

index calculated using the LRF has to be interpreted as a relative index and not as an absolute 

one, and thus it represents a sort of propensity of each pixel to be vulnerable. 

 

 

8.3 Results and discussion 

 

The threshold values identified in Figure 8.1 (2.2, 4.5 and 22 mg/l) were used to define three 

different subsets of occurrences (i.e., impacted wells) within the water-quality data set from 2000 
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and 2001 surveys (see Chapter 5, Paragraph 5.1) for being used as occurrences in the LRF and 

WofE method, respectively. However, being the number of occurrences in the subset identified 

using the value of 2.2 mg/l (315 for both years) very close to the one identified using the value of 

4.5 mg/l (294 and 286 for 2000 and 2001, respectively), the former subset was not used in the 

analysis. Rather, a new subset was defined considering a threshold value of 50 mg/l (16 and 12 

for 2000 and 2001, respectively), representing the quality standard of groundwater nitrate 

concentration as stated in the 2000/60/EC Directive (EU, 2000). Using the value of 22 mg/l 158 

and 147 occurrences were identified for 2000 and 2001, respectively. 

Each subset was then used as an independent dataset to assess the groundwater vulnerability of 

the study area and thus to obtain three different reclassified maps. Subsets obtained from the 

2000 water quality data were used as TPs in the LRF method while the ones obtained from the 

2001 water quality dataset were used as TPs in the WofE method. Each obtained map underlies 

the influence of the considered threshold, both regarding the spatial distribution of the 

vulnerability and the importance of each explanatory variable in controlling it. 

 

 

8.3.1 Influence of using different thresholds on predicted vulnerability 

patterns 

 

To better compare each other the vulnerability pattern predicted in each map, and thus the effect 

of the different threshold, the three probability outputs generated using the LRF method were 

reclassified to obtain groundwater vulnerability maps of ten vulnerability classes. Because the 

LRF allow using simultaneously categorical and continuous explanatory variables, the relative 

probability of contamination is calculated on a continuous scale at every pixel. In this case, in 

which each pixel should have a different value of post probability, the use of the Equal Area 

Classification method correspond to the use of the Geometrical Intervals Classification method, 

both allowing to obtain classes containing almost the same number of different post probability 

values. 

Thus, the total area was divided into a number of classes each one having a similar number of 

pixels so that each class represented a similar amount of area (corresponding to using the 

Geometrical Interval Classification method when the probability outputs are generated using the 

WofE). Indeed, in this way, the first class consists of the pixels with the highest values and the 

next subsequent class is made up of the same number of pixels with the next highest values 
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(Chung and Fabbri, 1999). Ten equal classes were created, each one representing about the 10% 

of the study area. Class 10 containing pixels with the highest propensity to be vulnerable; 

whereas, class 1 held the lowest propensity, thus with the degree of vulnerability increasing from 

class 1 to 10. 

Reclassified maps showing the relative vulnerability to nitrate contamination of the study area, 

named A-4.5, B-22 and C-50 according to the threshold used in the analysis, are presented in 

Figure 8.2. 

 

 

 

Figure 8.2 – Vulnerability maps, obtained using the LRF method, in which the degree of vulnerability 

increases from light grey to black: maps A-4.5, B-22 and C-50 were obtained using a threshold value of 

4.5, 22 and 50 mg/l, respectively. 

 

Even if some differences among the reclassified maps can be easily noticed, in all of them a 

general decrease in vulnerability from north to south can be highlighted, with the central area in 

the north as the most vulnerable to nitrate contamination in all maps. 

Results show that changing the number of TPs, according to the different thresholds, leads to a 

different spatial distribution of the vulnerability classes. Using a large number of TPs, identified 
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by the 4.5 mg/l threshold, in most cases the total area representing each single vulnerability class 

results in smaller and more articulate separated areas, if compared with the one representing the 

same vulnerability class obtained using fewer TPs. Indeed, using the number of TPs, identified 

by the 50 mg/l threshold, the final map tends to delineate contiguous macro areas for each 

vulnerability class. Moreover, the shape of these macro areas seems to be more sensitive to the 

spatial distribution of a single explanatory variable. For example, the shape of the less vulnerable 

area in the south-eastern sector results highly influenced by the spatial distribution of the mean 

annual irrigation. Indeed, its boundary follows the limit between an irrigated area and a non-

irrigated one. 

To perform a more detailed and quantitative comparative analysis among the three different 

reclassified maps the Cohen's kappa coefficient, κ, (Cohen, 1960) was used. Comparing map C-

50 and B-22 it is possible to note that most of the classes of a map are spatially coincident with 

another class of another map, although often not with the corresponding class (i.e. class 1 of map 

B-22 is more coincident with class 3 than with the class 1 of map C-50). 

Moreover, as shown in Figure 8.3, the behavior of map agreement tends to be split between 

higher vulnerability classes and lower ones.  By comparing A-4.5 and B-22, it is possible to 

distinguish two major spatial patterns: one common to classes ranking from 1 to 4 and another 

common to classes ranking from 5 to 10. Classes ranking from 1 to 4 are substantially 

interchangeable between the two maps, i.e. class 2 of B-22 is likely to spatially intersect class 1, 

2, 3 and 4 of A-4.5 with almost the same probability. 

In other words, in both maps the classes from 1 to 4 and the classes from 5 to 10 are correlated as 

they tend to occupy the same area in both maps. This means that the predicted vulnerability 

pattern of each map is different if ten vulnerability classes are considered but should become 

similar if only two vulnerability classes are considered and the probability value dividing class 4 

from class 5 is used to separate the two classes. 

 



96 

 

Chapter 8: Influence of thresholds in assessing groundwater vulnerability 

 

 

Figure 8.3 – Heatmaps of interclass reliability; heatmaps A B and C represent, respectively, the interclass 

reliability between maps B-22 and C-50, A-4.5 and B-22, and A-4.5 and C-50- in Figure 8.2. 

 

As already mentioned in Chapter 7, in prediction modeling, a very important and essential 

component is the validation of the prediction results. Thus, the next step was to validate each 

final map by a procedure taking into account the predictive power of the results. 

Being all water quality data sets collected between the 2000 and 2002 the expression of the 

same, almost unchanged nitrate-contamination pattern characterizing the shallow aquifer in the 

study area in that period (Table 8.2), in order to obtain a new data set to be used in the validation 

procedure the surveys 2 (2001), 3 (early 2002) and 4 (late 2002) were combined into one. This 

was done selecting only the wells not investigated in the survey 1 (2000). 
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Nitrate concentration 
Survey Year No. of wells 

Min Max Mean Median Std. Dev. 
Skewness 

1 2000 324 0.9 71.0 22.6 21.0 15.0 0.56 

2 2001 323 0.8 63.0 22.5 19.5 15.1 0.43 

3 Early 2002 307 1.0 70.0 22.4 20.0 15.3 0.36 

4 Late 2002 249 1.0 52.0 21.5 20.0 14.1 0.42 

 

Table 8.2 – Basic descriptive statistics of water-quality dataset collected in 2000, 2001, early 2002 and 

late 2002. 

 

The obtained dataset resulted in a total of 110 wells, having nitrate concentration values both 

above and below the considered thresholds. 

The average nitrate concentration of all samples collected in the wells located within each 

vulnerability class was calculated (as described in Chapter 6, Paragraph 6.2) to test the reliability 

of the three final vulnerability maps obtained using the LRF method. In this case another 

advantage of this procedure is that the same dataset is used in the validation of each map, 

regardless of the specific threshold value used to select the occurrences, avoiding comparing 

results that can be biased by the use of a different number of points in the validation. 

A quantitative comparison among all models was done considering the angular coefficient of the 

regression line and the regression coefficient, leading to a rank of the goodness of the results. 

Even if some differences can be easily pointed out, histograms show that all maps identify a 

general positive trend relating the average nitrate concentration in the wells and vulnerability 

classes they belong to. Validation procedure for the map A-4.5 (Fig. 8.2) gives the poorest 

performance as testified by both the lowest R
2
 and angular coefficient: this result is mainly due 

to the poor ability to correctly classify wells in vulnerability classes ranging from 4 to 8, while 

extreme classes (from 1 to 3 and 9 to 10) seems to be well interpreted (histogram A in Fig. 8.5). 

The performance of the other two maps is definitely better: map B-22 gives the highest angular 

coefficient (histogram B in Fig. 8.5) while map C-50 gives the highest R
2 

(histogram C in Fig. 

8.5). However, both models present some defects in wells classification; the former in the middle 

range classes while the latter in the extreme ones. 
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Figure 8.5 – Average nitrate concentration of samples collected in the wells located within each 

vulnerability class (the degree of vulnerability increases from class 1 to 10); histograms A, B and C refer, 

respectively, to maps A-4.5, B-22 and C-50 in Figure 8.2. 

1 2 3 4 5 6   7 8  9 10 

1 2    3    4      5  6      7 8      9 10 

1 2 3 4  5 6  7 8     9 10 
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B 
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8.3.2 Influence of using different thresholds on the importance of 

each variable 

 

Probability outputs generated using the WofE method, with the three threshold values identified 

in Paragraph 8.1, were reclassified using the Geometrical Interval method to obtain maps 

consisting of five classes, each one reflecting a different degree of vulnerability increasing from 

class 1 to 5 (Fig. 8.6). 

 

 

 

Figure 8.6 – Reclassified vulnerability maps D-4.5, E-22 and F-50 obtained using the WofE method and 

considering a threshold value of 4.5, 22 and 50 mg/l, respectively (the degree of vulnerability increases 

from class 1 to 5). 

 

To investigate the effect of using different threshold values on the importance of each parameter 

in influencing groundwater vulnerability in the study area, both the contrast of each variable 
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class and their spatial distribution within the most and less vulnerable areas (respectively class 5 

and 1 in all maps in Fig 8.6) were considered with respect to the threshold used in the analysis. 

From the analysis of the class contrasts of each explanatory variable for each considered 

threshold (Fig. 8.7), it is possible to evaluate how the importance of each single variable and thus 

of its ranges of values in influencing, both positively (positive contrast) and negatively (negative 

contrast), groundwater vulnerability to nitrate contamination change according with the 

considered threshold. 

 

 

 

Figure 8.7 – Figure continues on next page. 
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Figure 8.7 – Contrasts for each explanatory variable class identified by using a different threshold value in 

the analysis; histograms in the first, second and third column refer, respectively, to the model obtained 

considering a threshold value of 4.5, 22 and 50 mg/l. 

 

From the histograms in Figure 8.7 a clear positive correlation between the increase of 

groundwater depth and population density and occurrences and a negative correlation between 

the increase of nitrogen load and occurrences can be identified in the study area regardless the 

threshold used in the analysis. Similarly, independently of the used threshold, high soil 

protection capacity class results always to be positively correlated with the presence of 

occurrences. Instead, the increase of both groundwater velocity and unsaturated hydraulic 

conductivity shows a positive correlation with occurrences when concentrations of 22 and 50 

mg/l are used as thresholds in the analysis and conversely a negative correlation when the value 

of 4.5 mg/l is used. 

It is interesting to note that: 

 

• the explanatory variables showing the same trend regardless the threshold used in the analysis 

are also the ones having classes with higher contrasts and thus the stronger spatial relationship 

with the presence or absence of occurrences; 

• the higher contrasts (and thus the higher spatial relationship between variable classes and 

presence of occurrences) are obtained when the threshold of 50 mg/l is used. 

 

Thus, the explanatory variables showing the same relationship with the occurrences regardless of 

the threshold used in the analysis seem to be the most important ones in influencing nitrate 
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contamination in the study area. Conversely groundwater velocity and saturated hydraulic 

conductivity seem become influential only when the threshold used was higher than 22 and equal 

to 50 mg/l, respectively. Indeed, for groundwater velocity no clear spatial correlation is shown 

(contrast vary irregularly with increasing of the variable value) when the threshold of 4.5 is used 

in the analysis. Similarly for unsaturated hydraulic conductivity either there is no clear spatial 

correlation with the occurrences (22 mg/l) or contrasts are close to zero indicating a small 

influence on nitrate contamination above the considered threshold. 

The higher contrasts obtained when using a threshold value of 50 mg/l could be due to the fact 

that few TPs allowed identifying only few statistically significant classes having a very strong 

correlation with them but representing a wider ranges of values for each variables. 

The distribution of variable classes in the most and less vulnerable areas for each threshold was 

evaluated in order to define the combinations of the most important range of values of each 

variable associated with the lowest and highest probability to find nitrate concentration greater 

and lower of each specific threshold (Table 8.3 and 8.4, respectively). 

 

Groundwater vulnerability map D-4.5 E-22 F-50 

Variables    

pop (persons/km
2
) > 1500 > 2500 > 750 

gwd (m) > 25 > 34 > 26 

gwv (m/s) > 1.3e-6 > 2e-6 > 2e-6 

uhc (m/s)   > 2e-5 

 

Table 8.3 – Combinations of explanatory variable classes most influencing the presence of high nitrate 

concentration. 

 

Groundwater vulnerability map D-4.5 E-22 F-50 

Variables    

pop (persons/km
2
) < 200 <400 < 750 

gwd (m) < 21 < 3 < 25 

gwv (m/s) < 1.3e-6 < 2e-6 < 2e-6 

uhc (m/s)   < 2e-5 

 

Table 8.4 – Combinations of explanatory variable classes most influencing the presence of low nitrate 

concentration. 

 

Regarding the spatial pattern of vulnerability, also in this case, using a different number of TPs 

(according to the different thresholds) leads to a different spatial distribution of the vulnerability 

classes but once again, as for the maps obtained using the LRF method, it is qualitatively 
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observable that, even if some differences among the reclassified maps can be easily noticed, a 

general decrease in vulnerability from north to south can be highlighted, with the central area in 

the northern sector always being as the most vulnerable to nitrate contamination (Fig. 8.6). 

 

 

 

Figure 8.8 – Density of non-impacted wells within each vulnerability class (first row), frequency of 

impacted wells (impacted wells out of total wells) within each vulnerability classes (second row) and 

average nitrate concentration of samples collected in all wells located within each vulnerability class (third 

row); histograms in the first, second and third column refer, respectively, to reclassified vulnerability maps 

D-4.5, E-22 and F-50 in Figure 8.6 (in all histograms the degree of vulnerability increases from class 1 to 

5). 

 

Similarly, as for the reclassified maps obtained using the LRF method, the validation considering 

the density of non impacted wells (see Chapter 6, Paragraph 6.2), the average nitrate 

concentration (see Chapter 6, Paragraph 6.2), and the frequency of impacted wells (see Chapter 

7, Paragraph 7.3) within each class, showed that the map obtained using the threshold of 22 mg/l 

is the more reliable (Fig. 8.8). 

This finding could seem in contrast with the results form success rate curves that indicate the 

map F-50 as the best one (Fig. 8.9). 
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Figure 8.9 – Success rate curves of the three probability outputs (models) obtained using the WofE 

method and the three different threshold values identified in Paragraph 8.1. 

 

Indeed, it must be considered that the forms of these curves are strongly influenced by the 

number of TPs and that it is relatively easy to obtain a very steep curve with a limited number of 

TPs while, in general, these curves tend to be less steep as the number of training points increase. 

So, due to the different number of training points used, these curves can not be considered as the 

only way to judge and compare the reliability of the three different models. 

 

 

8.4 Conclusions 

 

In this study, three different threshold values were used to analyze the consequences on the 

definition of groundwater vulnerability assessment in a shallow porous unconfined aquifer and to 

evaluate the importance of each explanatory variable in controlling groundwater vulnerability. 

Threshold values were selected both on a statistical basis and considering the regulatory limit 

established by the European Union concerning nitrate contamination (EU, 2000). 

In both cases ( LRF and WofE ), concerning the predicted spatial pattern of vulnerability, the use 

of different thresholds did not seem to determine different vulnerability assessment if results are 

analyzed on a broad scale. Indeed, as confirmed by both the histograms (for all maps obtained 

using both methods) and the heatmaps (for the maps obtained using the LRF method), all 
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vulnerability maps showed the same general spatial pattern (with vulnerability decreasing 

southward) and trend (with vulnerability generally increasing from the lower to the higher class 

in both cases) regardless of the selected threshold value, even if the vulnerability maps obtained 

using the lower threshold value gave always the poorest performance in terms of map reliability. 

Nevertheless, a more detailed analysis of the results shows that many differences can be pointed 

out.  Looking in detail at the two clusters in the heat maps, it is easy to see that each class does 

not overlap with the same class in another map. Thus, the spatial distribution of a detailed 

vulnerability assessment is strongly influenced by the selected threshold used to identify the 

occurrences, suggesting that there is a strong relationship among the number of identified 

occurrences, the scale of the maps representing the explanatory variables and the model 

efficiency in discriminating different vulnerable areas. 

The selection of low threshold led to have a higher number of training points, being an over-

representative population due to the fact that the scale of maps representing explanatory 

variables is too low and not adequate to the number of TPs.  In this case, the model does not 

adequately represent the vulnerability within the study area, probably because of the many 

combinations of classes of explanatory variables (critical unique conditions) found where TPs 

are located. The identification of many critical unique conditions makes the model inefficient in 

effectively discriminating which variables are actually responsible of groundwater contamination 

and determining groundwater vulnerability. 

On the contrary, when the threshold is high, the low number of TPs seems to be sufficient to 

individuate the combination of classes of explanatory variables which mostly influence 

vulnerability allowing achieving more reliable results. However, in this case, analysis can be 

greatly influenced by a single or few classes of explanatory variables so that the final map tends 

to follow the spatial distribution of these predictor factors losing part of the potentiality of the 

model to work in a multivariate framework. 
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Chapter 9 

Limits, drawbacks and future plans 

 

To further test the robustness of the WofE modeling technique and its applicability in different 

hydrogeological conditions, this modeling technique was also used for assessing groundwater 

vulnerability to nitrate contamination of the shallow porous mixed (confined-unconfined) aquifer 

located within the Province of Piacenza. Such aquifer, with respect to the shallow aquifer located 

in the Province of Milan, is characterized by a substantial different hydrogeological setting (see 

Chapter 4, Paragraph 4.2) and is a constantly monitored by a lower number of wells being in this 

case less than 40 (see Chapter 5, paragraph 5.1). Regarding this latter aspect, it is important to 

note that the number of wells is significantly lower even considering the smaller extension of the 

aquifer located within the Province of Piacenza. It has also to be pointed out that a monitoring 

network constituted by relatively few wells represents probably a more common situation than 

the one observed in the province of Milan, where the shallow aquifer was monitored by more 

than 300 wells between 2000 and 2002. 

Moreover the Region of Emilia Romagna started to monitor the quality of its aquifers in 1987 

and thus the availability of appropriate time series allowed identifying long term trends of nitrate 

contamination. Thus, a semi-quantitative attempt was made to try to integrate groundwater 

vulnerability assessment and trend analysis in order to determine groundwater quality 

deterioration. Indeed, as summarized below, such integration is required by both European and 

Italian laws regulating groundwater quality related matter, in particular: 

 

• Article 10 of Nitrate Directive (Directive 91/676/EEC; EU, 1991) requires that Member States 

identifies areas where groundwater is or will be potentially affected by nitrate contamination; 

• Article 4 of the Water Framework Directive (Directive 2000/60/EC; EU, 2000 – 

acknowledged by the Italian Law D.Lgs. 152/2006) requires the achievement of the “good 

status” and the identification and reversal of significant and sustained upward trends in the 

concentration of contaminants, including nitrate, within a given groundwater body; 

• Groundwater Directive (Directive 2006/118/EC; EU, 2006 – acknowledged by the Italian Law 

D.Lgs. 30/2009) has the objective of preventing and reducing nitrate contamination, implying 

the obligation to avoid further deterioration of groundwater quality. 
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Thus, it is clear that there is the necessity not only to identify vulnerable areas where nitrate 

concentrations are susceptible to exceed a pre-established threshold, which could be also 

identified with the limit of 50 mg/l representing the quality standard of groundwater nitrate 

concentration fixed by the 2000/60/EC Directive (EU, 2000) (see chapter 8 for an exhaustive 

discussion about threshold values), but also areas where nitrate contamination show upward 

trends. 

In this Chapter this aspect was preliminary evaluated by overlapping nitrate contamination 

trends, identified for each well surveyed in 2008, on top of two similar groundwater vulnerability 

maps to nitrate contamination, referring to the same year, both obtained reclassifying the same 

predictive probability output obtained using the WofE modeling technique. 

 

 

9.1 Training points and evidential themes 

 

The water-quality data set collected in 2008 (described in Chapter 5, Paragraph 5.1) is the one 

used in this study (Table 9.1) and the median value of 20.1 mg/l was selected as threshold. 

 

Nitrate concentration (mg/l) 
Year of survey No. of wells 

Min Max Mean Median Std. Dev. 
Skewness 

2008 37 1 72.3 24.1 20.1 19.9 0.61 

 

Table 9.1 – Basic descriptive statistics of water-quality dataset collected in 2008. 

 

Thus, wells from which samples showed a nitrate concentration higher than or equal to the 

threshold value were identified as impacted wells (19) and used as TPs in the model, whereas 

wells from which samples showed a nitrate concentration lower than the threshold value were 

identified as non-impacted wells (18) and used to validate the obtained reclassified groundwater 

vulnerability maps (Fig. 9.1). 
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Figure 9.1 – Locations of the monitoring wells sampled in 2008: nitrate concentration in samples from 

impacted and non-impacted wells is, respectively, greater than or equal to and lower than 20.1 mg/l. 

 

Considering the hydrogeological conceptual model of the study area (described in Chapter 4, 

Paragraph 4.2), five explanatory variables (described in Chapter 5, Paragraph 5.2), thought to 

control nitrate contamination of shallow groundwater, were used as evidential themes in the 

analysis (Table 9.2). 

 

Explanatory variable Type Minimum Maximum 

Population density [persons/km
2
]
a
 Continuous 25 861 

Nitrogen load [kg/ha per year]
a
 Continuous 0 241 

Confinement Categorical - - 

Groundwater depth [m] Continuous 0 95 

Effective infiltration [mm/year] Continuous 302 672 
a
 computed at municipality level 

 

Table 9.2 – Explanatory variables used as evidential themes the analysis. 

 

 

9.2 Trend analysis 

 

In order to identify a trend inversion in nitrate contamination and assuming that a time series can 

be represented by two linear trends with a change of the slope within the considered time 

interval, a “two-sections” test was applied to detect the nitrate contamination trend in each wells 

surveyed in 2008. 
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In this study, the GW-Stat software (Grath et al., 2001) was used to divide the time interval 

under consideration (i.e., 1987-2008) into “two time sections” and estimate the corresponding 

regression lines in order to identify a trend inversion or a changing of the trend slope. Such 

method, developed by  Grath et al. (2001), automatically optimize the choice of the final “two 

time sections” with regard to the fit of the resulting model and perform statistical test to check 

whether the two-sections model is significantly better than a simple linear regression. 

Three examples of trend analysis graphs, obtained using the above cited software, are showed 

below in Figure 9.2. 

 

  

 

 

Figure 9.2 – Three examples of trend analysis graph: in the first two examples (A and B) the nitrate 

concentration in the monitored well is always increasing during the whole monitoring time (upward trend), 

but a marked changing of the slope between “two time sections” can be clearly identified in both cases 

(slop increasing upward and decreasing upward, respectively); in the last example (C) the nitrate 

concentration was initially decreasing and then increasing (downward and then upward trend), again with 

a different slope. 

 

Nitrate contamination trends ware analyzed and classified as in Table 9.3 where Class 1 indicates 

the most dangerous situation, represented by an upward trend showing an increasing slope in the 

second “time section” (i.e., the nitrate concentration is increasing faster during the second span 

of time considered), whereas Class 10 indicates the less dangerous situation, represented by a 

continuous downward trend. When an inversion was detected (i.e., an upward trend turning 

A B 

C 



110 

 

Chapter 9: Limits, drawbacks and future plans 

downward or vice versa), such as in the plot C in Figure 9.2, it was highlighted if the inversion 

happened more or less than five years ago, in order to distinguish between two situations 

indicating a different degree of hazard. 

 

Class Trend Inversion 

1 Slope increasing upward  

2 Upward  

3 Slope decreasing upward  

4 Downward and then upward More than 5 years ago 

5 Downward and then upward Less than 5 years ago 

6 Downward and then constant  

7 Upward and then constant  

8 Upward and then downward Less than 5 years ago 

9 Upward and then downward More than 5 years ago 

10 Downward  

 

Table 9.3 – Classification of the identified trend observed in the wells monitored in 2008, the most 

dangerous situation is the one in Class 1 while the less dangerous is the one in Class 10. 

 

 

9.3 Results and discussion 

 

The response theme, in terms of predictive probability outputs, generated using all 19 impacted 

wells as TPs, was reclassified to obtain two maps consisting of five and three classes of 

vulnerability (maps A and B in Fig. 9.3, respectively), with each class reflecting a different 

degree of vulnerability. Both maps were reclassified using a classification method ensuring that 

each class contains approximately the same number of different post probability values. 
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Figure 9.3 – Reclassified groundwater vulnerability maps consisting of five and three classes (A and B, 

respectively) obtained reclassifying the same predictive probability output (the degree of vulnerability 

increases from class 1 to 5 and from class 1 to 3). 

 

 

9.3.1 Groundwater vulnerability maps 

 

Although the success curve of the WofE predictive probability output (Chung and Fabbri, 1999) 

performed very well (Fig. 9.4), as demonstrated by the fact that more than 70% of the impacted 

wells fall within less than 15% of the most vulnerable area, the validation of both groundwater 

vulnerability maps A and B in Figure 9.3 showed poor results (Fig. 9.5) especially in terms of 

density of non-impacted wells (histograms A-5 and A-3 in Fig. 9.5). 
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Figure 9.4 – Success curve of the WofE predictive probability output from which were obtained both 

reclassified groundwater vulnerability maps A and B in Figure 9.3. 

 

Observing the validation histograms in Figure 9.5, it has to be considered that poor results could 

be due to the relatively low number of wells being in the monitoring network. This is partially 

confirmed by the fact that at least two of them results moderately improved for the map 

consisting of only three vulnerability classes. Indeed, histograms showing the average nitrate 

concentration (histograms B-5 and B-3 in Fig. 9.5) and the frequency of impacted wells in each 

class (histogram C-5 and C-3 in Fig. 9.5) both perform better for the vulnerability map consisting 

of three classes. A reduction of classes represents an increasing of the number of monitoring 

wells within each class. However, it has to be noted that histograms representing the density of 

non-impacted wells (histograms A-5 and A-3 in Fig. 9.5) performed very poorly in both cases. 
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Figure 9.5 – Validation histograms for the groundwater vulnerability maps A and B in Figure 9.3 in the left 

and right column, respectively. 

 

 

9.3.2 Groundwater vulnerability maps and trend analysis 

 

Overlapping the nitrate contamination trend identified for each wells surveyed in 2008 to both 

maps A and B showed in Figure 9.3, it is possible to note that there is a discrepancy between the 

areas identified as less vulnerable and the location of the wells presenting the most dangerous 

situation in terms of nitrate contamination trend. Such situation is well observable in the south-

A-3 

B-5 

A-5 

B-3 

C-5 C-3 



114 

 

Chapter 9: Limits, drawbacks and future plans 

eastern part of the study area where four wells showing upward trends are located in an area 

classified as the less vulnerable. The opposite situation instead is observable in the outskirt of the 

city of Piacenza (north-central part of the study area) where three wells showing an upward-

downward trend are located in an area classified as the most vulnerable. 

Thus, it seems to be the possibility that, in general, and even when specific vulnerability maps 

represent well enough the present status of groundwater contamination, they could not be able to 

identify areas characterized by upward trend and therefore could not be a useful tool for 

preventing further deterioration of groundwater particularly where there is the presence of an 

upward trend associated with a concentration lower than the threshold chosen to select the wells 

to be used as TPs in the model. 

 

 

 

Figure 9.6 – Nitrate trends identified in the monitoring wells, and classified as in Table 9.3, overlapped to 

the groundwater vulnerability maps A and B in Figure 9.3 (A and B, respectively). 

 

 

9.4 Conclusions and future plans 

 

Monitoring networks constituted by few wells with respect to the extension of the study area are 

very common situations. In all these cases, although it would be possible to obtain a good model 

in terms of success and maybe of prediction rate using statistical methods, it could not be 

possible to further validate the reclassified groundwater vulnerability maps, especially in terms 

of their reliability in depicting the actual spatial distribution of the contamination. Indeed, 

A 
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because of the limited number of wells falling within each obtained vulnerability class, it is not 

possible to consider the average of any considered parameter as a representative value of the 

vulnerability class they fall within (indeed, if only very few wells are within a vulnerability area, 

the effects on contamination due to local phenomena would be difficult to be averaged). 

Another important point is that, in terms of groundwater vulnerability assessment, the 

identification of areas where groundwater is characterized by upward concentration trend of 

contaminants is nowadays required by EU and Italian laws. 

To this regard, it has to be considered that even when groundwater vulnerability maps correctly 

represent the actual status of present groundwater contamination, most probably, they could not 

be able to identify areas characterized by upward contamination trend. Therefore they could not 

be a useful tool for preventing further deterioration of groundwater quality, especially where the 

contaminant concentrations are below the threshold value used in the analysis. 

A possible approach has to be tested yet and that hopefully could help at least to minimize such 

drawback is described below. 

It consists in identifying the TPs to be used in the analysis not only considering the contaminant 

concentration measured in the wells but also considering their detected contamination trend. 

To this end, each well being part of the monitoring network, other than being classified as in 

Table 9.3 considering contamination trend, is also classified considering its contaminant 

concentration as in Table 9.4 below. 

 

Concentration class C (Nitrate concentration in mg/l) 

1 C>50 

2 45<C<50 

3 40<C<45 

4 35<C<40 

5 30<C<35 

6 25<C<30 

7 20<C<25 

8 15<C<20 

9 10<C<15 

10 10<C<5 

11 C<5 

 

Table 9.4 – Classification of the wells in the monitoring network based on their nitrate concentration 

measured in 2008. 

 

Then, in order to rank each well with respect to both its concentration class (Table 9.4) and trend 

class (Table 9.3) the formula written below could be used (e.g., Stillwell et al., 1981): 
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where n is the number of classes and rj is the rank of the class j. 

Once each well is ranked both with respect to its trend and concentration, the average rank (5
th

 

column in Table 9.5) on which identifying the TPs to be used in the analysis can be computed as 

the simple average of the trend rank value (2
nd

 column in Table 9.5) plus the concentration rank 

value (4
th

 column in Table 9.5). 

 

Trend class Trend rank Concentration class Concentration rank Average rank 

1 0.1818 1 0.1667 0.1742 

5 0.1091 10 0.0303 0.0697 

9 0.0364 9 0.0455 0.0409 

3 0.1455 1 0.1667 0.1561 

… … … … … 

 

Table 9.5 – Classification of the wells in the monitoring network based on both their nitrate contamination 

trend up to 2008 and their nitrate concentration measured in 2008. 

 

Of course, a different formula than the Equation 9.1 could be used to obtain a different rank, for 

example in the case it would be more opportune to let the trend rank of a well being more 

important than its concentration rank, or vice versa, depending on the final scope of the study. 

In conclusion, it is important to note that the simple and semi-quantitative results and the 

approach presented in this Chapter are intended to highlight the urgency to integrate the “time 

variable” in groundwater vulnerability assessment in order to further and better support land-use 

planners and managements to take decisions. 
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Chapter 10 

Conclusions 

 

Nowadays, groundwater vulnerability maps are largely considered as an essential component for 

sustainable land use planning and management both in developed and especially in developing 

and underdeveloped countries. Groundwater vulnerability maps represent the final result of 

implementing a spatial model to depict the relative susceptibility of groundwater to contaminant 

loads applied on the land surface. Thus, characterizing the vulnerability of shallow aquifers to 

contamination should help decision makers to evaluate current land use practices, make 

recommendations, implement regulation changes and/or introduce new prescriptions, all in order 

to better prevent or minimize groundwater contamination and hence preserve its quality. 

Since the first attempt by Margat in 1970, many different approaches and methods to produce 

groundwater vulnerability maps were developed. Although, it is not possible to identify a method 

being the best one for all situations, being the its choice a function of numerous parameters 

including the scale and the objective of the vulnerability assessment, the final product of the 

chosen method should always be scientifically defensible, meaningful and reliable, in order to be 

effective tools for land use planning and management (Focazio et al., 2002). Statistical methods 

can greatly support this activity through the production of scientifically defensible groundwater 

vulnerability maps which meaningfulness and reliability has however to be carefully checked 

before being used (Fabbri and Chung, 2008). 

The Weigth of Evidence method (WofE) was used in this study for assessing groundwater 

vulnerability to nitrate contamination of two different shallow aquifers characterized by different 

hydrogeological settings and monitored by a different number of wells. The study focused on 

testing its robustness as exploratory and predictive tool and on addressing more general issues 

related to the use of statistical methods to produce groundwater vulnerability maps. The main 

aspects were the spatial variability of different groundwater vulnerability maps showing similar 

performances in term of predictive power, the influence of using different threshold in the 

analysis, the limits and drawbacks of using statistical methods and the possibility of new 

research challenges in this field. 

Results showed that using positive and negative evidences of contamination as Training Points 

(TPs), the WofE modeling technique can be used to appropriately select the evidential themes to 
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be used in the analysis allowing excluding the ones characterized by a contradictious relationship 

with the presence of positive and negative TPs. Once evidential themes to be used were properly 

selected the WofE proved to be a reliable modeling technique for assessing groundwater 

vulnerability. Validation tests indicated excellent performance of the WofE in identifying 

different vulnerability classes when the final map was produced either using positive or negative 

evidences as TPs and also by their good spatial agreement in terms of spatial distribution of 

vulnerability. 

Regarding the spatial variability of different groundwater vulnerability maps showing similar 

performances it was verified that different maps, generated using different combinations of 

explanatory variables, always present some degree of spatial variability in terms of spatial 

distribution of vulnerability. However, it was also demonstrated that using multiple statistical 

techniques capable of giving quantitative insight in the analysis of the results, it is possible to 

identify, among apparently similar maps, the one(s) that best represent the spatial distribution of 

the vulnerability in a given area. 

Concerning the effect of using different threshold values in the analysis, results showed that the 

use of different thresholds produced the same general spatial pattern and trend (with respect to 

the identified vulnerability classes). Thus they did not seem to determine a different spatial 

distribution of the vulnerability if the outcomes are analyzed on a broad scale while many 

differences can be pointed out through a more detailed analysis. In other words, the spatial 

distribution of a detailed vulnerability assessment is strongly influenced by the selected threshold 

used to identify the TPs, suggesting that there is a strong relationship, to be further investigated, 

among the number of identified TPs, the scale of the maps representing the explanatory variables 

and the model efficiency in discriminating different vulnerable areas. 

It is important to note that the use of statistical methods to produce groundwater vulnerability 

maps presents also limitations, especially when only very few monitoring wells are available 

with respect to the extension of the study area. Indeed, in these situations although it is possible 

to obtain good models in terms of success and maybe of prediction rate, it became difficult to 

further validate the reclassified groundwater vulnerability maps, especially in terms of their 

reliability in depicting the actual spatial distribution of the contamination. 

Furthermore, considering that the identification of areas where groundwater is characterized by 

upward trends of contamination is required by EU and Italian laws, it has to be showed that, 

groundwater vulnerability maps could not be able to identify areas characterized by upward 

contamination trend. Therefore they could not be a useful tool for preventing further 
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deterioration of groundwater quality as requested by the law, especially where the contaminant 

concentrations are below the threshold value used in the analysis. 

To this end, a new research challenges could be identified in using the available spatial statistical 

approaches and integrate them with the “time variable” in order to create valuable tools allowing 

understanding the cause-effect relationship among contaminant concentrations, contamination 

trends and the variations of explanatory variables controlling the contamination. 
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