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Introduction

High dimensional and ultrahigh dimensional variable selection is a formidable
challenge in biomedical statistics.
To face this problem, a number of promising approaches have recently been
proposed. A very attractive method is penalized regression. This class of
procedures shows many advantages but is still not very popular, mainly
due to its computational cost. In this work, we focus our attention on
these techniques and on their applications to genome-wide association stud-
ies (GWAS).

An overview of some of the most interesting penalization methods is
given in the first chapter: Lasso, Least Angle Regression, Elastic Net, Adap-
tive Lasso, Scad, Combined Penalization and Relaxed Lasso. For each tech-
nique, we consider from a theoretical point of view the main ideas behind
the method and we examine its pros and cons compared to other methods.

An important open problem in the field of �1-penalized regression is the
construction of confidence intervals for the model coefficients. A popular
approach to calculating confidence intervals is to use bootstrap simulation
algorithms. In the second chapter, we investigate four bootstrap methods for
regression models (parametric bootstrap, vector resampling, residual boot-
strap, and two variants of one-step bootstrap - vector and residual resam-
pling) and we consider their application to generalized linear model (GLMs).
We review their functioning, we describe their implementation algorithms
and we evaluate their performance by simulation studies.

In the third chapter, we start considering the residual bootstrap method
for the lasso estimator of the regression parameters in a multiple linear
regression model, recently proposed by [Chatterjee and Lahiri (2010)]. In the
following section we extend this idea to penalized GLMs, using the notion of
standardized Pearson’s residuals. The results of the simulation studies show
that this method has some serious drawbacks. As a result, in the sections
that follows, we explore a completely different approach based on the fact
that the coefficients of lasso for linear models can be approximated by ridge
regression. After generalizing this result to �1-penalized GLMs, we develop a
one-step (residual) resampling method for this class of models in the spirit of
the one-step bootstrap for GLMs proposed by [Moulton and Zeger (1991)].
Then, applying the results of [Vinod (1995)], we build confidence intervals
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(CIs) for the coefficients of the class of �1-penalized GLMs. The simulation
studies suggest that by this method we are able to build CIs with good
empirical coverage probabilities. In the final section, we consider the double
bootstrap of Beran (1987) in order to further reduce the coverage errors
of single bootstrap and to build confidence intervals with a higher order of
accuracy.

Chapter four contains an overview of one of the most challenging and
fascinating problems of modern biomedical statistics: ultrahigh dimensional
variable selection in GWAS and gene environment-wide interaction (GEWI)
studies, with particular attention on the evaluation of gene-gene and gene-
environment interactions. This is a fundamental task in the investigation of
complex patterns for complex disease. Sure Independence Screening (SIS),
Iterative SIS (ISIS) and their variants are novel and effective methods for
variable selection in ultrahigh dimensional settings. They are based on a
prescreening step for dimension reduction followed by a selection/estimation
step performed using �1-penalized regression. We test this method on a
simulated dataset obtaining interesting results.

Finally, we briefly review some applications of penalized regression, ran-
dom forests and bayesian networks in the field of GWAS and GEWI studies.
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Chapter 1

Penalized regression

1.1 Introduction

The number of variables analyzed in recent clinical studies (especially in
genome-wide association studies) is rapidly increasing. Typically, not all of
these predictor variables may contribute equally well to the explanation of
the outcome and some of them may not contribute at all to the modelization
of the phenomenon under study. Thus, it is of fundamental importance to
select from these variables only those that are informative in order to obtain
the best model in terms of predictive accuracy and with the lowest number
of variables.

Many variable selection procedures are based on the joint use of variable
importance for ranking covariates and model estimation to generate, evalu-
ate and compare a family of models. Following [Kohavi and John (1997)],
[Kohavi and John (2001)] and [Guyon and Elisseeff (2003)], it is possible to
distinguish three types of variable selection methods:

• ‘filter’ for which the score of variable importance does not depend on
a given model design method;

• ‘wrapper’ which includes the prediction performance in the score cal-
culation; and finally

• ‘embedded’ which combines more closely the variable selection and
model estimation.

In addition, selection criteria are usually classified into two categories:

• consistent; a consistent criterion identifies the true model with a prob-
ability that approaches 1 in large samples when a set of candidate
models contain the true model;

• efficient; an efficient criterion selects the model so that its average
squared error is asymptotically equivalent to the minimum offered by

9



10 CHAPTER 1. PENALIZED REGRESSION

the candidate models when the true model is approximated by a family
of candidate models.

Penalized regression, first introduced by [Tibshirani (1996)], is a novel
and promising class of regression models for variable selection in classifi-
cation and regression problems with large numbers of candidate predictor
variables. This approach can be valuable in producing interpretable models,
accurate predictions, and approximately unbiased inferences. Penalized re-
gression is a typical ‘embedded’ variable selection method because variable
selection and model estimation are performed together by minimizing the
penalized objective function which yields a sparse vector of model coeffi-
cients.

The aim of the present chapter is to present a comprehensive view of
the key ideas behind penalized regression and to review some of the most
important techniques that use this approach for data modeling. In the
following sections, we consider the Lasso, Least Angle Regression, Elastic
Net, Adaptive Lasso, SCAD, CP and Relaxo.

An important problem related to penalized regression is the estimation
of the optimal penalty parameter λ, that is the complexity/regularization
parameter that controls simultaneously the amount of shrinkage on coeffi-
cients and the selected subset of variables included in the final model. In
subsection 1.3.2, we consider some of the most important penalty estimation
methods: cross-validation, generalized cross-validation, AIC, BIC and GIC.

1.2 Convex Optimization

Fitting a model to data that is estimates model parameters requires the
(exact or approximate) solution of a problem of optimization: the maxi-
mization of the log-likelihood function or the minimization of the sum of
squared model residuals. Penalized regression involves the solution of a
problem of constrained optimization: the maximization/minimization of a
function under some constraints.

The constrained optimization problem can be formulated as

minimize f0(x) subject to: fi(x) ≤ bi, i = 1, . . . ,m, (1.1)

where x = (x1, . . . , xk) is the optimization variable of the problem, the
function f0 : R

k → R is the objective function, the functions fi : R
k → R,

i = 1, . . . ,m are the (inequality) constraintfunctions, and the constants
b1, . . . , bm are the limits, or bounds, for the constraints. A vector x∗ is
called optimal, or a solution of the problem (1.1), if it has the smallest
objective value among all vectors that satisfy the constraints: for any x
with f1(x) ≤ b1, . . . , fm(x) ≤ bm, we have f0(x) ≥ f0(x∗).

In data fitting, the task is to find a model from a family of candidate
models that best fits some observed data. The optimization variables are
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the parameters of the model. In the case of penalized regression, we will
see that the constraint is the required limit on the l1-norm of the vector of
coefficients (

∑
j |bj | < t).

In the context of penalized regression, convex optimization is often men-
tioned a special class of mathematical optimization problems, including
least-squares and linear programming problems. While the mathematics
of convex optimization has been studied for about a century, several re-
lated recent developments have stimulated new interest in the topic. Many
applications have been discovered in areas such as automatic control sys-
tems, estimation and signal processing, communications and networks, elec-
tronic circuit design, data analysis and modeling, statistics, and finance (see
[Boyd and Vandenberghe (2004)] and [Nocedal and Wright, (1999)]).

The set S ∈ R
k is a convex set if the straight line segment connecting

any two points in S lies entirely inside S. Formally, for any two points x ∈ S
and y ∈ S, we have ax + (1 − a)y ∈ S for all a ∈ [0, 1].

A function f is convex if its domain is a convex set and if for any two
points x and y in this domain, the graph of f lies below the straight line
connecting (x, f(x)) to (y, f(y)) in the space R

k+1. That is, we have

f(ax + (1 − a)y) = af(x) + (1 − a)f(y), ∀a ∈ [0, 1].

Optimization of a non-convex function in high-dimensional setting is
generally a difficult task. Unfortunately many regularization procedures
with otherwise attractive features involve, minimization of a non-convex
function (e.g. [Fan and Li (2001)]). For high-dimensional problems, it is in
general very costly to find a solution in this case due to the presence of local
minima in the objective function.

Recognizing or formulating a problem as a convex optimization problem
has many advantages.

� Global minimizer; if the objective function is convex and inequality
constraint functions are concave, algorithms for optimization are usu-
ally guaranteed to converge to a global minimum.

� Robustness; algorithms for convex optimization perform well on a wide
variety of problems in their class, for all reasonable choices of the initial
variables.

� Efficiency; algorithms do not require too much computer time or stor-
age.

� Accuracy; algorithms are able to identify a solution with precision,
without being overly sensitive to errors in the data or to rounding
errors.



12 CHAPTER 1. PENALIZED REGRESSION

Setting penalization in order to be a convex optimization problem is
therefore an attractive choice (see [Meinshausen (2007b)]).

1.3 The LASSO

[Tibshirani (1996)] proposed a shrinkage method named LASSO (Least Ab-
solute Shrinkage and Selection Operator), a constrained version of ordinary
last squares (OLS). This technique is in some sense similar to ridge regres-
sion (see [Hastie et al. (2009)]) but it can shrink some coefficients to 0, and
thus can implement variable selection. The LASSO method estimates the
coefficients by maximizing the log-partial likelihood with the constraint that
the sum of the absolute values of the model coefficients is bounded above
by some positive number. The LASSO produces interpretable models like
subset selection and exhibits the stability of ridge regression.

Let (xi, yi), i = 1, 2 . . . , N , be a sample of N independent and identically
distributed (i.i.d.) random vectors, where xi = (xi1, xi2, . . . , xip) ∈ R

p is the
row vector of observations about p predictor variables for the ith sample
unit and yi ∈ R is the corresponding response vector.

The vector of p + 1 lasso estimates (β̂0, β̂) of regression coefficients is
defined by

(β̂0, β̂)(lasso) ≡ argmin
(b0, b)∈Rp+1

MSE(b) subject to
p∑

j=1

|bj | ≤ t

= argmin
(b0, b)∈Rp+1

[
1
N

N∑
i=1

(yi − ŷi(b0, b))2
]

s.t.
p∑

j=1

|bj| ≤ t

= argmin
(b0, b)∈Rp+1

[
1
N

N∑
i=1

(yi − b0 − xib)2
]

s.t.
p∑

j=1

|bj | ≤ t, (1.2)

where b0, β̂0 ∈ R, b = (b1, b2 . . . , bp)T is a column vector of p components
and β̂ = (β̂1, · · · , β̂p)T .

Here t ≥ 0 is a tuning parameter. For all t, the solution for b0 is β̂0 = ȳ,
where ȳ is the mean of y. Without loss of generality, we can assume that
the xij are standardized: 1/N · ΣN

i=1xij = 0 and 1/N · ΣN
i=1x

2
ij = 1, for

j = 1, 2, . . . , p. Hence, we can omit b0.
Equation (1.2) becomes

β̂(lasso) = argmin
b∈Rp

1
N

N∑
i=1

(yi − xib)2 s.t.
p∑

j=1

|bj| ≤ t. (1.3)
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Using the Lagrangian form, this optimization problem is equivalent to

β̂(lasso) = argmin
b∈Rp

⎡⎣ 1
N

N∑
i=1

(yi − xib)2 + λ

p∑
j=1

|bj |
⎤⎦ , (1.4)

where λ (the Lagrange multiplier) is a penalty parameter related to t.
In matrix form, equation (1.4) can be written as

β̂(lasso) = argmin
b∈Rp

R(b, λ) ≡ argmin
b∈Rp

1
N

||Y − Xb||22 + λ||b||1

= argmin
b∈Rp

1
N

[
(Y − Xb)T (Y − Xb)

]
+ λ1pb, (1.5)

where X is the (n×p) design matrix of observed covariates, Y is the (n×1)
column vector of the observed outcome, || · ||2 is the L2 vector norm, || · ||1 is
the L1 vector norm, AT is the transpose of matrix A and 1p is a row vector
of p ones.

The first-order stationarity conditions (∂R/∂bj |bj=β̂j
= 0) for the opti-

mization problem (1.5) are

2
N

xT
j (Y − Xβ̂) = λ · sign(β̂j) ∀j : β̂j 	= 0

2
N

|xT
j (Y − Xβ̂)| ≤ λ ∀j : β̂j = 0

where sign is the function

sign(x) =

⎧⎨⎩
−1 if x < 0
0 if x = 0
1 if x > 0

and β̂ = β̂(lasso). If we let λn ≡ N/2 · λ, the above equations simplify to:

xT
j (Y − Xβ̂) = λn · sign(β̂j) ∀j : β̂j 	= 0 (1.6)

|xT
j (Y − Xβ̂)| ≤ λn ∀j : β̂j = 0 (1.7)

Computation of the solution to equation (1.5) is a quadratic program-
ming problem with linear inequality constraints. Parameters t and λn con-
trol the amount of shrinkage that is applied to β̂ estimates. Let β̂OLS

j be
the ordinary least squares estimates and let t0 = Σ|β̂OLS

j |. Values of t < t0
will cause shrinkage of the solution towards 0, and some coefficients may
be exactly equal to 0. For example, if t = t0/2, the effect will be roughly
similar to finding the best subset of size p/2.
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The most important advantage of lasso is its simultaneous execution of
both variable selection and parameter estimation. Traditional methods work
on the two problems separately, using different techniques: first selecting
informative variable and, then, estimating model parameters.

The lasso penalty has some important limitations.

� When p > n, the lasso selects at most n variables before it saturates.
This may not be a desirable feature for many practical problems, par-
ticularly microarray studies. In fact, it is unlikely that only n genes
(usually a small number) are involved in the development of a complex
disease.

� If there is a group of variables among which the pairwise correlations
are very high, then the lasso tends to select only one variable or a few
of them from the group and shrinks the rest to 0. Again, this may not
be a desirable feature. For example, in microarray analysis, expression
levels of genes that share one common biological pathway are usually
highly correlated. These genes may all contribute to the biological
process but lasso usually selects only one gene from the group.

� When n > p, if there are high correlations between predictors, it has
been empirically observed that lasso is inferior to ridge regression in
terms of prediction performance. Some theoretical studies (see for ex-
ample [Zhao and Yu (2006)]) show that lasso, for variable selection,
only works in a rather narrow range of problems (where the restric-
tive ‘irrepresentable condition’ of [Zhao and Yu (2006)] is satisfied),
excluding cases where the design exhibits strong (empirical) correla-
tions.

1.3.1 Estimated coefficients vs. penalization

In this section we investigate the relationships existing between regression
coefficients β̂ estimated by lasso and the regularization parameter λn, the
fraction of deviance explained and the sum of absolute values of the regres-
sion coefficients (L1 norm of vector β̂). Figure 1.1 shows an example of
these behaviors for a sample generated using the DGP1 defined in section
1.1, with independent covariates and n = 10000. It is interesting to observe
the linear relationship existing between the lasso coefficients and λn.

In the case of an orthonormal design matrix X, it is XT X = I, where
I is the identity matrix of order p and, of course, xT

j X = ej , where ej is a
row vector of p zeros with a 1 at the jth position. Hence, the vector of OLS
estimates is given by

β̂OLS = (XT X)−1XT Y = XT Y
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Figure 1.1: Plot of regression coefficients against L1-norm of β̂, fraction of
deviance explained, logarithm of λn and λn.

and, for β̂j 	= 0, (1.6) is

xT
j Y − xT

j Xβ̂ = λn · sign(β̂j)

β̂OLS
j − ej β̂ = λn · sign(β̂j)

β̂OLS
j − β̂j = λn · sign(β̂j)

that is
β̂j = (|βOLS

j | − λn)+ sign(β̂j) (1.8)

where

(x)+ =
{

0 if x ≤ 0
x if x > 0

is the positive part of x.
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When the columns of X are independent, the design X is asymptotically
orthonormal. That is, XT X → I as n → ∞. In this case, for large n,
equation (1.8) approximates the relationship existing between β̂ and λn.

Figure 1.2 shows the plot of estimated lasso coefficients for different val-
ues of the regularization parameter in a sample generated using the DGP1
defined in section 1.1, with independent covariates and n = 10000. As
expected, regression coefficients linearly increase (in absolute value) for de-
creasing values of λn. In addition, this linear behavior closely agree with
equation (1.8). Dashed gray lines show the intercepts with the x-axis pre-
dicted by (1.8), λ0

n = |β̂OLS
j |.

Below we show the estimated and the theoretical values of slopes and
x-axis intercepts of the plotted lines. As expected, slopes are all rather close
to sign(β̂) and x-axis intercepts to |β̂OLS

j |.
slope.est slope.theo x.intcp.est x.intcp.theo

X1 1.0078736 1 0.726862286 0.732585342
X2 1.0508485 1 1.911826492 2.009040066
X3 -0.9764716 -1 0.011817110 0.011539072
X4 -0.7578182 -1 0.007882202 0.005973276
X5 -1.3193448 -1 0.005917527 0.007807259
X6 0.9849023 1 10.171587262 10.018019926
X7 -1.0102826 -1 2.959106313 2.989533666
X8 1.0131297 1 1.476484698 1.495870534
X9 1.0579407 1 0.002695215 0.002851378
X10 -1.0401500 -1 0.630970223 0.656303658

To summarize, this simulation study shows that when the p covariates
of X are independent and when n is large, a (quasi) linear relationship
between β̂n lasso coefficients and λn exists. Equation (1.8) can be used as
an approximation of this linear function.

It is now worth to noting that when covariates X are correlated, this
linear behavior ceases to exist. In figure 1.3, covariates X7 is correlated
with covariates X6 (Pearson’s correlation ≈ 0.5). The relationship between
β̂n6 and λn is now approximately piece-wise linear and the x-axis intercepts
calculated using equation (1.8) are clearly inadequate. The table below
shows the estimated values of slopes and x-intercepts and the corresponding
values given by equation(1.8):

slope.est slope.theo x.intcp.est x.intcp.theo
X1 1.0138118 1 0.722604922 0.732585426
X2 1.3504147 1 1.487720334 2.009039418
X3 -0.9834043 -1 0.011733513 0.011538786
X4 -0.7596110 -1 0.007861377 0.005971588
X5 -1.3171489 -1 0.005927254 0.007807075
X6 1.1643135 1 8.598804628 10.011704553
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j |).

X7 -1.5737687 -1 1.898518934 2.987829746
X8 1.0353119 1 1.444850131 1.495870549
X9 1.0616849 1 0.002684975 0.002850598
X10 -1.0367392 -1 0.633046053 0.656303657

1.3.2 Finding optimal penalization

A fundamental step in lasso penalized regression is the choice of the regular-
ization parameter λn. This is a complexity parameter that controls simul-
taneously the amount of shrinkage on coefficients and the selected subset of
variables included in the final model. From one side, a too large λn leads
to a situation where the amount of shrinkage is excessive and the subset
of selected variables may not contain some informative variables. From the
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Figure 1.3: Case with correlation between X6 and X7. Plot of β̂ lasso
coefficients vs. regularization parameter λn. Dotted lines show the predicted
values of x-axis intercepts.

other side, a too small λn leads to the opposite scenario where the amount of
shrinkage is too small and the subset of selected variables may include some
uninformative covariates. Consequently, this parameter should be ‘optimal’
in some sense.

In the original work [Tibshirani (1996)], three methods for the estima-
tion of the lasso parameter t are proposed: cross-validation, generalized
cross-validation and an analytical unbiased estimate of risk. The first two
methods are applicable in the ‘X-random’ case, where it is assumed that the
observations (X,Y) are drawn from some unknown distribution, and the
third method applies to the X-fixed case. In real problems there is often no
clear distinction between the two scenarios and we might simply choose the
most convenient method. [Friedman et al. (2010)] developed the glmnet al-
gorithm for computing the entire path of solutions for a grid of values of
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the regularization parameter. The authors suggest using prediction error to
guide the choice of the optimal λ.

Cross-validation

Cross-validation is a popular data-driven technique and one of the simplest
methods for estimating prediction error. It is frequently used in supervised
learning to select a model from a family of candidate models.

This method is widely used for estimating the appropriate regularization
parameter λ from the available data and is implemented in many R pack-
ages, for example lars (command cv.lars), penalized (command cvl),
glmnet (command cv.glmnet), lqa (command cv.lqa), glmpath (com-
mands cv.glmpath and cv.coxpath).

When the sample size is high, users can set aside some fraction (say
a third) of their data for prediction. They would then evaluate the pre-
diction performance at each value of λ, and pick the model with the best
performance via prediction performance.

When sample size is moderate, k-fold cross-validation is an interesting
alternative. This method uses part of the data (the training set) to fit
the model and use the remaining part (the validation set) to assess the
performance of the model. The idea is to partition data into K (K > 2)
sets. Only one of these sets is used for validation and the remaining K − 1
sets are pooled for training purposes. To reduce variability, this procedure
is repeated K times and mean squared prediction error is calculated.

The CV algorithm for the calculation of the optimal λ can be summarized
as follows:

(1) split the sample z = (X, y) of size n into K equally-sized subsets zk;

(2) using lasso, estimate the model parameters β(k) on the set

z(k) = {z1, · · · , zk−1, zk+1, · · · , zK}

for a grid of J values of λ; call these estimates β̂(k)(λj) and denote by
f̂(k)(x, λj) the fitted function, j = 1, · · · , J ;

(3) compute the prediction error PE(k) of the estimated model on the test
sample zk using

PE(k)(λj) ≡ k

n

∑
i∈zk

(yi − f̂(k)(xi, λj))2; (1.9)

(4) repeat steps (2) and (3) for k = 1, 2, . . . ,K;
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(5) compute the average of the K prediction errors as the overall estimate
of the prediction error

CV (f̂ , λj) =
1
K

K∑
k=1

PE(k)(λj) (1.10)

Typical choices of k are 5 or 10. The case k = n is known as leave-
one-out cross-validation. In this case, the fit is computed using all the data
except the ith unit.

The optimal value of the penalty parameter λ can be estimated using
one of the following criteria:

(a) the value λmin that gives minimum average cross-validated prediction
error:

λmin ≡ argmin
j=1,··· ,J

CV (f̂ , λj);

(b) the value λ1se such that error is within 1 standard error of the minimum
average cross-validated prediction error.

Generalized cross-validation

Another method for estimating λ may be obtained using a linear approxima-
tion of the lasso estimate. The Lagrangian penalty λΣ|βj | of equation (1.4)
can be written as λΣβ2

j /|βj |. Thus, we may write the constrained solution
β̂ as the ridge regression estimator

β̃ = (XT X + λW−)−1XT y

where W is a diagonal matrix with diagonal elements |β̃j | and W− denotes
the generalized inverse (the generalized inverse is necessary because some β̃j

could be zero and W is not invertible). The number of effective parameters
in the constrained fit β̃ may be approximated by

p(t) = tr
{
X(XT X + λW−)−1XT

}
.

Let RSS(λ) = ‖y − Xβ̃(λ)‖2
2 be the residual sum of squares for the

constrained fit with penalty λ. [Tibshirani (1996)] constructs the generalized
cross-validation style statistic

GCV(λ) =
1
N

RSS(λ)
{1 − p(λ)/N} .

(1.11)

The optimal λ is
λGCV ≡ argmin

λ
GCV (λ).
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AIC, BIC and GIC

A family of widely-used selection criteria are those based on the likelihood
or information measure. The methods described in this section AIC, BIC
and GIC work in this way for a special class of estimates that are linear in
their parameters.
Bayesian information criterion (BIC) with a large penalty performs well
for ‘small’ models and poorly for ‘large’ models while Akaike’s information
criterion do just the opposite.

The Kullback-Leibler (K-L) information is a tool used as a means of
discriminating between the true model and the candidate model. Let X be
a continuous random vector and f(x, θ) be a probability density function of
x, where θ ∈ R

p. Let θ∗ be the true parameter of θ with density function
f(x, θ∗). The K-L information measures the closeness of f(x, θ) to f(x, θ∗):

KL(θ∗; θ) = E[log f(x, θ∗) − log f(x, θ)].

The Akaike Information Criterion (AIC) was proposed by [Akaike (1973)]
to estimate the expected Kullback-Leibler information between the model
generating the data and a fitted candidate model. It is a criterion for se-
lecting an optimum model in a class of nested and nonnested models or
models fitted on different samples. The AIC criterion selects the model that
minimizes

AIC(λ) = −2Lλ + 2pλ (1.12)

where Lλ is the maximum log-likelihood for the λth model and pλ is the
model complexity (in a linear model correspond to the number of predictors).

Equation (1.12) measures the loss of information when a given model is
used to describe reality. It is an asymptotically unbiased estimate of the
expected K-L information. There are a number of successful applications
that support this method in spite of its ‘nonconventional’ style.

In the case of small sample size, [Hurvich and Tsai (1989)] proposes a
corrected version of the AIC criterion:

AICc = AIC +
2(m + 1)(m + 2)

n − m − 2
(1.13)

where m is the number of covariates. For linear regression, AICc is unbiased,
assuming that the candidate family of models includes the true model. AICc

has better bias properties than does AIC.

The Bayesian information criterion (BIC) proposed by [Schwarz (1978)]
has the same form of the AIC with the exception that the log-likelihood is
penalized by log n instead of 2, where n is the sample size.

The BIC criterion selects the model that minimizes:

BIC(λ) = −2Lλ + log(n)pλ (1.14)
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The asymptotic properties of AIC and BIC were deeply studied and com-
pared in literature.

[Zhang et al. (2010)] proposed to select the optimal regularization/penalty
parameter λ minimizing a generalization of the information criterion (GIC)
that contains a broad range of selection criteria.

GIC is defined as follows:

GICκn(λ) =
1
N

[
G(y, β̂(λ)) + κndf(λ)

]
, (1.15)

where G(y, β̂(λ)) is a measure of fitting of the model, y ∈ R
N , β̂(λ) is

the penalized parameter estimator obtained by lasso (or other penalized
regression method) and df(λ) is the number of degrees-of-freedom of the
model. The optimal λ is defined by

λGIC,κn = argmin
λ

GICκn(λ).

It is possible to show (see [Zhang et al. (2010)]) that the difference be-
tween df(λ) and the number d(λ) of nonzero parameters of the model is
small. Therefore, d(λ) can be used in place of df(λ) in equation (1.15).

The parameter κn is a positive number that controls the properties of
variable selection. The larger κn, the higher the penalty for models with
more variables. When κn = 2, GIC becomes AIC. If κn → 2 GIC is called
the AIC-type selector. When κn = log(N), GIC becomes BIC. If κn → ∞
and κn/

√
n → 0, GIC is called the BIC-type selector.

[Zhang et al. (2010)] show two important asymptotic results for noncon-
cave penalized likelihood functions.

(1) If the true model is contained in a set of candidate linear and generalized
linear models (GLIM), the BIC-type selector identifies the true model
with probability tending to 1. In other words, the BIC-type selector has
the oracle property.

(2) If the true model is approximated by a family of candidate GLM mod-
els, the AIC-type is asymptotically less efficient. In other words, the
AIC-type selector identifies the model so that its average squared error
is asymptotically equivalent to the minimum offered by the family of
candidate models.

1.4 Least Angle Regression

The original lasso algorithm was proved to be relatively inefficient and com-
plex. [Efron et al. (2004)] proposed an alternative model selection algo-
rithm, Least Angle Regression (LARS). LARS is a less greedy version of
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traditional forward selection methods, such as All Subsets, Forward Selec-
tion and Backward Elimination.

An interesting characteristic of LARS is that it implements the lasso by
a simple modification. The LARS modification calculates all possible lasso
estimats for a given problem in an order of magnitude which requires a much
smaller amount of computational time then previous methods.

Least angle regression is a stylized version of the Stagewise procedure
[Efron et al. (2004)]. LARS is intimately connected with LASSO, and in
fact provides an extremely efficient algorithm for computing the entire LASSO
path. LARS uses a similar strategy as forward stepwise regression, but only
enters “as much” of the predictor as it deserves. At the first step, it identifies
the variable most correlated with the response; fits the variable completely,
LARS moves the coefficient of this variable continuously toward its least-
square value, as soon as another variable “catches up” in terms of correlation
with the residual, the process is paused. The second variable joins the active
set, and their coefficients are moved together in a way that keeps their corre-
lations tied and decreasing. This process is continued until all the variables
are in the model and ends at the full least-squares fit.

The LARS algorithm can be summarized as follows:

1. Standardize the predictors to have mean zero and unit norm. Start
with residual r = y − ŷ, β1, β2, · · · , βp = 0.

2. Find the predictor xj most correlated with r.

3. Move βj from 0 towards its least-squares coefficient 〈x, r〉, until some
other competitor xk has as much correlation with the current residual
as does xj.

4. Move βj and βk in the direction defined by their joint least squares co-
efficient of the current residual on (xj ,xk), until some other competitor
xl has as much correlation with the current residual.

lasso modification. If a non-zero coefficient hits zero, drop its
variable from the active set of variable and recompute the current
joint least squares direction.

5. Continue in this way until all p predictors have been entered. After
min(N − 1, p) steps, we arrive at the full least-squares solution.

If p > N − 1, the LARS algorithm reaches a zero residual solution after
N − 1 steps (the −1 is because we have centered the data).
The lasso modification in the fourth step is an efficient way of computing
the solution to any lasso problem, especially when p � N .
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1.5 The Elastic Net

There are many applications where strong correlations among variables are
observed as in genomic where genes tend to operate in molecular pathways.
Therefore, researchers developed new methods of penalized regression that
go beyond the limits of lasso, maintaining its good statistical properties.

The elastic net proposed by [Zou and Hastie (2005)] is an improved ver-
sion of the lasso. The authors proposed a penalty function that is a combi-
nation between the ridge and the lasso penalty. It has the form

J(β, λ1, λ2) =
p∑

j=1

[
λ1|βj | + λ2β

2
j

]
The second term (ridge penalty) encourages highly correlated features to
be averaged, while the first term (the lasso penalty) encourages a sparse
solution in the coefficients of these average features. In other words, the
elastic-net selects variables like the lasso and shrinks together the coefficients
of correlated predictors like the ridge regression.

The elastic net penalty can be used with any linear model, in particular
for regression or classification. Simulation studies and real data examples
show that the elastic net often outperforms the lasso in terms of prediction
accuracy. It is like a stretchable fishing net that retains ‘all the big fish’.
Hence, when the number of predictors p is much bigger than the number of
the observations N , as in the case of non-orthogonal designs, the elastic net
is preferable to lasso.

Consider the sample (xi, yi), i = 1, 2, . . . , N , of i.i.d. random vectors,
where xi = (xi1, xi2, . . . , xip) is the row vector of p observations (of p ex-
planatory variables) for the ith sample unit and yi is the response vector for
the same unit. Without loss of generality, we assume that response is cen-
tered and predictors are standardized. That is,

∑N
i=1 yi = 0,

∑N
j=1 xij = 0

and
∑N

j=1 x2
ij = 1, for j = 1, 2 . . . , p.

For any fixed non-negative λ1 and λ2, the elastic-net estimator is defined
as follows:

β̂(enet) = (1 + λ2) argmin
b∈Rp

⎡⎣ 1
N

N∑
i=1

(yi − xib)2 + λ1

p∑
j=1

|bj | + λ2

p∑
j=1

b2
j

⎤⎦ .

(1.16)

In matrix form equation (1.16) can be written as

β̂(enet) = (1 + λ2) argmin
b∈Rp

[
1
N

||y − Xb||22 + λ1||b||1 + λ2||b||22
]

(1.17)

= (1 + λ2) argmin
b∈Rp

[
1
N

(Y − Xb)T (Y − Xb) + λ11pb + λ2b
T b

]
.
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If the predictors are not standardized, then 1 + λ2 changes to 1 + λ2/N ,
as discussed in [Zou and Hastie (2005)].

The two terms of the penalty function play two complementary rôles.
The �1 part of the elastic-net performs automatic variable selection, while the
�2 part stabilizes the solution paths and, hence, improves the prediction. So
when the correlations among the predictors become high, the elastic-net can
significantly improve the prediction accuracy of lasso. [Zou and Hastie (2005)]
proposed the LARS-EN method, an algorithm for computing the entire elas-
tic net regularization path efficiently.

There are two tuning parameters in the elastic net, so one need to cross-
validate on a two-dimensional surface. Two dimensional CV is computa-
tionally thrifty in the usual n > p setting. In the p � n case, the cost grows
linearly with p and is still menageable.

1.6 The Adaptive Lasso

Recent work suggests that the traditional lasso estimator may not be fully
efficient [Fan and Li (2001)], and its model selection result could be inconsis-
tent [Zou (2006)]. The lasso asymptotic setup is somewhat unfair, because
it forces the coefficients to be equally penalized in the �1 penalty.

To fix this problem, [Zou (2006)] proposed a new version of the lasso,
the adaptive lasso, in which adaptive weights are used for penalizing differ-
ent coefficients in the �1 penalty. This method replaces the �1-norm penalty
by a re-weighted version. The fundamental idea behind adaptive lasso is
that, by allowing a relatively higher penalty for zero coefficients and lower
penalty for nonzero coefficients, it is possible to reduce the estimation bias
and improve variable selection accuracy, compared with the standard lasso.
Adaptive lasso is an effective way to address some bias problems of the (one-
stage) lasso which may employ strong shrinkage of coefficients corresponding
to important variables. In addition, the adaptive lasso is much more insen-
sitive to many additional noise covariates.

Consider a sample (xi, yi), i = 1, 2, . . . , N of i.i.d. random vectors, where
xi = (xi1, xi2, . . . , xip) is the row vector of p explanatory variables for the
ith sample unit and yi is the response vector for the same unit. Without
loss of generality, we assume that the response is centered so the intercept
is not included in the regression function. The adaptive lasso estimator is
defined by

β̂(adapt) = argmin
b∈Rp

⎡⎣ 1
N

N∑
i=1

(yi − xib)2 + λinitλadapt

p∑
j=1

|bj |
|β̂j,init|

⎤⎦ . (1.18)
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In matrix form equation (1.18) can be written as

β̂(adapt) = argmin
b∈Rp

[
1
N

||y − Xb||22 + λinitλadapt

∥∥∥∥ b

β̂init

∥∥∥∥
1

]
. (1.19)

Here, β̂init is the one-stage lasso estimate defined in (1.2), with initial
tuning parameter λ = λinit, λadapt > 0 is the tuning parameter for the second
stage, and b/β̂init, with b, β̂init ∈ Rp, is the element by element (element-wise)
division of b by β̂init.

The adaptive-lasso is therefore a two-stage procedure.

1. In the first step, a standard lasso regression is estimated on sample
data using the regularization parameter λinit. A vector β̂init of regres-
sion coefficients is obtained.

2. In the second step, the weighted lasso defined by

β̂(weight) = argmin
b∈Rp

⎡⎣ 1
N

N∑
i=1

(yi − xib)2 + λinitλweight

p∑
j=1

wj |bj |
⎤⎦ (1.20)

is applied on the same sample data using the following weights

wj =
1

|β̂j,init|
, j = 1, 2, . . . , p. (1.21)

When |β̂j,init| = 0 the jth covariate is excluded in the second stage.

From a practical point of view, the estimation of optimal λinit and λadapt

is often based on cross-validation (see for example [Fan and Lv (2010)] and
[Huang et al. (2008a)]).

In their numerical studies, [Huang et al. (2008b)] split the simulated
data into a training set and a testing set. For both the lasso and Adap-
tive lasso, tuning parameters are selected based on k-fold cross-validation
using the training set only. After tuning parameter selection, the lasso and
adaptive lasso estimates are computed using the training set again. Then
they compute the prediction mean square error on the test set, using the
training set estimates.

1.7 Smoothly Clipped Absolute Penalty

According to [Fan and Li (2001)], a ‘good’ penalty function should result in
an estimator with three properties.

1. Unbiasedness: The resulting estimator is nearly unbiased when the
true unknown parameter is large to avoid unnecessary modeling bias.
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2. Sparsity: The resulting estimator has a thresholding rule that sets
small estimated coefficients to zero to reduce model complexity.

3. Continuity: The resulting estimator is a continuous function of data
to avoid instability in model prediction.

[Fan and Li (2001)] discuss various penalty functions in term of the above
three properties and establish the conditions for a penalty that meets the
requirements. They propose an appealing penalization technique able to
produce sparse solutions (i.e. many estimated coefficients are zero), contin-
uous models and variable selection procedures (hence more stable than the
subset selection, which is a discrete and non-continuous process), and nearly
unbiased estimates for large coefficients. They call this new penalty function
SCAD (Smoothly Clipped Absolute Deviation), it is symmetric, nonconcave
on (0,∞), and has singularities at the origin producing sparse solutions (see
[Fan (1997)]).

Consider a sample (xi, yi), i = 1, 2, . . . , N of i.i.d. random vectors, where
xi = (xi1, xi2, . . . , xip) is the row vector of p explanatory variables for the
ith sample unit and yi is the response vector for the same unit. Without
loss of generality, we assume that response is centered so the intercept is not
included in the regression function.

The SCAD estimator is defined by

β̂(scad) = argmin
b∈Rp

⎡⎣||y − Xb||22 + N

p∑
j=1

pλ(bj , a)

⎤⎦ (1.22)

where pλ(bj, a) is the SCAD penalty given by

pλ(bj , a) =

⎧⎨⎩
λ|bj |, if |bj| ≤ λ,
−(b2

j − 2aλ|bj | + λ2)/[2(a − 1)], if λ < |bj | ≤ aλ,

(a + 1)λ2/2, if |bj| > aλ

(1.23)

with a > 2 and λ > 0.
Figure 1.4 shows an example of SCAD penalty function, compared to

lasso and ridge penalties.
The first derivative of the SCAD penalty is

p′λ(bj , a) =

⎧⎨⎩
sign(bj)λ, if |bj | ≤ λ,
sign(bj)(aλ − |bj |)/(a − 1), if λ < |bj | ≤ aλ,
0, if |bj | > aλ.

(1.24)

This expression can be written in a more compact form as follows

p′λ(bj , a) = λ

[
I(|bj | ≤ λ) +

(aλ − bj)+
(a − 1)λ

I(|bj | > λ)
]

. (1.25)
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Figure 1.4: SCAD penalty with a = 3.7 and λ = 1, compared to lasso and
ridge penalties.

The resulting thresholding rule is

β̂j(scad) =

⎧⎨⎩
sign(βj)(|βj | − λ)+, when |βj | ≤ 2λ,
[(a − 1)βj − sign(βj)aλ] /(a − 2), when 2λ < |βj | ≤ aλ,
βj , when |βj | > aλ

(1.26)
An example of SCAD thresholding rule is given in figure 1.5 and is compared
to the lasso and the hard thresholding rules.

The above thresholding rule involves two unknown parameters: λ and a.
[Huang and Xie (2007)] suggested using generalized cross validation to esti-
mate these parameters. In practice, one could search the best pair over the
two-dimensional (λ, a) grid, that is the pair that minimizes the GCV score.
Unfortunately, such an implementation can be computationally expensive.
Using numerical simulations, the authors showed that the GCV score does
not change much with a given λ. So, to improve computing efficiency, they
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proposed fixing a = 3.7, as suggested by [Fan and Li (2001)].
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Figure 1.5: SCAD thresholding rule with a = 3.7 and λ = 1, compared to
the lasso thresholding rule and unpenalized rule.

[Kim et al. (2008)] proved some interesting properties of the SCAD es-
timator. First, asymptotically, this estimator has the oracle property when
the number of predictive variables are fixed or diverge more slowly than
the sample size. In addition, the SCAD can achieve model selection con-
sistency and optimal prediction simultaneously in high dimensional cases,
which is impossible for lasso. In terms of prediction accuracy, numerical
simulations show that the SCAD estimator is inferior to the oracle estima-
tor. The authors claim that this might be in part due to the suboptimality
of the selected regularization parameter.

[Kim et al. (2008)] also developed an efficient optimization algorithm
for SCAD in high dimensions, showing that this method is computationally
feasible for high-dimensional data.
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Although the SCAD penalty and its related non-concave penalization
techniques have produced some remarkable results, there are still concerns
about applying SCAD to ultrahigh-dimensional problems. For example, a
typical microarray data set often has many thousands of predictors (up to
500,000 genes) and small samples. The number of predictors in this case
is much larger than the number of observations (p � n), and correlations
among the predictors could be very high.

1.8 Combined Penalization

[Wang et al (2010)] proposed a new penalized least squares approach that
outperforms SCAD when the number of predictors p is much larger then the
number of observations n and/or the correlation among predictors is high.
This approach can be used in high dimensional statistical problems.

The new regularization technique modifies the SCAD penalty by adding
a quadratic penalty item. The combined penalty (CP) can be written as

Jλ,v(β) =
v

2
β2 + Pλ(β), β > 0 (1.27)

where Pλ(β) is the SCAD penalty of equation (1.23). Figure 1.6 depicts scat-
ter plots of the combined penalty function with λ = 1 and v = 0, 0.01, 0.1,
and 0.2, respectively.

The proposed penalty function is a mixture of the ridge and SCAD
penalization techniques. The authors show that this mixture will combine
the advantages of the two techniques, thereby minimizing the limitations of
both. The ridge and SCAD techniques are special cases of the combined
penalty, with λ = 0 for ridge and v = 0 for SCAD.

The resulting thresholding rule is:

β̂ =

⎧⎨⎩
sgn(bj)(|bj | − λ)+/(1 + v), when |bj | ≤ (2 + v)λ,
{(a − 1)bj − sgn(bj)aλ}/{(a − 1)(1 + v) − 1}, when (2 + v)λ < |bj | ≤ a(1 + v)λ,
bj/(1 + v), when |bj | > a(1 + v)λ.

(1.28)
for a > 2 and β > 0. In the original SCAD, [Fan and Li (2001)] suggest
setting a = 3.7.

SCAD and CP functions have sparsity and continuity (see Figure 1.7).
The CP function does not produce a nearly unbiased estimator for any v > 0,
but rather an asymptotically unbiased estimator as v → 0. The authors prove
that this asymptotic unbiasedness also leads to the oracle property.

The CP function can be applied to high-dimensional data analysis with
p � n, and also to situations where there are high correlations among
predictors. Theoretical results, simulations and empirical studies show that
the CP technique has superior performance compared to ridge, lasso, SCAD
and elastic net. [Wang et al (2010)] also shows that combined penalization
technique can be extended to general models, including logistic regression.
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Figure 1.6: Scatter plots of combined penalty function with λ = 1 and
v = 0, 0.01, 0.1, and 0.2, respectively.

1.9 The Relaxed Lasso

In section 1.3 we have seen that the ordinary Lasso estimator has two effects,
model selection and shrinkage estimation. On the one hand, a certain set
of coefficients is set to zero and hence excluded from the selected model.
On the other hand, for all variables in the selected model (i.e. with non-
zero coefficients), the coefficients are shrunken towards zero compared to
the least-squares solution.

An interesting question is whether it is indeed optimal to control these
two effects, model selection on the one hand and shrinkage estimation on
the other hand, by a single parameter only. In fact, in some situations
it might be desirable to estimate the coefficients of all selected variables
without shrinkage (the so-called hard-thresholding).

[Meinshausen (2007b)] proposed a generalization of both soft- and hard-
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Figure 1.7: Plot of the Mixed threshold function.

thresholding, introducing a two-stage procedure, named the Relaxed Lasso.
The main characteristic of this method is that it controls model selection
and shrinkage estimation using two separate parameters, λ and φ.

Before describing the algorithm, we give some definitions. Let Mλ be
the set of predictor variables selected by the lasso estimator β̂λ

Mλ =
{

1 � k � p|β̂λ
k 	= 0

}
, (1.29)

where β̂λ
k is the kth lasso solution corresponding to the λ penalty.

The relaxed lasso estimator defined for λ ∈ [0,∞) and φ ∈ (0, 1] is given
by

β̂λ,φ =argmin
b

1
n

n∑
i=1

[yi − xT
i (b · IMλ

)]2 + φλ||b||1, (1.30)

where IMλ
is the indicator function on the set of variables Mλ ⊆ {1, . . . , p},
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defined by

{β · IMλ
}k =

{
0, k /∈ Mλ,
βk, k ∈ Mλ.

(1.31)

This means that the relaxed lasso applies the lasso estimation twice: the
first lasso selects variables using the λ penalty (thus it identifies the set
Mλ) and the second lasso estimates the model coefficients of the selected
variables controlling the shrinkage by the relaxation parameter φ.

It is interesting to note that:

1. for φ = 0, the relaxed lasso overlaps lasso estimation;

2. for φ < 1, the shrinkage of the coefficients in the selected model is less
than the shrinkage of the lasso estimation.

[Meinshausen (2007b)] developed an algorithm to compute the exact so-
lutions of the relaxed lasso estimator. The algorithm can be summarized as
follows.

1. Compute the entire path of ordinary lasso solutions. Let M1, . . . ,Mm

be the resulting set of m models. Let λ1, . . . , λm (where λm = 0)
be a sequence of penalty values such that Mλ = Mk if and only if
λ ∈ (λk, λk−1] (where λ0 = ∞).

2. For each k = 1, . . . ,m, compute the entire path of lasso solutions on
the set Mk of variables, varying the penalty parameter between 0 and
λk. This set of solutions is the set of relaxed lasso solutions β̂λ,φ, with
λ ∈ (λk, λk−1].

The relaxed Lasso solutions for all penalty parameters are given by the union
of these sets. The parameters λ and φ can be chosen by cross-validation.

[Meinshausen (2007b)] shows that this algorithm can be refined because
the ordinary Lasso solutions contain information that can be exploited in
the second stage. The description of this algorithm goes beyond the scope
of the present work.

The most common way for choosing the penalty parameter for the lasso
is by cross-validation. This technique often erroneously selects many noise
variables when the number of variables is large and the accuracy of its pre-
diction is negatively affected by the presence of many noise variables, par-
ticularly for high signal-to-noise ratios.

There is almost no differences between lasso and relaxed lasso results
when the number of informative variables is large. On the contrary, when
there is a very large number of noise variables, the relaxed lasso estimator
selects a much smaller number of covariates. This property produces models
that are more amenable to interpret and with a much smaller mean square
error. In other words, the relaxed lasso is performing better then lasso when
just a few variables are carrying signal. The sparseness and the signal-to-
noise ratio is, in general, unknown and the relaxed lasso is adaptive to both.
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1.10 R packages

A large number of R packages that implements different forms of penalized
regression are currently available. There are packages that fits generalized
regression problems while imposing a constraint on parameters, for the esti-
mation of the entire ridge, lasso, adaptive lasso or elastic-net regularization
path for linear, logistic, multinomial, gamma, inverse gaussian, poisson re-
gression models and the Cox model. Many cross-validation routines allow
optimization of the tuning parameters.

In this section we present a brief overview of the main R packages for
penalized regression.

Package
name

Description Characteristics Commands Tuning
parameters

biglars Least-Angle and
Lasso regression
for datasets with
n << p [Fraley
and Hesterberg
(2007)]

Least-Angle, Lasso and
Stepwise Regression for
linear regression

biglars.fit -

elasticnet Functions for
fitting the entire
solution path of
the Elastic-Net
[Zou and Hastie
(2005)]

Elastic Net regression
models and sparse
Principal Components;
k-fold cross-validated
error curve for elastic
net

enet, cv.enet,

predict.enet,

spca

lambda

frailtypack Routines for fitting
several classes of
frailty models us-
ing penalized like-
lihood on the haz-
ard function. [Ron-
deau, Commenges
and Joly (2003)]

Frailty model using
penalized likelihood
estimation: shared
gamma, joint, nested,
additive; cross-
validation for optimal
penalty parameters
kappa1, kappa2

frailtyPenal,

additivePenal

kappa1, kappa2

glmnet Efficient proce-
dures for fitting
the entire lasso
or elastic-net
regularization path
for some GLM
[Friedman et al.
(2010)]

Elastic net model
paths for linear,
logistic, multinomial,
poisson and Cox
models; k-fold cross-
validation for optimal
penalty

frailtyPenal lambda, alpha

glmpath A path-following
algorithm for some
L1 regularized
GLM [Park M.Y.
and Hastie (2007)]

Regularization path for
linear, logistic, pois-
son and Cox models
with L1 penalty; k-fold
cross-validation for op-
timal penalty; a reg-
ularization parameter
for the L2 norm of
the coefficients is also
available

glmpath,

coxpath,

cv.glmpath,

cv.coxpath

s (in predict.

glmpath and
predict.coxpath

when mode =

lambda, s is λ),
lambda2



1.10. R PACKAGES 35

grplasso Algorithms for fit-
ting the regulariza-
tion path of GLMs
with group lasso
penalty [Meier, van
de Geer, Bühlmann
(2008)]

Paths of a group lasso
problem for linear,
logistic and poisson
model

grplasso,

predict.grplasso

lambda

grpreg Efficient algo-
rithms for fitting
the regularization
path for penalized
linear or logistic
regression models
[Breheny and
Huang (2009)]

Paths for group lasso,
group bridge and group
MCP at a grid of val-
ues of the regulariza-
tion parameter lambda;
selection of lambda us-
ing AIC, BIC and GCV
criteria

grpreg, select,

cv.glmpath,

cv.coxpath

lambda, lambda2,

delta, gamma, a

lars Efficient proce-
dures for fitting
an entire lasso
sequence with the
cost of a single
least squares fit
[Efron, Hastie,
Johnstone and
Tibshirani (2003)]

Least Angle Re-
gression, Lasso and
Infinitesimal Forward
Stagewise regression
models; computes
k-fold cross-validated
error curve for lars

lars, cv.lars,

predict.lars

s in predict.lars

lasso2 Routines for
solving regression
problems while
imposing an L1
constraint on
the estimates
[Osborne, Presnell,
Turlach (2000)]

Fits a generalized re-
gression problem while
imposing an L1 con-
straint on parameters;
supported families:
gaussian, binomial,
poisson, Gamma,
inverse.gaussian and
quasi; GCV score
for selecting optimal
lambda

l1ce, gl1ce, gcv bound

lqa Routines for
fitting GLMs
via penalized
likelihood infer-
ence. Estimating
procedures are the
LQA algorithm, P-
IRLS, RidgeBoost,
GBlockBoost and
ForwardBoost
[Ulbricht (2010)]

Penalized GLMs
with the following
penalty functions:
lasso, adaptive lasso,
approximated octagon,
bridge, elastic net,
fused lasso, correlation
based, OSCAR, ridge,
SCAD, weighted
fusion; estimation
of optimal tuning
parameters via CV or
validation data

lqa, lqa.cv,

ForwardBoost,

GBlockBoost,

cv.nng, nnls,

nnls2

lambda

ncvreg Efficient algo-
rithms for fitting
regularization
paths for linear or
logistic regression
models penalized
by MCP or SCAD

Paths for MCP- or
SCAD-penalized (lin-
ear, logistic) regres-
sion models over a grid
of values for the reg-
ularization parameter
lambda; additional L2
penalty; k-fold cross-
validation for optimal
lambda

ncvreg,

cv.ncvreg

lambda, gamma,

alpha
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parcor Algorithms for
estimating the
matrix of partial
correlations based
on a matrix of
observations [Krae-
mer, Schaefer and
Boulesteix (2009)]

Four regularized re-
gression techniques for
the estimation of par-
tial correlations: lasso,
adaptive lasso, ridge
regression, and Partial
Least Squares. Pro-
vides CV model selec-
tion for lasso, adaptive
lasso and Ridge regres-
sion

mylars,

adalasso,

adalasso.net,

rigde.cv,

ridge.net,

pls.net

-

penalized Efficient proce-
dures for fitting
the entire lasso
or elastic-net
regularization path
for some GLM
[Goeman (2010)]

Elastic net model
paths for linear, logis-
tic, poisson and Cox
models; k-fold cross-
validation for optimal
lambda1 and lambda2;
positivity constraint on
regression coefficients

penalized,

optL1, optL2,

profL1, profL2,

plotpath

lambda1, lambda2

penalizedSVM Algorithms for fea-
ture selection with
support vector ma-
chines (SVMs) us-
ing penalty func-
tions [Zhang et al.
(2006)]

Smoothly clipped abso-
lute deviation (SCAD)
and L1-norm penalties;
approximated GCV for
SCAD SVM model

svm.fs, lpsvm,

scadsvc,

findgacv.scad

lambda1.set (in
svm.fs), lambda

(in scadsvc)

plus Efficient proce-
dures for fitting the
entire piecewise
linear regulariza-
tion path for some
penalized linear
models [Zhang
C.-H. (2007)]

Penalized Linear
Unbiased Selection;
fits linear regression
with a quadratic spline
penalty, including
the Lasso, MC+ and
SCAD

plus,

predict.plus

lam and m (in plus)

quantreg Quantile regres-
sion and related
methods [Koenker
(2005)]

Lasso penalized quan-
tile regression

rq.fit.lasso lambda

relaxo Relaxed Lasso: a
generalisation of
the Lasso shrink-
age technique for
linear regression
[Meinshausen (2007b)]

In relaxed lasso
variable selection and
parameter estimation
is achieved by regular
Lasso; the two steps
use different penalty
parameters: lambda

and phi

relaxo,

cvrelaxo,

predict.relaxo

lambda (in
predict.relaxo)
and phi (in relaxo,
cvrelaxo and
predict.relaxo)

SIS (Iterative) Sure
Independence
Screening (SIS)
for GLMs and
Cox’s model [Fan,
Samworth and Wu
(2009)]

Different variants of
(I)SIS: vanilla (I)SIS
and two variants

SIS, scadglm,

scadcox,

fullscadglm,

fullscadcox,

wtlassoglm,

wtlassocox

nsis



Chapter 2

Bootstrap for GLM

2.1 Introduction

In this chapter, we consider the application of bootstrap methods to re-
gression models. Our interest is focused on the construction of bootstrap
confidence intervals for the coefficients of the class of generalized linear mod-
els (GLMs) and penalized GLMs.

We start considering some basic notions about bootstrap and GLMs and
introducing mathematical notation that will be useful in the sections that
follow. Successively, we consider four bootstrap methods that approximate
the distribution of model coefficients:

• parametric bootstrap;

• vector resampling;

• residual bootstrap;

• one-step bootstrap.

All these methods are tested by numerical simulations on a linear and a
logistic data generating process (DGP). Their performances are quantified,
calculating their approximation error about bias and variance of model co-
efficients and considering the distance between the distribution of model
coefficients and the distribution of bootstrap replications.

The R codes used to perform these simulation studies are also considered.
The simulation studies presented in this and the next chapter are based

on two data generating processes. The first, DGP, is the linear model used
in [Chatterjee and Lahiri (2010)]:

y = Xβ + ε, ε ∼ N(0, 1) (i.i.d.) (2.1)

where:

37
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• y is the response variable and X is an orthogonal (n×m) design matrix
with n = 250 and m = 10;

• the m columns of X are generated independently from the uniform
distribution in the interval [−1

2 , 1
2 ] ;

• ε is a vector of n independent and identically distributed (i.i.d.) stan-
dard gaussian errors N(0, 1);

• β is the vector of m regression coefficients with values:

β = (0.75, 2, 0, 0, 0, 10,−3, 1.5, 0,−0.65)T ,

that is, there are mI = 6 informative variables.

The second DGP used in our numerical simulations is the following lo-
gistic model:

y ∼ Bern(p), p =
1

1 + exp−η
, η = Xβ, (2.2)

where :

• y is the response variable and X is an orthogonal (n×m) design matrix
with n = 250 and m = 10;

• the m columns of X are generated independently from the uniform
distribution in the interval [−1

2 , 1
2 ] ;

• p is the vector of success probabilities of the Bernoulli probability
distribution;

• β is the vector of m regression coefficients with values:

β = (0.75, 2, 0, 0, 0, 10,−3, 1.5, 0,−0.65)T ,

that is, there are pI = 6 informative variables.

2.2 Basic notions on bootstrap

The bootstrap is a data-based simulation method for statistical inference
that was first introduced by Bradley Efron in the seminal paper [Efron (1979)].
It is a general approach to statistical inference intended to help avoid tedious
calculations based on questionable assumptions. Bootstrap methods are
computer-intensive techniques that can simplify calculations, are straight-
forward to apply, and can yield reliable standard errors, confidence intervals,
and other measures of uncertainty for a wide range of problems, includ-
ing complex estimators of complex parameters. The goal of bootstrap is a
computer-based implementation of basic statistical concepts.
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To understand the basic idea behind the bootstrap, it is useful to start
considering vector resampling (a simple and popular bootstrap method also
known as case resampling) for the assessment of the uncertainty about the
coefficients of a regression model.

The basic idea behind the bootstrap is to generate a large number of
bootstrap samples by sampling with replacement from the original data set
(see figure 2.1). We denote the original training set by Z = (z1, z2, . . . , zn)
where zi = (xi, yi). A bootstrap sample Z∗b is generated by sampling
with replacement n times from the original datasets Z, with probability
1/n. Drawing B times, we produce B independent bootstrap data sets
Z∗1, . . . ,Z∗B .

Let S(Z) be the quantity of interest computed from the data set Z, that
is the vector of coefficients of the GLM estimated using Z. The next step of
the bootstrap algorithm is the calculation of the statistic S on each bootstrap
training set. We obtain B bootstrap replicates S(Z∗1), . . . , S(Z∗B) that can
be used to assess many aspects of the distribution of S. For example, using
the bootstrap replicates we can estimate its variance:

V̂ arboot(S) =
1

B − 1

B∑
b=1

(S(Z∗b) − S̄∗)2,

where S̄∗ =
∑

b S(Z∗b)/B. It is possible to prove that under mild conditions,
vector resampling yields a ‘good’ approximation of the distribution of the
vector of model coefficients.

It is worth to note that a particular bootstrap method may give good
approximations of some quantities but bad approximations for other quan-
tities. For example, suppose we want to estimate the prediction error of a
model using vector resampling. We fit the model on each bootstrap samples
and keep track of how well it predicts the original training set. From the B
bootstrap data sets, we can estimate

Êrrboot =
1

n · B
B∑

b=1

n∑
i=1

L(yi, f̂
∗b(xi)),

where f̂∗b(xi) is the predicted value at xi.
It is easy to see that Êrrboot, in general, is not a good estimate.

The reason lies in the fact that the bootstrap data sets switch the rule
of training set with the original database. So, the original training set is
playing the role of the test sample. This overlapping over observations
makes the predictions look unrealistically good. The disadvantage of the
bootstrap to be overly optimistic is considered in [Hastie et al. (2009)] and
[Davison and Hinkley (1997)].

Bootstrap methods for GLMs can be categorized into three classes.
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Figure 2.1: Schematic representation of the bootstrap process.

• Parametric. The parametric bootstrap for a GLM involves simulating
new sets of data from the fitted parametric model. The performances
of this method strongly depends on the goodness of fit of the model. If
the model poorly fits, datasets generated using parametric bootstrap
may not have the statistical properties of the original data.

• Nonparametric. The nonparametric approach generates artificial data
without assuming that the original data have some particular para-
metric distribution. A simple and completely nonparametric bootstrap
method is based on resampling the observed cases (vector resampling).

• Semiparametric. The semiparametric approach involves the resam-
pling of model errors. It is a popular and appreciated class of bootstrap
methods for GLMs. It relies on the assumption of exchangeability of
the error terms.
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2.3 Basic notions on GLM

The building blocks of a GLM are:

• the stochastic component; the distribution of the responses yi is as-
sumed to be a member of the exponential family. The density function
of this family has the following form:

f(θ, φ, y) = exp
{

yiθi − b(θi)
a(φ)

+ c(yi, φ)
}

(2.3)

The exponential family covers a large number of distributions. For
example, discrete distributions as the bernoulli, binomial and poisson,
which can handle binary and count data or continuous distributions
as the normal, gamma or inverse gaussian distribution.

The functions a(·), b(·) and c(·) will vary for different Y distributions.
The parameter of interest is θ, which is called the canonical parameter.
The additional parameter φ is only relevant for some of the distribu-
tions and is considered as a nuisance parameter.

For example, the probability density function of the normal distribu-
tion is

f(μi, σ, y) =
1√
2πσ

exp
{−(yi − μi)2

2σ2

}
.

This function can be written as in (2.3) by setting:

θi = μi, φ = σ, a(φ) = φ2, b(θi) =
θ2
i

2

and c(yi, φ) = − y2
i

2σ2
− log(

√
2πσ).

Another example is the probability mass function of the Bernoulli
distribution

P (Y = yi) = pyi
i (1 − pi)1−yi

that can be rewritten as:

f(pi, yi) = exp
{

yi ln
(

pi

1 − pi

)
+ ln(1 − pi)

}
.

This function is equivalent to (2.3) by setting:

θi = ln
(

pi

1 − pi

)
a(φ) = 1,

b(θi) = − ln(1 − pi) = ln(1 + eθi), c(yi, φ) = 0.
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The mean μi and the variance vi of Yi can be determined from the dis-
tribution (2.3) and can be expressed in terms of φ, θi and the functions
a(·), b(·) and c(·, ·):

μi = E(Yi, θ, φ) = b′(θi) (2.4)
vi = V (Yi, θ, φ) = b′′(θi)a(φ) = V (μi)a(φ), (2.5)

where b′ and b′′ are the first and the second derivativs of b(·), respec-
tively, and V (μi) = ∂μ/∂θ.

For the normal distribution, μi = θi, V (μi) = 1, vi = σ2 and for the
bernoulli distribution, μi = eθi/(1+eθi ), vi = V (μi) = eθi/(1+eθi )2 =
μi(1 − μi).

• the systematic component; the m covariates x combine linearly with
the coefficients β to form the linear predictor, η = Xβ.

• the link between the random and the systematic components; the linear
predictor η = Xβ is a function of the mean parameter μ via a link
function, η = g(μ).

For the normal linear model, g is the identity function and μi = ηi =
xiβ; for the logistic model, g is the logistic function, ηi = ln{μi/(1 −
μi)} and μi = exiβ/(1 + exiβ) = 1/(1 + e−xiβ).

The log-likelihood for the exponential family is:

L(θ, φ, y,X) =
n∑

i=1

{
yiθi − b(θi)

a(φ)
+ c(yi, φ)

}
(2.6)

By assuming that the distribution of Y belongs to the exponential family,
it is possible to derive maximum likelihood estimates for the coefficients
of a GLM. Maximum likelihood estimates (MLEs) of β are generally not
available in closed form, but a numerical approximation can be obtained
via an algorithm known as iteratively weighted least squares (IWLS) or
iteratively reweighted least squares (IRLS). IWLS is one of the key practical
ways in which GLMs are, in fact, ‘general’. This algorithm provides MLEs
for a wide class of commonly used models.

In summary, at each iteration the IWLS algorithm performs a weighted
least squares regression of the adjusted response variables, z, on the ex-
planatory variables, X. In this regression the dependent variable is not y
but z, a linearized form of the link function applied to y, and the weights,
W , are functions of the fitted values, μ̂. The process is iterative because
both the adjusted dependent variable, z, and the weight, W , depend on the
fitted values, for which only current estimates are available.
The kth iteration of the IWLS algorithm consists of the following steps.
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1. Calculate the adjusted responses

z
(k)
i = η

(k)
i + (yi − μ̂

(k)
i )ġ(μ̂(k)

i ) (2.7)

= xiβ̂
(k) + (yi − μ̂

(k)
i )ġ(μ̂(k)

i ).

2. Build the weight diagonal matrix

W (k) = diag

(
1

a(φ)[ġ(μ̂(k)
1 )]2V (μ̂(k)

1 )
, . . . ,

1

a(φ)[ġ(μ̂(k)
n )]2V (μ̂(k)

n )

)
.

(2.8)

3. Run the weighted regression of the z
(k)
i on the covariates xi with

weights given by equation (2.8) and calculate the coefficients β̂(k) given
by:

β̂(k+1) = (XTW (k)X)−1XTW (k)z(k) (2.9)

= β(k) + (XTW (k)X)−1XTW (k)Γ(k)(yi − μ̂
(k)
i )

where Γ(k) is the diagonal matrix defined by Γ(k) = diag(g(μ̂(k)
1 ), . . . , g(μ̂(k)

n )).

4. Proceed to the next iteration.

This algorithm can be repeated until convergence in β̂ or log-likelihood or
deviance.

A reasonable approach for the initialization of the IWLS algorithm is to
set the initial fitted values μ̂i to the mean of the response variable. Alterna-
tively, another approach is to set μ̂i to (yi + ȳ)/2 for a nonbinomial model
and ki(yi + 0.5)/(ki + 1) for a binomial model (i.e. (yi + 0.5)/2 for a logistic
model).

The asymptotic variance of β̂ is given by

V (β̂) = φ(XTWX)−1 (2.10)

where W is the matrix (2.8) computed at the final iteration. Asymptotically-
valid standard errors for the coefficients are obtained by taking the square
root of the leading diagonal of V (β̂).

For the linear regression model, the adjusted responses agree exactly
with y, z

(k)
i = yi, the weight matrix W is the identity matrix, the estimator

(2.9) is the ordinary least squares estimator

β̂(k) = β̂ = (XTX)−1XTy

and no iteration is necessary in the IWLS algorithm.
For the logistic regression model, we have

ġ(μi) =
1

μi(1 − μi)
=

1
V (μi)

and Wi = μi(1 − μi) = V (μi) = 1/ġ(μi).

We now consider a simple R code that implements the IWLS algorithm.
We start generating data using a logistic DGP.
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n <- 250
beta0 <- 0
betas <- c(0.75,2,0,0,0,10,-3,1.5,0,-0.65)
set.seed(-517072325)
m <- length(betas)
X <- matrix(runif(n*m), nrow=n, ncol=m)-0.5
Xb <- beta0+ X %*% betas
pr <- 1/(1 + exp(-Xb))
Y <- rbinom(n = n, prob = pr, size = 1)
dset.orig <- data.frame(y=Y, X=X)

Then, we estimate β coefficients by IWLS:

X1 <- cbind(rep(1,n), X)
beta.iwls <- rep(0,m+1)
mu.hat <- rep(mean(Y),n)
nstep <- 25
k <- 1
while (k < nstep) {

V.mu <- mu.hat*(1-mu.hat)
W <- diag(as.numeric(V.mu))
z <- X1%*%beta.irls + (Y-mu.hat)/V.mu
beta.iwls <- solve(t(X1) %*% W %*% X1) %*% t(X1) %*% W %*% z
eta <- X1 %*% beta.iwls
mu.hat <- 1/(1+exp(-eta))
k <- k+1

}

We compare these estimates to the results given by the glm command:

fit.glm <- glm(y ~ ., data = dset.orig,
family = binomial(link = "logit"))

beta.glm <- coef(fit.glm)
res.unpen <- cbind(beta.iwls,beta.glm)
dimnames(res.unpen)[[2]] <- c("IWLS","glm")
print(res.unpen)

The two algorithms yield estimates that agree exactly:

IWLS glm
(Intercept) -0.1721319 -0.1721319
X.1 1.0094538 1.0094538
X.2 1.7772169 1.7772169
X.3 0.6605817 0.6605817
X.4 -0.1508727 -0.1508727
X.5 0.1766377 0.1766377
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X.6 8.5455813 8.5455813
X.7 -3.5701801 -3.5701801
X.8 1.9911067 1.9911067
X.9 -0.1011964 -0.1011964
X.10 -0.9803812 -0.9803812

The IWLS algorithm is the basis of the one-step bootstrap for GLM proposed
by [Moulton and Zeger (1991)] and considered in section 2.7.

2.4 The parametric bootstrap for GLM

This section starts investigating parametric bootstrap for linear regression
using the following simulation study:

1. S = 500 samples are generated using the linear DGP defined in (2.1).
The R code used for this step is:

n <- 250
beta0 <- 0
betas <- c(0.75,2,0,0,0,10,-3,1.5,0,-0.65)
m <- length(betas)
X <- matrix(runif(n*m), nrow=n, ncol=m)-0.5
Y <- beta0 + X%*%betas + rnorm(n)
dset.orig <- data.frame(y=Y, X=X)

2. For each sample, a linear model is fitted to data, β̂ = (XTX)−1XTY
coefficients and standard deviation σ̂ of the component error ε are
estimated, predictions ŷ = Xβ̂ of the outcome y are calculated.

glm.fit <- glm(y ~ ., data = dset.orig,
family = gaussian(link = "identity"))

beta.hat <- t(coefficients(glm.fit))
y.hat <- predict(glm.fit,type="response")
sigma.hat <- sd(glm.fit$res)

3. For each sample, B = 500 bootstrap samples are generated using the
X matrix and the outcome y∗ ∼ N(Xβ̂, σ̂), where σ̂ is the estimated
standard deviation of the component error ε.

Y.boot <- rnorm(n, mean=y.hat, sd=sigma.hat)

4. For each bootstrap sample, a linear model is fitted to data and β̂∗

bootstrap coefficients are estimated.
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B <- 500
beta.boot <- matrix(0, B, m+1)
cnt2 <- 1
while (cnt2 <= B) {

Y.boot <- rnorm(n, mean=y.hat, sd=sigma.hat)
dset.boot <- data.frame(y = Y.boot, X = X)
glm.fit.boot <- glm(y ~ ., data = dset.boot,

family = gaussian(link = "identity"))
if (glm.fit.boot$converged) {
beta.boot.b <- coefficients(glm.fit.boot)
beta.boot[cnt2,] <- beta.boot.b

cnt2 <- cnt2 +1
}

}

Globally, this simulation yields 500 values of the β̂ estimated coefficients
and 250, 000 β̂∗ bootstrap estimates.

Figure 2.3 and 2.4 show the estimated density functions of the β̂ and β̂∗

coefficients of model (2.1).
Figure 2.2 is a Q-Q plot that shows the degree of ‘closeness’ between the

distributions of Tj =
√

n(β̂j − βj) and T ∗
j =

√
n(β̂∗

j − β̂j). That is, for each
model coefficient, this figure compares the distribution Ĝ of the differences
between bootstrap estimates β̂∗

j and β̂j estimates to the distribution G of
the differences between the original estimates β̂j and the true values βj . If
the bootstrap method works correctly, the two resulting distributions are
close and the points of the Q-Q plot lies on the dashed line.

The results of figure 2.2 evidences that the distance between the distri-
butions G and Ĝ is small and that parametric bootstrap is able to reproduce
correctly the randomness of the β̂ estimated coefficients.

These results are confirmed by the empirical coverage probabilities of
table 2.3. They are all close to the desired nominal coverage rate of 90%.
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Figure 2.2: Parametric bootstrap for the linear model (2.1). Comparison of
G and Ĝ distributions of the coefficients using Q-Q plots.
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Figure 2.3: Parametric bootstrap for the first five coefficients of the linear
model (2.1). Density functions of the estimated coefficients (above) and of
the bootstrap estimates (below).
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Figure 2.4: Parametric bootstrap for the last five coefficients of the linear
model (2.1). Density functions of the estimated coefficients (above) and of
the bootstrap estimates (below).
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For comparison purposes, here we consider a numerical simulation for
studying the properties of parametric bootstrap when applied to logistic
regression. The simulation study of this section is organized as follows.

1. S = 500 samples are generated using the logistic DGP defined in
equation (2.2).

n <- 250
beta0 <- 0
betas <- c(0.75,2,0,0,0,10,-3,1.5,0,-0.65)
m <- length(betas)
X <- matrix(runif(n*m), nrow=n, ncol=m)-0.5
Xb <- beta0 + X%*%betas
pr <- 1/(1+exp(-Xb))
Y <- rbinom(n = n, prob = pr, size = 1)
dset.orig <- data.frame(y=Y, X=X)

2. For each sample, a logistic model is fitted to data. Parameters β̂ are
estimated and the success probabilities p̂i are estimated, i = 1, 2, . . . , n.

glm.fit.orig <- glm(y ~ ., data = dset.orig,
family = binomial(link = "logit"))

beta.hat <- t(coefficients(glm.fit))
pr.hat <- predict(glm.fit.orig,type="response")

3. For each sample, probabilities p̂i are generated using B = 500 boot-
strap samples.

4. For each bootstrap sample, a logistic model is fitted to data and pa-
rameters β̂∗ are estimated.

B <- 500
beta.boot <- matrix(0, B, m+1)
cnt2 <- 1
while (cnt2 <= B) {

Y.boot <- rbinom(n = n, prob = pr.hat, size = 1)
dset.boot <- data.frame(y = Y.boot, X = X)
glm.fit.boot <- glm(y ~ ., data = dset.boot,

family = binomial(link = "logit"))
if (glm.fit.boot$converged) {
beta.boot.b <- coefficients(glm.fit.boot)
beta.boot[cnt2,] <- beta.boot.b
cnt2 <- cnt2 +1
}

}
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The Q-Q plot of figure 2.5 shows that the distribution of the T ∗
j differ-

ences have some very extreme values. These outliers are not attributable
to the non-convergence of the IWLS algorithm because when the estima-
tion process does not converge, we discard the corresponding sample (or
bootstrap sample) and generate a new one.

Unfortunately, given the wide range of the axis, it is not possible to draw
conclusions about the performance of parametric bootstrap using figure 2.5.

Consequently, the Q-Q plots are then re-plotted in figure 2.6 after the
elimination of these outliers. Now, it is evident that the distance between G
and Ĝ distributions is small only for non informative variables (i.e. covari-
ates with β = 0) and it grows for growing values of the model coefficients β.
Simulations show that β6 and β7 have the most marked differences.

This result is confirmed by the low values of the empirical coverage prob-
abilities estimated for these coefficients (see Table 2.3). Coefficients β6 and
β7 have the lowest coverage probabilities.

The bootstrap confidence intervals were estimated using the boot R
package [Canty and Ripley (2010)]:

require(boot)
boot.out <- list(t0 = t(beta.orig),

t = as.matrix(beta.boot),
R = B)

ci <- boot.ci(boot.out, type="perc",
conf=alpha, index=k)$percent[4:5]
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Figure 2.5: Parametric bootstrap for the logistic model (2.2). Comparison
of G and Ĝ distributions using Q-Q plots.
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Figure 2.6: Parametric bootstrap for the logistic model (2.2). Comparison
of G and Ĝ distributions using Q-Q plots, after deleting extreme values
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The results of this section are interesting because they show that, even
under non-critical conditions, parametric bootstrap for logistic regression
can be problematic. The comparison of bootstrap estimates to original es-
timates shows that the distribution of bootstrap estimates have a (left or
right, it depends on the sign of the coefficient) ‘heavy’ tail, that is an anoma-
lous abundance of values at one of the extreme of the range. This problem
yields poor bootstrap approximations of the distribution, G.

2.5 Vector resampling

Vector (or case) resampling is a type of nonparametric boostrap that imag-
ines the data as a sample from some bivariate distribution, F , of (X,Y ).
For GLMs, it is based on the following algorithm:

1. Resample with replacement from the set of pairs (x1, y1), . . . , (xn, yn),
(xi is the ith row of X) and generate the bootstrapped pairs (x∗

1, y
∗
1),

. . ., (x∗
n, y∗n). Call (X∗, Y ∗) the corresponding bootstrap dataset.

2. Fit the generalized linear model to (X∗, Y ∗) data and get the β̂∗ esti-
mate.

3. Repeat steps 1 and 2 B times.

Now we test vector resampling on the two DGPs used in the previous
section: the linear model (2.1) and the logistic model (2.2). The R code
used for resampling with replacement the pairs (x1, y1), . . . , (xn, yn) (that is
the rows of the X matrix and the elements of the y vector) is:

idx.boot <- sample(1:n, replace = T)
X.boot <- X[idx.boot,]
Y.boot <- Y[idx.boot]
dset.boot <- data.frame(y = Y.boot, X = X.boot)

The QQ-plots of figure 2.5 and the empirical coverage probabilities of
table 2.3 evidence that, for data generated using the linear model, the non-
parametric bootstrap works correctly, giving good approximations of the G
distributions for all the (informative and non informative) covariates.

On the other side and similarly to the above section on parametric boot-
strap, we find a different scenario when we apply nonparametric bootstrap
to the logistic DGP. Again, the results show some very extreme values of the
β̂∗ bootstrap estimates and show that this bootstrap technique is able to
approximate the distribution of β̂ only partially and moderately (see figures
2.8 and 2.9 and table 2.3).
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Figure 2.7: Nonparametric bootstrap for the linear model (2.1). Comparison
of G and Ĝ distributions using Q-Q plots.

2.6 The residual bootstrap

The residual bootstrap for linear regression models is based on the following
algorithm:

1. Calculate the OLS estimate β̂ = (XTX)−1XTY of the model coeffi-
cients and the modified residuals:

ri =
yi − ŷi√
1 − hi

i = 1, 2, . . . , n, (2.11)

where ŷi = Xβ̂ is the predicted value of the outcome yi and hi is the
leverage of the ith observation.

2. Calculate the centered residuals ei = ri − r, where r is the average of
the ri values.

3. Randomly resample with replacement e∗i from ei.

4. Set y∗ = Xβ̂ + e∗.

5. Fit OLS regression to (X, y∗) data and get β̂∗ estimates.

6. Calculate the confidence interval [2β̂ − β̂∗
(1−α/2); 2β̂ − β̂∗

(α/2)], where

β̂∗
α is the αth percentile of the β̂∗ boostrap distribution.
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Figure 2.8: Nonparametric bootstrap for the logistic model (2.2). Compar-
ison of G and Ĝ distributions using Q-Q plots.

7. Repeat steps 3 to 6 B times.

Influence points are those observations that cause large changes in the
parameter estimates when they are deleted. The leverage value hi is typically
defined as the ith diagonal element of the hat matrix H = X(XTX)−1XT.
The hi values are always inside the interval [0, 1]. An influence point will
typically have a high leverage value hi. The converse is not always true: a
point with a high leverage is not necessarily an influential point.

[Moulton and Zeger (1991)] extend this type of residual bootstrap to the
class of GLMs, using a generalization of the notion of residuals. The central
idea is to consider Pearson residuals, obtained from row residuals yi − μ̂i,
scaled by the estimated standard deviation,

√
vi of yi,

ri =
yi − μ̂i√

vi

or to consider the standardized Pearson residuals, that is the more nearly
exchangeable quantities:

ri =
yi − μ̂i√
vi(1 − hi)

, (2.12)

where yi is the observed outcome, μ̂i the prediction of the model, hi is
the leverage of the ith observation that is element of the hat matrix H =
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Figure 2.9: Nonparametric bootstrap for the logistic model (2.2). Com-
parison of G and Ĝ distributions using Q-Q plots, after deleting extreme
values.

W 1/2X(XTWX)−1XTW 1/2 = G(GTG)−1G, where G = W 1/2X and W is
defined in (2.8).

For the logistic regression yi ∈ {0, 1}, vi = μ̂i(1 − μ̂i), where μ̂i = p̂i

is the success probability for the ith observation estimated by the logistic
model

μ̂ =
1

1 + exp(−η̂)
, η̂ = Xβ̂.

Pearson residuals and standardized Pearson residuals are quite simple
to estimate in R. Below we show an example of the R code for estimating
these residuals. We start generating data from the logistic model (2.2).
Then we estimate the logistic model using the glm command and calculate
probabilities μ̂i (probs.hat) and variances vi (V.probs.hat).

glm.fit <- glm(y ~ X, family = binomial(link = "logit"))
probs.hat <- predict(glm.fit, newx=X, type="response")
V.probs.hat <- glm.fit$family$variance(probs.hat)
pears.res <- (y - probs.hat)/sqrt(V.probs.hat)

The standardized Pearson residuals are calculated using the following code:

hi <- hatvalues(glm.fit)
std.pears.res <- pears.res/sqrt(1 - hi)
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Figure 2.10: Residual bootstrap for the linear model (2.1). Comparison of
G and Ĝ distributions using Q-Q plots, after deleting extreme values.

The distributions of Pearson and standardized Pearson residuals for the
above logistic model are shown in figure (2.11).

The simplest form of residual bootstrap for GLM can be described by
the following algorithm:

1. Fit GLM, estimate model coefficients, calculate standardized Pearson
residuals ri defined by equation (2.12) and mean-adjusted residuals
ei = ri − r̄, where r̄ = 1/n

∑
i ri.

2. Resample with replacement the mean-adjusted residuals e and gener-
ate the bootstrapped residuals e∗1, e∗2, . . . , e∗n.

3. Calculate the bootstrapped response variable by

y∗i = μ̂i +
√

vie
∗
i . (2.13)

4. Fit the generalized linear model to the (X, y∗) data set and calculate
the β̂∗ estimate.

5. Calculate the confidence interval [2β̂ − β̂∗
(1−α/2); 2β̂ − β̂∗

(α/2)], where

β̂∗
α is the αth percentile of the β̂∗ boostrap distribution.

6. Repeat steps 2 to 5 B times .
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Figure 2.11: Pearson residuals and standardized Pearson residuals for a
logistic model

The R code for resampling mean-adjusted residuals and for generating
the bootstrapped response variable is:

ma.std.pears.res <- std.pears.res - mean(std.pears.res)
res.boot <- sample(ma.std.pears.res, replace = T)
probs.boot <- probs.hat + sqrt(V.probs.hat)*res.boot

Figure 2.12 (a) shows an example of the distribution of bootstrapped
standardized Pearson residuals and (b) of the distribution of the boot-
strapped response variable y∗i .

One obvious drawback of the residual bootstrap method for GLM is that
it does not yield discrete 0/1 y∗i values, but it generates non-integer values,
negative values and values above 1.

We consider two methods for the discretization of y∗i .

• A first, simple fix is to round values of y∗i to the nearest value 0 or 1.
That is

ỹ∗i =
{

0 if y∗i ≤ 0.5
1 if y∗i > 0.5

where ỹ∗i is the discretized version of y∗i .

This method can be implemented in R using
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Figure 2.12: Bootstrapped residuals and probabilities of a logistic model

Y.boot <- array(0,n)
Y.boot[probs.boot>0.5] <- 1

• A second way for generating bootstrapped 0/1 values of the outcome
y consists in modifying y∗i using the rule

ỹ∗i =

⎧⎨⎩
0 if y∗i < 0
y∗i if 0 ≤ y∗i ≤ 1
1 if y∗i > 1

(2.14)

and then generating the 0/1 outcome using these ỹ∗i values (0 ≤ ỹ∗i ≤
1) as probabilities in a Bernoulli random number generator.

The R code for implementing this method is

probs.boot[probs.boot<0] <- 0
probs.boot[probs.boot>1] <- 1
Y.boot <- rbinom(n = n, prob = probs.boot, size = 1)

In figure 2.13 we show the distributions of (a) the probabilities pre-
dicted by the logistic model and (b) the bootstrapped values ỹ∗i given
by equation (2.13) and modified according to rule (2.14).
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It is evident that these distributions are rather different. Bootstrapped
[0, 1]-resized probabilities shows a predominance of extreme (0 and 1)
values (see [Davison and Hinkley (1997)], p. 334).
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Figure 2.13: Histograms of (a) predicted probabilities μ̂ and (b) boot-
strapped probabilities obtained by rule (2.14).

[Moulton and Zeger (1991)] recognized that the approach of residual boot-
strap has some drawbacks. The more serious problem is the risk of obtaining
‘extreme’ data replications for which either the likelihood fail to converge
(rare) or the parameter estimates fails to converge (much more likely). Dis-
carding the divergent bootstrap replicates can introduce bias.

2.6.1 A simulation study for λmin and λ1se

In this subsection we investigate the statistical properties of λmin and λ1se,
two cross-validation (CV) estimates of the optimal penalty parameter, by
means of a simple cimulation study.

Figure (2.15) shows an example of estimation of λmin and λ1se for a sam-
ple generated by the linear DGP described in (2.1) and using the cv.glmnet
command of the glmnet R package developed by [Friedman et al. (2010)].
The estimated values are λmin = 0.00224 and λ1se = 0.015. The number of
non zero β̂ coefficients estimated by lasso are 7 and 6, respectively.
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Figure 2.14: Residual bootstrap for the logistic model (2.2). Comparison of
G and Ĝ distributions of the coefficients using Q-Q plots.

In general, λmin ≤ λ1se and the use of λmin gives a greater number of
selected covariates. This means that models estimated by lasso using λmin

are less regularized than models estimated with λ1se.
In figure (2.16) we study the distribution of λmin in samples generated

by (??) (λcv) and in data resampled by residual bootstrap (λ∗
cv). In figure

(2.17) we performed the same study for λ1se.
It is worth to notice some interesting fact:

� distributions are bimodal and one of the modes is close to 0 (absence
of regularization);

� the main differences between the two distributions of λmin are located
in the left tails; bootstrapped data show more frequently larger values
of λmin than original data.
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Figure 2.15: Plot of the mean cross-validation squared prediction error as a
function of the penalty parameter λ for the linear DGP (2.1). The dotted
line on the left side corresponds to λmin. The second line is λ1se.
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tions are reported (dashed line is for bootstrapped data) and in (d) the two
distributions are compared by a Q-Q plot.
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Figure 2.17: Distribution of λ1se in (a) original and (b) residual bootstrapped
data. In (c) the kernel density estimations of the two distributions are re-
ported (dashed line is for bootstrapped data) and in (d) the two distributions
are compared by a Q-Q plot.
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2.7 One-step bootstrap for GLM

Another bootstrapping method that is worth considering here is the one-step
bootstrap for GLMs proposed in [Moulton and Zeger (1991)] and extended
in [Claeskensa et al. (2003)]. This method is appealing because it is easy to
implement, it is fast and does not generate extreme values.

[Moulton and Zeger (1991)] proposed two bootstrap procedures based on
a one-step approximation of the distribution of the β̂ coefficients. The first
procedure bootstraps a GLM in a manner analogous to residuals resampling
and the second one is in some sense similar to vector resampling.

The idea behind this method is to estimate the β̂∗ bootstrap coefficients
using the first step of the IWLS estimation algorithm. The algorithm is not
allowed to run until it reaches convergence, but is stopped after the first
iteration. This is why it is called ”one-step” bootstrap.

One-step residual resampling

1. Fit the GLM, estimate model coefficients β̂ and outcome predictions μ̂,
calculate standardized Pearson residuals ri defined by equation (2.12)
and mean-adjusted residuals ei = ri − r̄, where r̄ = 1/n

∑
i ri.

2. Resample with replacement the mean-adjusted residuals e and gener-
ate the bootstrapped residuals e∗ = (e∗1, e∗2, . . . , e∗n).

3. Calculate the one-step bootstrapped β∗ coefficients by:

β∗ = (XTWX)−1XTWz∗

= (XTWX)−1XTW (Xβ̂ + ΓV 1/2e∗)
= β̂ + (GTG)−1GTe∗, (2.15)

where V = diag(v1, . . . , vn), Γ = diag(ġ(μ̂1), . . . , ġ(μ̂n)), ΓV 1/2 =
W−1/2, G = W 1/2X and W is defined in (2.8).

4. Repeat steps 2 and 3 B times .

For a linear model W = In, where In is the identity matrix of order n,
G = X and

β∗ = β̂ + (XTX)−1XTe∗ = (XTX)−1(XTX)β̂ + (XTX)−1XTe∗

= (XTX)−1XT(Xβ̂ + e∗) = (XTX)−1XTy∗

where y∗ = Xβ̂+e∗. This means that for the linear regression model the one-
step residual resampling corresponds to the residual resampling of section
2.6.

For a logistic model W = V and G = V 1/2X.
The results of the simulation study about the linear model (2.1) and the

logistic model (2.2) are shown in figure 2.18, figure 2.19 and table 2.3.
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Figure 2.18: One-step bootstrap (based on residual resampling) for the linear
model (2.1). Comparison of G and Ĝ distributions of the model coefficients
using Q-Q plots.

One-step vector resampling

1. Fit the GLM, estimate model coefficients β̂, calculate standardized
Pearson residuals ri defined by equation (2.12) and mean-adjusted
residuals ei = ri − r̄, where r̄ = 1/n

∑
i ri.

2. Generate a resampling (diagonal) matrix D = diag(d), where d =
(d1, d2, . . . , dn) is distributed as a multinomial random vector of pa-
rameters n (number of independent trials) and p = (1/n, . . . , 1/n)
(vector of probabilities of each outcome).

3. Calculate the one-step bootstrapped β∗ coefficients by:

β∗ = β̂ + (GTDG)−1GTDe, (2.16)

where G = W 1/2X as defined above.

4. Repeat steps 2 and 3 B times .

For a linear model G = X and

β∗ = β̂ + (XTDX)−1XTDe∗ = (XTDX)−1(XTDX)β̂ + (XTDX)−1XTDe∗ =
= (XTDX)−1XTD(Xβ̂ + e∗) = (XTDX)−1XTDy∗
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Figure 2.19: One-step bootstrap (based on residual resampling) for the lo-
gistic model (2.2). Comparison of G and Ĝ distributions of the model coef-
ficients using Q-Q plots.

where y∗ = Xβ̂ + e∗ and (DX,Dy) is the dataset obtained sampling pairs
with replacement from (x1, y1), . . ., (xn, yn). This means that for the linear
regression model, the one-step vector resampling corresponds to the vector
resampling procedure of section 2.5.

The results of the simulation study for the linear model (2.1) and the
logistic model (2.2) are shown in figure 2.20, figure 2.21 and table 2.3.
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Figure 2.20: One-step bootstrap (based on vector resampling) for the linear
model (2.1). Comparison of G and Ĝ distributions of the coefficients using
Q-Q plots.
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Figure 2.21: One-step bootstrap (based on vector resampling) for the logistic
model (2.2). Comparison of G and Ĝ distributions of the coefficients using
Q-Q plots.
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2.8 Discussion

In this chapter we investigated and compared five bootstrap methods for
GLMs. Our main objective was the construction of reliable confidence in-
tervals for model coefficients.

In the case of a linear model, all five methods yield intervals with good
empirical coverage and their performance is comparable. More problem-
atic is the construction of confidence intervals for a GLM. In this case our
simulative studies suggest that the one-step vector resampling algorithm of
[Moulton and Zeger (1991)] is the better method, followed by the one-step
residual bootstrap.

These two methods show a high capability of reproducing the uncertainty
about coefficients of regression models and are also very fast because they do
not use the complete IWLS estimation algorithm (like parametric bootstrap,
case resampling and residual resampling) but only the first step.

In the next chapter we investigate the possibility to generalize the two
one-step algorithms to the class of �1-penalized GLMs.
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Chapter 3

Bootstrap for penalized
GLMs

3.1 Introduction

An important open problem in the field of �1-penalized regression is the
construction of confidence intervals for the model coefficients. A popular
approach to calculating confidence intervals is to use bootstrap simulation
algorithms.

Compared to GLMs, the construction of confidence intervals for the co-
efficients of a penalized GLM must face an additional obstacle. In fact, the
introduction of a penalization in the objective function generates a shrinkage
effect, which is a bias on the estimated coefficients.

This means that, for example, the ‘naive percentile’ interval with (1−α)
coverage

[β̂∗
LO(α); β̂∗

UP(α)] = [β̂∗
(α/2); β̂∗

(1−α/2)]

or the bootstrap confidence interval

[2β̂ − β̂∗
(1−α/2); 2β̂ − β̂∗

(α/2)]

may be unreliable if the estimator β̂ is biased. The first interval is based
on the hypothesis that β̂∗ ≈ β, which is not true for a biased estimator.
The second interval is based on the idea that the distribution of (β̂ − β)
can be approximated through the bootstrap distribution of (β̂∗− β̂). Again,
in general, for a biased estimator this is not realistic because E(β̂ − β) 	=
E(β̂∗ − β̂). In the next sections we will see that this condition is valid for
the residual bootstrap proposed by [Chatterjee and Lahiri (2010)], but only
when applied to the linear model and not for the whole class of GLMs.

In sections 3.2 and 3.3 we start considering two bootstrap methods for
penalized linear models based on the resampling of model residuals. We
first review their functioning and their statistical properties and then we
evaluate their performance by a simulation study.
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Section 3.4 describes case and vector resampling for penalized GLMs and,
using a simulation study with a logistic DGP, shows that these methods do
not allow building at good confidence intervals.

In the subsequent sections we develop some ideas for generalizing the
method of [Chatterjee and Lahiri (2010)] to �1-penalized GLMs. The ap-
proximation of the lasso solutions by ridge regression is the core of section
3.5. This approximation proves to be useful for the development of a one-
step bootstrap method for penalized GLMs. This method is described and
tested in section 3.6.

In section 3.7 we consider double bootstrap, a resampling technique that
reduces the error of single bootstrap and builds confidence intervals with a
higher order of accuracy. We apply double bootstrap to our one-step residual
resampling algorithm, showing that it can offer sensibly reduced coverage
error (see sectionone.step.boot.glm.double).

3.2 The residual bootstrap for penalized LMs

Consider the linear regression model

yi = xT
i β + εi, i = 1, . . . , n, (3.1)

where yi is the response, xi = (xi1, . . . , xip)T is a p-dimensional covariate
vector, β = (β1, . . . , βp)T is the regression parameter and {εi : i = 1, . . . , n}
are independent and identically distributed errors.

For the penalized linear regression, we know that the lasso estimator of
β is defined as the minimizer of the �1-norm penalized least square criterion
function,

β̂lasso = arg min
u∈Rp

n∑
i=1

(yi − xT
i u)2 + λ

p∑
j=1

|uj |, (3.2)

where λ is the regularization parameter.
In this section we start considering a simple resampling algorithm for the

�1-penalized linear model. In the preceding chapter we have shown that there
are two major approaches to bootstrap for regression models, depending on
whether the xi’s are assumed to be random or not. In the case where xi is
random, it is of interest to study the joint distribution of the covariates and
the response, hence vector resampling (i.e. pairwise bootstrap) is a relevant
choice. In contrast, one can assume that the xi’s are non-random. In this
situation, the standard approach to bootstrapping is the residual bootstrap
[Efron (1979)].

A straightforward implementation of the residual bootstrap algorithm
for the �1-penalized linear model can be summarized as the following steps.
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1. Calculate, by cross-validation, the optimal penalization parameter λ̂
and estimate β̂ using the lasso estimator of β defined in (3.2)

2. Let ei be the associated residuals:

ri = yi − xT
i β̂, i = 1, . . . , n.

3. Consider the set of centered residuals {ei = ri − r̄ : i = 1, . . . , n}, where
r̄ = n−1

∑n
k=1 ri.

4. Select with replacement a sample of size n, {e∗i : i = 1, . . . , n} from the
set of centered residuals ei.

5. Calculate the bootstrapped version of the outcome variable (3.1) as

y∗i = xT
i β̂ + e∗i , i = 1, . . . , n.

6. Using the bootstrap dataset {(y∗i , xi) : i = 1, . . . , n} and the penaliza-
tion parameter λ̂, calculate the bootstrap version of the lasso estimator
defined as:

β̂∗ = arg min
u∈Rp

n∑
i=1

(y∗i − xT
i u)2 + λ̂

p∑
j=1

|uj |, (3.3)

7. Calculate the confidence interval [2β̂ − β̂∗
(1−α/2); 2β̂ − β̂∗

(α/2)], with

coverage (1 − α), where β̂∗
j is the jth percentile of the β̂∗ bootstrap

distribution.

8. Repeat steps 2 to 7 B times.

The bootstrap version of T ≡ n1/2(β̂−β) is T ∗ = n1/2(β̂∗−β̂). The resid-
ual bootstrap estimator of the unknown distribution G of T is the (condi-
tional) distribution Ĝ(·) of T ∗ given the observations {(yi, xi) : i = 1, . . . , n}:

Ĝ(B) = pr∗(T ∗ ∈ B), B ∈ B(Rp), (3.4)

where pr∗ denotes the conditional probability given the errors {εi : i =
1, . . . , n} and B(Rp) denotes the Borel σ-field on R

p.
For the bootstrap approximation to be useful, one would expect Ĝ(·) to

be close to G(·). However, for the above algorithm, this is not the case. In a
recent work, [Chatterjee and Lahiri (2010)] show that the residual bootstrap
estimator Ĝ(·), instead of converging to the deterministic limit of the G
distribution given by [Knight and Fu (2000)], converges weakly to a random
probability measure and therefore, it fails to provide a valid approximation
of G(·).
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The inconsistency of the standard residual bootstrap arises when some
components of β are zero. The residual bootstrap approximation has a
random limit and is inconsistent. The lasso estimators of the non-zero
components of β estimate their signs correctly with high probability, but
the estimators of the zero-components take both positive and negative val-
ues with positive probabilities. The residual bootstrap mimics the main
features of the regression model closely but it fails to reproduce the sign
of the zero-components of β with sufficient accuracy in the formulation
of the bootstrap lasso estimation criterion, leading to the random limit
[Chatterjee and Lahiri (2010)].

The results of our simulation study with a linear DGP show that the
residual bootstrap works acceptably well.

The comparisons between the distributions of β̂∗
j − β̂j and β̂j − βj , j =

1, . . . , p using Q-Q plots, are shown in figure 3.2. Figure 3.1 shows the
empirical probability distributions of β̂∗

6 and β̂6.
The β̂∗

j − β̂j , j = 1, . . . , p differences are in mean rather close to the bias
β̂j − βj :

β0 β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

(β̂ − β) 0 -0.0744 -0.0691 0 0 0 -0.0679 0.0749 -0.0655 0 0.0765
(β̂∗ − β̂) 0.0010 -0.0674 -0.0707 0.0035 0.0009 0.0104 -0.0792 0.0755 -0.0759 -0.0029 0.0537

The bootstrap approximation of the variability of the coefficients is ac-
curate for all βs , with a 5% maximum error for β10 (see Table 3.2). These
approximation errors are all positive for the null coefficients (β3, β4, β5 and
β9) and all negative for the non zero coefficients. This fact may be a sign of
some systematic distortion.

The empirical coverage is close to the desired (1−α) coverage (see Table
3.3). Not surprisingly, the maximum coverage errors correspond to β10 and
β1, the two smaller non-zero coefficients. For a limited sample size, these
coefficients can be difficult to estimate correctly. In fact, for some samples,
they can be erroneously shrinked to zero. This problem is well depicted in
figure 3.2.
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Figure 3.1: Estimated pdf of the �1-penalized β̂6 model coefficient (dashed
line) and estimated pdf of the residual bootstrap replications (dot-dashed
line). The vertical lines show the true value (solid), the mean value of the pe-
nalized coefficient (dashed) and the mean value of the bootstrap replications
(dot-dashed).
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Figure 3.2: Residual resampling for the �1-penalized logistic model (2.2).
Comparison of G and Ĝ distributions of the model coefficients using Q-Q
plots.
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3.3 A modified bootstrap method

[Chatterjee and Lahiri (2010)] propose a modified version of the bootstrap
lasso estimator that more closely reproduces the sign-vector corresponding
to the unknown parameter β. The idea is to force components of the lasso
estimator β̂ to be exactly zero whenever they are close to zero. The orig-
inal lasso estimator is

√
n-consistent and its fluctuations are of the order

n−1/2 around the true value. This suggests that a neighborhood of order
larger than n−1/2 around the true value will contain the values of the lasso
estimator with high probability.

Let {an} be a sequence of real numbers such that

an + (n−1/2 log n)a−1
n → 0 as n → ∞. (3.5)

For example, an = cn−δ satisfies (3.5) for all c ∈ (0,∞) and δ ∈ (0, 2−1).
[Chatterjee and Lahiri (2010)] threshold the components of the lasso es-

timator β̂ at an and define the modified lasso estimator as

β̃ =
(
β̃1, . . . , β̃p

)T

with β̃j = β̂j · I
(
|β̂j | ≤ an

)
, (3.6)

where β̂ is the usual lasso estimate defined in (3.2), I(·) denotes the indicator
function and j = 1, . . . , p.

Note that for a nonzero component βj ,

|β̂j | = |βj | + Op

(
n−1/2

)
>

|βj |
2

≥ an

for large n, with high probability. Hence, for n large, β̃j = β̂j with proba-
bility tending to 1. Thus, this shrinkage does not have any significant effect
on the non-zero components.

However, for a zero component, βj = 0,

|β̂j | = |βj | + Op

(
n−1/2

)
= Op

(
n−1/2

)
∈ [−an, an],

with probability tending to 1 as n → ∞. Thus, for large n:

β̃j = β̂j · I

(
|β̂j | ≤ an

)
= 0

with probability tending to 1.
The shrinkage by an accomplishes our main objective of capturing the

signs of the zero components precisely with probability tending to 1, as the
simple size n goes to infinity.

Here is the modified algorithm proposed by [Chatterjee and Lahiri (2010)].
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1. Calculate by cross-validation the optimal penalization parameter λ̂
and estimate the lasso estimator β̂ defined in (3.2) using the data set
(X, y).

2. Calculate the thresholded coefficients β̃ defined in (3.6).

3. Calculate the modified residuals

ri = yi − xT
i β̃, i = 1, . . . , n.

and consider the set of centered residuals {ei = ri − r̄ : i = 1, . . . , n},
where r̄ = n−1

∑n
k=1 ri.

4. Select with replacement a random sample {e∗∗1 , . . . , e∗∗n } of size n from
the centered residuals ei and set

y∗∗i = xT
i β̃ + e∗∗i , i = 1, . . . , n.

5. Estimate the modified bootstrap lasso estimator using the penalization
λ̂ and

β̂∗∗ = arg min
u∈Rp

n∑
i=1

(y∗∗i − xT
i u)2 + λ̂

p∑
j=1

|uj|. (3.7)

6. Calculate the confidence interval [β̂ + β̃ − β̂∗∗
(1−α/2); β̂ + β̃ − β̂∗∗

(α/2)].

7. Repeat steps 2 to 6 B times.

Let G̃(·) denote the conditional distribution of T ∗∗ given the observa-
tions, i.e. G̃(B) = pr∗(T ∗∗ ∈ B), B ∈ R

p). Thus, G̃(·) is the modified
bootstrap approximation of the unknown distribution G(·) of T .

[Chatterjee and Lahiri (2010)] show that the modified bootstrap gives a
valid approximation to the distribution, that G̃(·) is a consistent estimate
of G(·):

ρ
(
G̃(·), G(·)

)
→ 0, as n → ∞, with probability 1,

where ρ(·, ·) is the Prohorov metric defined on the set of all the probability
measures on (Rp,B(Rp)).

In addition, they prove that the modified bootstrap also produces strongly
consistent estimators of the asymptotic bias and variance of T .

[Chatterjee and Lahiri (2010)] also propose a computational-intensive al-
gorithm for the choice of the optimal penalty parameter λ0, where λn =√

nλ0. This algorithm is based on the calculation of T ∗∗
n (λ0, a) =

√
n(β∗∗

n −
β̃n) on a grid of values of the penalization λ0 and of the thresholding value
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a, where β∗∗
n is the vector of lasso coefficients estimated on boostrap samples

and β̃n is the vector of modified lasso estimates.
The optimal value λ∗

0 is defined as:

λ∗
0 ≡ argmin

λ0,a
E∗||T ∗∗

n (λ0, a)||2 = argmin
λ0,a

√
nE∗||β∗∗

n − β̃n||2 (3.8)

In addition, the authors suggest to use the jackknife-after-bootstrap for se-
lecting an appropriate threshold a in finite samples.

The computational burden of this algorithm is rather high even for mod-
erate size datasets. This point cannot be ignored when making extensive
simulation studies. Therefore, in all our numerical simulations we prefer to
use the faster method based on cross-validation.

Figure 3.3 shows that the modified residual bootstrap gives a good ap-
proximation of distribution G for the coefficients β2 to β9. For β1 and β10 the
method yields approximations that are worse than the residual bootstrap
approximations. This is not surprising because the true values of these co-
efficients are near zero (0.75 and -0.65, respectively), penalized regression
often shrinks estimates toward zero and the modified residual bootstrap in-
troduces a second shrinkage for the near-zero components of the β̂ lasso
estimator. This is evidenced in figures 3.4 and 3.5 where the distributions
of β̃1 and β̃10 are clearly bimodal; the first modal value is near 0 and the
second one is close to the true value (0.75 and -0.65, respectively).

Globally, Tables 3.1, 3.2 and 3.3 show that the modified residual boot-
strap do not offer any evident improvement compared to residual bootstrap.
On the contrary, the empirical coverage for β1 and β10 are markedly lower
than the corresponding coverage of the residual bootstrap.
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Figure 3.3: Modified residual bootstrap for the penalized coefficients (3.2) of
the linear model (3.1). Comparison of the empirical G and Ĝ distributions
of the coefficients using Q-Q plots.
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Figure 3.4: Estimated pdf of the �1-penalized β̂2 model coefficient (dashed
line) and estimated pdf of the modified residual bootstrap replications (dot-
dashed line). The vertical lines show the true value (solid, β2 = 0.75), the
mean value of the penalized coefficient (dashed) and the mean value of the
bootstrap replications (dot-dashed).
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Figure 3.5: Estimated pdf of the �1-penalized β̂10 model coefficient (dashed
line) and estimated pdf of the modified residual bootstrap replications (dot-
dashed line). The vertical lines show the true value (solid, β2 = −0.65), the
mean value of the penalized coefficient (dashed) and the mean value of the
bootstrap replications (dot-dashed).
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3.4 Vector and residual resampling for penalized
GLMs

In this section we start adapting the residual bootstrap algorithm to the class
of penalized GLMs using the notion of standardized residual bootstrap.

This algorithm is very similar to the residual bootstrap for GLMs and
can be summarized as follows.

1. Estimate the penalty λ̂ by cross-validation, fit the penalized GLM,
estimate model coefficients, calculate standardized Pearson residuals
defined by ri = (yi − μ̂i)/

√
vi(1 − hi) and mean-adjusted residuals

ei = ri − r̄, where r̄ = 1/n
∑

i ri.

2. Resample with replacement the mean-adjusted residuals ei and gener-
ate the bootstrapped residuals e∗1, e∗2, . . . , e∗n.

3. Calculate the bootstrapped response variable by

y∗i = μ̂i +
√

vie
∗
i . (3.9)

4. Fit the penalized GLM to the (X, y∗) data set using the penalty λ̂ and
calculate the β̂∗ estimate.

5. Calculate the confidence interval [2β̂ − β̂∗
(1−α/2); 2β̂ − β̂∗

α/2].

6. Repeat steps 2 to 5 B times .

Figure 3.6 compares the empirical pdf Gj of the differences Tj =
√

n(β̂j−
β) to the bootstrap approximations Ĝj of T ∗

j =
√

n(β̂∗
j − β̂) obtained apply-

ing the above algorithm to the logistic DGP (2.2). The distributions of zero
coefficients appear to be adequately reproduced by bootstrap replications
while for non zero coefficients the true and the approximated distributions
show differences that increase for increasing (absolute) values of coefficients.
The main difference between Gj and Ĝj is attributable to the inability of
residual bootstrap to reproduce the bias of β̂, that is E(β̂−β) 	= E(β̂∗− β̂).
This is clearly depicted in figure 3.7 and by data reported in tables 3.1 and
3.2. Of course, the resulting empirical coverage is inadequate (see Table
3.3).
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Figure 3.6: Residual resampling for the �1-penalized logistic model (2.2).
Comparison of G and Ĝ distributions of the model coefficients using Q-Q
plots.
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Figure 3.7: Estimated pdf of the �1-penalized β̂6 model coefficient (dashed
line) and estimated pdf of the residual bootstrap replications (dot-dashed
line). The vertical lines show the true value (solid), the mean value of the pe-
nalized coefficient (dashed) and the mean value of the bootstrap replications
(dot-dashed).
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The algorithm for implementing vector resampling in penalized GLMs
is the same described for unpenalized GLMs.

1. Find the optimal penalty parameter λ̂ using cross-validation on the
(x1, y1), . . . , (xn, yn) data set.

2. Calculate the vector of parameters β̂ of the penalized model using the
penalty λ̂.

3. Resample with replacement from the set of pairs (x1, y1), . . . , (xn, yn),
(xi is the ith row of X) and generate the bootstrapped pairs (x∗

1, y
∗
1),

. . ., (x∗
n, y∗n). Call (X∗, Y ∗) the corresponding bootstrap data set.

4. Fit the penalized GLM to (X∗, Y ∗) data using λ̂ and get the β̂∗ esti-
mate.

5. Repeat steps 3 and 4 B times.

As expected, this algorithm, when applied to a logistic DGC, is not able
to reproduce correctly the intrinsic bias of β̂ due to shrinkage (see figures
3.8, 3.9 and table 3.1).

In addition, table 3.2 shows that vector resampling is not able to approx-
imate adequately the standard deviation of the estimated β̂ coefficients. The
approximation errors are high and unacceptable for many zero and non-zero
coefficients (25 − 30%).

Here we built confidence intervals using the ‘naive percentile’ interval
[β̂∗

(α/2); β̂∗
(1−α/2)]. This choice was not motivated by any deductive reasoning

but only by the fact that bootstrap estimates seem (very) approximately
centered around the true β values . Unexpectedly, the resulting empirical
coverages are fairly good (maximum error 6.3%).

In conclusion, vector resampling for penalized GLMs deserves further
investigations.
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Figure 3.8: Estimated pdf of the �1-penalized β̂6 model coefficient (dashed
line) and estimated pdf of vector resampling replications (dot-dashed line).
The vertical lines show the true value (solid), the mean value of the penalized
coefficient (dashed) and the mean value of the bootstrap replications (dot-
dashed).
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Figure 3.9: Vector resampling for the �1-penalized logistic model (2.2). Com-
parison of G and Ĝ distributions of the model coefficients using Q-Q plots.
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3.5 Approximating lasso solutions

In a linear regression model, ridge regression shrinks the regression coef-
ficients by imposing a quadratic penalty

∑
β2

j , that is by minimizing the
following penalized residual sum of square errors

β̂ridge = arg min
u∈Rp

n∑
i=1

(yi − xT
i u)2 + λ

p∑
j=1

u2
j (3.10)

= arg min
u∈Rp

(y − Xu)T(y − Xu) + λuTu.

The solution of the above minimization problem is:

β̂ridge = (XTX + λIp)−1XTy, (3.11)

where XT is the transpose of the X matrix, X−1 is the inverse of X and Ip

is the identity matrix of order p.
The variance of β̂ridge is

Var(β̂ridge) = σ2[(XTX) + λIp]−1(XTX)[(XTX) + λIp]−1

If we set different shrinkage parameters λj , j = 1, 2, . . . , p, for the p
covariates, the minimization problem of the ridge regression becomes

β̂ridge = arg min
u∈Rp

n∑
i=1

(yi − xT
i u)2 +

p∑
j=1

λju
2
j (3.12)

= arg min
u∈Rp

(y − Xu)T(y − Xu) + uTΛu,

where Λ is the diagonal matrix defined by Λ = diag(λ1, . . . , λp).
In this case, the solution of the minimization problem is given by

β̂ridge = (XTX + Λ)−1XTy. (3.13)

[Tibshirani (1996)] noted that the lasso penalty
∑ |βj | in (3.2) can be

rewritten as
∑

β2
j /|βj |. Therefore, the minimization problem of lasso can be

rewritten as the ridge regression minimization problem of equation (3.12),
where λj = 1/|uj |:

β̂lasso = arg min
u∈Rp

n∑
i=1

(yi − xT
i u)2 + λ

p∑
j=1

1
|uj |u

2
j (3.14)

= arg min
u∈Rp

(y − Xu)T(y − Xu) + λuTΛuu, ,

where Λu ≡ diag(1/|u1|, . . . , 1/|up|).
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Of course, a division by zero arose when one or more uj are zero. To obviate
this problem, it is preferable to redefine Λu as

Λu = diag(|u1|, . . . , |up|)

and to use the notion of generalized inverse Λ−
u of a matrix 1 This is equiv-

alent to put on the diagonal of Λu, the reciprocal of |uj| when |uj | > 0 and
0 when uj = 0. Equation (3.14) becomes:

β̂lasso = arg min
u∈Rp

(y − Xu)T(y − Xu) + λuTΛ−
u u.

Therefore, the β̂lasso solution of the above optimization problem with
quadratic constraints can be approximated by ridge regression using equa-
tion (3.13):

β̂lasso ≈ (XTX + λΛ−
β )−1XTy, (3.15)

where Λβ = diag(|β̂1|, . . . , |β̂p|) and β̂lasso = (β̂1, . . . , β̂p).
Remembering the description of the IWLS algorithm given in the previ-

ous chapter and equation (2.9), this result can be directly extended to GLM
giving

β̂lasso ≈ (XTWX + λΛ−
β )−1XTWz, (3.16)

where W is the weight matrix (2.8) calculated at the final step and z is the
vector of adjusted responses zi = xiβ̂

lasso + (yi − μ̂i)ġ(μ̂i) calculated at the
final step.

We can show this result by a numerical example using the logistic DGP
considered in section 2.3.

set.seed(9876789)
n <- 1000
beta0 <- 0
betas <- c(0.75,2,0,0,0,10,-3,1.5,0,-0.65)
m <- length(betas)
X <- matrix(runif(n*m), nrow=n, ncol=m)-0.5
Xb <- beta0 + X %*% betas

1Let A be a diagonal matrix of order q. Suppose that the first r < q elements on the
diagonal of A are non-zero elements and the remaining q − r are null values. Matrix A
can be written

A =

[
Dr×r 0

0 0

]
,

where Dr×r is a diagonal matrix of order r with all non-zero values on the diagonal. The
generalized inverse (or pseudoinverse, or Moore-Penrose inverse) of A is given by:

A− =

[
D−1

r×r 0
0 0

]
,

where D−1
r×r is the inverse of the diagonal matrix Dr×r.
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pr <- 1/(1+exp(-Xb))
Y <- rbinom(n = n, prob = pr, size = 1)
dset.orig <- data.frame(y=Y, X=X)

We calculate the penalization parameter λ by cross-validation (command
optL1) and estimate the lasso solution by the penalized command of the
penalized R package [Goeman (2010)].

require(penalized)
opt0 <- optL1(y, penalized=~.-y, trace=F,

model = "logistic", standardize = F,
fold = 10, data = dset.orig)

lambda0.opt <- opt0$lambda
fit.lasso <- penalized(y, penalized=~.-y, trace=F,

data = dset.orig, lambda1=lambda0.opt, lambda2=0)
beta.lasso <- c(fit.lasso@unpenalized,fit.lasso@penalized)

Now calculate the approximated solution given in (3.16).

mu.hat <- fit.lasso@fitted
V.mu <- mu.hat * (1 - mu.hat)
W <- diag(V.mu)
Lambda.beta <- diag( abs(beta.lasso) )
Lambda.beta[1,1] <- 0 # Do not penalize intercept
X1 <- cbind(rep(1,n), X)
z <- X1 %*% beta.lasso + (Y - mu.hat)/V.mu
beta.lasso.approx <- solve(t(X1) %*% W %*% X1 +
lambda0.opt * ginv(Lambda.beta)) %*% t(X1) %*% W %*% z

The results below show that the approximation is rather good except for the
zeros coefficients. This can be explained considering that one of the main
differences between ridge and lasso regression is the ability of lasso to give
sparse solutions.

beta.true beta.lasso rigde.approx
(Intercept) 0.00 0.08171339 0.08252286
X.1 0.75 0.95987231 0.96108777
X.2 2.00 1.99905095 1.99397832
X.3 0.00 0.00000000 0.04139084
X.4 0.00 -0.15876658 -0.15981665
X.5 0.00 0.00000000 -0.01106971
X.6 10.00 8.36865274 8.36876934
X.7 -3.00 -2.63379702 -2.63343705
X.8 1.50 0.97299500 0.97087887
X.9 0.00 0.00000000 -0.03008823
X.10 -0.65 -0.42360931 -0.42227225
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Another way to approximate the β̂lasso estimates is to use the IWLS
algorithm with ridge penalization.
The kth iteration of this algorithm consists of:

1. Calculate the adjusted responses

z
(k)
i = η

(k)
i + (yi − μ̂

(k)
i )ġ(μ̂(k)

i ) (3.17)

= xiβ̂
(k) + (yi − μ̂

(k)
i )ġ(μ̂(k)

i )

2. Build the weight diagonal matrix

W (k) = diag

(
1

a(φ)[ġ(μ̂(k)
1 )]2V (μ̂(k)

1 )
, . . . ,

1

a(φ)[ġ(μ̂(k)
n )]2V (μ̂(k)

n )

)
(3.18)

3. Build the diagonal matrix of penalties

Λ(k)
β = diag(|β̂(k)

1 |, . . . , |β̂(k)
p |)

4. Run the weighted regression of the z(k) adjusted response on the covari-
ates X with weights W (k) and calculate the coefficients β̂(k+1) given
by:

β̂(k+1) =
(
XTW (k)X + λΛ(k)−

β

)−1
XTW (k)z(k) (3.19)

and proceed to the next iteration.

This algorithm can be repeated until convergence in β̂ or log-likelihood or
deviance. The variance of the β̂ coefficients can be estimated from the final
iteration:

V (β̂) = (XTWX + λΛ−
β )−1V ar[XT(y − μ̂)](XTWX + λΛ−

β )−1, (3.20)

where W and Λβ are calculated at the final step.
Below we implement the above algorithm in R testing it on the logistic

DGP.

beta.iwls <- rep(0,p+1)
beta.iwls[1] <- log(mean(Y)/(1-mean(Y)))
mu.hat <- rep(mean(Y),n)
nstep <- 25
Lambda.beta <- diag(1,p+1)
Lambda.beta[1,1] <- 0 # Do not penalize intercept
for (k in 1:nstep) {

W <- diag(as.numeric(mu.hat*(1-mu.hat)))
z <- X1 %*% beta.iwls + (Y - mu.hat)/V.mu



3.5. APPROXIMATING LASSO SOLUTIONS 89

beta.iwls <- solve(t(X1) %*% W %*% X1 +
lambda0.opt * Lambda.beta) %*% t(X1) %*% W %*% z

eta <- X1 %*% beta.iwls
mu.hat <- 1/(1+exp(-eta))
Lambda.beta <- ginv(diag(as.numeric(abs(beta.iwls))))
Lambda.beta[1,1] <- 0

}

The command Lambda.beta[1,1] <- 0 means that we do not penalize the
intercept of the linear model.

We compare the ridge-IWLS approximation with the lasso estimate and
the ridge approximation given above.

beta.true beta.lasso ridge.approx beta.iwls
(Intercept) 0.00 0.08171339 0.08252286 0.0818521772
X.1 0.75 0.95987231 0.96108777 0.9605606545
X.2 2.00 1.99905095 1.99397832 1.9971903510
X.3 0.00 0.00000000 0.04139084 0.0000002508
X.4 0.00 -0.15876658 -0.15981665 -0.1591810940
X.5 0.00 0.00000000 -0.01106971 -0.0000003419
X.6 10.00 8.36865274 8.36876934 8.3686161031
X.7 -3.00 -2.63379702 -2.63343705 -2.6342924739
X.8 1.50 0.97299500 0.97087887 0.9728298768
X.9 0.00 0.00000000 -0.03008823 -0.0323964359
X.10 -0.65 -0.42360931 -0.42227225 -0.4236083564

Below, we give the approximation errors for the two methods. The
ridge-IWLS approximation is clearly better that the ridge approximation,
especially for the null coefficients.

beta.true ridge.approx beta.iwls
(Intercept) 0.00 0.0008094701 0.0001387867
X.1 0.75 0.0012154524 0.0006883408
X.2 2.00 -0.0050726223 -0.0018605952
X.3 0.00 0.0413908357 0.0000002508
X.4 0.00 -0.0010500672 -0.0004145099
X.5 0.00 -0.0110697068 -0.0000003419
X.6 10.00 0.0001165994 -0.0000366366
X.7 -3.00 0.0003599733 -0.0004954533
X.8 1.50 -0.0021161271 -0.0001651209
X.9 0.00 -0.0300882277 -0.0323964359
X.10 -0.65 0.0013370590 0.0000009561
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3.6 One-step bootstrap for penalized GLMs

The considerations of the previous section suggest a first approach for the
development of a one-step bootstrap for �1-penalized GLMs which is similar
to the one-step procedure proposed by [Moulton and Zeger (1991)].

Let β̂ be the estimated coefficients of the penalized model and μ̂ be the
vector of the outcome estimates. We propose to generate the bootstrap repli-
cations of the penalized coefficients β̂lasso using the approximating equation
(3.16)

β̂∗ = (XTWX + λΛ−
β )−1XTWz∗, (3.21)

where z∗ is the bootstrapped version of the adjusted response vector

z∗ = Xβ̂ + ΓV 1/2e∗. (3.22)

In this equation, Γ = diag(ġ(μ̂1), . . . , ġ(μ̂n)), V = diag(v1, . . . , vn), vi =
V (μ̂i)a(φ), and the vector e∗ = {e∗1, . . . , e∗n} is generated by resampling
with replacement the mean-adjusted standardized Pearson residuals given
in equation (2.12).

Defining Ψ ≡ (XTWX + λΛ−
β )−1XTW and combining the two above

equations, we can write

β̂∗ = Ψz∗ = ΨXβ̂ + ΨΓV 1/2 e∗. (3.23)

For unpenalized GLMs (i.e. λ = 0), we have Ψ = (XTWX)−1XTW and

β̂∗ = Ψz∗ = ΨXβ̂ + ΨΓV 1/2 e∗

= (XTWX)−1(XTWX)β̂ + (XTWX)−1XTWΓV 1/2 e∗

= β̂ + (GTG)−1GTe∗,

where G = W 1/2X and ΓV 1/2 = W−1/2. This means that when λ = 0, the
proposed method of equation (3.23) corresponds to the one-step bootstrap
of [Moulton and Zeger (1991)].

Another important point to consider here is the construction of bootstrap
confidence intervals. The usual bootstrap confidence interval with coverage
(1 − α):

[2β̂ − β̂∗
(1−α/2); 2β̂ − β̂∗

α/2]

is based on the idea that the distribution of (β̂ − β) can be approximated
through the bootstrap distribution of (β̂∗− β̂). For biased estimators similar
to ridge or lasso regression this is not in general true because these estimators
may lack a pivot. The quantity (β̂−β) is a pivot if its sampling distribution
does not depend on β. For a shrinkage estimator β̂, it is possible to show
that (β̂ − β) ≈ (β̂∗ − β̂ + A − Â) where A depends on β. [Vinod (1995)]
proposes to solve the lack of a pivot problem by the following confidence
interval:[

(ΨX)−1β̂ + β̂ − (ΨX)−1β̂∗
(1−α/2); (ΨX)−1β̂ + β̂ − (ΨX)−1β̂∗

α/2

]
.
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For unpenalized linear models, Ψ = (XTX)−1XT and the above equation
reduces to:

[2β̂ − β̂(1−α/2); 2β̂ − β̂(α/2)].

The proposed one-step bootstrap algorithm for penalized GLM can be sum-
marized as follows.

1. Find the penalty λ̂ by cross-validation, fit the penalized GLM, estimate
model coefficients β̂ and the vector μ̂ of estimated outcomes.

2. Calculate the weight matrix

W = diag
(

1
a(φ)[ġ(μ̂1)]2V (μ̂1)

, . . . ,
1

a(φ)[ġ(μ̂n)]2V (μ̂n)

)
,

the diagonal matrix of penalties

Λβ = diag(|β̂1|, . . . , |β̂p|)

and the matrix
Ψ = (XTWX + λΛ−

β )−1XTW.

3. Calculate the standardized Pearson residuals ri = (yi−μ̂i)/
√

vi(1 − hi)
and the mean-adjusted residuals ei = ri − r̄, where r̄ = 1/n

∑
i ri.

4. Resample with replacement the mean-adjusted residuals e and gener-
ate the bootstrapped residuals e∗ = (e∗1, . . . , e∗n).

5. Calculate the one-step bootstrapped β∗ coefficients by:

β̂∗ = Ψ ·
(
Xβ̂ + ΓV 1/2 e∗

)
. (3.24)

6. Repeat steps 4 and 5 B times and save the B bootstrap estimates β̂∗.

7. Using the set {β̂∗
1 , . . . β̂∗

B}, estimate the quantiles β̂∗
α/2 and β̂∗

1−α/2

8. Calculate the confidence interval with coverage probability α:[
β̂ + (ΨX)−1(β̂ − β̂∗

(1−α/2)); β̂ + (ΨX)−1(β̂ − β̂∗
(α/2))

]
.

For a linear model ,W = In and Ψ = (XTX + λΛ−
β )−1XT, where In is the

identity matrix of order n. Therefore,

β̂∗ = (XTX + λΛ−
β )−1XT · (Xβ̂ + e∗)

where Xβ̂ + ε∗ = y∗.
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The algorithm was applied to the linear (2.1) and the logistic (2.2) DGPs.
Two simulation studies were performed with S = 2500 samples and B = 250
bootstrap replicates for each sample. The results given in Table 3.3 confirm
the validity of the proposed method. The empirical coverages for the β̂j

coefficients, j = 1, . . . , 10, are rather close to the desired 90% coverage,
particularly in the linear case where the coverage errors are similar to the
errors of the residual bootstrap (largest error is −3.8%). For the logistic
model, the coverage errors are all approximately below 3%, except for the the
largest coefficients β̂6, whose error is 7.9%. This coverage error is probably
due to the fact that the method roughly approximates the standard deviation
of β̂6 (1.65 vs 1.25, +33%, see Table 3.2).

In the next sections we show how it is possible to further reduce these
errors using the double boostrap algorithm.
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Figure 3.10: One-step bootstrap for the �1-penalized linear model (2.1).
Comparison of G and Ĝ distributions of the model coefficients using Q-Q
plots.
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Figure 3.11: One-step bootstrap for the �1-penalized logistic model (2.2).
Comparison of G and Ĝ distributions of the model coefficients using Q-Q
plots.
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3.7 The double bootstrap

The double bootstrap was first proposed by [Beran (1987)]. Its main ad-
vantage over the single bootstrap is that the double bootstrap confidence
intervals typically have a higher order of accuracy. The double bootstrap
improves the accuracy of a single bootstrap by estimating the coverage er-
ror of a confidence interval and then using this estimate to adjust the single
bootstrap.

We start describing the double bootstrap algorithm for a linear model
following the suggestions given in [McCullagh and Vinod (1998)].

1. Based on the original sample zn = (z1, . . . , zn), with zi = (xi, yi)
and xi = (xi1, . . . , xip), calculate the estimate θ̂ for the parameter of
interest θ and a vector of fitted values ŷ.

2. Form the residuals r = y − ŷ and the recentered residuals e = r − r̄,
where r̄ = 1/n

∑
i ri.

3. A large number of time j = 1, . . . J , randomly resample with replace-
ment from e to from J vectors of resampled residuals e∗j .

4. Form the vector y∗j = ŷ + e∗j .

5. For each j, calculate the bootstrap estimates of the parameter of in-
terest θ̂∗j and store the resampled residuals e∗j .

6. Calculate the bootstrap standard deviation σ̂∗ = [ 1
J−1

∑J
j=1(θ̂

∗
j −

θ̄∗)2]
1
2 where θ̄∗ = 1

J

∑J
j=1 θ̂∗j and form the j = 1, . . . , J roots

R̂∗
j =

θ̂∗j − θ̂

σ̂∗ .

7. For each first-stage bootstrap resample j, a large number of times k =
1, . . . ,K, shuffle e∗j to form e∗∗jk, form the output vector y∗∗jk = ŷ∗j + e∗∗jk
and estimate θ̂∗∗jk.

8. Form the root

R̂∗∗
jk =

θ̂∗∗jk − θ̂∗j
σ̂∗∗

j

,

where σ̂∗∗
j = [ 1

K−1

∑K
k=1(θ̂

∗∗
jk − θ̄∗∗j )2]1/2 and θ̄∗∗j = 1

K

∑K
k=1 θ̂∗∗jk.

9. Calculate the proportion of times Zj that R̂∗∗
jk ≤ R̂∗

j , i.e.

Zj =
#{R̂∗∗

jk ≤ R̂∗
j}

K
.
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10. After all bootstrapping operations are complete, we have J estimates
θ̂∗j , R̂∗

j and Zj. Variable Zj ∈ [0, 1] is now used to adjust the first-stage
intervals. Suppose we need to determine the upper (1−α) limit for θ.
First, we choose the (1−α)-th quantile q(1−α) of Zj. Then, we choose
the q(1−α)-th quantile of R̂∗

j . This is the adjusted upper 1−α limit for
the true root R∗. Similar operations determine a lower limit.

The functioning of the double bootstrap is based on some basic facts,
which we briefly summarize here. Let zn = (z1, . . . , zn), with zi = (xi, yi)
and xi = (xi1, . . . , xip) be a sample from a distribution with true cdf F ,
which has a parameter θ(F ) with range Θ. Let θn be an estimator based
on the sample zn with standard deviation σn. Consider the studentized
statistics:

R(zn, θ) =
θ̂ − θ

σ̂
, (3.25)

and let H(·) be its distribution.
If H(·) does not depend on θ, then R is said to be a pivot. Otherwise it is

a root. It is known that even if the transformation (3.25) does not completely
eliminate the dependence of R on θ, it can decrease the dependence and yield
an improved confidence interval.

[Beran (1987)] proves that R∗∗ is closer to being pivotal than R∗, i.e.
the distribution H∗∗ of R∗∗ is less dependent on F than is the distribution
H∗ of R∗. Therefore, if pivoting once can improve the order of accuracy of
the bootstrap estimates, pivoting twice can improve it more. In the same
way that the single bootstrap uses R̂∗−R̂ to approximate R̂−R, the double
bootstrap uses R̂∗∗ − R̂∗ to approximate R̂∗ − R̂.

[Beran (1987)] also shows that the second stage sampling distribution
of Zj is uniform over [0, 1] only in the ideal situation when the root R∗ is
exactly pivotal. [Vinod (1995)] proposes to plot the distribution of Zj for
revealing its shape and its deviations from the uniform distribution.
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3.8 Improving the one-step bootstrap for penal-
ized GLMs

In this section we apply double bootstrap to the one-step bootstrap for �1-
penalized GLMs proposed in section 3.6. The resulting algorithm is a bit
long and can be summarized as follows.

1. Based on the original sample zn = (z1, . . . , zn), with zi = (xi, yi)
and xi = (xi1, . . . , xip), estimate, by cross-validation, the penalization
parameter λ̂ and then calculate the vector β̂ of penalized model co-
efficients for the parameter of interest β and a vector of fitted values
μ̂.

2. Form the vector of adjusted responses z∗j = xjβ̂ + ġ(μ̂j)
√

vje
∗
j , the

weight matrix

W = diag
(

1
a(φ)[ġ(μ̂1)]2V (μ̂1)

, . . . ,
1

a(φ)[ġ(μ̂n)]2V (μ̂n)

)
,

the penalty matrix

Λβ = diag(|β̂1|, . . . , |β̂p|)

and the matrix
Ψ = (XTWX + λ̂Λ−

β )−1XTW.

3. Form the standardized Pearson’s residuals ri = (yi − μ̂i)/
√

vi(1 − hi)
and the recentered residuals ei = ri − r̄, where r̄ = 1/n

∑
i ri.

4. A large number of time j = 1, . . . J , randomly resample with replace-
ment from e to J vectors of resampled residuals e∗j .

5. For each j, store the resampled residuals e∗j and estimate the one-step
bootstrap β∗ coefficients by:

β̂∗ = Ψ ·
(
Xβ̂ + ΓV 1/2 e∗

)
, (3.26)

where Γ = diag(ġ(μ̂1), . . . , ġ(μ̂n)) and V = diag(v1, . . . , vn), vi =
V (μ̂i)a(φ).

6. Calculate the bootstrap standard deviation σ̂∗ = [ 1
J−1

∑J
j=1(β̂

∗
j −

β̄∗)2]
1
2 where β̄∗ = 1

J

∑J
j=1 β̂∗

j and form the j = 1, . . . , J roots

R̂∗
j =

β̂∗
j − β̂

σ̂∗ .
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7. For each bootstrap resample j, shuffle e∗j K times to form e∗∗jk, generate
the output vector y∗∗jk = ŷ∗j + e∗∗jk and estimate

β̂∗∗
jk = Ψ ·

(
Xβ̂ + ΓV 1/2 e∗∗jk

)
.

8. Form the second-stage root

R̂∗∗
jk =

β̂∗∗
jk − β̂∗

j

σ̂∗∗
j

,

where σ̂∗∗
j = [ 1

K−1

∑K
k=1(β̂

∗∗
jk − β̄∗∗

j )2]1/2 and β̄∗∗
j = 1

K

∑K
k=1 β̂∗∗

jk .

9. Calculate the proportion of times Zj that R̂∗∗
jk ≤ R̂∗

j , i.e.

Zj =
#{R̂∗∗

jk ≤ R̂∗
j}

K
.

10. After all bootstrapping operations are complete, for each of the p
model coefficients estimate the (α/2)-th and the (α/2)-th quantiles
of Zj : q(α/2) and q(α/2). Then, estimate the q(α/2)-th and the q(α/2)-th
adjusted quantile of β̂∗

j : β̂∗
LO and β̂∗

UP, respectively. Finally, calculate
the confidence interval:[

β̂ + (ΨX)−1(β̂ − β̂∗
UP); β̂ + (ΨX)−1(β̂ − β̂∗

LO)
]
.

We have tested the above algorithm on the linear and logistic DGPs
of equations (2.1) and (2.2). The results are encouraging. We observe a
sensible reduction of the coverage error for β6 (from 7.9% to −0.4%). The
coverage error on the other coefficients remains substantially unchanged.
It is worth to note only a slight increase of the coverage errors for zero
coefficients (approximately from 3% to 4%).

In our opinion, these results show that the addition of double boot-
strap to our one-step algorithm for �1-penalized GLMs can be beneficial and
therefore deserves further detailed investigation.
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Chapter 4

GWAS

4.1 Introduction

One of the most challenging breakthroughs of the last decade involving high
dimensional variable selection, has to deal with humans, genomes, and ge-
netics. The question is what a particular genome can tell us about our
backgrounds and the quality of our futures [Khoury and Wacholder (2008)].
Among these studies the most ambitious are genomewide association stud-
ies (GWAS) that can be defined as any study of genetic variation accords
the entire human genome that is designed to identify genetic associations
with observed traits, or presence or absence of a disease or condition. In
genome wide association studies, hundreds of thousands of single-nucleotide
polymorphisms (SNPs) are tested for association with a disease.
The success of genome-wide association studies in finding susceptibility
genes for many common diseases presents large opportunities for epidemio-
logical studies of environmental risk factors.
Advances in GWAS will have great impact in the future to shed light on
the mechanism of common diseases. In the past, GWAS identified SNPs
implicating hundreds of robustly replicated loci for common traits, despite
the identified variants which explained only a small proportion of the heri-
tability of most complex diseases.
Explanations concerning complex diseases could reside in gene-environment
(G-E) interactions or more complex pathways involving multiple genes and
exposures. Therefore, the evaluation of gene-environment interaction in
GWAS is necessary for complex diseases (e.g., diabetes, asthma, cancer),
caused by the interaction of multiple genes and environmental factors.
Many methodological challenges are involved in the design and analysis
of gene-environment-wide association studies [Thomas (2010)]. The goal
of this chapter is to provide a review of fresh findings concerning GWAS,
outlying methodological issues in gene-environment-wide interaction studies
(GEWI).
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4.2 Single nucleotide polymorphisms SNPs

DNA is the well know large spiral-shaped molecule in the nucleus of almost
every cell in the human body. DNA is composed of 3 billion pairs of nu-
cleotides A (adenine), C (cytosine), G (guanine), and T (thymine). Taken
together, these letters carry the traits inherited form our mothers and fa-
thers.

The human genome contains millions of DNA polymorphism scattered
across the different chromosomes. DNA polymorphism - which stems from
Greek and means having many shapes - can be defined as a change in the
DNA sequence - a polymorphous part of DNA among the individuals of the
same population may cause a change in the function of the gene.
This change may cause disease, and may affect how a person reacts to bac-
teria, viruses, drugs, and other substances. The most common type of DNA
polymorphism employed for large-scale linkage mapping is single nucleotide
polymorphism (SNPs) in which, for instance, the single nucleotide T in one
sequence is replaced by a G in the corresponding sequence.

The genome sequences of any two people are 99.9% identical. About one
in 1000 nucleotides of human DNA can vary in the form of SNP. SNPs are not
considered abnormal; they are simply part of the natural genetic variation
within a population that creates diversity, whether the SNPs influence eye
color of susceptibility to heart disease. Not all single-base changes in DNA
are SNPs. To be classified as a SNP, at least one percent of the general
population must have that change. SNPs may lie within a gene, where they
can cause alterations in the resulting gene function ranging from profound
to no effect [Hartwell et al. (2004)]. Therefore, the result is a change in the
amino acid sequence of a protein that may affect the function of the protein.
As can be seen in the figure (4.1) the double stranded DNA sequence in the
region is identical between these two samples save for one base pair. At that
point the pair A/T is C/G in the other sequence. This variation is a SNP.

Theoretically, a SNP could have four possible forms, or alleles, since
there are four types of bases in DNA. In reality, most SNPs have only two
alleles. Therefore, if some people have a T at a certain place in their genome
while everyone else has G, that place in the genome is a SNP with a T allele
and a G allele.
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Figure 4.1: Single nucleotide polymorphisms SNPs

4.2.1 Genetic Model

For practical purposes we describe the main characteristics of the variable
SNP. The genetic models can be viewed in terms of the mode of inheritance:
additive model, recessive model or dominant models.

1. Additive Model:

One SNP carries three genotypes AA, AB, and BB. Assuming that B
is the risk allele and A is the common allele, an additive model will
imply a proportional increase of risk of disease per copy of allele B.
That is, the risk of disease for a subject carrying BB is double com-
pared to an AB carrier. In cases like this, the SNP is often treated as a
quantitative variable indicating the count of B alleles and association
between the SNP and the phenotype is carried out by logistic regres-
sion model with the estimation of a single coefficient (Odds Radio) for
the SNP.

2. Recessive Model:
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Under the recessive model, the risk category is identified by the BB
genotype (ie: homozygousity of the risk allele) and subjects with geno-
types AA or AB are not at risk of disease. The relationship between
the number of copies of the allele B and the risk of disease is not linear
as the OR of AB vs. AA is 1 and the OR of BB vs. AA is > 1.

3. Dominant Model:

Under the dominant model, the genetic risk category includes all car-
ries of at least one copy of the allele B. Also, in this case there is a
non-linear relationship: in fact, the OR of BB vs AA is the same as
the OR of AB vs. AA.

Other models are possible but less common. In a codominant model,
homozygous individuals (AA or BB) have a higher risk of disease compared
to heterozygous individuals (AB). The excess of heterozygosity model im-
plies that heterozygous individuals have a higher risk of disease compared
to homozygous.

Given that the additive model was proven to be very robust in terms
of detecting true associations even when the underlying genetic model is
additive or recessive, GWAS are usually performed assuming an additive
effect. This choice reduces the computational burden and simplifies the
estimation of association statistics as well as the control for multiple testing.
A better assessment of the correct genetic model is done a posteriori on a
reduced set of SNPs that have been detected to be associated with the trait.

There is another very rare combination: the subject at risk carries the
AB genotypes and the subjects carrying AA and BB are not at risk or vice
versa.

For the sake of simplicity, performing GWA studies the additive model
is often used, there is evidence that this model is a good approximation of
all these different scenarios.

Moreover, studying 300,000 snips is not even doable assuming a different
genetic model for each SNP. Otherwise, when a previous screen is done, and
the candidate SNPs are few, it is reasonable to perform the models that are
able to explain the data and provide more precise answers.

4.3 Genome-wide Association Studies

We are finally in the era where the genomewide association studies are be-
coming possible and we are dealing with the new frontiers in our under-
standing and treatment of diseases. The execution and analysis of such
studies will require great care. In GWAS, hundreds of thousands of single-
nucleotide polymorphisms (SNPs) are tested for association with a disease.
To be more precise a genetic variant is genotyped in a population for which
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phenotypic information is available (such as disease occurrence, or a range
of different trait values). If a correlation is observed between genotype and
phenotype, there is said to be an association between the variant and the
disease or trait.

GWAS is a step ahead of ‘candidate gene’ studies, in which sample size is
generally smaller and the variants assayed are limited to a selected few, often
on the basis of an imperfect understanding of the biological pathways and
often yielding associations that are difficult to replicate [Manolio (2010)].
Nevertheless GWAS are a step beyond family-based linkage studies, in which
inheritance patterns are related to several hundreds to thousands of genomic
markers.

The success of genome-wide association studies in finding susceptibility
genes for many common diseases presents large opportunities for epidemio-
logical studies of environmental risk factors.

Advances in GWAS will have great impact in the future to shedding light
on the mechanism of common diseases. In the past, GWAS have identified
SNPs implicating hundreds of robustly replicated loci for common traits,
though these identified variants explain only a small proportion of the heri-
tability of most complex diseases.

A genomewide association study is typically based on a case-control de-
sign in which SNPs across the human genome are genotyped. In addition
to case-control, scans of a person’s DNA can also be used in other study
designs, as cohort studies and clinical trials. The most important challenge
in GWAS is the sheer scale of tests of association required, at least one per
SNP. Thus far, statistical analyses of GWAS data have focused mainly on
the simplest tests of one SNP at a time, leaving open the possibility that
more sophisticated analyses may reveal more important results.
At this point, advances in statistical methodology are crucial. A GWAS
special issue published in Statistical Science 2009 provides an interesting
overview of the state of the art and helps to foster these new methodological
challenges.

The most important methodological issues in GWAS concern:

• the roles of different study designs [Laird and Lange 2009];

• multiple testing, significance level and weighted hypothesis testing
[Roeder and Wasserman 2009];

• methodological issues in multistage designs [Thomas et al. 2010];

• bayesian methods for detecting and characterizing allelic heterogeneity
and boosting signals [Su et al. 2009];

• confounding problems [Astle and Balding (2009)];

• strategies to harness gene-gene (G-G) and gene-environment (G-E)
interactions [Kooperberg at al. 2009];
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• new methods for case-control data involving the use of “retrospec-
tive” likelihood to improve the power by adding model assumptions
[Chatterjee at al. (2009)];

• robust test scans under incomplete linkage disequilibrium, robust test
under complete linkage disequilibrium often have greater power than
Pearson’s chi-square test [Zheng at al. (2009)];

• new approaches to fit effect estimation and prediction from genome-
wide marker data [Goddard et al. 2009];

• using the data from GWAS not only to identify SNPs but also to study
other types of heritable variations as copy number variants, using other
types of heritable variation may contribute to the understanding of
common, complex disease [Zöllner and Teslovich 2009];

• the detection of association of disease with SNPs can be difficult using
the data from a single study, combining data from several case-control
GWAS procedures to combine data from several case-control GWAS
[Pfeiffer at al. 2009]

• replication in GWAS is a very important issue in genotype-phenotype
association studies in terms of credibility[Kraft et al. 2009].

4.3.1 Findings

Up to the present (October 6th, 2010), 904 SNP-trait associations are re-
ported as significant (P < 5 ∗ 10−8) for 165 traits [Hindorff et al. (2009)]
, nevertheless GWAS have provided valuable insights into genetic architec-
ture.
An interactive catalog of published GWAS was developed for use in in-
vestigating genomic characteristics of trait/disease-associated SNPs (TASs)
and is available at http://www.genome.gov. Among the treat-associated
SNPs located in coding regions, there are 40% located in noncoding introns
(defined as the portions of a gene that are removed (spliced out) before
translation of a protein, introns may contain regulatory information that is
crucial for appropriate gene expression) and another 40% fall in intergenic
regions (defined as segments of DNA that do not contain or overlap genes).
Therefore, these findings have sharpened the focus on the potential roles of
intronic and intergenic regions in regulating gene expression. Consequently,
much more remains to be learned about how variations in intronic and in-
tergenic regions (where the great majority of SNP-traits lie) influence gene
expression, protein coding, and disease phenotypes.
The long-term investment in such novel and exciting research promises not
only to advance human biology but also to revolutionize the practice of mod-
ern medicine.
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[Manolio (2010)] reports a number of GWAS which have proved successful
in identifying genetic associations with complex treats.

4.4 Gene-environment-wide association studies

Even if GWAS have proved successful in identifying genetic associations
with complex treats, the identified variants are not enough to explain the
heritability of most complex diseases. The gene-environment (G-E) interac-
tion can be defined as a joint effect of one or more genes with one or more
environmental factors that cannot be readily explained by their separate
marginal effect. The small proportion of the explained heritability can be
improved taking into account potential G-E interactions of more complex
pathways involving multiple genes and exposures.
There are a number of different epidemiological designs that are available
to the scientist to explore the potential interactions among SNPs and en-
vironmental exposures. In the next section, we report the most important
epidemiological designs explored by [Thomas (2010)].

4.5 Epidemiological designs

4.5.1 Study designs for gene-environment interactions

[Thomas (2010)] reviews the emerging approaches in GEWI studies. The
author focuses his review on gene-environment interaction defined as a joint
effect of one or more genes with one or more environmental factors that can-
not be readily expanded by their separate marginal effects. The challenges
to GxE studies, in addition to the usual challenges for genetic association
studies [Manolio (2010)], are exposure assessment, sample size and hetero-
geneity.

4.5.2 Basic epidemiologic designs

Considerable methodological challenges are involved in the design and anal-
ysis of gene-environment interaction studies. The standard epidemiological
designs for studying the main effects of genes or environmental factors can
be applied to the study of GxE interactions. Table 4.1 shows the basic
epidemiological designs for cohort, case-control, case-only, randomized trial
and crossover trials. Among these designs, case-only (or sometimes called
‘case-case’ design) can be used for testing interactions and not main effects
due to the fact that the design relies on an assumption of gene-environment
independence on the cases.

Scientists often use this design to study GxE interactions, because it
is a more appropriate approach, in terms of controlling the trade-off be-
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Table 4.1: Basic epidemiologic designs.

Design Approach Advantages Disadvantages Settings
Cohort Comparison

of incidence
of new cases
across groups
defined by E
and G

Freedom from
most biases;
clear temporal
sequences of
cause and
effect

Large cohorts and/or long
follow-up needed to obtain
sufficient numbers of cases;
possible biased losses to
follow-up; changes in expo-
sure may require recurring
observation

Common Ds
or multiple
end points;
commonly used
in biobanks

Case-
control

Comparison of
prevalence of E
and G between
cases and con-
trols

Modest sample
sizes needed
for rare Ds; can
individually
match on
confounders

Recall bias for E; selection
bias, particularly for con-
trol group

Rare Ds with
common E and
G risk factors

Case-only Test of G-E
association
among cases,
assuming G-E
independence
in the source
population

Greater power
than case-
control or
cohort

Bias if G-E assumption is
incorrect

G-E studies
in which G-E
independence
can be assumed

Randomized
trial

Cohort study
with random
assignment
of E across
individuals

Experimental
control of
confounders

Prevention trials for D in-
cidence can require very
large sample sizes

Experimental
confirmation
for chronic
effects

Crossover
trial

Exposes each
individual to
the different
Es in random
order

Experimental
control of
confounders;
within-
individual
comparisons

Small sample sizes; only
low doses possible if E is
potentially harmful

Experimental
confirmation
for acute
effects

tween bias and efficiency. these have been developed as empirical Bayes
([Mukherjee et al. (2008)]) or Bayes model averaging ([Li and Conti (2009)]).

4.5.3 Hybrid designs

Among hybrid-designs, the novel and interesting ones are two-phase case-
control and counter-matching designs (Table 4.2).
The main purpose is to improve the power for detecting either main effects
or interactions using different ways of selecting controls. Two-phase case-
control can be a good choice when a surrogate variable of the exposure is
easily available. This design involves independent subsampling on the basis
of disease status and the exposure surrogate variable from a first-phase case-
control or cohort study. The data from the two phases are combined in the
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analysis.
Counter-matching is the matched variant of the two-phase design.

Table 4.2: Hybrid designs.

Design Approach Advantages Disadvantages Settings
Nested
case-control

Selection of
matched controls
for each case from
cohort members
who are still
disease free

The freedom from
bias of a cohort
design combined with
the efficiency of a
case-control design;
simple analysis

Each case group
requires a sepa-
rate control se-
ries

Studies within
cohorts requir-
ing additional
data collection

Case-cohort Unmatched com-
parison of cases
from a cohort with
a random sample
of the cohort

Same advantages as
nested case-control;
the same control
group can be used for
multiple case series

Complex analy-
sis

Studies within
cohorts with
stored baseline
biospecimens

Two-phase
case-control

Stratified sampling
on D, E and G
for additional mea-
surements (for ex-
ample, biomarkers)

High statistical effi-
ciency for subsample
measurements

Complex analy-
sis

Substudies
for which
outcome and
predictor data
are already
available

Counter
matching

Matched selection
of controls who are
discordant for a
surrogate for E

Permits individual
matching; highly
efficient for E main
effect and G-E
interactions

Complex control
selection

Substudies
in which
a matched
design is
needed

Joint case-
only and
case-control

Bayesian com-
promise between
case-only and
case-control
comparison

Power advantage of
case-only combined
with robustness of
case-control

Some bias when
G-E association
is moderate

G-E studies for
which G-E in-
dependence is
uncertain

4.5.4 Family-based designs

The apparently homogeneous population can hide different subgroups of
individuals with different ancestral origins and different allele frequencies at
many loci.
The family-based designs (table 4.3) seem to be more powerful for testing
GxE interactions if relatives’ exposures are not highly correlated because
they avoid bias from population stratification, even though these designs
are generally less powerful in detecting main effects compared to case-control
studies.
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Table 4.3: Family-based designs and GWA designs.

Design Approach Advantages Disadvantages Settings
Family-based designs
Case-sibling
(or-cousin)

Case-control compari-
son of E and G using
unaffected relatives as
controls

More powerful than
case-control for G-E;
immune to population
stratification bias

Discordant sib-
ships difficult to
enroll; overmatch-
ing for G main
effects

Populations
with potential
substructure

Case-parent
triad

Comparison of Gs for
cases with Gs that
could have been in-
herited from parents,
stratified by case’s E

More powerful than
case-control for G-E;
immune to population
stratification bias for G
main effects

Difficult to enroll
complete triads;
possible bias in
G-E if G and E are
associated within
parental mating
types

Substructured
populations,
particularly
for Ds of
childhood

Twin studies Comparison of D
concordance between
monozygotic (MZ) and
dizygotic (DZ) pairs in
different environments

No genetic data re-
quired; can be ex-
tended to include half-
siblings, twins reared
together or apart, or
to compare discordant
pairs on measured G
and E

Used mainly
to identify in-
teractions with
unmeasured genes;
assumption of
similar E between
MZ and DZ pairs

Exploratory
studies of
potential for
G-E before
specific genes
have been
identified

GWA designs
Two-stage
genotyping

Use of high-density
panel on part of a
case-control sample
to select a subset of
SNPs with suggestive
Gs or G-E interaction
for testing; the SNPs
are tested using a
custom panel in an
independent sample,
with joint analysis of
both samples

Highly cost efficient Only part of sam-
ple has GWA geno-
types

GWA studies
for which
complete SNP
data on all
subjects is not
needed

Two-step inter-
action analysis

Preliminary filtering of
a GWA scan for G-
E association in com-
bined case-control sam-
ple, followed by G-E
testing of a selected
subset

Much more powerful
for G-E or G-G interac-
tions than a single-step
analysis

Can miss some in-
teractions

GWA studies
with complete
SNP data and
focus on G-E

DNA pooling Comparison of allelic
density in pools of
cases and controls
stratified by E, fol-
lowed by individual
genotyping

Highly cost efficient Technical difficul-
ties in forming
pools and assaying
allelic density;
limited possibil-
ities for testing
interactions

GWA studies
for which an
initial scan
is severely
limited by cost
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4.6 The statistical analysis of GWAS, a formidable
challenge

Genetic analysis of complex diseases needs novel statistical methods to in-
vestigate data collected on thousands of variables by genome-wide associa-
tion studies. The complexity of such analyses increase dramatically when
one has to consider interaction effects, either among the genetic variations
(gene-gene interactions) or with environment risk factors (gene-environment
interactions).

Current statistical methods for GWAS largely rely on marginal informa-
tion from genes studied one at time and ignore potentially valuable informa-
tion as the interaction of multiple loci. Each responsible gene may have a
small marginal effect in causing the disease and so this weak effect is difficult
to detect.

In recent years, new and promising approaches for variable selection
in GWAS have been proposed. Penalized regression represents one of the
most attractive methods and the number of applications of this technique
on association mapping of disease genes is rapidly growing. Of particular
interest, is the class of data mining techniques. Below, we briefly consider
two of these approaches, Random Forests (RFs) and Bayesian Networks.

4.7 The SIS method

Sure Independence Screening (SIS) is a two-stage procedure for ultrahigh
dimensional feature selection first introduced by [Fan and Lv (2008)] and
then developed by [Fan at al. (2009b)].

This approach consists of a screening stage and a selection stage. In the
screening stage, main-effects are crudely screened by using marginal utili-
ties. In the selection stage, variable selection and parameter estimation are
carried out simultaneously using a penalized regression with SCAD penalty.

More formally, the SIS algorithm has the following steps:

1. Let {(xi, yi), i = 1, . . . , n} be a data set with sample size n, with
xi ∈ R

p. For each covariate Xj , j = 1, . . . , p, calculate the marginal
utility

Lj = min
b0,bj

1
n

∑
L(yi, b0 + xijbj), (4.1)

where L(·, ·) is a generic loss function. In other words, fit p bivariate
models (e.g. GLMs) and calculate the p marginal utilities.

2. Rank the variables according to these marginal utilities. The smaller
Lj the more important the covariate.

3. Select the first d features. Typically d = �n/ log n�, where �·� is the
floor function. Call Â this subset of prescreened covariates.
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4. Estimate the model coefficients of the penalized regression by

(β̂0, β̂) = argmin
(b0, b)∈Rd+1

1
n

n∑
i=1

L(yi, b0 + xi,ÂbÂ) +
∑
j∈Â

pλ(|bj |),

where xi,Â ∈ R
d is the subvector obtained from xi ∈ R

p using the
d � p prescreened variables of Â . The penalty pλ(|bj |) is the SCAD
penalty.

For a linear model, we can use an L2 loss function

L(yi, β0 + xiβ) = (yi − β0 − xiβ)2

or an L1 loss function (robust regression)

L(yi, β0 + xiβ) = |yi − β0 − xiβ|.
For a logistic regression, the loss function can be defined by

L(yi, β0 + xiβ) =
n∑

i=1

[
log(1 + eβ0+xiβ) − yi(β0 + xiβ)

]
.

When d is large enough, [Fan and Lv (2008)] showed that the first screen-
ing stage of the above algorithm has a high probability of selecting all of the
informative covariates. For this reason, the method is called Sure Indepen-
dence Screening.

In the second stage, the SCAD penalized regression performs a further
variable selection and estimates the main effects for the remaining variables.

An important drawback of SIS is that if a variable is discarded in the
first stage, it is not possible to select it in the second stage. Therefore, the
SIS methodology may break down if a covariate is marginally unrelated, but
jointly related with response, or if a covariate is jointly uncorrelated with
the response but has higher marginal correlation with the response than
some other informative variables.

[Fan at al. (2009b)] proposed two interesting variants of SIS that have
attractive theoretical properties in terms of reducing the false selection rate.

The steps of the first variant of the SIS algorithm are:

1. Split the sample {(xi, yi), i = 1, . . . , n} into two halves at random.

2. For each partition and for each covariate Xj , j = 1, . . . , p, calculate
the marginal utility

Lj = min
b0,bj

1
n

∑
L(yi, b0 + xijbj), (4.2)

rank the variables according to the Lj values and select the first d =
�n/ log n� features. Call Â1 and Â2 the subset of prescreened covariates
for the two partitions (#Â1 = #Â2 = d).
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3. Find the intersection Â = Â1 ∩ Â2.

4. Estimate the model coefficients of the penalized regression using the
prescreened variables Â

(β̂0, β̂) = argmin
(b0, b)∈Rd+1

1
n

n∑
i=1

L(yi, b0 + xi,ÂbÂ) +
∑
j∈Â

pλ(|bj |).

The second variant of the SIS algorithm can be summarized as follows.

1. Split the sample {(xi, yi), i = 1, . . . , n} into two halves at random.

2. For each partition and for each covariate Xj , j = 1, . . . , p, calculate
the marginal utility

Lj = min
b0,bj

1
n

∑
L(yi, b0 + xijbj), (4.3)

and rank the variables according to the Lj values.

3. Select in the two partitions a number of covariates such that the in-
tersection Â = Â1 ∩ Â2 has d = �n/ log n� elements (i.e. #Â = d). Â1

and Â2 are the subset of prescreened covariates for the two partitions.

4. Estimate the model coefficients of the penalized regression using the
prescreened variables Â

(β̂0, β̂) = argmin
(b0, b)∈Rd+1

1
n

n∑
i=1

L(yi, b0 + xi,ÂbÂ) +
∑
j∈Â

pλ(|bj |).

4.8 The ISIS method

The Iterative SIS (ISIS) method proposed by [Fan at al. (2009b)] seeks to
overcome the difficulties of SIS by iteratively adding and deleting covariates,
but maintaining the efficiency and stability of the SIS method.

The steps of the ISIS algorithm are:

1. Apply SIS to the (xi, yi) data set. Let M̂1 the subset of k1 selected
covariates.

2. For each variable, calculate the second-step marginal utilities

L
(2)
j = min

b0, bM̂1
, bj

1
n

n∑
i=1

L(yi, b0 + x
i,M̂1

bM̂1
+ xijbj)

where x
i,M̂1

is the subvector of xi consisting of those elements in M1.
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3. Order the (p− k1) values L
(2)
j and select the covariates corresponding

to the smallest k2 elements. Call Â2 this prescreening subset.

4. Use penalized regression to obtain the model coefficients:

β̂2 = argmin
(b0, bM̂1

, bÂ2
)

1
n

n∑
i=1

L(yi, b0 + x
i,M̂1

bM̂1
+ xi,Â2

bÂ2
) +

∑
j∈M̂1∪Â2

pλ(|bj |).

The values of β̂2 that are non-zero yield a new subset M2 of selected
variables.

5. Repeat steps 3 and 4 until the set M̂k has stabilized (i.e. M̂k = M̂k−1)
or has reached the prescribed size d.

The choice of the kr values is critical. Large values decrease the computa-
tion cost and the probability that ISIS will terminate prematurely but in the
meantime they make ISIS more similar to SIS (with the drawbacks described
in subsection 4.7). [Fan at al. (2009b)] suggest choosing d = �n/ log n�,
k1 = �2/3 · d� and kr = d − #M̂k, where #M̂k is the cardinality of the set
M̂k.

The two variants of SIS proposed by [Fan at al. (2009b)] can be easily
extended to ISIS and can improve its performance. In many simulation
studies the second variants of ISIS shows superior performance (in terms of
percentage of selected informative variables, false selection rate and predic-
tion error) compared to the other algorithms.

The SIS package of R developed by [Fan et al. (2010)] implements the it-
erative sure independence screening with functions GLMvanISISscad, GLMvanISISscad,
COXvanISISscad, COXvarISISscad for different variants of SIS and ISIS.

Now we test the ISIS approach on a DGP characterized by a binary
outcome Y with a Bernoulli distribution whose probabilities pi = P (Yi =
1|Xij = xij, j = 1, 2, . . . , p) are defined by:

pi = μ +
p∑

j=1

βjxij (4.4)

where i = 1, 2, . . . , n, xij ∈ {0, 1} is the observed value for the jth bi-
nary variable of the ith sample units, and μ, βj are model coefficients
(j = 1, 2, . . . , p).

The parameters of the simulated dataset are:

• sample size n = 1000 and number of covariates p = 400;

• βj 	= 0 for j ∈ J , βj = 0 for j /∈ J , where J = {j1, . . . , j10} is
a set of randomly selected indexes with 1 ≤ jk ≤ p. In addition,∑p

j=1 |βj | < 1. Values of βj for j ∈ J are

β = (−0.1,−0.1,−0.1,−0.1,−0.1,−0.1, 0.1, 0.1, 0.1, 0.09);



4.8. THE ISIS METHOD 115

• μ = 1
2

(
1 −∑p

j=1 βj

)
= 0.605.

Binary variables xj are generated as follows:

• generate n random binary realizations of the first covariate Xi1 ac-
cording to a Bernoulli distribution with probability = 0.5;

• for j = 2, 3, . . . , p :

Xij =

⎧⎪⎨⎪⎩
Xi,j−1 with probability ρ

0 with probability (1 − ρ)/2
1 with probability (1 − ρ)/2;

(4.5)

with ρ = 0.80.

1 100 200 300 400

1
10

0
20

0
30

0
40

0

Figure 4.2: Correlation matrix for the DGP of equation (4.4).

This DGP is interesting because it is characterized by binary covariates
that are strongly associated to their ”neighbors”. In fact:

ρV (Xi,Xi+1) ≈ 0.80, ρV (Xi,Xi+2) ≈ 0.64, ρV (Xi,Xi+3) ≈ 0.51,
ρV (Xi,Xi+4) ≈ 0.41, ρV (Xi,Xi+5) ≈ 0.33, ρV (Xi,Xi+6) ≈ 0.26,

where ρV is the estimated Cramer’s V. The complete association structure
of the p = 400 covariates is shown in figure 4.2.

In addition, it is worth to noting that this DGP is not a logistic model
because probabilities pi are linearly correlated to informative covariates.
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Therefore, when using available R packages for penalized logistic regression,
we will be able to test the performance of ISIS under model misspecification.

The R code for generating a sample from the above DGP is

# Set DGP parameters
set.seed(987654)
n <- 1000
p <- 400
rho <- 0.8
K <- 100
betas <- c(rep(-0.1,6), rep(0.1,3), 0.09)
mu <- (1-sum(betas))/2

# Generate associated covariates X
X <- matrix(0,n,p)
X[,1] <- rbinom(n, 1, 0.5)
for (j in 2:p) {

for (i in 1:n) {
rnd <- runif(1)
if (rnd < rho) {

X[i,j] <- X[i,j-1]
}
else if (rnd > (1+rho)/2) {

X[i,j] <- 1
}

}
}

# Choose informative covariates
Inf.Vars <- t(order(runif(p))[1:10])
# Calculate probabilities
pi <- mu + X[,Inf.Vars]%*%betas
# Generate outcome Y
y <- rbinom(n,1,pi)

We use the SIS package and apply the second variant of the ISIS ap-
proach to our sample. The option vartype permits to specifying the vari-
ant of SIS (or ISIS) to use; vartype=0 no variants, vartype=1 first type,
vartype=2 second type.

require(SIS)
out <- SIS(data=list(x=X, y=y),

model=’glm’, family=binomial(link="logit"),
vartype=2, nsis=NULL, rank.method=’obj’, inittype=’NoPen’,
tune.method=’BIC’, folds=NULL, post.tune.method=’CV’,
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post.tune.folds=NULL, DOISIS=TRUE, ISIStypeCumulative=FALSE,
maxloop=5, xtune=NULL, ytune=NULL, detail=TRUE)

Now we calculate the confusion matrix and the prediction error, compar-
ing the true outcome y and the predicted outcome yhat, obtained setting
to 0.5 the threshold on the predicted probabilities phat.

########################
# Prediction errors
pred.beta <- out$ISIScoef$SCADcoef
Xb <- pred.beta[1]+X%*%pred.beta[-1]
phat <- 1/(1+exp(-Xb))
yhat <- phat>0.5
# Confusion matrix
table(y,yhat)
require(ROCR)
pred <- prediction(phat, y)
auroc <- performance(pred,"auc")@y.values[[1]]

yhat
y FALSE TRUE
0 334 167
1 183 316

auroc = 0.7048228

Below we compare the covariates selected by ISIS with the informa-
tive/uninformative variables.

#########################
# Selection performance
True.Inf.Uninf <- rep(0,p)
True.Inf.Uninf[Inf.Vars] <- 1

Pred.Inf <- out$SISresult$ISISind
modelsize <- length(Pred.Inf)
Pred.Inf.Uninf <- rep(0,p)
Pred.Inf.Uninf[Pred.Inf] <- 1

conmtx <- table(Pred.Inf.Uninf,True.Inf.Uninf)
if (all(Pred.Inf.Uninf==0)) {
conmtx <- rbind(conmtx,c(0,0))
}
conmtx



118 CHAPTER 4. GWAS

True.Inf.Uninf
Pred.Inf.Uninf 0 1

0 388 2
1 2 8

Eight informative variables (80%) have been correctly selected and 388
uninformative variables (97%) have been correctly discarded.

####################
# Accuracy measures
kI <- length(betas)
Ne <- p-kI
Po <- kI
TNe <- conmtx[1,1]
TPo <- conmtx[2,2]
FNe <- conmtx[1,2]
FPo <- conmtx[2,1]

# Accuracy. P(Yhat = Y). Estimated as: (TP+TN)/(P+N)
acc <- (TPo+TNe)/(Po+Ne)
# Error rate. P(Yhat != Y). Estimated as: (FP+FN)/(P+N)
err <- (FPo+FNe)/(Po+Ne)
# True positive rate. P(Yhat = + | Y = +). Estimated as: TP/P
# Sensitivity. Same as tpr
sens <- TPo/Po
# True negative rate. P(Yhat = - | Y = -). Estimated as: TN/N
# Specificity. Same as tnr
spec <- TNe/Ne
# Positive predictive value. P(Y = + | Yhat = +). Estimated as: TP/(TP+FP).
ppv <- TPo/(TPo+FPo)
# Negative predictive value. P(Y = - | Yhat = -). Estimated as: TN/(TN+FN).
npv <- TNe/(TNe+FNe)

#####################
# Estimation errors
true.beta <- rep(0,p)
true.beta[Inf.Vars] <- c(rep(-0.1,6), rep(0.1,3), 0.09)
est.err.l1 <- sum(abs(true.beta - pred.beta[-1]))
est.err.l2 <- sqrt(sum((true.beta - pred.beta[-1])^2))
cbind(betas, pred.beta[-1][Inf.Vars])

\newpage
performance measure
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modelsize 10.0000000
accuracy 0.9900000
err 0.0100000
sens 0.8000000
spec 0.9948718
ppv 0.8000000
npv 0.9948718
auroc 0.7048228
esterrl1 4.1630736
esterrl2 1.3575159

The estimation error has been calculated using the sum of absolute errors
esterrl1=

∑
j |β̂j − βj | and the square root of the sum of squared errors

esterrl2=
√∑

j(β̂j − βj)2.

4.9 Application of penalized regression to GWAS

The LASSO-Patternsearch algorithm of [Shi et al. (2007)] is a multi-step
algorithm with a LASSO-type penalized likelihood method at its core. It
is specifically designed to detect and model interactions between predic-
tor variables (SNPs and other covariates) in GWAS. The first stage of the
algorithm is a prescreening step where the significance of SNPs is tested
evaluating the main effects by a logistic regression model. When one SNP
passes the test, the algorithm evaluates its interactions with all of the other
SNPs and covariates. The SNPs and the interaction terms that survive
the first screening step are introduced in a �1-penalized regression model
that performs a variable selection. The penalty parameter is estimated by
cross-validation. In the final step, the algorithm puts the selected terms
into a parametric logistic regression and tests the significance of each term
at level α. Simulation studies show that the LASSO-Patternsearch method
has a good ability to identify important SNPs and covariates, and to sepa-
rate cases from controls. Hence, it provides a useful tool for the analysis of
genetic data.

The work of [Wu et al. (2009)] evaluates the performance of �1-penalized
logistic regression in case-control disease gene mapping with a large number
of SNPs. The procedure performs an initial prescreening by a score criterion
and then performs a lasso identification and quantification of interactions
among previously selected features. Their simulation studies demonstrate
that the lasso penalized regression is easily capable of identifying informative
predictors and the computational speed is remarkable. Another interesting
finding concerns interaction effects that can be found readily in the case of
orthogonal designs. The software for performing this technique is available
at the UCLA Human Genetics web site.
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[Zhou et al. (2010)] extended the work of [Wu et al. (2009)] on lasso pe-
nalized logistic regression in GWAS to the field of rare genetic variants. The
proposed algorithm improves both false positive and false negative rates
and the results show that mixed group and lasso penalties outperform lasso
penalty alone, especially when common and rare variants are present simul-
taneously. This statistical tool is a part of the Mendel statistical genetics
package.

4.10 Methods of statistical machine learning for

GWAS

As pointed out by [Szymczak et al. 2009], machine learning approaches are
promising complements to standard single-and multi-SNP analysis methods
for understanding the overall genetic architecture of complex human dis-
eases. However, at present, most of them are not optimized for genome-wide
SNP data. Improved implementations and new variable selection procedures
are therefore required.

In this section we briefly overview three variable selection methods orig-
inally developed in the field of machine learning and then generalized and
adapted to ultrahigh dimensional selection problems.

4.10.1 Random Forest

Random Forests [Breiman (2001)] (RFs) for ultrahigh dimensional data sets
has been recently proposed by [Schwarz, König and Ziegler (2010)]. RFs are
ensemble learners based on Classification and Regression Trees (CARTs)
which can cope with ‘small n large p’ problems, complex interactions and
highly correlated predictor variables. CARTs fit data by creating recur-
sive binary partitions of the sample space. Hence, they are naturally suited
for investigating interactions. In addition, using RFs, it is possible to cal-
culate the variable importance of each covariate, taking into account not
only the direct effect of the covariate on outcome but also the contributions
of its interactions with all the other covariates (see [Sohns et al. (2009)],
[Sandri and Zuccolotto (2010)]). As a result, variable importances offer a
valuable tool for ranking and selecting informative/predictive variables in
complex problems.

The RF approach is becoming popular in the GWAS literature because
it has several characteristics that make it ideal for these data sets. RFs are
appealing because:

� they can be used when there are many more variables than observa-
tions;



4.10. METHODS OF STATISTICAL MACHINE LEARNING FOR GWAS121

� they have good predictive performance even when there are many un-
informative variables;

� they do not overfit;

� they can handle a mixture of categorical and continuous predictors;

� they incorporate interactions among predictor variables;

� they return measures of variable (gene) importance.

� they there is little need to fine-tune parameters to achieve excellent
performance; the most important parameter to choose is mtry, the
number of input variables tried at each split. It has been reported
that the default value is often a good choice; in addition, the user
needs to decide how many trees to grow for each forest (ntree) as well
as the minimum size of the terminal nodes (nodesize);

� there are high quality and free software implementations of RFs; a
popular package for the statistical software R is randomForest devel-
oped by [Liaw and Winter (2002)]; the free open source software pack-
age called Random Jungle (RJ) proposed in [Schwarz et al. (2010)], is
devoted to facilitate the rapid analysis of GWAS data. RJ have an
impressive computational efficiency, and memory management of RJ
allows to analyzing high-dimensional data in an acceptable amount of
time. Concerning the problem of evaluation of potential interactions
between genes and genes and environment, RFs may help to iden-
tify the interactions that cannot be found using traditional statistical
approaches.

4.10.2 Bayesian Networks

Bayesian Networks (BNs) are probabilistic graphical models representing a
joint probability distribution over a set of random variables X1,X2, . . . ,Xn

by a Directed Acyclic Graph (DAG). BNs are typically used to learn the
structure of a set of random variables that reflects relationships of depen-
dence and conditional independence among them. In a BNs, variables are
represented as vertices (nodes) and dependencies as arcs (or edges) between
the variable nodes. The directions of edges indicate the directions of depen-
dencies.

The elements that compose a DAG G are two; a finite set V of nodes
and a finite set E of directed edges (arrows) between the nodes. Hence,
G = (V,E). The DAG defines the structure of the Bayesian network. To
each node v ∈ V in the graph corresponds a random variable Xv. The set of
variables associated with the graph G is then X = (Xv)v∈V . To each node
v with parent nodes pa(v) a local probability distribution, p(xv|xpa(v)), is
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attached. The set of local probability distributions for all variables in the
network is P.

A Bayesian Network for a set of random variables X is the pair (G,P).
That is, a BN is a DAG with the set of local probability distributions P
defined on it.

Given three random variables X, Y and Z, X and Y are said condi-
tionally independent given Z if p(x|y, z) = p(x|z), whenever p(y, z) > 0. In
other words, learning the value of Y does not provide additional information
about X, once we know Z.

The lack of directed edges in G encodes conditional independencies be-
tween the random variables X through the factorization of the joint proba-
bility distribution,

p(X1, . . . ,Xn) =
N∏

i=1

p(xv|xpa(v)) (4.6)

Bayesian networks, as Random Forests, are a statistical tool with good
capabilities in handling the complexity of GWAS in different scenarios and
at different levels. They seem capable of capturing biologically meaning-
ful interactions among a group of factors involved in a complex manner in
common diseases.

[Jiang et al. (2010)] develop and evaluate a multi-locus method for de-
tecting genetic interactions based on Bayesian Networks and the minimum
description length (MDL) principle. The method is called Bayesian network
minimum bit length (BNMBL). The experimental results of the authors indi-
cate that BNMBL has significantly greater power and is substantially faster
computationally than the multifactor dimensionality reduction (MDR) of
[Ritchie et al. 2001].

[Yang and Gu (2009)] evaluate the ability of RFs and BNs to analyze
GWAS data sets and show the crucial importance of prescreening. In fact,
the inclusion of too many uninformative (noisy) SNPs in the analyses may
seriously affect the performance of the two methods. In particular, the
performance of BN analysis markedly deteriorates as more noisy SNPs were
included in the analysis.

4.10.3 Gene-based analysis

[Lo et al. (2008)] shows the advantage to carry out a gene-based analysis by
treating each gene as a basic unit while incorporating relevant information
form all the SNPs within that gene. This technique provide a novel tool
to evaluate pairwise and third-order interactions. The method proposed by
[Lo et al. (2008)] is a ‘gene-based approach’ in which information on SNPs
is combined into one unit for that gene. The effect of a certain region or a
certain gene, is expressed as the average effect of all individual effects due
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to all of the SNPs within that gene. Analogously, a two-way interaction of
two genes is calculated by the average of all pairwise interactions of SNP
pairs formed from the two genes. To establish statistical significance, the
authors generate a set of permutations of the (case/control) dependent vari-
able and compare the measures of interaction from the real data with those
from the permutations. In addition, there is the possibility to improve the
selection of the initial set of candidate genes integrating a priori information
on genes and pathways into GWAS. [Sohns et al. (2009)] suggest to apply
and combine gene set enrichment analysis (GSEA) and hierarchical Bayes
prioritization (HBP).
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