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ABSTRACT 

 

Integrins are the major family of cell surface adhesion receptors responsible for the 

regulation of the physical contact and biochemical communication between the cell and the 

surrounding extracellular matrix (ECM). Binding of the extracellular domains of integrins 

to components in the ECM triggers a series of molecular events commonly referred to as 

“outside-in” signaling, leading to context-dependent changes in cell morphology, 

migration and proliferation. In this prevailing paradigm of cell adhesion induced signaling 

the primary functions of the integrin is to provide the physical transmembrane bridge 

connecting the intracellular signaling machinery and cytoskeleton to the extracellular 

environment. 

We now present evidence that most, if not all, cell adhesion receptors trigger 

integrin-dependent outside-in signaling independently of direct contacts between the 

integrins and their ligands in the ECM. The urokinase-type plasminogen activator receptor 

(uPAR/CD87) is a non-integrin vitronectin (VN) cell adhesion receptor linked to the outer 

membrane leaflet by a GPI-anchor. Through an extensive structure-function analysis of 

uPAR, VN, 1 and 3 we document that cell adhesion induced by the uPAR/VN-

interaction triggers integrin-mediated, but ligand independent, cell spreading and signaling. 

This signaling is fully active on VN lacking functional integrin binding sites and by 

integrin mutants deficient in ligand binding, but is crucially dependent on an “active” 

conformation of the integrin as well as its binding to intracellular adaptor proteins 

including talin and kindlin. This novel paradigm of ligand-independent integrin signaling 

is not restricted to uPAR as it poses no identifiable constraints to the adhesion receptor 

with respect to ternary-structure, ligand type or means of membrane anchorage. In full 

accordance with a general validity of this paradigm, we show that cell adhesion physically 
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mediated by a signaling-incompetent 3 integrin is effectively translated into cell 

spreading and signaling by the 1 integrin. 

Our results show that integrins are active in transducing adhesion-induced signaling 

in the absence of their cognate ligands, suggesting that the bi-directional signaling 

capability of these receptors may have evolved primarily to allow for tightly regulated 

inside-out signaling. 
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INTRODUCTION 

INTEGRINS 

 

Integrins are transmembrane glycoproteins and constitutes the main family of adhesion 

receptors expressed on the cell surface. Their name derives from their importance in the 

structural integrity of cells and tissues. Moreover they form an integral membrane complex 

that connects the environment outside the cells with the interior cytoskeleton across the 

plasma membrane.  

Integrin receptors are heterodimeric non-covalently bound receptors formed by one 

 and one  subunit. Today, 18  and 8  subunits have been described in mammals and 

together they form 24 known receptors (Fig. 1). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Schematic representation of mammalians integrin array. Integrins are divided 

according to their ligand specificity and their expression in blood cell types. Every connection between the 

circles represents a particular integrin heterodimer (adapted from (Hynes, 2002)). 
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Integrins have a crucial role in metazoan biology by mediating cell-cell adhesion 

and adhesion to ECM components. Most of the integrins bind ECM components 

recognizing a particular Arg-Gly-Asp (RGD) motif present in proteins like vitronectin 

(VN) or fibronectin (FN). Another motif, functionally related to RGD motif and usually 

found in many integrin ligands, is the LDV-motif (Leu-Asp-Val). Specific motifs are 

present also in other particular matrix proteins like collagen (COL) or laminin (LN).  Many 

counter-receptors are integrin ligands, reflecting the role of integrins in cell adhesion 

especially in the blood cells. Moreover, integrins-ECM interaction transmits signals across 

the plasma membrane regulating cell migration, survival, cell cycle progression and 

modulating differentiation.  

As consequence they are involved in physiological processes such as immunity, 

inflammation, haemostasis, tissue morphogenesis and development. A subfamily of 

integrins is expressed exclusively on blood cells, mediating cell-to-cell interactions and 

allowing processes like leukocyte transmigration and platelet aggregation.  

Deregulated integrin function can contribute to many pathological scenarios like 

autoimmunity and cancer. Additionally, the integrin proficiency in controlling ECM 

topology and cell polarity during migration, poses a direct link to metastasis dissemination.  

The function of each of the 24 integrin types is specific and non-redundant. Indeed, 

despite partial overlaps in substrate specificity, the phenotypes of knockout mice are 

distinct, reflecting the various roles of different integrins. 
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INTEGRIN BIDIRECTIONALITY 

 

Integrin are non-canonical signaling receptor as they transmit signals in two directions 

with different biological consequences. Indeed,  integrin-mediated interaction with 

extracellular components is translated in intracellular signaling (outside-in signaling) but 

also intracellular signaling can induce changes in integrin extracellular conformation 

(inside-out signaling). During inside-out signaling integrin activators bind to the 

cytoplasmic subunit, triggering conformational changes that increase the affinity for 

extracellular ligands in a process termed ―integrin activation‖. In fact integrins are 

expressed on the cell surface in an inactive conformation that cannot efficiently bind 

extracellular ligands (Ginsberg et al., 1992). This is crucial for the immune system 

functionality, where integrins have to be inactive in resting cells in order to avoid abnormal 

interaction with endothelial cells. Another example of the subtle regulation of integrin 

activation can be found in platelets where integrins, in normal conditions, has to be 

inactive to prevent aggregates leading to thrombosis. Integrin-independent stimuli through 

GPCRs, T-cell receptor or selectins induce signaling cascades that initiate the integrin 

activation process. Interestingly integrin can be activated by the interaction with their 

cognate ligands, linking inside-out to outside-in signaling (Schwartz et al., 1995; Takagi et 

al., 2002). Blood cells underline the importance of balanced integrin 

activation/inactivation, even if not all of the integrin are believed to behave so strictly. The 

activity of integrin in non-blood cells could be regulated in a more localized way, allowing 

complex processes like cell migration where cell adhesion has to modulated spatially and 

temporally (Ridley et al., 2003). 
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Integrins in high-affinity/active conformation bind tightly the ECM component but 

individually can provide only a weak adhesive force. The avidity of the Integrin-ECM 

interaction has to be increased so that thousand of  weak adhesive forces sum into an 

efficient adhesive unit. This process is called ―integrin clustering‖ and leads to the 

formation of specialized cellular structure termed focal adhesion. Activated and clustered 

integrins assemble large protein complexes on their short cytoplasmic tails, transmitting a 

wide variety of intracellular signaling in a process called inside-out signaling. The 

multivalent properties of many ECM components contribute to integrin clustering and 

localize integrin signaling into discrete regions of the plasma membrane. Outside-in 

signaling causes a rapid phosphorylation of specific proteins and the activation of lipid 

kinases. This first early event is followed by the up-regulation of Rho GTPases activity, 

which modulates cell contractility, polarization and actin polymerization. Finally integrin 

signaling can influence gene expression inducing survival, proliferation and modulating 

the genetic program of cell differentiation. 

 

MECHANISM OF INTEGRIN REGULATION 

 

The shift between high and low affinity conformation rules the integrin adhesive 

properties. During this process, radical changes in the integrin conformation occurs both in 

the intra and extra cellular regions. The key event in this process relies on the interaction of 

cytoplasmic proteins with the integrin tails. These interactions  trigger the exposure of the 

ligand-binding site  on the extracellular side (LIBS) and provide connection with the actin 

cytoskeleton. 
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Integrin extracellular domain structure and conformational 

changes 

 

Integrins are non-covalently-bound /heterodimers composed by  large extracellular 

domains (approximately 800 amino acids) that contain the ligand binding site, single 

transmembrane domains (TM approximately 20 amino acids) and short cytoplasmic tails 

(13 to 70 amino acids). The extracellular part of the -subunit is formed by an N-terminal 

seven-bladed -propeller, an Ig-like Thigh domain, and two Calf domains. The 

extracellular region of the -subunit is composed by an N-terminal I domain connected 

with a hybrid domain, a PSI (plexin/semaphorin/integrin) domain followed by 4 EGF-like 

domains and a proximal tail domain (TD). The head of the integrin is therefore 

composed by the -propeller and I domain and it is supported by the legs formed by the 

two integrin subunits (Fig. 2a and Fig. 2b).   
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Figure 2 Conformational changes in integrin extracellular domains. A Schematic representation of the 

domains composing integrin extracellular region. I domain that characterizes a particular subset of integrins 

is indicated. B Representation of the conformational changes that lead to integrin open/active conformation 

in non-I domain integrins or in I domain containing integrins C Representation of the conformational 

changes that lead to integrin open/active conformation in I domain containing integrins . (The schemes 

represents the principle of switchblade model in which the swing out of hybrid domain requires first integrin 

extension.) (adapted from (Luo and Springer, 2006)) 
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At least half of the -subunits contain an additional domain called I domain which 

constitutes the ligand binding site, thanks to the presence of a metal ion–dependent 

adhesion site (MIDAS) that coordinates divalent cations (Lee et al., 1995). Interestingly 

the I domain is analogous to the I domain of -subunit and contains a MIDAS as well. In 

absence of the I domain the ligand binding site is composed by the metal ion occupied 

MIDAS of I domain and propeller domain of the -subunit. Mutations in the MIDAS 

(Asp119—Tyr in 3 integrin (Loftus et al., 1990) and Asp130—Ala in 1 integrin (Takada 

et al., 1992)) result in complete abrogation of the integrin interaction with their ligands. A 

crystal structure of v3 integrin in complex with cyclic RGD peptide (a motif present in 

many integrin ligands) showed that Arg contacts the -propeller of v subunit while the 

Asp interacts with a metal ion (Mn
2+

) coordinated by the MIDAS (Xiong et al., 2002) . In I 

domain containing integrins a Glu residue in the I domain interacts, as an intrinsic ligand, 

with the MIDAS of I domain coordinating a metal ion (Alonso et al., 2002) (Fig. 2c).The 

I domain in place constitutes the integrin binding site and contacts integrin ligands through 

its own MIDAS.  Adjacent to the MIDAS there is another metal ion coordinating site 

(AMIDAS) that can be occupied by a favored Ca
2+

 , stabilizing the inactive conformation.  

Integrins can adopt closed and open conformations, which correspond to a different 

binding capacity. In particular, three major conformational states have been described: 

―inactive‖ bent with closed headpiece (with low affinity), ―primed‖ or ―active‖ extended 

with closed headpiece (with high affinity) and ―ligand occupied‖ extended with open 

headpiece (Fig.2b). Intuitively in the closed conformation the head of the integrin 

heterodimer is facing the plasma membrane, being in this way in an unfavorable position 

to mediate ligand binding. In favor of this hypothesis integrins locked in extreme bent 

conformation are unable to bind the ligand (Takagi et al., 2002). In addition electron 

microscopy studies show that integrins adopt a bent conformation when C-termini are 

clasped or in Ca
2+

 containing buffer. The fact that Ca
2+

 or C-termini clasping abrogate 
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integrin activation links integrin inactive state to a close conformation (Takagi et al., 

2002). In agreement with these studies fluorescent resonance energy transfer (FRET) 

studies showed that ―focal adhesion are sites of integrin extension‖ (Askari et al., 2010), 

liking integrin in the extended conformation to the major cell-adhesion sites in cells. 

Finally specific epitopes, unmasked during the integrin activation process (Lu et al., 

2001a), are buried in the bent conformation (Beglova et al., 2002). However, the first 

crystal structure of v3 integrin  revealed an unexpected bent conformation (Xiong et al., 

2001). This structure has been obtained in Ca
2+

 containing buffer and without a bound 

ligand, conditions that usually keep integrins inactive. A second v3 integrin crystal 

structure was solved in the presence of Mn
2+

 (metal ion that bind to the MIDAS 

contributing to integrin activation) and high-affinity RGD peptide. Surprisingly, compared 

with the previous one, little structural changes were observed (Xiong et al., 2002). Thus, 

these two crystal structures show that even in potentially activating conditions integrins 

can adopt a close conformation. Moreover electron microscopy images showed  bent v3 

integrin in complex with FN (Adair et al., 2005). 

Based on these evidences, two different theories for integrin activation have been 

formulated. In both theories, the two key elements are the ―swing-out‖ of the hybrid 

domain and the extension of the integrin legs. A first theory, called ―switchblade model‖, 

predicts that integrin will get first in the extended conformation and then interacts with 

their ligands. A direct consequence of this model is the inability of bent integrin to interact 

with ligands. According to this model, in order to allow the swing-out of the hybrid 

domain integrins should get first ―fully extended on the knees‖ (Fig. 2). Indeed also under 

potentially inactivating conditions, EM images showed integrin molecules to adopt 

different degrees of bending. This data, if extrapolated to cellular systems, would predict a 

sort of ―breathing movement‖ of integrins on the cell surface that would place the ligand 

binding site away from the plasma membrane.  In favor of this hypothesis a monoclonal 
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antibody, (4B4) that prevents hybrid domain swing out, abrogates integrin-ligand 

interaction stabilizing the low affinity state (Luo et al., 2004b). 

A second model, called deadbolt model, predicts that integrins adopt the extended 

conformation only after ligand binding. In particular, the interaction between TD (the 

deadbolt) and I domain keeps integrin in closed conformation. When this interaction is 

released, integrins will turn into the active state. In a second step, ligand binding provides 

the energy for hybrid domain swing-out corresponding to integrin extension. This model 

could explain the documented capability of integrins to interact with their ligands in the 

bent conformation, as well as the data in the crystal structures. Moreover this theory takes 

into account the role played by traction forces in integrin extension and activation 

(Friedland et al., 2009). However mutations in the TD domain failed to activate integrins 

(Zhu et al., 2007).  

Additional studies are required in order to fully understand the conformational 

changes taking places during integrin activation. 

 

 

Role of transmembrane domains and integrin tails 

 

Integrin TM domain and cytoplasmic tails play a key role in the integrin activation process. 

The only crystallographic data providing insight into the structure of TM domains derives 

from IIb3 integrin. IIb TM domain is as short straight -helix (24 residues) followed by a 

backbone reversal that packs Phe992-Phe993. 3 TM is a linear -helix of 30 residues. 

Membrane embedding studies predicts that 3 TM is longer than the width of a lipid bi-

layer, which imply a 25° tilt in order to maintain membrane embedding (Lau et al., 2008) 

(Fig.3b and Fig. 3a). 
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 The association of the TM and cytoplasmic domains controls integrin bidirectional 

signaling. In particular the TM domains interaction maintains the inactive state, while the 

perturbation of this interaction leads to integrin activation (Hughes et al., 1996). 

Interestingly mutations that shorten the TM domains length or destroy the TM surface of 

interaction are uniformly activating (Hughes et al., 1996) (Partridge et al., 2005) while the 

introduction of disulfide bridges prevents TM separation and abolishes integrin activation 

(Luo et al., 2004a). In particular cysteine-scanning experiments show that disulphide 

bonded integrins cannot bind their ligands even in the presence of other activating 

mutations. These evidences suggest that a complete TM domain separation is needed for 

integrin activation and supports the notion that TM separation corresponds to active state. 

Interestingly disulphide-bonded integrins can be activated, in an outside-in fashion, by 

antibody and Mn
2+

, implying that outside-in signaling does not require TM domain 

separation (Luo et al., 2004a). 

Crystal structures reveal that TM domain dimerization is supported by two distinct 

elements termed inner membrane clasp (IMC) and outer membrane clasp (OMC) (Lau et 

al., 2009). The OMC forms thanks to the packaging interaction between canonical coiled-

coil dimerization motifs (GxxxG) from both TM domains (Fig 3c). In this way Arg995 of 

IIb interacts with Asp723 of 3 allowing the formation of a salt bridge that stabilizes TM 

domain interaction. The Asp-Arg salt bridge constitutes the IMC (Fig. 3d). Mutational 

analysis showed that disruption of salt bridge in the IMC triggers 3 integrin activation 

(Hughes et al., 1996) and subsequent studies validated the same principle also in 1 and 2 

integrin (Imai et al., 2008). However, knock-in mice in which  integrin IMC was 

disrupted did not display any significant phenotype (Czuchra et al., 2006).  
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Figure 3 Structure of integrins TM domain. A sequence of IIb and 3 TM domains. The membrane 

embedded residues are highlighted in blue. B Structures of integrin TM domains with the characteristic 

crossing-angle of 25°. The side chains represented are the one of the residues involved in the formation of the 

salt bridge (Arg995 of IIb and Asp723 of 3). C representation of the outer membrane clasp and the 

molecular interaction that supports it (left: front view, right: back view) D representation of the inner 

membrane clasp and the molecular interaction that supports it (left: front view, right back view)adapted from 

(Shattil et al., 2010)) 

 

Different mechanism can be accounted for integrin TM domain separation. The 

amount of  integrin TM residues could be shortened upon activation, allowing the 

straightening of the TM domain. In the piston model, piston-like movement of TM 

domains could destroy the dimerization interface, causing TM separation. Alternatively, in 

the scissor model the small crossing angle of the TM domains during resting state 

increases to a large crossing angle in the activated state.  
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Integrin tails are rather short and posses no enzymatic activity. Together with TM 

domains, integrin tails undergo complete separation during activation. This is supported by 

numerous studies showing how the clasping or the constitutively disulphide liking of  

cytoplasmic domains inhibit integrin activation (Lu et al., 2001b) (Luo et al., 2004a). In 

another elegant study, FRET has been measured between integrin subunits fused to cyan 

fluorescent protein (CFP) and yellow fluorescent protein (YFP) in the cytoplasmic regions 

(Kim et al., 2003). Fluorescent energy transfer occurred only in integrins in resting state, 

demonstrating the cytoplasmic domains to be close together in the inactive conformation. 

Consistently, upon inside-out signaling, FRET was greatly reduced demonstrating that, 

together with TM domains separation, cytoplasmic tails separate by more than 100 Å. On 

the other hand outside-in activation by Mn
2+

 did not reduced FRET, although subsequent 

ligand engagement did. However, additional studies on purified integrin tails indicate that 

their interaction is extremely weak and for this reason in many studies was no detected. 

 Integrin cytoplasmic tails, and especially the  subunit tail, are the core of integrin 

regulation. Despite their short length, many proteins have been shown to bind directly to 

three conserved ―hot-spot‖. The increasing number of direct interactors, together with the 

limited number of binding sites in the integrin tails, suggest significant overlaps and 

competitions between the adaptor binding sites (Fig 4).  
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Figure 4 Aminoacid sequence and adaptor-sites of  integrin cytoplasmic domain. The membrane 

proximal and distal NxxY motifs and the ser/thr rich regions are indicated. Residues that can be 

phosphorylated are indicated in red while residues buried in the membrane are indicated in green. The several 

proteins that interact with integrin tail are indicated by solid lines in correspondence of their binding sites. 

Broken lines represent adaptors that bind to other  subunits.  (adapted from (Legate and Fassler, 2009)) 

 

The first adaptor-binding site is a membrane-proximal HDRK motif that is involved 

in the formation of the salt bridge that keeps integrin TM and cytoplasmic domains close 

together in the inactive state. This motif is unmasked upon tails separation occurring 

during integrin activation. HDRK motif has been shown to be a binding site for paxillin 

(Schaller et al., 1995), skelemin (Reddy et al., 1998), Src family kinase Fyn (Reddy et al., 

2008) and FAK, although the integrin-FAK interaction has been shown to occur through 

paxillin (Hayashi et al., 2002). 

The other two hot-spot in  subunit tail are two well conserved NxxY motifs 

characterized by a canonical recognition sequence for phosphotyrosine-binding (PTB) 

domains. In particular integrin tails contains a  membrane-proximal NPxY motif and a 

membrane-distal NxxY motif. Proteins containing PTB domains like Numb, Dok1, ICAP1 

and tensin have been shown to directly interact with different integrin  tails (Calderwood 

et al., 2003) (Fig. 4).  



 

21 

 

 

Other two proteins (talin and kindlin) bind directly the NxxY motifs of  integrin 

tails and control the integrin activation process: in particular, talin interacts with 

membrane-proximal NPxY motif whereas kindlin interacts with the membrane-distal 

NxxY motif. Interestingly both of them contain a PTB domain that falls into a larger band 

(4.1, ezrin, radixin, moesin) termed FERM domain (see below). In general, proteins that 

bind to the membrane-proximal NPxY motif can interact with cytoplasmic tails of different 

integrin subunits while proteins that bind to the membrane-distal NxxY motif interact only 

with some types of integrin. One possible reason for this is the sequence divergence within 

NxxY motif respect to the membrane-proximal motif (Fig.5). 

 

 

Figure 5 Alignment of the different  subunits sequences in humans. Residues buried in the 

membrane that become available upon integrin activation are indicated in green. NxxY and HDRK motifs are 

indicated in bold. Residues that can be phosphorylated are indicated in red.  (adapted from (Legate and 

Fassler, 2009)) 

 

 

 For example, ICAP1 binds only the membrane-distal NPKY motif of  integrin. 

ICAP1 competes with talin and negatively regulates integrin activation (Chang et al., 

2002).  endonexin does not contain a PTB domain and interact only with membrane-

distal NxxY motif of  integrin (Eigenthaler et al., 1997). Another direct interactor is 

filamin that binds between membrane-proximal and distal motifs. Filamin interaction 

sterically inhibits talin binding and has dramatic effects on integrin activation (Kiema et 

al., 2006). 
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The tyrosines within NxxY motifs of  and  integrin  motifs can be 

phosphorylated by SRC family kinases (Sakai et al., 2001) (Law et al., 1996). 

Interestingly, despite the misleading nomenclature, PTB domains binds preferentially to 

non-phosphorylated tyrosine in NxxY motifs and, in some cases, phosphorylation inhibits 

their interaction. Moreover the importance of integrin phosphorylation seems to be strictly 

integrin-specific. In fact knock-in mice carrying a double phenylalanine substitution in the 

two NxxY motifs of  integrin displayed no visible phenotype (Czuchra et al., 2006) 

while the same mutations in integrin causes to bleeding (Law et al., 1999). 

 In addition, also the serines and the threonines between the two NxxY motifs can 

be phosphorylated, being the third major site of phosphorylation in integrin tails. 

Phosphorylation is thought to be a regulator of the interaction of PTB containing proteins 

with the integrin tails. Upon phosphorylation, PTB domains with high affinity for the 

unphopshorylated forms will be displaced favoring the interaction with the ―phospho-

affine‖ ones. A typical example of this principle is Dok1, whose affinity for integrin 

membrane-proximal NPxY motif is increased upon phosphorylation. Moreover NPxY 

motif phosphorylation inhibits talin interaction, allowing Dok1 to compete with talin and 

to negatively regulate integrin activation (Oxley et al., 2008). 

A phosphorylation switch has been observed also for filamin and talin. Filamin 

binds to unphosphorylated serin/threonine region between the two NxxY motifs, 

competing with talin binding to  integrin tails. Threonine phosphorylation impairs 

filamin binding but does not influence talin interaction. In this way talin is free to bind 

integrin tails, regulating integrin activity (Kiema et al., 2006). 
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Talin 

 

Talin is a ~270 kDa protein composed by a globular N-terminal head domain (47 kDa) and 

a long C-terminal rod domain. There are two isoforms of this protein: talin1 and talin2. 

The head domain contains a FERM domain composed by 3 subunits (F1, F2 and F3) and 

an extra F0 domain. The F3 subunit contains a PTB domain that mediates the direct 

interaction with integrin tails in membrane-proximal NPxY motif. In addition, talin head 

domain interacts with hyaluronan receptor, a spliced variant of phosphadylinositol (4)-

phosphate5-kinase type I focal adhesion kinase (FAK) and contains a filamentous actin 

(F-actin) binding site. The rod domain is a large flexible structure formed by helical 

bundles that contains an additional integrin binding site, two F-actin binding sites and 

several vinculin binding sites. The end of rod domain contains a dimerization sequence 

(Critchley and Gingras, 2008). The linker region between head a rod domain can be 

cleaved by protease calpain 2.  
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 Figure 6 Structure of talin. Talin head domain is divided in the 4 subunits (F0, F1, F2, and F3). In 

talin Rod domain the interaction sites for actin, vinculin and integrins are indicated (adapted from (Critchley 

and Gingras, 2008)). 

 

Talin was at first identified as an interactor of the cell-substrate attachment (CSAT) 

antigen (later on identified as an integrin). Talin-CSAT interaction mediates the connection 

between ECM and actin cytoskeleton in adhesion plaques (Horwitz et al., 1986). The first 

evidence of its role in integrin activation are found in studies in CHO cells, where talin 

expression increases the affinity of normally inactive integrins (Calderwood et al., 1999). 

Moreover, this study shows that talin head domain is sufficient to activate integrins. An 

elegant mutational analysis, together with knock-down experiments, identified talin-

integrin interaction as a final common step in integrin activation. In particular mutations in 

talin PTB domain and in integrin NPxY motif impair talin binding and abolish integrin 

activation, giving rise to adhesive-deficient phenotypes (Tadokoro et al., 2003).  

Interestingly talin is not the only PTB domain containing protein that can interact 

with integrin tails. Indeed several other molecules posses a PTB domain and bind to 
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membrane-prossimal or –distal NxxY motifs (see above). However, only talin specifically 

activates integrin whereas other PTB proteins do not. Structural and crystallographic 

analysis clarify this point demonstrating that talin, beside binding the membrane-proximal 

NPxY motif, interacts also with another membrane-proximal region where two 

phenylalanine residues play a crucial role (Wegener et al., 2007). Interestingly other NPxY 

binding proteins, like Dok1, display only the first interactions with the membrane proximal 

NPxY motif. Thus, it is proposed that talin F3 subunit interacts at first with the NPxY 

motif. Afterwards an extra loop, located in F3 subunit, interacts with another membrane-

proximal region containing Phe residues. Interestingly mutation of the key residues for the 

second ―talin-specific‖ interaction abolished integrin activation without impairing talin 

binding (Vinogradova et al., 2002). 

 NMR and FRET studies further unveiled the mechanism behind integrin activation 

by talin. Talin has been shown to compete with integrin tail for the binding to the 

integrin tails. Talin binding to integrin tail destabilizes the interaction that keeps TM 

and cytoplasmic domain close together during the inactive state (Vinogradova et al., 2000). 

In fact, talin-integrin interaction impairs FRET between the integrin tails, indicating a 

separation of the cytoplasmic domains (Kim et al., 2003). A detailed description of the 

changes occurring in integrin TM and cytoplasmic domains upon talin interaction derives 

from structure-function analysis.  Talin F3- integrin interaction stabilizes the helical 

structure of integrin tail and orients a group of Lys residues toward the negatively 

charged phospholipids of the plasma membrane (Wegener et al., 2007). A second 

structural study (Anthis et al., 2009) indicates that talin can electrostatically interact with 

the Asp residue responsible for the salt bridge (Asp 723 of 3integrin with Arg 995 of 

IIbintegrin) that stabilizes the transmembrane complex during inactive state. 

Consequently, talin could disrupt the electrostatic interaction between and subunits, 

triggering integrin activation. This study identified also an additional basic patch in F2 
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subunit that, by interacting with the plasmamembrane, alters the angle of TM domain 

(Fig. 7). The capacity of talin in inducing structural changes, altering the tilt angle of 

integrin tail, explains why integrin activating mutations, that simply impair cytoplasmic 

tail interactions, fails in activating integrin in absence of talin (Tadokoro et al., 2003). 

 

Figure 7 Mechanism of integrin activation by talin. Integrin in inactive state with cytoplasmic 

domains interactions and tilt of 25° is represented on the left. On the right the active state, where talin cause 

integrin tails separation by binding integrin cytoplasmic domain and interacting with the inner side of the 

plasma membrane, is represented (adapted from (Anthis et al., 2009)) 

 

Integrin activation has to be strictly controlled during cellular processes, implying a 

tight regulation of integrin-talin interaction. The investigation on the mechanisms of talin 

activation, targeting to focal adhesion and interaction with integrin tails start to shed light 

on this process. 

 A NMR analysis showed that talin carries an auto-inhibitory interaction between 

the PTB domain and the C-terminal part of the rod domain (Goksoy et al., 2008). This 

study raises the possibility that when integrin has to assume an inactive conformation, talin 

function is auto-inhibited. Moreover the interaction with phosphatidylinsotitol-4,5-
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bisphospshate (PIP2) has been shown to disrupt the auto-inhibitory interface in talin, 

enhancing talin-integrin interaction (Goksoy et al., 2008). 

Stimulation of cells with agonists triggers integrin activation and the signaling 

pathways responsible for this process have been recently clarified. RAP1 and RAP2 are 

two Ras subfamily members that induce integrin activation. Being small GTPases, they 

cycle between an active GTP-bound and an inactive GDP-bound form. RAPs function is 

dependent on the interaction with its effector, RAP1-GTP-interacting adaptor molecule 

(RIAM, a member of a family of adaptor proteins that includes also lamellipodin). RIAM 

expression is enriched in hematopoietic cells whereas lamellipodin is a parologue 

expressed in fibroblasts (Boettner and Van Aelst, 2009). RIAM overexpression has been 

shown to stimulate while its knock-down to block talin recruitment to integrins tails in 

living cells (Watanabe et al., 2008). 

A further analysis showed that RIAM scaffold function connects the membrane 

targeting sequences of RAP1 to talin, targeting talin to the plasma membrane and allowing 

its interaction with integrins (Lee et al., 2009).  A third mechanism of regulation is integrin 

tail phosphorylation (see above). A structural analysis showed that integrin-talin 

interaction (between PTB domain and NPxY motif) is supported by acidic and 

hydrophobic interactions that are abolished by the introduction of a phosphate group 

(Garcia-Alvarez et al., 2003). 
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Kindlin 

 

Kindlins are a family of evolutionary conserved multidomain proteins whose mutation 

causes the Kindler syndrome (Siegel et al., 2003). Three kindlins family members have 

been discovered: kindlin-1 (URP) expressed predominantly in epithelial cells, kindlin-2 

(Mig2) expressed in all tissues with a particular enrichment in skeletal and smooth muscle 

cells and kindlin-3 (URP3) expressed only in hematopoietic cells. In particular Kindler 

syndrome, which names kindlin proteins, is a blistering disease characterized by an 

epithelial cell-adhesion defect (Siegel et al., 2003). Kindlin-3 mutation causes a rare 

Leukocyte-adhesion deficiency (LAD) type III that results in impaired leukocyte and 

platelet cell-matrix interaction (Kuijpers et al., 2009).  

Kindlin, unlike most of FERM domain containing proteins, localized its FERM 

domain at the C-terminal part. Interestingly kindlin FERM domain is split in the F2 

subdomain by a pleckstrin homology (PH) domain (Fig.7). Structural analysis shows that 

kindlin FERM domain and PTB domain in F3 have high sequence and structural similarity 

with the talin ones.  
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Figure 7: Schematic representation of kindlin. The FERM domain is composed by F1, F2 and F3 

subunits. F2 subunit is interrupted by a PH domain. Interaction sites for integrins, ILK and migfilin are 

indicated (adapted from (Larjava et al., 2008)). 

 

The analysis of kindlin-linked pathologies together with in vivo and in vitro studies 

confirmed the essential regulatory function that kindlin exerts on integrin activation. 

Genetic depletion of kindlin-1 in mice results in a skin phenotype reminiscent of Kindler 

syndrome (Ussar et al., 2008). Kindlin-2 deficiency impairs integrin function in epiblast 

and endoderm cells resulting in defective implantation. This phenotype is consistent with 

ubiquitous expression of this protein (Montanez et al., 2008). The lack of kinlin-3 

abolishes IIb3 integrin interaction with its ligands and causes a defective platelet 

aggregation (Moser et al., 2008) whereas leukocytes lacking kindlin-3 cannot transmigrate 

through wall vessel (Moser et al., 2009a).   

The function of kindlin in regulating integrin activation was directly observed for 

the first time in a study in which kindlin was shown to interact and activate IIb3 integrin 

in CHO cells (Shi et al., 2007). The following biochemical experiments confirmed the 

direct interaction between kindlin and 1, 2 and 3 integrin tails (Montanez et al., 2008) 

(Moser et al., 2008) (Moser et al., 2009a) (Ma et al., 2008). In particular kindlin was 

shown to bind the membrane-distal NxxY motif in  integrin tails through its PTB domain 

in F3. An additional kindlin interaction-site has been localized in a short Ser/Thr rich 

region that lies between membrane-proximal and distal NxxY motifs (Harburger et al., 

2009) (Montanez et al., 2008). Interestingly mutations in talin binding site do not abrogates 
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kindlin binding as mutations in kindlin binding sites do not impair talin recruitment 

(Montanez et al., 2008). However, mutations in talin or kindlin specific NxxY motif as 

well as mutations in their PTB domains block integrin activation, indicating a sort of 

cooperation of these molecules in the integrin activation process. Indeed studies in CHO 

cells showed that co-expression of kindlin-2 and talin head domain synergistically 

enhanced integrin activation while knock-down of kindlin-2 had a crucial negative effect 

(Ma et al., 2008). However the stimulatory effect of kindlin was lost in absence of talin 

(Harburger et al., 2009) demonstrating that the amount of talin in the cells determine 

kindlin efficacy. 

Interestingly some observations support the notion that kindlin posses also a 

integrin-inhibitory effect related to its level of expression. Indeed over-expression of 

kindlin-1 and 2 represses integrin activation independently of integrin-kindlin interaction. 

Moreover kindlin-1 and 2 activate  IIb3 integrin when co-expressed with talin head 

domain but cannot cooperate with talin in 51 integrin activation, showing an unexpected 

inhibitory effect on talin function (Harburger et al., 2009). The integrin-independent effect 

of kindlin is demonstrated by the analysis of a cell type that does not express any integrins. 

Indeed kindlin deficient erythrocytes showed structural membranes defects (Kruger et al., 

2008). 

Besides the binding with integrins, kindlin also interacts with integrin linked kinase 

(ILK) and migfilin, a filamin binding protein (Tu et al., 2003). Indeed both ILK and 

migfilin co-localization in focal adhesions depends on kindlin. Moreover this interaction 

allows kindlin to establish an indirect connection with the actin cytoskeleton and 

participate to signal transduction. 

The mechanisms of talin-kindlin cooperation in integrin activation are still unclear 

and putative cross-talk models have been speculated. In a first scenario kindlin-integrin 

interaction could facilitate talin interaction with consequent displacement of talin. 
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However, since talin and kindlin binding sites are distinct, they could simultaneously 

interact with the same integrin tail, although the order of the interaction is still unclear. 

Alternatively, talin and kindlin could interact with distinct integrin tails, cooperating in 

trans to integrin activation. 

 

 

Integrin clustering and focal adhesion assembly: 

 

Integrins in the active state bind a wide range of ligands in the ECM. However, in order to 

mediate strong cell-adhesion, individual adhesive units have to assemble into a larger 

adhesive platform. This phenomenon is termed ―integrin clustering‖ and is defined as the 

association of single heterodimers to form heterooligomers. In this way integrins cluster in 

transient early structures called ―nascent adhesions‖ (Choi et al., 2008). Their molecular 

composition is not known but likely they contain the primitive integrin activation complex 

composed by talin (and eventually kindlin) providing a first connection to the actin 

cytoskeleton. Nascent adhesions can progress to the stage of dot-like focal complexes, that 

appears like spots of 100 nm and are composed by several hundred molecules (Geiger et 

al., 2001). Focal complexes occurs usually underneath the lamellipodia (Alexandrova et 

al., 2008), flat and pro-migratory cellular structures generated by actin polymerization. 

Focal complex assembly is dependent on forces acting on adhesion sites that derives from 

the periodic uplifting of the lamellipodia and myosin II-mediated contractility (Giannone et 

al., 2007). Focal complexes can mature into larger ―focal adhesions‖ enriched in -actinin 

(FAs 3-10 m) and finally in fibrillar adhesions  (Geiger et al., 2001). Podosome and 

invadosome are the counter-part of FAs in osteoclast/macrophages and in cancer cells 

respectively. Generally, focal complexes are a feature of migrating cells whereas mature 
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FAs are found in resting cells. The transition from focal complex to FAs occurs in the 

boundary between lamellipodia and lamella (a flat structure in cell periphery but more 

internal respect to lamellipoida) and requires -actinin and myosin II. Interestingly the 

motor activity of myosin II seems to be dispensable for this transition. However the 

capability of myosin II in promoting actin stress fibers is required for a complete FAs 

maturation (Choi et al., 2008). 

Many factors contribute to integrin clustering. Inside-out signaling stimulates the 

recruitment of multivalent proteins on the integrin cytoplasmic domains, inducing integrin 

clustering. The intact talin molecule is required for focal adhesion assembly whereas talin 

head, beside the integrin stimulatory effect, is not sufficient for FAs formation (Zhang et 

al., 2008). Moreover, talin dimerization is required for its localization into focal adhesion 

and presumably for its clustering activity (Smith and McCann, 2007). Talin posseses two 

integrin binding sites (one in head F3 domain and one in the rod domain) meaning that a 

talin-dimer binds up to four integrin tails simultaneously. Thus, talin could have an 

intrinsic integrin clustering activity that would explain why calpain cleavage, by 

dissociating talin head from the rod domain, induces focal adhesion disassembly (Franco et 

al., 2004). Several evidences demonstrate that integrin clustering requires an active 

conformation of the receptors, PIP2 and immobilized ligands (Cluzel et al., 2005). In 

addition PIP2 binding to talin in F2 and F3 domains is required for its clustering activity 

(Saltel et al., 2009). A novel role of kindlin in focal adhesion assembly has been suggested 

by the reduced number of FAs in cell lacking kindlin-2, even in the presence of integrin 

activating stimuli (Montanez et al., 2008). Integrin clustering is induced also by the 

binding of multivalent ligand in the ECM and is enhanced by the release of integrin from 

cytoskeletal constrains(Buensuceso et al., 2003). 
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OUTSIDE-IN (FOCAL ADHESION) SIGNALING 

 

Activated and clustered integrins transmit signaling(s) across the plasma membrane in a 

process called outside-in signaling. Integrin outside-in signaling usually requires ligand 

binding (although an increasing number of evidences suggest that integrin activation 

induce a signaling in a ligand-independent fashion. This is the main topic treated in this 

PhD thesis and will be analyzed in the discussion). Importantly integrin tails do not display 

any enzymatic activity and, in order to signal, they are dependent on the binding of effector 

molecules. The sequential binding of focal adhesion proteins changes focal adhesion 

composition during their maturation. This process enables integrins to transmit different 

kinds of signalings in response to different extracellular contexts. Integrin tails and focal 

adhesion proteins can undergo extensive phosphorylation, creating novel binding sites for 

other proteins and regulating their signaling activity. Moreover, the incorporation of 

phosphoinositides into FAs regulates the recruitment of specific proteins. In addition FAs 

are specialized mechano-transduction platforms. Indeed, they can react to external or 

internal mechanical forces, modifying their composition and unmasking novel binding 

sites or phosphorylation motifs. Several studies indicate talin, ILK, vinculin and -actinin 

as the major mediators of integrin linkage to the actin cytoskeleton. FAK, paxillin and 

SRC play a role in the modulation of intracellular signaling through their enzymatic and 

scaffold activity.  
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Integrin-cytoskeleton linkage and focal adhesion maturation 

 

The initial integrin-cytoskeleton interaction is provided by the recruitment of talin in focal 

adhesions. Indeed fibroblasts lacking both talin1 and 2, besides defects in integrin 

activation, fail to connect integrin to the actin cytoskeleton (Zhang et al., 2008). The role 

of talin has been investigated also in relation to migration and signaling. Concomitant 

knock-down of the two talin isoforms (talin 1 and talin 2) severely affects cell spreading, 

signaling to focal adhesion kinase and traction force generation. The expression of the talin 

head domain partially rescued these defects by increasing cell-adhesion but it did not 

reconstitute cytoskeleton linkage. Intact talin molecule was needed to restore cell 

spreading, focal adhesion assembly and signaling, demonstrating the importance of the 

interactions with the actin cytoskeleton (Zhang et al., 2008). Moreover, filamin competes 

with talin for the interaction with integrin tails. Increased filamin binding has been shown 

to negatively regulate cell migration, whereas talin binding has a stimulatory effect 

(Calderwood et al., 2001). The crucial role of talin is underlined by the phenotypes of 

knock-out mice. Indeed talin-1 depletion results in death at gastrulation due to impaired 

cytoskeletal organization and cell migration (Monkley et al., 2000). 

The exact role of kindlin in FAs signaling and maturation is still unclear. However 

kindlin-3 depleted platelets have reduced cell spreading and abnormal cytoskeletal 

organization (Moser et al., 2008).  Kindlin-2 deficient cells, in which integrins are 

activated by Mn
2+

, displayed a serious impairment in FAs assembly and failed to localize 

ILK in FAs (Montanez et al., 2008). ILK, in turn, can mediate additional connections with 

the cytoskeleton by interacting with parvin (Tu et al., 2003), reinforcing in this way the 

integrin-actin linkage. ILK deficient cells display impaired FAs formation, reduced cell 
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spreading and disorganized actin cytoskeleton (Sakai et al., 2003). Additionally recent 

evidences indicate a role for ILK in the integrin activation process, as ILK knock-down 

impairs integrin activation in a talin dependent fashion (Honda et al., 2009). 

Once talin interacts with integrin tails, vinculin is rapidly recruited to early nascent 

adhesions. Vinculin interacts with talin thanks to several binding sites (up to 11 (Gingras et 

al., 2005)  in the talin rod. Interestingly many vinculin-binding sites are inaccessible, being 

buried in the rod domain. Mechanical stretch of talin rod domain activates vinculin binding 

by unmasking cryptic binding sites (del Rio et al., 2009). These findings demonstrate how 

mechanical forces can change the conformation of a FAs protein like talin, suggesting a 

general mechano-transduction pathway that can translate mechanical forces into 

intracellular responses. Vinculin depleted fibroblast displays unstable FAs, accelerated 

FAs turnover and cell migration, demonstrating its crucial role in FAs maturation and 

assembly (Saunders et al., 2006). Although talin can establish a first link with the 

cytoskeleton, the absence of vinculin abrogates FAs maturation. Thus, vinculin 

simultaneous interaction with actin and talin could reinforce cytoskeleton linkage leading 

to FAs maturation (Humphries et al., 2007). However, vinculin head, which interacts only 

with talin, has been shown to be sufficient for FAs maturation, indicating other 

mechanisms of regulation probably involving integrin clustering (Humphries et al., 2007).  

Another protein shown to interact with both talin and vinculin is -actinin. -actinin has 

been shown to modulate the stability of the cytoskeleton linkage thanks to its actin-bundle 

activity. Moreover -actinin is necessary for the transition from focal complexes to focal 

adhesions through its actin cross-linking activity (Choi et al., 2008). In particular, -actinin 

affinity for actin is modulated by FAK phosphorylation (Izaguirre et al., 2001). 

Other proteins that contribute to integrin actin-linkage are paxillin and tensin. 

Paxillin is recruited to early nascent adhesion where, thought direct interactions with FAK, 

vinculin and SRC, modulates integrin-cytoskeleton linkage and focal adhesion 
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composition (Laukaitis et al., 2001). Additionally paxillin interacts with  integrin tail and 

stabilizes integrin-talin interaction (Alon et al., 2005). Tensin is recruited in mature FAs 

and it is a marker of fibrillar adhesion. Tensin contains an actin-binding domain and can 

mediate integrin-cytoskeleton interaction. Moreover tensin binds to the NPxY motif 

exploited by talin. Phosphorylation of the NPxY motif, that occurs during FAs maturation, 

has been shown to disrupt talin binding in favor of tensin interaction (McCleverty et al., 

2007), unveiling a novel phosphorylation-dependent mechanism of regulation. The 

molecular composition of mature FAs is represented in Fig. 8. 

 

Figure 8 Molecular architecture of FAs. The schematic composition of FAs and the linkage to actin 

cytoskeleton is represented  ( adapted from (Mitra et al., 2005)). 
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Several studies analyzed the diffusion of integrin and FAs components within the 

plasma membrane (Hu et al., 2007). Integrins engaging the ECM have a low velocity, 

together with FAs proteins associated with them. Proteins with a weak interaction with 

integrins but a strong connection with the actin cytoskeleton move faster, slightly behind 

the actin treadmiling. Talin and vinculin can be associated both with slow-moving 

integrins or with faster-moving actin. This plasticity allows the transmission of pulling 

force to the integrin complexes stably associated with actin (crucial for FAs maturation). 

At the same time weakly actin-associated integrins allows the cell body to slide over the 

adhesion sites. 

 

 

Integrin-mediated adhesion in the control of actin dynamics: 

 

Integrin-ECM engagement and the following link to actin cytoskeleton spatially and 

temporally control the actin cytoskeleton rearrangements. In this way integrin linkage to 

actin cytoskeleton allows both the control of local actin polymerization and at the same 

time the global modulation of cytoskeleton dynamics.  

Integrins can modulate cell protrusion by assembling a complete actin 

polymerization machinery on their cytoplasmic domains. A major role is played by the 

Arp2/3 complex nucleation activity that controls the assembly of actin filaments in a 

branched fashion during lamellipodia protrusion. The Arp2/3 complex has to be activated 

by Wiskott-Aldrich Syndrome protein (WASP)/Scar family of activator proteins (Pollard, 

2007). Arp2/3 complex is targeted to nascent adhesions by its interaction with FAK and 

vinculin. Indeed a missing FAK-Arp2/3 complex interaction impairs lamellipodia 
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protrusion and consequent cell spreading (Serrels et al., 2007). Arp2/3-vinculin interaction 

is transient and mainly involved in nascent adhesion targeting (DeMali et al., 2002). 

Actin cytoskeleton rearrangements are in control of Rho GTPases, a protein family 

that in mammals is composed by 20 members. Rho GTPases shift between an active GTP-

bound form and an inactive GDP-bound form. This cycle is regulated by three specific 

factors: inactive Rho GTPases are sequestered by Rho-GDP dissociation inhibitors (Rho-

GDI), which keep them in the cytoplasm preventing membrane targeting. The release of 

Rho-GTPases from Rho-GDIs allows membrane localization and subsequent activation by 

guanine nucleotide exchange factors (GEF) that promote GTP loading. Finally Rho 

GTPases can return to the inactive states under the activity of GTPase-activating proteins 

(GAP) that promote GTP hydrolysis  (Fig. 9). There are three major Rho GTPases 

responsible for the control of actin dynamics: RhoA, Rac and Cdc42. 

 

 

 

 

 

 

 

 

 

Figure 9 Mechanisms of Rho GTPases regulation. Rho-GDIs sequester inactive/GDP bound Rho in 

the cytoplasm. The release from Rho-GDIs allows membrane targeting, where GEFs can promote GTP 

loading corresponding to the active state.  GAPs promote GTP hydrolysis that leads to Rho-GDP 

bound/inactive state(adapted from (Huveneers and Danen, 2009)). 

 

Rac is the main regulator of lamellipodia protrusion. Integrin engagement promotes 

Rac membrane targeting and activation by the recruitment of numerous GEFs (del Pozo et 
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al., 2004). In this way, nascent adhesions and focal complexes at the leading edge will be 

enriched in active Rac that in turn promotes lamellipodia formation. Rac activates the 

Arp2/3 complex by acting on WAVE/WASP family of Arp2/3 complex activators (Cory 

and Ridley, 2002). Arp2/3 complex binds to the sides or tips of pre-existing actin filaments 

and promotes the formation of a second daughter filament in a branched fashion. 

WAVE/WASP proteins can in turn associate with GAPs and GEFs, creating positive or 

negative feedback loops that regulates the extent of Rac1 activity (Soderling et al., 2002). 

Activated Rac can also induce the recruitment and clustering of newly activated integrins 

to the leading edge (Kiosses et al., 2001), creating a second positive loop. 

The role of integrins in activating Rac is underlined by conditional knock-out 

studies that show decreased level of RAC1 activity in integrin deficient cells (Nodari et 

al., 2007). 

Cdc42 is the master regulator of cell polarity. Cdc42 activity is located at the 

leading edge of cells and its inhibition or  delocalized activation abolish directional 

migration (Etienne-Manneville and Hall, 2002). Integrin-matrix interaction is required for 

Cdc42-mediated cell polarization, as RGD peptides, by blocking integrin engagement, 

impair Cdc42 activation and cell polarization (Etienne-Manneville and Hall, 2001). Cdc42 

influences cell polarity by restricting the sites of lamellipodia formation through the action 

of Arp2/3 complex via WASP (Srinivasan et al., 2003). Additionally Cdc42 orients the 

microtubule-organizing center and the Golgi apparatus in front of the nucleus, facing the 

leading edge. In this way Cdc42 promotes the delivery of Golgi vesicles through 

microtubules, providing membrane and proteins necessary for protrusion (Etienne-

Manneville and Hall, 2002). Several evidences show that Cdc42 triggers filopodia 

formation, structures with parallel actin bundle organization that are believed to serve as 

sensors to explore the external environment. Recently it has been demonstrated that 
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Cdc42-induced filopodia are precursor-like structures for Rac-mediated lamellipodia 

(Guillou et al., 2008). Interestingly integrin occupancy plays a crucial role in this process. 

RhoA regulates FAs assembly and cell contractility responsible for rear cell 

retraction during cell migration. RhoA regulates cell contractility by promoting the 

interaction between actin filaments and myosin. A crucial intermediate in this process is 

the Ser/Thr kinase p160ROCK. Indeed ROCK and RhoA are involved in single-cell 

migration process for their function in regulating cell rear detachment (Nobes and Hall, 

1999). ROCK plays a role in cofilin-mediated stabilization of actin filaments (Maekawa et 

al., 1999). Additionally ROCK phosphorylates and inactivates myosin light chain (MLC) 

phosphatase.  Phosphorylated myosin can cross-link actin filaments, leading to stress fiber 

formation (Mitchison and Cramer, 1996). integrin regulates Rho-mediated cell 

contractility through calpain cleavage. Indeed intact  integrin interacts directly with Src 

and suppresses RhoA activity whereas proteolytic cleavage of its C-terminus abolishes Src 

interaction and promotes cell contractility (Flevaris et al., 2007). However integrin does 

not interact directly with Src (Arias-Salgado et al., 2005) and regulates RhoA in a different 

manner. Interestingly laminin binding to 3integrin suppresses RhoA activity and up-

regulates cell migration while the 2integrin interaction with collagen stimulates RhoA 

activity and has an negative effect on cell motility (Zhou and Kramer, 2005). These 

evidences could indicate an additional regulatory role for the subunits. Moreover, the 

expression level of different integrin types regulates the intensity of RhoA activation 

(White et al., 2007). 

During cell migration and spreading the activity of Rho GTPases is tightly 

regulated. During initial cell adhesion and spreading RhoA activity is suppressed in favor 

of higher level of Rac1 and Cdc42 activation. This will result in low level of acto-myosin 

contractility and enhanced lamellipodia protrusion. After the first phase of cell spreading, 

Cdc42 and Rac1 activation decrease and concomitantly RhoA activity increases driving the 
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formation of actin stress fibers and the maturation of FAs. Interestingly RhoA and Rac1 

suppress each other activity. This process is also crucial for the definition of the leading 

edge and the tail of the cell during cell migration. RhoA mediates the activation of Rac 

specific GAPs that favor the RAC-GDP bound (inactive) state (Ohta et al., 2006). 

Conversely Rac1 activation produces reactive oxygen species that activates p190RhoGAP, 

a Rho GAP that inhibits Rho activity (Nimnual et al., 2003).  

 

 

Integrin-mediated regulation of signal transduction 

 

The canonical way in which integrins signal is by engaging their specific ligands in the 

ECM. Integrin signaling can be divided in two types: transient and sustained. In transient 

signaling the signal decays after an initial peak in response to cell-matrix adhesion. Indeed 

cells seeded on ECM components display an increased SRC phosphorylation together with 

high Rac1 and Cdc42 activity that will decline to the baseline in few hours. Rho activity is 

initially strongly decreased. This initial phase is followed by a peak of activity and a 

subsequent decrease to the basal level. Sustained signaling is triggered by cell-matrix 

adhesion but, after the initial peak, remains elevated in time. A typical example is FAK 

auto-phosphorylation that is induced and maintained during cell-adhesion. 

Several studies on the mechanism of outside-in signaling highlight the importance 

of the Src/FAK axis as major source of signal transduction pathways arising from 

integrins.  

Src is a non-receptor protein kinase that together with fyn, yes, lyn (and other 

members expressed in specific cell types) compose the Src family kinase (SFK). All the 

SFKs members share a C-terminal tyrosine (Tyr529) that upon phosphorylation binds the 
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Src-homology 2 (SH2) domain, locking the molecule in an inactive conformation and 

inhibiting its kinase activity. Src activation is one of the earliest events following cell-

adhesion and it is characterized by the dephosphorylation of the inhibitory Tyr529 in favor 

of the autophosphorylation of Tyr418. Src activation can be triggered by 

removal/inactivation of the inhibitory kinase Csk or by dephosphorylation of the inhibitory 

Tyr529 by integrin-associated phosphatases. Alternatively the activation of Src bound to 

integrin can occur through transactivation by itself or by competition of FAK for the SH2 

domain (Mitra et al., 2005) (Arias-Salgado et al., 2005). 

 FAK is an ubiquitously expressed protein tyrosine kinase composed by a N-

terminal FERM domain, a central kinase domain, proline rich regions and a C-terminal 

focal adhesion targeting (FAT) domain. The proline rich regions (PPR) are important in 

the interaction with Src homology 3 (SH3) containing proteins like p130Cas.  Integrin 

ligation induces FAK autophosphorylation in Tyr397, creating an interaction site for the 

SH2 domain of Src. In this way, FAK competes for the binding to SH2 and stabilizes Src 

active conformation. Src in turn phosphorylates additional Tyr residues in FAK creating 

new docking sites for other proteins (Tyr861 and Tyr925) and increasing its kinase activity 

(Tyr576 and tyr577) (Mitra et al., 2005).  

The active FAK-Src complex can activate Rac and trigger cell protrusion. A crucial 

adaptor protein in this process is p130Cas. FAK-Src complex activation results in p130Cas 

phosphorylation and the subsequent formation of a complex with v-Crk sarcoma virus 

CT10 oncogene homolog (CRK). CRK-p130cas complex in turn recruits Dock180 and 

engulfment and cell motility 1 (ELMO) (Chodniewicz and Klemke, 2004) that act as an 

unconventional GEF for Rac, promoting Rac-GTP active state (Brugnera et al., 2002). 

Additionally FAK-Src complex phosphorylates paxillin with consequent recruitment of 

ArfGAP paxillin-kinase linker (PKL) and Pak-interacting exchange factor beta (-PIX a 

GEF for Cdc42) (ten Klooster et al., 2006). Alternatively FAK-SRC mediated paxillin 
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phosphorylation enables paxillin-Crk interaction (Turner, 2000). A schematic 

representation of FAK-Src role in signaling to Rho GTPases is given in Fig.10. 

FAK-Src complex regulates also the transient repression of RhoA activity during 

the initial phase of cell spreading (Ren et al., 2000). Indeed 5integrin engagement 

triggers Src-mediated phosphorylation of p190RhoGAP with a consequent repression of 

RhoA contractile activity (Arthur et al., 2000).  

 

Figure 10 Early integrin signaling during cell spreading. Activated and clustered integrins recruits 

Src/FAK complex that upon activation phosphorylates paxillin and p130Cas. This lead to activation of Rac1 

and Cdc42 and inhibition of RhoA (adapted from (Huveneers and Danen, 2009)). 

 

After a first inactive phase, RhoA activation increases inducing actin stress fibers 

and FAs maturation. Rho GEF like p190RhoGEF, LARG and Gef1 are involved in this 

process (Dubash et al., 2007). Possibly mechanical signals could act locally and stimulate 

Src-dependent activation of these GEF. Several evidences indicate that 5integrin 
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binding to fibronectin is particularly efficient in promoting RhoA activation in the late 

phase of cell spreading (Danen et al., 2002). Conversely, the depletion of another 

fibronectin binding integrin, v, does not impair RhoA activation, although its 

overexpression can stimulate RhoA activity (Miao et al., 2002). Interestingly, 5integrin 

depletion results in low levels of RhoA activity and it is not rescued by expression of other 

FN binding integrins (Huveneers et al., 2008).  RhoA activation could be induced by the 

mechanical perturbation of cyto-architecture in response to initial cell spreading. 

Consequently, mechanosensitive FAs protein can alter their conformation in response to 

mechanical stimulation. This event could expose cryptic binding sites for signaling 

molecules, resulting in differential signaling to Rho GTPases (Fig. 11) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 Late integrin signaling in cell spreading. Integrins activate SFKs, stimulating the activity 

of  RhoA GEFs and enhancing RhoA activity.(adapted from (Huveneers and Danen, 2009)) 

 



 

45 

 

 

These evidences indicate that Src-FAK complex can modulate and localize the 

activity of Rho GTPases, orchestrating cell protrusion dynamics in the different phases of 

cell adhesion, spreading and migration. Moreover Src directly interacts, through its SH3 

domain, with the C-terminal part of  integrin tail  and this interaction has been shown to 

regulate cell spreading (Arias-Salgado et al., 2005). Src- integrin complex can 

phosphorylate Rac GEF, like Vav1, Vav2 or Tiam1, leading to Rac-dependent cell 

protrusions and spreading (Hamelers et al., 2005) (Marignani and Carpenter, 2001). 

Recently, the guanine nucleotide-binding protein (G protein) G13 has been shown to 

directly interact with  integrin tail. This interaction is promoted by integrin ligation and 

by guanosine triphosphate (GTP) loading. G13-integrin interaction is crucial for Src 

activation and consequent RhoA inhibition in the early phase of cell spreading (Gong et 

al., 2010).  

Beside the control of Rho GTPases activity, Integrins activate other signaling 

pathways. Mitogen activated protein kinases (MAPK) signaling pathway is activated in 

response to integrin ligation and modulates focal adhesion dynamic, proliferation, cell 

cycle progression and survival. Active Src phosphorylates FAK in Tyr925, creating a 

binding site for GRB2 adaptor protein. GRB2 recruits SOS, an exchange factor for Ras, 

leading to the activation of Ras. Active Ras can trigger the sequential activation of Raf and 

MEK that will result in ERK1/2 phosphorylation (Schlaepfer et al., 2004). Another way in 

which FAK can control MAPK activation is through the activation of PAK1, with 

consequent phosphorylation of MEK1 (Slack-Davis et al., 2003). Although MAPK 

activation can be induced by growth factors, integrin-mediated cell adhesion is required in 

order to get the complete activation of this signaling pathway. Finally, phosphorylated 

ERK1/2  activates myosin light chain kinase, modulating focal adhesion dynamics during 

cell motility (Ridley et al., 2003).  
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Integrin-mediated FAK activation allows also FAK interaction with PI3kinase.  

PI3kinase activation modulates cell survival through the AKT pathway and induces 

accumulation on PIP3 lipid messenger in the leading edge of the cells (Sonoda et al., 

1999). 

Integrin can activate also the PKC Ser/Thr kinases signaling pathway. Indeed PKC 

members are activated as long as the cells are adhering through integrins (Ivaska et al., 

2003). PKC has been reported to regulate integrin trafficking by directly interacting with 

 integrin in active state (Ng et al., 1999). 

An alternative way in which integrins influence intracellular signaling is by 

modulating the recycling of lipid raft, regulating in this way the membrane order. Indeed 

cell detachment from the ECM triggers lipid rafts clearance in a process that requires 

caveolin 1 phosphorylation in tyrosine 14 and dynamin-2. This process regulates the 

dependency on cell adhesion of most of the signaling pathways. Consistently caveolin -/- 

MEFs loose the dependency on cell adhesion in the activation of AKT, ERK1/2 and PAK 

signaling pathways (del Pozo et al., 2005). Moreover lipid rafts internalization that follows 

cell detachment inhibits Rac1 membrane targeting and, in this way, its activation (del Pozo 

et al., 2004). When integrin-ECM contacts are reconstituted by replating the cells on 

fibronectin, lipid rafts exit from recycling endosomes in an Arf6 dependent manner and 

return to the plasma membrane along microtubules (Balasubramanian et al., 2007). 

Through this mechanism integrin can control signal transduction by regulating membrane 

composition. In this way the function of proteins that need, beside an active state, 

membrane targeting (like Ras, Rac and Src) will be dependent on integrin-mediated cell 

adhesion. 

Finally, integrins are involved in many mechanotransduction processes in a direct 

or indirect way. Cells can sense through integrins changes and deformations of the 

extracellular matrix, modification of hydrostatic pressure, fluid shear stress and osmotic 
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forces. Mechanical stimuli, as the stretch of the ECM, can change the geometry and 

composition of focal adhesions by exploiting the straight connection among ECM, integrin 

and the cytoskeleton. In the case of osmotic or hydrostatic pressure, the way in which 

integrins are involved is not clear. Several evidences indicate that applied forces or 

increased cellular contractility result in enlargement of FAs. In this way forces acting 

directly on adhesion sites can promote focal complexes to focal adhesion transition and 

modulate FAs dynamics. Increased tension on integrin leads to the recruitment of vinculin 

and other focal adhesion components. Indeed by stretching the talin rod, a cryptic vinculin 

binding site is unmasked (del Rio et al., 2009). Additionally tension triggers the activation 

of unoccupied/inactive integrins, with consequent ECM ligation (Katsumi et al., 2005). In 

this way, cells can adjust their adhesive force in response to variation in their extracellular 

context. Moreover several evidences show that mechanical strain on adherent cells 

activates FAK and Src (Plotkin et al., 2005). Thus, ECM strain induces integrin activation 

and focal adhesion strengthening leading to signal transduction. Integrin-mediated 

mechanotransduction is thought to involve proteins that undergo conformational changes 

under force. A typical example is p130Cas that, in response to force, assumes an open 

conformation allowing substrate domain phosphorylation (Sawada et al., 2006). 

Interestingly integrins are implicated in the mechanotransduction process also in system 

where forces are not directly acting on them. Osmotic stress responses allow cell to adjust 

to changes in ion transport or in extracellular osmolarity. Osmotic stress induces Src and 

FAK phosphorylation in a integrin dependent manner (Browe and Baumgarten, 2003). 

Moreover cell stretching induces the opening of stretch-activated ion channels in an 

integrin dependent fashion (Miyauchi et al., 2006). Cells can also respond to changes in 

hydrostatic pressure. A small elevation of pressure activates integrins and cause the 

phosphorylation of Src, FAK and -actinin. Interestingly pressure-mediated effect occurs 

also in suspended cells, where integrins do not engage their ligands (Craig et al., 2007). 
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Integrins and cell migration: 

 

Integrins are the major family of migration-promoting receptors. First integrins 

provide stable adhesion to the ECM, acting as the feet of migrating cells. Second integrins 

form an uninterrupted connection between ECM and cytoskeleton. Third integrin transmit 

a wide array of signals implied in cell polarity, cell contraction and cell protrusion. 

Integrins form adhesion sites at the leading edge on the cells. The multivalent 

properties of ECM components as well as Cdc42 and Rac activity are involved in this 

process (see below). Adhesion formation mediates attachment to the ECM and stabilizes 

lamellipodia protrusion with the onset of positive feed-back loops. During cell migration 

focal complexes maturation and assembly are strictly regulated, as cells with large focal 

adhesion are generally immobile. 

During migration, cells have to detach their rear to allow an efficient translocation 

of the cell body but at the same time they have to exert traction of the ECM. Thus, the 

strength of cell adhesion modulates cell motility and it is influenced by the density and the 

topology of ECM ligands, the amount and the type of integrin receptors on the cell surface 

and the activation state of adhesion molecules. Myosin II is implicated  in cell contractility 

and it has a primary role in the transmission of force to the adhesion sites (Mitchison and 

Cramer, 1996).   

In migrating cells, the major forces are transmitted to the focal complexes in the 

leading edge and to the retracting cell rear (Beningo et al., 2001). In the leading edge the 

adhesion sites under cell protrusion disassemble in favor of newly formed ones (Webb et 

al., 2002). However, some adhesions maturate into more stable FAs. One possible 

regulatory mechanism is microtubule targeting with consequent FAs disassembly (Small 

and Kaverina, 2003). 
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Many proteins with different functions regulate the adhesion turnover in the leading 

edge. FAK and Src depleted cells are characterized by slow migration speed and large FAs 

(Webb et al., 2002). FAK/Src/p130Cas-mediated Rac activation is crucial for cell 

protrusion and focal adhesion turnover. Additionally Rac-mediated Rho suppression and 

MAPKs activation has been reported to play a crucial role in this process. Finally 

proteolytic cleavage of integrins and FAs components by calpain is yet another way in 

which focal adhesion disassembly is regulated in the leading edge (Franco et al., 2004). 

The rear of the cell is characterized by a dynamic focal adhesions disassembly. In 

many cells types, cell adhesion is strong at the rear resulting in an elongated morphology 

characterized by a long migration tail. The tension exerted on the adhesion sites could be 

sufficient to break integrin-cytoskeleton linkage with a consequent translocation of the cell 

body. Indeed the tension in the rear of the cells contributes to its detachment 

(Lauffenburger and Horwitz, 1996). Myosin II contractile function is a crucial element in 

this process. Moreover, the FAK/Src axis is implicated also in focal adhesion disassembly 

in the rear of the cells. Finally, FAs disassembly is stimulated by calcium influx. Indeed 

the elevated membrane tension during cell migration could trigger the opening of stretch-

activated ion channel with consequent increase of the intracellular calcium concentration 

(Lee et al., 1999). 
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NON-INTEGRIN CELL ADHESION 

 

Integrins are the main transmembrane receptors that mediate cell adhesion to the 

ECM and subsequent signaling. Besides integrins, other adhesion molecules mediate cell 

adhesion and signaling directly or in co-operation with integrins. Among them CD44 

provides high affinity adhesion to ECM ligands by binding glycoproteins, 

glycosaminoglycans and hyaluronic acid (HA) (Ponta et al., 2003). CD44 binds its main 

ligand, HA, through hyaluronan-binding domain (Banerji et al., 2007). Additionally CD44 

interacts also with non-protein ECM ligands like heparan sulphate, chondroitin sulphate 

and with canonical ECM proteins like collagen type 1 and VI, fibronectin and laminin 

(Ponta et al., 2003). CD44 possesses a cytoplasmic domain that interacts with actin binding 

proteins like ezrin, radixin, moesin , mediating the connection with the actin cytoskeleton 

(Bourguignon, 2008). Additionally CD44-mediated HA adhesion transduces different 

signaling pathways that involve Src (Ouhtit et al., 2007), Rac1 and RhoA (Bourguignon et 

al., 2000). RhoA activation recruits, through its effector ROCK, ankirin to the CD44 

cytoplasmic tail, providing a second indirect link with the actin cytoskeleton (Bourguignon 

et al., 2004).  

HA can be associated to tissues but can be also immobilized at the cell surface by 

CD44 interaction (Rilla et al., 2008). Several evidences indicate that membrane-associated 

HA engages other ECM components and it is localized at the tips of cell protrusion. 

Surprisingly HA-ECM interaction precedes the formation of integrin-dependent focal 
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contacts. Thus CD44-mediated HA membrane localization and the following HA-ECM 

engagement could represent a very early event in ECM-cell interaction (Zimmerman et al., 

2002). CD44 enhances cell migration by increasing cell-matrix interaction or by enhancing 

pro-migratory signals (Zhu et al., 2006). Interestingly during cell migration CD44 does not 

localizes in the leading edge but rather uniformly interacts with the ECM with an 

enrichment in the cell rear (Jacobson et al., 1984). CD44-HA interaction can activate 

extracellular proteolysis which result is cleavage of its ectodomain with consequent release 

of its adhesive bonds (Nagano et al., 2004). However the in vivo relevance of CD44-

mediated adhesion remains unclear as CD44 deficiency does not result in any major 

phenotype in mice (Protin et al., 1999). 

Besides CD44, the syndecans family of cell surface heparan sulphate proteoglycans 

mediate non-integrin cell adhesion. Their heparin-binding ectodomain allows syndecans 

interaction with extracellular glycosaminoglycans and ECM proteins such as collagens, FN 

and VN (Beauvais and Rapraeger, 2004). Syndecans overexpression usually increases cell 

adhesion and migration in normal and cancer cells whereas their down-regulation has an 

inhibitory effect (Beauvais and Rapraeger, 2004). However, the strong synergy with 

integrins frequently masks the direct contribution of syndecans to cell adhesion and 

migration. 

A third family of non-integrin adhesion receptors is composed by discoidin domain 

receptors (DDR) that can mediate adhesion to fibrillar collagens. DDR-mediated cell 

adhesion induces intracellular signaling pathways that promote actin dynamics (Vogel et 

al., 2006). Interestingly, DDR signaling occurs after few minutes but displays a peak after 

several hours. This evidence could indicate that DDR are not involved in early and acute 

responses to the ECM but they play a function in sustained and slow responses (Vogel et 

al., 2006).  In overexpression models, DDRs induce collagen adhesion directly and 

independently of integrins (Kamohara et al., 2001). However, DDR signaling occurs in 
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close co-operation with integrins. Indeed DDRs enhance integrin-mediated adhesion and, 

in this way, reinforce integrin-dependent signal transduction (Shintani et al., 2008).  

Finally, urokinase plasminogen activator receptor (uPAR) interacts with the N-

terminal portion of VN, inducing integrin-independent adhesion to this ECM component. 

The mechanism of uPAR-mediated cell adhesion and signaling will be extensively 

analyzed in the following chapter. 

 

uPAR AND THE PLASMINOGEN ACTIVATION 

SYSTEM 

 

Urokinase plasminogen activator (uPA) receptor (uPAR) is an extensively N-glycosylated 

membrane receptor tethered to the plasma membrane by a glycosyl-phosphatidylinositol 

(GPI) anchor. uPAR modulates pericellular proteolysis by regulating the activity of the 

plasminogen activation (PA) system. The binding of its natural ligand, the serine protease 

uPA both in its zymogen or activated form, localizes and concentrates this protease activity 

on the cell surface. Active uPA in turn proteolytically activates the zymogen plasminogen, 

generating the active protease plasmin. The uPA activation process is proteolytically 

regulated as well and plasmin establishes a positive feedback loop that increase uPA 

activity (Ellis et al., 1991). The plasminogen activation system is negatively regulated by 

plasminogen activation inhibitors 1 and 2 (PAI1 and PAI2) which covalently bind to their 

target and induce the internalization of the ternary complex (uPAR:uPA:PAI1) through 

low-density lipoprotein receptor related complex (LRP) (Cubellis et al., 1990). Active 

plasmin can directly cleave a wide range of ECM components, playing a crucial role in 

fibrin clots clearance (fibrinolysis). Alternatively plasmin activates other protease activities 
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like metallo-proteases (MMPs) amplifying the proteolytic cascade (Carmeliet et al., 1997). 

In this way uPAR localizes PA in the leading edge of the cells facilitating migration 

through three-dimensional ECM (Estreicher et al., 1990). (Fig. 12) 

 

 

 

Figure 12: The plasminogen activation system. uPA-uPAR complex catalyzes the conversion of 

plasminogen in to plasmin. Active plasmin can activate MMPs, directly degrade ECM or activate latent 

growth factors (adapted from (Blasi and Carmeliet, 2002)). 

 

Interestingly under physiological conditions, uPAR expression is rather low 

whereas it is increased with the onset of pathological conditions like cancer. Indeed 

increased levels of uPAR expression correlates with poor prognosis, cancer progression 

and metastatic dissemination (Sidenius and Blasi, 2003). 

Besides its role in pericellular proteolysis, uPAR regulates cell adhesion and signal 

transduction pathways modulating cell migration and proliferation. Adhesive, proteolytic 

and signaling functions are often linked together. By degrading the ECM, uPAR release 
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and activate growth factors (Houck et al., 1992). Moreover uPAR mediates directly cell 

adhesion to ECM protein vitronectin (VN) (Wei et al., 1994) and several evidences 

indicate uPAR-VN interaction to have a crucial role in signal transduction (Madsen et al., 

2007) (Kjoller and Hall, 2001) (Smith et al., 2008). Interestingly uPAR does not possess a 

cytoplasmic domain, being a GPI molecule. The mechanisms of  uPAR-mediated signal 

transduction are controversial and seem to involve functional interactions with other 

transmembrane receptors. 

 

uPAR structure: 

 

uPAR is a 283 aa GPI-anchored protein composed by three consecutive three-finger 

domains: DI (residues 1-80), DII (residues 93-191) and DIII(residues 192-283). DI and DII 

contain six -strands while DIII only five. Moreover, uPAR aminoacidic sequence 

contains 28 cysteines that create 4-5 inter-chain disulphide bonds in each domain (Huai et 

al., 2006). In the mature receptor, the three domains dispose themselves in a circular 

fashion generating central cavity in which uPA accommodates. uPA interacts with uPAR 

through its aminoterminal growth factor domain (GFD) and also the aminoterminal 

fragment (ATF that contains only growth factor and kringle domain but not the protease 

domain) of uPA has been shown to be sufficient for the interaction with uPAR (Appella et 

al., 1987).The inter-domain interfaces are essential regions that support the globular 

structure of the receptor. The non-covalent interaction among inter-domain interfaces 

provides flexibility and allows uPA to trigger modification in the receptor structure (Huai 

et al., 2006). In particular, the structure of the individual domains is unchanged whereas 

the orientation of the three domains is significantly altered (Huai et al., 2006). In addition, 
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the linker region connecting DI to DII is modified upon uPA interaction and it is 

immobilized in its open conformation (Barinka et al., 2006). 

uPAR is heavily glycosylated, containing 5 potential N-glycosylation sites (Asn52, 

Asn162, Asn172, Asn200 and Asn 233) although studies on CHO cells demonstrated that 

only the first four are used (Ploug et al., 1998). uPAR glycosylation profile is rather 

heterogeneous and depends on the cell type and differentiation state (Lund et al., 1995). 

The uPAR GPI-anchor is attached to Gly283 and plays an important role in 

membrane localization. Phospholipases can cause the release of the receptor from the 

plasma membrane, generating in this way a soluble uPAR (suPAR) variant that 

accumulates in blood and urine (Wilhelm et al., 1999).  GPI-anchor enables uPAR 

association with membrane microdomains enriched in cholesterol and sphingolipids 

termed lipid rafts. Lipid rafts partition is strictly linked to uPAR dimerization in a process 

stimulated by uPA interaction. In particular uPA induces uPAR dimerization and dimeric 

uPAR preferentially associates with lipid rafts (Cunningham et al., 2003). The fact that 

dimeric uPAR has increased VN affinity indicates a putative mechanism through which 

uPA increases uPAR-mediated VN adhesion (Sidenius et al., 2002) (see below). Moreover, 

lipid rafts are hot spots in the plasma membrane where multiple protein-protein 

interactions between transmembrane receptors take place. Indeed the signaling from uPAR 

requires lipid raft partition, although their detergent-resistant nature and the elevated 

molecular crowding that characterizes them make immune-precipitation and co-

localization assays unreliable. 

The linker region connecting DI and DII is susceptible to cleavage by proteases like 

uPA itself (Hoyer-Hansen et al., 1992), plasmin, and MMPs (Andolfo et al., 2002). uPAR 

cleavage release DI from DII-DIII, that remains anchored to the plasma membrane. 

Cleaved uPAR loses the capacity to interact with uPA and thereby it cannot support 

plasminogen activation (Hoyer-Hansen et al., 1992). Additionally DI is crucially involved 
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in uPAR-mediated VN adhesion (Hoyer-Hansen et al., 1997) and the intact uPAR 

molecule is required for the interaction with other membrane receptors (Montuori et al., 

2002). These evidences suggest that uPAR cleavage regulates its signaling capacity in a 

negative way. Moreover uPA bound to uPAR can cleave other neighbor uPAR molecules 

with consequent increase of uPAR cleavage occurring in lipid rafts (Cunningham et al., 

2003). However, uPAR cleavage unmask a chemotattic epitope located in the linker region 

between DI and DII. When shed from the cell surface DIIDIII interacts with formyl 

peptide receptor-like 1 (FPRL1), a G-protein coupled receptor (GPCR), and induces 

chemotaxis of monocytes (Resnati et al., 2002).  

   

 

uPAR-vitronectin interaction 

 

Vitronectin is an extensively glycosylated multifunctional ECM components initially 

termed as ―serum spreading factor‖. It reaches high concentration as monomer in the blood 

stream (up to 200-500g/ml) and it is converted to a multimeric form by incorporation 

into the ECM (Hayman et al., 1983). Multimeric VN exposes binding sites specific for 

integrins (v, v, v and IIb) , uPAR and PAI-1 (Preissner and Seiffert, 1998).VN 

is found in many organs, blood vessels and lymph nodes and increased VN deposition has 

been observed in many tumors (Loridon-Rosa et al., 1988). 

VN is composed by a N-terminal somatomedin-B domain (aa 1-44) followed by a 

specific integrin binding site (RGD motif aa 45-47), an highly acidic region and a collagen 

binding domain. The remaining part of the molecule is composed by hemopexin-type 

domains involved in the oligomerization of the protein (Chillakuri et al., 2010) and in the 
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binding of heparin, glycosaminoglycans, collagen and plasminogen  (Schvartz et al., 

1999). 

Interestingly uPAR directly interacts with VN (Wei et al., 1994). In this way, uPAR 

can modulate cell adhesion independently of integrins. Indeed uPAR can support VN 

adhesion even on a vitronectin variant with disrupted RGD motif  (Madsen et al., 2007). 

Consistently EDTA, RGD-peptides or integrin blocking antibodies do not impair uPAR-

induced VN adhesion (Wei et al., 1994). 

uPA plays a role in this process presumably for its effect on uPAR structure, 

dimerization and lipid raft partition. Indeed uPAR bound to uPA, or the catalytically 

inactive ATF, has increased affinity for VN (Sidenius et al., 2002). In cells expressing low 

level of receptor VN adhesion requires uPA binding while high levels of expression induce 

cell adhesion independently of receptor occupancy. The epitope in uPAR responsible for 

VN binding has been mapped and it is composed by three aminoacids from DI (Trp32, 

Arg58, Ile 63) and two aminoacids from DII (Arg91 and Tyr92) (Gardsvoll and Ploug, 

2007; Madsen et al., 2007). The crucial contribution of DI in forming the VN-binding 

epitope explains why uPAR cleavage abolishes uPAR-VN interaction (Sidenius and Blasi, 

2000). Interestingly the uPA and the VN binding site do not overlap, being the first one 

located in the top/back part of the molecule whereas the second one lies in the central 

cavity (Fig.13). This evidence explains how uPAR engages at the same time both uPA and 

VN (Huai et al., 2006).  
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Figure 13: Crystal structure of uPAR. The three domain are indicated in gray (DI), blue (DII) and 

green (DIII). The central cavity that constitutes uPA-binding site is visible in the front view. The residues 

involved in uPA interaction are colored in yellow. Back and top view show the VN-binding epitope, whose 

residues are indicated in red. GPI anchor location is indicated in magenta (adapted from (Madsen and 

Sidenius, 2008)). 

 

The uPAR-binding site on VN is located in the SMB domain. Indeed the deletion 

of SMB abolishes uPAR-VN interaction (Madsen et al., 2007). Interestingly the same 

epitope used by uPAR is also the binding site for PAI-1 and comprises residues Asp22, 

Leu24, Tyr27 and Tyr28 (Zhou et al., 2003).  Several structural and functional evidences 

suggest that PAI-1-VN interaction may sterically interfere with integrin binding (Zhou et 

al., 2003). 

  

Mechanism(s) of uPAR-mediated signaling 

 

uPAR lacks a cytoplasmic domain and therefore it is a signaling incompetent molecule per 

se. However, uPAR expression is reported to dramatically alter the intracellular signaling 

by functionally or directly coupling to other transmembrane receptors. uPAR can transduce 

a signal through GPCRs and RTKs like platelet derived growth factor receptor-

PDGFRB) and epidermal growth factor receptor (EGFR). However, the major 

transmembrane receptors through which uPAR transmit a signaling are integrins. The inner 
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nature of uPAR-integrins cross-talk remains controversial however a growing number of 

evidences show that uPAR requires integrins in order to signal. In many studies uPAR has 

been found to co-localize or co-immunoprecipitate with integrins (see below), although 

direct protein-protein interaction assays failed in detecting a direct interaction between 

uPAR and integrins (Bass and Ellis, 2009). 

The first integrin found to interact with uPAR is MAC1 (M2) (Xue et al., 1994), 

an integrin expressed predominantly in leukocytes. uPAR co-localizes and co-

immunoprecipitates with MAC1 (Bohuslav et al., 1995), regulating fibrinogen binding, 

promoting VN adhesion (Simon et al., 1996) and inducing chemotaxis (Gyetko et al., 

1994) in a Src dependent manner (Bohuslav et al., 1995).  

A functional cross-talk was also found between uPAR and 51 integrin with a 

consequent modulation of integrin adhesive capacity. In particular uPAR-integrin 

interaction converts the canonical RGD-dependent FN adhesion into a RGD-independent 

binding. Mutations on 1 integrin (Ser227Ala) or in uPAR (His249Ala) abolish this 

interaction and uPAR-mediated effects (Wei et al., 2005) (Wei et al., 2007). Additionally, 

a peptide derived from 1 integrin interaction site blocks uPAR-integrin interaction (Wei et 

al., 2005). RGD-independent FN adhesion is required for FAK/Src-dependent Rac1 

activation (Wei et al., 2007). These evidences are in contradiction with other studies where 

uPAR association with 51 integrin induces RGD-dependent FN adhesion and generate a 

constitutively mitogenic signal that suppresses tumor dormancy, stimulating tumor growth. 

Moreover the residue in uPAR involved in the direct interaction with 1 integrin differs 

from the one described above, being Ser245 (Chaurasia et al., 2006).  

uPAR-1 integrin complex can also signal through EGFR. Indeed uPAR-integrin 

interaction has been shown to induce EGFR activation through FAK (Liu et al., 2002). 

Moreover uPAR expression results in EGFR phosphorylation in Tyr845, leading to 

increased proliferation upon EGF stimulation (Jo et al., 2007). Interestingly EGFR 
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inhibitors did not impair uPAR-induced Rac activation indicating that different pathways 

can be transduced by uPAR at the same time (Jo et al., 2003). 

An additional interaction was found between uPAR and 31 integrin. This 

interaction activates 31 integrin allowing VN adhesion (Wei et al., 2001). Additionally 

uPAR-31 integrin interaction was found to trigger epithelial-to-mesenchymal transition 

in epithelial cells (Zhang et al., 2003).  

Several synthetic peptides have been used to disrupt uPAR-integrin interaction.  A 

peptide (p25) selected from a phage display was found to inhibit uPAR/1 integrin 

interaction, blocking both uPAR-51 integrin co-immunoprecipitation (Wei et al., 1996) 

and 31 integrin-mediated VN adhesion (Wei et al., 2001). Subsequently, a linear 

sequence within MAC1 was identified as a crucial uPAR interaction sites. A synthetic 

peptide derived from this sequence (M25) was shown to inhibit uPAR interaction with a 

subset of  1 and 2 containing integrins (Simon et al., 2000). 

Finally uPAR interacts with 3 integrin, inducing Rac1 activation and lamellipodia 

protrusion. Lipopolysaccharide treatment induces uPAR expression in kidney podocytes, 

leading to v3 integrin activation and Rac-dependent cell motility (Wei et al., 2008). 

Moreover uPAR-3 integrin interaction in tumor cells triggers the activation of the 

Src/p130Cas/Rac signaling pathway that regulates cancer cell invasion (Smith et al., 2008). 

However, the existence of a direct-lateral interaction between uPAR and integrins 

is not directly proved by co-immunoprecipitation, co-localization experiments or by the 

inhibitory effect exerted by peptides. Indeed the relevance of direct uPAR interaction(s) 

with transmembrane receptors has been questioned by a complete alanine scanning of the 

entire receptor. In this study, mutations in residues involved in uPAR-mediated VN 

adhesion impaired lamellipodia protrusion and morphology changes in two different cell 

systems. Mutations in the remaining residues, and especially in the previously published 
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integrin binding sites (even combined together), produced receptors whose function was 

indistinguishable from the WT one. Finally, the expression of an artificial VN receptor, 

consisting in PAI-1 tethered to the plasma membrane by a GPI-anchor, recapitulated 

uPAR-VN signaling and morphological changes. As PAI-1 and uPAR shares no sequence 

homology, this indicates that uPAR-mediated VN adhesion is required and sufficient to 

induce changes in cell morphology and cell migration. Even if uPAR physically associates 

with integrins or other transmembrane receptors, these direct interactions are dispensable 

for uPAR-mediated effects (Madsen et al., 2007). Moreover, uPAR-VN interaction is 

required for rearrangement of FA components and actin cytoskeleton in fibroblasts (Kjoller 

and Hall, 2001). Other studies indicate that uPAR-VN interaction is required for signaling 

and cancer cell migration even if it cannot be detected in standard adhesion assays (Smith 

et al., 2008). These evidences can lead to an alternative mechanism of signal transduction 

by uPAR. uPAR-VN interaction could bring integrins closer to the ECM, facilitating 

integrin engagement and thus modulating integrin signaling/activation by increasing the 

cell-matrix contact area. This model would explain how uPAR could functionally interact 

contemporaneously with so many different integrin types, attributing uPAR-specific 

effects to the integrin ligands present in the ECM and to the integrin expression level on 

the cell surface. The mechanism behind this process could be envisioned like a real co-

operation between different adhesion receptors where uPAR amplifies integrin signaling 

by increasing cell adhesiveness. Additionally VN could be the bridge connecting uPAR 

and integrins, explaining uPAR-integrin co-immunoprecipitation (especially in 

experiments performed in low stringency conditions). Indeed, in many studies on uPAR-

integrin interaction, the experiments are performed culturing the cells in serum condition, 

which contains high amount of VN. Finally many cell lines efficiently adhere to VN 

through integrins, masking an eventual contribution by uPAR while in cell lines adhering 

poorly to VN the uPAR-specific effect on cell adhesion could be better appreciated.  
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Interestingly FRET analysis on different ECM components shows that in cell 

seeded on VN, uPAR localizes in the basal membrane in a dimeric and low diffusing form. 

Consistently, uPAR differential localization is lost on FN (Caiolfa et al., 2007). This 

evidences could implicate that uPAR (presumably in a dimeric form) interacts with VN 

and generate ―hot adhesive spots‖, characterized by a closer proximity to the ECM. 

Integrins close to/inside these adhesive spots will be forced to engage their ECM 

components, increasing their signaling activity. Moreover the mechanical interaction with 

the ECM could generate forces that could act on pre-engaged integrin, leading to 

mechanotransduction. 

 

AIM OF THE WORK 

 

The aim of this work is to elucidate the molecular mechanism of uPAR/VN interaction 

signaling through structure-functional analysis of uPAR, VN and the signaling receptor(s) 

involved in this process.  
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MATERIAL AND METHODS: 

 

Cloning description 

 

1 integrin oligos and cloning: 

To generate Flp-In expression vectors for the B1-integrin (i.e.) a 1A cDNA 

(OpenBiosystems, Cat# MHS1010-58245) was amplified with oligos B1f/B1ageR (product 

digested KpnI/AgeI) and B1tmF/B1r (product digested AgeI/NotI) and assembled in 

KpnI/NotI digested pcDNA5/FRT/TO (Invitrogen corp.) generating pFRT/TO-1
WT

. This 

procedure introduces a unique AgeI restriction site by silent mutagenesis allowing for the 

easy swapping of the extracellular and membrane/intracellular coding regions between 

different constructs. The single substitution mutants1
763A

, 1
763F

, 1
775A

 and1
775F

 were 

generated by amplification of pFRT/TO-1
WT

 with oligos B1tmF and B1Y763Ar, 

B1Y763Fr, B1Y775Ar or B1Y775Fr followed by re-cloning of the products AgeI/NotI in 

the parental vector. The single amino acid substitution mutants 1
218A

,1
130D

 and1
227A 

were generated by site-directed mutagenesis using oligos B1K218f/r, B1D130f/r and 

B1S227f/r, respectively. Constructs containing multiple substitutions were generated by 

multiple rounds of mutagenesis. 

B1f  5’-cggggtacccgccgcgcggaaaagatgaatttacaaccaattttctgg-3’ 

B1ageR 5’-ggaccggtgggacactctggattctc-3’ 

B1tmF  5’-ccaccggtccagacatcattccaattgta-3’ 

B1r  5’-tgcgcggccgctcattttccctcatacttcggattgacca-3’ 

B1K218f  5’-aatgaacttgttggagcacagcgcatatctgga-3’ 

B1K218r  5’-tccagatatgcgctgtgctccaacaagttcatt-3’ 

B1D130f 5’-ctctactaccttatggccctgtcttactcaatg-3’ 

B1D130r 5’-cattgagtaagacagggccataaggtagtagag-3’ 

B1S227f 5’-tctggaaatttggatgctccagaaggtggtttc-3’ 

B1S227r 5’-gaaaccaccttctggagcatccaaatttccaga-3’ 

B1Y763Ar 5’-

tgcgcggccgctcattttccctcatacttcggattgaccacagttgttacggcactcttagcaataggattttcacc-3’ 

B1Y763Fr 5’-

tgcgcggccgctcattttccctcatacttcggattgaccacagttgttacggcactcttaaaaataggattttcacc-3’ 
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B1Y775Ar 5’-tgcgcggccgctcattttccctcagccttcggattgacca-3’ 

B1Y775Fr 5’-tgcgcggccgctcattttccctcaaacttcggattgacca-3’ 

 

3 integrin oligos and cloning: 

The expression vector for B3-integrin (pFRT/TO-B3) was generated by amplifying a 

human B3 cDNA (OpenBiosystems, Cat# MHS4426-99626129) with oligos 

B3fn4/B3tmcR (product digested HinDIII/AgeI) and B3tmcF/B3rxx (product digested 

AgeI/XhoI) and assembling the fragments in HinDIII/XhoI digested pcDNA5/FRT/TO. 

This procedure introduces a unique AgeI restriction site allowing for the easy swapping of 

the extracellular and membrane/intracellular coding regions between different constructs. 

The introduction of this restriction site causes a single amino acid substitution (K
689

T) that 

apparently does not compromise receptor function. The D
119

Y mutation in pFRT/TO-

B3
119Y

 was generated by site-directed mutagenesis using oligos B3119Yf/B3119Yr. 

Mutations preventing the interaction with intracellular adaptor proteins (Y
747

A, S
752

P and 

Y
759

A) were introduced by amplification of pFRT/TO-B3 with oligos B3tmcF/B3YSYrx 

and re-cloning the product AgeI/XhoI in the parental vector. 

B3fn4  5’-aaaaagcttccaccatgcgagcacggccgcggcccc-3’ 

B3tmcF 5’-ccaccggtcctgacatcctggtggtcctgctc-3’ 

B3tmcR 5’-tgcgcggccgcttaagtgccccggtagctgat-3’ 

B3rxx  5’-tgcctcgagttaagtgccccggtagctgat-3’ 

B3119Yf 5’-atctactacttgatgtacctgtcttactccatg-3’ 

B3119Yr 5’-catggagtaagacaggtacatcaagtagtagat-3’ 

B3YSYrx 5’- 

gcctcgagttaagtgccccgggccgtgatattggtgaaggtgggcgtggcctctttagccagtgggttgtt-3’ 

 

VN cloning: 

A human VN cDNA (RZPD Clone ID: IRAUp969G1135D6)) was amplified with oligos 

hVNu(Bam)/hVNd(Xba) and the PCR product cloned BamHI/XbaI in pBluescript. A 

6xHis tag was introduced at the C-terminal by digestion with XbaI/NotI and insertion of a 

linker made by annealing oligos XbNhisf and XbNhisR. The 6xHis tagged VN coding 

region was transferred BamHI/NotI to pcDNA5/FRT-TO generating the expression vector 

pFRT/TO-VN.  The expression vector encoding VN lacking the SMB domain (pFRT/TO-

VNΔSMB) was generated by amplification of pFRT/TO-VN with oligos SigUd40 and re-

cloning the product BamHI/NotI. This strategy replaces amino acids 2-40 of VN with a 

single leucine residue. 
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HVnu  5’-gcggatccagccctgccatggcacccctgag-3’ 

XbNhisF 5’-ctagagggcatcatcaccatcaccattgagc-3’ 

XbNhisR 5’-ggccgctcaatggtgatggtgatgatgccct-3’ 

SigUd40         5’-cggggtaccatggcacccctgagaccccttctcatactg 

gccctgctggcatgggttgctctggctgacctcccccaagtgactcgcggg-3’ 

RADf  5’-ccccaagtgactcgcgcggatgtgttcactatg-3’ 

RADr  5’-catagtgaacacatccgcgcgagtcacttgggg-3’ 

 

 

Materials 

 

HEK293 Flp-In T-REx cells, expression vectors pcDNA5/FRT/TO and pOG44, zeocin, 

blasticidin S HCl and F-12 (Ham) medium were from Invitrogen. Dulbecco’s modified 

eagle medium (DMEM) is from Lonza. PBS, trypsin, glutamine, penicillin and 

streptomycin were obtained from EuroClone, while fetal bovine serum (FBS) was from 

HyClone. Non-tissue culture plates were from Falcon Becton Dickinson. Tetracycline, 

poly-L-lysine, laminin (from Engelbreth-Holm-Swarm murine sarcoma), anti-vinculin 

antibody (hVIN-1) and CHO protein-free culture medium were from Sigma. Fugene 6, 

fibronectin and Hygromycin B were from Roche. Pro-uPA was kindly provided by Dr. 

Jack Henkin (Abbott Laboratories). Antibodies against phosphorylated p130Cas, total and 

phosphorylated ERK1/2 were from Cell Signaling Technology. Blocking antibodies 

against v3 (LM609) and v5 (P1F6) integrins were from Immunological Sciences. 

Monoclonal antibody against 1 integrin (mAb 13) was from BD Pharmingen. Monoclonal 

antibody against 1 integrin (4B4) was from Beckam Coulter. Anti human uPAR R4 

antibody was kindly provided by Dr. Gunilla Høyer-Hansen (Finsen Laboratory, 

Denmark). Glass bottom 12-well plates used for DIC and Timelapse microscopy are from 
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MatTek Corporation. Src inhibitors PP1, PP2 and PP3 are from Calbiochem. MEK 

inhibitor UO126 is from cell signaling. EGFR inhibitor AG1478 is from SIGMA.  

Dynabeads M-450 tosylactivated and the magnet used for the experiments were from 

Invitrogen. 

 

 

 

Cell culture and transfection 

 

293 Flp-In T-Rex cells were grown in DMEM supplemented with 10% FBS, penicillin 100 

U/ml, streptomycin 100 U/ml, L-glutamine 5mM, 15 g/ml blasticidin and 100 g/ml 

zeocin at 37° in 5% CO2. the Flp-In system generates pools of isogenic transfectants
 

carrying a single copy of the expression cassette in exactlt the same chromosomal position, 

thus ensuring comparable expression levels of different receptor variants and in addition, 

eliminating
 
potential artifacts caused by clonal differences or heterogeneous

 
expression 

level. The TREx system permits inducible expression by the addition of tetracycline to the 

growth medium. 

 Transfections were performed using Fugene keeping a 1:10 ratio between POG44 

(Invitrogen) and pcDNA5/FRT/TO-based vector. Transfected cells were selected by 

substituting zeocin with 150 g/ml hygromycin B. Cells used in integrin structure-function 

analysis were, at first, transfected to stably express uPAR
T54A

. Briefly, 293 Flp-In T-Rex 

cells were transfected using Fugene with a vector encoding for uPAR and selected with 

1mg/ml G418. Clones obtained by limiting dilution where screened for uPAR expression 

level. Cells obtained in this way were further transfected and selected, using the Flp-In 

system, as described above. Plasmids for transfections were generated in the lab. Briefly 

cDNA from uPAR, 1 integrin, 3 integrin, PAI-1 and VN were cloned in pcDNA/FRT/TO 
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vector for flip-in cells and mutagenized with QuickChange II site directed mutagenesis 

protocol (Stratagene). 

 

 

 

Expression and purification of recombinant proteins 

 

Semi-confluent CHO-Flp-In cells, stably transfected with the specific vectors encoding for 

VN variants, were washed with PBS and incubated for one or two weeks in CHO protein-

free medium (SIGMA Aldrich). The supernatant were collected and VN variants were 

purificated with nickel beads. 

 

Adhesion assay 

 

96 well plates were coated with purified substrates overnight at 4° (poly-D-lysine 100 

g/ml , FN 10 g/ml , anti-vintegrin antibody 20 g/ml, VN, VN
RAD

, VN 
SMB

, VN 

RADSMB
 were all coated at 5 g/ml) and blocked for 2 hours at 37° with 2% heat-

inactivated BSA in PBS.  Cells were washed, harvested and counted. After 3 washes with 

binding buffer (DMEM supplemented with penicillin 100 U/ml, streptomycin 100 U/ml, L-

glutamine 5mM, 25 mM HEPES and 0.1% BSA) equal number of cells were seeded (3 x 

10
4
 cells/well) and allowed to adhere for 30 minutes in presence or absence of uPA (10nM) 

or integrin-blocking antibodies (anti-vP1F6, anti-5P1D6, anti-4B4 and anti-

mab13 all used at 5g/ml). After washing, adherent cells were fixed with 4%PFA and 

stained with crystal violet. Cell adhesion was quantified measuring absorbance at 540 nm. 
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Cell Seeding for spreading and signaling assays 

 

12 well plates (for western blot/signaling experiments) or glass-bottom plates (for imaging 

or time lapse experiments) were coated overnight at 4° with different substrates (poly-D-

lysine 100 g/ml , FN 10 g/ml , -uPAR antibody R4 20 g/ml, anti-vintegrin 

antibody LM609 20 g/ml, VN, VN
RAD

, VN 
SMB

, VN 
RADSMB

 were all coated at 5 g/ml) 

and blocked for 2 hours at 37° with 5% heat-inactivated BSA in PBS. Detached cells were 

washed 3 times in binding buffer and counted. 2,5 x 10
5
 cells/well for Immunoblot 

experiments or 2 x 10
4 

cell/well for imaging and time lapse experiments were seeded and 

allowed to adhere for 30 minutes in presence or absence of uPA (10nM). In chase of 

antibody or inhibitors treatment, cells were pre-incubated with integrin-blocking antibodies 

(anti-vP1F6, anti-5P1D6, anti-4B4 and anti-mab13 all used at 10g/ml) or 

inhibitors (PP1, PP2 and PP3 10 M, UO126 20 M and AG1478 250 nM)  in suspension 

for 15 or 30 minutes respectively before plating. For off-plate experiments cells were 

seeded on BSA blocked plates for 30 minutes in presence of R4 (20 g/ml) or VN
RAD

 and 

uPA (respectively 5 g/ml and 10 nM). 

 

Immunoblot 

 

Eventually non adherent cells were collected. Cells were lysed in 95°C laemmli buffer (60 

mM Tris-Cl pH 6.8, 2% SDS, 10% glycerol, 0.01% bromophenol blue) or in ice-cold 

RIPA buffer (50 mM Tris, pH 8.0, 150 mM NaCl, 1% Triton
 
X-100, 0.5% sodium 

deoxycholate, 0.1% SDS, protease inhibitor cocktail [Complete-EDTA-free], 1 mM
 
PMSF, 

1 mM EDTA, 1 mM NaF, and 1 mM Na3VO4). Equal amount of protein were separated by 
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SDS-page, transferred to nitrocellulose membranes and probed as indicated in the figures. 

Different biological replicates were analyzed by densitometry using imageJ. 

 

 

 

DIC microscopy 

 

Adherent cells were fixed with 4% PFA (in PBS) for 10 minutes at room temperature. 

Fixed cells were washed with PBS and DIC imaging of cells was
 
performed using an 

inverted microscope Olympus IX81. Cells were viewed
 
through a high-aperture 60x 

objective lens (UIS2 60x TIRFM PlanApo
 
N, NA 1.45; Olympus). Images were acquired 

using Hamamatsu Orca-ER digital camera with the software Metamorph 7.5.6.0. Cell area 

was quantified using imageJ. 

 

 

Phase contrast and time lapse microscopy 

 

Phase-contrast and time-lapse live-cell imaging was performed
 
at 37°C, 5% CO2 with an 

inverted microscope (IX80; Olympus)
 
equipped with an incubation chamber (OKOlab) to 

control CO2 and temperature. Cells
 
were plated in serum-containing growth medium or on 

bottom-glass plates coated with substrates and viewed through 10X (for time-lapses), 20X 

or 60X (for phase contast pictures) objective
 
lenses. The acquisition system

 
includes a 

digital camera (Hamamatsu Orca-ER) and System
 
Control Software Olympus ScanR. 

Adjustment
 
of brightness/contrast, smoothening and sharpness of images were done using

 

ImageJ 1.42q and always applied to the entire image. Cell migration
 
speed was quantified 
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with ImageJ 1.42q using the plug-in "manual
 
tracking". In each experiment, 20 randomly 

chosen cells were
 
tracked and their average migration speed throughout the experiment

 
was 

calculated.
  

 

Dynabeads experiments 

 

Dynabeads were coated with PL, FN or VN
RAD

 following manufacturer instructions (4x10
8
 

beads were coated with 100g of ligands) and blocked with 0.1% BSA. uPAR
T54A

 cells 

were detached, washed and resuspended in binding buffer. 2x10
6
 cells were incubated with  

4x10
6
 beads (cell/beads ratio 1:2) in presence of uPA (10nM) and 4B4 (10 g/ml) for 30 

minutes at 37°C in rotation. Cell attached to Dynabeads were captured with the provided 

magnet, washed 3 times with binding buffer and lysed in RIPA buffer. 

 

SiRNA 

 

Cells were grown to sub-confluency and transfected with stealth siRNA (talin: 

TLN1HSS110803, 1 integrin ITGB1HSS105559, focal adhesion kinase PTK2 validated 

stealth duplex 1, control oligo: medium CG control stealth siRNA. Invitrogen  ) following 

manufacturer’s protocol. SiRNA transfection was performed with stealth siRNA at 40 nM 

as final concentration. After one day, cells were retransfected as described above and let 

grow for one day. Cells were then plated for experiments so that the day after they will be 

at sub-confluency. 
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Statistic analysis:  

 

For adhesion assays and western blot densitometry data were represented as mean ± 

standard error mean (s.e.m.) in at least 3 independent experiments. Cell spreading and cell 

migration experiment were represented as dot plot showing the value of every single cell 

quantified. Mean ± 95% confidence interval was calculated. At least 50 cells in two 

independent experiments were quantified. 
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RESULTS 

uPAR-induced cell adhesion and signaling requires a direct 

uPAR/VN-interaction 

 

uPAR expression has been shown to induce remarkable changes in signal transduction, cell 

adhesion, cell morphology and cell migration. The effects exerted by uPAR depend on the 

functional cross-talk with transmembrane receptors (receptor tyrosine kinase, G protein 

coupled receptors and integrins) and the interaction with its natural ligands, uPA and VN. 

In fact uPAR directly interacts with the extracellular matrix protein VN and uPAR-

mediated VN adhesion has been reported to be sufficient and indispensable to increase cell 

spreading and migration in HEK 293 cells (Madsen et al., 2007). 

To investigate the molecular mechanism of adhesion-induced outside-in signaling 

we exploited 293 cells expressing wild-type uPAR (uPAR
WT

) and the T54A single alanine 

substitution variant (uPAR
T54A

) in which VN-binding activity is conditional, being almost 

entirely dependent upon concomitant binding of the canonical uPAR-ligand uPA (Madsen 

et al., 2007). 

The adhesive properties of these cells were evaluated on different ECM 

components in presence or absence of uPA. uPAR expression and uPA treatment did not 

alter cell adhesion in FN (Fig. 1a). On the contrary, when cells were seeded on VN, uPAR 

expression strongly increased cell adhesion to this ECM component. The expression of the 

uPAR
T54A 

mutant enhanced VN adhesion when cells were treated with uPA, while it did 

not modify cell adhesion to VN in the basal condition (Fig. 1b). uPA treatment on uPAR
WT

 

expressing cells had little effect on VN adhesion. 
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Figure 1 uPAR induces cell adhesion to vitronectin. Cell-adhesion assay: Mock, uPARwt and 

uPART54A transfected 293 cells were plated for 30 minutes on FN (fig 1a 10 g/ml) VN (fig 1b 5 g/ml) with 

or without uPA (10nM). Adherent cells were fixed and stained with crystal violet. Cell adhesion to poly-D-

lysine was set as 100% for each cell line. Data are expressed as mean ± s.e.m., n=3. 

 

 

These data show that uPAR increases cell adhesion to VN without altering cell 

adhesion to other ECM components. Moreover, uPA treatment rescues the adhesive 

capability of T54A mutant, most probably by promoting a binding competent 

conformation. 

The increased adhesion to VN is paralleled by changes in cell morphology and in 

signal transduction. To monitor the morphology changes upon uPAR-VN interaction, we 

quantified the area of individual cells through DIC microscopy and image analysis. When 

grown under serum containing conditions the expression of uPAR
WT

, but not uPAR
T54A

, 

results in increased cell spreading (~2.5-fold) as compared to mock-transfected cells (Fig. 

2). Treatment with uPA rapidly induces spreading of uPAR
T54A

 cells to levels comparable 

with those observed in uPAR
WT

 cells, but has no or little effect on cell spreading in mock 

and uPAR
WT

 transfected cells.  

 

 

Fig. 1b Fig. 1a 
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Figure 2 Increased cell-matrix contact area upon uPAR mediated VN adhesion. Quantification of 

cell-matrix contact area: Cells were grown overnight and stimulated for 30 minutes with uPA (10 nM). After 

fixation, DIC images were taken and cell areas were quantified using ImageJ software. Data are mean ± 95% 

confidence interval, n=50, two independent experiments. Every dot represents the area of one single cell. 

Representative images taken with phase contrast microscopy are shown. 

   

The effect of uPA treatment on uPAR
T54A

 is documented in Fig.3, showing 

sequential images taken from a time lapse recording. uPA treatment (time 0) induced deep 

changes in cell morphology characterized by marked lamellipodia extensions, increase in 

cell spreading and the acquisition of a motile phenotype. The effects on cell morphology 

were visible already after 10 minutes of uPA stimulation. 
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Figure 3 Rescuing VN binding capability of uPART54A cells induces changes in cell morphology. 

Representative pictures taken from a time lapse of cells grown in serum containing medium are shown. At 

time 0 uPAR-VN interaction is induced with uPA (10nM), producing already after 1 minute effects on cell 

morphology. 

 

 

    

uPAR expression is reported to trigger the activation of pro-migratory and 

proliferative signaling pathways. Thus, the phosphorylation of ERK1/2 (involved in 

proliferation) and p130Cas (involved in cell spreading and migration) was assayed through 

immune blotting and quantified with densitometry. Serum starved uPAR
WT

 cells displayed 

higher levels of p130Cas substrate domain (SD) phosphorylation and ERK1/2 
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phosphorylation, compared to mock transfected cells (fig 4). uPA treatment on mock or 

uPAR
WT

 expressing cells had little or no effect on signal transduction. On the other hand, 

in cells expressing the uPAR
T54A

 the increase in p130Cas SD phosphorylation and MAPK-

activation was strictly uPA-dependent documenting the conditional properties of this 

receptor (Fig 4). 

 

 

 

 

 

 

  

 

 

 

Figure 4 Immunoblot analysis of p130Cas SD in Y410 and ERK1/2 in T202/Y204 phosphorylation 

upon uPAR-VN interaction. Western blot and densitometric analysis: Cells were serum starved for 4 hours 

and stimulated, where indicated, with uPA (10 nM) for 30 minutes prior to lysis. p130Cas and ERK1/2 

phosphorylation was assayed with immunoblot and quantified with densitometry. Ratio of mock untreated 

cells was set as 100%. Data are means ± s.e.m., n=3. Representative western blot are shown. 

 

 

Taken together these data show that uPAR is an adhesion receptor specific for VN 

and that uPAR-mediated cell adhesion to VN is paralleled by changes in signal 

transduction and in cell morphology. The activity of uPAR in inducing these changes is 

strictly related to its adhesive function, as the expression of the T54A mutant (defective in 

VN adhesion without uPA treatment) did not cause any visible effect. Consistently uPA 

treatment rescues the adhesive capability of this mutant triggering cell spreading and signal 

transduction. uPA did not produce any affect on uPAR
WT

 and mock transfected cells, 
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demonstrating the specificity of this system. Indeed uPAR WT cells strongly adhere to VN 

and display activated signaling even without uPA. 

The conditional properties of T54A receptor were further used to study the nature 

of the signaling deriving from uPAR-VN interaction. uPAR is a signaling incompetent 

molecule by itself, lacking a cytoplasmic tail, and the functional cross-talk between uPAR 

and integrins frequently recurs in literature. The morphology changes observed together 

with the phosphorylation on p130Cas could indicate the involvement of integrin receptors 

into uPAR-VN signaling. 

To test this possibility we perform siRNA experiment in uPAR
T54A

 cells targeting 

different proteins involved in integrin signaling. We decided to knock-down 1-integrin 

that is the most expressed integrin expressed in 293 cells, talin that plays a crucial role in 

the integrin activation process and focal adhesion kinase (FAK) that, together with Src, 

plays an important role in integrin out-side-in signaling. Immunoblot analysis revealed that 

the three siRNAs specifically down-regulate the level of their target protein, without 

interfere with other proteins in unspecific ways (fig 5a).   

We investigated the effect of these siRNA on uPAR-VN signaling by stimulating 

uPAR
T54A 

with uPA and analyzing the level of p130Cas phosphorylation (Fig 5b). 

Immunoblots revealed that the down-regulation of 1-integrin, talin and FAK impaired 

p130Cas phosphorylation upon uPA treatment, indicating their proficiency in inhibiting the 

signaling triggered by uPAR-mediated VN adhesion. 
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Figure 5 Down-regulation of 1-integrin, talin and focal adhesion kinase impairs uPAR-VN 

signaling. SiRNA and western blot analysis: 5a 293 uPART54A were subjected to 2 cycles of siRNA 

treatment: ctrl (control siRNA), 1 (1-integrin siRNA), tln (talin siRNA), FAK (focal adhesion kinase 

siRNA). Cell lysates were analyzed by immunoblot to show the specific down regulation of the target 

proteins. 5b Interfered cells were serum starved for 4 hours and stimulated with uPA (10nM) for 30 minutes 

where indicated. p130Cas was analyzed through immune blot. Representative western blots are shown. 

 

This data demonstrate that important components of the integrin-signaling 

machinery like 1-integrin, focal adhesion kinase and talin are crucial mediators of the 

uPAR-VN signaling. This indicates uPAR-VN interaction induces cell adhesion to 

vitronectin and triggers an integrin-dependent signaling characterized by p130Cas and 

ERK1/2 phosphorylation, changes in cell morphology and enhanced cell spreading. Thus, 

the role of integrins will be further analyzed. 

 

 

 

Fig 5a 

Fig 5b 
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 uPAR-induced cell spreading, cell migration and signaling on 

VN are RGD independent 

 

An attractive explanation for the signaling activity of uPAR on VN-containing matrices is 

that the uPAR-driven increase in cell adhesion brings VN-binding integrins to engage the 

matrix thus potentiating outside-in signaling from these receptors. To address this 

possibility directly we utilized recombinant VN-variants where we had specifically 

disrupted the integrin-binding site by mutation of the RGD motif into RAD (VN
RAD

), 

uPAR-binding by deletion of the SMB-domain (VN
SMB

) or both (VN
RADSMB

). It is well 

established that the RGD-motif represents the key integrin binding site in VN (Xiong et al., 

2002). The uPAR binding site is located in the SMB-domain that is functionally and 

physically separated from the integrin binding motif (Fig. 6) (Madsen et al., 2007; 

Okumura et al., 2002). 

 

 

Figure 6 Schematic representation of VN variants: SMB domain (somatomedin b domain) in the N-

terminal represents uPAR and PAI-1 binding sites. RGD motif represents the integrin binding site. 
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 The properties of the recombinant VN-molecules were first confirmed in adhesion 

assays using uPAR
T54A

 cells in the absence or presence of uPA to compare cell adhesion 

mediated by integrins alone or by integrins and uPAR together, respectively (Fig 7). 

When the T54A mutant is in a binding incompetent conformation (without uPA), 

cell adhesion is entirely supported by VN-integrins. Indeed it was not perturbed by SMB-

domain deletion (on VN
SMB

), as the SMB domain does not contain integrin binding sites. 

On the contrary, it was strongly dependent on RGD motif integrity (on VN
RAD

). When 

T54A receptor is in its binding competent conformation (with uPA), cell adhesion was 

strongly increased on the VN variants containing the SMB domain (VN and VN
RAD

). 

Importantly uPAR-mediated VN adhesion is integrin-independent, as the disruption of the 

integrin specific RGD motif did not impair uPAR-mediated VN adhesion (on VN
RAD

 with 

uPA). No residual adhesion is detected when both the RGD-motif and the uPAR/VN-

interaction are impaired contemporarily (VN
RADSMB

). These data show that the use of the 

293
T54A

 cells in combination with the different recombinant VN-variants allows for the 

functional dissection of the contribution of uPAR and integrins in VN-induced cell 

adhesion, spreading and signaling. 
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Figure 7 Effect of vitronectin variants on uPAR and integrin dependent cell adhesion. Cell-adhesion 

assay: uPART54A cells were plated on vitronectin variants (5 g/ml) or on fibronectin (10 g/ml) for 30 

minutes,   uPA was added where indicated. Cell were fixed and stained with crystal violet. Cell adhesion was 

quantified and expressed as percentage of Poly-D-lysine adhesion. Data are expressed as mean ± s.e.m, n=3. 

 

 

To address the role integrin-matrix interaction in uPAR-induced cell spreading we 

seeded uPAR
T54A

 cells in the absence or presence of uPA on VN, VN
RAD

, FN and poly-D-

Lysine (Fig. 8) and assayed cell spreading after 30 minutes incubation at 37˚C. 

Remarkably, cell spreading downstream of uPAR-mediated adhesion to VN was entirely 

comparable on VN and VN
RAD

, suggesting that the integrin binding site in VN is of no or 

little importance in the process. The degree of cell spreading induced by the uPAR/VN-

interactions is similar to the one mediated by canonical integrin-dependent cell adhesion to 

FN. In the absence of the uPAR-binding to VN (i.e. in the absence of uPA), cell spreading 

on VN is reduced and comparable to that observed on poly-D-lysine and in mock-

transfected cells on serum coated surfaces. The presence or absence of uPA had little or no 

effect on cell spreading on FN and PLD supporting the notion that the activity of this 

molecule is specifically related to its ability to promote uPAR binding to VN. 
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Figure 8 uPAR-induced cell spreading does not require vitronectin integrin engagement. 

Quantification of cell-matrix contact area: Cells were plated on VN variants (10 g/ml), fibronectin (10 

g/ml) or poly-D-lysine (100 g/ml) with or without uPA (10 nM) for 30 minutes at 37°C. Quantification of 

cell-matrix contact area of DIC images was performed. Upper Grey area represents the range of fully spread 

cells, lower grey area is related to not spread cells. These ranges are based on confidence intervals of Fig. 2. 

Absent cell adhesion prevented basal VNRAD cell spreading quantification. Data are mean ± 95% c.i., n=50 in 

two independent experiments. 

 

Similar data were obtained when adhesion-induced signal transduction was 

analyzed in cells seeded on the different substrates: uPAR-mediated cell adhesion to VN 

induced p130Cas SD phosphorylation and MAPK-activation (Fig. 9) to levels that are 

comparable with those observed during integrin mediated cell adhesion to FN. Importantly 

this signaling was insensitive to the integrity of the integrin binding site in VN, as the level 

of p130Cas and ERK1/2 phosphorylation in cells adhering through uPAR to VN
RAD

 

(VN
RAD

 treated with uPA) was comparable to the one observed on VN. uPA treatment did 

not induce signal transduction on substrates in which the SMB domain was depleted 

(VN
SMB

 and VN
RADSMB

), consistently with the lacking of the uPAR binding region on this 

VN variants. Thus, the interaction between uPAR and VN is strictly required to induce 

changes in signal transduction, while integrin binding to the VN RGD motif is dispensable. 
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Figure 9 Analysis of Y410 p130Cas and T202/y203 ERK1/2 phosphorylation on VN variants. 

Western blot and densitometric analysis: Cells were seeded on VN variants (10 g/ml) in presence or 

absence of uPA (10nM) for 30 minutes at 37°C. P130Cas and ERK1/2 phosphorylation was assayed with 

immunoblot and quantified.  Ratio of cells plated on VN and stimulated with uPA was set as 100%. Data are 

represented as mean ± s.e.m., n=3 
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The uPAR/VN interaction induces ligand-independent signaling 

through 1 integrin 

 

The above findings document that uPAR-mediated VN adhesion induces a signaling 

cascade similar to integrin outside-in signaling through a mechanism that appear to occur 

in the absence of integrin binding sites in the matrix. Down-regulation of 1 integrin 

through siRNA technology results in impaired uPAR signaling to p130Cas. Thus the role 

of integrins in uPAR-VN signaling has been investigated by testing series of inhibitory 

anti-integrin antibodies for their ability to interfere with integrin-mediated cell adhesion to 

VN and FN as well as their effects on uPAR-induced cell adhesion, spreading and p130Cas 

SD phosphorylation on VN
RAD

, using uPAR
T54A

 cells as model. The analysis of 293 cells 

transcriptome revealed high levels of 1 integrin transcript, indicating a major role of this 

subunit in integrin-mediated cell adhesion and signaling. Furthermore, the modest level of  

Vand 5 subunits and the absence of 3 integrin transcript could indicate that the 

endogenous VN-receptor in 293 cells is V5-integrin. Indeed the weak integrin-mediated 

VN adhesion of 293 cells is mediated by the V5-integrin as evidenced by the specific 

inhibitory effect of the function-blocking antibody P1F6. Importantly the blocking of 1 

integrin through functional inhibitory antibodies (4B4 and mAb13) did not impair VN 

adhesion, showing that this integrin is not involved in cell-adhesion to this ECM 

component. On the other hand a 51 function-blocking antibody, P1D6, as well as two 

different allosteric inhibitory 1-antibodies, 4B4 and mAb13, specifically impaired cell 

adhesion to FN. None of the antibodies had any effect on uPAR-mediated cell adhesion to 

VN
RAD

 (uPAR
T54A

 cells with uPA) in accordance with cell binding to this substrate being 

mediated exclusively by the direct uPAR/VN-interaction (Fig. 10).  
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Figure 10 Adhesive properties of 293 uPART54A cells. Cell adhesion assay: Cells were plated on the 

indicated substrates (VN and VNRAD 5 g/ml, FN 10 g/ml)  for 30 minutes in presence of integrin blocking 

antibodies (5 g/ml) and uPA (10 nM) where indicated. Cell adhesion was measured and expressed as 

percentage of the untreated controls. Data are means ± s.e.m., n=3. 

 

 

 

We then tested the effect of integrin blockage on uPAR/VN mediated signaling and 

cell spreading by plating uPAR
T54A

 cells on VN or VN
RAD

 in presence of integrin 

inhibitory antibodies. When the same antibodies, used in adhesion assays, were tested 

individually for their inhibitory effect on uPAR/VN-induced cell spreading on VN (Fig. 

12) and p130Cas SD phosphorylation (Fig. 11) only very modest effects were observed. 

However, the combined inactivation of V5 and 1 resulted in a virtually complete 

inhibition of both cell spreading and p130Cas SD phosphorylation. When cells were 

seeded on VN
RAD

 the allosteric interference with -function alone was sufficient to attain 

almost complete inhibition in terms of cell spreading and p130Cas phosphorylation (Fig. 

11 and Fig 12). The blocking of either V5 function had no or only marginal effect. The 

data thus show that both V5 and 1-integrins are capable of transducing the signal 
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triggered by the uPAR/VN-interaction. On integrin permissive VN the individual 

inhibition of these integrins has limited effect while the combined inhibitions abolish the 

biological effects documenting an evident functional redundancy between these two 

receptors in the transmission of the uPAR/VN-signal. On VN
RAD

, where V5-binding is 

blunted, this redundancy is lost and almost complete inhibition can be attained by allosteric 

interference with 1-function alone even if this integrin is not involved in cell adhesion to 

VN (Fig. 10). 

 

 

Figure 11 1 integrin active state is required for uPAR-induced p130Cas phosphorylation. Western 

blot and densitometric analysis:  uPART54A cells were pre-incubated with integrin-blocking antibodies (10 

g/ml) for 15 minutes and plated on either VN or VN
RAD

 (10 g/ml) in presence of uPA (10 nM). After 30 

minutes p130Cas phosphorylation in Y410 was assayed and expressed as percentage of controls without 

inhibitory antibodies (set as 100%) on either VN or VNRAD. Data are represented as mean ± s.e.m., n=3. 

Representative western blot are shown. 
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Figure 12 uPAR-induced cell spreading requires 1 integrin active state but not ligand binding. 

Quantification of cell-matrix contact area: After 15 minutes pre-incubation with the indicated integrin-

blocking antibodies (10 g/ml), uPART54A cells were plated on either VN or VNRAD (10g/ml) in presence of 

uPA (10 nM). After 30 minutes DIC and phase contrast images were respectively taken. Cell area was 

quantified from DIC images and data are represented as mean 95% c.i., n=50 in two independent 

experiments. Upper and lower grey area represents respectively the range of fully or not spread cells, based 

on the confidence intervals retrieved in Fig. 2. Representative pictures of the cells are shown. 

 

The data thus documents two parallel pathways for the transduction of uPAR/VN-

signaling in 293 cells. The first of these pathways acts by ligand-dependent transactivation 

of the V5 integrin induced by the uPAR/VN-interaction. The second, and predominant, 

signaling pathway is mediated almost exclusively by a 1-integrin and apparently occurs 
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independently of integrin binding to the matrix. We will refer to this novel mechanism of 

signal transduction as “ligand-independent integrin signaling”.  

 

 

Ligand-independent integrin signaling poses no identifiable 

constraints to the receptor inducing cell adhesion with respect 

to ternary-structure, ligand type or means of membrane 

anchorage 

 

According to a popular paradigm for integrin-mediated uPAR signaling most of the above 

findings could conveniently be explained by a paradigm in which direct lateral interaction 

between uPAR and the integrin(s) results in conformational changes in the receptor and 

induce downstream signaling. However, the fundament of this paradigm, i.e. the existence 

of functionally important, specific and direct molecular contacts between uPAR and the 

signaling integrin, has been strongly questioned by exhaustive mutagenesis and genetic 

complementation assays demonstrating that the only functionally relevant direct uPAR-

interaction in the process is with VN (Madsen et al., 2007). 

To conclusively substantiate the notion that direct interactions between the two 

receptors are entirely dispensable in the process of uPAR-mediated 1-transduced adhesion 

signaling and cell spreading, we also analyzed the biological properties of an artificial VN-

receptor composed of the plasminogen activator inhibitor-1 (PAI-1) linked to the 

membrane by a GPI-anchor (PAI-1GPI, (Madsen et al., 2007)). This artificial receptor 

shares no sequence or structure homology with uPAR but still induces strong adhesion to 

VN
RAD

 (Fig. 13). Conversely a VN-binding deficient variant of this receptor 

(103/112/125A, PAI-1GPI
VN-

) failed to induce cell adhesion to VN
RAD

 (Fig. 13). The 
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treatment with 4B4 did not affect cell adhesion to VN
RAD

, being exclusively mediated by 

PAI-1/VN interaction (Fig. 13).  

 

 

 

 

 

 

Figure 13 PAI-1GPI expressing cells adhere to VNRAD. Cell-adhesion assay: cell expressing PAI-1GPI    

or PAI-1GPI
VN- were plated on VNRAD (5 g/ml) for 30 minutes.  4B4 antibody (5 g/ml) was added where 

indicated. Cell were fixed and stained with crystal violet. Cell adhesion was quantified and expressed as 

percentage of Poly-D-lysine adhesion. Data are expressed as mean ± s.e.m, n=3. 

 

 

 

Thus, we tested if the PAI-1-induced VN adhesion can recapitulate the same effects 

of uPAR-VN interaction. We found that the PAI-1GPI receptor induces robust p130Cas 

phosphorylation (Fig. 14) and cell spreading (Fig 15) when cells were seeded on VN
RAD

. 

The VN-binding deficient receptor (PAI-1GPI
VN-

) failed to induce signaling to p130Cas, 

indicating that the ability of PAI-1GPI to interact with the VN-matrix is required in this 

process (Fig. 14). PAI-1GPI expression did not alter the canonical outside-in signaling to 

p130Cas upon plating the cells on FN and did not induce signaling on a non-integrin 
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substrate as PL (Fig. 14). Importantly, signaling and cell spreading downstream of PAI-

1GPI was 1-dependent since it was strongly blunted by the 4B4 antibody (Fig. 14 and Fig. 

15). Thus, PAI-1GPI recapitulates the effects on signaling and cell spreading triggered by 

uPAR. This could indicate that cell adhesion molecules, that induce VN adhesion, can 

trigger ligand-independent integrin signaling without directly interacting with integrins. 

  

 

Figure 14 PAI-1GPI mediated cell adhesion to VNRAD induces intracellular signaling through 1 

integrin. Western blot and densitometric analysis: cell expressing PAI-1GPI    or PAI-1GPI
VN- were pre-

incubated with 4B4 antibody (10 g/ml, 15 minutes) where indicated and plated on VNRAD (10 g/ml), PL 

(100 g/ml) or VNRAD (10 g/ml) for 30 minutes. p130Cas phosphorylation was quantified from WB and 

expressed as percentage of phosphorylation of 293 uPART54A on VNRAD with uPA, data are means ± s.e.m., 

n=3. Representative western blots are shown. 
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Figure 15 PAI-1GPI mediated cell adhesion to VNRAD induces cell spreading through 1 integrin. 

Quantification of cell-matrix contact area: cell expressing PAI-1GPI  were pre-incubated with 4B4 antibody 

(10 g/ml, 15 minutes ) where indicated and plated on VNRAD (10 g/ml),  for 30 minutes Cell area was 

quantified from DIC images and data are represented as mean 95% c.i., n=50 in two independent 

experiments. Upper and lower grey area represents respectively the range of fully or not spread cells, based 

on the confidence intervals retrieved in Fig. 2. 

 

 

 

The fact that both uPAR and PAI-1GPI share the same extracellular matrix ligand 

(VN) and have overlapping binding sites in this molecule could suggest that the observed 

signaling might be specific for this ECM component. To determine if the same or similar 

signaling can be triggered by any strong adhesion substrate we seeded uPAR-expressing 

cells on surfaces coated with an anti-uPAR mAb (R4) and we measured cell spreading and 

signal transduction in the presence and absence of the inhibitory 1antibody 4B4. 

Consistent with a similar, or identical, mechanism of signal transduction, cell adhesion 

generated by uPAR-R4 interaction triggered strong p130Cas phosphorylation (Fig. 17) and 

cell spreading (Fig 16). Importantly, both cell spreading and p130Cas SD phosphorylation 

was fully inhibited by the 4B4 antibody (Fig. 16 and Fig. 17). R4 antibody does not 
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contain cryptic integrin binding sites and 4B4 antibody did not affect uPAR-mediated cell 

adhesion on this substrate (data not shown).  

 

 

Figure 16 uPAR-R4 interaction triggers 1 integrin dependent cell spreading. Quantification of cell-

matrix contact area:   uPART54A cells were pre-incubated with antibody 4B4 (10 g/ml) where indicated and 

plated on -uPAR antibody R4 (20 g/ml) for 30 minutes.  Cell area was quantified from DIC images and 

data are represented as mean 95% c.i., n=50 in two independent experiments Upper and lower grey area 

represents respectively the range of fully or not spread cells, based on the confidence intervals retrieved in 

Fig. 2. 

 

The apparent lack of structural requirements to the receptor and its matrix ligand 

suggests that the sole requirement to these structures is that they physically connect the cell 

to the matrix. In favor of this mode of action, both VN
RAD

 and the anti-uPAR antibody 

failed to induce p130Cas activation when presented to non-adherent cells in a soluble form 

(Fig. 17 “off-plate”).  
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Figure 17 uPAR-R4 interaction triggers 1 integrin dependent p130Cas phosphorylation. Western 

blot and densitometric analysis:  uPART54A cells were pre-incubated with antibody 4B4 (10 g/ml) where 

indicated and plated on -uPAR antibody R4 (20 g/ml), PL (100 g/ml) or VNRAD (10 g/ml) for 30 

minutes. p130Cas phosphorylation was quantified from WB and expressed as percentage of phosphorylation 

of 293 uPART54A on VNRAD with uPA, data are means ± s.e.m., n=3. Off-plate condition refers to experiment 

where the coating components were added to non adhering cells. Representative western blot are shown. 
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This indicates that the mere binding of soluble proteins to uPAR is not proficient in 

triggering changes in signal transduction. On the contrary, these molecules have to be 

attached to a substrate providing rigidity and cell adhesion in order to induce ligand-

independent integrin signaling. To prove this we performed experiments incubating non-

adherent cell with Dynabeads coated with different substrates. Dynabeads coated with FN 

produced a strong p130Cas phosphorylation in uPAR
T54A

 cells, compared with beads 

coated with PL. This is consistent with a canonical integrin outside-in signaling, proving 

that the ligands attached to Dynabeads are functional. Interestingly uPAR-VN (uPAR
T54A

 

cells treated with uPA) interaction triggers p130Cas phosphorylation also when VN
RAD 

presented by Dynabeads. uPAR-VN induced p130Cas phosphorylation was abrogated by 

4B4 treatment (Fig. 18), demonstrating that, like in the case of  VN
RAD

 coated on cell 

culture plates, the signaling derives from 1 integrin and does not require integrin-matrix 

interaction. In these experiments the ratio between cells and beads is 1:2, meaning that 

every cell will bind two beads on average. This data could indicate that “thinly localized” 

uPAR-mediated VN adhesion can trigger integrin signaling, independently of integrin-

matrix interaction. 

 

Figure 18 VNRAD presented by Dynabeads induces integrin signaling to p130Cas. Western blot 

analysis: uPART54A cells were incubated with dynabeads coated with PL, FN or VNRAD for 30 minutes in 

agitation at 37°C. uPA (10 nM) and 4B4 (10 g/ml) were added where indicated. Cells attached to the beads 

were lysed and p130Cas was assayed. Representative blots are shown. 
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Both uPAR and the artificial PAI-1GPI receptor are tethered to the cell membrane by 

a GPI-anchor suggesting that the particular properties of this anchor, such as the 

preferential partitioning to membrane sub-domains known as lipid rafts, could contribute 

to the observed biological activity. Furthermore, different GPI-anchoring sequences have 

been shown to endow their attached ectodomains with different biological activities 

(Paulick and Bertozzi, 2008). To determine the importance of the type of membrane 

anchorage on the biological effects under study, we generated five variants of uPAR
T54A

 

with different C-terminal membrane anchorage sequences. Two of these were engineered 

to use the GPI-anchoring signal from the GPI-anchored isoform of neuronal cell adhesion 

molecule (NCAM, uPAR
NCAMgpi

) and from the carcinoma embryonic antigen S4 (CEA-4S, 

uPAR
CEAgpi

). These GPI-anchoring sequences were chosen because they have been 

published to “encode” different biological properties to the attached GPI-anchor. In 

addition we generated three variants of uPAR tethered to the membrane by transmembrane 

domains copied from the epidermal growth factor receptor (EGFR, uPAR
EGFRtm

), NCAM 

(uPAR
NCAMtm

) or CEA (uPAR
CEAtm

). These transmembrane domains were trimmed to 

retain only a few cytoplasmic residues to limit the possible binding of cytoplasmic 

proteins. The different receptor chimeras were transfected into 293 Flp-In T-Rex cells and 

assayed for their ability to induce cell adhesion, spreading and p130Cas SD 

phosphorylation after seeding on VN
RAD

. Briefly, we found that all the different chimeras 

were comparably expressed on the cell surface (data not shown) and induced similar levels 

of cell adhesion to VN
RAD

 (Fig.19). 
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Figure 19 The mean of anchorage to the plasma membrane does not affect uPAR-mediated VN 

adhesion. Cell-adhesion assay:  cell expressing the indicated uPAR variant were plated on VNRAD (5 g/ml) 

with or without uPA (10 nM) for 30 minutes. Cell were fixed and stained with crystal violet. Cell adhesion 

was quantified and expressed as percentage of Poly-D-lysine adhesion. Data are expressed as mean ± s.e.m, 

n=3. 

 

 

 Moreover, the different means of membrane anchorage did not influence the ability 

of the receptors to induce p130Cas phosphorylation (Fig. 20) and cell spreading (Fig. 21) 

on VN
RAD

. These data demonstrate that both the type and the exact sequence of the 

membrane anchorage signal are of no or little importance for uPAR to induce 1-dependent 

signaling to p130Cas and downstream cell spreading. 
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Figure 20 uPAR-mediated p130Cas phosphorylation is not affected by the mean of anchorage to the 

plasma membrane. Western blot and densitometric analysis: cell expressing the indicated uPAR variant were 

plated on VNRAD (5 g/ml) with uPA (10 nM) for 30 minutes. p130Cas phosphorylation was quantified from 

WB and expressed as percentage of phosphorylation of 293 uPART54A on VNRAD with uPA, data are means ± 

s.e.m., n=3. 

 

Figure 21 All the different anchored uPAR variants induce cell spreading. Quantification of cell-

matrix contact area:  cell expressing the indicated uPAR variant were plated on VNRAD (5 g/ml) with uPA 

(10 nM) for 30 minutes. Cell area was quantified from DIC images and data are represented as mean 95% 

c.i., n=50 in two independent experiments Upper and lower grey area represents respectively the range of 

fully or not spread cells, based on the confidence intervals retrieved in Fig. 2. 
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uPAR-induced 1 outside-in signaling requires the binding of 

cytoplasmic factors, an active conformation, but occurs 

independently of ligand-engagement 

  

The uPAR/VN-induced signaling via V5 on VN is coherent with the current paradigm 

for ligand-induced integrin outside-in signaling and we therefore focused our attention to 

the ligand-independent 1-mediated signaling observed in cells seeded on VN
RAD

. Both 

mAb13 and 4B4 belong to a family of allosteric inhibitory 1 antibodies that are thought to 

stabilize the receptor in an inactive conformation by preventing the swing-out of the hybrid 

domain (Luo et al., 2004b). The fact that these antibodies inhibit adhesion-induced cell 

spreading and signaling on a non-integrin substrate suggests that signaling requires an 

active conformation of 1 integrin, irrespectively of the ligand binding properties of this 

conformation. To address this possibility directly we established a simple cell system to 

conduct structure-function analysis on 1 in uPAR/VN-signaling. For this, we first 

generated a stable clone of 293 Flp-In T-REx cells expressing the uPAR
T54A

 receptor by 

transfection and G418 selection. This clone (termed 293
uT54Ac

) was selected to express a 

level of receptor comparable to that obtained after tetracycline induction of the Flp-In T-

REx cell lines used in the preceding experiments and was found to result in qualitatively 

and quantitatively similar effect on cell signaling and changes in cell morphology upon 

treatment with uPA. This cell line was subsequently used for assaying the biological 

activity of modified 1-chains introduced by Flp-In transfection. To discriminate the 

biological activity of the transfected 1-chains from the activity of residual endogenous 1 

we rendered the transfected 1-chain refractory to inhibition by the 4B4 antibody (but still 
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sensitive to the effect of mAb13) using the K218A substitution that has been reported to 

impair antibody binding (Luo et al., 2004b). To functionally validate this system we 

conducted FN-adhesion assays on cells that were transfected with either empty vector or 

with vectors encoding 1
WT

 and 1
K218A

 in the presence or absence of the inhibitory mAb13 

and 4B4 inhibitory antibodies (Fig. 22). As predicted, both antibodies strongly reduced 

FN-adhesion of mock and 1
WT

 transfected cells while only mAb13 inhibited FN-adhesion 

of cells expressing 1
218A

, demonstrating that this 1-chain is resistant to inhibition by 4B4, 

but otherwise functionally normal. 

 

 

Figure 22 K218A mutation makes 1 integrin insensitive to 4B4 antibody inhibition. Cell-adhesion 

assay: 293 uPART54A cells expressing WT 1 integrin or k218A mutant were plated on FN (10 g/ml) in 

presence on two 1 integrin allosteric inhibitory antibodies (4B4 and mab13, 5 g/ml) for 30 minutes. Cell 

adhesion was quantified and expressed as percentage of poly-D-lysine one.   

 

As consequence, by performing the adhesion, spreading and signaling assays in 

presence of 4B4 antibody, the only ―functional‖ integrin receptors expressed on the cell 

surface will be the ones containing the mutated 1 subunit. The K218A mutation will be 
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combined with other mutations within the extracellular part or in the cytoplasmic tail, 

known to affect 1 integrin function. 

Using this system, we first sought complementary evidence for the ligand 

independence of the 1-signaling induced by the uPAR/VN
RAD

-interaction. To this purpose 

we utilized the alanine substitution D130A (Takada et al., 1992) that disrupts the metal ion 

dependent adhesion binding site (MIDAS) in 1 resulting in greatly abolished binding of 1 

matrix-ligands. Indeed, expression of 1
218/130A 

strongly abrogated cell adhesion to FN (Fig. 

23a) as well as downstream p130Cas SD phosphorylation (Fig. 24a), meaning that this 

integrin mutant is not able to contact the extracellular matrix. The effect of the D130A 

mutation was not restricted to FN as it also prevented cell adhesion to other 1 substrates 

including laminin and collagen (data not shown). The effect of the D130A mutation was 

however specific and restricted to 1-integrins as cell adhesion to VN, mediated by V5, 

remained unaffected (data not shown). 1
130/218A

 mutant did not alter cell adhesion to 

VN
RAD

 in presence of uPA, being mediated exclusively by uPAR (Fig. 23b). 

 

 

Fig. 23a (FN adh.) 
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Figure 23 Effect of 1 integrin mutations on integrin-dependent and uPAR-mediated cell adhesion. 

Cell-adhesion assay: cell expressing the indicated 1 integrin variants were pre-incubated with 4B4 antibody 

(10 g/ml) and plated for 30 minutes on either FN (10 g/ml, Fig. 23a) or VNRAD (5g/ml, Fig. 23b) with 

uPA. Cell adhesion was quantified and expressed as percentage of poly-D-lysine one. Both sets of data are 

represented as mean ± s.e.m., n=3. 

 

 Importantly the 1
130/218A

 chain was still capable of transmitting the uPAR/VN
RAD

-

induced signaling to p130Cas SD phosphorylation (Fig.24b) and enhancing cell spreading 

(Fig. 25), documenting conclusively that 1 matrix engagement is dispensable for 

transduction of uPAR-signaling.  Importantly, the uPAR/VN
RAD

-signaling transduced by 

the D130A mutant was fully suppressed by the allosteric inhibitory 1-antibody mAb13 

(Fig. 24b and 25 mAb13) demonstrating that the activity of this antibody, and presumably 

also that of 4B4, is not related to its effect on ligand binding per se, but rather to some 

other conformation-dependent biological activity of the integrin. 

Fig. 23b (VN
RAD

 adh.) 
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Figure 24 Structural requirements for ligand-independent 1 integrin signaling and canonical 

integrin-mediated outside-in signalling to p130Cas.  Western blot and densitometric analysis: 293 uPART54A 

cells expressing the indicated integrin variant were pre-treated with 4B4 antibody (10 g/ml) and Mab13 

antibody where indicated (10 g/ml, where indicated) and seeded on VNRAD (10 g/ml, Fig. 24b) in presence 

of uPA (10 nM) or FN (10 g/ml, Fig 24a). P130Cas phosphorylation in Y410 was assayed and expressed 

setting the level of K218A expressing cells as 100%. Both sets of data are represented as mean ± s.e.m., n=3. 

Representative western blot are shown. 

Fig. 24a (FN sig.) 

Fig. 24b (VN
RAD

 sig.) 

Fig. 24b (VN
RAD

 sig.) 
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The conformation and activation state of integrins is largely determined from the 

intracellular side of the plasma membrane through the binding of scaffolding proteins to 

the cytoplasmic tails of integrins (Legate and Fassler, 2009) and we therefore also 

analyzed the structural requirements to this region of 1 integrin in uPAR/VN
RAD

-

signaling. We focused our attention on the two NPxY motifs that are widely accepted to be 

critical for integrin function because of their interactions with members of the talin and 

kindlin families of scaffolding proteins (Moser et al., 2009a) (Montanez et al., 2008) 

(Czuchra et al., 2006) (Tadokoro et al., 2003). For this purpose we generated 1-mutants in 

which we had alanine-substituted the tyrosines of the membrane-proximal (1
218A/Y763A

) 

and the membrane-distal (1
218A/Y775A

) NPxY-motifs alone or in combination (1
218A/Y763A 

Y775A
), as well as a control mutant in which both tyrosines were replaced with the 

permissive double phenylalanine substitutions (1
218A/763/775F

). Control experiments 

assaying the adhesion and signaling activity of the mutated 1-chains in cells seeded on FN 

demonstrated that alanine substitution in either of the two NPxY-motifs efficiently 

abrogates cell adhesion (Fig. 23a) and subsequent p130Cas SD phosphorylation (Fig. 24a), 

while the double phenylalanine substitution retained full functionality. We next assayed 

uPAR/VN
RAD

-induced cell adhesion (Fig. 23b), spreading (Fig. 25) and p130Cas SD 

phosphorylation (Fig. 24b) on VN
RAD

. In analogy to the experiments on FN, we found that 

alanine substitutions in the NPxY-motifs very efficiently inhibited both cell spreading and 

p130Cas SD phosphorylation, while double phenylalanine substitution did not alter signal 

transmission and cell morphology changes. Cell adhesion to VN
RAD

, however, was not 

affected by these 1-mutations and the lack of spreading and signaling therefore, unlike on 

FN, cannot be attributed to impaired cell adhesion. 

In order to consistently exclude a possible direct lateral interaction between uPAR 

and 1 integrin we performed experiments using a mutant (1
218A/S227A

) reported to destroy 
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this interaction (Wei et al., 2005). This integrin mutant had no defects in supporting FN 

adhesion (Fig. 23a) and the consequent p130Cas phosphorylation (Fig 24a). When tested 

in cells adhering to VN
RAD

 through uPAR in presence of 4B4, 1
218A/S227A

 induced 

p130Cas phosphorylation (Fig. 24b) and enhanced cell spreading (Fig 25). These data 

finally rule out a possible direct uPAR-integrin interaction in the signaling we are 

observing.  

 

 

Figure 25 Effect of 1 integrin mutations on ligand-independent 1 integrin signalling. 

Quantification of cell-matrix contact area: 293 uPART54A cells expressing the indicated integrin variant were 

pre-treated with 4B4 antibody (10 g/ml) and Mab13 antibody where indicated (10 g/ml, where indicated) 

and seeded on VNRAD (5 g/ml) in presence of uPA (10 nM). Cell area was quantified from DIC images and 

data are represented as mean 95% c.i., n=50 in two independent experiments. Upper and lower grey area 

represents respectively the range of fully or not spread cells, based on the confidence intervals retrieved in 

Fig. 2. 

 

In conclusion, these data show that the activity of 1 in transducing adhesion-

induced cell spreading and signaling is independent of ligand-binding, but requires an 
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active conformation of the integrin as well as the binding of cytoplasmic adaptor proteins 

like talin and kindlin.  

 

 

Ligand-independent outside-in signaling downstream of 3 

 

uPAR-mediated VN adhesion triggers ligand-independent 1 integrin signaling. However, 

excluding a direct lateral interaction between these membrane receptors ((Madsen et al., 

2007) and see below), this mechanism could be more general and not only restricted to one 

class of integrin subunits. 

To validate this hypothesis 293
uT54Ac 

were transfected with constructs carrying 3 

integrin variants. Adhesive properties of the cells obtained in this way were assayed (Fig. 

26) revealing that 3
WT

 integrin expression does not affect FN adhesion and basal or 

uPAR-mediated cell adhesion to VN
RAD

. On the contrary, VN adhesion (integrin 

dependent without uPA) was highly increased, suggesting that 3 integrin subunit couples 

with endogenous V to form V3 vitronectin receptor. The expression of 3
119Y

  and 

3
747/759A

 integrin mutants, that respectively compromise ligand binding activity (Loftus et 

al., 1990) and the two NPxY-motifs crucial in the interaction with talin and kindlin (Moser 

et al., 2009b) required for integrin activation, strongly decreased VN adhesion resulting in 

levels lower than mock transfected cells. This is well explained by the competitive effect 

that over-expressed 3 integrin expression exerts on the endogenous 5 subunit.  
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Figure 26 Adhesive properties of 293 uPART54A cells expressing 3 integrin mutants. Cell-adhesion 

assay: Cells were seeded on FN (10 g/ml), VN and VNRAD (5 g/ml) with uPA (10 nM) where indicated. 

Quantified cell adhesion was expressed in percentage of poly-D-lysine one. Data are means ± s.e.m., n=3. 

 

We then analyzed if 3 integrin could transmit uPAR-VN signaling with similar 

structural requirements to 1 integrin. To this purpose, we measured p130Cas 

phosphorylation and cell spreading in cells expressing the integrin mutants mentioned 

above, seeded on VN
RAD

 with uPA. 1 integrin was inhibited with 4B4 antibody, in order 

to study specifically the signaling deriving from 3 integrin. uPAR-mediated signaling and 

cell spreading on VN
RAD

 was efficiently supported by both 3
WT

 and 3
119Y 

(even when 1 

integrin signaling was blocked by 4B4 treatment). The Mutation in both the NPxY-motifs 

in integrin cytoplasmic tail abolished uPAR-VN signaling resulting in low levels of 

p130Cas SD phosphorylation (Fig. 27) and   cell spreading (Fig. 28). This structure-

function analysis indicates that ligand binding is dispensable in uPAR/VN-induced 

signaling and cell spreading through 3 integrin, while cytoplasmic interactions occurring 

in the two NPxY-motifs with kindlin and talin are crucial in this process. Moreover, this 

ligand-independent adhesion-induced signaling does not seem to be specifically related to 
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1 integrin subunits, as it is efficiently recapitulated by 3-containing integrins. Our data 

points toward a more general mechanism with precise structural-function requirements. 

 

 

 

Figure 27 3 integrin transmits ligand-independent integrin signaling downstream of uPAR-VN 

interaction. Western blot and densitometric analysis: upon pre-incubation with 4B4 antibody (10 g/ml) cells 

were plated for 30 minutes on VNRAD (10 g/ml) in presence of uPA (10 nM). p130Cas phosphorylation was 

assayed and quantified. Western blot data were normalized setting phosphorylation level of mock transfected 

cells without inhibitory antibody as 100% and expressing them as means ± s.e.m. , n=3. Representative 

western blot are shown. 
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Figure 28 Ligand binding is dispensable for 3 integrin induced cell spreading downstream of 

uPAR-VN interaction. Quantification of cell-matrix contact area: Upon pre-incubation with 4B4 antibody (10 

g/ml) cells were plated for 30 minutes on VNRAD (10 g/ml) in presence of uPA (10 nM). Cell-matrix 

contact area of DIC images was quantified. DIC data are represented as mean ± 95% c.i., n=50 in two 

independent experiments. 

 

 

 

Ligand-independent trans-activation may occur between 

different -integrin subunits 

 

Our data are consistent with a model where the anchoring-adhesive receptor differs from 

the signaling one. If this model is correct, it should be valid even when the anchoring and 

the signaling receptor are two different kinds of integrins. Thus a signaling incompetent 

integrin, capable of mediating cell adhesion, should signal through another integrin unable 

to engage the extracellular matrix.  To achieve this we plated 3 integrin expressing cells 

on anti-3 antibody. As consequence even an integrin mutant that cannot interact with the 
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two main integrin activators (talin and kindlin, 3
747/759A

) should still support cell adhesion 

without directly transmitting a signal. 

 3 integrin expressing cells strongly adhered to anti-v3 antibody (LM09) coated 

plates (Fig. 29), while mock transfected cells did not, meaning that the endogenous 

integrins array expressed by 293 cells, and specially 1-containing integrins, are unable to 

interact with this artificial coating. Importantly 3
747/759A 

integrin mutant, despite the 

missing interaction with kindlin and talin, was still capable of mediating cell adhesion to 

anti-v3 antibody coated plates. 

 

Figure 29 3 integrin expressing cells adhere to coated anti-3 integrin antibody. Cell-adhesion 

assay: Cells expressing the indicated integrin mutant were seeded on anti-v3L coated plates (20 

g/ml). Cell adhesion was expressed as percentage of poly-D-lysine. Data are means ± s.e.m., n=3 

 

 

The mechanical interaction between 3
WT

integrin and LM609 induced cell 

spreading (Fig. 31) and p130Cas phosphorylation (Fig. 30). This signaling was not blunted 

by 1
 
integrin inhibition consistently with a canonical outside-in signaling from 3

 
integrin. 

Importantly, even if deprived of its key interactors, the 3
747/759A 

integrin was still capable 

of inducing cell spreading and signaling upon LM609 interaction.  
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Figure 30 A signaling-incompetent 3 integrin mutant induces cell adhesion to LM09 triggering 1 

integrin dependent signalling to p130Cas. Western blot and densitometric analysis. Cell expressing the 

indicated 3 integrin (pre-incubated with 4B4 (10 g/ml) where indicated) were plated for 30 min on LM09 

(20 g/ml) coated plates prior to lysis. P130cas phosphorylation was assayed and quantified. Data are 

normalized setting the level in 293 uPART54A cells on VNRAD with uPA as 100%. Data are means ± s.e.m., 

n=3. Representative western blot are shown.  
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Importantly, 3
747/759A 

integrin induced signaling and cell spreading was inhibited 

by 1
 
integrin blockage achieved through 4B4 treatment (Fig. 30 and Fig. 31). These data 

demonstrate that a signaling incompetent integrin can still mediate mechanical adhesion to 

anti-v3 antibody. The adhesive signaling deriving from this interaction is transmitted by 

1
 
integrin that, without engaging the ECM, induce changes in cell morphology and 

intracellular signaling. Thus integrins can carry out both anchoring and signaling receptor 

function, suggesting that ligand-independent adhesive signaling may occur also between 

different integrin types. 

 

 

 

Figure 31 3 mechanical cell adhesion induces cell spreading through 1
 integrin. Quantification of 

cell-matrix contact area. Cell expressing the indicated 3 integrin (pre-incubated with 4B4 (10 g/ml) where 

indicated) were plated for 30 min on LM09 (20 g/ml) coated plates prior to fixation. DIC images were 

quantified. Cell-matrix contact area data are means ± 95% c.i., n=50 in two independent experiments. 
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Ligand-independent integrin signaling requires SRC activity to 

induce cell spreading and migration: 

 

Cell migration is dynamic, strongly regulated process that involves a tight 

compartmentalization of intracellular signaling and a continuous FAs turnover (Ridley et 

al., 2003), where integrins mediate cell adhesion and transmit signaling(s) across the 

plasma membrane. uPAR-VN interaction has been shown to strongly increase cell 

migration (Madsen et al., 2007; Smith et al., 2008) (Kjoller and Hall, 2001). However, the 

importance of integrin-ECM engagement in this process was not investigated.  

The importance of integrin-matrix interaction in uPAR-induced cell migration was 

therefore evaluated on a VN variant with destroyed integrin binding site. uPAR
T54A

 cells 

were seeded on VN
RAD

 in presence of uPA and cell migration was quantified from 

timelapse movies. Even on a substrate with mutated integrin binding site, cells managed to 

migrate showing that not only cell adhesion and spreading but also cell migration was not 

impaired by the RGD motif mutation (Fig. 32). 

 

Figure 32 uPAR-VN induced cell migration is independent of integrin-matrix interaction. 

Quantification of migration speed. 293 uPART54A cells were seeded on VN or VNRAD (10 g/ml) in presence 

of uPA (10nM). After 1 hours time lapse recordings were started and cell migration speed was quantified. 

Data are expressed as means ± 95% c.i., n=25 in two independent experiments 
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Moreover, uPAR-VN interaction transduces a ligand-independent 1
 
integrin 

signaling and this signaling could be responsible for uPAR-induced cell migration as well. 

To test this possibility cell migration was quantified upon 1
 
integrin inhibition through 

4B4 treatment. As expected 4B4 treatment, by having an evident inhibitory effect on cell 

spreading, strongly impaired cell migration on VN
RAD

 (Fig. 33).  

 

 

 

Figure 33 uPAR-VN induced cell migration does not require integrin-matrix interaction and it is 

mediated by 1
 integrin. Quantification of migration speed. 293 uPART54A cells, pre-treated with 4B4 (10 

g/ml) for 15 minutes where indicated, were seeded on VNRAD (10 g/ml) in presence of uPA (10nM). After 

1 hours time lapse recordings were started and cell migration speed was quantified. Data are expressed as 

means ± 95% c.i., n=50 in two independent experiments 

   

These data demonstrate that integrin-matrix interaction is dispensable in cell 

migration triggered by uPAR-mediated VN adhesion. Moreover, the same ligand-

independent signaling, responsible for enhanced cell spreading, seems to be sufficient to 

induce cell migration also on substrates refractory to integrin engagement. 
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Since the predominant signaling pathway induced by uPAR-mediated VN adhesion 

is ligand-independent 1
 
integrin signaling we decided to better study this new mechanism 

of signal transduction. To do that we targeted the proteins involved in uPAR signaling (like 

p130cas and ERK1/2) and possible kinases up-stream of them through chemical inhibitors. 

uPAR
T54A

 cells, pre-incubated with specific inhibitors, were plated on VN
RAD

 in presence 

of uPA. Two Src family kinase inhibitors (PP1 and PP2) efficiently impaired uPAR-

induced p130Cas and ERK1/2 phosphorylation, while the inactive form of the inhibitor 

(PP3) had no effect. The specific MEK inhibitor (UO1026) completely abolished ERK1/2 

phosphorylation but had no effects on p130Cas phosphorylation (Fig 34). 

 

 

Figure 34 Ligand-independent integrin signaling to p130Cas requires SRC but not ERK activity.  

Western blot analysis. 293 uPART54A cells were pre-treated with Src inhibitors (PP1, PP2 and the inactive 

form PP3, 10 M) or with MEK inhibitor (UO1026 20 M) for 30 minutes and seeded on VNRAD in presence 

or absence of uPA (10 nM). After 30 minutes cell were lysed and ERK1/2 and p130Cas phosphorylation was 

assayed. Representative blot are shown. 

 

These data indicates that uPAR-VN signaling to p130Cas and ERK1/2 requires Src 

kinase activity. MAPK signaling pathway is not involved in p130Cas phosphorylation. 
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The same inhibitors were also tested for their ability to block uPAR-VN mediated 

cell spreading and migration on VN
RAD

. The inhibition of p130Cas phosphorylation 

achieved through Src inhibitors (PP1 and PP2) was paralleled by a marked reduction of 

both protrusive (Fig. 35) and migratory activity (Fig.36). Inactive Src inhibitor (PP3), 

MEK inhibitor (UO1026) and a control inhibitor against EGFR kinase activity (AG1478) 

had no evident effect. 





Figure 35: Src activity is required for enhancement of cell spreading downstream of uPAR-VN 

interaction. Quantification of cell-matrix contact area. . 293 uPART54A cells were pre-treated with Src 

inhibitors (PP1, PP2 and the inactive form PP3, 10 M), with MEK inhibitor (UO1026 20 M) or EGFR 

inhibitor (AG1478 250 nM) for 30 minutes and seeded on VNRAD in presence or absence of uPA (10 nM). 

After 30 minutes cells were fixed and DIC images were acquired and quantified. Cell-matrix contact area 

data are means ± 95% c.i., n=50 in two independent experiments. 


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Figure 36: Src activity is required for cell migration downstream of uPAR-VN interaction.  

Quantification of migration speed. 293 uPART54A cells, pre-treated with Src inhibitors (PP1, PP2 and the 

inactive form PP3, 10 M), with MEK inhibitor (UO1026 20 M) or EGFR inhibitor (AG1478 250 nM) for 

30 minutes and seeded on VNRAD in presence or absence of uPA (10 nM). After 1 hours time lapse recordings 

were started and cell migration speed was quantified. Data are expressed as means ± 95% c.i., n=50 in two 

independent experiments 

 

Altogether, these results suggest that uPAR-mediated cell adhesion induces ligand–

independent 1 integrin resulting in cell migration and spreading in a process that requires 

Src kinase activity. The MAPK activation seems to be a downstream consequence having 

no impact on cell morphology or motility. 
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DISCUSSION 

 

uPAR-VN interaction regulates cell adhesion, spreading 

signaling: 

 

The urokinase plasminogen activator receptor has been extensively involved in the 

processes of cell adhesion, spreading and migration through the modulation of integrin 

signaling (Madsen et al., 2007), (Smith et al., 2008), (Kjoller and Hall, 2001). In particular, 

the pathway from uPAR to Rac1 activation, responsible for enhanced spreading and cell 

migration, has been recently clarified. Briefly, uPAR transduces a signal through integrins 

that results in p130Cas SD phosphorylation and the subsequent formation of a complex 

with CRK and DOCK180. DOCK180 is a well known GEF involved in Rac activation, 

which in turn controls ruffling and lamellipodia activity leading to cell migration and 

invasion (Smith et al., 2008). Our previous and present data, together with other evidences 

(Kjoller and Hall, 2001) indicate that the uPAR capability of inducing adhesion to VN is 

the key point in this process. Consistently the uPAR-dependent adhesive properties of cells 

expressing either WT or uPAR
T54A

 mutant correlates with increase in cell spreading and 

intracellular signaling. 

 Signaling downstream of uPAR in 293 cells has been extensively investigated in 

conditions of over-expression (Madsen et al., 2007), however in this context the use of 

uPAR
T54A

 provides a number of major advantages. Firstly, the absence of baseline VN-

binding disrupts the constitutive signaling activity of uPAR, which may have complex 

secondary cellular consequences such as changes in gene expression and even in complete 
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cell behavior reprogramming like epithelial-mesenchymal transitions (Zhang et al., 2003). 

Secondly, the uPA-dependence of changes in cell adhesion and signaling well replicates 

the majority of the described physiological activities of both uPA and uPAR observed in 

cell lines expressing endogenous levels of receptor (Yebra et al., 1999). Finally, the 

inducible nature of this system provides a potent tool for the accurate analysis of the 

hierarchy and kinetics of uPA/uPAR-signaling. Importantly the uPA effects on signaling 

and cell morphology are exclusively related to the rescue of VN binding in T54A mutant, 

as it is not affecting mock transfected cells or uPAR expressing cells plated on a substrate 

on which it cannot mediate cell adhesion. 

 

The uPAR-VN interaction triggers RGD dependent and 

independent integrin signalling  

 

Our previous and current data indicate that uPAR-induced VN adhesion facilitates 

integrin-matrix interaction, enhancing integrin outside-in signaling (Madsen et al., 2007). 

Indeed when cells are plated on an “integrin permissive” VN variant, uPAR signals both 

through V5 and 1 integrin. V5 integrin is the endogenous integrin receptor for VN in 

293 cells and its increased signaling activity could be accounted for the enhanced RGD-

dependent cell spreading observed in our work. In fact V5 integrin contribution in 

uPAR-VN signaling on a RGD-mutated VN variant (VN
RAD

) is lost, being almost totally 

dependent on 1 integrin. uPAR could reinforce the weak integrin-dependent cell adhesion 

to VN in 293 cells, inducing a mechanical distortion in the architecture and geometry of 

preformed integrin cytoplasmic complexes, leading to mechanotransduction. Indeed many 

reports argue that mechanical stretch of cells can lead to the partial unfolding of proteins 

bound to the integrin tails. This event could unmask phosphorylation sites or domain 
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involved in protein interaction giving rise to signal transduction (del Rio et al., 2009) 

(Sawada et al., 2006).   

However, besides V5 integrin signaling, uPAR/VN interaction signals also through 1 

integrin in a ligand-independent fashion. In fact, uPAR transmit a 1 integrin-dependent 

signaling on an integrin-refractory VN substrate, enhancing cell spreading, signaling and 

migration. Importantly the inhibition of 1 integrin does not affect integrin-mediated 293 

cell adhesion to VN, indicating that this integrin is not involved in cell adhesion to this 

substrate. The comparable activation of the signaling molecules and cell spreading in cells 

seeded on VN
WT

 and VN
RAD

 suggest that the main signaling pathway downstream of 

uPAR/VN occurs independently of integrin binding to VN. The virtually complete 

inhibition of uPAR/VN
RAD

-induced biological effects in 293 cells by inhibition of 1-

function antibodies might suggest that in this cell line 1 integrins are unique in their 

capacity to transduce ligand-independent adhesion signaling. However, as 1 integrin is the 

most abundant integrin  subunit expressed by the 293 cells as evaluated by semi-

quantitative methods like FACS and microarray analysis (data not shown), the data do not 

allow us to exclude that also other integrins have the same capacity. In fact uPAR has been 

extensively described to functionally cooperate with a variety of -integrins including 2 

(M2, (Simon et al., 1996)), 3 (V3, (Smith et al., 2008)) and 5 (V5, (Franco et al., 

2006)).  

The uPAR-VN signaling through 1 integrin occurs on a VN variant that cannot be 

engaged by integrins and induces cell spreading, presumably through the p130Cas-Rac1 

axis. Surprisingly, even in the absence of integrin mediated cell adhesion, uPAR-VN 

interaction supports cell migration. uPAR-induced cell motility is again dependent on the 

same 1 integrin signaling required for enhancement of cell spreading. However, the 

mechanism of uPAR adhesion and release of the adhesion contacts during cell migration is 
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still unknown. Indeed uPAR lacks a cytoplasmic domain, meaning that its adhesive 

activity cannot be tightly regulated by modulation of intracellular components, like in the 

case of integrins. Importantly, the affinity of uPAR for VN can be modulated by its 

dimerization and lipid raft partition (Cunningham et al., 2003) (Sidenius et al., 2002). The 

uPAR oligomerization could be modulated during cell migration in order to mediate firm 

cell adhesion in the dimeric/high affinity state and adhesion release in the low-

affinity/monomeric state.  

Ligand-independent integrin signaling induces robust p130Cas and MAPK 

phosphorylation. Moreover chemical inhibition experiments indicate that uPAR-mediated 

signaling, spreading and migration through 1 integrin require Src kinase activity. Src is a 

major player in integrin signal transduction and it is crucially involved in integrin-

mediated Rho GTPases regulation. Our experiments indicate that Src is involved in ligand-

independent integrin signaling, but whether Src is upstream or downstream of integrins is 

still unclear. Several evidences in the literature implicate Src in outside-in signaling, 

locating it downstream of integrin. However a potential role upstream of integrin cannot be 

excluded.  Further experiments aimed to measure integrin activation and analyze the 

protein complexes on integrin cytoplasmic tails upon Src inhibition will be performed in 

order to clarify this point.  

 In many cell systems cell migration is dependent on MAPK activity. However, in 

our cell system, MAPK inhibition does not impair p130Cas phosphorylation, cell 

spreading and cell migration. Importantly MAPK activation requires Src activity. This 

signaling pathway could have a role in processes that we did not investigate in this work, 

like cell proliferation and cell survival.  
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A new paradigm for adhesion signaling: 

 

Our findings shed light on a new type of adhesive signaling characterized by the presence 

two different receptor types with distinct functions: on one side a signaling-incompetent 

anchoring receptor enables strong and sustained cell adhesion to the ECM, on the other 

side an integrin-signaling receptor “senses” the anchoring receptor-mediated cell adhesion 

and signals despite the missing interaction with the ECM. In a canonical outside-in 

signaling the two receptors mentioned above coincide, while in this novel adhesive 

signaling the identity between signaling and anchoring receptor is lost. (Fig. 1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Schematic illustration of canonical integrin outside-in signaling (left) and ligand-

independent integrin signaling. Anchoring receptor indicates a general receptor mediating mechanical cell 

adhesion, summarizing the features of all the different receptors used in this study. 
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The anchoring receptor is a signaling incompetent molecule by itself, lacking a 

cytoplasmic domain (uPAR and PAI-1 GPI-anchored) or the key interaction needed for 

signal transduction (3 integrin with mutation both NxxY motifs). It enables strong cell 

adhesion without requiring any particular membrane microdomains partition or direct 

interactions with the signaling receptor. Indeed the preferential partition between the 

soluble and insoluble fraction of the plasma membrane, manipulated by substituting 

uPAR-GPI anchor with transmembrane domains or different types of GPI-anchors, is not 

affecting uPAR adhesive function and so its ability in inducing ligand-independent integrin 

signaling. Even an artificial VN receptor, that shares no similarity with uPAR except the 

high affinity for the SMB domain of VN, recapitulates uPAR-anchoring receptor function, 

excluding preferential ternary structures and putative lateral interactions with the integrin-

signaling receptor. 

Moreover the extracellular matrix is not playing a crucial role neither as long as its 

components have high affinity for the anchoring receptor. Indeed VN
RAD

 can be efficiently 

substituted by anti-uPAR antibody coating. However, the coating components have to be 

immobilized on a rigid substrate in order to give rise to ligand-independent integrin 

signaling. In fact, either soluble anti-uPAR antibody or VN
RAD

 are not producing any 

effect on signal transduction when added to cells in suspension. Thus the mere interaction 

between the anchoring-receptor and its ligand is not sufficient to induce signal transduction 

but cell adhesion to a rigid substrate has to be generated. The anchoring-receptor, by 

mediating cell adhesion, could transit mechanical forces to the cells, thus requiring the 

ligand to be immobilized.  

The anchoring-receptor mediated cell adhesion, besides inducing ligand-

independent integrin signaling, allows the physical interaction with the matrix necessary 

for cell spreading and cell migration. uPAR, being a GPI-anchor protein, lacks a 
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cytoplasmic portion required, like in integrins, for the tight regulation of the adhesives 

(Franco et al., 2004). However mechanically induced cell adhesion, supported by uPAR or 

generally by an anchoring receptor, is sufficient to sustain cell spreading and lamellipodia 

protrusions even in absence of integrin-mediated adhesion. Anchoring receptor cell 

adhesion could be regulated by specific endocytic routes that modulates internalization of 

either GPI-anchored or transmembrane receptors. 

 

Structural requirements to the signaling receptor 

 

In our study we identified 1 integrin as the main signaling receptor in 293 cells. Indeed 

the blockage of 1 integrin function, achieved through allosteric inhibitory antibodies 

mAb13 and 4B4, blunted the adhesive signaling from all anchoring receptor types. These 

particular antibodies, rather than blocking directly integrin binding site, stabilize the 

extracellular portion in a close/inactive conformation (Luo et al., 2004b), suggesting the 

integrin active state is needed in ligand-independent adhesive signaling. This could 

indicate the existence of a signaling specifically and exclusively mediated by integrin 

activation that differs from the canonical outside-in as it does not require ligand binding.  

The structure function analysis of 1 integrin in the context of canonical outside-in 

and ligand-independent integrin signaling highlights the difference between these two 

distinct processes. The alanine substitution of Asp130 in 1 integrin is reported to have 

dramatic effects on integrin function by compromising the capability of the MIDAS (metal 

ion dependent adhesion site) to coordinate metal ion in the integrin-matrix binding site. 

This produces an adhesion receptor unable to interact with its specific extracellular ligands 

and sustain cell adhesion without interfering with its targeting to focal adhesions (Takada 

et al., 1992). Consistently, D130A integrin mutant has deleterious effects on canonical 
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integrin-mediated adhesion and signaling. However when cell adhesion is induced by a 

non-integrin anchoring receptor (uPAR-VN interaction), this adhesion-incompetent mutant 

behaves like a functional integrin, inducing cell spreading and signaling. This could 

suggests that, despite the inability to engage the ECM, this mutated integrin receptor is still 

able to bind intracellular interactors and transduce a signaling. Moreover D130A mutant is 

still sensitive to mAb13 inhibition, suggesting that integrin extracellular portion structure 

is linked to the intracellular one, as the signaling downstream of integrin activation cannot 

be transmitted if the extracellular part is kept in a closed conformation by allosteric 

inhibitory-antibodies.  

The membrane proximal and distal NxxY motifs in 1 integrin tail, responsible 

respectively for talin and kindlin binding (Moser et al., 2009b), play a crucial role in both 

canonical and ligand-independent integrin signaling. Single (1 763A and 1 775A) and 

combined (1 763/775A) alanine substitutions strongly impair integrin activation that 

results in the loss of adhesiveness and signaling capability (Czuchra et al., 2006). Even 

when the cell adhesion is rescued by uPAR/VN
RAD

 interaction, talin and kindlin deficient 

integrin mutants fail in transmitting the ligand-independent adhesive signaling. Moreover 

phenylalanine substitution (1 763/775F) is not affecting canonical outside-in and ligand-

independent signaling, ruling out a possible role of integrin phosphorylation in these 

processes. Indeed, under physiological conditions phosphorylation of 1 integrin does not 

seem to be required as phenylalanine substitution results in no obvious effects on cell 

adhesion, signaling and migration (Czuchra et al., 2006). 

Even if the NPXY motifs mutations produce similar effects in both canonical and 

ligand-independent integrin signaling, the mechanism responsible for this effect may be 

different. Canonical inside-out signaling underlines the role of kindlin and talin in integrin-

mediated cell adhesion. Indeed activation deficient integrins cannot engage the 

extracellular matrix with consequent lacking of signal transduction. On the other hand 
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ligand-independent adhesive signaling highlights the crucial role of talin and kindlin in 

signal transduction. Indeed in this process integrin-mediated cell adhesion is dispensable 

while their signaling capability is fully required. This is in agreement with other findings 

where the signaling function of talin and kindlin was assessed. Down-regulation of talin 

with SiRNA results in impaired FAK phosphorylation and cell spreading (Zhang et al., 

2008). Manganese treatment of kindlin knock-out cells restores cell adhesion but not focal 

adhesion formation and cell spreading (Montanez et al., 2008). Moreover alanine 

substitutions in membrane proximal and distal NxxY motif in 1 integrin result in absent 

focal adhesion structures and impaired cell spreading (Czuchra et al., 2006). Our data 

indicates that these two proteins have a crucial role in building up the basic signaling 

scaffold on the integrin tails inducing an early signaling by integrins in the active state, 

which possibly precedes the outside-in signaling by ECM engagement. However, other 

proteins with enzymatic activity have to be recruited and further studies will help in 

characterizing the nature and the composition of the protein complexes forming on integrin 

tails during ligand-independent adhesive signaling in comparison with canonical outside-in 

signaling. Moreover the different integrin conformations that occur during integrin 

activation (see introduction) could correspond to different signaling capabilities. Our data 

suggest that D130A mutant, despite the missing interaction with the ECM, retains 

signaling activity. The signaling capability of this integrin mutant is linked to its activation 

state as it is blocked by mAb13 treatment. Although D130A activity state cannot be 

assayed by measuring ligand binding, the analysis of this mutant in the context of ligand 

independent integrin signaling suggests that it has to get into an open/active conformation 

in order to transmit a signal. However, we cannot conclude that the activation state of 

D130A mutant is the same of WT 1 integrin. For instance metal ion coordination is 

crucial for the right positioning of the I domain that, in the latest step of the activation 

process, creates the ligand binding in I domain containing  subunits (see introduction). 
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Our data indicate that the activation state of D130A mutant could be sufficient to induce 

p130Cas phosphorylation and cell spreading. Nevertheless different activation states could 

be paralleled by different integrin signaling capacity. For this reason further experiments 

aimed to exhaustively analyze the signaling and the functionality of D130A mutant in 

relation to its activation state are needed.   

Interestingly the flexibility of the anchoring receptor type, and especially the lack 

of evidence supporting a direct interaction with the integrin-signaling receptor, suggest this 

mechanism to be more general rather than specifically related to a particular type of 

integrin.  

As a matter of fact, 3 integrin expression rescues the effect of 1 integrin 

inhibition, proving 3 integrin proficiency in transducing ligand-independent adhesive 

signaling. Moreover 3 integrin has similar structural requirement to the ones found for 1 

integrin subunit, displaying independence of ligand binding. As for 1 integrin, alanine 

substitutions in both NxxY motifs results in the loss of integrin signaling capability. Thus 

distinct  subunits, possibly all, can function as signaling-receptor in ligand-independent 

adhesive signaling when properly expressed, indicating a general mechanism. The 

increased vitronectin adhesion observed in 3 integrin expressing cells indicates it to 

couple with endogenously expressed v subunit. Thus in the case of 3 integrin, the 

signaling downstream of uPAR-VN interaction is transmitted by v3 integrin. We have 

not identified the  subunit that couples with 1 integrin, responsible for ligand-

independent adhesive signaling. The fact that 1 integrin blocking does not alter basal VN 

adhesion rules out the v1 heterodimer. On the other hand, the elevated level of 

expression of 5 subunit in 293 cells could indicate a possible involvement of 51 

heterodimer. 
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The signaling complexes on the different integrin tails could differ according to the 

particular heterodimer and further experiment will be aimed to characterize them. 

However, even if integrin-signaling receptors change, talin and kindlin interactions remain 

the crucial requirements in ligand-independent adhesive signaling. Moreover different 

integrin heterodimers activate, maybe with different modalities, p130Cas and induce cell 

spreading. We focused on p130Cas phosphorylation and MAPK activation because of their 

important role in cell migration and proliferation, respectively. However the signaling 

downstream of different integrin receptors could differ in terms of activation of other 

enzymatic activities, for instance FAK and Src family kinases. Further experiments will be 

needed in order to unveil and characterize exhaustively the signaling pathway(s) activate 

by integrin in ligand-independent adhesive signaling and compare them with the canonical 

inside-out signaling.   

 

 Mechanism of ligand-independent integrin signaling 

 

One fundamental feature, required in this process, is the ability of the integrin to sense a 

wide variety of mechanical stimulations as ECM rigidity, topography, anisotropy and even 

its deformation (Geiger et al., 2009). Moreover focal adhesion components enable the cells 

to react to internally generated or externally applied forces. In this process the anchoring-

receptor mediated cell adhesion could be considered as a force applied to the cells. This 

force could be sensed by integrins, or by component of focal adhesion, and translated into 

a biological response. Indeed mechanical stretch can alter the geometry and the folding of 

a vast variety of focal adhesion proteins. Talin rod has been shown to be sensitive to 

applied forces, unmasking cryptic binding sites for vinculin (del Rio et al., 2009). 

p130Cas, upon stretching, exposes the central substrate domain allowing phosphorylation 

(Sawada et al., 2006). Since in our system integrins are not engaging the matrix, a common 
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mechanotransduction mechanism cannot be responsible for ligand-independent integrin 

signaling. Indeed integrins are dependent on the direct contact with ECM in order to be 

sensitive to applied forces. However the anchoring-receptor induced cell adhesion could 

exploit as signaling receptors a subpopulation of integrins that are active even when cells 

are in suspension. It is known that platelets have to be treated with GPCR agonists in order 

to induce talin mediated integrin activation that enables fibrinogen binding (Han et al., 

2006). However, other cell types adhere spontaneously through integrins to ECM 

components, without requiring any particular intracellular signaling from GPCRs or other 

receptors. Consistently, even in absence of specific ligands known to induce integrin 

inside-out signaling, 293 cells adhere to both FN and VN. Thus, integrins could be in a 

dynamic balance between the active and inactive state even when the cells are in 

suspension. The active integrin fraction could be responsible for a first contact with the 

ECM, which will be reinforced by ligand-induced integrin activation. These integrins 

could establish basic intracellular complexes on their intracellular regions containing talin 

and kindlin, which are needed for their active state, and therefore a primal connection with 

actin cytoskeleton. The force derived from mechanically-induced cell adhesion could be 

transmitted to these complexes, allowing other proteins with enzymatic activity to be 

recruited and activated, giving rise to a signal transduction event. In this view, allosteric 

inhibitory antibodies or mutants in the NPXY motifs would shift the integrin activation 

balance toward the inactive state, eliminating the integrin sub-population responsible for 

signaling. Moreover mechanical forces applied to the integrin  subunit can facilitate the 

transition from the inactive to the active conformation (Puklin-Faucher et al., 2006). 

Anchoring-receptor induced cell adhesion could, in this way, induce the transition towards 

the active integrin state. However, our experiments allow us only to conclude that an active 

integrin conformation is crucial in ligand-independent integrin signaling. Further 

experiments will be needed to test whether anchoring-receptor mediated cell adhesion 
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alters the integrin activation state. Antibodies recognizing the different epitopes that are 

unmasked during the integrin activation process could be employed to monitor the integrin 

conformations that characterize ligand-independent integrin signaling. Both the mechanical 

stimulation of primed integrins and the de novo integrin activation could trigger the 

recruitment of proteins to the integrin cytoplasmic tail, leading to the formation of a 

signaling complex. Interestingly integrins can sense also forces that do not directly act on 

FAs complexes. These stimuli encompass osmotic forces, increase in hydrostatic pressure 

and enhanced cell contractility. The increase in extracellular pressure activates integrin, 

even if the cells do not adhere to ECM (Craig et al., 2007). Mechanical cell adhesion and 

extracellular pressure could be considered as forces that compress the cells. Integrins could 

sense these forces and modify their activation state in order to allow cell adaptation to 

eventual changes within the extracellular environment. However, the mechanisms behind 

pressure-mediated integrin activation are still unknown.  

Our data suggest the presence of intermediate signaling molecules between the 

anchoring and the signaling receptors. This would imply the existence of a ―sensor‖ able to 

perceive mechanical cell adhesion and transmit it to integrins. Mechanical cell adhesion 

could cause the opening of stretch-activate ion channels with consequent entry of second 

messengers into cells. Additionally anchoring-receptor mechanical cell adhesion could act 

on proteins attached to the inner layer of plasma membrane like caveolin, Src family 

kinase and Rho GTPases altering their localization or activity. Finally anchoring receptor 

mediated cell adhesion could mimic integrin in causing lipid raft recycling to the plasma 

membrane, removing the adhesion-block and allowing signal transduction (see 

introduction).  
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Evidences supporting the notion of ligand-independent integrin 

signaling: new perspective for adhesion signaling 

 

The capability of integrin in transmitting a signal without engaging their specific ECM 

ligands could be view as a non-intuitive, intriguing phenomenon. However, several 

evidences in the literature indicate that besides the canonical ligand-mediated outside-in 

signaling, integrins can also signal in an unligated way. 

A study shows that spontaneous integrin activation, achieved through disruption of 

the salt bridge in the membrane proximal region, results in a constitutive intracellular 

signaling to FAK even when cells are in suspension. Moreover integrins carrying 

activating mutations and mutations in the ligand binding sites contemporaneously are 

targeted to focal adhesions (Hughes et al., 1996). FAK phosphorylation and integrin 

recruitment into focal adhesions are downstream consequences of canonical outside-in 

signaling. These evidences demonstrate that integrin activation can reproduce these effects 

independently of ligand binding. Moreover, the replacement of residues in the integrin TM 

domain with residues carrying a polar side chain results in increased integrin activation and 

favors integrin oligomerization/clustering. Interestingly cells expressing these integrin 

mutants display a constitutive FAK phosphorylation even when they are kept in suspension 

and in the absence of integrin ligands (Li et al., 2003). Thus integrin activation can initiate 

intracellular signaling in absence of integrin cognate ligands. However, in all of these 

studies integrin activation is triggered by particular mutations, while our results 

demonstrates for the first time that ligand-independent integrin signaling, downstream of 

integrin activation, is triggered by the functional crosstalk between different adhesion 

receptors. 
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The property of integrin in transducing a signal without contacting the ECM has 

also been shown in drosophila. Indeed integrins regulate the expression of target genes 

essential for embryo development. However an adhesion-incompetent chimeric protein 

consisting of an oligomeric extracellular domain fused to integrin cytoplasmic domain can 

substitute the endogenous integrin in regulating gene expression (Martin-Bermudo and 

Brown, 1999). This chimeric integrin variant lacks the extracellular portion, replaced by an 

integrin-unrelated one, but retains biological activity. This elegant study managed to 

uncouple integrin adhesive from integrin signaling function and demonstrates that integrin-

dependent regulation of gene expression occurs also in absence of ligand binding. This is a 

relevant evidence demonstrating that ligand-independent integrin signaling occurs in vivo 

and is physiologically relevant. 

The biological relevance of ligand-independent integrin signaling was also proven 

by another study where v3 integrin was over-expressed in different cancer cell lines. 

Surprisingly this study revealed an unexpected function of integrins in anchorage-

independent tumor growth. In particular, in cells expressing v3 integrin Src associates 

with integrin tails even in non-adherent cells. This association results in Src activation 

leading to an intracellular signaling responsible for cell proliferation, also when integrins 

do not engage the ECM. Consistently a ligand-binding deficient integrin mutant retained 

its ability to induce anchorage-independent tumor growth. This study demonstrates that 

integrin can form an oncogenic signaling unit independently of their adhesive function also 

in pathological conditions like cancer (Desgrosellier et al., 2009). 

These evidences together with our data strongly support the notion of ligand-

independent integrin signaling. However, the biological meaning of this phenomenon is 

still unclear. In processes like leukocyte extravasation or tumor cell adhesion to inner 

vessel walls the initial cell adhesion could be induced by non-integrin adhesion molecules. 

This early adhesion will induce integrin activation or will allow integrin in a primed state 
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to signal, triggering initial cell protrusion in a ligand-independent way. Our data strongly 

support this hypothesis since we found out that several different ways of inducing integrin-

independent cell adhesion triggers an adhesive signaling that requires integrin activation 

but not ligand binding. Beside the non-integrin adhesion receptors mentioned in the 

introduction a wide variety of other membrane receptor could have a role in cell adhesion. 

Moreover anchoring receptor mediated cell adhesion could be supported also by molecules 

that mediate cell-to-cell adhesion, thus increasing the number of potential non-integrin 

adhesion molecules. The anchoring receptor induces mechanical cell adhesion, therefore it 

does not require complex protein interactions and to undergo radical changes in its 

extracellular portion to mediate cell attachment. Thus non-integrin cell adhesion is a fast 

and undemanding way to mediate an initial contact between cells and the ECM. 

Interestingly, another elegant study demonstrates that actin polymerization positions 

activated integrin at the very front of cell protrusion like lamellipodia or filopodia 

(Galbraith et al., 2007). Importantly, integrins that localize at the leading edge are in an 

active but unligated conformation. In this scenario ligand-independent integrin signaling 

could trigger an initial cell protrusion phase that will facilitate active integrins to probe the 

matrix. This process could have a role in conditions of unfavorable ECM density and 

topology, where the adhesion sites on the ECM are not so easily and directly accessible. In 

this way the initial cell protrusion will place activated integrins in a favored position to 

mediate ligand binding. Finally integrin ligation will increase the early ligand-independent 

integrin signaling allowing proper cell polarization and migration.  

The ligand-independent adhesive signaling occurs also when the anchoring and the 

signaling receptors are two different integrin types. Indeed mechanical cell adhesion 

supported by a signaling incompetent 3 integrin transmits a signal through 1 integrin. 

This could indicate that the integrin signaling is not always (or not only) transduced by the 

receptor that is engaging the matrix. This is not excluding the canonical outside-in 
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signaling to occur as 3 integrins can signal directly without cross-talking with other 

integrin types. However mechanical integrin adhesion recapitulates the anchoring-receptor 

function proving integrins to be functional both as anchoring and signaling receptor. In 

physiological conditions integrins could engage the specific ligands they find in the ECM 

transducing directly an outside-in signaling. Moreover, since integrin mediated cell 

adhesion can transmit a signal through other unbound integrins, this would reinforce the 

whole signal transduction event, possibly by giving rise to different biological outputs. 

Indeed different integrins types can interact with specific ECM components, triggering 

different kinds of signaling that differentially regulate RHO GTPases activity (see 

introduction). In this way the integrin-anchoring receptor function could induce also 

signaling from other integrin that, for a matter of ligand specificity, cannot engage the 

ECM. This would amplify the integrin-mediated signal transduction repertoire, allowing a 

more complex and regulated biological response.  

 

Future perspectives 

 

In this study we identify novel mechanism of ligand-independent integrin signaling. The 

independence of integrin-ligand interaction is an unintuitive feature of this process. 

However, our data together with other evidences in the literature strongly support this 

alternative kind of adhesive signaling. The exact mechanism, that regulates the functional 

cross-talk between anchoring and signaling receptors, is still unclear. Nevertheless, 

understanding the mechanism of ligand-independent integrin signaling could shed new 

light on integrin biology and, more generally, on the modality of cell spreading and 

migration.  
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Adhesion molecules display redundancy in ligand-binding specificity and non-

integrin adhesion receptors synergistically cooperate with integrin in signal transduction. 

Thus ligand-independent integrin signaling could be easily masked by the main canonical 

integrin signaling pathways. However, in light of our findings, the careful analysis of the 

whole adhesive signaling in complex multi-ligand conditions could lead to unexpected 

results. Up to now, the role of non-integrin cell adhesion in cell signaling and motility is 

highlighted by overexpression studies or by studies in conditions in which integrin binding 

is blunted. In order to address the physiological relevance of this process, models of 

limited or selective integrin availability combined with the manipulation of specific ECM 

proteins will be required. These approaches will clarify how different adhesion receptors, 

expressed by the same cell, contribute individually to cell adhesion and signaling in 

multifaceted ECM contexts. The analysis of the several steps of cell spreading and 

migration, from the initial phases of cell spreading and polarization to the onset of cell 

migration, could highlight the contribution of non-integrin cell adhesion to these processes.  
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