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Ai miei genitori



People think it’s an obsession. A compulsion. As
if there were an irresistible impulse to act. It’s
never been like that. I CHOSE this life. I
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could stop doing it. Today, however, isn’t that
day. And tomorrow won’t be either.
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Introduction

The classical Liouville theorem in complex analysis says that an entire func-

tion (i.e., a function f : C → C holomorphic on the whole complex plane)

which is also bounded is necessarily constant ; this result can be proved di-

rectly, applying Cauchy’s integral formula (see [Hil59], [Kra04], or any text

on basic complex analysis), or using the property that, in the aforemen-

tioned case, Re f and Im f are bounded harmonic function on R2. Indeed,

the following holds:

Theorem 0.1. A bounded, global C2-solution of ∆u = 0 on Rm, m ≥ 1, is

constant.

For a proof see, for example, [Eva98] or the elegant [Nel61]. Theorem 0.1

can be generalized in a number of directions: one can consider Riemannian

manifolds instead of Rm, or operators more general than the Laplacian. For

an interesting overview on the subject, we refer to the survey [Far07].

The aim of this work is essentially twofold. Our first main concern

is analytical. We study, using the method of gradient estimates, various

Liouville-type theorems which are extensions of Theorem 0.1. We generalize

the setting - from Rm to complete Riemannian manifolds - and the relevant

operator - from ∆ to a general diffusion operator - and we also consider “re-

laxed” boundedness conditions (such as non-negativity, controlled growth

and so on).

The second main concern is geometrical, and is deeply related to the first:

we prove some triviality results for Einstein warped products and quasi-

Einstein manifolds studying a specific Poisson equation for a particular, and

geometrically relevant, diffusion operator (see below for details).
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Let us first depict the analytical framework; the geometrical one will be

analyzed later, when we describe the content of Chapter 4.

Let (M, 〈 , 〉) be a complete, non-compact, connected Riemannian man-

ifold of dimension m ≥ 2. We want to determine Liouville theorems and a

priori estimates for the gradient of global solutions (i.e., solutions defined

on the whole M) of equations of the type

∆u+ 〈∇a,∇u〉 = bf(u) (0.1)

for some sufficiently regular functions a and b on M , with b positive, f ∈
C1(R) and where ∆ and ∇ are, respectively, the Laplace-Beltrami operator

and the gradient in the metric 〈 , 〉 of M . Of course, our results depend on

a, b and f as well as on the geometry of (M, 〈 , 〉). The key point in the

analysis of (0.1) is the following observation: let us set A = ea, B = bea and

consider the diffusion-type operator

L =
1

B
div (A∇ ); (0.2)

a simple computation shows that (0.1) rewrites as the Poisson equation

Lu = f(u), (0.3)

so every result concerning (0.1) can be interpreted from this point of view.

In order to relate L with the geometry of M we consider the modified Bakry-

Emery Ricci tensor that we now introduce. First, we fix an origin o ∈ M
and we set r(x) := dist(M,〈 ,〉)(x, o); we shall denote by BR(o) the geodesic

ball centered in o with radius R > 0. Following Z. Qian, [Qia97], for n ∈ R,

n > m and LA = B
AL = 1

A div(A∇ ) we set

Riccn,m(LA) = RiccM −
1

A
Hess(A) +

n−m− 1

n−m
1

A2
dA⊗ dA

= Ricc(LA)− 1

n−m
1

A2
dA⊗ dA, (0.4)

where Hess(A) is the Hessian of A and Ricc(LA) is the usual Bakry-Emery
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Ricci tensor. As shown in great generality in [MRS10], Proposition 2.3,

estimates from below on Riccn,m(LA) yield estimates from above on LAr;

indeed, in the simplest case

Riccn,m(LA) ≥ −(n− 1)Z2 (0.5)

for some constant Z ≥ 0 on the geodesic ball BT (o), one has

LAr ≤ (n− 1)Z coth(Zr), (0.6)

pointwise on BT (o) \ {cut(o) ∪ {o}} (cut(o) denotes the cut-locus of o) and

weakly on all of BT (o). Thus, for instance, an assumption like

Ricc +(n− 1)H2 〈 , 〉 ≥ Hess(a) +
1

n−m
da⊗ da, H ≥ 0,

which appears in some of our results, can be geometrically interpreted in the

light of the generalized Bakry-Emery Ricci tensor defined in (0.4), and as

such it can be considered a curvature condition. Our Liouville theorems rely

essentially on careful gradient estimates for solutions of equation (0.3). We

focus only on “classical” solutions (usually C3) because the starting point of

our computations is a pointwise application of a generalized version of the

Bochner-Weitzenböck formula (see below for details), and also to avoid some

technicalities due to weak formulation. Nevertheless, we point out that some

of our result can be generalized lowering some regularity assumptions.

Gradient estimates in the solution of geometrical problems have a long

history (see, for instance, the pioneering work of Yau, [Yau75]); for a sym-

metric diffusion operator (i.e., when A = B) they seem to have first appeared

in the work of A. G. Setti ([Set92], [Set98]); see also the recent [Li05], where

X.-D. Li derives various Liouville theorems for L-harmonic functions, with

L = ∆− 〈∇f,∇〉 for f ∈ C∞(M) (note that L = LA with A = e−f ). Some

of the results we obtain in the thesis extend previous work of A. Ratto and

M. Rigoli [RR95], where the authors consider the classical Poisson equation

∆u = f(u) on complete manifolds, the case of Rm having been previously

treated, for instance, by Serrin [Ser72] and Modica [Mod85].
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The work is organized as follows:

1. Gradient estimates;

2. Liouville-type theorems;

3. More Liouville theorems (and beyond);

4. Geometric applications;

5. Appendix.

In the first Chapter, the most technical, we derive some gradient esti-

mates for solutions u of equation (0.3). Towards this aim we use a method

inspired by the old work of Ahlfors [Ahl38], studying the inequality LG ≤ 0

which holds at any relative maximum of G, where G is a suitable function

of u, |∇u|2 and ρ, the distance function from a fixed point; the key tool to

obtain the fundamental inequalities (1.11) and (1.12) in Lemma 1.2 (which

has to be compared to Lemma 12 in [RR95]) is a generalized version of the

Bochner - Weitzenböck formula (equation (1.4)), which expresses 1
2L|∇u|

2

(with u ∈ C3(M)) in terms of geometrically relevant quantities (in particu-

lar, Riccn,m(LA)(∇u,∇u)). As a consequence we obtain (see Theorem 1.4)

Theorem 0.2. Let (M, 〈 , 〉) be a complete manifold of dimension m. Fix

o ∈M and let r(x) = dist(M,〈 ,〉)(x, o). Suppose that A,B ∈ C1(M), A,B >

0, and that

Riccn,m(LA) ≥ −(n− 1)H2
(
1 + r(x)2

)δ/2
for some n > m, H ≥ 0 and δ ∈ R. Let f ∈ C1(R) and u ∈ C3(M) a global

solution of (0.3) satisfying

|u(x)| ≤ D(1 + r(x))ν ,∣∣∣∣f(u(x))∇
(
B

A

)
(x)

∣∣∣∣ ≤ Θ(1 + r(x))θ

and
B

A
(x)f ′(u(x)) ≥ −K[1 + r(x)]γ
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on M for some constants ν ≥ 0, γ, θ ∈ R and constants D,K,Θ > 0. Then

|∇u|2(x) ≤ C̃1r(x)2ν max
{
r(x)−2 + r(x)

δ
2
−1 + r(x)δ + r(x)γ ,

r(x)θ−
δ
2

1 + C̃r(x)
γ−δ

2

1 + C̃r(x)γ−δ

}

for r(x)� 1 and constants C̃, C̃1 ≥ 0.

The other main result we prove (see Theorem 1.7) is an extension of

Theorem B in [RR95]:

Theorem 0.3. Let (M, 〈 , 〉) be a complete manifold of dimension m. Sup-

pose that A,B ∈ C2(M), A,B > 0 and h ∈ C2(M), h ≥ 0 satisfy

(i)BA < C;

(ii)h < C;

(iii)|∇h| < C;

(iv)|Lh| < C

on M for some C > 0. Furthermore, suppose that, for some n > m, H ≥ 0

Riccn,m(LA) ≥ −(n− 1)H2

on M . For f ∈ C1(R) let u ∈ C3(M) be a global solution of (0.3) such that(i) |∇u| < C on M ;

(ii) infM |∇u| = 0.
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Assume the existence of a function Q ∈ C2(R) with the following properties:

(i)Q(u), |Q′(u)| < C;

(ii) infM Q(u) = 0;

(iii)
[
Q′(u)h− 2BAf(u)

]
Q′(u) ≥ 0;

(iv) 2BAf
′(u)− 2(n− 1)H2 − hQ′′(u) ≥ 0;

(v)
∣∣Q′(u)∇h− f(u)∇

(
B
A

)∣∣ < C

on M . Then

|∇u|2 ≤ h(x)Q(u) on M.

Of course, the applicability of Theorem 0.3 depends on the possible choices

for h and Q, as we point out in the proofs of some related results.

In the second Chapter we use the previous estimates to derive our Li-

ouville theorems for Poisson equations associated to L and LA (and, con-

sequently, for equation (0.1)) under geometric conditions on the manifold

(M, 〈 , 〉) and appropriate growth conditions on both the solution and the

non-linearity f . For instance we prove the following two results (see Theo-

rem 2.1 and Corollary 2.4):

Theorem 0.4. Let (M, 〈 , 〉) be a complete manifold of dimension m. Sup-

pose that A,B ∈ C1(M), A,B > 0 and that, for some n > m, H ≥ 0,

δ ∈ R
Riccn,m(LA) ≥ −(n− 1)H2

(
1 + r(x)2

)δ/2
on M . Let f ∈ C1(R) and u ∈ C3(M) be a global solution of (0.3) Assume

|u(x)| ≤ D(1 + r(x))ν ,

B

A
(x)f ′(u(x)) ≥ (n− 1)H2

(
1 + r(x)2

)δ/2
,∣∣∣∣f(u(x))∇

(
B

A

)
(x)

∣∣∣∣ ≤ Θ(1 + r(x))θ
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on M , for some constants Θ, D > 0, ν, θ ∈ R. Then u is constant provided

0 ≤ ν < min

{
1, 1− δ

4
,−θ

2

}
.

Corollary 0.5. Let (M, 〈 , 〉) be a complete manifold of dimension m, a, b ∈
C2(M) and suppose that, for some n > m, we have the validity of

RiccM ≥ Hess(a) +
1

n−m
da⊗ da.

Assume

0 < b < C, |∇b| < C

on M for some constant C > 0. Let f ∈ C1(R) with f ′ ≥ 0, f ≥ 0 on

[0,+∞) and let u be a non-negative bounded global solution of (0.1). Then

u is constant.

In the third Chapter we consider the notion of stability for solutions of

equation (0.3). First we compute the first and second variation of the gener-

alized energy functional associated to equation (0.3) and we define the notion

of L-stability of global solutions, which generalize the concept of stability for

global solutions of ∆u = f(u) (see, for example, [FCS80], [MP78], [DF09],

[FSV08]); we then relate the L-stability to the non-negativity of the first

eigenvalue of an appropriate linear operator, and we exploit this relation

to derive a version of a theorem of Fisher-Colbrie and Schoen ([FCS80]).

Successively, we prove the analogue of Theorem 4.5 in [PRS08] for global

stable solutions under a particular condition on f and f ′: namely we have

(see Theorem 3.5 and also Corollary 3.6)

Theorem 0.6. Let (M, 〈 , 〉) be a complete manifold, A,B ∈ C2(M), f ∈
C1(R). Let u ∈ C3(M), u ≥ 0 be a global solution of (0.3). Suppose that

Hf(t)− f ′(t)t ≥ 0
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for t ≥ 0 and some H ≥ 1. If ϕ ∈ C2(M) is a positive solution of

−Luϕ = LAϕ−
B

A
f ′(u)ϕ ≤ 0 on M,

then there exists a constant C ≥ 0 such that

Cϕ = uH ,

provided (∫
∂Br

|u|2β̃ dµ

)−1

6∈ L1(+∞)

for some 1 ≤ β̃ ≤ H.

Finally we deduce a Liouville theorem for LA-harmonic functions under

an Lp condition on their gradient (Theorem 3.8) and a uniqueness result

for equation (0.1) (Theorem 3.10), based on a particular form of the weak

maximum principle valid for (symmetric) diffusion operators.

In the last Chapter the geometry becomes the main character. Our

purpose is to prove triviality results for complete Einstein warped products

Nm+k = Mm ×u F k, exploiting the relations between these latter and the

quasi-Einstein manifolds, a generalization of the Ricci solitons. After a de-

tailed introduction, where we present the relevant geometrical objects (in

particular, the f -Laplacian ∆f and the k-Bakry-Emery Ricci tensor Ricckf ),

we enlight their connection with our previous investigations and discuss the

recent literature on the subject (see references below), in the second Section

we adapt to this new scenario Theorem 2.1 and Corollary 2.5 from Chapter

2. For instance we prove (see Theorem 4.12)

Theorem 0.7. Let N = Mm ×u F k be a complete Einstein warped product

with Einstein constant λ < 0, warping function u = e−f/k and Einstein fibre

F k with Einstein constant µ < 0. Suppose that

f ≥ k

2
log

(
λ

2µ

)
for all x ∈M
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and that

|f | ≤ D(1 + r(x))ν

for some D ≥ 0, ν ∈ R. Then N is a Riemannian product, provided

0 ≤ ν < 1.

In the third Section we prove a weighted version of Theorem 1.31 in

[PRS05a] and a sufficient condition for the validity of the full Omori-Yau

maximum principle for the f -Laplacian; then we deduce a triviality result

(Corollary 4.16) for complete Einstein warped products which is a Corollary

of Theorem 1 in [Rim10]:

Corollary 0.8. Let Nm+k = Mm ×u F k be a complete Einstein warped

product with non-positive scalar curvature (m + k)λ = NS ≤ 0, warping

function u(x) = e−
f(x)
k satisfying infM f = f∗ > −∞ and complete Einstein

fibre F . Suppose also that FS < 0. Then N is simply a Riemannian product

if either one of the following further conditions is satisfied:

(i) the base manifold M is complete and non-compact, the warping func-

tion satisfies f ∈ Lp(M), for some 1 < p < +∞, and f (x0) ≤ 0 for

some point x0 ∈M ;

(ii) the base manifold M is complete and non-compact, the warping func-

tion satisfies f ∈ Lp(M), for some 1 < p < +∞, and the scalar

curvatures of M and N satisfy

MS ≥ m

m+ k
NS + ε,

for some ε > 0.

In the last Section we prove, again applying the Ahlfors technique, a

further gradient estimate (Theorem 4.17), which extends the one in [Cas10]:

Theorem 0.9. Let
(
Mm, g, e−fdµ0

)
be a weighted manifold (not necessarily

complete); suppose that, for some k < +∞, Z ≥ 0

Ricckf ≥ λ = −(m+ k − 1)Z2,
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and that

∆ff = ψ(f),

where ψ : R→ R satisfies

ψ′(t) +
2

m
ψ(t)− (m+ k − 1)Z2 ≥ 0

for all t ∈ R. Then for all q ∈M and T > 0 such that BT (q) is geodesically

connected in M and the closure BT (q) is compact,

|∇f |2(q) ≤ 1

G(m ‖ k)

[
2(m+ k + 6)

T 2
− 4
√

3

9

λ

Z

1

T

]
,

having defined

G(m ‖ k) :=
1

m
+

1

k
.

Finally, we obtain another triviality result (Theorem 4.18) when the func-

tion f (related to the warping function u by u = e−f/k) is bounded below

by a constant depending on m = dimM,k and on the Einstein constants λ

and µ, respectively of the warped product and of the fibre:

Theorem 0.10. Let N = Mm×uF k be a complete Einstein warped product

with Einstein constant λ < 0, warping function u = e−f/k and Einstein fibre

F k with Einstein constant µ < 0. Suppose that

f ≥ k

2
log

(
λ

2µ

m+ 2k

m+ k

)
for all x ∈M.

Then N is a Riemannian product.

In the Appendix, for the convenience of the reader, we prove some results

and some relations not so easily available in the literature. In the first Section

we deduce the generalized Bochner-Weitzenböck formula for the operator LA;

in the second Section we derive a consequence of the LA-comparison theorem

and a particular Newton inequality. The third (and last) Section is devoted

to a volume estimate due to Calabi and Yau.

The material presented in the first two Chapters and the uniqueness
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result of the third Chapter have already appeared, in a slightly different

form, in [MR10a]; most of Chapter 4 and part of Chapter 3 appear in a

paper with M. Rimoldi (submitted for publication, see [MR10b]).



Chapter 1

Gradient Estimates

One thing I’ve learned. You can know anything.

It’s all there. You just have to find it.

J. Constantine in Sandman, Season of Mists, DC

Comics-Vertigo

The aim of this Chapter is to establish some gradient estimates for solu-

tion of the diffusion Poisson equation

Lu = f(u) (1.1)

on M . Here L is the operator L = 1
B div (A∇ ) defined for some sufficiently

regular positive functions A and B on M . Towards this end we use (here,

and in Chapter 4 below) a method inspired by the old work of Ahlfors,

[Ahl38]: we basically obtain estimates by studying the inequality LG ≤ 0

which holds at any relative maximum of G, where G is a suitable function

of u, |∇u|2 and ρ, the distance function from a fixed base point; see also

[Yau75] and [SY94] for other applications of this technique. From now on,

(M, 〈 , 〉) will be a complete, non-compact, connected Riemannian manifold

of dimension dimM = m ≥ 2.
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1.1 The main technical Lemma

In what follows we shall repeatedly use the following elementary facts: for

u, v ∈ C2(M), f ∈ C2(R),

L(uv) = uLv + 2
A

B
〈∇u,∇v〉+ vLu, (1.2)

Lf(u) = f ′(u)Lu+
A

B
f ′′(u)|∇u|2, (1.3)

and the generalized Bochner-Weitzenböck formula contained in the next

Lemma 1.1. Let u ∈ C3(M). Then

1

2
L|∇u|2 =

A

B
|Hess(u)|2 +

A

B
Riccn,m(LA)(∇u,∇u) + 〈∇Lu,∇u〉+ (1.4)

+
A

B
Lu

〈
∇
(
B

A

)
,∇u

〉
+
A

B

1

n−m
〈∇A,∇u〉2

A2
.

Proof. Since L = A
BLA, (1.4) follows immediately from the Bochner-Weitzenböck

formula for the operator LA

1

2
LA|∇u|2 = |Hess(u)|2 + Ricc(LA)(∇u,∇u) + 〈∇LAu,∇u〉 (1.5)

and the definition (0.4) of the modified Bakry-Emery Ricci tensor. To prove

(1.5) one starts with the classical Bochner formula

1

2
∆|∇u|2 = |Hess(u)|2 + RiccM (∇u,∇u) + 〈∇∆u,∇u〉 (1.6)

and uses the two computational identities〈
∇|∇u|2,∇A

〉
= 2 Hess(u)(∇A,∇u), (1.7)

〈∇ 〈∇A,∇u〉 ,∇u〉 = Hess(u)(∇A,∇u) + Hess(A)(∇u,∇u). (1.8)

We refer to the Appendix for a proof of these latter facts using the moving

frame formalism.
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We now come to the main technical point of this section.

Lemma 1.2. Let BT (q) denote the geodesic ball of radius T > 0 centered at

q and ρ(x) = dist(M,〈 ,〉) (x, q). Assume that, for some n > m, Z ≥ 0,

Riccn,m(LA) ≥ −(n− 1)Z2 (1.9)

on BT (q). On the same ball consider the non-negative function

G(x) =
[
T 2 − ρ2(x)

]2|∇u|2(x)g(u(x)) (1.10)

where u is a C3(M) solution of (1.1) on M for some f ∈ C1(R) and g ∈
C2(R) with g(u) > 0 on BT (q). If x̄ ∈ BT (q) is a positive maximum of G

on BT (q), then at x̄ we have

0 ≥
{

2g(u)g′′(u)− 3g′(u)2

2g(u)2

}
|∇u|2 −

{
4T |g′(u)|

(T 2 − ρ2)g(u)

}
|∇u|− (1.11)

−
{

4[n+ (n− 1)ZT ]

T 2 − ρ2
+

16T 2

(T 2 − ρ2)2 − 2
B

A
f ′(u) + 2(n− 1)Z2 − B

A

g′(u)

g(u)
f(u)

}
− 2
|f(u)|
|∇u|

∣∣∣∣∇(BA
)∣∣∣∣,

0 ≥
{

8g(u)g′′(u)− (16 + n)g′(u)2

8g(u)2

}
|∇u|2 −

{
8|g′(u)|
g(u)

ρ

T 2 − ρ2

}
|∇u|−

(1.12)

−
{

4[n+ (n− 1)Zρ]

T 2 − ρ2
+

24ρ2

(T 2 − ρ2)2 − 2
B

A
f ′(u) + 2(n− 1)Z2

}
−

− 2
|f(u)|
|∇u|

∣∣∣∣∇(BA
)∣∣∣∣.

Proof. Since x̄ is a positive maximum, at x̄ we must have

i)∇ logG =
∇G
G

= 0; ii)L logG =
LG

G
− A

B

|∇G|2

G2
≤ 0. (1.13)
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From the definition of G, a computation shows that (1.13) i) is equivalent to

g′(u)

g(u)
∇u+

∇|∇u|2

|∇u|2
=

2∇ρ2

T 2 − ρ2
at x̄. (1.14)

Using formulas (1.2) and (1.3) a tedious calculation yields the equivalence

of (1.13) ii) with

0 ≥− 2
Lρ2

T 2 − ρ2
− 2

A

B

∣∣∇ρ2
∣∣2

(T 2 − ρ2)2 +
g′(u)

g(u)
Lu+

A

B

g(u)g′′(u)− g′(u)2

g(u)2
|∇u|2

(1.15)

+
L|∇u|2

|∇u|2
− A

B

∣∣∣∇|∇u|2∣∣∣2
|∇u|4

at x̄. From the generalized Bochner-Weitzenböck formula (1.4) of Lemma

1.1 we deduce the inequality

L|∇u|2 ≥ 2
A

B
|Hess(u)|2 + 2

A

B
Riccn,m(LA)(∇u,∇u) + 2 〈∇Lu,∇u〉+

(1.16)

+ 2
A

B
Lu

〈
∇
(
B

A

)
,∇u

〉
.

Thus, combining with the elementary inequality (see the Appendix)∣∣∣∇|∇u|2∣∣∣2 ≤ 4|∇u|2|Hess(u)|2 (1.17)

and (1.1), (1.9) we obtain

L|∇u|2

|∇u|2
≥ 1

2

A

B

∣∣∣∇|∇u|2∣∣∣2
|∇u|4

−2
A

B
(n−1)Z2 +2f ′(u)+2

A

B

f(u)

|∇u|2

〈
∇
(
B

A

)
,∇u

〉
(1.18)

at x̄. As observed in the Introduction, assumption (1.9) implies

Lρ2 ≤ 2
A

B
[n+ (n− 1)Zρ] (1.19)



1.1 The main technical Lemma 16

on BT (q) (see also the Appendix). We now use (1.18) and (1.19) into (1.15)

together with (1.1) to obtain

0 ≥ A

B

g(u)g′′(u)− g′(u)2

g(u)2
|∇u|2 − A

B

4[n+ (n− 1)Zρ]

T 2 − ρ2
− A

B

8T 2

(T 2 − ρ2)2 +

(1.20)

+
g′(u)

g(u)
f(u)− 1

2

A

B

∣∣∣∇|∇u|2∣∣∣2
|∇u|4

− 2
A

B
(n− 1)Z2 + 2f ′(u)+

+ 2
A

B

f(u)

|∇u|2

〈
∇
(
B

A

)
,∇u

〉
at x̄. Finally we observe that (1.14) implies

1

2

∣∣∣∇|∇u|2∣∣∣2
|∇u|4

≤ 1

2

(
g′(u)

g(u)

)2

|∇u|2 +
8T 2

(T 2 − ρ2)2 +4
T |g′(u)|

(T 2 − ρ2)g(u)
|∇u| (1.21)

at x̄. Inserting (1.21) into (1.20) we have

0 ≥ 2g(u)g′′(u)− 3g′(u)2

2g(u)2
|∇u|2 − 4

T |g′(u)|
(T 2 − ρ2)g(u)

|∇u| − 4[n+ (n− 1)ZT ]

T 2 − ρ2
+

(1.22)

− 16T 2

(T 2 − ρ2)2 − 2(n− 1)Z2 +
B

A

g′(u)

g(u)
f(u) + 2

B

A
f ′(u)+

+ 2
f(u)

|∇u|2

〈
∇
(
B

A

)
,∇u

〉
at x̄, from which (1.11) follows immediately.

To derive (1.12) we use again the Bochner-Weitzenböck formula (1.4)

and (1.9), (1.1) to have

L|∇u|2

|∇u|2
≥ 2

A

B

|Hess(u)|2

|∇u|2
− 2

A

B
(n− 1)Z2 + 2f ′(u) + 2

A

B

f(u)

|∇u|2

〈
∇
(
B

A

)
,∇u

〉
+

(1.23)

+ 2
A

B

1

n−m
〈∇A,∇u〉2

A2

1

|∇u|2
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on BT (q). On the other hand, by Newton inequalities (see the Appendix)

|Hess(u)|2

|∇u|2
≥ 1

m

(∆u)2

|∇u|2
=

1

m

1

|∇u|2

{
B

A
Lu− 〈∇A,∇u〉

A

}2

, (1.24)

and using the elementary inequality

(a− b)2 ≥ a2

1 + γ
− b2

γ

valid for a, b ∈ R and γ > 0 we obtain

2
A

B

|Hess(u)|2

|∇u|2
≥ 2

B

A

1

m

1

|∇u|2
(Lu)2

1 + γ
− 2

A

B

1

m

1

|∇u|2
1

γ

〈∇A,∇u〉2

A2
.

Inserting this latter into (1.23) yields

L|∇u|2

|∇u|2
≥− 2

A

B
(n− 1)Z2 + 2f ′(u) + 2

B

A

1

m|∇u|2
(Lu)2

1 + γ
+ (1.25)

+ 2
A

B

(
1

n−m
− 1

γm

)
〈∇A,∇u〉2

|∇u|2A2
+ 2

A

B

f(u)

|∇u|2

〈
∇
(
B

A

)
,∇u

〉
.

From the modified Young inequality

−2ab ≤ εa2 +
b2

ε

(valid for a, b ∈ R and ε > 0) we obtain

B

A

ε

2

(Lu)2

|∇u|2
≥ −g

′(u)Lu

g(u)
− 1

2ε

A

B

(
g′(u)

g(u)

)2

|∇u|2.

Choosing ε = 4
m(1+γ) and inserting into (1.25) gives

L|∇u|2

|∇u|2
≥ 2f ′(u)− 2

A

B
(n− 1)Z2 − g′(u)

g(u)
Lu− A

B

m(1 + γ)

8

(
g′(u)

g(u)

)2

|∇u|2+

+ 2
A

B

(
1

n−m
− 1

γm

)
〈∇A,∇u〉2

|∇u|2A2
+ 2

A

B

f(u)

|∇u|2

〈
∇
(
B

A

)
,∇u

〉
.
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Thus, the choice γ = n−m
m > 0 yields

L|∇u|2

|∇u|2
≥ 2f ′(u)− 2

A

B
(n− 1)Z2 − g′(u)

g(u)
Lu− A

B

n

8

(
g′(u)

g(u)

)2

|∇u|2+

(1.26)

+ 2
A

B

f(u)

|∇u|2

〈
∇
(
B

A

)
,∇u

〉
.

We now use (1.19), (1.21) and (1.26) into (1.15). Then, at x̄, we obtain

0 ≥
g(u)g′′(u)−

(
2 + n

8

)
g′(u)2

g(u)2
|∇u|2 − 8ρ

T 2 − ρ2

|g′(u)|
g(u)

|∇u| − 24ρ2

(T 2 − ρ2)2 +

− 4[n+ (n− 1)Zρ]

T 2 − ρ2
− 2(n− 1)Z2 + 2

B

A
f ′(u) + 2

f(u)

|∇u|2

〈
∇
(
B

A

)
,∇u

〉
from which (1.12) follows immediately.

1.2 Consequences of Lemma 1.2

In the next result we elaborate on Lemma 1.2.

Lemma 1.3. Let BT (q), ρ(x) be as in Lemma 1.2 and assume (1.9). Con-

sider the function G(x) on BT (q) given in (1.10) and set

S = min

{
inf
BT (q)

B

A
f ′(u), 0

}
, (1.27)

E = sup
BT (q)

2|f(u)|
∣∣∣∣∇(BA

)∣∣∣∣. (1.28)

If x̄ ∈ BT (q) is a positive maximum of G on BT (q), assume that

a =
g(u)g′′(u)−

(
2 + n

8

)
g′(u)2

g(u)2
(x̄) > 0. (1.29)
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Then

|∇u|2(q)g(u(q)) ≤ 2α2 max

{
32

T 2a2

|g′(u(x̄))|2

g(u(x̄))
, (1.30)

4g(u(x̄))

a

[
2(n+ 6)

T 2
+

2(n− 1)Z

T
+ (n− 1)Z2 − S

]
,

E

α
√
a

g(u(x̄))√
2(n− 1)Z2 − 2S

}
,

with α = 3+2
√

2
4 .

Proof. From Lemma 1.2, (1.12) holds at x̄. We set

z = |∇u|(x̄) > 0,

b =
8|g′(u)|(x̄)

g(u(x̄))

ρ(x̄)

T 2 − ρ2(x̄)
≥ 0,

c =
24ρ2(x̄)

[T 2 − ρ2(x̄)]2
+

4[n+ (n− 1)Zρ(x̄)]

T 2 − ρ2(x̄)
+ 2(n− 1)Z2 − 2S > 0.

Thus, (1.12) becomes

az2 − bz − c− E

z
≤ 0. (1.31)

(1.31) implies |∇u|2(x̄) = z2 ≤ z2
0 , where z0 is the (unique) real positive root

of the third degree equation az3 − bz2 − cz − E = 0. Let z1 be the positive

root of the quadratic polynomial az2 − bz − c and l the tangent straight

line to the parabola Γ : y = az2 − bz − c passing through z1 (i.e. the line

y =
√
b2 + 4ac(z − z1)). If we denote with zA the (positive) absciss of the

intersection between l and the hyperbola y = E
z , a computation then shows
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that

|∇u|2(x̄) ≤ z2
0 ≤ z2

A ≤ α max

{
b2 + 2ac+ b

√
b2 + 4ac

2a2
,

4E√
b2 + 4ac

}

≤ α max

{
αmax

{
b2

a2
, 4
c

a

}
,

4E√
b2 + 4ac

}
= α2 max

{
b2

a2
, 4
c

a
,

4E√
b2 + 4ac

}
.

Computing and recalling the definition of G(x) in (1.10), after some manip-

ulation we obtain

G(x̄) = |∇u|2(x̄)
[
T 2 − ρ2(x̄)

]2
g(u(x̄))

≤ α2 max

{
64

T 2a2

|g′(u(x̄))|2

g(u(x̄))
,

4g(u(x̄))

a

[
4(n+ 6)

T 2
+

4(n− 1)Z

T
+ 2(n− 1)Z2 − 2S

]
,

4E

α

g(u(x̄))√
64 |g

′(u(x̄))|2
g(u(x̄))

ρ2(x̄)

[T 2−ρ2(x̄)]2
+ 4a

[
24ρ2(x̄)

[T 2−ρ2(x̄)]2
+ 4[n+(n−1)Zρ(x̄)]

T 2−ρ2(x̄)
+ 2(n− 1)Z2 − 2S

]


≤ α2 max

{
64

T 2a2

|g′(u(x̄))|2

g(u(x̄))
,

4g(u(x̄))

a

[
4(n+ 6)

T 2
+

4(n− 1)Z

T
+ 2(n− 1)Z2 − 2S

]
,

2E

α
√
a

g(u(x̄))√
2(n− 1)Z2 − 2S

}
.

Hence, since

G(q) = T 4|∇u|2(q)g(u(q)) ≤ G(x̄),

we deduce the validity of (1.30).

We are now ready to prove

Theorem 1.4. Let (M, 〈 , 〉) be a complete manifold of dimension m. Fix
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o ∈M and let r(x) = dist(M,〈 ,〉)(x, o). Suppose that A,B ∈ C1(M), A,B >

0, and that

Riccn,m(LA) ≥ −(n− 1)H2
(
1 + r(x)2

)δ/2
(1.32)

for some n > m, H ≥ 0 and δ ∈ R. Let f ∈ C1(R) and u ∈ C3(M) a global

solution of (1.1) satisfying

|u(x)| ≤ D(1 + r(x))ν , (1.33)∣∣∣∣f(u(x))∇
(
B

A

)
(x)

∣∣∣∣ ≤ Θ(1 + r(x))θ (1.34)

and
B

A
(x)f ′(u(x)) ≥ −K[1 + r(x)]γ (1.35)

on M for some constants ν ≥ 0, γ, θ ∈ R and constants D,K,Θ > 0. Then

|∇u|2(x) ≤ C̃1r(x)2ν max
{
r(x)−2 + r(x)

δ
2
−1 + r(x)δ + r(x)γ , (1.36)

r(x)θ−
δ
2

1 + C̃r(x)
γ−δ

2

1 + C̃r(x)γ−δ

}

for r(x)� 1 and constants C̃, C̃1 ≥ 0.

Proof. Fix a geodesic ball BT (q) and let

N ≥

(
sup
BT (q)

u

)
+ 1. (1.37)

Define

g(t) = (N − t)d (1.38)

with d ∈ R, t < N ; note that N − u ≥ 1 on BT (q), so g(u) > 0 on BT (q).

In this case, if we consider a defined in (1.29), we have that a > 0 if

d
[(

1 +
n

8

)
d+ 1

]
(N − u)2(d−1) < 0
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on BT (q). This forces d to be chosen such that

− 8

n+ 8
< d < 0.

Next, (1.30) and a simple computation yield, with Z as in (1.9),

|∇u|2(q)g(u(q)) ≤ 2α2[N − u(x̄)]d+2· (1.39)

·max

{
32[(

1 + n
8

)
d+ 1

]2
T 2
,

− 4

d
[(

1 + n
8

)
d+ 1

][2(n+ 6)

T 2
+

2(n− 1)Z

T
+ (n− 1)Z2 − S

]
,

E

α

1√
−d
[(

1 + n
8

)
d+ 1

] 1√
2(n− 1)Z2 − 2S

1

N − u(x̄)

 .

For the geodesic ball BT (q), q 6= o ∈ M , we choose T = 1
2r(q) > 0. Then,

there exists a constant Λ = Λ(δ) > 0, depending only on the sign of δ, such

that we can choose Z = H
(
1 + Λr(q)2

)δ/4
. Furthermore, using (2.2), (2.4),

(1.35) we choose

N = D

[
1 +

3

2
r(q)

]ν
+ 1 > 0, (1.40)

0 ≥ S ≥ −K(1 + Λ1r(q))
γ , (1.41)

0 ≤ E ≤ 2Θ(1 + Λ2r(q))
θ (1.42)

on BT (q), with Λ1,Λ2 positive constants depending respectively only on the
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signs of γ and θ. Inserting into (1.39) and computing yields

|∇u|2(q) ≤ 2α2
[
2D
(
1 + 3

2r(q)
)ν

+ 1
]2·

·max

{
32[(

1 + n
8

)
d+ 1

]2 · 4 · r(q)−2,

− 4

d
[(

1 + n
8

)
d+ 1

] [8(n+ 6)r(q)−2 +
4(n− 1)H

(
1 + Λr(q)2

)δ/4
r(q)

+

+ (n− 1)H2
(
1 + Λr(q)2

)δ/2
+K(1 + Λ1r(q))

γ
]
,

2Θ(1+Λ2r(q))
θ

α
1√

−d[(1+n
8 )d+1]

1√
2(n−1)H2(1+Λr(q)2)δ/2+2K(1+Λ1r(q))

γ

}
≤ C1r(q)

2ν max
{
C2r(q)

−2, C3r(q)
−2 + C4r(q)

δ
2
−1 + C5r(q)

δ + C6r(q)
γ ,

C7r(q)
θC8r(q)

δ/2 + C9r(q)
γ/2

C8r(q)δ + C9r(q)γ

}

for r(q)� 1 and constants Ci ≥ 0, i = 1, . . . , 9. This easily implies (1.36).

Corollary 1.5. In the assumptions of Theorem 1.4, if

B

A
< C,

∣∣∣∣∇(BA
)∣∣∣∣ < C

on M for some constant C > 0 and u is a bounded global solution of (1.1),

then |∇u| is bounded provided δ ≤ 0.

Proof. Just observe that (1.33), (1.34) and (1.35) are verified choosing ν =

θ = γ = 0.

1.3 More gradient estimates

In this section we prove more gradient estimates for global bounded solutions

of Lu = f(u). Towards this end we shall need the next
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Lemma 1.6. Let N,T,Λ, ε > 0, H ≥ 0 be fixed constants. Then there exists

a function η = ηε,T : [T,+∞)→ [0, 1] with the following properties:

η ∈ C2((T,+∞)); (1.43)

η(T ) = 1, η > 0, η′ < 0 on (T,+∞); lim
t→+∞

η(t) = 0; (1.44)

lim
ε→0+

ηε,T (t) = 1 ∀ fixed t ∈ [T,+∞); (1.45)(
η

η′

)2{2(η′)2

η
−
(
N

ε
+
n− 1

t
+ (n− 1)H

)
η′ − η′′

}
=
ε

Λ
on [T,+∞);

(1.46)∣∣∣∣ ηη′
∣∣∣∣ ≤ ε2

ηΛ(N + (n− 1)Hε)
on [T,+∞). (1.47)

Proof. The idea of the proof is taken from Modica, [Mod85]. We define the

decreasing function

gε :

[
0,

Λ

ε
e−

ε
Λ

]
→ [0, 1]

by setting

gε(t) = − ε
Λ

1

log
(
e−

ε
Λ − ε

Λ t
)

on
[
0, Λ

ε e
− ε

Λ

)
and extending it by continuity on the right end side of the

interval. Furthermore, we let

hε,T : [T,+∞)→ R

be given by

hε,T (t) =

∫ t

T
s1−ne−[Nε +(n−1)H]s ds. (1.48)

We note that hε,T is increasing, hε,T (T ) = 0,

0 < I = hε,T (+∞) =

∫ +∞

T
s1−ne−[Nε +(n−1)H]s ds < +∞.
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We set

η(t) = gε

(
Λ

ε

e−
ε
Λ

I
hε,T (t)

)
(1.49)

on [T,+∞). Now, properties (1.43), (1.44) and (1.45) follows easily. As for

(1.46), from (1.49) we have

g−1
ε (η(t)) =

Λ

ε

e−
ε
Λ

I
hε,T (t). (1.50)

Noting that

g−1
ε (t) =

∫ 1

t
s−2e−

ε
Λs ds,

differentiating (1.50) and using (1.48) we get

−e
− ε

Λη(t)

η(t)2
η′(t) =

Λ

ε

1

I

e−[Nε +(n−1)H]t− ε
Λ

tn−1
. (1.51)

Taking the logarithm of both members of (1.51) and differentiating once

more we obtain (1.46). It remains to prove (1.47). From (1.50), differenti-

ating we get

η(t)

η′(t)
= η(t)

εI

Λ
e
ε
Λ

(
g−1
ε

)′
(η(t))

h′ε,T (t)
. (1.52)

A simple computation shows that

(
g−1
ε

)′
(η(t)) = −e

− ε
Λη(t)

η(t)2
. (1.53)

On the other hand (1.49) gives

η(t) = − ε
Λ

1

log
[
e−

ε
Λ

(
1− hε,T (t)

I

)] .
Inserting into (1.53) yields

(
g−1
ε

)′
(η(t)) = − e

− ε
Λ

η(t)2

(
1−

hε,T (t)

I

)
. (1.54)
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Substituting (1.54) into (1.52) and using the definition (1.48) of hε,T to

compute its derivative, we obtain

η(t)

η′(t)
= − 1

η(t)

ε

Λ
(I − hε,T (t))tn−1e[

N
ε

+(n−1)H]t.

(1.48) and the definition of I allow us to rewrite the above as

η(t)

η′(t)
= − 1

η(t)

ε

Λ
tn−1e[

N
ε

+(n−1)H]t
∫ +∞

t
s1−ne−[Nε +(n−1)H]s ds.

It follows that∣∣∣∣ η(t)

η′(t)

∣∣∣∣ ≤ 1

η(t)

ε

Λ
e[
N
ε

+(n−1)H]t
∫ +∞

t
e−[Nε +(n−1)H]s ds

and (1.47) follows at once explicitating the integral.

We are now ready to prove the following general theorem, which is the

main result of this Chapter and compares directly to Theorem B in [RR95]:

Theorem 1.7. Let (M, 〈 , 〉) be a complete manifold of dimension m. Sup-

pose that A,B ∈ C2(M), A,B > 0 and h ∈ C2(M), h ≥ 0 satisfy

i) B
A < C;

ii) h < C;

iii) |∇h| < C;

iv) |Lh| < C

(1.55)

on M , with L = 1
B div (A∇ ). Furthermore, suppose that, for some n > m,

H ≥ 0

Riccn,m(LA) ≥ −(n− 1)H2 (1.56)

on M . For f ∈ C1(R) let u ∈ C3(M) be a global solution of

Lu = f(u) (1.1)
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such that i) |∇u| < C on M ;

ii) infM |∇u| = 0.
(1.57)

Assume the existence of a function Q ∈ C2(R) with the following properties:

i) Q(u), |Q′(u)| < C;

ii) infM Q(u) = 0;

iii)
[
Q′(u)h− 2BAf(u)

]
Q′(u) ≥ 0;

iv) 2BAf
′(u)− 2(n− 1)H2 − hQ′′(u) ≥ 0;

v)
∣∣Q′(u)∇h− f(u)∇

(
B
A

)∣∣ < C

(Q)

on M . Then

|∇u|2 ≤ h(x)Q(u) on M. (1.58)

Remark. Of course the applicability of Theorem 1.7 depends on the possible

choices for h and Q: this is the case in the proofs of Theorem 1.8, 1.9 and

Corollary 2.4 below. Note also that, if A = B = 1 and h = 1, we recover

Theorem B in [RR95].

Proof. (of Theorem 1.7) Let u be a global solution of (1.1) and define the

function

P = |∇u|2 − h(x)Q(u) (1.59)

on M . Let d a positive constant. Because of (1.57) ii) there exists q ∈ M
such that

|∇u|2(q) < d. (1.60)

Fix ε, T > 0 and define a function v : M \BT (q)→ R by setting

v(x) = ηε,T (ρ(x))P (x), (1.61)

where ρ(x) = dist(M,〈 ,〉)(x, q) and η(t) = ηε,T (t) is the function defined in

Lemma 1.6 with N,Λ > 0 to be chosen later. We may assume that v > 0

somewhere, for otherwise, since η > 0, P ≤ 0 on M \ BT (q). Because of

assumptions (1.57) i), (1.55) i) and (Q) i) P (x) is bounded; thus, (1.44) of
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Lemma 1.6 implies that

v(x)→ 0 as ρ(x)→ +∞. (1.62)

Next, we prove that, given δ > 0, we have

v(x) ≤ max

{
δ, max
∂BT (q)

v

}
(1.63)

on M \ BT (q). Towards this aim it is enough to show that v(x̄) ≤ δ at any

maximum point x̄ ∈ M \ BT (q), if any. At x̄ we must have ∇v = 0 and

Lv ≤ 0: these are respectively equivalent to

∇P = −η
′(ρ)

η(ρ)
P∇ρ (1.64)

and

0 ≥ η′(ρ)PLρ+ η′′(ρ)
A

B
P + η(ρ)LP − 2

A

B

η′(ρ)2

η(ρ)
P (1.65)

at x̄, where in (1.65) we have used (1.64), (1.2) and (1.3). We need now to

estimate LP . Using (1.59), (1.1) and the generalized Bochner-Weitzenböck

formula (1.4) together with the curvature restriction (1.56) we obtain

LP = L|∇u|2 − L(h(x)Q(u))

= L|∇u|2 −
[
h(x)LQ(u) + 2

A

B
〈∇h,∇Q(u)〉+Q(u)Lh

]
= L|∇u|2 − hQ′(u)Lu− hA

B
Q′′(u)|∇u|2 − 2

A

B
Q′(u) 〈∇h,∇u〉 −Q(u)Lh

≥ 2
A

B
|Hess(u)|2 − 2

A

B
Q′(u) 〈∇h,∇u〉 −Q(u)Lh+ 2

A

B
f(u)

〈
∇
(
B

A

)
,∇u

〉
−

− hQ′(u)f(u)−
[
h
A

B
Q′′(u) + 2

A

B
(n− 1)H2 − 2f ′(u)

]
|∇u|2.
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Multiplying both sides by |∇u|2 and using inequality (1.17) we have

|∇u|2LP ≥ 1

2

A

B

∣∣∣∇|∇u|2∣∣∣2 + 2
A

B
f(u)|∇u|2

〈
∇
(
B

A

)
,∇u

〉
− hf(u)Q′(u)|∇u|2−

(1.66)

− 2
A

B
Q′(u)|∇u|2 〈∇h,∇u〉 −Q(u)|∇u|2Lh.

Next, since η′ < 0, using Schwarz inequality, Q(u) ≥ 0 and (1.64) we have,

at x̄, ∣∣∣∇|∇u|2∣∣∣2 =
∣∣∇P + hQ′(u)∇u+Q(u)∇h

∣∣2
=

∣∣∣∣−η′(ρ)

η(ρ)
P∇ρ+ hQ′(u)∇u+Q(u)∇h

∣∣∣∣2
=

(
η′(ρ)

η(ρ)

)2

P 2 + h2Q′(u)2|∇u|2 +Q(u)2|∇h|2−

− 2
η′(ρ)

η(ρ)
PhQ′(u) 〈∇u,∇ρ〉 − 2

η′(ρ)

η(ρ)
PQ(u) 〈∇ρ,∇h〉+

+ 2hQ(u)Q′(u) 〈∇u,∇h〉+

≥
(
η′(ρ)

η(ρ)

)2

P 2 + h2Q′(u)2|∇u|2 +Q(u)2|∇h|2+

+ 2
η′(ρ)

η(ρ)
P
[
h
∣∣Q′(u)

∣∣|∇u|+Q(u)|∇h|
]
−

− 2hQ(u)
∣∣Q′(u)

∣∣|∇u||∇h|.
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Inserting this inequality into (1.66) we obtain

|∇u|2LP ≥ 1

2

A

B

(
η′(ρ)

η(ρ)

)2

P 2 +
1

2

A

B
h2Q′(u)2|∇u|2 +

1

2

A

B
Q(u)2|∇h|2+

(1.67)

+
A

B

η′(ρ)

η(ρ)
P
[
h
∣∣Q′(u)

∣∣|∇u|+Q(u)|∇h|
]
− A

B
hQ(u)

∣∣Q′(u)
∣∣|∇h||∇u|+

+ 2
A

B
f(u)|∇u|2

〈
∇
(
B

A

)
,∇u

〉
− hf(u)Q′(u)|∇u|2−

− 2
A

B
Q′(u)|∇u|2 〈∇h,∇u〉 −Q(u)|∇u|2Lh.

From (1.56) we deduce

|∇u|2ηP

{
A

B

[
2(η′)2

η
− η′′

]
− η′Lρ

}
− η2|∇u|2LP ≥ 0 (1.68)

at x̄. Observe that (1.56) implies

Lρ ≤ (n− 1)
A

B

[
1

ρ
+H

]
(1.69)

on M \ BT (q). Using (1.67) and (1.69) into (1.68) and then (Q) iii), η ≤ 1

and Schwarz inequality, after some tedious computations we get

1

2

(
η′

η

)2

v2 ≤ |∇u|2v
{

2
(η′)2

η
− η′′ −

[
n− 1

ρ
+ (n− 1)H + h

|Q′(u)|
|∇u|

+
Q(u)

|∇u|2
|∇h|

]
η′
}

+

(1.70)

+ hQ(u)
∣∣Q′(u)

∣∣|∇u||∇h|+ 2|∇u|3
∣∣∣∣Q′(u)∇h− f(u)∇

(
B

A

)∣∣∣∣+
+
B

A
Q(u)|∇u|2|Lh|.

If |∇u|2(x̄) ≤ δ, then v(x̄) ≤ P (x̄), h(x̄) ≥ 0 and Q(u(x̄)) ≥ 0 by (Q) ii)

immediately imply v(x̄) ≤ δ: thus, it remains to consider the case |∇u|2(x̄) >



1.3 More gradient estimates 31

δ. Set

L = sup
M

2|∇u|2, N1 = sup
M

∣∣Q′(u)
∣∣|∇u|, N2 = sup

M

∣∣∣∣Q′(u)∇h− f(u)∇
(
B

A

)∣∣∣∣,
K1 = sup

M
Q(u).

By (1.57) i) and (Q) i), v), L,N1, N2,K ∈ [0,+∞). Using (1.55) and η′ < 0

from (1.70) we deduce that, at x̄,

1

2

(
η′

η

)2

v2 ≤ |∇u|2v
{

2
(η′)2

η
− η′′ −

[
n− 1

ρ
+ (n− 1)H +

C(N1 +K1)

δ

]
η′
}

+

+ CN1K + L
√
LN2 + CK1L;

in other words, for some appropriate constants N,K > 0,

v2 ≤ vL
(
η

η′

)2{
2

(η′)2

η
− η′′ −

[
n− 1

ρ
+ (n− 1)H +

N

δ

]
η′
}

+ 2

(
η

η′

)2

K.

(1.71)

Choosing in Lemma 1.6 ε = δ,Λ = L and T,N as above, from (1.71) we

obtain at x̄

v2 ≤ δ
[
v +

2δ3K

η2L2(N + (n− 1)Hδ)2

]
. (1.72)

Letting δ ↓ 0+ in (1.72) and using (1.45) we deduce v(x̄) = P (x̄) = 0. This

implies

v(x) ≤ max

{
δ, max
∂BT (q)

v

}
= max

{
δ, max
∂BT (q)

P

}
on M \BT (q). Therefore, letting δ ↓ 0+ again, we arrive at

P (x) ≤ max

{
0, max
∂BT (q)

P

}
on M \BT (q). Letting T ↓ 0+ in this last inequality we obtain

P (x) ≤ max {0, P (q)}
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on M . From (1.59), (1.60) and (Q) ii) we get

P (x) ≤ |∇u|2(q) < d

on M . Since d > 0 was arbitrary, we conclude P (x) ≤ 0 on M , that is,

(1.58).

Next result is a consequence of Theorem 1.7 and Corollary 1.5; the case

H ≡ 0 will be treated separately.

Theorem 1.8. Let (M, 〈 , 〉) be a complete manifold of dimension m, A,B ∈
C2(M), A,B > 0 and such that

i) B
A < C;

ii)
∣∣∇(BA)∣∣ < C;

iii)
∣∣L(BA)∣∣ < C

(1.73)

on M for some constant C > 0. Suppose that for some n > m, H > 0,

Riccn,m(LA) ≥ −(n− 1)H2. (1.56)

Let F ∈ C2(R) and set f = F ′. Let u ∈ C2(M) be a global bounded solution

of

Lu = f(u) (1.1)

and let

d ≥ 2

(n− 1)H2
sup
M
|f(u)|+ 2 sup

M
|u|. (1.74)

Assume

inf
M

[
2F (u)− (n− 1)H2(u2 + du)

]
= 0. (1.75)

Then,

|∇u|2 ≤ B

A
(x)
[
2F (u)− (n− 1)H2(u2 + du)

]
(1.76)

on M .

Proof. First of all we use Corollary 1.5 and boundedness of u (see also the
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proof of Corollary 2.4 below) to deduce the validity of (1.57). In Theorem

1.7 we now choose h = B
A so that (1.55) are guaranteed by (1.73). We let

Q(t) = 2F (t)− (n− 1)H2
(
t2 + dt

)
where d is chosen to satisfy (1.74). These choices of d, Q and (1.73) together

with u bounded imply the validity of (Q). Applying (1.58) of Theorem 1.7

we obtain the desired estimate (1.76).

In the special case H = 0, we choose h = B
A , Q(t) = 2F (t) and we apply

Theorem 1.7 without requiring u bounded, which is necessary in (1.74). We

have then

Theorem 1.9. Let (M, 〈 , 〉) be a complete manifold of dimension m, A,B ∈
C2(M) with A,B > 0 and such that

i) B
A < C;

ii)
∣∣∇(BA)∣∣ < C;

iii)
∣∣L(BA)∣∣ < C

(1.77)

on M for some constant C > 0. Suppose that for some n > m

Riccn,m(LA) ≥ 0. (1.78)

Let F ∈ C2(R), and set f = F ′. Let u ∈ C3(M) be a global solution of

Lu = f(u) (1.1)

such that 

F (u), |f(u)| < C;

infM F (u) = 0;

infM |∇u| = 0;

|∇u| < C

(1.79)
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on M for some C > 0. Then

|∇u|2(x) ≤ 2
B

A
(x)F (u) (1.80)

on M .

If we interpret Theorem 1.9 for equation (0.1) and require u bounded,

we obtain the following

Corollary 1.10. Let (M, 〈 , 〉) be a complete manifold of dimension m, a, b ∈
C2(M) and suppose that, for some n > m,

RiccM ≥ Hess(a) +
1

n−m
da⊗ da.

Assume

i) 0 < b < C; ii) |∇b| < C; iii) |∆b+ 〈∇a,∇b〉| ≤ Cb (1.81)

on M for some constant C > 0. Let F ∈ C2(R), f = F ′ and u ∈ C3(M) a

bounded global solution of (0.1) such that

inf
M
F (u) = 0. (1.82)

Then

|∇u|2 ≤ 2b(x)F (u) on M. (1.83)



Chapter 2

Liouville Theorems

The paths fork and divide. With each step you

take through Destiny’s garden you make a choice,

and every choice determines future paths.

However, at the end of a lifetime of walking you

might look back, and see only one path

stretching out behind you; or look ahead, and see

only darkness.

Sandman, Season of Mists, DC Comics-Vertigo

The aim of this Chapter is to derive some Liouville-type theorems for

the diffusion Poisson equation (1.1) and the related equation (0.1). This is

obtained under geometric condition on the manifold (M, 〈 , 〉) and appropri-

ate growth conditions on both the solution and the non-linearity f . The key

tools, ça va sans dire, will be the gradient estimates developed in Chapter

1.

2.1 Liouville theorems for solutions of sublinear

growth

As an application of Lemma 1.2 we first prove
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Theorem 2.1. Let (M, 〈 , 〉) be a complete manifold of dimension m. Fix

o ∈M and let r(x) = dist(M,〈 ,〉)(x, o). Suppose that A,B ∈ C1(M), A,B > 0

and that for some n > m,H ≥ 0, δ ∈ R,

Riccn,m(LA) ≥ −(n− 1)H2
(
1 + r(x)2

)δ/2
(2.1)

on M . Let f ∈ C1(R) and u ∈ C3(M) be a global solution of

Lu = f(u). (1.1)

Assume

|u(x)| ≤ D(1 + r(x))ν , (2.2)

B

A
(x)f ′(u(x)) ≥ (n− 1)H2

(
1 + r(x)2

)δ/2
, (2.3)∣∣∣∣f(u(x))∇

(
B

A

)
(x)

∣∣∣∣ ≤ Θ(1 + r(x))θ (2.4)

on M , for some constants Θ, D > 0, ν, θ ∈ R. Then u is constant provided

0 ≤ ν < min

{
1, 1− δ

4
,−θ

2

}
. (2.5)

Proof. For q ∈ M, q 6= o, let BT (q) the geodesic ball centered at q with

radius T > 0. Set ρ(x) = dist(M,〈 ,〉)(x, q) and choose

N(T ) ≥ sup
BT (q)

|u|. (2.6)

We use Lemma 1.2 with the choice g(u) = [3N(T )− u]−d with d > 0 to be

chosen later. We note that, since x̄ is a positive maximum for G in BT (q),

we have

|∇u|2(x̄) ≥ G(q)

(T 2 − ρ2(x̄))2g(u(x̄))
=

T 4|∇u|2(q)

(T 2 − ρ2(x̄))2

g(u(q))

g(u(x̄))
≥ (2.7)

≥ T 4

2d(T 2 − ρ2(x̄))2 |∇u|
2(q).
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Assume, by contradiction, that u is non constant. Then, without loss of

generality we can suppose that, for some ε > 0, |∇u|2(q) ≥ ε2. Thus (2.7)

gives

|∇u|2(x̄) ≥ T 4ε2

2d(T 2 − ρ2(x̄))2 . (2.8)

We now substitute the expression of g(u) into (1.12) obtaining

0 ≥
d
[
1−

(
1 + n

8

)
d
]

[3N(T )− u(x̄)]2
|∇u|2(x̄)− 8d

3N(T )− u(x̄)

ρ(x̄)

T 2 − ρ2(x̄)
|∇u|(x̄)+ (2.9)

− 2

∣∣f(u)∇
(
B
A

)∣∣
|∇u|

(x̄)− 24ρ2(x̄)

(T 2 − ρ2(x̄))2 −
4[n+ (n− 1)Zρ(x̄)]

T 2 − ρ2(x̄)
− 2(n− 1)Z2+

+ 2
B

A
(x̄)f ′(u(x̄))

where −(n− 1)Z2 is a lower bound for Riccn,m(LA) on BT (q). Suppose now

that
B

A
f ′(u) ≥ (n− 1)Z2 (2.10)

on BT (q) and divide (2.9) by |∇u|2(x̄). We then have

0 ≥
d
[
1−

(
1 + n

8

)
d
]

[3N(T )− u(x̄)]2
− 8d

3N(T )− u(x̄)

ρ(x̄)

T 2 − ρ2(x̄)

1

|∇u|(x̄)
+

−
{

24ρ2(x̄)

(T 2 − ρ2(x̄))2 +
4[n+ (n− 1)Zρ(x̄)]

T 2 − ρ2(x̄)

}
1

|∇u|2(x̄)
+

− 2

∣∣f(u)∇
(
B
A

)∣∣(x̄)

|∇u|3(x̄)
.

We now use (2.8) to deduce

0 ≥
d
[
1−

(
1 + n

8

)
d
]

4N(T )2
− d · 2

d
2

+2

N(T )Tε
− 3 · 2d+3

T 2ε2
− [n+ (n− 1)ZT ]2d+2

T 2ε2
+

−
∣∣∣∣f(u)∇

(
B

A

)∣∣∣∣(x̄)
2

3
2
d+1

ε2
.
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Multiplying times N(T )2,

0 ≥ d

4

[
1−

(
1 +

n

8

)
d
]
− d · 2

d
2

+2

Tε
N(T )− [6 + n+ (n− 1)ZT ]2d+2N(T )2

T 2ε2
+

(2.11)

−
∣∣∣∣f(u)∇

(
B

A

)∣∣∣∣(x̄)
2

3
2
d+1

ε2
N(T )2.

Next we fix T = 1
2r(q); assumption (2.1) allows us to choose, as in the proof

of Theorem 1.4,

Z = H
(
1 + Λr(q)2

)δ/4
on BT (q) where Λ = Λ(δ) > 0 is a constant depending only on the sign of δ.

Note that, with this choice, (2.3) implies the validity of (2.10). Furthermore

(2.2) enables us to choose

N(T ) = D(1 + Γr(q))ν ,

where Γ = Γ(ν) > 0 is a constant depending only on the sign of ν. With

these choices, from (2.11) and (2.4) we deduce

0 ≥ d

4

[
1−

(
1 +

n

8

)
d
]
− 2Γd+1(1 + Λr(q))θ

ΘD2

ε2
(1 + Γr(q))2ν+ (2.12)

− 3 · 2d+5

ε2

D2

r(q)2
(1 + Γr(q))2ν − d · 2

d
2

+3

ε

D

r(q)
(1 + Γr(q))ν+

−
[
n+ (n− 1)H

(
1 + Λr(q)2

)δ/4]2d+4

ε2

D2

r(q)2
(1 + Γr(q))2ν .

We fix d > 0 sufficiently small that

d

4

[
1−

(
1 +

n

8

)
d
]
> 0;

having made this choice, from inequality (2.12) we deduce that there exists

a constant ω = ω(d,Λ,Θ,Γ, D,H, n) > 0 such that

0 ≥ d

4

[
1−

(
1 +

n

8

)
d
]
− ω

ε2

[
r(q)2ν+θ + r(q)2ν−2 + r(q)2ν+ δ

2
−2 + εr(q)ν−1

]
.
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Under assumption (2.5) we reach a contradiction by letting r(q)→ +∞.

In the special case A = B, Theorem 2.1 becomes

Corollary 2.2. Let (M, 〈 , 〉) be a complete manifold of dimension m. Fix

o ∈M and let r(x) = dist(M,〈 ,〉)(x, o). Suppose that A ∈ C2(M), A > 0 and

that, for some n > m,H ≥ 0, δ ∈ R

Riccn,m(LA) ≥ −(n− 1)H2
(
1 + r2

)δ/2
(2.1)

on M . Let f ∈ C1(R) and u ∈ C3(M) be a global solution of

LAu = f(u). (2.13)

Assume the validity of

f ′(u(x)) ≥ (n− 1)H2
(
1 + r(x)2

)δ/2
(2.14)

and of (2.2) on M for some constants D > 0, ν ∈ R. Then u is constant

provided

0 ≤ ν < min

{
1, 1− δ

4

}
.

Remark. The above Corollary compares to Theorem 2.2 of [Li05] which

holds for δ = 0, f ≡ 0.

Interpreting Theorem 2.1 for equation (0.1) we immediately obtain the

following

Corollary 2.3. Let (M, 〈 , 〉) be a complete manifold of dimension m, a, b ∈
C2(M), b > 0, and suppose that, for some n > m, H ≥ 0,

RiccM +(n− 1)H2 〈 , 〉 ≥ Hess(a) +
1

n−m
da⊗ da. (2.15)

Let f ∈ C1(R) and u ∈ C3(M) be a global solution of (0.1); suppose

|u(x)| ≤ D(1 + r(x))ν ,
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b(x)f ′(u(x)) ≥ (n− 1)H2,

|f(u(x))∇b(x)| ≤ Θ(1 + r(x))θ

on M , for some constants Θ, D > 0, ν, θ ∈ R. Then u is constant provided

0 ≤ ν < min

{
1,−θ

2

}
.

Note that the above Corollary in particular implies that under assump-

tion

RiccM ≥ Hess(a) +
1

n−m
da⊗ da.

a global solution u of

∆u+ 〈∇a,∇u〉 = 0

with absolute value of sublinear growth on M has to be constant. In this way,

when a is constant we recover a well known result on harmonic functions on a

complete manifold first due to Yau, [Yau75]; see also the work of S. Y. Cheng,

[Che80], where he proves the analogous result for harmonic maps between

Riemannian manifolds. Moreover, as noted by the referee of [MR10a], the

above consequence has been previously proved in a non-submitted paper of

the Habilitation Thesis of X.-D. Li, which was defended at the Université

Paul Sabatier in December 2007. For a family of results in this direction,

for example when u is in class Lp, see [PRS05a].

2.2 Consequences of the main Theorem

We now analyze two consequences of Theorem 1.7. First we consider non-

negative bounded solutions of (0.1).

Corollary 2.4. Let (M, 〈 , 〉) be a complete manifold of dimension m, a, b ∈
C2(M) and suppose that, for some n > m, we have the validity of

RiccM ≥ Hess(a) +
1

n−m
da⊗ da. (2.16)
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Assume

0 < b < C, |∇b| < C (2.17)

on M for some constant C > 0. Let f ∈ C1(R) with f ′ ≥ 0, f ≥ 0 on

[0,+∞) and let u be a non-negative bounded global solution of

∆u+ 〈∇a,∇u〉 = bf(u). (0.1)

Then u is constant.

Proof. First note that, since u is bounded, by Corollary 1.5 with the choices

A = ea, B = bea and δ = 0 (for instance) we have that u has bounded

gradient and also that infM |∇u| = 0. Thus, assumptions (1.57) i), ii) of

Theorem 1.7 are satisfied. With the above choices of A and B, the validity

of (0.1) implies that u satisfies (1.1). We now choose h(x) ≡ 0 and

Q(t) =

∫ t

0

[
f(s)− f

(
sup
M

u

)]
ds.

With these choices one easily verifies the validity of (Q); the remaining

assumptions, that is (1.56) and (1.55), follow respectively from (2.16) with

the choice H = 0 in (1.56) and (2.17). Now conclusion (1.58) of Theorem

1.7 becomes |∇u|2 ≡ 0 on M ; hence the result.

As a second consequence (see also Theorem 1.8) we have

Corollary 2.5. Let (M, 〈 , 〉) be a complete manifold of dimension m, a, b ∈
C2(M) satisfying 

0 < b < C;

|∇b| < C;

|∆b+ 〈∇a,∇b〉| ≤ Cb

(2.18)

on M for some constant C > 0. Assume that, for some n > m and H > 0,

RiccM +(n− 1)H2 〈, 〉 ≥ Hess(a) +
1

n−m
da⊗ da. (2.15)



2.2 Consequences of the main Theorem 42

Let F ∈ C2(R), d > 0 and set f = F ′. Define

Φ(t) = 2F (t)− (n− 1)H2
(
t2 + dt

)
and suppose that Φ(t) is non-negative. If u ∈ C3(M) is a bounded global

solution of (0.1) with the property that

d ≥ 2

(n− 1)H2
sup
M
|f(u)|+ 2 sup

M
|u| (1.74)

and for which there exists x0 ∈M such that

Φ(u(x0)) = 0, (2.19)

then u is constant.

Proof. We transform (0.1) into (1.1) with A = ea, B = bea. Then (1.73),

(1.56), (1.74), (1.75) are satisfied and Theorem 1.8 yields the estimate

|∇u|2 ≤ b(x)Φ(u). (2.20)

We set t0 = u(x0) and

Λ = {x ∈M : u(x) = t0}.

Λ is a non empty closed set; if we prove that Λ is open, connectedness of

M would imply M = Λ and thus u is constant. Now, since Φ(t) ≥ 0 and

Φ(t0) = 0, t0 is an (absolute) minimum: it follows that there exist δ > 0

sufficiently small and C ≥ 0 such that

Φ(t) ≤ C(t− t0)2

on (t0 − δ, t0 + δ). Consider now the geodesic ball Bδ(x0): for t ∈ (−δ, δ)
and w ∈ Tx0M , |w| = 1 define

ϕ(t) = u
(
expx0

tw
)
− u(x0),
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where expx0
tw = γw(t) is the unit speed geodesic uniquely determined by

x0 and w. Then, using (2.20),

∣∣ϕ′(t)∣∣2 = |〈∇u(γw(t)), γ̇w(t)〉|2 ≤ |∇u(γw(t))|2

≤ b(γw(t))Φ(u(γw(t))) ≤

(
sup
Bδ(x0)

b

)
C(u(γw(t))− u(x0))2

≤ C̃ ϕ(t)2.

Since ϕ(0) = 0, by Gronwall inequality we deduce ϕ(t) ≡ 0 on (−δ, δ).
Hence, u is constant on Bδ(x0), proving that Λ is an open set.



Chapter 3

More Liouville theorems

(and beyond)

Adrian Veidt: I did the right thing, didn’t I? It

all worked out in the end.

Dr. Manhattan: “In the end”? Nothing ends,

Adrian. Nothing ever ends.

Watchmen (1986), DC Comics

In this Chapter we consider the notion of stability for solutions of equa-

tion (1.1). In the first section we compute the first and second variation

of the generalized energy functional associated to equation (1.1) and we

define the notion of L-stability of global solutions, which generalizes the

concept of stability for a global solution of ∆u = f(u) (see, for example,

[FCS80], [MP78], [DF09], [FSV08]). We then relate the L-stability to the

non-negativity of the first eigenvalue of an appropriate linear operator, and

we exploit this relation to derive a useful and more general version of a the-

orem of Fisher-Colbrie and Schoen ([FCS80]). In the next section we prove

the analogue of Theorem 4.5 in [PRS08] for global stable solutions under a

particular condition on f and f ′, then we deduce a Liouville theorem for

LA-harmonic functions under an Lp condition on their gradient. The last

section is devoted to a uniqueness result for equation (0.1), based on a par-
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ticular form of the weak maximum principle valid for (symmetric) diffusion

operators.

3.1 Stable Solutions and Liouville-type Theorems

under Lp conditions

3.1.1 First and second variation of the generalized energy

functional

The aim of this section is to compute the first and second variation of the

generalized energy functional associated to equation (1.1) and to define the

notion of L-stability of a global solution. First observe that

Lu = f(u)⇐⇒ 1

B
div (A∇u) = f(u)⇔ LAu =

B

A
f(u). (3.1)

Next we let F ∈ C2(M) be a function such that F ′(u) = f(u); define, for

a domain Ω of the weighted manifold (M, 〈 , 〉 ,dµ = Adµ0) (see also the

next Chapter), the (possibly formal) generalized energy functional EL(Ω, ·) :

C1(M) −→ R ∪ {+∞} associated to (3.1)

EL(Ω, u) :=

∫
Ω

[
1

2
|∇u|2 +

B

A
F (u)

]
dµ. (3.2)

Let ut := u + tξ and ELt := EL(Ω, ut), with u ∈ C3(M), ξ ∈ C∞0 (Ω), t ∈
(−ε, ε) for some ε > 0. By definition we have

ELt =

∫
Ω

[
1

2
|∇ut|2 +

B

A
F (ut)

]
dµ

=

∫
Ω

[
1

2

(
|∇u|2 + 2t 〈∇u,∇ξ〉+ t2|∇ξ|2

)
+
B

A
F (u+ tξ)

]
dµ,

then

dELt
dt

=

∫
Ω

[
1

2

(
2 〈∇u,∇ξ〉+ 2t|∇ξ|2

)
+
B

A
F ′(u+ tξ)ξ

]
dµ. (3.3)
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Now, using the divergence theorem,(3.3) implies

dELt
dt

∣∣∣∣
t=0

=

∫
Ω

[div (ξA∇u)− ξ div (A∇u) +Bf(u)ξ] dµ0

=

∫
Ω

(
− 1

A
div (A∇u) +

B

A
f(u)

)
ξ dµ.

Thus the first variation formula for the generalized energy functional EL

is

dELt
dt

∣∣∣∣
t=0

=

∫
Ω

(
− 1

A
div (A∇u) +

B

A
f(u)

)
ξ dµ,

dELt
dt

∣∣∣∣
t=0

= 0 ∀ ξ ∈ C∞0 (Ω)⇔ u is a solution of (3.1) on Ω.

From (3.3) we also deduce that

d2ELt
dt2

=

∫
Ω

[
|∇ξ|2 +

B

A
f ′(u+ tξ)ξ2

]
dµ, (3.4)

and, accordingly, the second variation formula for the generalized energy

functional EL is

d2ELt
dt2

∣∣∣∣
t=0

=

∫
Ω

[
|∇ξ|2 +

B

A
f ′(u)ξ2

]
dµ. (3.5)

The second variation formula is the starting point for the following

Definition 3.1. A global solution u of (3.1) is said to be L-stable1 if∫
M

[
|∇ξ|2 +

B

A
f ′(u)ξ2

]
dµ ≥ 0 ∀ ξ ∈ C∞0 (M). (3.6)

If we now define the linear operator Lu associated to a global solution u

of (3.1) by

Lu = −LA +
B

A
f ′(u), (3.7)

and we consider the usual variational characterization of its first eigenvalue

1LA-stable if A = B.
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λLu1 (M), that is

λLu1 (M) = inf
ϕ∈C∞0 , ϕ 6≡0

(Luϕ,ϕ)L2(M,dµ)

‖ ϕ ‖2
L2(M,dµ)

= inf
ϕ∈C∞0 , ϕ 6≡0

∫
M

[
|∇ϕ|2 + B

Af
′(u)ϕ2

]
dµ∫

M ϕ2 dµ
,

(3.8)

we immediately deduce that

λLu1 (M) ≥ 0 ⇐⇒ u is a global L− stable solution of (3.1).

3.1.2 A “Fisher-Colbrie - Schoen type” result

In this section we prove a more general version of a theorem of Fisher-Colbrie

and Schoen (see [FCS80], and also [MP78]).

Theorem 3.2. Let (M, 〈 , 〉) be a Riemannian manifold and Ω ⊆ M a do-

main; assume A ∈ C2(M), A > 0, q ∈ L∞loc(M) and let

L = −LA + q(x).

The following facts are equivalent:

(i) There exists w ∈ C1(M), w > 0, weak solution on Ω of

LAw − q(x)w = 0; (3.9)

(ii) There exists ϕ ∈ H1
loc(M), ϕ > 0, weak solution on Ω of

LAϕ− q(x)ϕ ≤ 0; (3.10)

(iii) λL1 (M) ≥ 0.

Proof. The proof of the theorem follows from a slight modification of the

arguments in [MP78] and [FCS80]. An alternative approach (see [Li05] and

[Vol]) starts from the following observation: if we consider the multiplication

map M√A : (L2(M),dµ) → (L2(M), dµ0), M√A(u) =
√
Au, then we have
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that L is unitarily equivalent to the Schrödinger operator H = −∆ + p+ q,

with p = ∆A
2A −

|∇A|2
4A2 , i.e.(

M√A ◦ L ◦M√A
−1
)

(v) = H(v).

The result then follows applying Lemma 3.10 in [PRS08].

From Theorem 3.2 and classical regularity results we deduce the following

Corollary 3.3. Let (M, 〈 , 〉) be a Riemannian manifold and Ω ⊆ M a

domain; let A,B ∈ C2(M), A,B > 0 and u ∈ C3(M) be a global solution of

Lu = f(u)⇐⇒ LAu =
B

A
f(u). (3.1)

Then, the following facts are equivalent:

(i) There exists w ∈ C2(M), w > 0, solution on (M, 〈 , 〉 , dµ) of

−Luw = LAw −
B

A
f ′(u)w = 0; (3.11)

(ii) There exists ϕ ∈ C2(M), ϕ > 0, solution on (M, 〈 , 〉 , dµ) of

−Luϕ = LAϕ−
B

A
f ′(u)ϕ ≤ 0; (3.12)

(iii) u is a global L-stable solution of (3.1) (equivalently: λLu1 (M) ≥ 0).

3.1.3 Liouville theorems for stable solutions under conditions

on f and f ′

In this section, adapting techniques of S. Pigola, M. Rigoli and A. G. Setti

(see [PRS08] and also [PRS05b]), we prove the analogue of Theorem 4.5 in

[PRS08] for global stable solutions of the diffusion Poisson equation under a

particular condition on f and f ′. First we recall
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Theorem 3.4. ([PRS08], Theorem 4.1) Let (M, 〈 , 〉) be a complete mani-

fold. Assume that 0 < ϕ ∈ L∞loc(M) and ψ ∈ L∞loc(M) ∩W 1,2
loc (M) satisfy

ψ div(ϕ∇ψ) ≥ 0, weakly on M. (3.13)

If, for some p > 1, (∫
∂Br

|ψ|pϕ dµ0

)−1

6∈ L1(+∞) (3.14)

then ψ is constant.

Next we consider the two non-negative functions

ϕ̃ := Aϕ2β̃/H , (3.15)

ψ := ϕ−β̃/Hvβ̃, (3.16)

for some constants H > 0, β̃ > 1 and functions ϕ, v ∈ C2(M), ϕ > 0, v ≥ 0.

A long but straightforward calculation shows that, on the set {v 6= 0} ⊆M ,

div(ϕ̃∇ψ) =ϕβ̃/H β̃vβ̃−2A · (3.17)

·

[
vLAv + (β̃ − 1)|∇v|2 − v2

H
ϕ−1LAϕ+

v2

H

(
1− β̃

H

)
|∇ϕ|2

ϕ2

]
.

We are now ready to prove the analogue, in the present setting, of Theorem

4.5 in [PRS08].

Theorem 3.5. Let (M, 〈 , 〉) be a complete manifold, A,B ∈ C2(M), f ∈
C1(R). Let u ∈ C3(M), u ≥ 0 be a global solution of

Lu = f(u). (3.1)

Suppose that

Hf(t)− f ′(t)t ≥ 0 (3.18)
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for t ≥ 0 and some H ≥ 1. If ϕ ∈ C2(M) is a positive solution of

−Luϕ = LAϕ−
B

A
f ′(u)ϕ ≤ 0 on M, (3.12)

then there exists a constant C ≥ 0 such that

Cϕ = uH , (3.19)

provided (∫
∂Br

|u|2β̃ dµ

)−1

6∈ L1(+∞) (3.20)

for 1 ≤ β̃ ≤ H.

Remark. Conditions similar to (3.18) are not new in the study of Poisson-

type PDEs; see for instance the work of Tertikas, [Ter92], [Ter95].

Proof. From (3.17) with v = u we deduce, using (3.12) and (3.18),

div(ϕ̃∇ψ) = ϕβ̃/H β̃vβ̃−2A

[
B

A
uf(u) + (β̃ − 1)|∇u|2 − u2

H

B

A
f ′(u)+

+
u2

H

(
1− β̃

H

)
|∇ϕ|2

ϕ2

]

= ϕβ̃/H β̃vβ̃−2A

{
1

H

B

A
u
[
Hf(u)− uf ′(u)

]
+ (β̃ − 1)|∇u|2 +

+
u2

H

(
1− β̃

H

)
|∇ϕ|2

ϕ2

}
≥ 0.

Since

|ψ|pϕ̃ = ϕ−
β̃
H
puβ̃pAϕ

2β̃
H = uβ̃pAϕ

β̃
H

(2−p),

(3.20) implies (3.14) with p = 2, and ψ is constant by Theorem 3.4. Equality

(3.19) now follows at once.

From Theorem 3.5 we deduce a Liouville theorem for nonnegative global

L-stable solutions of equation (3.1).
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Corollary 3.6. Suppose that (3.18) and (3.20) hold with H = β̃ = 1. If

f(t)− f ′(t)t 6≡ 0,

equation (3.1) has no nontrivial, non-negative global L-stable solutions.

Proof. By contradiction, suppose that there exists u ≥ 0, u 6≡ 0, global L-

stable solution of (3.1). Then, by Theorem 3.3, there exists ϕ > 0, solution of

(3.12). Theorem 3.5 now implies the existence of a constant C > 0 such that

Cϕ = uH = u. The last relation forces u to be strictly positive. Without

loss of generality, we can choose C = 1. From (3.1) and (3.12) we have

LAu =
B

A
f(u)

and

LAu−
B

A
f ′(u)u ≤ 0,

then
B

A

(
f(u)− f ′(u)u

)
≤ 0,

contradiction.

3.1.4 A Liouville theorem for LA-harmonic functions

In this section we deduce a Liouville theorem for LA-harmonic functions

under an appropriate Lp condition on their gradient. First we recall the

following formula which can be found, for instance, in Lemma 2.1 of [Li05]:

Lemma 3.7. ([Li05], Lemma 2.1) Let u ∈ C3(M) be a solution of LAu = 0

on M , and let n > m = dimM ; then

|∇u|LA|∇u| ≥
1

n− 1
|∇|∇u||2 + Riccn,m(LA)(∇u,∇u). (3.21)

For a proof based on the generalized Bochner-Weitzenböck formula see

Li’s paper, pp. 1310-1311, and the Appendix.

The previous estimate is the key tool for our next
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Theorem 3.8. Let (M, 〈 , 〉) be a complete, non-compact Riemannian man-

ifold, and suppose that

Riccn,m(LA) ≥ a(x) (3.22)

for some a(x) ∈ C0(M). Let ϕ > 0, ϕ ∈ C2(M) be a solution of

LAϕ−Ha(x)ϕ ≤ 0, H >
n− 2

n− 1
. (3.23)

Then every solution u ∈ C3(M) of

LAu = 0 on M

for which

|∇u| ∈ L2β(M, dµ) (3.24)

is constant provided
n− 2

n− 1
≤ β ≤ H. (3.25)

Proof. Set v := |∇u|; then, using (3.22), (3.21) rewrites as

vLAv − a(x)v2 ≥ 1

n− 1
|∇v|2. (3.26)

If we now choose β̃ = β, ϕ̃ := Aϕ2β/H and ψ := ϕ−β/Hvβ, a straightforward

calculation shows that the expression (3.17) is nonnegative under condition

(3.25), while (3.24) assures the validity of (3.14) with p = 2. Theorem 3.4

now implies that ψ is constant, i.e.

vH = Cϕ,

for some C ≥ 0. If v ≡ 0, then |∇u| ≡ 0 and u is constant; suppose then

v 6≡ 0. Since ϕ > 0, necessarily v > 0 and C > 0 as well (compare with the

proof of Corollary 3.6), so we may choose without loss of generality C ≡ 1,

i.e. vH = ϕ. Equation (3.23) then implies

LAv
H −Ha(x)vh ≤ 0, (3.27)
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which can be rewritten, using the diffusion property and (3.26), as

0 ≥ HvH−1LAv +H(H − 1)vH−2|∇v|2 −Ha(x)vH

= HvH−2
{
vLAv + (H − 1)|∇v|2 − a(x)v2

}
≥ HvH−2

{
1

n− 1
|∇v|2 + (H − 1)|∇v|2

}
= HvH−2

(
H − n− 2

n− 1

)
|∇v|2 ≥ 0.

This in turn implies

|∇v| ≡ 0,

so v ≡ C̃, with C̃ a positive constant, and ϕ = C̃H . From (3.26) we have

a(x) ≤ 0,

while from (3.23) we deduce

a(x) ≥ 0,

so, necessarily, a(x) ≡ 0 and

Riccm,n(LA) ≥ 0. (3.28)

By a mild generalization of a result of Calabi and Yau (see the Appendix),

(3.28) implies ∫
M

dµ = µ(M) = +∞,

so (3.24) forces

C̃ ≡ 0,

i.e. |∇u| ≡ 0.
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3.2 A uniqueness result

The aim of this section is to look for a uniqueness result for solutions of the

equation

∆u+ 〈∇a,∇u〉 = bf(u). (0.1)

We observe that, setting A = ea, the above takes the form

LAu = bf(u) (3.29)

where, as before, LA = 1
A div (A∇ ). We shall thus concentrate on (3.29).

To achieve our goal we first recall the following form of the weak maximum

principle valid for (symmetric) diffusion operators. For a proof we refer to

Theorem 5.1 of [MRS10].

Theorem 3.9. Let (M, 〈 , 〉) be a complete manifold, A ∈ C2(M), A > 0 on

M . Given σ, µ ∈ R suppose

σ ≥ 0, η = 2− σ − µ > 0. (3.30)

Assume that

lim inf
r→+∞

log
∫
Br
Adx

rη
= d0 < +∞. (3.31)

Let u ∈ C2(M) and suppose that

û = lim sup
r(x)→+∞

u(x)

r(x)σ
< +∞. (3.32)

Then, given γ ∈ R such that

Ωγ = {x ∈M : u(x) > γ} 6= ∅,

we have

inf
Ωγ

[1 + r(x)]µLAu ≤ d0 max {û, 0}C(σ, µ), (3.33)
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with

C(σ, µ) =


0 if σ = 0,

η2 if σ > 0, µ+ 2(σ − 1) < 0,

ση if σ > 0, µ+ 2(σ − 1) ≥ 0.

We now state our uniqueness result:

Theorem 3.10. Let (M, 〈 , 〉) be a complete manifold, a ∈ C2(M), b ∈
C0(M), with b > 0 on M , and

lim inf
r(x)→+∞

b(x)

r(x)β
> 0 (3.34)

for some β ∈ R. Let f ∈ C1((0,+∞)) ∩ C0([0,+∞)) satisfy
i)

f(t)

tσ
is non decreasing on (0,+∞);

ii) lim inf
t→0+

f(t)

tσ
> 0;

iii) lim sup
t→+∞

f ′(t)

tσ
< +∞

(3.35)

for some σ > 1. Let τ ≥ 0 and suppose

lim inf
r→+∞

log
∫
Br
ea(x) dx

r2+β+τ(σ−1)
< +∞. (3.36)

Then, the equation (0.1) has at most one non-negative global solution u ∈
C2(M) satisfying

C−1r(x)τ ≤ u(x) ≤ Cr(x)τ (3.37)

for r(x)� 1 and some constant C > 0.

Note that (3.37) does not assign the asymptotic behaviour of the solution.

Theorem 3.10 is an immediate consequence of the following comparison

result:

Theorem 3.11. Let (M, 〈 , 〉) be a complete manifold, A ∈ C2(M), b ∈
C0(M), A, b > 0 on M . Let u, v ∈ C2(M) be global, non-negative solutions
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of

LAu− b(x)f(u) ≥ 0 ≥ LAv − b(x)f(v) (3.38)

satisfying for some τ ≥ 0i) lim infr(x)→+∞
v(x)
r(x)τ > 0;

ii) lim supr(x)→+∞
u(x)
r(x)τ < +∞.

(3.39)

Suppose

lim inf
r(x)→+∞

b(x)

r(x)β
> 0 (3.40)

for some β ∈ R. Furthermore assume f ∈ C1(R+) ∩ C0(R+
0 ),

i) t−σf(t) non-decreasing on R+,

ii) lim inft→0+ t−σf(t) > 0,

iii) lim supt→+∞ t
−σf ′(t) < +∞,

(3.41)

for some σ > 1. If

lim inf
r→+∞

log
∫
Br(o)

Adx

r2+β+τ(σ−1)
< +∞, (3.42)

then u ≤ v on M .

Proof. The argument, mutatis mutandis, follows the same lines of that in

[RZ07]. We report it here with the necessary modifications for the conve-

nience of the reader. First of all let u(x) 6≡ 0, otherwise there is nothing

to prove. Next, we claim that v(x) > 0 on M . Indeed, by contradiction

suppose v(x0) = 0 for some x0 ∈M ; then from (3.38), the strong maximum

principle and connectedness of M we deduce v ≡ 0 contradicting (3.39) i).

This fact, u 6≡ 0 and (3.39) imply that

ζ = sup
M

u(x)

v(x)

satisfies

0 < ζ < +∞.
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If ζ ≤ 1, then u(x) ≤ v(x) on M . Let us assume, by contradiction, ζ > 1

and define

ϕ(x) = u(x)− ζv(x).

Note that ϕ ≤ 0 on M . We claim

sup
M

ϕ(x)

r(x)τ
= 0. (3.43)

Indeed, let {xn} ⊂M be a sequence realizing ζ. Then

ϕ(xn)

r(xn)τ
=

v(xn)

r(xn)τ

{
u(xn)

v(xn)
− ζ
}
. (3.44)

Now observe that v(xn)
r(xn)τ is bounded, because otherwise (3.39) ii) would imply

ζ = 0. From (3.44) it thus follows ϕ(xn)
r(xn)τ → 0 as n → +∞, proving (3.43).

We now use (3.38) to obtain

LAϕ ≥ b(x)[f(u)− f(ζv)] + b(x)[f(ζv)− ζf(v)]. (3.45)

We define

h(x) =


f ′(u(x)) if u(x) = ζv(x)

1

u(x)− ζv(x)

∫ u(x)

ζv(x)
f ′(t) dt if u(x) 6= ζv(x)

Note that h is continuous and non-negative on M . Furthermore, since as we

have already observed v(x)r(x)−τ is bounded above, (3.39), (3.41) iii) and

the mean value theorem imply

h(x) ≤ C(1 + r(x))στ on M (3.46)

for some constant C > 0. To simplify the writing let g(t) = t−σf(t). Then,

using (3.41),

f(ζv)−ζf(v) = vσζ
[
ζσ−1g(ζv)− g(v)

]
≥ vσζ

(
ζσ−1 − 1

)
g(v) ≥ vσζ

(
ζσ−1 − 1

)
g(0+).
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Inserting into (3.45), since b(x) > 0 we obtain

LAϕ ≥ b(x)C(1 + r(x))στϕ+ b(x)g(0+)vσζ
(
ζσ−1 − 1

)
.

On the other hand, by (3.41) ii), g(0+) = C1 > 0 and by (3.39)

vσ(x) ≥ D(1 + r(x))τ

on M for some constant D > 0. It follows that

(1 + r(x))−στ
1

b(x)
LAϕ ≥ Cϕ+ C2ζ

(
ζσ−1 − 1

)
for some constants C,C2 > 0. We now choose ε > 0 so small that on

Ωε = {x ∈M : ϕ(x) > −ε} we have

Cϕ(x) > −1

2
C2ζ

(
ζσ−1 − 1

)
.

Then, on Ωε, LAϕ ≥ 0 and using (3.40) we obtain

(1 + r(x))−στ−βLAϕ ≥
1

2
C2ζ

(
ζσ−1 − 1

)
on Ωε.

It follows that, since ζ > 1 and σ > 1,

inf
Ωε

(1 + r(x))−στ−βLAϕ > 0.

This fact, together with (3.42), contradicts Theorem 3.9.



Chapter 4

Geometric Applications

You know what sticks people to something? The

desire to know how it’s all going to end.

Loki, Sandman, Season of Mists, DC

Comics-Vertigo

In this final Chapter we definitely shift from analysis toward geometry.

Our main purpose is to prove triviality results for complete Einstein warped

products, exploiting the relations between these latter and the quasi-Enstein

manifolds, a generalization of Ricci solitons (we refer to the next sections

for details). After a detailed introduction, where we present the relevant

geometrical objects (the f -Laplacian ∆f , Ricckf , ...) and discuss the recent

literature on the subject, in the second Section we adapt to this new scenario

two results from Chapter 2. In the third Section we prove a weighted version

of Theorem 1.31 in [PRS05a] and a sufficient condition for the validity of

the full Omori-Yau maximum principle for the f -Laplacian, and then we

deduce a triviality result for complete Einstein warped products which is a

Corollary of Theorem 1 in [Rim10]. In the final Section we prove a further

gradient estimate, which extend the one in [Cas10], and we obtain another

triviality result when the function f (related to the warping function u by

u = e−f/k) is bounded below by a constant depending on m = dimM,k and

the Einstein constants λ and µ, respectively of the warped product and of
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the fibre. For other triviality result we refer to the paper [MR10b].

4.1 The Geometry

4.1.1 Einstein warped products

Our reference for this Section is the classical book by O’Neill [O’N83]. Let

(Mm, gM ) and
(
F k, gF

)
be two Riemannian manifolds. The Riemannian

product
(
Pm+k, gP

)
is the Riemannian manifold Pm+k = Mm×F k endowed

with the product metric gP = π∗gM +σ∗gF , where π and σ are the canonical

projections π : M × F → M , π(x, q) = x and σ : M × F → F , σ(x, q) = q

for all (x, q) ∈ M × F . We can construct a wide class of metrics on M × F
homothetically warping gP on each fibre {x} × F , x ∈ M : see for instance

the seminal [BO69], where the authors study manifolds of negative curvature

generalizing the concept of surface of revolution.

Definition 4.1. Let (Mm, gM ) and
(
F k, gF

)
be two Riemannian manifold,

and let u ∈ C∞(M), u > 0. The warped product Nm+k = Mm ×u F k is the

product manifold M × F endowed with the metric

gN = π∗gM + (u ◦ π)2σ∗gF . (4.1)

M is called the base of N , F the fibre and u is the warping function.

It can be shown that, for all x ∈ M and q ∈ F , the fibres {x} × F =

π−1(x) and the leaves M × {q} = σ−1(q) are Riemannian submanifolds of

N , and the warped metric satisfies the following properties:

(i) ∀ q ∈ F , π |M×{q} is an isometry onto M ;

(ii) ∀x ∈M , σ |{x}×F is a positive homothety onto F ;

(iii) ∀ (x, q) ∈ N , the leaf M ×{q} and the fibre {x}×F are orthogonal at

(x, q).

If h ∈ C∞(M), the lift of h to N is h̃ = h ◦ π ∈ C∞(N); if w ∈ TxM and

q ∈ F , then the lift w̃ of w to (x, q) is the (unique) vector in T(x,q)N such
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that π∗(w̃) = w, while if W ∈ X(M) (where X(M) is the set of smooth vector

fields on M) the lift of W to N is the (smooth) vector field W̃ whose value

at each (x, q) is the lift of Wx to (x, q). In other words, W̃ is the unique

element of X(N) that is π-related to W and σ-related to the zero vector

field on F . Functions, tangent vectors and vector fields on F are lifted to

N in the same way using the projection σ. A vector X tangent to a leaf

(i.e. σ∗(X) = 0) is called horizontal, while a vector V tangent to a fibre (i.e.

π∗(V ) = 0) is called vertical. We have the following

Lemma 4.2. ([O’N83], Lemma 7.34) If h ∈ C∞(M), then N∇(h ◦ π), the

gradient on N of the lift h ◦π, is the lift to N of ∇Mh, the gradient of h on

M .

Proof. We have to show that N∇(h ◦π) is horizontal and π-related to ∇Mh.

If V is a vertical tangent vector to N , then gN
(
N∇(h ◦ π), V

)
= V (h ◦ π) =

π∗(V )(h) = 0, since π∗(V ) ≡ 0. Thus N∇(h ◦ π) is horizontal. If X is

horizontal,

gM
(
π∗
(
N∇(h ◦ π)

)
, π∗(X)

)
= gN

(
N∇(h ◦ π), X

)
= X(h ◦ π) =

= π∗(X)(h ◦ π) = gM
(
∇Mh, π∗(X)

)
.

Hence at each point π∗
(
N∇(h ◦ π)

)
= ∇Mh, i.e. N∇(h ◦ π) is π-related to

∇Mh.

The previous Lemma allows us to simplify the notation by writing h for

h ◦ π and ∇h for N∇(h ◦ π).

Denote now by M Ricc,F Ricc,N Hess(u) the lifts to N (i.e., the pullbacks

via π) of the (0, 2)-tensors RiccM ,RiccF and Hess(u) respectively. We have

the

Proposition 4.3. ([O’N83], Corollary 7.43) If RiccN is the Ricci curvature

of the warped product Nm+k = Mm×u F k, X,Y horizontal vector fields and

U, V vertical vector fields, then:

1. RiccN (X,Y ) = M Ricc(X,Y )− k
u
N Hess(u)(X,Y );
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2. RiccN (X,U) = 0;

3. RiccN (U, V ) = F Ricc(U, V )− gN (U, V )u],

where u] = ∆u
u + k−1

u2 |∇u|2 and ∆ is the Laplacian on M .

Note that, by Lemma 4.2,

|∇u|2 = gM
(
∇Mu,∇Mu

)
= gN

(
N∇(u ◦ h), N∇(u ◦ h)

)
.

We now recall

Definition 4.4. A Riemannian manifold (Mm, gM ) is called Einstein if its

Ricci tensor RiccM satisfies

RiccM = λgM (4.2)

for some λ ∈ R.

Obviously, an Einstein warped product is a warped product which is

also an Einstein manifold. Proposition 4.3 implies, for k ≥ 3 (to ensure

the validity of Schur’s Lemma), the following characterization of Einstein

warped products (see [KK03]):

Corollary 4.5. ([KK03], Corollary 3) The warped product Nm+k = Mm×u
F k is Einstein with RiccN = λgN if and only if

RiccM = λgM +
k

u
Hess(u), (4.3)

(F, gF ) is Einstein with RiccF = µgF for some µ ∈ R (4.4)

and

u∆u+ (k − 1)|∇u|2 + λu2 = µ. (4.5)

In [KK03], Proposition 5, it is also proved that

Proposition 4.6. If (Mm, gM ) is a Riemannian manifold and u ∈ C∞(M)

satisfies (4.3) for λ ∈ R and k ∈ N, then u also satisfies (4.5) for some

constant µ ∈ R.
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Remark. This result is stated in [KK03] for compact manifolds, but since

the proof is local it works also in the general case.

4.1.2 Quasi-Einstein manifolds vs. Einstein warped products

A weighted manifold, also known in the literature as a smooth metric measure

space, is a triple
(
Mm, gM , e

−fdµ0

)
, where Mm is a complete m-dimensional

Riemannian manifold with metric gM , f ∈ C∞(M) and dµ0, as in the pre-

vious Chapters, denotes the canonical Riemannian volume form on M . The

Ricci tensor can be naturally extended to weighted manifolds introducing

the modified k-Bakry-Emery Ricci tensor

Ricckf = RiccM + Hess(f)− 1

k
df ⊗ df, for 0 < k ≤ ∞. (4.6)

When f is constant, Ricckf ≡ RiccM , while, if k = ∞, Ricckf = Riccf , the

usual Bakry-Emery Ricci tensor. For a detailed introduction to weighted

manifolds and the k-Bakry-Emery Ricci tensor, we refer to the interesting

papers of Wei and Wylie ([WW09], [WW07]) and Li ([Li05]).

In [CSW08] the authors give the following

Definition 4.7. A triple
(
Mm, gM , e

−fdµ0

)
(with M, gM and f as before)

is called a (k)-quasi-Einstein or simply a quasi-Einstein manifold (and gM

is a quasi-Einstein metric) if

Ricckf = λgM (4.7)

for some λ ∈ R.

We note that:

• if f = constant, (4.7) gives the Einstein equation (4.2), and in this case

we call the quasi-Einstein metric trivial ;

• if k = ∞, (4.7) is exactly the gradient Ricci soliton equation. In the

last years, since the appearance of the seminal works of R. Hamilton

[Ham88] and G. Perelman [Per03], the study of Ricci solitons (and of
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their generalizations) has become the matter of a rapidly increasing

investigation, directed mainly toward problems of classification and

triviality ; among the enormous literature on the subject we only quote,

as a few examples, the papers [PW09a], [PW09c], [PW09b], [PRS10],

[PRRS10], [ENM08].

The case k ∈ N is the one we are interested in, because of its relation

with Einstein warped product metrics. Indeed, in [CSW08], elaborating

on [KK03], it is proved a characterization of quasi-Einstein metrics as base

metrics of Einstein warped product metrics. This characterization can be

formulated in the following, elegant form (see [Rim10], Theorem 2):

Theorem 4.8. If Nm+k = Mm ×u F k is an Einstein warped product with

Einstein constant λ, warping function u = e−f/k and Einstein fibre F k,

then the weighted manifold
(
Mm, gM , e

−fdµ0

)
satisfies the quasi-Einstein

equation (4.7); furthermore, the Einstein constant µ of the fibre satisfies the

equation

∆f − |∇f |2 = kλ− kµe
2
k
f . (4.8)

Conversely, if the weighted manifold
(
Mm, gM , e

−fdµ0

)
satisfies (4.7),

then f satisfies (4.8) for some constant µ ∈ R. Consider the warped product

Nm+k = Mm ×u F k, with u = e−f/k, and Einstein fibre F with Einstein

constant µ. Then N is Einstein with RiccN = λgN .

The proof of Theorem 4.8 is a direct consequence of Corollary 4.5 and

Proposition 4.6, once we observe that

∇u = −1

k
e−

f
k∇f,

k

u
Hess(u) = −Hess(f) +

1

k
df ⊗ df,

and
k

u
∆u = −∆f +

1

k
|∇f |2.

The previous characterization enables us to study Einstein warped products

by focusing only on equation (4.7) on the base (Mm, gM ), which in turn
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implies (by Proposition 4.6) equation (4.8).

Before we proceed, we need to point out some rather simple, but funda-

mental, relations that allow us to exploit some of the machinery developed

in the previous Chapters also in our new geometrical setting. Following the

notation of Petersen and Wylie (see [PW09a], [PW09c], [PW09b]) define,

for f ∈ C∞(M) (but C2 is enough) the f -Laplacian ∆f as

∆fu = ef div
(
e−f∇u

)
= ∆u− 〈∇f,∇u〉 , u ∈ C2(M). (4.9)

∆ff is a diffusion-type operator, symmetric on L2
(
M, e−fdµ0

)
, and it coin-

cides with the operator L defined in [Li05] and quoted in the Introduction.

A simple look at equation (4.8) shows that this latter can be rewritten as

∆ff = kλ− kµe
2
k
f . (4.10)

Since, for

A = e−f (4.11)

and

k = n−m, (4.12)

∆f is nothing else than the operator LA studied before and

Ricckf = Riccn,m(LA), (4.13)

we expect that, under appropriate assumptions on f and the geometry of M ,

some results and techniques of Chapters 1 and 2 can be applied to (4.10).

This will be the content of the next Sections.

4.1.3 Examples in the literature

As pointed out in [Cas10], examples of quasi-Einstein manifolds with λ < 0

and µ of arbitrary sign, or with λ = 0 and µ ≥ 0 are constructed in [Bes08].

Moreover, in the latter case, all non-trivial examples have µ > 0, because

the trivial quasi-Einstein metric with λ = 0 necessarily satisfies µ = 0.
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Other non-trivial examples with λ > 0, k > 1 and µ > 0 are constructed in

[LPP04]. Since, if k <∞ and λ > 0, M is necessarily compact (see [Qia97],

[WW07]), the maximum principle applied to (4.8) yields that µ > 0 in this

situation. Triviality in case λ = 0 and µ ≤ 0 is discussed in [Cas10]; the

author proves the following two results1:

Theorem 4.9. ([Cas10], Theorem 1.1) Let (M, g) be a complete Rieman-

nian manifold such that Ricckf = 0 for some smooth function f and 0 < k ≤
∞, and let µ be the constant given by

∆ff = −kµe
2
k
f . (4.14)

Then µ ≥ 0, and equality holds if and only if (M, g) is Ricci-flat.

Theorem 4.10. ([Cas10], Theorem 1.2) Let (M, g) be a complete Rie-

mannian manifold such that Ricckf ≥ 0 for some smooth function f and

0 < k ≤ ∞, and suppose that

∆ff = c1e
c2f (4.15)

for constants c1, c2 ≥ 0. Then f is constant.

In [Rim10] M. Rimoldi extends the triviality result of [KK03] for Einstein

warped product with nonpositive scalar curvature and compact base to the

case of a non-compact base, obtaining the next

Theorem 4.11. ([Rim10], Theorem 1) Let Nm+k = Mm ×u F k be a com-

plete Einstein warped product with non-positive scalar curvature NS ≤ 0,

warping function u = e−
f
k satisfying infM f = f∗ > −∞ and complete Ein-

stein fibre F . Then N is a Riemannian product if either one of the following

further conditions is satisfied:

(a) f has a local minimum;

(b) the base manifold M is complete and non-compact, the warping func-

tion satisfies
∫
M |f |

pe−
f
k dµ0 < +∞ for some 1 < p < +∞, and

f(x0) ≤ 0 for some point x0 ∈M .

1Note that the second is stronger than the first.
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In the next Sections we concentrate on the case (geometrically meaning-

ful, by the previous discussion) λ ≤ 0, µ < 0.

4.2 Two consequences from the first Chapters

In this section we apply some of the results of Chapter 1 and 2 to Einstein

warped products. We begin with a consequence of Theorem 2.1.

Theorem 4.12. Let N = Mm×uF k be a complete Einstein warped product

with Einstein constant λ < 0, warping function u = e−f/k and Einstein fibre

F k with Einstein constant µ < 0. Suppose that

f ≥ k

2
log

(
λ

2µ

)
for all x ∈M (4.16)

and that

|f | ≤ D(1 + r(x))ν (4.17)

for some D ≥ 0, ν ∈ R. Then N is a Riemannian product, provided

0 ≤ ν < 1. (4.18)

Proof. Since N is an Einstein warped product, from the previous discussions

we know that f satisfies (4.10). Now, condition (2.1) is satisfied (with equal-

ity sign) for δ = 0 and λ = −(n− 1)H2 = −(m+ k − 1)H2, condition (2.3)

is guaranteed by (4.16) and (2.4) is valid for all θ ∈ R, since A = B = e−f ,

so we can choose, for instance, θ = −2. Hence f is constant by Theorem

2.1.

Analogously, as a consequence of Corollary 2.5 we easily deduce

Theorem 4.13. Let N = Mm×uF k be a complete Einstein warped product

with Einstein constant λ < 0, warping function u = e−f/k and Einstein fibre

F k with Einstein constant µ < 0. Let Φ : R+
0 → R be the function

Φ(t) = 2k

(
λt− kµ

2
e

2
k
t + C

)
+ λ
(
t2 + dt

)
(4.19)
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for some C ∈ R, d > 0 chosen in such a way that Φ ≥ 0. Suppose also that

f is non-negative and bounded and that

d ≥ − 2

λ
sup
M

∣∣∣kλ− kµe 2
k
f
∣∣∣+ 2 sup

M
|f |. (4.20)

If there exists a point x0 ∈M such that

Φ(f(x0)) = 0

then N is a Riemannian product.

4.3 Triviality under Lp conditions

In the present Section we state a weighted version of Theorem 1.31 in

[PRS05a], which can be proved by minor changes to the proof of this lat-

ter, and a sufficient condition for the validity of the full Omori-Yau maxi-

mum principle for the f -Laplacian; our goal is to deduce a triviality result

for complete Einstein warped products, which is a Corollary of Theorem

1 in [Rim10], replacing the integrability assumptions with weight e−
f
k in

the aforementioned Theorem with more natural conditions. We recall that

(M, 〈 , 〉) is said to satisfy the Omori-Yau maximum principle if for each

u ∈ C2(M) such that u∗ = supM u < +∞ there exists a sequence {xk} ⊂M
such that

(i)u(xk) > u∗ − 1

k
, (ii) |∇u(xk)| <

1

k
, (iii) ∆u(xk) <

1

k

for each k ∈ N. First we have (compare with Theorem 1.31 in [PRS05a]):

Theorem 4.14. Assume on the complete weighted manifold (M, gM , e
−fdvol)

the validity of the Omori-Yau maximum principle for the f -Laplacian. Let

v ∈ C2(M) be a solution of the differential inequality

∆fv ≥ Φ(v, |∇v|),
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with Φ(t, y) continuous in t, C2 in y and such that

∂2Φ

∂y2
(t, y) ≥ 0.

Set ϕ(t) = Φ(t, 0). Then a sufficient condition to guarantee that

v∗ = sup
M

v < +∞

is the existence of a continuous function F positive on [a,+∞) for some

a ∈ R satisfying {∫ t

a
F (s)ds

}− 1
2

∈ L1(+∞), (4.21)

lim sup
t→+∞

∫ t
a F (s)ds

tF (t)
< +∞, (4.22)

lim inf
t→+∞

ϕ(t)

F (t)
> 0 (4.23)

and

lim inf
t→+∞

{∫ t
a F (s)ds

} 1
2

F (t)

∂Φ

∂y

∣∣∣∣
(t,0)

> −∞. (4.24)

Furthermore in this case

ϕ(v∗) ≤ 0.

Now consider again the equation (4.10) and let µ < 0. If we choose

ϕ(t) = Φ(t, y) = kλ − kµe
2
k
t and F (t) = (t − a)σ, with t ∈ [a,∞) and

σ > 1, then F satisfies the assumptions of Theorem 4.14. However, to use

this theorem, we have also to assure on
(
Mm, gM , e

−fdµ0

)
the validity of

the Omori-Yau maximum principle. We will use the following result, which

is a consequence of Theorem 4.1 in [PRRS10].

Corollary 4.15. Let (Mm, gM , e
−fdµ0) be a complete weighted manifold

such that

Ricckf (∇r,∇r) ≥ −(m+ k − 1)G(r) (4.25)
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for a smooth positive function G on [0,+∞), even at the origin, satisfying

(i) G (0) > 0, (ii) G′ (t) ≥ 0 on [0,+∞) ,

(iii)G (t)−
1
2 /∈ L1 (+∞) , (iv) lim supt→+∞

tG
(
t

1
2

)
G(t) < +∞.

(4.26)

Then the Omori-Yau maximum principle for the f -laplacian holds on M .

Proof. Let h be the solution on R+
0 of the Cauchy problem{

h′′ −Gh = 0

h(0) = 0; h′(0) = 1.

Then, by Proposition 2.3 in [MRS10], the inequality

∆fr ≤ −(m+ k − 1)
h′

h
≤ C1G(r)

1
2 ,

holds pointwise in M \ (cut(o) ∪ {o}) for some constant C1. Thus

∆fr
2 = 2r∆fr + 2 ≤ 2 + 2rC1G(r)

1
2 ≤ C2rG(r)

1
2 , (4.27)

off a compact set, and the hypotheses (4.1), (4.2) and (4.3) of Theorem 4.1

in [PRRS10] are satisfied with γ = r2. In that theorem it is also assumed a

bound on the gradient of f , but here we don’t need this further hypothesis.

Indeed by (4.27) we can replace the last part of the proof of Theorem 4.1 in
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[PRRS10] with the following computation:

∆fu (xk) = ∆u (xk)− 〈∇u,∇f〉 (xk)

≤(u (xk)− u (p) + 1)

k

{
ϕ′(γ(xk))

ϕ(γ(xk))
∆γ(xk) +

1

k

(
ϕ′(γ(xk))

ϕ(γ(xk))

)2

|∇γ|2 (xk)

}

− (u (xk)− u (p) + 1)

k

ϕ′(γ(xk))

ϕ(γ(xk))
〈∇γ(xk),∇f(xk)〉

≤(u (xk)− u (p) + 1)

k

{
ϕ′(γ(xk))

ϕ(γ(xk))
∆fγ(xk) +

1

k

(
ϕ′(γ(xk))

ϕ(γ(xk))

)2

|∇γ|2 (xk)

}

≤(u (xk)− u (p) + 1)

k

{
c

γ1/2G
(
γ1/2

)1/2C2γ
1/2G

(
γ1/2

)1/2

+
1

k
· c2

γG
(
γ1/2

)A2γ

}
,

and the RHS tends to zero as k → +∞.

Hence, choosing G(t) = t2 + |λ|+ε
m+k−1 , for some ε > 0, we obtain the

following corollary of Theorem 1 in [Rim10].

Corollary 4.16. Let Nm+k = Mm ×u F k be a complete Einstein warped

product with non-positive scalar curvature (m + k)λ = NS ≤ 0, warping

function u(x) = e−
f(x)
k satisfying infM f = f∗ > −∞ and complete Einstein

fibre F . Suppose also that FS < 0. Then N is simply a Riemannian product

if either one of the following further conditions is satisfied:

(i) the base manifold M is complete and non-compact, the warping func-

tion satisfies f ∈ Lp(M), for some 1 < p < +∞, and f (x0) ≤ 0 for

some point x0 ∈M ;

(ii) the base manifold M is complete and non-compact, the warping func-

tion satisfies f ∈ Lp(M), for some 1 < p < +∞, and the scalar

curvatures of M and N satisfy

MS ≥ m

m+ k
NS + ε,
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for some ε > 0.

Proof. Let f̂ = f
k . Since f∗ < +∞ by Theorem 4.14 and, by assumption,

f∗ > −∞, the point (i) follows from (b) of Theorem 1 in [Rim10] noting that

in this case f̂ -weighted volumes are equivalent to Riemannian volumes.

For the same reason, since

vol
f̂
(M) ≤ volf (M)e

k−1
k
f∗ ,

we have, from the volume estimates in [Qia97] and by Theorem 9 in [Rim10],

that the weak maximum principle at infinity for the f̂ -Laplacian holds on

M . Hence we can construct a sequence {xn} such that f(xn) → f∗ and

∆
f̂
f(xn) ≥ − 1

n . Thus, since tracing (4.7) we have that ∆
f̂
f = mλ − MS,

we obtain that

− 1

n
≤ mλ− MS(xn) ≤ mλ− MS∗ ≤ 0,

where in the last inequality we have used the estimates of Theorem 3 in

[Rim10]. Taking the limit for n → +∞ we get MS∗ = mλ. Using this,

under assumption (ii), since we have that infM
MS > mλ we conclude the

constancy of u.

4.4 A further gradient estimate and another Liouville-

type theorem

In this final Section we prove a further gradient estimate, which extend that

in [Cas10], and that allows us to obtain another triviality result when the

function f (related to the warping function u by u = e−f/k) is bounded below

by a constant depending on m = dimM,k and on the Einstein constants λ

and µ, respectively of the warped product and of the fibre.

Theorem 4.17. Let
(
Mm, g, e−fdµ0

)
be a weighted manifold (not necessar-

ily complete); suppose that, for some k < +∞, Z ≥ 0,

Ricckf ≥ λ = −(m+ k − 1)Z2 (4.28)
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and that

∆ff = ψ(f), (4.29)

where ψ : R→ R satisfies

ψ′(t) +
2

m
ψ(t)− (m+ k − 1)Z2 ≥ 0 (4.30)

for all t ∈ R. Then for all q ∈M and T > 0 such that BT (q) is geodesically

connected in M and the closure BT (q) is compact,

|∇f |2(q) ≤ 1

G(m ‖ k)

[
2(m+ k + 6)

T 2
− 4
√

3

9

λ

Z

1

T

]
, (4.31)

having defined

G(m ‖ k) :=
1

m
+

1

k
.

Proof. Let λ := −(m+ k − 1)Z2, so that (4.28) and (4.30) become, respec-

tively,

Ricckf ≥ λ (4.32)

and

ψ′(t) +
2

m
ψ(t) + λ ≥ 0. (4.33)

The Bockner-Weitzenböck formula for LA (see the Appendix) tells us that,

if u ∈ C3(M), then

1

2
∆f |∇u|2 = |Hess(u)|2 + 〈∇u,∇∆fu〉+ Ricckf (∇u,∇u) +

1

k
〈∇f,∇u〉2 .

Applying the previous formula to f and using (4.32), (4.33), Newton in-
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equalities and ∆f = ∆ff + |∇f |2 we obtain

1

2
∆f |∇f |2 = |Hess(f)|2 + 〈∇f,∇∆ff〉+ Ricckf (∇f,∇f) +

1

k
|∇f |2

≥ |Hess(f)|2 + ψ′(f)|∇f |2 + λ|∇f |2 +
1

k
|∇f |4

≥ 1

m
(∆f)2 + ψ′(f)|∇f |2 + λ|∇f |2 +

1

k
|∇f |4

=
1

m
ψ2(f) +

(
2

m
ψ(f) + ψ′(f) + λ

)
|∇f |2 +

(
1

m
+

1

k

)
|∇f |4

≥
(

1

m
+

1

k

)
|∇f |4,

and then we deduce

∆ff |∇f |2 ≥ 2G(m ‖ k)|∇f |4. (4.34)

Let now ρ(x) := dist (q, x) (using a trick of Calabi, [Cal57], we can suppose

that ρ is smooth) and consider on BT (q) the function

F (x) =
[
T 2 − ρ2(x)

]2|∇f |2. (4.35)

If |∇f | ≡ 0 we have nothing to prove; if |∇f | 6≡ 0, since F ≥ 0 and

F |∂BT (q) ≡ 0, there exists a point x0 ∈ BT (q) such that F (x0) = max
BT (q)

F (x) >

0. At x0 we then have
∇F
F

(x0) = 0, (4.36)

∆fF

F
(x0) ≤ 0. (4.37)

A long but straightforward calculation (analogous to the one carried out in

the proof of Lemma 1.2) shows that (4.36) is equivalent to

∇|∇f |2

|∇f |2
=

2∇ρ2

T 2 − ρ2
at x0, (4.38)
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while (4.37), using (4.38) and the Gauss lemma, is equivalent to

0 ≥ −2
∆fρ

2

T 2 − ρ2
+

∆f |∇f |2

|∇f |2
− 24

ρ2

(T 2 − ρ2)2 at x0. (4.39)

As a consequence of the f -Laplacian comparison theorem (see [MRS10] and

the Appendix) we have

∆fρ
2 ≤ 2[(m+ k) + (m+ k − 1)Zρ]; (4.40)

combining (4.34), (4.39) and (4.40) we find, at x0,

0 ≥ −4
[(m+ k) + (m+ k − 1)Zρ]

T 2 − ρ2
+ 2G(m ‖ k)|∇f |2 − 24

ρ2

(T 2 − ρ2)2 ,

which implies, multiplying through by
(
T 2 − ρ2

)2
, that at x0 we have

0 ≥ −4[(m+ k) + (m+ k − 1)Zρ]
(
T 2 − ρ2

)
+ 2G(m ‖ k)F − 24ρ2. (4.41)

The previous relation can be rewritten as

0 ≥ −4(m+ k)
(
T 2 − ρ2

)
+ 2G(m ‖ k)F − 24ρ2 +H3(ρ), (4.42)

where H3 : [0, T ]→ R is defined by H3(ρ) = 4(m+k−1)Z
(
ρ3 − T 2ρ

)
. Since

H3 assumes its minimum value −8
√

3
9 (m+ k− 1)ZT 3 = (for Z 6= 0) 8

√
3λ

9Z T 3

for t̄ = T√
3
, equation (4.42) implies

0 ≥ −4(m+ k)T 2 + 2G(m ‖ k)
[
T 2 − ρ2(x)

]2|∇f |2 +
8
√

3λ

9Z
T 3 − 24ρ2,

and so

2G(m ‖ k)
[
T 2 − ρ2(x)

]2|∇f |2 ≤ 4(m+ k + 6)T 2 − 8
√

3λ

9Z
T 3,

which easily implies the thesis taking the sup on BT (q).

Remark. The previous estimates should be compared with the one in [Cas10],
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valid for λ = 0.

Theorem 4.17 implies the following Liouville-type result.

Theorem 4.18. Let N = Mm×uF k be a complete Einstein warped product

with Einstein constant λ < 0, warping function u = e−f/k and Einstein fibre

F k with Einstein constant µ < 0. Suppose that

f ≥ k

2
log

(
λ

2µ

m+ 2k

m+ k

)
for all x ∈M. (4.43)

Then N is a Riemannian product.

Proof. Since N is an Einstein warped product f satisfies (4.10), so, with

the notation used above, we have that ψ(t) = kλ − kµe
2
k
t. Equation (4.43)

implies (4.30), so we can apply Theorem 4.17. Since M is complete, letting

T → +∞ we obtain the thesis.



Appendix A

Some useful results

In this Appendix we prove a couple of results and some relations not so eas-

ily available in literature. In the first Section we deduce, using the moving

frame method, a generalized Bochner-Weitzenböck formula for the opera-

tor LA; in the second Section we derive a useful version Cauchy-Schwarz

inequality, a consequence of the LA-comparison theorem and a particular

Newton inequality. The third and last Section is devoted to the proof of the

Calabi-Yau volume estimate.

A.1 The generalized Bochner-Weitzenböck formula

In this section we prove a Bochner-Weitzenböck-type formula for the opera-

tor LA, i.e.

1

2
LA|∇u|2 = |Hess(u)|2 + Ricc(LA)(∇u,∇u) + 〈∇LAu,∇u〉 , (1.5)

with

Ricc(LA) = Ricc− 1

A
Hess(A) +

1

A2
dA⊗ dA

and u ∈ C3(M).

Proof. We begin with
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Lemma A.1. (The classical Bochner-Weitzenböck formula) For all u ∈
C3(M) we have

1

2
∆|∇u|2 = |Hess(u)|2 + RiccM (∇u,∇u) + 〈∇∆u,∇u〉 . (1.6)

Proof. (of the Lemma) We use the method of the moving frame referring

to a local orthonormal coframe
{
θi
}

for the metric and corresponding Levi-

Civita and curvature forms, respectively indicated with
{
θij

}
and

{
Θi
j

}
, 1 ≤

i, j, . . . ≤ m = dimM . By definition of covariant derivative, if v ∈ C2(M)

we have

vikθ
k = dvi − vtθti ,

so ∆v = vkk. Set now v = |∇u|2 =
∑m

k=1(uk)
2; using the skew-symmetry of

the connection forms,

dv = viθ
i = 2ukduk = 2uk

(
uktθ

t + utθ
t
k

)
= 2ukukiθ

i,

so

vi = 2ukuki.

Now we compute vik:

vikθ
k = dvi − vtθti = 2d(ukuki)− 2ukuktθ

t
i =

= 2ukiduk + 2ukduki − 2ukuktθ
t
i =

= 2uki
(
uktθ

t + utθ
t
k

)
+ 2uk

(
ukitθ

t + utiθ
t
k + uktθ

t
i

)
− 2ukuktθ

t
i =

= (2ukiukt + 2ukukit)θ
t + 2ukiutθ

t
k − 2ukuktθ

t
i + 2ukutiθ

t
k + 2ukuktθ

t
i =

= (2ukiukt + 2ukukit)θ
t,

and then
1

2
∆|∇u|2 = uktukt + ukuktt. (A.1)

The conclusion is now achieved using the commutation relations

uijk = ujik = ujki + utRtjik,



A.2 Some inequalities 79

from which we deduce

uktt = uttk + usRstkt = uttk + usRsk.

From the definition of LA and the Bochner-Weitzenböck formula (1.6)

we have

LA|∇u|2 = ∆|∇u|2 +
1

A

〈
∇A,∇|∇u|2

〉
= (A.2)

= 2|Hess(u)|2 + 2 RiccM (∇u,∇u) + 2 〈∇∆u,∇u〉+

+
1

A

〈
∇A,∇|∇u|2

〉
=

= 2|Hess(u)|2 + 2 RiccM (∇u,∇u) + 2 〈∇LAu,∇u〉+

+
1

A

〈
∇A,∇|∇u|2

〉
− 2

〈
∇
(

1

A
〈∇A,∇u〉

)
,∇u

〉
.

Since d
(∑m

i=1 u
2
i

)
= 2uidui = 2ui

(
uitθ

t + utθ
t
i

)
= 2uiuitθ

t, we deduce that〈
∇A,∇|∇u|2

〉
= 2 Hess(u)(∇u,∇A). (A.3)

Finally, since d(〈∇A,∇u〉) = d(Aiui) = uidAi +Aidui = (uiAik +Aiuik)θ
k,

we get

〈∇ 〈∇A,∇u〉 ,∇u〉 = Hess(A)(∇u,∇u) + Hess(u)(∇u,∇A). (A.4)

Inserting (A.3) and (A.4) into (A.2) we obtain the thesis.

A.2 Some inequalities

In this section we prove in detail some relations exploited in the previous

Chapters.
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A.2.1 Cauchy-Schwarz revisited∣∣∣∇|∇u|2∣∣∣2 ≤ 4|∇u|2|Hess(u)|2. (1.17)

Proof. Inequality (1.17) follows from the more general relation∣∣∣∇|X|2∣∣∣2 ≤ 4|X|2|∇X|2 (A.5)

valid for a general vector field X on M . Equation (A.5) is a direct conse-

quence of the Cauchy-Schwarz inequality:∣∣∣∇|X|2∣∣∣2 = |∇ 〈X,X〉|2 = 4|〈X,∇X〉|2 ≤ 4|X|2|∇X|2.

A.2.2 A consequence of the LA-comparison theorem

As observed in the Introduction, defining r(x) = dist (x, o) for x ∈ BT (o),

assumption

Riccn,m(LA) ≥ −(n− 1)Z2 (0.5)

for some constant Z ≥ 0 on the geodesic ball BT (o) implies

LAr ≤ (n− 1)Z coth(Zr), (0.6)

pointwise on BT (o)\{cut(o) ∪ {o}} and weakly on all of BT (o) (see [MRS10]

for details). We want to show that (0.6) also implies

Lr2 ≤ 2
A

B
[n+ (n− 1)Zr] (1.19)

on BT (q).

Proof. From the L-diffusion property and Gauss lemma we have

Lr2 = 2rLr + 2
A

B
|∇r|2 = 2

A

B
(rLAr + 1).
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Using (0.6) we then deduce

Lr2 ≤ 2
A

B
(1 + (n− 1)Zr coth(Zr)),

so the thesis will be proved once we show that

1 + (n− 1)Zr coth(Zr) ≤ n+ (n− 1)Zr (A.6)

on BT (o). Set y = Zr; a simple computation yields that (A.6) is equivalent

to

y coth(y) ≤ y + 1, 0 ≤ y ≤ ZT. (A.7)

Inequality (A.7) is true in a limit sense for y = 0 (just remember that

coth(y) ∼ 1
y for y → 0+), while for y > 0 is implied (taking the inverses of

both sides) by

e2y ≥ 2y − 1,

which is valid for all y ≥ 0.

A.2.3 A Newton inequality

|Hess(u)|2 ≥ 1

m
(∆u)2. (1.24)

Proof. The previous relation is a consequence of the more general inequality

‖A‖2 ≥ (trA)2

m
, (A.8)

where A ∈ Mat(m,R), ‖A‖ is the norm of A and tr stands for trace. To

prove (A.8) we consider the m-dimensional vectors a = (a11, a22, . . . , amm)

and v = (1, 1, . . . , 1) and we apply Cauchy-Schwarz inequality to deduce

|a · v|2 =

(
m∑
i=1

aii

)2

≤ m
m∑
i=1

(aii)
2 ≤ m

m∑
i,j=1

(aij)
2,

which easily implies (1.24).
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A.3 The Calabi-Yau volume estimate

Proposition A.2. Let (M, 〈 , 〉) be complete, non-compact Riemannian man-

ifold, A ∈ C2(M), A > 0. Suppose that

Riccn,m(LA) ≥ 0 (A.9)

for some n > m = dimM . Then

µ(BR(o)) ≥ CR, C > 0, R� 1. (A.10)

Proof. Define the vector field

Z = A∇r2,

so that, using the LA-comparison Theorem (see [MRS10]) and Gauss lemma,

we deduce

divZ = ALAr
2 = A

(
2rLAr + r|∇r|2

)
≤ A2r

n− 1

r
+ 2A = 2mA,

weakly on M and pointwise on M \ {cut(o) ∪ {o}}. Fix now a geodesic ball

of radius R, BR(o), a point x0 ∈ ∂BR(o) and set ρ(x) = dist(x, x0). Again

we deduce

div
(
A∇ρ2

)
≤ 2mA (weakly),

thus, ∀ψ ∈ Lip0(M), ψ : M → R+
0 with suppψ ⊆ BR+ε(x0),

−
∫
BR+ε(x0)

〈
∇ψ,∇ρ2

〉
dµ ≤ 2m

∫
BR+ε(x0)

dµ, (A.11)

where ε > 0 and, as in the previous Chapters, dµ = Adµ0. We choose now

ψ(x) = u(ρ(x)), with

u =


1, 0 ≤ ρ ≤ R− ε;

− 1
2ερ+ R+ε

2ε , R− ε ≤ ρ ≤ R+ ε;

0, ρ ≥ R+ ε.
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Thus

−
∫
BR+ε(x0)

〈
∇ψ,∇ρ2

〉
dµ = −2

∫
BR+ε(x0)\BR−ε(x0)

u′(ρ) 〈∇ρ,∇ρ〉Aρ =

=
1

ε

∫
BR+ε(x0)\BR−ε(x0)

ρAdµ0 ≥
R− ε
ε

∫
BR+ε(x0)\BR−ε(x0)

Adµ0,

which implies, substituting in (A.11),

R− ε
ε

∫
BR+ε(x0)\BR−ε(x0)

Adµ0 ≤ 2m

∫
BR+ε(x0)

Adµ0. (A.12)

Since
∫
Bt(x0)Adµ0 = µ(Bt(x0)) by definition, equation (A.12) can be written

as

2mµ(BR+ε(x0)) ≥ R− ε
ε

[µ(BR+ε(x0))− µ(BR−ε(x0))];

moreover, BR+ε(x0) \BR−ε(x0) ⊇ Bε(o), so that

2mµ(BR+ε(x0)) ≥ R− ε
ε

µ(Bε(o)).

Since BR+ε(x0) ⊆ B2R+ε(o), we finally deduce

µ(B2R+ε(o)) ≥
R− ε
2mε

µ(Bε(o)), (A.13)

which implies the thesis for R� 1.

Corollary A.3. Under the hypothesis of Proposition A.2,

µ(M) =

∫
M
Adµ0 = +∞.



Bibliography

[AAC01] G. Alberti, L. Ambrosio, and X. Cabré. On a long-standing con-
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