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1. Autism Spectrum Disorders (ASD) 

 

1.1 Classification and clinical diagnosis 

Autistic behaviors were independently identified as recognizable syndromes in the early 20
th

 

century by Heller [Heller, 1908] and, subsequently, by Kanner [Kanner, 1943] and Asperger 

[Asperger, 1944]. In particular, Prof. Kanner described autism in 1943 in 11 children manifesting 

withdrawal from human contact as early as age 1 year postulating origins in prenatal life [Kanner, 

1943]. In the Diagnostic and Statistical Manual of Mental Disorders IV-Text Revised (DSM-IV-

TR) [Task Force on DSM-IV, 2000] the autism diagnosis spans a broad continuum of what are 

collectively known as Autism Spectrum Disorders (ASD) or Pervasive Developmental Disorders 

(PDD). ASD include several conditions, namely full-syndrome autism (Autistic Disorder or 

Idiopathic Autism) [MIM 209850], Childhood Disintegrative Disorder, Asperger Syndrome (AS) 

and Pervasive Developmental Disorder Not Otherwise Specified (PDD-NOS) [Task Force on 

DSM-IV, 2000].  

The latest estimates put the population prevalence of ASD at approximately 1 in 110 [Autism and 

Developmental Disabilities Monitoring Network, 2009]. Incidence appears to be independent of 

ancestry and demographics, when similar rates being found on a global scale when the same 

diagnostic tools are used [Fombonne, 2009]. ASD show a 4:1 male to female gender bias, which 

may rise to 11:1 when considering Asperger disorder [Gillberg et al., 2006]. 

Although heterogeneous, ASD are united by a combination of three core behavior symptoms: a) 

impaired language and communication; b) deficiencies in social interaction;  c) restricted interest 

and repetitive stereotypic behavior [Task Force on DSM-IV, 2000]. Symptoms of ASD usually 

begin in early childhood with evidence of delayed development before age 3 years, although 

prospective studies of children at higher risk have shown that deficits in social interaction and 

communication may be starting in the first 6-12 months of life [Pizzarelli and Cherubini, 2011]. 

The fully-autistic patients show impairments in all the three areas of behavior previously described, 

whereas AS patients have deficits in social interaction and behavior but normal cognitive 

development and language skills. A diagnosis of PDD-NOS is instead placed in those patients who 

meet the diagnostic criteria for autism, but with a later onset, or in those patients who show two out 

of the three core behavior symptoms [Task Force on DSM-IV, 2000]. Furthermore, about 50-70% 

of children with autism are identified as intellectually disabled by nonverbal IQ testing and 

approximately 25% develop seizures [Baird et al., 2006; Tuchman and Rapin, 2002]. Autism can 

be considered complex due to the presence of dysmorphic features (25-30%) and/or microcephaly 

(5-15%) or macrocephaly (30%), or essential (i.e., absence of physical abnormalities and 

microcephaly).  
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Other common pathological disturbances may be present including anxiety, sensorial 

abnormalities, gait and motor disturbances, sleep disturbances and comorbidity with psychiatric 

disorders such as attention deficit hyperactivity disorder (ADHD), obsessive-compulsive disorder 

(OCD) and mood disorder [Geschwind, 2009]. 

Rating scales helpful in establishing the diagnosis are Autism Diagnostic Interview-Revised (ADI-

R) and the Autism Diagnostic Observation Schedule (ADOS) in combination with clinical 

presentation [Lord et al., 1989, 1994]. 

 

1.2 Etiopathogenesis 

1.2.1 Genetic architecture in Autism Spectrum Disorders  

The etiology of ASD is complex and encompasses the roles of genes, the mitochondria, the 

environment, and the immune system. However, there is strong evidence for the importance of 

complex genetic factors comprised of different form of genetic variations in the etiology of ASD. 

Twin and family studies have, indeed, established the preponderant genetic basis of autism and 

indicate that the heritability of autism is over 90% [Abrahams e Geschwind, 2008; Freitag, 2007; 

Monaco and Bailey 2001; Muhle et al., 2004; Persico e Bourgeron, 2006], which is the highest 

heritability value so far associated with a neuropsychiatric disorder [Schaaf and Zoghbi, 2011]. 

Furthermore, the recurrence risk for ASD varies by gender for the second child to be affected (4% 

if the first child affected is a female and 7% if a male), whereas the recurrence rate increases to 25-

30% if the second child is also diagnosed with ASD [Constantino et al., 2010; Ozonoff et al., 2011; 

Rosenberg et al., 2011].  

The genetic causes of ASD can be classified as follows (Figure 1): 

1) ASD-related monogenic syndromes; 

2) rare chromosomal abnormalities; 

3) rare copy number variations (CNVs); 

4) rare gene mutations; 

5) common genetic variants. 

 

1) Approximately 10% of patients with ASD have an identifiable Mendelian condition or genetic 

syndrome (Fig. 1) [Devlin and Scherer, 2012]. This means that these patients are characterized by a 

complex phenotypic picture, showing autistic traits as well as craniofacial dysmorphism and/or 

congenital malformations. Unlike idiopathic autism, syndromic ASD have a sex ratio M:F of 1:1. 

Among these syndromes the most frequent are Fragile X syndrome (~1-2% of ASD cases), 

Tuberous sclerosis (~1%), PTEN macrocephaly syndrome (1%), and Rett syndrome (~0.5-1%). In 

detail, Fragile X syndrome is caused by expansion of the CGG trinucleotide repeat in the FMR1 

gene to the full mutation size of 200 or more CGG repeats. Molecular studies indicate that FMR1 
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may cause the autism phenotype via two mechanisms: RNA toxicity to the neurons and gene 

silencing that affects neuronal connectivity [Hagerman et al., 2008; Handa et al., 2005; Schenck et 

al., 2003].  

The PTEN (phosphatase and tensin homolog) gene was initially described as a tumor suppressor 

gene associated with a broad group of disorders referred to as PTEN hamartoma tumor syndrome. 

More recently, PTEN mutations have been associated with autism and macrocephaly [Butler et al., 

2005; Buxbaum et al., 2007; Delatycki et al., 2003; Parisi et al., 2001; Zori et al., 1998], and PTEN 

is recognized to play an important role in brain development, neuronal survival and synaptic 

plasticity. 

Rett syndrome was initially classified by the DSM-IV as a pervasive developmental disorder 

(PDD) and it is the only PDD for which a specific genetic etiology has been identified [Amir et al., 

1999]. Ninety-six percent of individuals with classic Rett syndrome have mutations in the X-linked 

MECP2 gene [Moretti and Zoghbi, 2006] and MECP2 mutations have been reported in 

approximately 1% of children diagnosed with autism [Lintas and Persico, 2009; Moretti and 

Zoghbi, 2006]. Evidence of variable expression of MeCP2 in the brains of individuals with both 

autism and Rett syndrome and evidence that MeCP2 deficiency can reduce expression of the genes 

UBE3A and GABRB3, which are implicated in autism, indicate some causal relationship between 

the two disorders [Samaco et al., 2004, 2005]. 

Other rare syndromes associated with ASD (<1%) are, for example, Neurofibromatosis type I, 

Sotos, Timothy, and Joubert syndromes. Moreover, in a recent review over than 103 disease genes 

were identified among subjects with ASD or autistic behavior [Betancur, 2011]. These genes have 

all been previously implicated in ID, thus suggesting that these two neurodevelopmental disorders 

share common genetic basis. 

 

Fig. 1. Genetic architecture in ASD. Four groupings are shown of rare genetic risk factors and their estimated 

contribution to ASD. Genetic contributions to ASD can also arise from direct or indirect effects on genes and 

proteins by environmental influences [Devlin and Scherer, 2012]. 
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2) High resolution karyotyping reveals cytogenetically chromosome rearrangements in ~5% of 

individuals with ASD (Fig. 1). Interestingly, the largest unbalanced chromosomal anomalies were 

found in syndromic-ASD [Devlin and Scherer, 2012; Jacquemont et al., 2006; Miles et al., 2005]. 

Although cytogenetic abnormalities on almost every chromosome have been found in autism, only 

a few occur commonly enough to be possible loci for autism genes [Reddy, 2005; Vorstman et al., 

2006; Wassink et al., 2001]. Among them, the most common cytogenetic abnormality found in 

individuals with ASD (3-5%) is the maternally derived 15q11-q13 duplication of the Prader-

Willi/Angelman syndrome critical region, which is generally the result of a de novo supernumerary 

isodicentric 15q chromosome and less commonly the result of a maternally derived interstitial 15q 

duplication. The maternally derived 15q11-q13 interstitial duplication is a highly penetrant cause of 

autism, whereas the paternally derived duplication has little or no phenotypic effect, indicating the 

significance of genomic imprinting of this region [Hogart et al., 2010].  

Other aneuploidies in ASD include trisomy 21 [Kent et al., 1999], 45,X Turner syndrome [Skuse 

2000], deletions of 2q37, 18q, 22q13.3, Xp22.3, and the sex chromosome aneuploidies 47,XYY, 

47,XXY [Gillberg, 1998; Jha et al., 2007; Manning et al., 2004; Marshall et al., 2008; Vorstman et 

al., 2006; Shinawi et al., 2009a]. 

 

3) Rare de novo and inherited CNVs can also contribute to the genetics of ASD in as many as ~5-

7% of ASD cases reported of unknown cause [Christian et al., 2008; Devlin and Scherer, 2012; 

Gilman et al., 2011; Kumar et al., 2008; Levy et al., 2011; Marshall et al., 2008; Sanders et al., 

2011; Sebat et al., 2007; Weiss et al., 2008]. The yield was higher in those patients identified as 

having “syndromic” autism [Jacquemont et al., 2006]. These CNVs are typically too small to be 

detected by karyotyping and can involve a single gene acting much as a sequence-level mutation, 

or they can encompass several genes as part of a genomic disorder [Lee and Scherer, 2010]. 

Furthermore, larger CNVs often affect recurrent genomic regions leading to well recognizable 

microdeletion/microduplication syndromes. 

Screening for CNVs by using array technologies such as array comparative genomic hybridization 

(aCGH with BAC or oligonucleotide clones) and SNP array, has proven to be a rapid method to 

detect both large and small changes associated with ASD susceptibility. In studies of idiopathic 

ASD, the most common recurrent anomaly is a ~600 kb microdeletion/microduplication of 

chromosome 16p11.2 (0.8%) [Kumar et al., 2008; Marshall et al., 2008; Weiss et al., 2008]. Of 

note, this CNV is also observed in ASD cases with additional dysmorphology [Fernandez et al., 

2010; Shinawi et al., 2010], in a variety of other disorders including schizophrenia (SCZ), bipolar 

disorder (BD), seizures, ADHD, and dyslexia, as well as in apparently unaffected family members; 

thus, interpretation of the significance of this anomaly can be difficult [McCarthy et al., 2009; 

Rosenfeld et al., 2010; Shinawi et al., 2010].  
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The 15q13.3 microdeletion syndrome is characterized by a highly variable phenotype and 

incomplete penetrance, including ID, seizures, subtle facial dysmorphism ad neuropsychiatric 

disorders such as ASD [Ben Shachar et al., 2009; Miller et al., 2009; Pagnamenta et al., 2009; 

Sharp et al., 2008]. The reciprocal duplication have also been reported in association with 

ASD/autistic features [Guilmatre et al., 2009; Miller et al., 2009; Szafranski et al., 2010; van Bon 

et al., 2009]. Both the deletion and duplication span the CHRNA7 gene, a candidate for epilepsy 

[Shinawi et al., 2009b].  

Recently, it has been underlined the importance of the 7q11.23 locus in ASD pathogenesis. Indeed, 

while the deletions of this region cause Williams-Beuren syndrome, a contiguous gene syndrome 

which is comorbid with ASD [Challman et al., 2003; Gillberg and Rasmussen, 1994; Gosch and 

Pankau, 1994; Herguner and Mukaddes, 2006; Klein-Tasman et al., 2009; Lincoln et al., 2007; 

Reiss et al., 1985], the reciprocal duplication is responsible for the 7q11.23 microduplication 

syndrome, which has been reported, among others, in patients with ASD and severe language delay 

[Berg et al., 2007; Depienne et al., 2007; Kirchhoff et al., 2007; Qiao et al., 2009; Stankiewicz and 

Lupski, 2010; Van der Aa et al., 2009].  

The impact of CNV on ASD pathogenesis will be deeply covered in the next chapter. 

 

4) CNV screening and direct sequencing of candidate genes are rapidly identifying genes for 

further characterization in relation to ASD, that overall contribute to a ~5% of the ASD genetic 

architecture (Fig. 1) [Devlin and Scherer, 2012]. These approaches have implicated, among others, 

genes encoding proteins for synaptogenesis such as NRXN1 [Ching et al., 2010; Kim et al., 2008; 

Szatmari et al., 2007], NRXN3 [Vaags et al., 2012], NLGN3 [Jamain et al., 2003], NLGN4 [Jamain 

et al., 2003; Laumonnier et al., 2004], SHANK2 [Berkel et al., 2010, 2012; Leblond et al., 2012], 

and SHANK3 [Durand et al., 2007; Moessner et al., 2007] as affecting ASD risk. Both neurexins 

(NRXN1 and NRXN3), which are located at the pre-synaptic plasma membrane, and neuroligins 

(NLGN3 and NLGN4), that are located at the post-synaptic plasma membrane, are adhesion 

molecules that contribute to synapse formation by directly interaction. The SKANK proteins act, 

instead, as scaffolding proteins at the post-synaptic density. Some rare, highly penetrant mutations 

in these genes appear as sufficient to be monogenic causes of ASD, including cases of syndromic 

autism [Baris et al., 2007; Berkel et al., 2010; Betancur, 2011; Ching et al., 2010; Dhar et al., 

2010; Durand et al., 2007; Gauthier et al., 2009; Glessner et al., 2009; Guilmatre et al., 2009; 

Jamain et al., 2003; Kim et al., 2008; Manning et al., 2004; Marshall et al., 2008; Moessner et al., 

2007; Pinto et al., 2010; Prasad et al., 2000; Szatmari et al., 2007]. 

More than 100 genetic and genomic loci have been reported in subjects with ASD, showing the 

success of ongoing efforts but also underscoring the fact that whole-exome and whole-genome 

sequencing will be critical approaches for identifying ASD genes and loci [Betancur, 2011]. 



10 

 

Recently, a few papers reported the utility of whole-exome sequencing in pinpointing the 

contribution of single nucleotide variants (SNVs) to the risk of ASD. Four studies published in the 

current year have looked for de novo mutations and a fifth for recessive mutations. A role for de 

novo mutations in ASD has been, indeed, suggested by previous CNV screenings and smaller-scale 

exome sequencing studies. In 2011 O’Roak et al. [O’Roak et al., 2011] sequenced 20 individuals 

with sporadic ASD and their parents and identified four potentially causative de novo events in 

FOXP1, GRIN2B, SCN1A, and LAMC3, thus showing that family-based exome sequencing was a 

powerful approach for identifying new candidate genes for ASD. 

More recently, Iossifov et al. [Iossifov et al., 2012] sequenced 343 family “quads” (i.e. the parents 

of a single child with ASD and his/her unaffected sibling), Sanders et al. [Sanders et al., 2012] 238 

families, including 200 quads, O’Roak et al. [O’Roak et al., 2012] 189 trios (i.e., a child with ASD 

and his/her parents), and Neale et al. [Neale et al., 2012] 175 trios. Sequencing data from healthy 

parents and siblings allow the de novo point mutation rate to be estimated as 2x10
-8

 per base per 

generation, a value only slightly higher than that previously reported. Interestingly, the mutation 

rate was comparable between patients and unaffected siblings, although a shift in the mutation 

spectrum towards mutations that were predicted to disrupt protein function was found in the 

probands. Furthermore, it has been reported that most de novo mutations have a paternal origin and 

there is an increase in the number of mutations with paternal age [O’Roak et al., 2012].  

In terms of the biology of ASD, a significantly enriched connectivity among the proteins encoded 

by the genes harboring de novo missense or nonsense mutations (~45% of de novo deleterious 

variants affects brain-expressed genes) as well as excess connectivity to either prior ASD genes of 

major effect or genes previously implicated in other neurodevelopmental disorders, has been 

reported, thus indicating that a subset of observed events are relevant to ASD risk. In particular, 

analysis of de novo variations provided evidence in favor of a few genes as genuine autism risk 

genes, namely CHD8 and KATNAL2 [Neale et al., 2012; O’Roak et al., 2012], SCN2A [Sanders et 

al., 2012], and NTNG1 [O’Roak et al., 2012]. Of note, O’Roak et al. [O’Roak et al., 2012] 

identified a network linked to β-catenin and chromatin remodeling whereas Iossifov et al. [Iossifov 

et al., 2012] found out an enrichment of genes regulated by the Fragile-X-syndrome associated 

FMR1 protein. Of note, anomalies in all these pathways have been previously associated with 

ASD. 

Finally, Chahrour et al. [Chahrour et al., 2012] used homozygosity analysis to identify probands 

from nonconsanguineous families that showed evidence of distant shared ancestry, suggesting 

potentially recessive mutations. Whole-exome sequencing of 16 probands revealed validated 

homozygous, potentially pathogenic recessive mutations that segregated perfectly with disease in 

4/16 families. The candidate genes (UBE3B, CLTCL1, NCKAP5L, ZNF18) encode proteins 

involved in proteolysis, GTPase-mediated signaling, cytoskeletal organization, and other pathways 
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already implicated in ASD pathogenesis. Furthermore, it has been reported that neuronal 

depolarization regulated the transcription of these genes [Chahrour et al., 2012]. 

 

5) Although genetic linkage studies performed over the last fifteen years in multiplex families have 

suggested many chromosomal regions as well as single genes as susceptibility loci for ASD [Barret 

et al., 1999; IMGSAC, 1998, 2001; Persico et al., 2001; Philippe et al., 1999, 2002; Yonan et al., 

2003; etc.], current evidences are tenuous for individual common variants that affect risk of ASD. 

Indeed, four large, independent genome-wide association studies (GWAS) have been reported so 

far, two assayed half-million single nucleotide polymorphisms (SNPs) each and detected a 

significant association at two different loci: 5p14.1 [Wang et al., 2009] and 5p15.2 [Weiss et al., 

2009], and two assayed one million SNPs and reported a significant association for a SNP located 

at 20p12.1 [Anney et al., 2010, 2012]. Furthermore, in one recent study, defects in frontal lobe 

circuit connectivity have been associated with a SNP in the CNTNAP2 gene [Scott-Van Zeeland et 

al., 2010], a putative ASD risk gene, subsequently confirmed by Anney et al. [Anney et al., 2012]. 

Thus, the overall data predict that while the existence of common variants affecting the risk of 

ASD is almost assured, their individual effects are modest and their collective effects could be 

smaller than that for rare variations [Anney et al., 2012]. 

 

1.2.2 Mode of inheritance 

Despite the heritability of autistic disorder is now widely recognized, the mode of inheritance is not 

yet fully understood as a single model is likely not applicable in all patients. The most accepted 

model until recently is the polygenic/multigenic model (multiple-hit hypothesis), according to 

which the disease was due to the combined effect of a series of low-penetrance variants (SNPs, 

CNVs, inversions) in genes/susceptibility loci, initially estimated at around 10-20, not necessarily 

shared among different patients and belonging to a very large pool of genes [Folstein and Rosen-

Sheidley, 2001]. Such variations are not to be considered causative per se but may confer an 

increased risk if inherited in particular combinations [Persico and Bourgeron, 2006]. Differences in 

combination and amount of these inherited mutations and/or the different interplay with the 

environment would lead to the onset of a fully-autistic or an ASD phenotype (Fig. 2). 
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Fig. 2. Schematic view of the Polygenic-Multigenic inheritance model. There are several susceptibility loci in the 

genome which can be inherited in different amounts and combinations leading to a more or less severe autistic 

phenotypes, once exceeded the susceptibility threshold. 

 

In 1999 Risch et al. [Risch et al., 1999] performed a genome-wide linkage study using a sample of 

90 families, and, for the first time, proposed a model of heritability based on the existence of at 

least 10 susceptibility loci, which did not exclude a much highly heterogeneous etiology, in some 

cases also of Mendelian type. Recently, the number of loci potentially involved in ASD has grown 

to a few hundreds (130-400) [Gilman et al., 2011; Levy et al., 2011; Sanders et al., 2011]. 

However, there are many exceptions to the polygenic/multigenic model, represented by those 

patients in whom the onset of ASD is due either to a single, highly penetrating gene mutation, as in 

the case of syndromic and not syndromic monogenic ASD that follow a Mendelian genetics, or to a 

chromosomal rearrangement which can be considered causative per se. In addition, CNV screening 

of large ASD cohorts by using high-throughput, high resolution technologies, which have been 

performed during the last few years, highlights the importance of rare de novo and inherited CNVs 

of high penetrance in the etiology of these disorders [Gilman et al., 2011; Levy et al., 2011; 

Sanders et al., 2011], giving rise to a paradigm shift away from common variant model of ASD 

genetic architecture (based on low penetrating variants) to one suggesting a role for multiple rare 

and distinct genetic risk factors (with a higher penetrance), known as oligogenic heterozygosity 

model [Levy et al., 2011], which does not exclude, however, a modulation of the phenotype by 

common susceptibility genetic variants. 

 

1.2.3 Mitochondrial abnormalities in Autism Spectrum Disorders 

Inborn errors of metabolism may contribute to at least 5% of cases with ASD [Manzi et al., 2008]. 

Deficiency of certain enzymes in metabolic disorders leads to an accumulation of substances that 

can cause toxic effects on the developing brain, contributing to ASD. Indeed, a large proportion of 

patients with syndromic-ASD shows signs of dysfunction of mitochondrial energy metabolism 

including (a) high levels of lactate, pyruvate and alanine in the blood, urine and/or cerebrospinal 
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fluid (b) carnitine deficiency in serum (c) increased oxidative stress [Dhillon et al., 2011; Palmieri 

and Persico, 2010]. In the mitochondria ATP production, free oxygen radicals and reactive oxygen 

species (ROS) are produced and then normally removed from the cells by anti-oxidant enzymes. 

When the production of ROS and free radicals exceeds the limit, oxidative stress occurs leading to 

cell death by apoptosis or necrosis [Kannan and Jain, 2000]. Since brain cells have limited 

antioxidant activity, a high lipid content and high requirement for energy, it is more prone to the 

effects of oxidative stress [Juurlink and Paterson, 1998]. 

Coleman and Blass were the first to link to bioenergy metabolism disturbances with ASD. They 

reported lactic acidosis in four children with autism [Coleman and Blass, 1985]. Later, László et al. 

[László et al., 1994] reported increased serotonin, lactic acid and pyruvate levels in children with 

autism. Lombard then proposed that mitochondrial oxidative phosphorylation defects could cause 

abnormal brain metabolism in children with autism, leading to lactic acidosis and decreased serum 

carnitine levels [Lombard, 1998]. Additionally, muscle biopsies studied by Tsao and Mendell 

[Tsao and Mendell, 2007] and Shoffner et al. [Shoffner et al., 2010] in autistic patients showed 

single or combined defects in complex I, II, III, IV, and V. 

These biochemical abnormalities are associated with variable phenotypes, which generally include 

complex neurological clinical features, congenital malformations and/or dysmorphism. In some 

ASD patients mutations or genomic rearrangements involving nuclear or mitochondrial genes, 

which encode mitochondrial enzymes, have been identified [Dhillon et al., 2011]. However, in 

most cases the genetic cause remains unknown although recent evidence emerged from the analysis 

of post-mortem autistic brains suggests that mitochondrial dysfunction represents a downstream 

effect of an immune system deregulation or a wrong calcium signaling [Palmieri and Persico, 

2010]. 

Of note, early screening and treatment of these conditions may have a positive impact in preventing 

disease progress [Dennis et al., 1999; Dhillon et al., 2011]. 

 

Summing up, in most patients with idiopathic ASD (>70%) the genetic cause remains unknown 

(Fig. 3). 

 

Fig. 3. Genetic causes of ASD which have been classified independently from the presence of a syndromic 

phenotypes [Schaaf and Zoghbi, 2011]. 
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1.2.4 Immune dysfunctions in Autism Spectrum Disorders 

Among the large number of ASD candidate genes recently uncovered by using genome-wide 

scanning technologies, several play important roles in immune function. For example, proteins 

encoded by MET, PTEN, TSC1 and TSC2, have a major role in regulating interleukin (IL)-12 

production from myeloid cells [Fukao et al., 2002], whereas the major histocompatibility complex 

type 2 (MHC-II) haplotypes [Lee et al., 2006; Torres et al., 2002], as well as complement 4B 

(C4B) [Odell et al., 2005], and macrophage inhibitory factor (MIF) [Grigorenko et al., 2008] are 

important in directing and controlling immune responses. 

Several evidences suggest that ASD symptoms may be related to immune dysfunction [Careaga et 

al., 2010; Enstrom et al., 2009; Korade and Mirnics, 2011], supporting the importance of all arms 

of the immune system in immune regulation within the central nervous system (CNS) to maintain a 

healthy neuro-immune environment, that may be dysfunctional in ASD (Fig. 4). Indeed, several 

immune proteins function within the nervous system as mediators of normal neurodevelopment 

[Deverman and Patterson, 2009]. Cytokines, such as TNF-a, IL-1b, the TGF-b family of molecules, 

mediate direct effects on neuronal activity. For example, TNF-a inhibits neurogenesis and promotes 

neuron death, and plays an important role in synaptic pruning [Cacci et al., 2005; Stellwagen and 

Malenka, 2006; Widera et al., 2006]. Other neuropoeitic cytokines, such as IL-1b and IL-6, also 

exert varied effects on neuronal survival, proliferation, synapse formation, migration, and 

differentiation, thus suggesting that cytokines are both necessary for normal neurodevelopment and 

behavior and that any perturbation in the cytokine network can impact neurodevelopment (Fig. 4).  

Moreover, microglial cells, that are the resident mononuclear phagocytic cells of the CNS, 

participate in immune surveillance of the CNS as well as in synaptic pruning in normal 

neurodevelopment [Bessis et al., 2007], through the production of inflammatory cytokines and the 

generation of reactive oxygen species (ROS) within the CNS [Garden and Moller, 2006; Hanisch 

and Kettenmann, 2007] (Fig. 4). The phagocytosis of dead or dying neurons by microglia is 

believed to be a normal and relatively non-inflammatory function [Bessis et al., 2007]. 

Furthermore, genetic abnormalities in microglia can result in profound effects on behavior. 

Interesting findings from animal models suggest that neurogenesis is modulated by the interaction 

between T cells and CNS [Ziv et al., 2006; Ziv and Schwartz, 2008]. Altered T cell activation in 

ASD may therefore directly affect the course of neurodevelopment. In addition, increased levels of 

complement proteins can participate in synaptic scaling, opsonizing synapses and targeting them 

for removal by phagocytic microglia (Fig. 4).  
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Fig. 4. Immune dysfunction in ASD involves a network of interactions between several cell types, from the 

innate and adaptive arms of the immune system [Onore et al., 2012].  

 

Numerous immunological anomalies (both in the CNS and in the periphery) involving 

inflammation, cytokines, immunoglobulins, and cellular activation have been noted in individuals 

with autism. In detail: 

- Neuroinflammation. A marked ongoing neuroinflammation, including microglia activation and 

increased inflammatory cytokine and chemokine production (e.g., IL-1b, IL-6, IL-12p40, TNF-a, 

CCL-2), has been reported in postmortem brain specimens from individuals with ASD [Li et al., 

2009; Morgan et al., 2010; Vargas et al., 2005]. Furthermore, expression profiling of postmortem 

brain tissue from ASD individuals revealed increased transcript levels of several immune system 

associated genes, and gene co-expression networks showed abnormalities in cortical patterning 

[Voineagu et al., 2011]. These findings have been associated with changes in microglia and 

immune activation. 

- Altered cytokine/chemokines/complement/adhesion molecule/growth factor protein profiles. 

Increased plasma levels of pro-inflammatory cytokines (IL-1b, IL-6, IL-8 and IL-12p40) as well as 

of chemokines have been reported in ASD [Ashwood et al., 2011b,d; Grigorenko et al., 2008; 

Kajizuka et al., 2010], which positively correlate with worsening in poor communication and social 

interaction behaviors. 
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- Altered immunoglobulin levels and auto-antibodies anti-CNS. Decreased total levels of IgM and 

IgG classes of immunoglobulin have been reported, with lower levels found to correlate with more 

aberrant behaviors [Heuer et al., 2008]. In addition, antibodies reportedly reactive to human and 

non-human primate brain and CNS proteins have also been described in children and adults with 

ASD. They include antibodies against serotonin receptors [Singh et al., 1997a], myelin basic 

protein [Singer et al., 2006; Singh et al., 1993; Vojdani et al., 2002], heat shock proteins [Evers et 

al., 2002], and glial filament proteins [Singh et al., 1997b]. The real role of these auto-antibodies in 

ASD is unknown and it hasn’t been demonstrated yet whether any of these antibodies induce 

cellular damage or have any pathological consequence. However, it has been demonstrated that, 

irrespective of the target epitope, antibodies from ASD subjects bind specifically to cerebellar 

interneurons and Golgi type II cells in tissue obtained from rhesus macaque monkeys [Wills et al., 

2009, 2011], thus leading, alternatively, to decreased or increased cellular activity. Furthermore, 

complement proteins can bind to auto-reactive antibodies, that is another mechanism which may 

lead to cell damage or death [Gasque et al., 2002], and an increase in complement proteins has 

been reported in sera from children with ASD. 

- Anomalies in adaptive cellular response. Atypical adaptive T cell responses are observed in 

individuals with ASD [Ashwood et al., 2011c]. For example, a predominance of IL-4
+
 IFN-γ

-
 T 

cells was observed in the circulating CD4
+
 T cell population [Gupta et al., 1998], with a bias 

towards a TH2 phenotype. An increased production of the pro-inflammatory cytokine TNF-a was 

also found, that is consistent with an activated TH2 immune response in humans. Of note, TNF-a 

production was associated with increased stereotypical behavior, a hallmark symptom of ASD 

[Ashwood et al., 2011c]. Increased T cell activation may also be linked with decreased apoptosis 

leading to the survival of activated cells [Ashwood et al., 2011a], thus supporting a chronic 

inflammation as seen in chronic inflammatory conditions such as Crohn’s disease [Monteleone et 

al., 2006].  

Moreover, anomalies in circulating levels of soluble adhesion molecules P-Selectin, L-Selectin and 

PECAM-1 have been observed in patients with ASD. These proteins control the passage of T cells 

across endothelial barriers, thus mediating T cell/CNS interactions. In high functioning individuals 

with ASD levels of sPECAM-1, sP-Selectin and sL-selectin were decreased compared with 

controls [Iwata et al., 2008; Tsuchiya et al., 2007] and lower levels of P-Selectin were associated 

with more impaired social skills [Iwata et al., 2008], thus suggesting that modulating immune cell 

access to the brain in ASD may influence abnormal social interactions. 

- Anomalies in innate cellular response. Atypical natural killer (NK) cell activity has been 

described in patients with ASD in terms of reduced lytic activity, as well as an increasing number 

of circulating monocytes [Sweeten et al., 2003]. These atypical monocyte responses are intriguing, 

and indicate abnormal myeloid involvement in ASD. Hyperactivation of myeloid cells in ASD is 
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implicated in both the periphery and CNS, as increased infiltration of monocytes and perivascular 

macrophages are observed in brain specimens from individuals with ASD [Vargas et al., 2005].  

 

Collectively, evidence of atypical cytokine production, altered T cell activation and potential 

impaired apoptotic activity suggest there is a predisposition to chronic inflammation which could 

negatively affect healthy cognitive development in ASD. Furthermore, it is well known the role of 

the blood brain barrier in regulating the interaction between immune cells and CNS, as explained in 

Fig. 5, which can be compromised in autistic patients [Goines and Van de Water, 2010]. 

 

 

Fig. 5. Interactions between the Immune and Central Nervous Systems (CNS) in Autism Spectrum Disorders 

During postnatal life, an intact blood brain barrier (BBB) limits the entry of immune species into the brain 

(left). Lymphocytes, macrophages, various cytokines, and antibodies are generally maintained in the 

periphery. However, the blood brain barrier is permeable during fetal development and can be compromised 

by infections and environmental exposures throughout life, and the absence of a complete barrier allows 

immune components access to the brain. Individuals with autism (right) show alterations in BBB 

permeability which lead to increased pro-inflammatory cytokines in the brain, as well as activation of 

resident immune cells known as microglia. Additionally, antibodies that target brain tissues have been 

described in both children with autism and their mothers [Goines and Van de Water, 2010].  
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1.2.5 Environmental factors 

The absence of a known genetic cause in most ASD cases, and the incomplete penetrance of known 

genetic risk factors, suggests that environmental factors are linked with the causation of ASD. In 

particular, in some individuals with ASD the development of the disorder seems to depend on the 

interactions between a "vulnerable" genome and unfavorable environmental factors (pollutants and 

neurotoxins, viral infections, and maternal factors), which may alter the neurodevelopment 

[Herbert et al., 2006; Newshaffer et al., 2007] (Fig. 6). 

 

 

Fig. 6. Genetic and environmental factors that may influence cerebral development during fetal and early 

postnatal life, potentially implicated in ASD pathogenesis [Pardo and Ebehart, 2007]. 

 

Among these factors there are toxins, such as lead and mercury, that, during CNS development in 

utero, could cause damage to the fetus brain, especially in the early weeks of pregnancy [Bernard et 

al., 2001; Geier et al., 2009]. Indeed, in the United States it was estimated that about 60,000 

children a year are born with neurological problems, including ASD, due to exposure to methyl-

mercury in utero [Mutter et al., 2005], which is thought to alter the chromatin state inducing 

epigenetic modifications [Arai et al., 2011]. It has been hypothesized that children with anomalies 

in the system of detoxification, who were exposed to the adverse effects of mercury, have an 

increased risk to develop ASD compared to healthy controls, since the toxin is retained in the body 

for longer time by failing to be completely eliminated [Holmes et al., 2003]. A treatment with 

chelating has, indeed, demonstrated that these children eliminate much mercury through the urine, 

compared with controls [Bernard et al., 2001; Holmes et al., 2003]. 

Growing research has highlighted maternal immune activation, especially during the first or second 

trimesters of pregnancy, as one potential environmental factor that increases the risk for ASD 

[Patterson, 2009]. It has been reported an increased risk for ASD in association with mothers that 

required hospitalization for a viral infection in the first trimester of pregnancy, or a bacterial 

infection in the second trimester of pregnancy [Atladottir et al., 2010], suggesting that bacterial and 

viral infections may confer different risks depending on gestational age.  



19 

 

Furthermore, epidemiological data from large population based studies show increased rates of 

autoimmune disorders (up to 46%) in the families of individuals with ASD [Atladottir et al., 2009; 

Braunschweig et al., 2008; Croen et al., 2005]. Two independent studies have shown that self-

maternal antibodies can recognize and interact with specific protein epitopes of the fetal brain, 

suggesting a potential inflammatory process that leads to the production of antibodies directed to 

the developing brain [Braunschweig et al., 2008; Croen et al., 2008; Singer et al., 2009]. 

Therefore, during the early stages of embryonic life the mother's immune system may act 

negatively against fetal proteins by altering pathways of the CNS neuronal development, thereby 

increasing the risk of developing ASD [Minshew and Williams, 2007; Zimmerman et al., 2007]. In 

experiments using anti-brain protein reactive antibodies from mothers who have children with 

ASD, administration 

of these antibodies mediate behavioral changes and neuro-pathology in the offspring of pregnant 

dams [Singer et al., 2009]. 
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2. Copy number variations (CNVs) in human genome 

With the advent and application of high-resolution, genome wide analyses it has been demonstrated 

that the human genome is a highly dynamic structure that shows significant variations on a large 

scale compared to the current reference genomic sequence and that the human species is much 

more genetically variable than previously appreciated. The genomes of two unrelated individuals 

may, indeed, differ from each other with respect to the number of copies of thousands of loci - 

Copy Number Variations, CNVs [Iafrate et al., 2004; Perry et al., 2008; Redon et al., 2006 ; Sebat 

et al., 2004; Sharp et al., 2005; Wong et al., 2007] - and to the presence of structural 

rearrangements such as polymorphic balanced inversions [Antonacci et al., 2009; Kidd et al., 2008; 

Tuzun et al., 2005]. 

The term CNV refers to a DNA segment of at least 1 kb, for which differences in the number of 

copies have been observed by comparing two or more genomes. These quantitative variations may 

occur as acquisition of genetic material (insertions or duplications) and losses (deletions or null 

genotypes) in relation to the reference genomic sequence. Approximately 11,700 CNVs are known 

so far which involve at least 1,000 genes, and cover 12-15% of the genome, thus significantly 

contributing to the genotypic and phenotypic variability of the population [Carter, 2007; 

Merikangas et al, 2009; Stankiewicz and Lupski, 2010]. CNV size can vary greatly in the order of 

kilobases (kb) or megabases (Mb) and, generally, they are not identified by conventional 

cytogenetics, but through methods that use high-resolution array technology, such as SNP arrays 

(Single Nucleotide Polymorphism arrays) and array-CGH (array-based comparative genomic 

hybridization). 

The best estimates currently available suggest that, considering the genetic difference in terms of 

total number of base pairs between two individuals chosen at random, CNVs contribute about twice 

as much as SNPs [Korbel et al., 2007; Tuzun et al., 2005]. 

Studies performed over the past five years have proven the critical role played by structural genetic 

variants (most of which are in the form of changes in the number of copies) in modulating gene 

expression and the "disease" phenotype. For example, rare CNVs, that affect genes implicated in 

neurodevelopmental pathways, are involved in the onset of schizophrenia [Kirov et al., 2009; 

Stefansson et al., 2008; Vrijenhoek et al., 2008; Walsh et al., 2008], bipolar disorder [Lachman, 

2008], attention deficit hyperactivity disorder [Bateman and Gull; 2011; Elia et al., 2011a and b; 

Jarick et al., 2012; Lionel et al., 2011; Williams et al., 2012], intellectual disability [Shoukier et al., 

2012; Utine et al., 2012], and autism spectrum disorders [Glessner et al., 2009, Marshall et al., 

2008, Sebat et al., 2004; Weiss et al., 2008]. Furthermore, the few available association studies 

have demonstrated the importance of CNVs as common predisposing factors, by identifying 

specific CNVs able to confer a different risk for the development and progression, for example, of 
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HIV infection [Gonzalez et al., 2005], autoimmune diseases [Fanciulli et al., 2007; McKinney et 

al., 2008; Yang et al., 2007] and asthma [Brasch-Andersen et al., 2004; Ivaschenko et al., 2002]. 

 

2.1 Copy number variations in Autism Spectrum Disorders 

Submicroscopic CNVs, de novo and inherited, are emerging as an important category of genetic 

risk for ASD with a different impact depending on the type of CNV identified [Bremer et al., 2011; 

Pinto et al., 2010; Sebat et al., 2007]. Screening for CNVs has proven to be one of the more 

successful strategy for the discovery of ASD candidate loci over the past five years [Cook and 

Scherer, 2008; State, 2010]. Furthermore, the same or overlapping CNVs are being identified as 

risk factors across a few neurodevelopmental disorders, indicating that some ASD loci are likely 

pleiotropic with variable expressivity [Cook and Scherer, 2008; Guillmatre et al., 2009; Lionel et 

al., 2011]. 

The increased resolution of the array-based approaches suggests that the proportion of ASD cases 

(both idiopathic and syndromic) that may be ultimately attributed to a rare structural variant is 

around 10-20%, a percentage higher than that of 6-7% obtained by conventional cytogenetic 

analysis [Abrahams and Geschwind, 2008; Bremer et al., 2011; Cuscò et al., 2009; Marshall et al., 

2008; Pinto et al., 2010]. Furthermore, the de novo CNV rate in ASD is roughly three to seven 

times than that in controls [Levy et al., 2011; Marshall et al., 2008; Pinto et al., 2010; Sanders et 

al., 2011; Sebat et al., 2007] and has been reported to be higher in simplex (low-risk) compared to 

multiplex families (high-risk) [Marshall et al., 2008; Sebat et al., 2007] although this is not always 

the case [Pinto et al., 2010].  

In addition, rare de novo deletions show a higher frequency compared to duplications and an 

increased frequency of rare de novo large CNVs has been observed in ASD female patients 

compared to male patients, findings that allow to speculate on a possible explanation of the sex 

ratio asymmetry observed in ASD [Levy et al., 2011]. It has been suggested, in fact, that due to the 

natural resistance of a female to suffer from genetic forms of ASD, "disruptive" genomic events 

with a high penetrance and involving a great number of genes are needed for ASD onset [Gilman et 

al., 2011; Levy et al., 2011]. 

In some patients multiple de novo variants have been detected presenting with a more complex and 

syndromic form of ASD. Furthermore, the observed rare de novo and inherited variants implicate 

the same genes, indicating that transmitted variants are clearly risk factors in some families and 

may display incomplete penetrance [Fernandez et al., 2010; Vaags et al., 2012]. The evidence of a 

higher frequency of rare inherited CNVs in ASD patients than in general population suggests that 

this type of variations, considered individually, increases the susceptibility to the disease rather 

than being the direct cause [Bremer et al., 2011], thus supporting the existence of an oligogenic 

heterozygosity model of inheritance in multiplex cases, in particular in high-functioning ASD 
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[Schaaf et al., 2011]. In addition, rare inherited duplications have been found more frequently than 

deletions [Levy et al., 2011; Marshall et al., 2008; Pinto et al., 2010; Sanders et al., 2011; Sebat et 

al., 2007; Zhao et al., 2007]. Although many CNVs act in an apparently dominant manner, some 

transmission is clearly recessive (e.g. CNVs affecting PCDH10 and NHE926) in consanguineous 

ASD families with rare homozygous deletions [Chahrour et al., 2012; Morrow et al., 2008]. 

The penetrance of a CNV for ASD depends on the dosage sensitivity and function of the gene(s) 

affected [Cook and Scherer, 2008]. Some CNVs affecting single (e.g., SHANK deletions) or 

multiple (e.g., 16p11.2 deletions) genes are likely sufficient to cause ASD on their own and 

represent highly penetrant forms of the disorder. These CNVs are typically de novo in origin, cause 

a more severe phenotype (some individuals have two or more de novo CNVs and a severe clinical 

presentation), and are more prevalent in sporadic forms of ASD. Recent CNV studies estimate that 

there are as many as 300 de novo risk loci related to ASD across the genome [Anney et al., 2010, 

2012; Levy et al., 2011; Marshall et al., 2008; Pinto et al., 2010; Sanders et al., 2011; Sebat et al., 

2007; Weiss et al., 2009].  

Other CNVs may contribute to the phenotype but in most cases would require other genetic or non-

genetic factors in order to reach the threshold of an ASD diagnosis [Cook and Scherer, 2008]. 

Some of the more highly penetrant ASD CNVs that are transmitted from unaffected parents may be 

explained by a difference in gender expression through parent-of-origin effects (e.g., 15q11–13 

duplications of the maternal allele), or recessive [Morrow et al., 2008] or X-linked transmission in 

males [Jamain et al., 2003; Noor et al., 2010]. However, most of the inherited CNVs (up to 40%) 

have a reduced penetrance as they may be observed in non-ASD family members and in population 

controls, or display pleiotropy in contributing to other neurodevelopmental disorders. In particular, 

common CNVs, that have been found at a frequency significantly higher in ASD patients compared 

to the control population, could act as susceptibility factors for the onset of ASD, modulating the 

“disease” phenotype [Abrahams and Geschwind, 2008, Cuscò et al., 2009, Bremer et al., 2011; 

Pinto et al., 2010].  

 

CNV analysis focused on rare variants, both de novo and inherited, has led to the discovery of 

dozens of ASD susceptibility loci. The involvement of individually rare variants overlapping genes 

important for development and function of neuronal circuits has been reported across multiple 

CNV screening studies. In detail: 

- genes implicated in synaptic complex. At the synaptic membranes neurexins (NRXNs) bind with 

neuroligins (NLGNs) and together act as organizers of excitatory glutamatergic synapses. All the 

three members of NRXN family have been implicated in ASD, as recent CNVs [Vaags et al., 2012] 

and, in particular, rare exonic NXRN1 deletions have been consistently found in ASD CNV screens 

[Reichelt et al., 2011]; 
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- genes expressed at the postsynaptic density. Several CNVs affect genes for scaffolding proteins 

such as SHANK2 [Berkel et al., 2010; 2012; Leblond et al., 2012], SHANK3 [Durand et al., 2007; 

Moessner et al., 2007], and DLGAP2 [Pinto et al., 2010]. The SHANK proteins are crucial 

components of the postsynaptic density and complex with the NLGNs which, in turn, bind with the 

trans-synaptic NRXNs; 

- genes important for axonal growth and guidance. Several CNVs affecting genes encoding cell-

adhesion molecules have been reported, such as CNTN4 (contactin 4) [Cottrell et al., 2011; Roohi 

et al., 2009] and CNTNAP2 (contactin-associated protein) [Nord et al., 2011] as well as a few 

members of the cadherin and protocadherin families, namely CDH8 [Pagnamenta et al., 2011], 

CDH13 [Sanders et al., 2011], PCDH9 [Marshall et al., 2008], and PCDH10 [Morrow et al., 

2008]. 

In addition, pathway analysis shows enrichment of particular gene sets including GTPase/Ras 

[Pinto et al., 2010], ubiquitin degradation genes [Glessner et al., 2009], axon targeting, and neuron 

motility [Gilman et al., 2011], and genes in the TSC/SHANK network [Sakai et al., 2011]. 

 

A crucial point is understanding how a CNV may contribute to the pathogenesis of autism. 

Different mechanisms have been proposed: 

1) changing in gene dosage which may affect the dosage-sensitive genes involved in the CNV. For 

example, the SHANK proteins that participate in the formation of the postsynaptic scaffold are 

particularly sensitive to the dosage whose variations may alter the stoichiometry of SHANK multi-

protein complex (Fig. 7d); 

2) breaking of a gene that maps within the breakpoint region; 

3) physical separation of a gene from its regulatory sequences with consequent alteration of 

transcription (position effect); 

4) in case of deletions, unmasking of point mutations [Toro et al., 2010]. In particular: 

4a) the CNV could reveal the presence of a mutation on the second allele (Fig. 7a), as it has been 

recently demonstrated for the NRXN1 and CNTNAP2 genes, both responsible for the Pitt-Hopkins-

like syndrome. The patients are generally carriers of a CNV that affects one of the disease-genes, 

together with a mutation on the other allele, with a recessive mode of inheritance [Zweier et al., 

2009]. Alternatively, the silencing of the second allele could be due to epigenetic modifications, as 

demonstrated in diseases related to imprinting disorders such as Prader-Willi and Angelman 

syndromes [Schanen, 2006]; 

4b) the second mutation may be present only in certain tissues, for example specific regions of the 

brain (Fig. 7b). This is well known in some familiar neoplasias where a germline mutation together 

with a somatic mutation are required for the development of the disease (“two-hits” model). This 

model has never been reported in ASD; 
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4c) the allelic exclusion (i.e. the expression of a single allele per cell) may silence the "healthy" 

allele in all cells or in certain cell populations (Fig. 7c). This mechanism is well documented for 

genes encoding immunoglobulins and olfactory receptors [Serizawa et al., 2004]. In the brain, 

allelic exclusion has been reported for adhesion molecules such as cadherins and protocadherins 

[Esumi et al., 2005], which could result in the complete lack of these proteins in neurons. 

 

 

Fig. 7. Potential mechanisms that may perturb neurodevelopment: (a) genetic and epigenetic alterations; (b) 

two-hits model in specific areas of the brain; (c) allelic exclusion which lead to the fully gene silencing or to 

the expression of only one allele; (d) stoichiometric imbalances [Toro et al., 2010]. 
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3. Neurobiology of Autism Spectrum Disorders 

3.1 Neuroanatomical abnormalities in ASD 

The neurobiology of autism has been well documented since the initial description of the disorder 

[Kanner, 1943]. For example, differences in gross brain morphology, such as early brain 

overgrowth, have been well documented [Courchesne et al., 1988, 2001, 2007; Lainhart et al., 

1997]. A large epidemiological study of autism revealed an increased proportion of macrocephaly 

(defined as head circumference greater than the 97th percentile) in patients with autism, up to 

almost 15%. Although macrocephaly is common in children and adults with autism, it is not 

common at birth. Macrocephaly appears to develop after birth in about 80% of cases, as an aberrant 

early postnatal brain overgrowth [Courchesne et al., 1988, 2001, 2007; Lainhart et al., 1997], 

which in autism can occur as the result of three distinct developmental processes: increased 

neurogenesis, decreased neuronal death and/or increased production of non-neuronal brain tissues 

such as glial cells or blood vessels.  

More recent studies investigating the nature of these gross abnormalities have produced 

incongruous results [Stigler et al., 2011]. Frontal lobe volume appears decreased in autism 

[Schmitz et al., 2007], and decreased gray matter volume in orbitofrontal cortex [Hardan et al., 

2006a], as well as abnormally thin frontotemporal cortex [Hadjikhani et al., 2006] has been 

reported. In contrast, others have reported that gray matter volume and thickness is enlarged in 

these cortical regions [Hardan et al., 2006b; Hazlett et al., 2006; Schumann et al., 2010]. Similarly, 

discrepant white matter abnormalities have been reported in autism, including regional increases 

[Amaral et al., 2008; Hazlett et al., 2005; Herbert et al., 2004], as well as decreases in 

crosssectional area and microstructure of the corpus callosum [Alexander et al., 2007; Vidal et al., 

2006]. Concomitant white matter disruptions have been reported in prefrontal, superior temporal, 

temporoparietal cortices, and corpus callosum [Barnea-Goraly et al., 2004], but increases in whole 

brain white matter volume have also been observed [Hazlett et al., 2005; Schumann et al., 2010]. 

Despite some incongruent results, the limitations of small sample sizes, bias in quantification 

techniques and co-morbidity that hamper neuropathological investigation, a few classic 

neuropathological findings from post-mortem studies are rather consistent: 

 an increased cell packing density with limited dendritic arbores and reduced cell size in 

hippocampus, subiculum and amygdalae. This pattern resembles a pattern typical of the earlier 

stages of brain maturation and may therefore reflect features of an immature brain [Bauman 

and Kemper, 1985; Kemper and Bauman, 1993, 1998; Raymond et al., 1996]; 

 a decreased number of Purkinje cells in the cerebellar hemisphere and vermis [Bauman and 

Kemper, 1985; Kemper and Bauman, 1993, 1998; Ritvo et al., 1986]; 
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 cerebral and cerebellar cortical dysgenesis with thickened cortices, high neuronal density, 

presence of neurons in the molecular layer, irregular laminar patterns and poor grey-white 

matter boundaries [Bailey et al., 1998]. These findings are consistent with a reduction in Reelin 

and Bcl-2 proteins in cerebellar cortex, which are involved in neuronal migration and 

programmed cell death, respectively [Fatemi et al., 2001a and b]. 

Moreover, magnetic resonance brain imaging has improved the classification of autistic brain 

anomalies, allowing the in vivo examination of the brain: 

 abnormalities in the neocerebellum were reported, consistent with earlier data from post-

mortem studies (i.e., reduction in the number of Purkinje cells), thus suggesting that these 

anomalies  indirectly could affect, through its connections to the brain stem, hypothalamus and 

thalamus, the development and functioning of cognitive, sensory, autonomic and motor 

activities [Courchesne et al., 1988; Murakami et al., 1989; Stanfield et al., 2007]; 

 the right anterior cingulate area was found in autistic subjects significantly smaller in relative 

volume and also metabolically less active [Haznedar et al., 1997];  

 the corpus callosum is generally reduced in size. This size reduction may diminish 

interhemispheric connectivity and may be involved in pathophysiology of cognitive 

impairments and clinical features of autism [Cody et al., 2002; Stanfield et al., 2007]; 

 at the level of the basal ganglia an enlargement of the caudate nucleus was shown. The caudate 

has connections to the pre-frontal cortex and is known to play an inhibitory role in behaviour. 

A correlation was found between ritualistic and repetitive behaviours and increased volume of 

the caudate nucleus [Brambilla et al., 2003]. 

Recently, the development of new quantitative structural imaging studies like voxel-based whole 

brain analysis, led to more standardized methods for data analysis. Localized grey matter 

reductions within the fronto-striatal and parietal networks were reported and additional decreases 

were described in the ventral and superior temporal grey matter [Boddaert et al., 2004; McAlonan 

et al., 2005].  

Morphometric differences were also shown in key language regions. In normal individuals there 

exists a bias towards larger cortical language regions in the left hemisphere, whereas boys with 

autism showed a significant asymmetry reversal in the inferior lateral frontal language cortex, 

which was 27% larger on the right side. Thus, it was hypothesized that semantic encoding, 

normally performed by the inferior frontal gyrus, in autistic patients is performed via alternative 

pathways [Herbert et al., 2002, 2005; Just et al., 2004], and a PET study seemed to confirm these 

findings with less percentual change in blood flow in the dorsolateral pre-frontal area while 

listening to, repeating, and generating sentences [Muller et al., 1998]. 
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3.2 ASDs represent a “synaptopathy” 

In healthy brains, a balance of excitation and inhibition is essentially for nearly all functions, 

including representation of sensory information, cognitive processes such as decision making, sleep 

and motor control. At the cellular level, the number and distribution of excitatory and inhibitory 

inputs onto single neurons has significant impact on the integration of synaptic inputs and the 

output from neurons [Gulledge et al., 2005]. This in turn affects circuit function and plasticity, for 

instance by affecting long-term potentiation or the stereotypic output from central pattern 

generators [Alford et al., 2003]. 

Moreover, during development the balance between excitation and inhibition governs the 

establishment of sensory system projections, including the onset of the critical period for visual 

system plasticity [Fagiolini et al., 2004]. 

Currently, more than 100 genes are susceptibility candidates for ASD, indicating that ASD 

represents a collection of conditions with heterogeneous causation [Betancur, 2011]. These genes 

can be divided into two groups on the basis of the penetrance of the mutation in relation to the risk 

of developing the disease. Table 1 lists the major genes whose mutations show a high penetrance; 

variants are usually point mutations or rare CNVs, de novo or inherited, and duplications/deletions 

detectable by conventional cytogenetics [Toro et al., 2010]. 

 

Table 1. Genes associated with high risk for ASD. ADHD, attention-deficit hyperactivity disorder; ASD, autism spectrum 

disorder; CNV, copy number variation; MR, mental retardation; SCZ, schizophrenia; SNP, single nucleotide polymorphism; TS, 

Tourette syndrome. 
a
The pathogenetic role of these rare variants have not yet be confirmed [Toro et al., 2010]. 
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Most of genes that are affected by variants at low penetrance, such as SNPs or inherited common 

CNVs, are listed in Table 2 [Toro et al., 2010]. These variations, which seem to be responsible for 

increased susceptibility to the development of ASD, may be considered with caution because they 

have not always been replicated in the genome-wide association studies [Anney et al., 2010, 2012; 

Weiss et al., 2009]. 

 

 Table 2. Proposed susceptibility genes for ASD. ADHD, attention-deficit hyperactivity disorder; AHC, alternating hemiplegia 

of childhood; ASD, autism spectrum disorder; BP, bipolar disorder; CNV, copy number variation; FHM2, familial hemiplegic 

migraine 2; MR, mental retardation; OCD, obsessive-compulsive disorder; PD, Parkinson disease; SCZ, schizophrenia; SNP, 

single nucleotide polymorphism; TS, Tourette syndrome [Toro et al., 2010]. 

Recent evidences have unveiled a remarkable convergence of several of these genes on common 

cellular pathways that intersect at neuronal synapses [Peça and Feng, 2012]. Indeed, the notion that 

some ASD and ID represent “synaptophaties” is supported by the preponderance of penetrant 

mutations in genes associated with synaptic structure and function. ASD and ID appear to be 

common consequences of disruptive mutations that cause synaptic pathophysiology at both ends of 

a spectrum as both “gain of function” and “loss of function” mutations can manifest in similar ways 

(Fig. 8). Furthermore, the interdependence among proteins that work as a biochemical complex 

suggest that even single gene disorders may perturb the full complex and the related pathways and 

networks [Zoghbi and Bear, 2012].  
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Fig. 8. Gain or loss of function of individual genes often yields an overlapping behavioral phenotype in 

humans 

that includes ASD and ID. Optimal synaptic function may occur within a limited dynamic range, and the 

pathophysiology at both ends of this range can cause autistic behavior and intellectual disability [Zoghbi and 

Bear, 2012]. 

 

Synaptic scaffolding disorders 

For ASD, the trans-synaptic complex composed of Neurexin/Neuroligin/PSD-95/SAPAP/Shank 

pathway is a good examples of a set of genes converging on both function, location and associated 

disorders. From these, Neurexin-1 [Feng et al., 2006; Kim et al., 2008; Wisniowiecka-Kowalnik et 

al., 2010; Yan et al., 2008], Neuroligin-3 and Neuroligin-4 [Jamain et al., 2003], PSD-95 [Feyder 

et al., 2010], SAP97 [Willatt et al., 2005], SAPAP2 [Pinto et al., 2010], Shank1, Shank2 and 

Shank3 [Berkel et al., 2010, 2012; Durand et al., 2007; Leblond et al., 2012; Pinto et al., 2010] 

have all been implicated in ASD and validated across multiple studies (Fig. 9).  

All Shank proteins are expressed in the brain, especially in cortical and hippocampal neurons, and 

localized to the post-synaptic density (PSD) of dendritic spines. The PSD is key for organizing and 

maintaining proper synaptic communication, and within this structure Skanks have been 

hypothesized to function as master scaffolds. Shanks stabilize PSD-95/SAPAP/Shank/Homer 

complexes, which form a platform for the anchoring of ionotropic and metabotropic glutamate 

receptors at synapses [Baron et al., 2006; Hayashi et al., 2009]. In addition, they recruit inositol 

1,4,5-triphosphate (IP3) and F-actin to the synapse, thereby enlarging dendritic spine heads and 

stabilizing them [Sala et al., 2001; Tu et al., 1998, 1999] (Fig. 9). For example, overexpression of 

Shank1 in hippocampal neurons leads to increased maturation and size of dendritic spines, whereas 

deletion of Shank1 in mice leads to smaller spines and weakened synaptic transmission. 
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Furthermore, knockdown of Shank3 in hippocampal neurons cultured in vitro leads to reduced 

number and increased length of dendritic spines, whereas overexpression of Shank3 in aspiny 

cerebellar granule neurons is sufficient to induce functional dendritic spines [Roussignol et al., 

2005]. 

Interestingly, the four different lines of Shank3 mutant mice characterized so far show neuronal 

deficits that all lead to decreased glutamatergic signaling, loss of synaptic strength and, at the 

behavioral level, to deficiencies pertaining social interactions and other ASD-related behavior.  

Neurexins (NRXNs) and Neuroligins (NLGNs) are synaptic cell adhesion molecules whose critical 

role in synaptic function has been well established. Both NRXNs and NLGNs have single 

transmembrane domains and short cytoplasmic domains containing PDZ-binding motifs at the 

carboxyl terminus [Hata et al., 1996; Irie et al., 1997]. They form a trans-synaptic complex 

believed to organize the presynaptic and postsynaptic compartments through various interactions 

with proteins like CASK, MAGUK, and PSD-95 [Sudhof, 2008] (Fig. 9). Mice lacking Nlgn1, 2, 

and 3 have normal synapse number and ultrastructures, but die perinatally from respiratory failure. 

Neurophysiologically studies revealed that glutamatergic and GABAergic synaptic transmission is 

impaired in the respiratory center of the triple null animals [Varoqueaux et al., 2006]. Interestingly, 

mice carrying a single deletion or double knockout of these genes are viable, that is consistent with 

the finding, for example, that Nlgn1 deficiency impairs N-methyl-D-aspartate (NMDA) receptor 

signaling, whereas Nlgn2 deficiency impairs inhibitory synaptic transmission [Chubykin et al., 

2007]. Furthermore, a deletion of an NLGN4 ortholog in mice caused impaired social interactions 

consistent with the loss-of-function mutation in humans that cause ASD and ID [Jamain et al., 

2008]. 

In the different individual Nrxn knockout mice synaptic function is impaired, as evident by 

decrease spontaneous as well as evoked neurotransmitter release in both the neocortex and brain 

stem of α-NRXN deficient mice. Moreover, Ca
2+

 channel function is also compromised based on 

decreased presynaptic Ca
2+ 

currents [Missler et al., 2003]. 

Synaptic signaling disorders 

It is noteworthy that pathogenesis of Fragile X syndrome (FXS), Angelman syndrome (AS), and 

Tuberous Sclerosis syndrome (TSC), which all show comorbidity with ASD, involves regulation of 

synaptic protein abundance and turnover (Fig. 9). In FXS this is due to derepression of translation 

of FMRP-target mRNAs. Indeed FMRP, which is enriched in neuronal soma and dendrites, serves 

as negative regulator of translation of many mRNA transcripts [O’Donnell and Warren, 2002], and 

an increased rate of basal protein synthesis is observed in the hippocampus of Fmr1 null mice 

[Osterweil et al., 2010; Qin et al., 2005]. Another consistent finding in animal models of fragile X 
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is evidence of impaired GABAergic inhibition [Levenga et al., 2010], which could be a 

consequence of excessive protein synthesis during development. 

Reduced proteolysis of UBE3a-target proteins is the AS underlying pathogenic mechanism. Several 

synaptic deficits have been described in the UBE3a knockout mouse model of AS, including 

reduced density and strength of excitatory synapses and, at a later developmental stage, reduced 

functional inhibition [Philpot et al., 2010]. In addition to UBE3A, other proteins involved in CNVs 

affecting other ubiquitin genes have been collected in patients with ASD, such as PARK2, RFWD2, 

and FBXO40 [Glessner et al., 2009]. Interestingly, changing neuronal activity levels produces a 

rapid bidirectional change in the composition of PSD proteins, an effect that is mediated by the 

proteasome system [Ehlers, 2003], thus supporting the importance of ubiquitin ligases to the 

regulation of excitatory synapses (Fig. 9) [Peça and Feng, 2012]. 

The proteins encoded by TSC1 and TSC2, harmartin (TSC1) and tuberin (TSC2), form a 

heterodimeric complex that responds to numerous intracellular signals to negatively regulate the 

protein kinase mTOR (mammalian target of rapamycin) residing in the protein complex mTORC1. 

Relief from TSC1/2 repression of mTOR by upstream signaling (e.g., PI3 kinase acting through 

PDK1 and AKT) stimulates cell growth and proliferation (Fig. 9). Homozygous silencing 

mutations of either TSC1 or TSC2 are embryonic lethal. Humans born with the disease typically 

have heterozygous truncating germline mutations in either TSC1 or TSC2 [Han and Sahin 2011; 

Orlova and Crino 2010]. Heterozygous null mutations of TSC1 or TSC2 were both shown to cause 

cognitive and synaptic impairments in the absence of gross neuropathology or seizures [Ehninger et 

al., 2008; Goorden et al., 2007; Nie et al., 2010; von der Brelie et al., 2006]. One particularly 

interesting phenotype reported in the Tsc2+/- mouse is an enhancement of late-phase LTP 

[Ehninger et al., 2008]. Persistent LTP requires synthesis of synaptic proteins that might be 

increased in abundance owing to excess mTOR activity. 
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Fig. 9. Shank proteins at the center of an ASD disease-module. Neurexin and Neuroligins are trans-synaptic 

partners which in the postsynaptic density bind to the SAPAP family of proteins, PSD-95, SAP97, Shank2 

and Shank3. Shank dimers are thought to organize a molecular platform in concert with Homer tetramers to 

stabilize the larger PSD, connecting AMPAR, NMDAR and mGluR into one protein hub. In the deeper 

synaptic compartment the control of PSD protein levels may be tightly controlled by independent complexes 

such as TSC1/2 through mTOR, or via FMRP regulation of synaptic transcripts, and most likely also through 

synaptic ubiquitin ligases [Peça and Feng, 2012]. 

 

Synaptic transcriptional dysregulation 

MeCP2, whose mutations cause Rett syndrome (RTT), is a nuclear protein that binds to methylated 

cytosines [Lewis et al., 1992] and is a member of a methyl-CpG-binding protein family [Hendrich 

and Bird, 1998]. MeCP2 interacts with histone deacetylase–containing complexes and represses 

transcription [Jones et al., 1998; Nan et al., 1998]. Surprisingly, in mouse models of RTT several 

genes are down-regulated upon loss of MeCP2 but are increased upon its overexpression, 

suggesting that this protein is not a classical transcriptional repressor [Chahrour et al., 2008; Jordan 

et al., 2007; Nuber et al., 2005; Tudor et al., 2002]. Among these genes there are brain-derived 

neurotrophic factor (BDNF) and several other neuronal genes [Chahrour et al., 2008; Chen et al., 

2003; Martinowich et al., 2003; Yasui et al., 2007]. 

MeCP2 is abundant in neurons, and its levels increase postnatally as neurons mature [Balmer et al., 

2003; Kishi and Macklis 2004; Shahbazian et al., 2002b]. Recent studies revealed that MeCP2 is 

also expressed in glia, albeit at lower levels than neurons, and that glia lacking MeCP2 fail to 

support dendritic morphology of either wild-type or Mecp2-null neurons [Ballas et al., 2009; 

Kifayathullah et al., 2010; Maezawa and Jin 2010; Maezawa et al., 2009]. Mice lacking functional 

MeCP2 reproduce features of RTT [Chen et al., 2001; Guy et al., 2001; Pelka et al., 2006; 

Shahbazian et al., 2002a]. Despite the devastating neurological phenotypes, the brain appears 

normal, with the exception of microcephaly, decrease in dendritic spine density, and dendritic 
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swelling [Belichenko et al., 2009]. Furthermore, deletion of MeCP2 from various neuronal types 

revealed that this protein is critical for the functional integrity of a diverse set of neurons. Loss of 

Mecp2 from forebrain glutamatergic neurons causes motor abnormalities, anxiety-like behavior, 

social abnormalities, and impaired learning [Gemelli et al., 2006]. A more recent study revealed 

that deletion of Mecp2 in GABAergic neurons reproduced most of the features of RTT (including 

the stereotyped behavior and premature lethality) and resulted in reduced GABA signaling [Chao et 

al., 2010]. Interestingly, the RTT model shows a decrease in AKT/mTOR signaling in contrast with 

models of TSC and fragile X, in which AKT/mTOR activity is increased [Zoghbi and Bear, 2012]. 

 

To date, the role of neurotransmitters transporters and synaptic glutamatergic receptors in 

susceptibility to ASD must be still clarified. Since abnormal levels of serotonin have been found in 

patients with ASD [Cook and Leventhal, 1996], the SLC6A4 gene encoding the serotonin 

transporter has been extensively studied, although only a weak association with ASD has been 

highlighted as in the case of the GRIK gene, which encodes a receptor for glutamate [Jamain et al., 

2002]. 

Moreover, it is likely that many proteins involved in axonal growth and synaptic identity have a 

role in the pathogenesis of ASD. The semaphorins, for example, are involved in axonal growth and 

maturation of dendritic spines and SNPs in the SEMA5A gene have been associated with ASD in a 

large cohort of patients [Weiss et al., 2009]. In addition, deletions in the genes encoding the 

contactins proteins (CNTN3 and CNTN4), which are also involved in axonal growth and in the 

mediation of the connections between axon and glial cells, have been identified in patients with 

ASD [Morrow et al., 2008]. 

Finally, many pathways are involved in the intracellular signaling from the synapse to the neuronal 

soma, whose perturbation may be potentially related to ASD development (Fig. 10).  
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Fig. 10. Schematic view of the synaptic genes that are involved in the pre-postsynaptic connection and in the 

signal transduction from the synapse to the neuronal soma, most of which have been already implicated in 

ASD.  

 

In detail, genes working in the same network are depicted in yellow, genes potentially perturbed by rare de 

novo CNVs reported by Levy et al. [Levy et al., 2011] in blue, and genes associated with ASD in previous 

studies in red [Gilman et al., 2011]. 

 

In detail: 

- remodeling of actin cytoskeleton. The information for the regulation of the morphology of 

dendritic spine are transmitted through the GTPase Rho family of proteins, such as RhoA/B, 

Cdc42, and Rac1 [Linseman and Loucks, 2008] to downstream targets, for example LIMK1 and 

PAK1/2/3, that are linked to proteins which are able to modify the morphology of the actin 

cytoskeleton (cofilin and Arp2/3) [Blanchoin et al., 2000]. The GTPase activity is regulated pre- 

and post-synaptically by different GEF (guanine nucleotide exchange factor), GDI (GDP 

dissociaton inhibitors) and GAP (GTP-activating proteins) proteins (Fig. 10); 

- Wnt/β-catenin pathway, that plays a crucial role in the formation of neuronal circuits [Salinas and 

Zou, 2008] and is directly involved in the reorganization of actin filaments (Fig. 10) [Rosso et al., 

2005; Salinas et al., 1994]; 
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- reelin-mediated signaling. Reelin is secreted at the synaptic space and regulates the mTOR 

pathway acting on TSC1/TSC2 by the AKT-mediated signaling (Fig. 10) [Fatemi et al., 2005; 

Jossin and Goffinet, 2007; Kumar et al., 2005; Niu et al., 2008; Shaw and Cantley, 2006]; 

- MAPK3/ERK1 signaling pathway, that is activated by both NF1 and Ras and represents another 

way of regulation of mTOR. Indeed, mTOR is able to integrate the stimuli that arrive from the 

upstream pathways involved in the regulation of cell growth and to mediate the morphogenesis of 

the dendrite (Fig. 10) [Tavazoie et al., 2005]. 
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PATIENTS AND METHODS 
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4.1 Patients 

We collected a series of 115 patients (92 males and 23 females, M:F sex ratio 4:1) who were 

diagnosed with ASD as a result of evaluation by geneticists and psychiatrics in agreement with the 

international criteria of DSM-IV Text Revised [Task Force on DSM-IV, 2000]. The overall 

phenotypic picture was therefore characterized as: idiopathic Autism (AU), which always involves 

intellectual disability (ID); Pervasive Development Disorder Not Otherwise Specified (PDD-NOS), 

which may or may not involve ID; High-Functioning Autism (HF-AU); Asperger syndrome (AS); 

and Syndromic Autism (S-AU), where the autistic phenotype is part of a syndromic picture 

characterized by dysmorphism and/or major malformations. One patient with S-AU suffered from 

Tourette syndrome. Four of the 115 patients demonstrated epilepsy (~3.5%).  

The detailed clinical diagnoses were as follows (Fig. 11): 

 46 patients with PDD-NOS; 

 41 with AU-ID (notably, only one female patient suffered from a severe ID); 

 15 with S-AU;  

 8 with HF-AU; 

 5 with AS. 

 

Fig. 11. Distribution of the sample by sex (left) and phenotype (right). The number and percentage of patients 

are shown for each category.  

Genomic DNA from all patients, which was extracted from peripheral blood samples collected in 

tubes containing EDTA, was used to perform array CGH analysis (Agilent Technology) in order to 

detect copy number variants (CNVs). Three kits with different resolutions were used, specifically: 

- 6 patients were analyzed with the 60K SurePrint G3 Human CGH Microarray, which includes 

approximately 55,077 oligonucleotide probes at an average spatial resolution of 41 kb (33 kb in 

gene-enriched genomic regions);  
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- 12 patients with 44K Human Genome CGH Microarray, which includes approximately l42,494 

probes at an average spatial resolution of 43 kb (24 kb in gene-enriched genomic regions); 

- 97 patients with 244K Human Genome CGH Microarray, which includes approximately 236,381 

probes at an average spatial resolution of 8.9 kb (7.4 kb in gene-enriched genomic regions). 

In the event of detection of rare CNVs, if possible, patients’ parents were analyzed to characterize 

the origin of the unbalanced microrearrangement (de novo or inherited). 
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4.2 Molecular karyotyping by means of array-based Comparative Genomic 

Hybridization (array CGH) analysis 

4.2.1 Extraction of genomic DNA (gDNA) from peripheral blood 

For gDNA extraction from fresh or frozen (-80°C) peripheral blood collected in anticoagulant 

(EDTA) tubes, the GenElute Blood Genomic DNA Kit (Sigma) was used following the 

manufacturer’s instructions. Briefly: 

- add 500 µl of whole blood to a 2 ml tube containing 50 µl of proteinase K and 40 µl of RNAseA; 

- add 550 µl of Lysis Buffer C Solution, then vortex thoroughly for 15 seconds and incubate at 55 

°C for 10 minutes; 

- add 550 µl of 100% ethanol and vortex the sample again for 15 seconds; 

- in the meantime, for gDNA recovery moisturize the pre-assembled GenElute Miniprep Binding 

Columns by washing them with 500 µl of the Column Preparation Solution, then centrifuge at 7000 

rpm for 1 minute and discard the flow-through liquid; 

- load 500 µl of the sample into the column, centrifuge at 7000 rpm for 1 minute and discard the 

collection tube containing the flow-through liquid; 

- repeat this step until the entire sample was loaded into the column and place the binding column 

to a new 2 ml tube; 

- add 500 µl of Prewash Solution, centrifuge at 7000 rpm for 1 minute and discard the collection 

tube containing the flow-through liquid. Place the binding column to a new 2 ml tube; 

- add 500 µl of Wash Buffer, centrifuge at 13000 rpm for 3 minutes and discard the collection tube 

containing the flow-through liquid; 

- place the binding column to a new 2 ml tube and let it dry under a safety hood for 10 minutes; 

- add 50 µl of Elution Buffer directly into the centre of the binding column and wait for 5 minutes, 

then centrifuge at 7000 rpm for 2 minutes; 

- the concentration and quality of the gDNA (it should be free of contaminants such as 

carbohydrates, proteins, and traces of organic solvents) are determined by a spectrophotometric 

analysis by using the NanoDrop ND-1000 UV-VIS Spectrophotometer. Moreover, by means of 

agarose gel electrophoresis  it could be verified if the gDNA is intact or degradated.  

 

4.2.2 gDNA enzymatic restriction digestion 

Test and reference DNAs must be processed separately. The amount of DNA required, which must 

necessarily be the same for test and reference, depends on the slide used as indicated in the table 

below. 
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 44K array  60K array  array 244K  

DNA (μg) 0.5-1.5 μg 0.2-0.5μg 0.5-3 μg 

 

For 44K and 244K arrays: 

- add to DNA Nuclease-free water up to volume 20.2 µl;  

- preparation of Digestion Master Mix, component per reaction: 

2 µl of nuclease-free water 

2.6 µl of Buffer C 

0.2 µl of BSA (10 µg/µl) 

0.5 µl of AluI (10 U/µl) 

0.5 µl of RsaI (10 U/µl) 

5.8 µl final volume 

- add 5.8 μl of Digestion Master Mix to the genomic DNA; 

- make a total volume of 26 μl; 

- mix well by pipetting up and down; 

- incubate at 37°C for 2 hours; 

- incubate at 65°C for 20 minutes to inactivate the enzymes; 

- move the sample tubes to ice; 

- verify the digestion reaction by means of agarose gel electrophoresis run (Agarose 0.8% in TAE 

buffer; ethidium bromide 0.01 mg/ml) of 2 µl of digested DNA. 

 

For 60K array: 

- add to DNA Nuclease-free water up to volume 10.1 µl;  

- preparation of Digestion Master Mix, component per reaction: 

1 µl of nuclease-free water 

1.3 µl of Buffer C 

0.1 µl of BSA (10 µg/µl) 

0.25 µl of AluI (10 U/µl) 

0.25 µl of RsaI (10 U/µl) 

2.9 µl final volume 

- add 2.9 μl of Digestion Master Mix to the genomic DNA; 

- make a total volume of 13 μl; 

- mix well by pipetting up and down; 
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- incubate at 37°C for 2 hours; 

- incubate at 65°C for 20 minutes to inactivate the enzymes; 

- move the sample tubes to ice; 

- verify the digestion reaction by means of agarose gel electrophoresis run (Agarose 0.8% in TAE 

buffer; ethidium bromide 0.01 mg/ml) of 2 µl of digested DNA. 

 

4.2.3 Fluorescent Labeling of DNA by Agilent Genomic DNA Labeling Kit PLUS 

For labeling reaction fluorescent cyanines (CY3 and CY5) are used so the reaction must be 

performed in the dark. 

 

For 44K and 244K arrays: 

- add 5 μl of Random Primers to each reaction tube containing 24 μl of digested gDNA to make a 

total volume of 29 μl; 

- mix well by pipetting up and down gently; 

- incubate at 95-100°C for 5 minutes; 

- move to ice and incubate on ice for 5 minutes; 

- preparation of Labeling Master Mix, component per reaction: 

2 µl of Nuclease-free water 

10 µl of 5X Buffer  

5 µl of 10X dNTP 

3 µl of Cyanine 3-dUTP (1.0 mM) or Cyanine 5-dUTP (1.0 mM) 

1 µl of Exo-Klenov fragment 

21 µl final volume 

- add 21 μl of Labeling Master Mix to 29 μl of digested gDNA; 

- make a total volume of 50 μl;  

- mix well by gently pipetting up and down; 

- incubate at 37°C for 2 hours; 

- incubate at 65°C for 10 minutes to inactivate the enzyme, then move to ice. 

 

For 60K array: 

- add 2.5 μl of Random Primers to each reaction tube containing 11 μl of digested gDNA to make a 

total volume of 13.5 μl; 

- mix well by pipetting up and down gently; 

- incubate at 95-100°C for 5 minutes; 

- move to ice and incubate on ice for 5 minutes; 

- preparation of Labeling Master Mix, component per reaction: 
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2 µl of Nuclease-free water 

5 µl of 5X Buffer 

2.5 µl of 10X dNTP 

1.5 µl of Cyanine 3-dUTP (1.0 mM) or Cyanine 5-dUTP (1.0 mM) 

0.5 µl of Exo-Klenov fragment 

11.5 µl final volume 

- add 11.5 μl of Labeling Master Mix to 13.5 μl of digested gDNA; 

- make a total volume of 25 μl;  

- mix well by gently pipetting up and down; 

- incubate at 37°C for 2 hours; 

- incubate at 65°C for 10 minutes to inactivate the enzyme, then move to ice.  

 

4.2.4 Clean-up of Labeled Genomic DNA 

- Add 430 μL of 1X TE (pH 8.0, Promega) to a Microcon YM30 (Millipore) filter (the filter is into 

a 1.5-ml microfuge tube); 

- load each labeled gDNA into the filter, mix well; 

- spin 10 minutes at 14,000 × g in a microcentrifuge at room temperature. Discard the flow-

through; 

- add 480μl of 1X TE (pH 8.0) to each filter. Spin for 10 minutes at 14,000 × g in a microcentrifuge 

at room temperature. Discard the flow-through; 

- invert the filter into a fresh 1.5-mL microfuge tube; 

- spin for 1minute at 1,000 × g in a microcentrifuge at room temperature to collect purified sample; 

- measure and record volume (μl) of each eluate and repeat the last steps until the volume is <9.5 µl 

(60K), 21 µl (44K), or 80.5 µl (244K). Bring total sample volume to the final volume with 1X TE 

Buffer (pH 8.0); 

-Take 1.5μl of each sample to determine the yield and specific activity by using the NanoDrop ND-

1000 UV-VIS Spectrophotometer. 

-Labeled DNA can be stored overnight at -20°C in the dark. 

 

4.2.5 Preparation of Labeled Genomic DNA for Hybridization 

The hybridization reaction must be performed in the dark: 

- mix the labeled reference and test DNAs; 

- add the reagents as described in the table below: 
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 60K 44K 244K 

Labeled DNAs  16 µl 39 µl 158 µl 

Human Cot-1 DNA (1mg/ml) 2 µl 5 µl 50 µl 

Agilent 10X Blocking agent 4.5 µl 11 µl 52 µl 

Agilent 2X Hybridization buffer 22.5 µl 55 µl 260 µl 

Finale volume 45 µl 110 µl 520  

 

- mix the sample by pipetting up and down, then quickly spin in a microcentrifuge to drive contents 

to the bottom of the reaction tube; 

- incubate at 95°C for 5 minutes; 

- immediately incubate at 37°C for 30 minutes; 

- spin 1 minute at 13000 rpm in a microcentrifuge to collect the sample at the bottom of the tube; 

- put the full volume on the cover-slip using the Agilent microarray 8/slide gasket for 60K array, 

the Agilent microarray 4/slide gasket for 44K arrays and the Agilent microarray 1/slide gasket for 

244K array, previously lying on the bottom of the Agilent Microarray Hybridization Chamber; 

- place the slide with the up-face toward the sample and close the Agilent Hybridization Chamber; 

- place the slide into a preheated oven at 65°C and leave for 24-48 hours. 



44 

 

4.3 Copy Number Variant analysis 

The evaluation of the possible pathogenicity of all the identified CNVs was performed based on 

international guidelines, such as those described by Miller in 2010 [Miller et al., 2010] and 

Marshall et al. in 2012, who focused on the prioritization criteria [Marshall et al., 2012] (Fig. 12).  

 

Fig. 12. General analysis and prioritization workflow (pink boxes) for discovery of rare CNVs 

associated with ASD. 

Once a CNV was detected, the first target was to understand whether it was a rare variant or a CNV 

already reported in healthy controls according to the Database of Genomic Variants 

(http://projects.tcag.ca/variation/). In the case of rare CNVs, array CGH analysis was performed on 

the parents’ DNA to determine whether the rearrangement is de novo or inherited. Although in 

terms of follow-up the de novo CNVs have the highest priority (Fig. 12, pink boxes), parameters 

such as recurrence in ASD cases and overlap with other neurodevelopmental disorders, together 

with a precise analysis of the CNV gene content, may be of help in identifying possible ASD 

candidate loci (Fig. 12, light pink box) affected by both de novo and inherited CNVs.  

We performed ad hoc analysis of the identified CNV gene content using public databases, 

specifically: 

- the UCSC Genome Browser (http://genome.ucsc.edu/cgi-bin/hgGateway) and NCBI Entrez Gene 

(http://www.ncbi.nlm.nih.gov/gene), which are both useful to collect information about the genes 

involved in the imbalance (i.e. gene function, molecular structure, presence of different isoforms, 

etc.), their expression in different tissues, and the pathways in which they are involved; 

- the Decipher database (http://decipher.sanger.ac.uk/), which collects all pathogenetic CNVs 

reported to date as well as the clinical description of the related patients; 
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- the OMIM database (Online Mendelian Inheritance in Man) 

(http://www.ncbi.nlm.nih.gov/omim), which collects information about all Mendelian disorders 

described to date, focusing particularly on genotype-phenotype correlation; 

- PubMed (http://www.ncbi.nlm.nih.gov/pubmed), which provides updated international medical 

literature. 

Furthermore, two databases specific for ASD were consulted, namely the Autism Database 

(http://www.mindspec.org/autdb.html) and the SFARI Database (Simmons Foundation Autism 

Research Initiative) (http://sfari.org/resources/sfari-gene), which collect the genes previously 

reported as mutated or affected by CNVs in ASD patients, as well as genes associated with ASD by 

association studies.  

A possible replication of the findings in other cohorts, as well as gene sequencing in the case of 

CNV affecting single genes, may be good approaches to validate the collected data (Fig. 11, blue 

box). 

Of note, considering the autism disease, which shows an oligo-/polygenic genetic aetiology, it 

cannot be assumed a priori that an inherited CNV is benign per se. Indeed, the combination of 

several variants in different loci, both de novo and/or inherited, often leads to the manifestation of 

the disease, which is not present in the parents as they do not share the same combination of 

variants identified in the children. Although we cannot exclude the possibility that any of the 

“common” CNVs detected in our series may have contributed to ASD susceptibility, the 

assessment of this susceptibility would have required a time-expensive association study that did 

not fit appropriately with the goals of the present work. 

.



46 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RESULTS 



47 

 

5.1 Identification and classification of rare CNVs 

A cohort of 115 patients with ASD was analyzed by high-resolution array CGH analysis to identify 

CNVs possibly implicated in ASD pathogenesis. In 63 of 115 patients (55%), rare CNVs (one or 

more) were detected that were not already reported in healthy subjects according to the DGV. This 

group comprised: 

 52 males and 11 females; 

 51 sporadic and 12 familial cases;  

 49 patients analyzed by the Agilent 244K Human Genome CGH Microarray Kit and 14 by the 

44K or the 60K Kits. 

The phenotype distribution of the 63 patients is shown in Fig. 13. 

 

 

Fig. 13. Distribution of the group of 63 patients with at least one rare CNV by sex (left) and phenotype 

(right). For each subgroup, the number and percentage of patients are shown. 

 

The detection rate for rare CNVs using the high-resolution array CGH analysis was approximately 

50.5% (49 of 97 patients analyzed by means of the Agilent 244K Kit) vs. 77.8% using the array 

CGH analysis at a lower resolution (14 of 18 patients analyzed by means of the Agilent 44K or 

60K Kits). Of note, 6 of 97 patients analyzed with the Agilent 244K Kit were negative using a 

previous array CGH analysis at a lower resolution, and in 4 of these patients, at least one rare CNV 

was subsequently identified. Overall, 120 rare CNVs were detected, 73 gains (60.8%) and 47 losses 

(39.2%), ranging from 10 kb to 11 Mb in size (Fig. 14). Furthermore, inheritance is unknown for 

13 CNVs (10.8%). Twenty of the remaining 107 CNVs were de novo (16.7%), and 87 were 

inherited (72.5%), 50 from the mother (57.5%) and 37 from the father (42.5%). All these data are 

summarized in Fig. 14. 
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Fig. 14. Schematic view of the 120 rare CNVs identified, which have been subdivided based on the type of 

rearrangement (left), origin (middle) and parental inheritance (right). For each subgroup the number of 

patients and the percentage are shown. 

 

Exclusively rare de novo CNVs (one or more) were found in only 10 of 63 patients (15.9%), 

whereas in 15 of 63 patients (23.8%), only one inherited CNV was detected. In the remaining 38 

patients, more than one CNV was identified (60.3%), in different combinations. Specifically: 

- in 7 of 63 patients (11.1%), a single rare de novo CNV together with one or more inherited 

CNV were detected (7 CNVs were inherited from the mother and one from the father), with 

only one patient who inherited the CNVs from both parents; 

- in 25 of 63 patients (39.7%), more than one rare inherited CNV was detected, 18 of whom 

inherited the CNVs from both parents, 7 from the same parent;  

- in a single patient (1.6%), two CNVs were found, one inherited and one with an unknown 

origin; 

- 5 of 63 patients (7.9%) were found to carry rare CNVs with an unknown origin (Fig. 15). 
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Fig. 15. Schematic view of the 63 patients who were found to be carriers of rare CNVs, based on the origin 

of the identified CNVs. For each subgroup the number of patients and the percentage are shown. 

 

A detailed list of the identified rare CNVs is shown in Table 3. Furthermore, high-resolution array 

CGH analysis allowed the identification of a few CNVs already reported in the DGV in a subset of 

the ASD cohort. These variations were very heterogeneous in terms of size and physical 

localization, spread throughout the genome, and usually recurrent in our cohort. Among these 

“common” CNVs, which have been selected for their possible role as susceptibility loci for ASD 

pathogenesis, two variants appeared to be more significant. They both involve genes highly 

expressed in the CNS and affect the Protocadherin gene cluster and the KIAA1267 gene, 

respectively (data not shown). 
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Tab. 3. Rare CNVs (de novo or inherited) identified in the ASD cohort by means of array CGH analysis. 

 

ID Sex Phenotype 
Chromosome 

band 

Gain/ 

Loss 
Size Genes Total Physical position

#
 Inheritance 

           Array CGH 244K 

1 F 
AU, severe ID, 

EP 
Xp22.11 Gain 99 kb EIF2S3, ZFX  2 chrX:24091852-24190826 pat 

           
2  M AU, ID 1p34.1 Loss 108 kb JMJD2A 3 chr1:44149337-44257788 pat 

   5q23.1 Loss 222 kb  / chr5:119532516-119755412 pat 

           
3  M HF-AU 3p21.31 Gain 173 kb CSPG5, SMARCC1 2 chr3:47578922-47752329 pat 

   20p12.1 Loss 85 kb MACROD2 1 chr20:15055853-15140973 mat 

           
4  M AU, ID 10p12.31 Gain 106 kb  / chr10:22394622-22500888 pat 

           
5  F PDD-NOS 18q21.1 Gain 51 kb  1 chr18:47902251-47953250 mat 

   21q21.3 Gain 52 kb  PDE9A 1 chr21:44168808-44220396 mat 

           6  M AU, ID 4q23 Gain 81 kb TSPAN5 1 chr4:99393391-99474056 de novo 

           7  M PDD-NOS 2p23.1 Loss 34 kb LCLAT1 1 chr2:30814684-30848349 mat 

   8q12.1 Gain 45.5 kb PLAG1 1 chr8:57052812-57098333 pat 

           8  M HF-AU 4p15.2 Loss 54 kb  / chr4:28107488-28161143 mat 

   7q11.23 Gain 51 kb  1 chr7:72745047-72795632 mat 

   18q22.1 Gain 139 kb  / chr18:61838447-61977366 mat 

           9 M AU, ID, EP, 

BM 

5q14.3 Loss 25 kb GPR98 1 chr5:90287474-90312790 mat 

  5q23.1 Gain 23 kb PRR16 1 chr5:119982811-120005757 pat 

           

10 M AU, ID 2q14.2q14.3 Gain 3.9 Mb 

CLASP1, C1QL2, DBI, EN1, 

EPB41L5, GLI2, MARCO, 

PCDP1, PTPN4, RALB, 

RNU4ATAC, SCTR 

20 chr2:119130298-123004562 pat 

   3q26.1 Gain 185 kb  / chr3:165221892-165406558 mat 

11  M PDD-NOS 4q23 Gain 35 kb RAP1GDS1 1 chr4:99227050-99262338 pat 
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Tab 3. Continued. 

12 M AU, ID 11q14.2 Gain 36 kb ME3 1 chr11:86370779-86407258 mat 

          13 M HF-AU 13q21.1 Loss 218 kb  / chr13:56137534-56355454 pat 

   13q31.1 Loss 77 kb   / chr13:84541850-84619100 mat 

          14  M S-AU 9q34.3 Gain 442.5 kb CACNA1B, EHMT1 2 chr9:140527202-140969676 de novo 

   Xq22.3 Gain 24 kb IL1RAPL2 1 chrX:104155507-104179536 mat 

           15  M AU, ID 15q26.2 Loss 38 kb  MCTP2 1 chr15:94783059-94819771 mat 

           16  M PDD-NOS 17q23.1 Gain 44 kb CA4 1 chr17:58206236-58249853 de novo 

           17 M PDD-NOS 12p13.1 Gain  69 kb   / chr12:14400276-14468981 pat 

   12p12.2p12.1 Loss 387 kb  3 chr12:21017576-21404166 mat 

   14q13.1 Gain 131 kb CFL2, SNX6  2 chr14:35062258-35193276 pat 

           18 M PDD-NOS 6q21 Loss 47 kb PREP 1 chr6:105824080-105871245 de novo 

           19 M AS Yq11.21 Gain 449 kb USP9Y 1 chrY:14492654-14941561 pat 

           20
§* M HF-AU 8q12.1 Gain 45.5 kb PLAG1 1 chr8:57052812-57098274 mat 

           21  M HF-AU 5q31.3 Gain 76 kb ARHGAP26 1 chr5:142148254-142224066 mat 

           22  M AU, ID 3p14.1 Gain 94 kb ADAMTS9 1 chr3:64408148-64502388 mat 

   6q25.2 Loss 15 kb IPCEF1 2 chr6:154614264-154628947 pat 

           23 M PDD-NOS 17q21.31 Loss 748 kb  ACBD4, CRHR1, FMNL1 10 chr17:43193251-43941693 de novo 

   17q24.2 Loss 93 kb  PRKCA 1 chr17:64341093-64433941 mat 

           24 M AU, ID 9p24.2 Loss 191 kb RFX3 1 chr9:3454648-3645936 de novo 

   13q12.11 Gain 363 kb MPHOSPH8, PSPC1, ZMYM5  4 chr13:20181070-20544241 mat 

           25 M HF-AU 10p11.21 Gain 61 kb PARD3 1 chr10:35044586-35105887 mat 
   10p11.21 Gain 223 kb CCNY, CREM 2 chr10:35485580-35708979 mat 

   15q13.3 Gain 377 kb CHRNA7 2 chr15:32085731-32462701 mat 

   16p11.2 Gain 538 kb 

ALDOA, ASPHD1, CDIPT, 

C16orf53, DOC2A, FAM57B, 

GDPD3, HIRIP3, INO80E, 

KCTD13, KIF22, MAPK3, MAZ, 

MVP, QPRT, PPP4C, PRRT2, 

SEZ6L2, SPN, TAOK2, YPEL3 

27 chr16:29652999-30190568 pat 

   17q21.31 Loss 8 kb VAT1 2 chr17:41159926-41167557 pat 
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Tab 3. Continued. 

26 F 
PDD-NOS, 

severe ID 
6p22.3 Loss 67 kb  / chr6:22696464-22763720 de novo 

   11q14.1 Loss 46 kb DLG2 1 chr11:84239601-84285477 mat 

           27 M AU, ID 1q44 Loss 242 kb SMYD3 1 chr1:246143162-246385329 pat 

   2p11.2 Gain 217 kb POLR1A, REEP1 5 chr2:86289130-86506034 mat 

          

   22q11.21 Gain 2.6 Mb 

AIFM3, ARVCF, CDC45, 

CLDN5, CLTCL1, COMT, 

CRKL, DGCR2, DGCR6, 

DGCR6L, DGCR8, DGCR14, 

GNB1L, GP1BB, GSC2, HIRA, 

KLHL22, LZTR1, MED15, 

MRPL40, PI4KA, PRODH, 

RANBP1, RTN4R, SEPT5, 

SLC7A4, SLC25A1, SNAP29, 

TBX1, TRMT2A, TXNRD2, 

UFD1L, ZDHHC8, ZNF74 

44 chr22:18894835-21505417 de novo 

           28 M AU, ID 21q22.3 Gain 40 kb DIP2A, PCNT 2 chr21:47864658-47904775 mat 

           29 M AU, ID 4p15.1 Gain 1.1 Mb PCDH7 1 chr4:30096956-31196169 mat 

          

   15q11.1q13.1 Gain 8.0 Mb 

ATP10A, C15orf2, CYFIP1, 

GABRA5, GABRB3, GABRG3, 

MAGEL2, MKRN3, NDN, 

NIPA1, NIPA2, SNRPN, 

SNURF, TUBGCP5, cluster 

snoRNAs, UBE3A 

~80 a chr15:20575646-28535051 de novo 

           30
§ M AU, ID 3p35.3-p25.2 Gain 145 kb  2 chr3:11732027-11876792 no mat 

   7q11.23 Gain 95 kb PTPN12 1 chr7:77126596-77221182 no mat 
   16p13.11 Gain 800 kb NDE1 8 chr16:15492317-16292235 no mat 

   22q11.22 Loss 200 kb  1 chr22:23046186-23245888 mat 

           31
§ F PDD-NOS 7q22.1 Loss 260 kb CUX1 1 chr7:101463620-101723676 NA 

   22q11.22 Loss 524 kb ZNF280A 5 chr22:22721907-23245888 NA 

           32 F AU, ID 10p14 Gain 349 kb  / chr10:10587763-10936503 mat 

   10p12.31 Gain 22 kb  / chr10:20790681-20812664 pat 

   22q11.21 Loss 120 kb DGCR6, PRODH 2 chr22:18890271-19010508 mat 
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Tab 3. Continued. 

33 M AU, ID 2p23.1 Loss 34 kb LCLAT1 1 chr2:30814684-30848349 mat 

   9p24.3 Gain 107 kb DOCK8 1 chr9:254654-361777 pat 

   9p24.3 Gain 78 kb KANK1 1 chr9:509521-587418 pat 

   20p12.1 Loss 103 kb MACROD2 1 chr20:14653662-14756452 pat 

           34
§ M S-PDD 13q14.3 Loss 68 kb RNASEH2B 2 chr13:51530516-51598396 mat 

                     35
§ M PDD-NOS, 

language delay 

12q24.31 Loss 93 kb MPHOSPH9 2 chr12:123585931-123678954 pat 
  Xp22.31 Gain 414 kb NLGN4X 1 chrX:6,031,746-6,445,321 mat 
           36 M AU, ID 7q11.23 Loss 26 kb HSPB1 2 chr7:75913642-75939538 de novo 

   10q22.2 Loss 24 kb CAMK2G, NDST2 3 chr10:75559706-75583870 de novo 

   15q22.2 Loss 48 kb  1 chr15:59776382-59824713 de novo 

           37  M AU, ID 6q12 Loss 260 kb  1 chr6:66158720-66418279 pat 

   8q24.3 Loss 33 kb MAPK15 3 chr8:144766624-144799957 mat 

           38
§ M PDD-NOS 9p24.1 Gain 102 kb GLDC, JMJD2C 2 chr9:6641759-6743452 mat 

   12p13.33 Gain 262 kb CACNA1C 1 chr12:2205044-2467239 pat 
   12p13.33p13.32 Gain 489 kb PRMT8  2 chr12:3169239-3658542 pat 

   16p11.2 Gain 659 kb 

ALDOA, ASPHD1, CDIPT, 

CORO1A, C16orf53, DOC2A, 

FAM57B, GDPD3, HIRIP3, 

INO80E, KCTD13, KIF22, 

MAPK3, MAZ, MVP, QPRT, 

PPP4C, PRRT2, SEZ6L2, 

SULT1A3, SPN, TAOK2, YPEL3 

31 chr16:29673954-30332581 mat 

           39
§ F PDD-NOS 9p24.1 Gain 102 kb GLDC, JMJD2C 2 chr9:6641759-6743452 mat 

   12p13.33 Gain 262 kb CACNA1C 1 chr12:2205044-2467239 pat 
   12p13.33p13.32 Gain 489 kb PRMT8 2 chr12:3169239-3658542 pat 

   16p11.2 Gain 659 kb 

ALDOA, ASPHD1, CDIPT, 

CORO1A, C16orf53, DOC2A, 

FAM57B, GDPD3, HIRIP3, 

INO80E, KCTD13, KIF22, 

MAPK3, MAZ, MVP, QPRT, 

PPP4C, PRRT2, SEZ6L2, 

SULT1A3, SPN, TAOK2, YPEL3 

31 chr16:29673954-30332581 mat 
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Tab 3. Continued. 

40
§ M AS 9p22.3p22.2 Loss 119 kb  1 chr9:16591045-16710334 mat 

   20p12.1 Loss 78 kb MACROD2 1 chr20:14685390-14763042 pat 

           41
§ M TS 6p12.1 Gain 31 kb  1 chr6:56917608-56948694 pat 

   18q23 Loss 28 kb PARD6G 1 chr18:77982067-78010032 mat 

   20p12.1 Loss 78 kb MACROD2 1 chr20:14685390-14763042 pat 

           42 M AU, ID 4q22.1 Loss 25 kb GRID2 1 chr4:93565167-93590451 NA 

   18q23 Gain 55 kb MBP, ZNF236 2 chr18:74671482-74726694 NA 

43 M AS 3p22.3 Gain 63 kb ARPP21 1 chr3:35807767-35870363 pat 

   3q23 Gain 245 kb XRN1 3 chr3:141839309-142083916 pat 

   16q23.1 Loss 78 kb CFDP1 1 chr16:75343357-75421614 mat 

           44 M AU, ID 3p26.1 Gain 287 kb GRM7 1 chr3:7474361-7761159 mat 

   18q22.1 Gain 139 kb  / chr18:61838447-61977366 mat 
           45

§
 M AU, ID 17q23.3 Loss 23 kb CSH1, GH2  2 chr17:61954172-61977250 mat 

           46 F AU, ID 1q43 Loss 78 kb PLD5 1 chr1:242364270-242442157 pat 
           47 M AS 4p15.31 Gain 139 kb  / chr4:19301430-19440122 mat 
   7q11.21 Loss 74 kb ZNF138 1 chr7:64204753-64278830 pat 

           48 M AU, ID 3q27.1 Gain 46 kb AP2M1, DVL3 3 chr3:183872255-183917986 pat 

           49 M AU, ID 5q12.1 Gain 242 kb KIF2A, IPO11 3 chr5:61618444-61860338  pat 
   18q22.1 Gain 127 kb  / chr18:62131257-62258013  mat 

            Array CGH 44K 

50 M PDD-NOS 15q11.2 Loss 211 kb 
CYFIP1, NIPA1, NIPA2, 

TUBGCP5 
4 chr15:22873688-23085096 de novo 

           

51 F PDD-NOS 2q14.3q21.3 Loss 8.8 Mb 

ACMSD, ARHGEF4, BIN1, 

CCDC115, ERCC3, FAM123C, 

FAM168B, GPR17, GPR39, 

GPR148, HS6ST1, LYPD1, 

MAP3K2, MGAT5, NCKAP5, 

PLEKHB2, RAB6C, 

RAB3GAP1, TUBA3D, TUBA3E 

50 chr2:127083045-135910585 de novo 

           

52
§* F PDD-NOS 7q11.23 Gain 1.4 Mb 

BAZ1B, BCL7B, CLDN3, 

CLDN4, CLIP2, EIF4H, FZD9, 

GTF2I, GTF2IRD1, LAT2, 

LIMK1, STX1A, TRIM50 

24 chr7:72726578-74139390 de novo 
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Tab 3. Continued. 

53 M PDD-NOS 2q31.3q32.3 Loss 11.1 Mb 

FRZB, GLS, GULP1, HIBCH, 

INPP1, ITGA4, NAB1, NCKAP1, 

NEUROD1, ORMDL1, PDE1A, 

STAT1, STAT4, TMEFF2, 

UBE2E3, ZNF804A  

54 chr2:181882353-193007633 de novo 

   Xp11.4 Gain 103 kb  2 chrX:37850095-37953580 mat 

           54 M AU, ID 1p36.32 Gain 304 kb  2 chr1:2857518-3161082 pat 

           55 F S-AU, ID 1q24.2 Gain 399 kb SELE, SELL  8 chr1:169413880-169812887 mat 
          
   15q11.2 Gain 203 kb 

CYFIP1, NIPA1, NIPA2, 

TUBGCP5 
4 chr15:22873688-23076420 mat 

           56 M PDD-NOS 16p11.2 Loss 162 kb SH2B1 9 chr16:28837450-28998957 de novo 

           

57 F PDD-NOS 5q31.1q31.2 Gain 3.8 Mb 

CAMLG, C5orf20, CDC23, 

CDC25C, CXCL14, DDX46, 

FAM13B, FAM53C, FBXL21, 

H2AFY, IL9, KIF20A, KLHL3, 

LECT2, NEUROG1, PITX1, 

SAR1B, SEC24A, SLC25A48, 

SPOCK1, WNT8A 

31 chr5:133871536-137708167 de novo 

           58 M PDD-NOS 15q23 Loss 85 kb  2 chr15:69192894-69277766 mat 

           59 M AU, ID 8p23.3 Gain 654 kb ARHGEF10, DLGAP2  5  chr8:1434838-2088785 mat 
   19q13.2 Gain 94 kb B9D2, BCKDHA 5 chr19:41836441-41930226 NA 

           

60 M AU, ID 5p15.33p15.31 Loss 7.8 Mb 

ADCY2, AHRR, CEP72, 

C5orf38, EXOC3, IRX1, IRX2, 

IRX4, LPCAT1, NSUN2, 

PDCD6, SDHA, SLC6A3, 

SRD5A1, TPPP, ZDHHC11 

36 chr5:95243-7859564 de novo 

          

   18p11.32p11.22 Gain 9.1 Mb 

ADCYAP1, ARHGAP28, 

DLGAP1, EPB41L3, LAMA1, 

NDUFV2, PTPRM, RAB12, 

TGIF1, THOC1, USP14 

34 chr18:180229-9281969 de novo 

             Xq22.2 Gain 175 kb TMSB15B 2 chrX:103094005-103269195 NA 
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Tab 3. Continued. 

 Array CGH 8x60K        

61 M PDD-NOS Xq28 Gain 246 kb 
ATP6AP1, FLNA, IKBKG, 

PLXNA3, RPL10 
16 chrX:153576890-153822717 NA 

           62
§* M S-AU Xp22.31 Gain 1.5 Mb STS, PNPLA4  4 chrX:6551155-8032120 NA 

           63 M PDD-NOS Xp22.31 Gain 551 kb STS  2 chrX:7269569-7820659 NA 

   Yp11.2 Gain 878.5 kb   / chrY:8028838-8907306 NA 

           #
Physical position of the identified CNVs based on UCGC Genome Browser, hg19, released February 2009; 

§
familiar cases: patients 30 and 31, son and mother, patients 34 and 35 first cousins, patients 38-39 and 40-41 siblings, the 

mother of patient 45 shows autistic traits but she has not been included in the analyzed ASD cohort; 
§*

sibling with a similar phenotype who does not carry the same genetic anomaly.  

AS, Asperger syndrome; AU, full autism; BM, brain malformations; EP, epilepsy; HF-AU, high-functioning autism; ID, intellectual disability; NA, not available; PDD-NOS, pervasive developmental disorder not otherwise specified; 

S-AU, syndromic autism; S-PDD-NOS, syndromic PDD-NOS; TS, Tourette syndrome.  
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5.2. Analysis of the gene content of the identified rare CNVs 

The ad hoc analysis of the rare CNV gene content using databases revealed a total of 276 genes that 

were considered good candidates for ASD. A detailed list of the selected genes is shown in Table 4, 

which reports the genes affected by rare CNVs localized to genomic regions that are not involved in 

recurrent genomic rearrangements, and in Table 4.1, which conversely reports those genes affected by 

rare CNVs localized to genomic regions that are either involved in recurrent rearrangements 

responsible for some microdeletion/microduplication syndromes that are comorbid with ASD or have 

been proposed by linkage studies as candidate loci for ASD or other neuropsychiatric disorders.  

A small percentage of the selected genes (~11%) (depicted in red in Tabs. 4 and 4.1) have been 

previously reported as causative genes based on mutations and/or CNVs, often de novo, that have been 

described in autistic patients. Moreover, SNPs in a very few genes (~5%) (depicted in purple in Tabs. 

4 and 4.1) have been significantly associated with ASD. However, most of the proposed candidate 

genes (54%) have not been previously reported in association with ASD, and a significant percentage 

(30.5%) have been involved in some microdeletion/microduplication syndromes that are comorbid 

with ASD (depicted in dark red in Tabs. 4 and 4.1) (Fig. 16). 

 

 

Fig. 16. Schematic view of the classification of the collected genes, based on their previous implication in ASD. 
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On the basis of gene expression data, function, and pathway of action, all the selected genes contribute 

to CNS neurodevelopment and maintenance, acting during embryonic and foetal development as well 

as in the early postnatal period and, in some cases, in adult life. Sixty-six of the 276 selected genes are 

implicated in neurogenesis and neurodevelopment (24%), 27 in CNS metabolism (10%), 29 in 

synaptogenesis and synaptic plasticity (10.5%), 19 in CNS development, homeostasis, and 

immunosurveillance mediated by the immune system (7%), 81 in intracellular signaling and 

trafficking (29%), and 51 in transcriptional and translational regulation and chromatin remodeling 

(18.5s%), as shown in Fig. 17. For 3 of the 276 genes, the function is still unknown (1%). 

 

Fig. 17. Schematic view of the different pathways of action that contribute to neurodevelopment and 

maintenance. CNS, central nervous system; IS, immune system. 

 

A detailed analysis of the 276 selected genes is reported in Tabs. 4 and 4.1, where each gene box is 

depicted with a different color to indicate the specific gene function. Of note, 89 of 276 selected genes, 

which are indicated in the following tables with light blue boxes or with a star shape, contribute to 

CNS development and maintenance acting in concert with the immune system.  
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Tab. 4. Detailed list of the genes potentially perturbed by the identified rare CNVs and possible implicated in ASD pathogenesis
 
(UCSC Genome 

Browser, hg19, release February 2009)
§
. 

 

Gene name Function and expression Interactors and possible role in brain 
Findings in ASDs o rin  other neuropsychiatric 

disorders 
References 

      

ADAMTS9(-)* 
 
Organogenesis 

This gene encodes the ADAM metallopeptidase 9 with 

thrombospondin type 1 motif protein. 

Members of the ADAMTS family have been implicated in 

the cleavage of proteoglycans and the control of organ shape 

during development. 

 

Expression detected in all fetal tissues. 

The ADAM and the related ADAMTS metalloproteinases are 

membrane-anchored and secreted proteins exhibiting key roles 

in mediating cell adhesion, proteolytic shedding, and cell 

signaling. Dysregulation of these proteins has been observed in 

some pathologic states, including cancers. Indeed, ADAMTS9 

was aberrantly expressed by primary malignant pl ma cells. 

During mouse development ADAMTS9 expression in the CNS 

is limited to the floor plate of the diencephalon, to the 

ventricular zone of the cerebral cortex and to the choroid plexus. 

Mutations and/or CNVs affecting ADAMTS9 have never 

been reported in patients with ASD. 

Bret et al., 2011 

Jungers et al., 2005 

      

AP2M1(+) 
 
Intracellular membrane 

trafficking: clathrin-

mediated endocytosis 

This gene encodes the adaptor-related protein complex 2, mu 

1 subunit, which is a subunit of the heterotetrameric coat 

assembly protein complex 2 (AP2). The encoded protein is 

required for the activity of a vacuolar ATPase, which is 

responsible for proton pumping occurring in the acidification 

of endosomes and lysosomes. The encoded protein may also 

play an important role in regulating the intracellular 

trafficking and function of CTLA-4 protein.  

 

Moderate expression in fetal brain and good expression in 

postnatal CNS. 

It is well known that clathrin-mediated endocytosis is crucial for 

the normal functioning and integrity of neurons in the CNS.  

Recently, it has been demonstrated that expression of coat 

proteins changes during postnatal development in selected areas 

of the rat brain. This finding supports the hypothesis that  

proteins that conform the intracellular transport machinery in 

the brain cells seems to accompany development, according to 

the maturation of the different brain areas. 

Mutations and/or CNVs affecting AP2M1 have never 

been reported in patients with ASD. 

 

Mutations in the AP1S2 gene, encoding the sigma1B 

subunit of the clathrin-associated adaptor protein complex 

(AP)-1, are responsible for a clinically recognizable 

XLMR and autism syndrome associating hypotonia, 

delayed walking, speech delay, aggressive behavior, brain 

calcifications, and elevated CSF protein levels.  

Borck et al., 2008 

Borgonovo et al., 2012 

     
 

 

ARHGAP26(-)* 

 
Intracellular signaling: 

regulation of actin 

cytoskeleton dynamics 

This gene encodes the Rho GTPase activating protein 26 

which binds to focal adhesion kinase and mediates the 

activity of the GTP binding proteins RhoA and Cdc42. 

Focal adhesion kinase is one of the protein involved in the 

signaling cascades that regulate the organization of the actin-

cytoskeleton which mediate the interaction of a cell with the 

extracellular matrix. 

 

Quite high expression in postnatal parietal and occipital 

lobes, cerebellum peduncles, and hypothalamus. 

Moderate expression in immune cell types. 

The Rho GTPases, RhoA and Cdc42, are involved in neuronal 

morphogenesis, axonal guidance and synaptic plasticity by 

modulating the organization of actin cytoskeleton. 

The same pathway is involved in T-cells activation, migration, 

and cell-cell adhesion. 

Mutations and/or CNVs affecting ARHGAP26 have never 

been reported in patients with ASD.  

 

Point mutations and CNVs affecting TSC1 and TSC2 

have been reported in patients with ASD and Tuberous 

Sclerosis 1 or 2. Both the TSC1 and TSC2 proteins 

activate RhoA whereas TSC2 activates CdC42, thus 

regulating cell adhesion and migration. 

Fombonne et al., 1997 

Lewis et al., 2004 
Muzykewicz et al., 2007 

Wiznitzer, 2004 

Wong, 2006 
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Tab. 4. Continued. 

 

 

 

 

 

ARHGEF10(+) 

 
Intracellular signaling: 

regulation of actin 

cytoskeleton dynamics 

This gene encodes the Rho guanine nucleotide exchange 

factor (GEF) 10 protein.  

Rho GTPases play a fundamental role in numerous cellular 

processes that are initiated by extracellular stimuli that work 

through G protein coupled receptors. The encoded protein 

may form complex with G proteins and stimulate Rho-

dependent signals.  

 

Moderate expression in fetal brain and good expression in 

postnatal brain, in particolar in prefrontal cotex, amygdalaee 

and hypothalamus. 

High expression in immune cell types. 

RhoGTPases play a pivotal role in regulating the actin 

cytoskeleton and influence cell polarity, microtubule dynamics, 

membrane-transport pathways, and transcription-factor activity. 

Numerous evidence has implicated RhoGTPases in neuronal 

morphogenesis, including cell migration, axonal growth 

and guidance, dendrite elaboration and plasticity, and 

synapse formation.  

RhoGEFs activate RhoGTPases by catalyzing the exchange of 

bound GDP for GTP, which induces a conformational change in 

the GTP-bound GTPase that allows its interaction with 

downstream effector proteins, thus playing a central role in 

defining the temporal and spatial activation of the corresponding 

GTPase within neuronal cells. 

In particular, ARHGEF10 is mostly involved in peripheral nerve 

development. 

Mutations and/or CNVs affecting ARHGEF10 have never 

been reported in patients with ASD. However, mutations 

in ARHGEF10 have been aasociated to slowed nerve-

conduction velocities, a biological endophenotype in the 

majority of the hereditary motor and sensory 

neuropathies. In addition, a weak association of SNPs in 

ARHGEF10 with SCZ has been reported. 

 

RhoGEFs have been previously implicated in human 

genetic disorders: 

- a mutation in the DH domain of FGD1 

GEF cosegregates with faciogenital dysplasia, a 

developmental disorder;  

- mutations in ARHGEF6 are associated with 

X-linked nonsyndromic MR; 

- aberrant EphB/Ephexin5 signaling during the 

development of synapses may contribute to the abnormal 

cognitive function that occurs in AS and, possibly, ASD. 

Boguski and McCormick 

1993 
Bourne et al., 1990 

Etienne-Manneville and Hall 

2002 

Hart et al., 1994 
Kutsche et al., 2000  

Margolis et al., 2010 

Pasteris et al., 1994 

Verhoeven et al., 2003 

      

ARPP21(-)* 
 
Intracellular signaling: 

regulation of CaM-

dependent signaling 

This gene encodes the cAMP-regulated phosphoprotein, 

21kDa. The encoded protein is enriched in the caudate 

nucleus and cerebellar cortex.  

 

Very high expression in fetal brain and in postnatal CNS.  

ARPP21 may act as a competitive inhibitor of calmodulin-

dependent enzymes such as calcineurin in neurons. Indeed, 

ARPP21, also known as regulator of calmodulin (CaM) 

signaling (RCS), when phosphorylated by protein kinase A 

binds to CaM and inhibits CaM-dependent signaling. RCS 

expression is high in the dorsal striatum, nucleus accumbens and 

amygdalaee, suggesting that the protein is involved in limbic-

striatal function. 

In mouse a similar protein is enriched in the central extended 

amygdalaee. Moreover, it may be involved in regulating the 

effects of dopamine in the basal ganglia.  

Recently, it has been demonstrated that the regulator of 

calmodulin signaling knockout mice display anxiety-like 

behavior and motivational deficits. 

Mutations and/or CNVs affecting ARPP21 have never 

been reported in patients with ASD.  

Becker et al., 2008 

Davis et al., 2012 

      

ATP6AP1(+) 
 
Intracellular membrane 

trafficking: 

neurotransmitter uptake 

This gene encodes the ATPase, H+ transporting, lysosomal 

accessory protein 1, which is a component of a multisubunit 

enzyme that mediates acidification of eukaryotic intracellular 

organelles. The encoded protein is approximately 45 kD and 

may assist in the V-ATPase-mediated acidification of 

neuroendocrine secretory granules. 

 

Good-high expression in fetal brain and in postnatal CNS. 

The vacuolar (H+)-ATPase (V-ATPase) is a universal proton 

pump and its activity is required for a variety of cell-biological 

processes such as membrane trafficking, receptor-mediated 

endocytosis, lysosomal protein degradation, osteoclastic bone 

resorption and maintenance of acid-base homeostasis by renal 

intercalated cells. In neuronal and neuroendocrine cells, the V-

ATPase is the major regulator of intragranular acidification 

which is indispensable for correct prohormone processing and 

neurotransmitter uptake. 

Mutations and/or CNVs affecting ATP6AP1 have never 

been reported in patients with ASD.  

 

Recurrent Copy Number gains at Xq28 including 

ATP6AP1 have been reported in mentally retarded 

patients. 

Jansen and Martens, 2012 

Vandewalle et al., 2009 
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Tab. 4. Continued. 

BCKDHA(-)* 

 
Branched-chain amino 

acid catabolism 

This nuclear gene encodes the branched chain keto acid 

dehydrogenase E1, alpha polypeptide, which is a subunit of 

an innter mitochondrial enzyme complex that catalyzes the 

second major step in the catabolism of the branched-chain 

amino acids leucine, isoleucine, and valine.  

 

Moderate expression in postnatal whole brain. 

In the brain, metabolism of the essential branched chain 

aminoacids (BCAAs) leucine, isoleucine, and valine, is 

regulated in part by protein synthesis requirements. Excess 

BCAAs are catabolized or excreted. The first step in BCAA 

catabolism is catalyzed by the branched chain aminotransferase 

(BCAT) isozymes. A product of this reaction, glutamate, is the 

major excitatory neurotransmitter and precursor of the major 

inhibitory neurotransmitter GABA. The BCATs are thought to 

participate in a α-keto-acid nitrogen shuttle that provides 

nitrogen for synthesis of glutamate from α-ketoglutarate. 

The branched-chain α-ketoacid dehydrogenase enzyme complex 

(BCKDC) catalyzes the second, irreversible step in BCAA 

metabolism, which is oxidative decarboxylation of the 

branched-chain α-ketoacid (BCKA) products of the BCAT 

reaction.  

 

Defects in BCKDHA are a cause of maple syrup urine disease 

type IA. MSUD is an autosomal recessive disorder 

characterized by mental and physical retardation, feeding 

problems, and a maple syrup odor to the urine. 

In individuals with MSUD, the oxidation of BCAAs is inhibited 

and, therefore, intake of BCAAs above the daily requirement for 

protein synthesis causes accumulation of BCAAs and their 

BCKAs to toxic level. If left untreated, most patients experience 

seizures, changes in muscletone, and coma due to brain 

swelling. Analysis of MSUD brains by magnetic resonance 

diffusion imaging spectroscopy suggests impaired brain energy 

metabolism. Neurological disorders frequently involve 

disruption of the proper balance of these excitatory (glutamate) 

and inhibitory (GABA) neurotransmitters, which result in 

altered excitability. 

Mutations or CNVs affecting BCKDHA have never been 

reported in patients with ASD.  

 

Inactivating mutations affecting BCKDK (Branched 

Chain Ketoacid Dehydrogenase Kinase) have been 

reported in consanguineous families with autism, EP, and 

ID. The encoded protein is responsible for 

phosphorylation-mediated inactivation of the E1-α 

subunit of branched chain ketoacid dehydrogenase 

(BCKDH). 

Cole et al., 2012 

Novarino et al., 2012 

      

B9D2(+) 

 
Ciliogenesis: regulation 

of microtubule 

cytoskeleton dynamics 

This gene encodes the B9 protein domain 2, which is 

exclusively found in ciliated organisms. The gene is 

upregulated during mucociliary differentiation, and the 

encoded protein localizes to basal bodies and cilia. 

Disrupting expression of this gene results in ciliogenesis 

defects.  

 

Good expression in fetal brain and moderate expression in 

postnatal parietal and temporal lobes, and in thalamus.  

B9D2, as well as KIF2A, belongs to kinetochore and is involved 

in the microtubule-bound to the kinetochore. KIF2A, the kinesin 

heavy chain member 2A protein, may regulate microtubule 

dynamics during axonal growth. By analogy, also B9D2 is 

probably involved in brain development. 

Mutations and/or CNVs affecting B9D2 have never been 

reported in patients with ASD.  

 

Mutations in human genes encoding the B9 domain-

containing proteins (MKS1, B9D1, and B9D2) cause 

Meckel syndrome, a severe ciliopathy characterized by 

occipital encephalocele, liver ductal plate malformations, 

polydactyly, and kidney cysts.  

Dowdle et al., 2011 

      
     

     

     

 



62 

 

Tab. 4. Continued. 

CA4(+) 

de novo 

 
Ecitatory synaptic 

plasticity  

This gene encodes the carbonic anhydrase IV, which belongs 

to a large family of zinc metalloenzymes that catalyze the 

reversible hydration of carbon dioxide. They participate in a 

variety of biological processes, including respiration, 

calcification, acid-base balance, bone resorption, and the 

formation of aqueous humor, cerebrospinal fluid, saliva, and 

gastric acid. 

The protein CA4 has been found in the endothelium of the 

choriocapillaris in eyes and no detectable levels are found in 

renal capillaries. 

 

Good expression in postnatal brain and cerebellum. 

The presence of extracellular carbonic anhydrases in the CNS 

was detected in physiological studies of rat hippocampal slices. 

The enzymes are indirectly implicated in regulation of 

excitatory synaptic transmission, because the curtailment of 

extracellular alkaline shifts by extracellular carbonic anhydrases 

was shown to limit postsynaptic NMDA receptor activation 

during synchronous neural activity.  

The principal isoforms of carbonic anhydrases in the brain are 

CA4 and CA14, and both enzymes catalyze the buffering of 

activity-dependent pHe transients.  

 

Defects in CA4 are the cause of retinitis pigmentosa type 17.  

Mutations and/or CNVs affecting CA4 have never been 

reported in patients with ASD.  

 

Carbonic anhydrase II (CA II) deficiency in man is an 

autosomal recessive disorder manifest by osteopetrosis, 

renal tubular acidosis, cerebral calcification, growth 

retardation and MR. 

 

Rare single gene mutations affecting CA6 has been 

reported in a few autistic patients. 

Bucan et al., 2009 

Fedirko et al., 2007 

Parkkila et al., 2001 
Shah et al., 2005 

Sly et al., 1991 

Tong et al., 2000 

      

CACNA1C(-)* 
 
Synaptogenesis and 

synaptic plasticity 

This gene encodes the calcium channel, voltage-dependent, L 

type, alpha 1C subunit. Calcium channels mediate the influx 

of calcium ions into the cell upon membrane polarization, 

and they are involved in a variety of calcium-dependent 

processes, including muscle contraction, hormone or 

neurotransmitter release, gene expression, cell motility, cell 

division and cell death. 

 

Good-high expression in fetal brain and in postnatal temporal 

lobe, prefrontal and cingulate cortex, and amygdalaee. 

CACNA1C is most frequently implicated in coupling of cell 

membrane depolarization to transient increase of the membrane 

permeability for calcium, leading to activation and, potentially, 

changes in intracellular signaling pathway activity, gene 

transcription, and synaptic plasticity. It is involved in the proper 

function of numerous neurological circuits including those 

involving the hippocampus, amygdalaee, and mesolimbic 

reward system, which are strongly implicated in psychiatric 

disease pathophysiology.  

In particular, it has been reported that a gain of function 

mutation in CACNA1C may result in an inappropriate activation 

of the ERK cascade as seen in a subset of autistic patients. 

Defects in CACNA1C are the cause of Timothy 

syndrome, which is comorbid with ASD.  

Moreover, mutations in CACNA1C have been associated 

to depression and SCZ. 

 

Mutations affecting different CACNA genes, such as 

CACNA1F and CACNA1H, have been previously reported 

in idiopathic or syndromic patients with ASD. 

Bhat et al., 2012 

Hemara-Wahanui et al., 2005 

Kalkman, 2012 

Splawski et al., 2004, 2006 

      

CAMK2G(-) 

de novo 
 
Intracellular Wnt/Ca

2+
 

signaling pathway  

This gene encodes the calcium/calmodulin-dependent protein 

kinase II gamma, which is one of the four subunits of an 

enzyme which belongs to the serine/threonine protein kinase 

family, and to the Ca(2+)/calmodulin-dependent protein 

kinase subfamily. Calcium signaling is crucial for several 

aspects of plasticity at glutamatergic synapses.  

 

High expression in fetal brain and in postnatal CNS.  

Calcium/calmodulin-dependent protein kinase type II (CaMKII) 

is a highly abundant serine/threonine kinase comprising a 

significant fraction of total protein in mammalian forebrain and 

forming a major component of the postsynaptic density. 

CaMKII is essential for certain forms of synaptic plasticity and 

memory consolidation and this is mediated through substrate 

binding and intramolecular phosphorylation of holoenzyme 

subunits. It has been suggested that cellular specific pattern of 

the different isoforms of the holoenzyme subunits might play a 

role in propagating the type of recurrent neuronal activity 

associated with disorders such as temporal lobe EP. 

 

CAMK2G is involved in the Wnt/Ca2+ signaling which is 

mediated through G proteins and phospholipases and leads to 

transient increases in cytoplasmic free calcium that 

subsequently activate the kinase PKC (protein kinase C) and 

CAMKII (calcium calmodulin mediated kinase II) and the 

phosphatase calcineurin. 

Mutations and/or CNVs affecting CAMK2G have never 

been reported in patients with ASD. 

 

Deregulation of Wnt/β-catenin signaling pathway has 

been implicated in the pathogenesis of ASD as well as of 

other neuropsychiatric disorders. 

Chung et al., 2011 
De Ferrari and Moon, 2006 

Liu and Murray, 2012 

Okerlund and Cheyette, 2011 

Wang et al., 2010  
Zhang et al., 2012 
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Tab. 4. Continued. 

CCNY(-)* 

 
Intracellular Wnt 

signaling pathway  

This gene encodes the cyclin Y protein. Cyclins, such as 

CCNY, control cell division cycles and regulate cyclin-

dependent kinases (e.g., CDC2). CCNY acts as a cell-cycle 

regulator of Wnt signaling pathway during G2/M phase by 

recruiting CDK14/PFTK1 to the plasma membrane and 

promoting phosphorylation of LRP6, leading to the 

activation of the Wnt signaling pathway. 

 

Moderate expression in postnatal CNS.  

CCNY directly interacts with CDK14, the cyclin-dependent 

kinase 14, which plays a role in neuron differentiation and/or 

function.  

CDK14/cyclin Y complex promotes Wnt signaling through 

phosphorylation of the LRP6 co-receptor, a key regulatory 

nexus in the Wnt/beta-catenin pathway, thus suggesting that this 

pathway might orchestrate mitotic processes. 

Mutations and/or CNVs affecting CCNY have never been 

reported in patients with ASD. 

 

Deregulation of Wnt/β-catenin signaling pathway has 

been implicated in the pathogenesis of ASD as well as of 

other neuropsychiatric disorders. 

Chung et al., 2011 

Davidson and Niehrs, 2010 

De Ferrari and Moon, 2006 

Jiang et al., 2009 
Okerlund and Cheyette, 2011 

Wang et al., 2010  

Zhang et al., 2012 

      
 

CFDP1(-) 
 
Embryonal development 

This gene encodes the craniofacial development protein 1, 

which may play a role during embryogenesis. 

 

Good expressione in fetal brain and in postnatal CNS, in 

particolar in temporal lobe, prefrontal cortex, amygdalaee, 

thalamus, and hypothalamus. 

Good expression in immune cell types. 

It has been suggested that CP27, a mouse homologous of human 

CFDP1, has a role in organogenesis.  

CFDP1 is a substrate of CSNK2A1, the casein-kinase 2 alpha 

which is ubiquitously expressed in different brain regions and 

phosphorylates several proteins with a known role in brain 

development (e.g. STX1A, L1CAM). 

Mutations and/or CNVs affecting CFDP1 have never 

been reported in patients with ASD.  

 

SNPs in STX1A showed nominal associations with HF-

AU.  

A missense mutation in L1CAM has been reported in an 

adult male patient with L1 disease and autism. 

Iwashita et al, 1999 

Luan and Diehwisch, 2002 

Nakamura et al., 2008, 2011 

Risinger and Bennett, 1999 
Simonati et al., 2006 

Wong et al., 1996 

      

CFL2(+) 
 
Intracellular signaling: 

regulation of actin 

cytoskeleton dynamics 

This gene encode the cofilin 2 protein, an intracellular 

protein that is involved in the regulation of actin-filament 

dynamics in a pH-sensitive manner.  

 

Low expression in fetal brain and high expression in 

postnatal CNS.  

The activity of CFL2 is directly regulated by the opposite 

functions of LIMK1, a protein kinase, and SSH1 (slingshot 

homolog 1 of Drosophila), a protein phosphatase, both involved 

in brain development. Indeed, the activity of cofilin is repressed 

by phosphorilation by LIM kinase and is reactived by 

dephosphorilation by SSH1. LIMKs are activated by Rho family 

GTPases via actions of their downstream effectors, such as Rho-

associated kinase (ROCK) and p21-activated kinase (PAK). 

Thus, LIMKs seem to play a critical role in stimulus-induced 

actin cytoskeletal remodeling by linking the signal from Rho 

family GTPases to the change in cofilin activity. This regulation 

is essential in controlling growth cone motility and morphology 

and neurite extension.  

 

Mutations in CFL2 cause nemaline myopathy type 7, a form of 

congenital myopathy. 

Mutations and/or CNVs affecting CFL2 have never been 

reported in patients with ASD. 

 

Rho GTPases, RhoA and Cdc42, are involved in neuronal 

morphogenesis, axonal guidance and synaptic plasticity 

by modulating the organization of actin cytoskeleton. 

Point mutations and CNVs affecting TSC1 and TSC2 

have been reported in patients with ASD and Tuberous 

Sclerosis 1 or 2. Both TSC1 and TSC2 proteins activate 

RhoA whereas TSC2 activates CdC42, thus regulating 

cell adhesion and migration. 

Agrawal et al., 2007 

Endo et al., 2003 

Fombonne et al., 1997 

Galkin et al., 2011 
Lewis et al., 2004 

Meyer and Feldman, 2002 

Muzykewicz et al., 2007 

Samiere and Bamburg, 2004 
Wiznitzer, 2004 

Wong, 2006 

      
 

 

CREM(-)* 

 
Trascriptional regulation  

This gene encodes the cAMP responsive element modulator 

protein, which is a transcription factor that binds to the 

cAMP responsive element found in many viral and cellular 

promoters. It is an important component of cAMP-mediated 

signal transduction during the spermatogenetic cycle, as well 

as other complex processes. Alternative promoter and 

translation initiation site usage allows this gene to exert 

spatial and temporal specificity to cAMP responsiveness.  

 

Moderate expression in postnatal whole brain and good 

expression in amygdalaee. 

The family of CREB (cAMP response element-binding protein) 

transcription factors are involved in a variety of biological 

processes including the development and plasticity of the 

nervous system. In the maturing and adult brain, CREB genes 

are required for activity-dependent processes, including 

synaptogenesis, refinement of connections and long-term 

potentiation. 

By examining CREB1-CREM(-/-) mouse mutants, it has been 

demonstrated that the lack of CREB/CREM genes, specifically 

in neural and glial progenitors, leads to migration abnormalities 

during brain development and that CREB/CREM transcription 

factors negatively regulate early synaptogenesis and 

spontaneous network activity. 

A rare inherited CNV involving CREM has been reported 

in a patient with ASD and ID. 
Aguado et al., 2009 
Diaz-Ruiz et al., 2008 
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Tab. 4. Continued. 

CSH1(-) 

 
Organogenesis, 

intrauterine growth 

This gene encodes the chorionic somatomammotropin 

hormone 1, which is a member of the somatotropin/prolactin 

family of hormones and plays an important role in growth 

control. The gene is located at the growth hormone locus on 

chromosome 17 along with four other related genes. 

It is produced only during pregnancy and is involved in 

stimulating lactation, fetal growth and metabolism. 

 

Good expression in fetal brain and in postnatal temporal, 

parietal and occipital lobes, and cerebellum. 

Pituitary GH1/IGF-I axis may play an important role in CNS 

functions, including those associated with neuronal growth, 

development, and protection. Furthermore, the GH1/IGF axis 

may play a role in influencing aspects of mood and cognition. 

GH-binding sites have been identified in several areas of the 

brain, including the choroid plexus, putamen, thalamus, 

pituitary, hippocampus, and cortex.. It has been demonstrated 

that GH modulates synaptic efficacy of hippocampal neurons 

and itself is regulated during memory formation, learning 

processes, and emotional experiences. 

 

Somatotropin/prolactin hormonedeficiency may cause 

intrauterine growth restriction (IUGR), which has an effect on 

the hippocampus structure that correlates with behavioural 

problems in preterm infants. 

Mutations and/or CNVs affecting CSH1 have never been 

reported in patients with ASD. 

 

A few autistic patients showing growth hormone 

deficiency have been reported. 

Devillard et al., 2010 

Donahue et al., 2006 

Gingell et al., 1996 
Lodygensky et al., 2008 

Ragusa et al., 1993 

Zearfoss et al., 2008 

     

CSPG5(+) 

 
Neuronal growth 

This gene encodes the chondroitin sulfate proteoglycan 5, 

also known as neuroglycan C, which is a proteoglycan that 

functions as a neural growth and differentiation factor.  

 

Very high and specific expression in fetal brain and in 

postnatal CNS.  

Neuroglycan C (NGC) is a transmembrane-type chondroitin 

sulfate proteoglycan that is exclusively expressed in the CNS. 

Both protein kinase C (PKC) inhibitors and phosphatidylinositol 

3-kinase (PI3K) inhibitors attenuated the NGC-mediated neurite 

outgrowth in a dose-dependent manner, suggesting that NGC 

promotes neurite outgrowth via PI3K and PKC pathways. 

 

NGC directly interacts with GOLPH3, the golgi phosphoprotein 

3, which is involved in modulation of mTOR signaling, that is 

in turn regulated by both TSC1 and TSC2. 

Mutations and/or CNVs affecting CSPG5 have never 

been reported in patients with ASD. 

 

Point mutations and CNVs affecting TSC1 and TSC2 

have been reported in patients with ASD and Tuberous 

Sclerosis 1 or 2.  

Fombonne et al., 1997 

Hassel et al., 2003 

Lewis et al., 2004 
Muzykewicz et al., 2007 

Nakanishi et al., 2006 

Wiznitzer, 2004 

Wong, 2006 

     
 

 

CUX1(-) 

 
Transcriptional 

regulation  

This gene encodes the cut-like homeobox 1 protein, which is 

a member of the homeodomain family of DNA binding 

proteins. It may regulate gene expression, morphogenesis, 

and differentiation and it also has a role in the cell cycle 

progession. 

 

Low expression in fetal brain, moderate expression in 

postnatal CNS, in particolar in prefrontal cortex, cerebellum 

and cerebellum peduncles.  

Good-high expression in immune cell types. 

CUX1 is a regulator of brain development. It is co-expressed 

with EN2 during CNS development and throughout the 

postnatalhood. Mouse Cux1 regulates dendritic branching, spine 

morphology and synapse formation in cerebral cortex, which 

contributes to cognitive circuitry. 

 

CUX1 mediates changes in the chromatin conformation and 

influences V(D)J recombination in B-cells. 

Mutations and/or CNVs affecting CUX1 have never been 

reported in patients with ASD. 

 

SNPs in EN2 have previously been associated with ASD.  

Benayed et al., 2005 
Choi et al., 2012 

Cubelos et al., 2010  

Gharani et al., 2004  

Goebel et al., 2002 
Hulea and Nepveu, 2012 

Li et al., 2010 

      
 

DIP2A(-)* 

 
Neurogenesis: axon 

patterning 

This gene encodes the DIP2 disco-interacting protein 2, 

homolog A (Drosophila), which is involved in axon 

patterning in the CNS.  

 

Low expression in fetal brain, and in postnatal CNS, escept 

for prefrontal cortex and hypothalamus where expression is 

good.  

High expression in immune cell types. 

DIP2A is the plasma membrane receptor for follistatin-like 1 

protein, FSTL1, which has been implicated in diverse disease 

processes as a regulator of inflammatory cytokine expression. 

Mutations and/or CNVs affecting DIP2A have never been 

reported in patients with ASD.  

 

DIP2A has been proposed as a candidate gene for 

dyslexia. 

Adams et al., 2010 

Poelmans et al., 2009 

      
 



65 

 

Tab. 4. Continued. 
 

DLGAP2(SAPAP2) 

(+) 

 
Synaptogenesis and 

synaptic plasticity 

This gene encodes the discs, large (Drosophila) homolog-

associated protein 2, which is one of the membrane-

associated guanylate kinases localized at postsynaptic density 

in neuronal cells. This protein is an adapter protein linking 

ion channel to the subsynaptic cytoskeleton and plays a role 

in the molecular organization of synapses and in neuronal 

cell signaling.  

 

High expression in fetal brain and in postnatal CNS, in 

particolar in thalamus and amygdalaee. 

NMDA neurotransmitter receptors and SAPAP2 (DLGAP2) are 

integral components of post-synaptic macromolecular signaling 

complexes that serve to propagate glutamate responses 

intracellularly. Recently, NMDA receptor subtype-specific 

binding sites, that mediate direct interactions with scaffold 

protein SAPAP2, have been identified. 

Furthermore, DLGAP2 binds to SHANK2, which acts as a link 

between the post-synaptic receptor on the plasma membrane and 

the cytoskeleton, and directly interacts with NLGN4X. 

A de novo CNV involving DLGAP2 has been reported in 

a patient with ASD. 

 

Mutations and/or CNVs affecting SHANK2 and NLGN4X 

have been previously reported in autistic patients. 

Baris et al., 2007 
Berkel et al., 2010, 2012 

Bolliger et al., 2001 

Cousins and Stephenson, 

2012 
Jamain et al., 2003 

Kent et al., 2008b 

Laumonnier et al., 2004  

Lawson-Yuen et al., 2008 
Leblond et al., 2012 

Marshall et al., 2008  

Pinto et al., 2010 

      

DLG2(-) 

 
Synaptogenesis and 

synaptic plasticity 

This gene encodes the discs, large homolog 2 (Drosophila) 

protein, which is a member of the membrane-associated 

guanylate kinase (MAGUK) family. The encoded protein 

forms a heterodimer with a related family member that may 

interact at postsynaptic sites to form a multimeric scaffold for 

the clustering of receptors, ion channels, and associated 

signaling proteins.  

 

Good expression in fetal brain, very high expression in 

postnatal CNS. 

DLG2 is part of the postsynaptic protein scaffold of excitatory 

synapses; it is required for perception of chronic pain through 

NMDA receptor signaling and is involved in regulation of 

synaptic stability at cholinergic synapses.  

 

DLG2 interacts with NMDA glutamate receptors GRIN2A and 

GRIN2B, as well as with other proteins of the postsynaptic 

scaffold such as DLGAP1 and DLGAP4 and cytoskeleton 

proteins such as MAP1A. 

Mutations and/or CNVs affecting DLG2 have never been 

reported in patients with ASD. 

 

DLG2 is deleted in SCZ in a study of Genome-Wide 

Copy Number Variation and shows a reduction in protein 

expression in post-mortem brain samples from 

schizophrenics. Moreover, mouse knockouts of DLG2 

show hypofunction of NMDA receptor signaling, a 

process implicated in SCZ. 

 

It has been reported that DLG4 gene disruption in mice 

produces a complex range of behavioral and molecular 

abnormalities relevant to autism spectrum disorders and 

Williams' syndrome. 

 

A SNP in GRIN2B has been associated with ASD in 

Korean patients. A de novo GRIN2B mutation has been 

reported in an autistic patient. 

 

SNPs in GRIN2A have been associated with SCZ. Two de 

novo GRIN2A mutations has been reported in SCZ 

patients. 

Barnby et al., 2005 

Feyder et al., 2010 
MacLaren et al., 2011 

Tarabeux et al., 2011 

Walsh et al., 2008 

Yoo et al., 2012 
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Tab. 4. Continued. 

 

 

 

 

DOCK8(-)* 

 
Intracellular signaling: 

regulation of actin 

cytoskeleton dynamics 

This gene encodes the dedicator of cytokinesis 8 protein, 

which is a member of the DOCK180 family of guanine 

nucleotide exchange factors. GEFs proteins interact with Rho 

GTPases and are components of intracellular signaling 

networks.  

 

It is expressed at low levels in brain tissue. 

In mammalian cells, the DOCK family of proteins have roles in 

regulating cytoskeletal reorganization, which is important for 

neuronal and immune function.  

DOCK8 is involved in the reorganization of the actin filament 

system through its direct interaction with CDC42, RhoJ, and 

RhoK.  

The interaction between DOCK8 and Cdc42-is critical for 

interstitial dendritic cell migration through the interstitium and 

for the polarity changes necessary for T-cell activation and 

function. Indeed, both B and T-cells from DOCK8 mutant mice 

form defective immunological synapses and have abnormal 

functions, in addition to impaired immune memory 

development.  

 

In humans, mutations in DOCK8 result in the autosomal 

recessive form of the hyper-IgE syndrome. It is a rare disorder 

of immunity characterized by immunodeficiency, recurrent 

infections, eczema, increased serum IgE, eosinophilia and lack 

of connective tissue and skeletal involvement.  

Two de novo 9p24 terminal deletion including DOCK8 

and ANKRD15 have been reported in a female and a male 

patient with ASD. The male patient presented also a 

gonadal dysgenesia. 

DOCK8 disrupton has been reported in two patients with 

MR and developmental disabilities. 

 

Point mutations and CNVs affecting TSC1 and TSC2 

have been reported in patients with ASD and Tuberous 

Sclerosis 1 or 2.  

Both TSC1 and TSC2 proteins activate RhoA whereas 

TSC2 activates CdC42, thus regulating cell adhesion and 

migration. 

Fombonne et al., 1997 

Griggs et al., 2008 
Harada et al., 2012 

Jabara et al., 2012 

Lewis et al., 2004 

Muzykewicz et al., 2007 
Ounap et al., 2004 

Ruusala and Aspenstrom, 

2004 

Vinci et al., 2007 
Wiznitzer, 2004 

Wong, 2006 

      

DVL3(+) 

 
Intracellular Wnt 

signaling pathway  

This gene encodes the dishevelled, dsh homolog 3 protein, 

which is a member of a multi-gene family that shares strong 

similarity with the Drosophila dishevelled gene, dsh. The 

Drosophila dishevelled gene encodes a cytoplasmic 

phosphoprotein that regulates cell proliferation.  

 

Moderate expression in fetal brain and in postnatal CNS. 

DVL3 plays a role in the signal transduction pathway mediated 

by multiple Wnt genes.  

In a recent genome-wide analysis of repressive histone 

methylation in nucleus accumbens of mice subjected to chronic 

social defeat stress, numerous genes were identified where 

stress induced changes in histone methylation in susceptible but 

not resilient mice. A prominent gene was dishevelled (DVL)-2, 

a key step in the WNT-Frizzled signaling cascade. Indeed, 

under basal conditions, DVL is maintained in the cytoplasm in 

an inactive, depolymerized form. WNT, secreted from afferent 

cells, activates Frizzled, a plasma membrane receptor, which 

then triggers the binding and polymerization of DVL. DVL 

activation leads to its binding of Axin, phosphorylation and 

inhibition of glycogen synthase kinase-3β (GSK3β), and the 

regulation of several downstream targets, including β-catenin.  

 

More recently, a concerted regulation of multiple proteins in this 

pathway, including all three isoforms of DVL (DVL1–3) and 

GSK3β, has been demonstrated in susceptible but not resilient 

mice, and provide direct, causal evidence that such regulation 

represents a prodepression-like maladaptation that promotes 

susceptibility to chronic stress.  

Mutations and/or CNVs affecting DVL3 have never been 

reported in patients with ASD. 

 

Deregulation of Wnt/β-catenin signaling pathway has 

been implicated in the pathogenesis of ASD as well as of 

other neuropsychiatric disorders. 

Chung et al., 2011 

De Ferrari and Moon, 2006 

Gao and Chen, 2010 

Okerlund and Cheyette, 2011 
Wang et al., 2010  

Wilkinson et al., 2009, 2011 

Zhang et al., 2012 

      
 

 

 

http://www.jneurosci.org/content/31/25/9084.long#ref-10#ref-10
http://www.jneurosci.org/content/31/25/9084.long#ref-35#ref-35
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Tab. 4. Continued. 

EIF2S3(-)* 

 
Translational regulation  

This gene encodes the eukaryotic translation initiation factor 

2 protein, which functions in the early steps of protein 

synthesis by forming a ternary complex with GTP and 

initiator tRNA. 

 

Moderate expression in fetal brain and in postnatal 

amygdalaee and hypothalamus.  

Another member of the eukaryotic translation initiation factor 

proteins, EIF4E, plays a key role in learning and memory 

through its control of translation within the synapse. EIF4E 

mediated translation is the final common process modulated by 

mTOR (upstream regulator of EIF4E), PTEN and FRMP 

pathways, which are implicated in autism.  

Mutations and/or CNVs affecting EIF2S3 have never 

been reported in patients with ASD. 

 

A chromosome translocation t(4;5) which likely 

interrupted an alternative transcript of EIF4E, has been 

identified in a boy with a classical autism. 

Mutations in EIF4E promoter harboured by two autistic 

siblings and one of the parents have been reported in two 

unrelated autism families. 

Neves-Pereira et al., 2009 

      
 

 

FLNA(-)* 

 
Neurodevelopment: actin 

cytoskeleton organization 

This gene encodes filamin A, alpha protein which is an actin-

binding protein that crosslinks actin filaments and links actin 

filaments to membrane glycoproteins. FLNA is involved in 

remodeling the cytoskeleton to effect changes in cell shape 

and migration.  

 

Expressed at moderate levels in brain. 

Very high expression in immune cell types. 

FLNA is associated with a broad range of congenital disorders 

affecting multiple organs. Loss-of-function mutations, although 

lethal in males, result in defective neuronal migration leading to 

periventricular nodular heterotopia (PVNH) in females. On the 

contrary, clustered missense mutations are associated with a 

diverse spectrum of congenital malformations in males and 

females, referred to as otopalatodigital spectrum disorders.  

 

It has recently been reported a direct interaction between FLNA 

and SHANK3 (whose mutations cause syndromic ASD) in 

mouse brain extracts. 

One patient with ASD, carrying a duplication at Xq28 

which encompasses the entire FLNA gene, has been 

recently reported.  

 

Recurrent Copy Number gains at Xq28 including FLNA 

have been reported in mentally retarded patients. 

Lian et al., 2012 

Robertson, 2005 

Sakai et al., 2011 

Vandewalle et al., 2009 

      

GH2(-) 
 
Organogenesis, 

intrauterine growth 

This gene encodes the growth hormone 2, which is a member 

of the somatotropin/prolactin family of hormones that play 

an important role in growth control. The gene, along with 

four other related genes, is located at the growth hormone 

locus on chromosome 17 where they are interspersed in the 

same transcriptional orientation; an arrangement which is 

thought to have evolved by a series of gene duplications. The 

five genes share a remarkably high degree of sequence 

identity. 

 

Good expression in fetal brain and low expression in 

postnatal CNS. 

Pituitary GH1/IGF-I axis may play an important role in CNS 

functions, including those associated with neuronal growth, 

development, and protection. Furthermore, the GH1/IGF axis 

may play a role in influencing aspects of mood and cognition. 

GH-binding sites have been identified in several areas of the 

brain, including the choroid plexus, putamen, thalamus, 

pituitary, hippocampus, and cortex.. It has been demonstrated 

that GH modulates synaptic efficacy of hippocampal neurons 

and itself is regulated during memory formation, learning 

processes, and emotional experiences. 

 

Somatotropin/prolactin hormonedeficiency may cause 

intrauterine growth restriction (IUGR), which has an effect on 

the hippocampus structure that correlates with behavioural 

problems in preterm infants.  

Mutations and/or CNVs affecting GH2 have never been 

reported in patients with ASD. 

 

A few autistic patients showing growth hormone 

deficiency have been reported. 

Devillard et al., 2010 
Donahue et al., 2006 

Gingell et al., 1996 

Lodygensky et al., 2008 

Ragusa et al., 1993 
Zearfoss et al., 2008 

     

 

 

 

 

 

 

 



68 

 

Tab. 4. Continued. 

GLDC(+)* 
 
Glycine metabolism 

This nuclear gene encodes the mitochondrial glycine 

dehydrogenase protein. Degradation of glycine is brought 

about by the glycine cleavage system, which is composed of 

four mitochondrial protein components: P protein (a 

pyridoxal phosphate-dependent glycine decarboxylase), H 

protein (a lipoic acid-containing protein), T protein (a 

tetrahydrofolate-requiring enzyme), and L protein (a 

lipoamide dehydrogenase). The protein encoded by this gene 

is the P protein, which binds to glycine and enables the 

methylamine group from glycine to be transferred to the T 

protein.  

 

Good-high expression in fetal brain and in postnatal whole 

brain, in particular in prefrontal cortex, cerebellum, 

amygdalaee and hypothalamus. 

Defects in GLDC are a cause of non-ketotic hyperglycinemia 

(NKH), also known as glycine encephalopathy (GCE). NKH is 

an autosomal recessive disease characterized by accumulation 

of a large amount of glycine in body fluid and by severe 

neurological symptoms.  

The majority of glycine encephalopathy presents in the neonatal 

period. The neonatal form manifests in the first hours to days of 

life with progressive lethargy, hypotonia, and myoclonic jerks 

leading to apnea and often death. Surviving infants have 

profound ID and intractable seizures.  

The infantile form is characterized by hypotonia, developmental 

delay, and seizures. The atypical forms range from milder 

disease, with onset from late infancy to adulthood, to rapidly 

progressing and severe disease with late onset. 

Mutations and/or CNVs affecting GLDC have never been 

reported in patients with ASD. 
Hamosh et al., 2009 

      

GPR98(-) 

 
CNS development 

This gene encodes the G protein-coupled receptor 98, which 

contains a 7-transmembrane receptor domain and binds 

calcium.  

 

Good expression in fetal brain, and generally low expression 

in postnatal tissues except for postnatal CNS, where the 

expression is .good 

In situ hybridization studies with mouse embryo sections have 

shown that high level expression of GPR98 is restricted to the 

developing CNS and eye and strong expression in the 

ventricular zone, home of neural progenitor cells during 

embryonal neurogenesis, have suggested a fundamental role for 

GPR98 in the development of the CNS. 

 

Mutations in GPR98 are associated with Usher syndrome 2 and 

familial febrile seizures. Indeed, GPR98 is one of the disease-

causing genes for EP, which include SCN1A. 

Mutations and/or CNVs affecting GPR98 have never 

been reported in patients with ASD. 

 

Rare point mutations affecting SCN1A were found in 

sporadic and familial cases of ASD. 

McMillan et al., 2002 
Munoz-Yunta et al., 2008 

O’Roak et al., 2011  

Wang et al., 2005 

Weiss et al., 2003 

      

GRID2(-) 

 
Synaptogenesis and 

synaptic plasticity 

This gene encodes the ionotropic glutamate receptor delta 2, 

a relatively new member of the family of ionotropic 

glutamate receptors which are the predominant excitatory 

neurotransmitter receptors in the mammalian brain. GRID2 is 

selectively expressed in cerebellar Purkinje cells.  

 

Good expression in postnatal cerebellum and cerebellum 

peduncles. 

GRID2 directly interacts with DLG2 and SHANK2 which act as 

adapter proteins in the postsynaptic density of excitatory 

synapses, interconnecting receptors of the postsynaptic 

membrane and the actin-based cytoskeleton.  

Rare single gene mutations affecting GRID2 has been 

reported in two autistic patients. Moreover, a de novo 

CNV at 4q22.2 including GRID2 has recently been 

reported in an autistic patient. 

 

Mutations and CNVs (de novo and inherited) affecting 

SHANK2 have been reported in patients with ASD. 

Berkel et al., 2010, 2012 

He et al., 2012 

Leblond et al., 2012 

Pinto et al., 2010 
Schaaf et al., 2011 

Uemura et al., 2004 

y       

 

 

 

 

 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/pubmed/20301531##
http://www.ncbi.nlm.nih.gov/pubmed/20301531##
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Tab. 4. Continued. 

GRM7(-)* 

 
Synaptogenesis and 

synaptic plasticity 

This gene encodes the glutamate receptor, metabotropic 7. 

The metabotropic glutamate receptors are a family of G 

protein-coupled receptors that have been divided into three 

groups on the basis of sequence homology, putative signal 

transduction mechanisms, and pharmacologic properties. 

Group I includes GRM1 and GRM5, and these receptors 

have been shown to activate phospholipase C. Group II 

includes GRM2 and GRM3, while Group III includes 

GRM4, GRM6, GRM7 and GRM8. Group II and III 

receptors are linked to the inhibition of the cyclic AMP 

cascade but differ in their agonist selectivities. 

 

It is expressed at a very high level in fetal brain and in many 

areas of the postnatal brain, especially in cerebral cortex, 

hippocampus, and cerebellum.  

L-glutamate is the major excitatory neurotransmitter in the 

central nervous system, and it activates both ionotropic and 

metabotropic glutamate receptors. Glutamatergic 

neurotransmission is involved in most aspects of normal brain 

function and can be perturbed in many neuropathologic 

conditions, including SCZ, alcohol and drug addiction. 

De novo CNVs affecting GRM7 have been recently 

reported in patients with ASD. 

 

Mutations and CNVs affecting GRM5 and GRM8, 

respectively, have been reported in a few autistic patients. 

Choi et al., 2009 

He et al., 2012 

Iossifov et al., 2012 

Serajee et al., 2003 
Vadasz et al., 2007 

      

HSPB1(-) 

de novo 

 
Intracellular signaling: 

neuropreotection 

during stress response 

mediated by activation of 

mTOR pathway 

This gene encodes the heat shock 27kDa protein 1, which is 

induced by environmental stress and developmental changes. 

The encoded protein is involved in stress resistance and actin 

organization and translocates from the cytoplasm to the 

nucleus upon stress induction.  

 

Low expression in fetal brain and in postnatal CNS, except 

for cortex, thalamus and hypoyhalamus where the expression 

is good. 

The stress response involving up-regulation of heat shock 

proteins (Hsps) is a powerful mechanism of cells to deal with 

harmful conditions to which they are exposed throughout life, 

such as hyperthermia, hypoxia, or oxidative stress.  

A direct interaction of HSPB1 with Akt1 (mTOR pathway) 

during stress response has been reported, which results in the 

activation of Akt signal transduction pathway during various 

forms of stress. 

In cultured murine hippocampal neurons it has been 

demonstrated that stress-induced phosphorylation of HspB1 and 

B5 may lead to the translocation from the nucleus to neuronal 

processes and to the binding of these Hsps to their targets at 

synapses and neuronal processes which might provide one 

important mechanism of how they exert their neuroprotective 

effect. 

 

Defects in HSPB1 are a cause of Charcot-Marie-Tooth disease 

type 2F and distal hereditary motor neuropathy.  

Mutations and/or CNVs affecting HSPB1 have never 

been reported in patients with ASD. 

 

Point mutations and CNVs affecting TSC1 and TSC2 

(mTOR pathway) have been reported in patients with 

ASD and Tuberous Sclerosis 1 or 2.  

Capponi et al., 2011 

Fombonne et al., 1997 
Kirbach and Golenhofen, 

2011 
Konishi et al., 1997 

Lewis et al., 2004 
Muzykewicz et al., 2007 

Schmidt et al., 2012 

Wiznitzer, 2004 

Wong, 2006 

      

IKBKG(+) 

 
CNS development: 

myelin formation 

This gene encodes the inhibitor of kappa light polypeptide, 

which is the regulatory subunit of the inhibitor of kappaB 

kinase (IKK) complex, which activates NF-kappaB resulting 

in activation of genes involved in inflammation, immunity, 

cell survival, and other pathways.  

 

Moderate expression in fetal brain and good expression in 

postnatal CNS, in particular in amygdalaee and thalamus.  

Very high expression in immune cell types. 

Mutations in IKBKG result in incontinentia pigmenti, 

hypohidrotic ectodermal dysplasia, and several other types of 

immunodeficiencies.  

 

Recently, it has been reported that brain abnormalities correlate 

with additional copies of the IKBKG. Indeed, IKBKG 

overexpression causes impaired NF-κB signaling in skin 

fibroblasts derived from patients with white matter anomalies, 

thus further supporting the role of NF-κB signaling in astroglial 

cells for normal myelin formation of the CNS. 

Mutations and/or CNVs affecting IKBKG have never 

been reported in patients with ASD. However, IKBKG 

maps in the genomic region involved in Xq28 duplication 

syndrome (MECP2), which is comorbid with ASD.  

 

NF-κB is an important gene transcriptional factor that 

mediates cellular responses in inflammation, immunity, 

development, cell proliferation and apoptosis. Elevated 

levels of NF-κB have been reported in autistic patients vs. 

controls. 

Malik et al., 2011 
Naik et al., 2011 

Philippe et al., 2012  

Ramocki et al., 2009, 2010 

     
     

     

     

http://www.ncbi.nlm.nih.gov/pubmed?term=Kirbach%20BB%5BAuthor%5D&cauthor=true&cauthor_uid=21162124
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Tab. 4. Continued. 

IL1RAPL2(-)* 
 
Synaptogenesis and 

synaptic plasticity 

This gene encodes the interleukin 1 receptor accessory 

protein-like 2, which is a member of the interleukin 1 

receptor family.  

 

Expressed at low levels in fetal and postnatal brain, in 

particular in frontal and temporal lobes and cerebellum.  

A member of the same family, IL1RAPL1, encodes a 

transmembrane protein that does not seem to be involved in 

interleukin-1 pathway. It interacts with the neuronal calcium 

sensor 1 protein, thus playing a role in the down-regulation of 

voltage-dependent calcium channels activity, in calcium-

dependent exocytosis in excitatory synapses and NGF-induced 

neurite outgrowth. 

 

Both IL1RAPL1 and IL1RAPL2 are located at a genomic region 

on chromosome X previously associated with X-linked non-

syndromic MR. Recently, it has been reported that both 

IL1RAPL1 and IL1RAPL2 can induce excitatory pre-synapse 

differentiation and dendritic spine formation. 

SNPs affecting IL1RAPL2 have been recently associated 

with ASD.  

 

Mutations, CNVs and chromosomal rearrangements 

involving IL1RAPL1 have been reported in patients with 

ASD associated or not with XLMR. 

Bhat et al., 2008 

Chung et al., 2011 

Kantojärvi et al., 2011 
Piton et al., 2008 

Pinto et al., 2010 

Valnegri et al., 2011 

Yoshida et al., 2011 

      
 

 

 

 

IPCEF1(-) 

 
Intracellular ARF6 

signaling: regulation of 

cytoskeleton dynamics 

and membrane 

trafficking 

This gene encodes the interaction protein for cytohesin 

exchange factors 1. 

 

High expression in fetal brain and very high expression in 

postnatal CNS. 

Very high expression in immune cell types. 

IPCEF1 has been reported to interact with the low weight ARF 

GEF (ADP-ribosylation factor GTP exchange factors) proteins 

of the cytohesin family (in particular cytohesin 2/ARNO) and 

function by modulating the cytohesin activity by stimulating the 

formation of ARFGTP (including ARF6GTP which is particularly 

active in brain). The interaction of cytohesin 2 and IPCEF1 in 

mammalian cells was demonstrated by immunoprecipitation.  

A regulatory role for cytohesin 2 in dendritic branching and 

axonal elongation and branching during neuritogenesis, 

particularly with respect to cytoskeletal dynamics, has been 

demonstrated as well as a role in endosomal dynamics during 

neurite elongation in hippocampal neurons has been recently 

reported. 

 

Cytohesin regulates the activation of RhoA in primary dendritic 

cells (DCs). Cytohesin-1 and RhoA are both required for the 

induction of chemokine-dependent conformational changes of 

the integrin beta-2 subunit of DCs during adhesion. 

Mutations and/or CNVs affecting IPCEF1 have never 

been reported in patients with ASD. 

Hernández-Deviez et al., 

2004, 2007 
Hernández-Deviez and 

Wilson, 2005 

Jaworski, 2007 

Quast et al., 2009 
Venkateswarlu, 2003 

     

IPO11(-)* 

 
Synapto-nuclear 

trafficking 

This gene encodes the importin 11 protein. Importins, 

including IPO11, are a members of the karyopherin/importin-

beta family of transport receptors that mediate 

nucleocytoplasmic transport of protein and RNA cargoes. 

 

Good expression in fetal brain and in postnatal CNS, in 

particular in prefrontal and cingulated cortex. 

It is known that retrograde axonal injury signaling stimulates 

cell body responses in lesioned peripheral neurons and that 

importins are involved in retrograde transport. Recently, it has 

been reported that multiple transcription factors are found in 

axons and associate with dynein in axoplasm from injured 

nerve. For example, axonal STAT3 is locally translated and 

activated upon injury, and is transported retrogradely with 

dynein and importin α5 to modulate survival of peripheral 

sensory neurons after injury.  

Mutations and/or CNVs affecting IPO11 have never been 

reported in patients with ASD. 
Ben-Yaakov et al., 2012 
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Tab. 4. Continued. 

JMJD2A(-) 

(KDM4A) 

 
Chromatin remodeling 

This gene encodes the lysine (K)-specific demethylase 4A 

protein, which functions as a trimethylation-specific 

demethylase, converting specific trimethylated histone 

residues to the dimethylated form, and acts as a 

transcriptional repressor. 

 

Good expression in fetal cerebellum, postnatal cortex and 

cerebellum. 

JMJD2A interacts with NCOR1, the nuclear receptor co-

repressor 1, which mediates transcriptional repression by certain 

nuclear receptors. Together with SIN3A and MECP2, it is part 

of a complex which promotes histone deacetylation and the 

formation of repressive chromatin structures which may impede 

the access of basal transcription. 

Mutations and/or CNVs affecting JMJD2A have never 

been reported in patients with ASD. 

 

A SNP in JMJD2C has been associated with ASD in 

Finnish samples. 

 

MECP2 mutations or deletions cause Rett syndrome 

(comorbidity with autism) in female, and congenital 

encephalopathy or non syndromic ID in males. 

Abdul-Rahman and Hudgins, 

2006 

Auger et al., 2011 

Carney et al., 2003 
Kantojärvi et al., 2010 

Mount et al., 2003 

Schaefer and Lutz, 2006 

Zappella et al., 2003 
Zhang et al., 2005 

      

JMJD2C(-)* 

(KDM4C) 

 
Chromatin remodeling 

This gene encodes the lysine (K)-specific demethylase 4C 

protein, which is a member of the Jumonji domain 2 

(JMJD2) family. This nuclear protein functions as a 

trimethylation-specific demethylase, converting specific 

trimethylated histone residues to the dimethylated form. 

 

Good-high expression in fetal brain and in postnatal 

prefrontal cortex, cerebellum, cerebellum peduncles, and 

amygdalaee. 

JMJD2C interacts with androgen receptor in vitro and in vivo. 

Assembly of ligand-bound androgen receptor and JMJD2C on 

androgen receptor-target genes results in demethylation of 

trimethyl H3K9 and in stimulation of androgen receptor-

dependent transcription. 

A SNP in JMJD2C has been associated with ASD in 

Finnish samples. 

 

The GGN polymorphism in exon 1 of the AR (androgen 

receptor) gene has been associated with ASD 

susceptibility with gender specificity: the rare 20-repeat 

allele has been reported undertransmitted to male cases 

and the 23-repeat allele overtransmitted to female cases. 

Henningsson et al., 2009 

Kantojärvi et al., 2010 
Wissmann et al., 2007 

     

KANK1(-)* 

 
Intracellular signaling: 

regulation of actin 

cytoskeleton dynamics 

This gene encodes the KN motif and ankyrin repeat domains 

1 protein, which belongs to the Kank family of proteins that 

contain multiple ankyrin repeat domains.  

KANK1 functions in cytoskeleton formation in a RhoA-

dipendent manner by regulating actin polymerization and is a 

candidate tumor suppressor for renal cell carcinoma.  

 

Mild expression in fetal brain, good expression in postnatal 

CNS, in particolar in prefrontal cortex, amygdalaee, thalamus 

and hypothalamus.   

Defects in KANK1 (ANKRD15) are the cause of cerebral palsy 

spastic quadriplegic type 2 which is a non-progressive disorder 

of movement and/or posture resulting from defects in the 

developing CNS. Affected individuals manifest congenital 

hypotonia evolving over the first year to spastic quadriplegia 

with accompanying transient nystagmus and varying degrees of 

MR. Neuroimaging shows brain atrophy and ventriculomegaly. 

 

Recently, it has been demonstrated that nucleo-cytoplasmic 

shuttling of human Kank protein accompanies intracellular 

translocation of beta-catenin and, therefore, beta-catenin-

dependent transcription. 

Two de novo 9p24 terminal deletion including DOCK8 

and ANKRD15 have been reported in a female and a male 

patient with ASD. The male patient presented also a 

gonadal dysgenesia. 

 

Deregulation of Wnt/β-catenin signaling pathway has 

been implicated in the pathogenesis of ASD as well as of 

other neuropsychiatric disorders. 

 

Point mutations and CNVs affecting TSC1 and TSC2 

have been reported in patients with ASD and Tuberous 

Sclerosis 1 or 2. Both TSC1 and TSC2 proteins activate 

RhoA whereas TSC2 activates CdC42, thus regulating 

cell adhesion and migration. 

Chung et al., 2011 
De Ferrari and Moon, 2006 

Fombonne et al., 1997 

Kakinuma et al., 2008 

Lewis et al., 2004 
Lerer et al., 2005 

Muzykewicz et al., 2007  

Okerlund and Cheyette, 2011 

Ounap et al., 2004,  
Vinci et al., 2007 

Wang et al., 2006 

Wang et al., 2010  

Wiznitzer, 2004 
Wong, 2006 

Zhang et al., 2012 

     
 

 

 

KIF2A(-)* 

 
Intracellular trafficking: 

regulation of microtubule 

cytoskeleton dynamics 

This gene encodes the kinesin heavy chain member 2A, 

which is a plus end-directed motor required for normal 

mitotic progression. The encoded protein is required for 

normal spindle activity during mitosis and is necessary for 

normal brain development.  

 

High expression in fetal brain and in postnatal CNS. 

High expression in immune cell types. 

Kinesin superfamily proteins (KIFs) are motor proteins that 

transport membranous organelles and macromolecules 

fundamental for cellular functions along microtubules. Their 

roles in transport in axons and dendrites have been studied 

extensively, but KIFs are also used in intracellular transport in 

general.  

KIFs play important roles in higher order neuronal activity; 

transgenic mice overexpressing KIF17, which transports N-

methyl-d-asp (NMDA) receptors to dendrites, show enhanced 

memory and learning. KIFs also play significant roles in 

neuronal development and brain wiring: KIF2A suppresses 

elongation of axon collaterals by its unique microtubule-

depolymerizing activity. 

Mutations and/or CNVs affecting KIF2A have never been 

reported in patients with ASD. 

 

A recurrent 5q12.1 deletion, encompassing KIF2A, has 

been recently reported in four patients in association with 

a phenotype including MR and ocular defects. 

 

A de novo mutation affecting KIF5C has been reported in 

a patient with ASD. 

Awadalla et al., 2010 

Hirokawa and Takemura, 

2004 

Jaillard et al., 2011 

      
 

http://www.ncbi.nlm.nih.gov/pubmed?term=Kantoj%C3%A4rvi%20K%5BAuthor%5D&cauthor=true&cauthor_uid=20410850
http://www.ncbi.nlm.nih.gov/pubmed?term=Henningsson%20S%5BAuthor%5D&cauthor=true&cauthor_uid=19167832
http://www.ncbi.nlm.nih.gov/pubmed?term=Kantoj%C3%A4rvi%20K%5BAuthor%5D&cauthor=true&cauthor_uid=20410850
http://www.ncbi.nlm.nih.gov/pubmed?term=Wissmann%20M%5BAuthor%5D&cauthor=true&cauthor_uid=17277772
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Tab. 4. Continued. 

LCLAT1(-) 

 
Phospholipid metabolism 

This gene encodes the lysocardiolipin acyltransferase 1, 

which has a role in phospholipid metabolism, in particular in 

cardiolipin metabolism. It is required for establishment of the 

hematopoietic and endothelial lineages. 

 

Good expression in fetal brain and postnatal hypothalamus.  

Recently it has been demonstrated that LCLAT1 controls 

mitochondrial DNA fidelity and biogenesis through cardiolipin 

remodeling in response to oxidative stress. 

 

LCLAT1 interacts with LPPR4, the lipid phosphate 

phosphatase-related protein type 4, a protein specifically 

expressed in neurons. It is located in the membranes of 

outgrowing axons and has been shown to be important for 

axonal outgrowth during development and regenerative 

sprouting.  

Mutations and/or CNVs affecting LCLAT1 have never 

been reported in patients with ASD although it is well 

known the involvement of mithocondrial oxidative stress 

response dysfunctions in ASD pathogenesis.  

 

Anti-cardiolipin antibodies have been associated to 

psychiatric disorders such as SCZ, developmental delay 

and autism. 

 

LPPR4 haploinsufficiency has been found in patients 

affected by severe MR and psychomotor development 

delay.  

Chang et al., 2011 

Christie et al., 2011 

Dhillon et al., 2011 

Lehtimaki et al., 2011 
Li et al., 2012 

Mekinian et al., 2012 

van Kuilenburg et al., 2009 

      

MACROD2(-) 

 
CNS development? 

This gene encodes the MACRO domain containing 2 protein, 

which has an unknown function.   

 

Good expression in postnatal parietal and occipital lobes, 

cingulate cortex, subthalamic nucleus, globus pallidus, ciliary 

ganglion and spinal cord. 

The MACROD2 haploinsuffciency may be the cause of Kabuki 

syndrome in a minority of patients. 

A MACROD2 SNP has been associated with ASD (datum 

not replicated in two independent studies). 

 

A de novo CNV affecting MACROD2 has been reported 

in a patient with ADHD. 

Anney et al., 2010 

Curran et al., 2011 
Lionel et al., 2011 

Maas et al., 2007 

Prandini et al., 2012 

      

MAPK15-ERK8(-) 

 
Intracellular MAPK 

signaling: regulation of 

cell growth and 

differentiation  

This gene encodes the mitogen-activated protein kinase 15 

(ERK8), which is involved in cell growth and differentiation. 

 

The protein is ubiquitously expressed. 

Different findings support a role for ERK8 in mainting genomic 

integrity through DNA repair. Moreover, it has been reported by 

an in vitro assay a direct interaction between ERK8 and MBP, 

the myelin basic protein, one of the most abundant protein 

components of the myelin membrane in the CNS, with a role in 

both its formation and stabilization.The major residue in MBP 

phosphorylated by ERK8 (Ser-126) is distinct from that 

phosphorylated by ERK2 (Thr-97), demonstrating that, although 

ERK8 is a proline-directed protein kinase, its specificity is 

distinct from ERK1/ERK2. 

Mutations and/or CNVs affecting MAPK15 have never 

been reported in patients with ASD. 

Abe et al., 2002 

Groehler and Lannigan, 2010 

Klevernic et al., 2006, 2009 

     
 

 

 

MBP(-)* 

 
Intracellular 

Ras/Raf/ERK1/2 

signaling 

This gene encodes the myelin basic protein, which is a major 

constituent of the myelin sheath of oligodendrocytes and 

Schwann cells in the nervous system. However, MBP-related 

transcripts are also present in bone marrow and immune cell 

types.  

 

Good expression in fetal brain and very high expression in 

postnatal CNS. 

MBP directly interacts with ERK1 (extracellular signal-

regulated kinase 1) and ERK2, which encode the mitogen-

activated protein kinases 3 and 1, respectively.  

It is known that the Ras/Raf/ERK1/2 signaling pathway plays 

important roles in the genesis of neural progenitors, learning and 

memory as well as in death-promoting apoptotic roles in neural 

cells. 

Mutations and/or CNVs affecting MBP have never been 

reported in patients with ASD. 

 

Auto-antibodies anti-MBP were found enriched in ASD 

patient sera, thus implicating an autoimmune reaction in 

ASD pathogenesis. More recently, this datum has not 

been replicated. 

 

Up-regulation of the Ras/Raf/ERK1/2 signaling pathway 

has been found in the brain of autistic subjects and mouse 

animal model. In addition, two studies reported that a 

recurrent deletion on chromosome 16p11.2, which 

includes the MAPK3 (ERK1) gene, is associated with 

autism. 

Libbey et al., 2008 

Mostafa and Al-Ayadhi, 2011 

Singh, 2009 

Stephenson et al., 2011 
Vojdani et al., 2002 

Yang et al., 2011, 2012 

Zimmerman et al., 2007 

Zou et al., 2011 
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Tab. 4. Continued. 

MCTP2(-) 

 
Intracellular membrane 

trafficking 

This gene encodes the multiple C2 domains, transmembrane 

2 protein. 

 

Mild expression in postnatal temporal lobe and amygdalaee. 

MCTP2 may be involved in intercellular signal transduction and 

synapse function. 

 

A possible involvement of MCTP2 as a potential novel 

susceptibility gene for SCZ has been reported in genotyping 

studies (37 SNPs across MCTP2) in three independent 

Scandinavian samples. 

 

 

Mutations and/or CNVs affecting MCTP2 have never 

been reported in patients with ASD. 
Djurovic et al., 2009 
Shin et al., 2005 

     

ME3(-)* 

 
Pyruvate metabolism-

glycolysis 

This nuclear gene encodes the mitochondrial protein malic 

enzyme 3, NADP(+)-dependent. Malic enzyme catalyzes the 

oxidative decarboxylation of malate to pyruvate using either 

NAD+ or NADP+ as a cofactor.  

 

High expression in fetal brain and in postnatal CNS, in 

particular in prefrontal cortex, thalamus, hypothalamus, 

amygdalaee, caudate nucleus, and amygdalaee.  

ME3 is involved in the metabolic pathway of glycolysis. Energy 

metabolism is essential for neuronal growth and function.  

 

Proteome analysis of the thalamus and cerebrospinal fluid 

performed post-mortem in patients affected by SCZ reveals 

glycolysis dysfunction. 

Mutations and/or CNVs affecting ME3 have never been 

reported in patients with ASD. 
Martins-de-Souza et al., 2010 

     
 

MPHOSPH8(+) 
 
Transcriptional 

regulation  

This gene encodes the M-phase phosphoprotein 8, which has 

a role in negative regulation of transcription through 

methylated DNA binding and in cell cycle regulation. 

 

Good-high expression in fetal brain and in postnatal CNS, in 

particular in occipital and parietal lobes, prefrontal cortex, 

amygdalaee, thalamus and hypothalamus. 

High expression in immune cell types. 

 
Mutations and/or CNVs affecting MPHOSPH8 have 

never been reported in patients with ASD. 
Matsumoto-Taniura et al., 
1996 

     
 

MPHOSPH9(-) 
 
Cell cycle regulation 

This gene encodes the M-phase phosphoprotein 9, which is 

involved in cell cycle regulation.  

 

High expression in fetal brain and in postnatal CNS, in 

particular in cortex, parietal lobe, thalamus and 

hyphotalamus.  

Very high expression in immune cell types.  

A SNP in the MPHOSPH9 locus has recently been associated to 

multiple sclerosis. Indeed, it has been demonstrated that the risk 

allele correlate with diminished MPHOSPH9 RNA expression 

in both lymphoblastic cell lines and in peripheral blood 

mononuclear cells from subjects with multiple sclerosis. Thus, 

MPHOSPH9 might represent a novel inflammatory disease 

locus that could affect autoreactive cell proliferation. 

Mutations and/or CNVs affecting MPHOSPH9 have 

never been reported in patients with ASD. 
IMSGC, 2010 

      

NDST2(-) 

de novo 

 
Heparan sulfate and 

heparin biosynthesis 

This gene encodes the N-deacetylase/N-sulfotransferase 2 

protein, which is a member of the N-deacetylase/N-

sulfotransferase subfamily of the sulfotransferase 1 proteins. 

The encoded enzyme has dual functions in processing 

glucosamine and heparin polymers, including N-

deacetylation and N-sulfation.  

 

Moderate expression in fetal brain and good expression in 

postnatal cortex and thalamus. 

High expression in immune cell types. 

Roles of heparan sulfate (HS) in neural development have been 

well established by using animal models that carry mutations in 

genes encoding enzymes involved in HS synthesis, thus 

revealing that HS is necessary for the specification of certain 

brain structures, such as the cerebellum and the olfactory bulbs, 

cortical neurogenesis, and a variety of axon path-finding 

processes. However, a key unresolved issue concerning is the 

role of HS in the adult brain and its possible relevance to human 

neurological and mental disorders. Several pieces of evidence 

suggest a role for HS in synaptic function as well as in higher 

cognitive function. For example, in adult neurons HS is 

enriched in synapses, especially in the postsynaptic membrane 

of dendritic spines. 

Mutations and/or CNVs affecting NDST2 have never 

been reported in patients with ASD. 

 

The association of autism and other symptoms of mental 

impairment with multiple exostoses in patients carrying 

mutations in HS/HSPG genes has been reported.  

More recently, genetic association has been found 

between autism and the HS3ST5 gene encoding one of the 

HS 3-O sulfotransferases in two large cohorts of 

European ancestry. Furthermore, a genome-wide scan for 

rare CNVs in 996 autism cases has identified four 

independent CNVs in the GPC5/GPC6 gene cluster, 

which encodes the glypican-5 and glypican-6 HSPGs in 

tandem array, on chromosome 13q22. 

Bolton et al.,1995 

Conway et al., 2011 

Ethell and Yamaguchi, 1999  

Hsueh and Sheng 1999 
Inatani et al., 2003  

Irie et al., 2012 

Ishikawa-Brush et al., 1997  

Kantor et al., 2004  
Li et al., 2002  

Matsumoto et al., 2007 

Pinto et al., 2010 

Pratt et al., 2006  
Swarr et al., 2010 

Wang et al., 2009  

Wuyts et al., 2002 
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Tab. 4. Continued. 

NLGN4X(-)* 

 
Synaptogenesis and 

synaptic plasticity 

This gene encodes the neuroligin 4, X-linked protein, which 

is a member of a family of neuronal cell surface proteins. 

Members of this family act as splice site-specific ligands for 

beta-neurexins and are involved in the formation and 

remodeling of the CNS synapses.  

 

Very high expression in the fetal brain and postnatal CNS.  

NLGNX4 directly interacts with neurexinn-1β through Ca2+ to 

form trans-synaptic associations which are required for the 

maturation of glutamatergic excitatory and GABAergic 

inhibitory synapses. 

Mutations and/or CNVs affecting NLGN4X have been 

reported in patients affected by non syndromic ASD, ID, 

Asperger and Tourette syndromes. 

Baris et al., 2007  

Jamain et al., 2003 

Kent et al., 2008b 

Laumonnier et al., 2004  

Lawson-Yuen et al., 2008 

Marshall et al., 2008 

Pampanos et al., 2009 

Zhang et al., 2009 

      

PARD3(-)* 

 
Intracellular signaling: 

regulation of actin 

cytoskeleton dynamics 

for asymmetric cell 

division and polarized 

neuronal growth 

This gene encodes the par-3 partitioning defective 3, 

homolog (C. elegans) protein, which is a member of the 

PARD protein family. PARD family members affect 

asymmetrical cell division and direct polarized cell growth.  

 

Good expression in fetal brain and in postnatal CNS, in 

particular in prefrontal cortex, thalamus and hypothalamus. 

It has been demonstrated that PARD3, a key cell polarity 

determinant, exhibits dynamic distribution in radial glial 

progenitors, thus contributing in asymmetrically dividing of 

these cells which is essential for embryonic neocortex 

development. Indeed, radial glial cells constitute a major 

population of neural progenitor cells in mammals. The division 

of radial glial progenitors can be either symmetrical or 

asymmetrical, which is reflected by the fate of the two daughter 

cells. During the peak phase of neurogenesis, they 

predominantly divide asymmetrically to both self-renew, and to 

produce either a neuron or an intermediate progenitor cell.  

Furthermore, Par3 was shown to play a role in Schwann cell 

myelination. It is recruited by the brain-derived neurotrophic 

factor (BDNF) to the axon-glial interface and regulates Rac1 

activation. During development, active Rac1 signaling is 

localized to the axon-glial interface in Schwann cells by a Par3-

dependent polarization mechanism. 

Mutations and/or CNVs affecting PARD3 have never 

been reported in patients with ASD. 

 

Recently, SNPs in PARD3 have been associated to SCZ 

in Korean patients and to neural tube defects in a Chinese 

Han population. 

 

SNPs in PARD3B have been associated to ASD. 

Anney et al., 2012 

Bultje et al., 2009 

Gao et al., 2012 
Kim et al., 2012 

Tep et al., 2012 

     
 

 

PARD6G(-) 

 
Intracellular signaling: 

regulation of actin 

cytoskeleton dynamics 

for asymmetric cell 

division and polarized 

neuronal growth 

This gene encodes the par-6 partitioning defective 6 gamma 

protein, which is an adapter protein involved in asymmetrical 

cell division and cell polarization processes through the 

formation of tight junction. The PARD6-PARD3 complex 

links GTP-bound Rho small GTPases to atypical protein 

kinase C proteins. 

  

Moderate expression in fetal brain and good expression in 

postnatal CNS, in particular in prefrontal cortex, thalamus, 

hypothalamus, caudate nucleus and spinal corde.  

Good expression in immune cell types. 

PARD6G directly interacts with CDC42 and is involved in cell-

cell adhesion process and polarization through the formation of 

tight junction, which are important processes during 

neuritogenesis.  

Moreover, PARD6G is involved in T cell polarity, motility, and 

ability to scan dendritic cells. 

Mutations and/or CNVs affecting PARD6G have never 

been reported in patients with ASD. 

 
SNPs in PARD3B have been associated to ASD. 

 
Point mutations and CNVs affecting TSC1 and TSC2 

have been reported in patients with ASD and Tuberous 

Sclerosis 1 or 2. Both TSC1 and TSC2 proteins activate 

RhoA whereas TSC2 activates CdC42, thus regulating 

cell adhesion and migration. 

Anney et al., 2012 

Da Silva et al., 2003 

Fombonne et al., 1997 

Lewis et al., 2004 
Lisik et al., 2010 

Muzykewicz et al., 2007 

Pertz et al., 2008 

Wiznitzer, 2004 
Wong, 2006 
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Tab. 4. Continued. 

PCDH7(+) 

 
Synaptogenesis and 

synaptic plasticity 

This gene encodes the protocadherin 7 protein. It belongs to 

the protocadherin gene family, a subfamily of the cadherin 

superfamily. PCDH7 is an integral membrane protein that is 

thought to function in cell-cell recognition and adhesion.  

 

Moderate expression in fetal brain and good expression in 

postnatal whole brain, in particular in occipital and parietal 

lobes, and in prefrontal cortex.  

In rat brain using in situ hybridization the spatiotemporal 

distribution of mRNAs for 12 non-clustered PCDHs has been 

examined. Some of them (PCDH1, PCDH7, PCDH9, PCDH10, 

PCDH11, PCDH17, and PCDH20) exhibited region-dependent 

expression pattern in the cerebral cortex during the early 

postnatal stage (P3), which is a critical period for the 

establishment of specific synaptic connections, and were also 

expressed in the specific regions of the connecting thalamic 

nuclei. In particular, PCDH7 and PCDH20 mRNAs were 

predominantly expressed in the somatosensory (parietal) and 

visual (occipital) cortices. 

 

PCDH7 binds to PPP1CA, the protein phosphatase 1, catalytic 

subunit, alpha isoform, which is involved in regulation of ionic 

conductances and long-term synaptic plasticity. PPP1CA may 

play an important role in dephosphorylating substrates such as 

the postsynaptic density-associated Ca(2+)/calmodulin 

dependent protein kinase II. 

Mutations and/or CNVs affecting PCDH7 have never 

been reported in patients with ASD. 

 

Homozygous deletion within a protocadherin cluster 

proximal to PCDH10 has been shown to be associated 

significantly with the pathophysiology of cognitive 

impairment such as autism, and recurrent and overlapping 

CNVs, including PCDH9 loci, have been identified in 

autism patients.  

Another delta protocadherin PCDH17 is involved in the 

pathogenesis of SCZ. 

Dean et al., 2007 

Kim et al., 2007, 2011 
Marshall et al 2008  

Morrow et al., 2008  

Yoshida et al., 1999 

      
 

 

PCNT(-)* 

 
Neurogenesis: regulation 

of microtubule 

cytoskeleton dynamics  

This gene encodes the pericentrin protein, which binds to 

calmodulin and is expressed in the centrosome.  

PCNT is an integral component of the filamentous matrix of 

the centrosome involved in the initial establishment of 

organized microtubule arrays in both mitosis and meiosis. It 

plays a role, together with DISC1, in the microtubule 

network formation, and prevents premature centrosome 

splitting during interphase by inhibiting NEK2 kinase 

activity at the centrosome. 

 

High expression in fetal brain and in postnatal prefrontal 

cortex, moderate expression in amygdalaee and thalamus.  

High expression in immune cell types. 

PCNT binds to DCTN2, the dynactin 2 protein, which 

modulates cytoplasmic dynein binding to an organelle, and 

plays a role in prometaphase chromosome alignment and 

spindle organization during mitosis. It is involved in anchoring 

microtubules to centrosomes and may play a role in synapse 

formation during brain development. 

Moreover, DISC1 localizes to the centrosome by binding to 

PCNT, and PCNT anchors the γ-tubulin complex to the 

centrosome, providing microtubule nucleation sites. Thus 

DISC1–PCNT interaction might be involved in the 

pathophysiology of mental disorders owing to their putative 

effect on centrosomal function. 

Mutations and/or CNVs affecting PCNT have never been 

reported in patients with ASD. 

 

Mutations affecting PCNT cause Seckel syndrome-4 and 

microcephalic osteodysplastic primordial dwarfism type 

II, both characterized by severe microcephaly, thus 

involving the gene in modulating brain size.  

 

Three SNPs in PCNT have been associated with MDD in 

the Japanese population. 

Griffith et al., 2008 

Numata et al., 2009 
Purohit et al., 1999 

Rauch et al., 2008 

      

PDE9A(-)* 

 
Intracellular cAMP and 

cGMP signaling 

This gene encodes the phosphodiesterase 9A protein, which 

catalyzes the hydrolysis of cAMP and cGMP to their 

corresponding monophosphates and plays a role in signal 

transduction by regulating the intracellular concentration of 

these cyclic nucleotides.  

 

Vey high expression in fetal brain, postnatal cerebellum and 

spinal cord. Good expression in postnatal whole brain. 

In rodent CNS PDE9A activity regulates neuronal cGMP 

signaling downstream of multiple neurotransmitter systems 

(dopaminergic, cholinergic, and serotonergic 

neurotransmission), with a possible role in sensory processing 

and memory. Thus, inhibition of PDE9A may provide 

therapeutic benefits in psychiatric and neurodegenerative 

diseases promoted by the dysfunction of these diverse 

neurotransmitter systems. 

Mutations and/or CNVs affecting PDE9A have never 

been reported in patients with ASD. 

 

SNPs in PDE9A have been associated with a 

susceptibility to MDD. 

 

A lower expression of PDE4A and PDE4B in the 

cerebella of subjects with autism compared with matched 

controls has been reported.  

Braun et al., 2007 
Fisher et al., 1998 

Kleiman et al., 2012 

Wong et al., 2006 
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Tab. 4. Continued. 

PLAG1(-)* 
 
Transcriptional 

regulation: control of cell 

fate and proliferation  

This gene encodes the pleomorphic adenoma gene 1 protein, 

which is a developmentally regulated zinc finger protein, 

consistently rearranged in pleomorphic adenomas of the 

salivary glands. PLAG1 acts as a transcription factor whose 

activation results in up- regulation of target genes, such as 

IGFII, leading to uncontrolled cell proliferation and, 

possibly, transformation. 

 

Mild expression in postnatal thalamus and hypoyhalamus. 

PLAG1 activation in salivary gland tumors induces a 

transcriptional up-regulation of IGF2 (murine and human 

protein) and beta-catenin (murine protein). 

Moreover, it has been demonstrated in mice that Plag1 controls 

cell fate and proliferation decisions in the developing nervous 

system.  

Mutations and/or CNVs affecting PlAG1 have never been 

reported in patients with ASD. 

 

Aberrant imprinting of IGF2 is associated with BWS and 

SRS, characterized by growth anomalies. Both disorder 

have been reported in patients with ASD. 

Alam et al., 2005 
Kent et al., 2008 

Zhao et al., 2006 

      
PLD5(-) 
 
Neurodevelopment 

This gene encodes the phospholipase D family, member 5 

protein. 

 

Good expression in fetal brain. 

PLDs are known to play a key role in neurite outgrowth, 

especially axon outgrowth, in neuronal cells. In particular, 

PLD2 has been shown to regulate metabotropic glutamate 

receptor signaling. 

SNPs affecting PLD5 and PLD2 have been associated 

with a higher risk to develop ASD.   

Anney et al., 2010 

Dhami and Ferguson, 2006 

Kanaho et al., 2009 

     

PLXNA3(+) 
 
Intracellular semaphorin 

signaling: regulation of 

actin cytoskeleton 

dynamics 

This gene encodes the plexin A3 protein, which is a member 

of the plexin class of proteins. It is a coreceptor for SEMA3A 

and SEMA3F and is necessary for signaling by class 3 

semaphorins and subsequent remodeling of the cytoskeleton. 

PLXNA3 plays a role in axon guidance in the developing 

nervous system and it is required for normal dendrite spine 

morphology in pyramidal neurons.  

 

Moderate-good expression in fetal brain and in postnatal 

prefrontal cortex, cerebellum, amygdalaee, thalamus, and 

hypothalamus.  

PLXNA3 directly binds to SEMA3A, a candidate for SCZ, and 

SEMA3F, thus having a role in semaphoring signaling whose 

alterations may have important implications for autism 

pathogenesis.  

SEMA3F is expressed during development along the 

cortical/hippocampal GABAergic neuron migratory pathway. 

Further, its ectopic expression can alter GABAergic neuron 

migration. 

Genetic lesioning studies knocking out different components of 

this signaling system (NPN2, Sema3F, or plexin A3) have 

resulted in animals with extended infrapyramidal mossy fiber 

axonal pathways and spontaneous seizures, suggesting that 

semaphorin signaling is normally associated with experience-

dependent neuronal activity and that experimental 

manipulations decreasing this signaling pathway function are 

closely allied with hyperexcitability and abnormal neuritic 

outgrowth in the hippocampus. 

Mutations and/or CNVs affecting PLXNA3 have never 

been reported in patients with ASD. 

 

Recently, it has been reported a decreased expression of 

axon-guidance receptors suc as PLXNA4 in the anterior 

cingulate cortex in autism. 

Gant et al., 2009 

Giger et al., 2000 

Sahay et al., 2005 

Suda et al., 2011 
Tamamaki et al., 2003 

Tran et al., 2009 

     

POLR1A(-)* 

 
Transcriptional 

regulation 

This gene encodes the RNA polymerase I polypeptide A, 

which is the largest and catalytic core component of RNA 

polymerase I that synthesizes ribosomal RNA precursors. 

 

Moderate expression in fetal brain and good expression in 

postnatal CNS, in particular in prefrontal cortex and 

cerebellum. 

POLR1A is involved in cell growth and cell cycle progression. 
A duplication involving REEP1-POLR1A has been 

recently detected in three autistic subjects. 

Donati et al., 2011 

Holt et al., 2012 
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Tab. 4. Continued. 

 

 

 

PREP(-) 

de novo 

 
CNS metabolism: 

neuropeptide maturation 

and degradation 

This gene encodes the prolyl endopeptidase protein, which is 

a cytosolic prolyl endopeptidase that cleaves peptide bonds 

on the C-terminal side of prolyl residues within peptides that 

are up to approximately 30 amino acids long. Prolyl 

endopeptidases have been reported to be involved in the 

maturation and degradation of peptide hormones and 

neuropeptides. 

 

Good expression in fetal brain and in postnatal whole brain, 

in particular in cortex, cerebellum, amygdalaee and thalamus. 

The prolyl endopeptidase is a phylogenetically conserved serine 

protease and, in humans and rodents, is highly expressed in the 

brain. Several neuropeptides associated with learning and 

memory and neurodegenerative disorders have been proposed to 

be the substrates for PREP, suggesting a possible role for PREP 

in these processes. Indeed, PREP genetrap mice have decreased 

synaptic spine density in the hippocampus, reduced 

hippocampal long-term potentiation, and impaired hippocampal-

mediated learning and memory, thus revealing a possible role 

for PREP in mediating hippocampal plasticity and spatial 

memory formation. 

 

PREP directly binds to TAC1, the tachykinin, precursor 1. 

Tachykinins are active peptides which excite neurons and evoke 

behavioral responses. 

Mutations and/or CNVs affecting PREP have never been 

reported in patients with ASD. 

 

Recently, elevated serum levels of a pro-inflammatory 

neuropeptide, the neurokinin A, which is a member of the 

tachykinin family, have been reported in some autistic 

children. Interestingly, levels of neurokinin A correlated 

to the severity of autism and to serum levels of anti-

ribosomal P protein antibodies, thus supporting the 

pathogenic role of neurokinin A and its possible link to 

autoimmunity in autism.  

D’Agostino et al., 2012 

Mostafa and AL-Ayadhi, 

2011 

      
 

 

 

PRKCA(-) 
 
Intracellular signaling: 

regulation of actin 

cytoskeleton dynamics  

This gene encoder the protein kinase C-alpha, which is a 

member of serine- and threonine-specific protein kinases that 

can be activated by calcium and the second messenger 

diacylglycerol. PKC proteins phosphorylate a wide variety of 

protein targets and are known to be involved in diverse 

cellular signaling pathways. 

 

Moderate expression in postnatal parietal lobe, thalamus, 

subtalamic nucleus, and spinal cord.  

Moderate expression in immune cell types. 

PKCα directly interacts with RhoA and Cdc42 and is involved 

in different pathways such as focal adhesion, the formation of 

tight junctions, the Wnt signaling pathway, and leukocyte 

transendothelial migration, which are known to be involved in 

neurogenesis as well as in immune response. 

  

Recently, it has been demonstrated that Erk1/PKCα pathway in 

mice hippocampal neurons is involved in the signaling activity 

mediated by the brain serotonin 1A receptor (5–HT1A-R), 

which has been implicated in a large number of behavioural 

abnormalities. Indeed, both decreased as well as increased 5–

HT1A-R signaling in the brain have been linked to a number of 

affective disorders.  

Moreover, PKCα has an important role in T-cell function. 

Mutations and/or CNVs affecting PRKCA have never 

been reported in patients with ASD. 

 

SNPs in PRKCB1 have been strongly associated with 

autism. 

 

Point mutations and CNVs affecting TSC1 and TSC2 

have been reported in patients with ASD and Tuberous 

Sclerosis 1 or 2. Both TSC1 and TSC2 proteins activate 

RhoA, thus regulating cell adhesion and migration. 

Astrinidis et al., 2002 
Fombonne et al., 1997 

Gillberg et al., 1994 

Lewis et al., 2004 

Mogha et al., 2012 
Muzykewicz et al., 2007 

Pfeifhofer-Obermair et al., 

2012 
Philippi et al., 2005 

Slater et al., 2001 

Wiznitzer, 2004 

Wong, 2006 

      

PRMT8(-)* 

 
Post-translation 

modifications: arginine 

methylation 

This gene encodes the protein arginine methyltransferase 8. 

Arginine methylation is a widespread post-translational 

modification mediated by arginine methyltransferases, such 

as PRMT8. Arginine methylation is involved in a number of 

cellular processes, including DNA repair, RNA transcription, 

signal transduction, protein compartmentalization, and 

possibly protein translation  

 

High expression in fetal brain and in postnatal CNS.  

PRMT8 expression was firstly studied in mouse CNS where it 

was demonstrated a broadly distribution in the CNS neurons 

with markedly intense signals in the cerebellum, hippocampal 

formation, and cortex. More recently, a high PRMT8 expression 

was identified in human brain cortex where PRMT8 is a marker 

of post-mitotic neurons. 

Mutations and/or CNVs affecting PRMT8 have never 

been reported in patients with ASD. 

Kousaka et al., 2009 

Lee et al., 2005 
Weng et al., 2012 

      

PRR16(-)* 

 
Unknown function 

This gene encodes for the proline rich 16 protein with 

unknown function. 

 

High expression in fetal and postnatal brain, particularly in 

postnatal parietal lobe, cerebellum, thalamus, and caudate 

nucleus. 

No interacting proteins have been reported. 
Mutations and/or CNVs affecting PRR16 have never been 

reported in patients with ASD. 
 

      
     

     

http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=ChristaPfeifhofer&UID=56212
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Tab. 4. Continued. 

PSPC1(+) 
 
Transcriptional 

regulation 

This gene encodes the paraspeckle component 1 protein, a 

nucleolar protein which localizes to punctate subnuclear 

structures that occur close to splicing speckles, known as 

paraspeckles. Paraspeckles may function in the control of 

gene expression via an RNA nuclear retention mechanism.  

 

Moderate-good expression in fetal brain, prefrontal cortex 

and hypothalamus.  

PSPC1 directly interacts with TLE3, the transducin-like 

enhancer of split 3 protein, a transcriptional co-repressor that 

inhibits the transcriptional activation mediated by CTNNB1 and 

TCF family members in Wnt signaling.  

 

A role of the repressor TLE1 in neurogenic switching from 

transcription repression to activation, which is needed for brain 

development, has been reported. 

Mutations and/or CNVs affecting PSPC1 have never been 

reported in patients with ASD.  

 

Deregulation of Wnt/β-catenin signaling pathway has 

been implicated in the pathogenesis of ASD as well as of 

other neuropsychiatric disorders. 

Chung et al., 2011 
De Ferrari and Moon, 2006 

Ju et al., 2004 

Okerlund and Cheyette, 2011 

Wang et al., 2010  
Zhang et al., 2012 

      
 

 

 

 

PTPN12(-)* 
 
Intracellular FAK 

signaling: regulation of 

actin cytoskeleton 

dynamics 

This gene encodes the protein tyrosine phosphatase, non-

receptor type 12, which is a member of the protein tyrosine 

phosphatase (PTP) family. PTPs are signaling molecules that 

regulate a variety of cellular processes including cell growth, 

differentiation, mitotic cycle, and oncogenic transformation. 

It may also have a regulatory role in controlling cell shape 

and mobility. 

 

Moderate expression in fetal brain and in postnatal CNS, in 

particolar in prefrontal cortex, amygdalaee, and 

hypothalamus. 

High expression in immune cell types. 

It has been reported that the focal adhesion kinase (FAK) 

functions in regulating tyrosine phosphorylation of several of 

focal adhesion proteins, including paxillin, which may be 

involved in the regulation of the cytoskeleton and in the control 

of signals for growth and survival. Protein tyrosine 

phosphatases, such as PTPN12, the counterparts of protein-

tyrosine kinases, also presumably regulate phosphorylation 

of these proteins. 

The association of both FAK and PTPN12 with paxillin 

suggests that these protein may play a critical role in the 

regulation of the phosphotyrosine content of proteins in focal 

adhesions. 

 

Recent studies suggest that one of the major pathways to the 

pathogenesis of autism is reduced cell migration due to an 

abnormal FAK signaling. Indeed, FAK has an important role in 

neural migration, dendritic morphological characteristics, 

axonal branching, and synapse formation. 

Mutations and/or CNVs affecting PTPN12 have never 

been reported in patients with ASD.  

 

Using B lymphoblasts as a model, it has been 

demonstrated that FAK-Src signaling is abnormally 

regulated in autism, due to a reduced expression of the 

paxillin gene and that FAK-Src signaling leads to defects 

in B-lymphoblast adhesion, migration, proliferation, and 

IgG production. 

Shen et al., 1998 

Wei et al., 2011 

      
 

 

RAP1GDS1(-)* 

 
Intracellular signaling: 

regulation of actin 

cytoskeleton dynamics 

This gene encodes the RAP1, GTP-GDP dissociation 

stimulator 1 protein, which stimulates GDP/GTP exchange 

reaction of a group of small GTP-binding proteins (G 

proteins) including Rap1a/Rap1b, RhoA, RhoB and KRas, by 

stimulating the dissociation of GDP and the subsequent 

binding of GTP to each small G protein. RAP1GDS1 is 

involved in signal transduction. 

 

Very high expression in fetal brain and postnatal CNS. 

Very high expression in immune cell types. 

One of the main interacting protein is RhoA which is involved 

in different pathways such as endocytosis, Wnt signaling 

pathway, TGF-beta signaling pathway, axon guidance, focal 

adhesion, regulation of actin cytoskeleton, chemokine signaling 

pathway, T cell receptor signaling pathway, leukocyte 

transendothelial migration. 

Mutations and/or CNVs affecting RAP1GDS1 have never 

been reported in patients with ASD. 

 

Point mutations and CNVs affecting TSC1 and TSC2 

have been reported in patients with ASD with Tuberous 

Sclerosis 1 or 2. Both TSC1 and TSC2 proteins activate 

RhoA whereas TSC2 activates CdC42, thus regulating 

cell adhesion and migration. 

 

Deregulation of Wnt/β-catenin signaling pathway has 

been implicated in the pathogenesis of ASD as well as of 

other neuropsychiatric disorders. 

Chung et al., 2011 

De Ferrari and Moon, 2006 

Fombonne et al., 1997 

Ghandour et al., 2007 
Hamel et al., 2011 

Lewis et al., 2004 

Muzykewicz et al., 2007 

Okerlund and Cheyette, 2011 
Wang et al., 2010  

Wiznitzer, 2004 

Wong, 2006 

Zhang et al., 2012 
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Tab. 4. Continued. 

REEP1(-)* 

 
Intracellular membrane 

trafficking : ER-shaping 

This gene encodes the receptor accessory protein 1, which 

encodes a mitochondrial protein that functions to enhance the 

cell surface expression of odorant receptors.  

 

High expression in fetal brain and in postnatal CNS.  

Mutations in REEP1 cause spastic paraplegia autosomal 

dominant type 31, a neurodegenerative disorder. 

Pathological mechanisms for hereditary spastic paraplegias 

(HSPs) include mitochondrial dysfunction, abnormalities in 

axonal pathfinding or myelination, and intracellular trafficking 

defects.  

A majority of HSP gene products have been implicated 

generally in intracellular membrane and protein trafficking. 

In particular, REEP1 is an ER-shaping proteins and localizes to 

the ER in cultured rat cerebral cortical neurons, where it 

colocalizes with other two HSP proteins, spastin and atlastin-1. 

REEP proteins are required for ER network formation in vitro, 

and REEP1 also bound microtubules and promoted ER 

alignment along the microtubule cytoskeleton. 

CNVs affecting REEP1 have recently been reported in 

patients with ASD. 

Holt et al., 2012 

Park et al., 2010 

      

RFX3(-) 

de novo 

 
Transcriptional 

regulation in ciliogenesis 

This gene encodes the regulatory factor X 3, which is a 

member of the regulatory factor X gene family that encodes 

transcription factors. RFX3 is a transcriptional activator that 

can bind DNA as a monomer or as a heterodimer with other 

RFX family members. 

 

Moderate expression in fetal brain and in postnatal parietal 

and temporal lobes, and thalamus. 

RFX3 acts as a transcription factor required for ciliogenesis and 

islet cell differentiation during endocrine pancreas development. 

It regulates the expression of genes involved in ciliary assembly 

(DYNC2LI1, FOXJ1 and BBS4) and genes involved in ciliary 

motility (DNAH11, DNAH9 and DNAH5).  

 

It has been reported that in mouse RFX3 is expressed strongly 

in the ciliated ependymal cells of the subcommissural organ, 

choroid plexuses and ventricular walls during embryonic and 

postnatal development. Rfx3-/-deficient mice show several 

hallmarks of ciliopathies including left–right asymmetry defects 

and hydrocephalus. Moreover, these mice suffer from corpus 

callosum agenesis associated with a marked disorganisation of 

guidepost neurons required for axon pathfinding across the 

midline. 

Mutations and/or CNVs affecting RFX3 have never been 

reported in patients with ASD. 

Baas et al., 2006 
Benadiba et al., 2012 

El-Zein et al., 2009 

      
 

 

RNASEH2B(-) 

 
DNA replication 

This gene encodes the ribonuclease H2, subunit B, protein. 

RNase H2 is composed of a single catalytic subunit (A) and 

two non-catalytic subunits (B and C) and specifically 

degrades the RNA of RNA:DNA hybrids.  

 

Moderate expression in fetal brain and amygdalaee. 

High expression in immune cell types. 

Defects in RNASEH2B are a cause of Aicardi-Goutieres 

syndrome type 2 (autosomal recessive inheritance and, rarely, 

autosomal dominant) which is a genetically heterogeneous 

disease characterized by cerebral atrophy, leukoencephalopathy, 

intracranial calcifications, chronic cerebrospinal fluid (CSF) 

lymphocytosis, increased CSF alpha-interferon, and negative 

serologic investigations for common prenatal infection. Severe 

neurological dysfunctions manifest in infancy as progressive 

microcephaly, spasticity, dystonic posturing and profound 

psychomotor retardation.  

Mutations and/or CNVs affecting RNASEHB have never 

been reported in patients with ASD. 

 

Crow and Livingston, 2008 

     

RPL10(+) 
 
Protein synthesis 

This gene encodes the ribosomal protein L10 that is a 

component of the ribosomal 60S subunit.  

 

High expression in brain, in particular in hippocampus.  

High expression of RPL10 has been detected by RNA in situ 

hybridization in mouse hippocampus, a constituent of the brain 

limbic system known to be afflicted in autism.  

Two missense mutations affecting RPL10 have been 

reported in two autistic patients. 

 

Recurrent Copy Number gains at Xq28 including RPL10 

have been reported in mentally retarded patients. 

Klauck et al., 2006 

Vandewalle et al., 2009 

Chiocchetti et al., 2011 
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SELE(+) 

 
CNS 

immunosurveillance 

This gene encodes the selectin E protein, which is found in 

cytokine-stimulated endothelial cells and is thought to be 

responsible for the accumulation of blood leukocytes at sites 

of inflammation by mediating the adhesion of cells to the 

vascular lining. It is part of the selectin family of cell 

adhesion molecules.  

 

Good expression in fetal brain and low expression in 

postnatal CNS. 

Good expression in whole blood, in particular in monocytes. 

P-selectin, L-selectin and E-selectin are involved in the capture 

and rolling of lymphocytes along the endothelial cell surface at 

the first step of lymphocyte migration. 

In lupus-prone mice it has been recently demonstrated an up-

regulation of the adhesion molecule expression, such as ICAM-

1 and E-selectin, that precedes brain damages of and correlates 

with kidney pathology. Immunofluorescence studies revealed 

that ICAM-1 and E-selectin upregulation localizes to blood 

vessel walls, astrocytes related to the blood-brain barrier, and 

microglial cells. The collected data indicated that brain 

involvement, even subclinical, should be presumed when 

peripheral organs are inflamed. 

Mutations and/or CNVs affecting SELE have never been 

reported in patients with ASD.  

 

No differences between serum levels of E-selectin in 

autistic or SCZ patients vs. controls have been so far 

reported. 

Engelhardt and Ransohoff , 

2005 

Iwata et al., 2007, 2008 
Onore et al., 2012 

Stielke et al., 2012 

     

SELL(+) 

 
CNS 

immunosurveillance 

This gene encodes the selectin L protein, which is a cell 

surface adhesion molecule that belongs to a family of 

adhesion/homing receptors. The encoded protein contains a 

C-type lectin-like domain, a calcium-binding epidermal 

growth factor-like domain, and two short complement-like 

repeats. It is required for binding and subsequent rolling of 

leucocytes on endothelial cells, facilitating their migration 

into secondary lymphoid organs and inflammation sites.  

 

Low expresiion in fetal brain and in postnatal CNS, except 

for corpus callosum where the expression is moderate. 

Very high expression in immune cell types, in particular in B 

and T lymphocytes. 

As known, P-selectin is expressed on the endothelium 

of the blood–CNS barrier and soluble L-selectin has been found 

in cerebrospinal fluid. Moreover, both P and L-selectin play 

important roles in the entry of circulating T-lymphocytes into 

the CNS.  

It is possible that molecules not expressed in the brain may alter 

CNS function. Indeed, aberrant immune activity during brain 

development might play a role in the neural basis of 

neurodevelopment disorders such as ASD. Diminished 

expression of P-selectin has been associated with delayed 

neutrophil transmigration in neonatal rats. Therefore, 

decreased expression of P-selectin in individuals early in life 

may contribute to delayed leukocyte transmigration and 

increased susceptibility to infection, which may in turn damage 

neural tissues during CNS development. In fact, there is 

evidence that maternal viral infection in the first trimester can 

increase the risk of offspring developing an autistic-spectrum 

disorder. 

Mutations and/or CNVs affecting SELL have never been 

reported in patients with ASD.  

 

A decreased serum level of P- and L-selectin has been 

recently observed in a group of autistic subjects vs. 

controls, confirming a previous finding in a cohort of HF-

AU patients, thus indicating an involvement of 

hypoactivity of T-lymphocytes in the pathophysiology of 

autistic-spectrum disorders. 

 

Conversely, it has been found that the serum level of L-

selectin in patients with SCZ was significantly higher 

than that in controls, whereas the level of P-selectin was 

not altered, suggesting distinct patterns of alterations for 

the two disorders. 

Engelhardt and Ransohoff , 

2005 

Iwata et al., 2007, 2008 

Onore et al., 2012 

      
 

 

SH2B1(-) 

de novo 

 
Intracellular signaling 

This gene encodes the SH2B adaptor protein 1,which is a 

member of the SH2-domain containing mediators family. 

The encoded protein mediates activation of various kinases 

and may function in cytokine and growth factor receptor 

signaling and cellular transformation.  

SH2B adaptor protein family members (SH2B1-3) regulate 

various physiological responses through affecting signaling, 

gene expression, and cell adhesion. For example, SH2B1 and 

SH2B2 were reported to enhance nerve growth factor (NGF)-

induced neuronal differentiation in PC12 cells, a well-

established neuronal model system. 

An autism multiplex family with 16p12.2p11.2 

microduplication syndrome in monozygotic twins and 

distal 16p11.2 deletion in their brother, both 

encompassing SH2B1, has been recently reported. 

 

Recurrent 200-kb deletions (de novo or inherited) of 

16p11.2 that include the SH2B1 gene, have been 

associated with developmental delay and obesity. 

Bachmann-Gagescu et al., 
2010 

Tabet et al., 2012 

Wang et al., 2011 

     

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=Engelhardt%20B%5BAuthor%5D&cauthor=true&cauthor_uid=16039904
http://www.ncbi.nlm.nih.gov/pubmed?term=Ransohoff%20RM%5BAuthor%5D&cauthor=true&cauthor_uid=16039904
http://www.ncbi.nlm.nih.gov/pubmed?term=Engelhardt%20B%5BAuthor%5D&cauthor=true&cauthor_uid=16039904
http://www.ncbi.nlm.nih.gov/pubmed?term=Ransohoff%20RM%5BAuthor%5D&cauthor=true&cauthor_uid=16039904
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SMARCC1(-)* 

 
Chromatin remodeling 

This gene encodes the SWI/SNF related, matrix associated, 

actin dependent regulator of chromatin protein, which is a 

member of the SWI/SNF family of proteins, that display 

helicase and ATPase activities and which are thought to 

regulate transcription of certain genes by altering the 

chromatin structure around those genes.  

 

Moderate expression in fetal brain and in postnatal prefrontal 

cortex.  

Very high expression in immune cell types. 

SMARCC1 belongs to the neural progenitors-specific chromatin 

remodeling complex (npBAF complex) and the neuron-specific 

chromatin remodeling complex (nBAF complex). During neural 

development a switch from a stem/progenitor to a post-mitotic 

chromatin remodeling mechanism occurs as neurons exit the 

cell cycle and become committed to their adult state. 

Furthermore, in mouse embryonic stem cells (mESCs) it has 

been demonstrated that Smarcc1 is necessary for 

heterochromatin formation and chromatin compaction during 

differentiation, and that it plays important roles in facilitating 

mESCs differentiation by coupling gene repression with global 

and local changes in chromatin structure. 

 

SMARCC1 is also implicated in B and T-cell development. 

Mutations and/or CNVs affecting SMARCC1 have never 

been reported in patients with ASD. 

Choi et al., 2012 

Marei et al., 2012  

Schaniel et al., 2009  

      

SMYD3(-) 

 
Chromatin remodeling 

This gene encodes the SET and MYND domain containing 3 

protein, which is a histone methyltransferase that functions in 

RNA polymerase II complexes by an interaction with a 

specific RNA helicase.  

 

Moderate expression in fetal brain and good expression in 

postnatal whole brain, in particolar in hypothalamus.  

Members of the SET and MYND domain containing (Smyd) 

family of proteins possess SET-dependent methyltransferase 

capacity and have been shown to be involved in the 

transcriptional control of cell differentiation and cell 

proliferation. With the exception of Smyd1, little is known 

about the distinct functional relevance of Smyd family proteins 

during vertebrate development, although it has been proposed a 

role of Smyd1 and 2 in cardiac development and in brain 

development for the only Smyd2, which is similar to Smyd3. 

Mutations and/or CNVs affecting SMYD3 have never 

been reported in patients with ASD. 

Brown et al., 2006 
Diehl et al., 2010 

Hamamoto et al., 2004 

Kwon et al., 2009 

      

SNX6(-)* 

 
Intracellular membrane 

trafficking 

This gene encodes the sorting nexin 6 protein, a member of 

the sorting nexin family which is involved in intracellular 

trafficking. This protein may form oligomeric complexes 

with family member proteins through interactions of both the 

PX domain and the coiled coil regions of the molecules. It 

plays a role in retrograde protein transport from endosomes 

to the trans-Golgi network. 

 

SNX6 has been detected in fetal brain and shows moderate-

good expression in postnatal prefrontal cortex and 

hypoyhalamus.  

SNX6 is expressed in fetal brain and, recently, it has been 

demonstrated a role in olygodendrocyte differentation. 

Mutations and/or CNVs affecting SNX6 have never beeen 

reported in patients with ASD. 

 

SNX6 is a candidate locus for holoprosencephaly. 

Kamnasaran et al., 2005 
Schimdt et al., 2012 

      

TMSB15B(+) 

 
Neurodevelopment: 

cytoskeleton organization 

This gene encodes the thymosin beta 15B protein, which 

plays an important role in the organization of the 

cytoskeleton. It binds to and sequesters actin monomers (G 

actin) and therefore inhibits actin polymerization. 

 

Good expression in fetal brain. 

Thymosin beta15 (Tbeta15) is a pleiotropic factor which exerts 

multiple roles in the development of nervous system and brain 

diseases. It has been demonstrated that the expressions of 

Tbeta15 mRNA and protein were increased in several brain 

regions including hippocampal formation and cerebral cortex, 

following kainic acid (KA)-evoked seizures in rat.  

Mutations and/or CNVs affecting TMSB15B have never 

been reported in patients with ASD. 
Kim et al., 2008 
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TSPAN5(-)* 

de novo 

 
Neurodevelopment and 

IS development 

This gene encodes the tetraspanin 5 protein, which mediates 

signal transduction events that play a role in the regulation of 

cell development, activation, growth and motility.  

 

Very high expression in fetal brain and in postnatal CNS. 

One of the first interacting protein is NOTCH2 which is 

involved in differentiation, proliferation and apoptotic 

programs, and shows a well-known role in IS development. 

NOTCH2 interacts with CNTN1, contactin 1, involved in brain  

development, specifically in synapse formation.  

 

In mouse brain development a specific pattern of TSPAN5 

expression has been observed, particularly in cerebellar Purkinje 

cells. 

Mutations and/or CNVs affecting TSPAN5 have never 

been reported in patients with ASD. 

 

Rare single gene mutations affecting TSPAN7 have been 

reported in a few autistic patients. 

 

Expression profiling of the superior temporal gyrus of six 

autistic subjects and matched controls revealed increased 

transcript levels of many immune system related genes 

such as NOTCH2. These expression patterns appear to be 

more associated with the late recovery phase of 

autoimmune brain disorders, than with the innate immune 

response characteristic of neurodegenerative diseases.  

 

CNVs affecting CNTN4 have been observed in patients 

with ASD. 

Cottrell et al., 2011 
Fernandez et al., 2008 

Garbett et al., 2008 

Glessner et al., 2009 

Juenger et al., 2005 
Lamprianou et al., 2011 

Morrow et al., 2008 

Piton et al., 2011 

Roohi et al., 2009 

      

USP9Y(-)* 

 
Intracellular signaling: 

protein deubiquitination 

pathway 

This gene encodes an ubiquitin specific peptidase 9, Y-

linked, which is a member of the peptidase C19 family that is 

similar to ubiquitin-specific proteases, which cleave the 

ubiquitin moiety from ubiquitin-fused precursors and 

ubiquitinylated proteins. It may therefore play an important 

regulatory role at the level of protein turnover by preventing 

degradation of proteins through the removal of conjugated 

ubiquitin. Essential component of TGF-beta/BMP signaling 

cascade. 

 

Quite high expression in fetal brain and postnatal CNS, in 

particular in parietal and temporal lobes, amygdalaee and 

thalamus.  

It has been reported that USP9Y, previously considered as testis-

specific, is highly expressed in developing mouse brain whereas 

expression in adult brain is low and probably inhibited by 

androgens. Furthermore, a distinctive pattern of cerebral 

expression of different sex chromosome genes, including 

USP9Y, has been reported in mouse and human brain in specific 

neuronal subpopulations, that may possibly contribute to gender 

differences in prevalence noted for some neuropsychiatric 

disorders. 

A significant association of SNPs in USP9Y with 

susceptibility to ASD has been reported 

 

The protein ubiquitination pathway has been previously 

implicated in ASD. 

Glessner et al., 2009 

Kishino et al., 1997 

Matsuura et al., 1997 
Vawter et al., 2004  

Wang et al., 2009 

Xu et al., 2002 

      

VAT1(-) 

 
Synaptic plasticity: 

cholinergic system 

This gene encodes the vesicle amine transport protein 1 

homolog (T. californica). Synaptic vesicles are responsible 

for regulating the storage and release of neurotransmitters in 

the nerve terminal. The protein encoded by this gene is an 

abundant integral membrane protein of cholinergic synaptic 

vesicles and is thought to be involved in vesicular transport.  

 

Moderate expression in fetal brain and in postnatal CNS. 

In the CNS the cholinergic system, that uses acetylcholine 

(ACh) as neurotransmitter, has a variety of neuromodulation 

effects upon plasticity, arousal and reward. ACh has an 

important role in sustaining attention, learning and short-term 

memory.  

Damage to the cholinergic system in the brain has been shown 

to be plausibly associated with the memory deficits associated 

with Alzheimer's disease.  

Mutations and/or CNVs affecting VAT1 have never been 

reported in patients with ASD. 

 

The cholinergic system is known to regulate the function 

of the visual pathway, including the fusiform gyrus which 

is the key structure in face perception. In adults with 

ASD, showing deficiencies in face perception, a deficit in 

cholinergic innervations of the fusiform gyrus has been 

observed. 

Furthermore, the cholinergic system has been implicated 

in the development of autism on the basis of neuronal 

nicotinic acetylcholine receptor losses in cerebral and 

cerebellar cortex, and in thalamus, thus contributing to 

sensory or attentional deficits. 

Himmelheber et al., 2000 

Ray et al., 2005 
Suzuki et al., 2011 

     

 

 

http://en.wikipedia.org/wiki/Reward_system
http://en.wikipedia.org/wiki/Alzheimer%27s_disease
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XRN1(-)* 

 
RNA degradation 

This gene encodes the 5'-3' exoribonuclease 1, which 

localizes to cytoplasmic foci containing a complex of 

mRNA-degrading enzymes. It is involved in mRNA decay. 

 

Moderate expression in fetal brain and postnatal prefrontal 

cortex, amygdalaee and hypothalamus.  

High expression in immune cell types. 

It has been reported that XRN1, which is a glial cell line-derived 

neurotrophic factor-inducible protein, forms together with 

FMRP and other proteins a multiprotein complex that is 

localized in the GW bodies in astrocytes and astrocytoma cells. 

GWBs are unique cytoplasmic structures that contain the 

mRNA binding protein GW182 and other proteins involved in 

mRNA processing pathways.  

Mutations and/or CNVs affecting XRN1 have never been 

reported in patients with ASD. 

 

Mutation in FMR1, which encodes the FMRP protein, is 

responsible for Fragile X syndrome, that is comorbidity 

with ASD. 

Clifford et al., 2007 

Kielinen et al., 2004 

Moser et al., 2007 

Shimoyama et al., 2003 
Wang et al., 2010 

      

ZFX(-)* 

 
Chromatin remodeling 

This gene encodes the Zinc finger protein, X-linked, which is 

a member of the krueppel C2H2-type zinc-finger protein 

family and probable plays a role as transcriptional activator.  

 

Good expression in postnatal temporal lobe, prefrontal 

cortex, thalamus and amygdalaee.  

High expression in immune cell types. 

ZFX interacts with JARID1C (KDM5C), a lysine (K)-specific 

demethylase 5C that specifically demethylates Lys- 4 of histone 

H3, thereby playing a central role in histone code. It participates 

in transcriptional repression of neuronal genes by recruiting 

histone deacetylases and REST at neuron-restrictive silencer 

elements. 

 

ZFX is an essential transcriptional regulator of hematopoietic 

stem cell function. Furthermore, ZFX is required for pro-B to 

pre–B-cell transition and maintenance of mature recirculating B 

cells and B-1 cells.  

Mutations and/or CNVs affecting ZFX have never been 

reported in patients with ASD. 

 

A JARID1C missense mutation affecting a highly 

conserved amino acid has been reported in a little boy 

diagnosed with idiopathic autism.  

A few JARID1C-regulated genes SCN2A, CACNA1H, 

BDNF, and SLC18A1 have been associated with autism 

and cognitive dysfunction. 

Adegbola et al., 2008 

Akbarian and Huang, 2009 
Arenzana et al., 2009 

      

ZMYM5 or 

ZNF237(+) 

 
Transcriptional 

regulation 

This gene encoder the zinc finger MYM-type 5 protein. 

 

Moderate expression in postnatal parietal lobe, cerebellum 

and cerebellum peduncles. 

It has been reported that ZMYM5 may inhibit Presenilin1 (PS1) 

transcription by forming an inhibitory complex with ERM, a 

member of the Ets transcription factors, which directly binds 

PS1 promoter. 

 

Mutations in PS1 are responsible of sporadic juvenile and 

familial cases of Alzheimer’s disease. Besides the involvement 

of Presenilins in amyloid plaques formation, PSs regulate 

the cleavage of other signaling receptors and transducers such as 

Notch-1, ErbB4, DC44, and LDL-receptor-related proteins and 

cadherins. PSs also affect different other signaling molecules, 

such as Wnt signal transduction pathway, which regulates 

morphology, proliferation, and motility of the cell. 

Mutations and/or CNVs affecting ZNF237 have never 

been reported in patients with ASD. 

 

Deregulation of Wnt/β-catenin signaling pathway has 

been implicated in the pathogenesis of ASD as well as of 

other neuropsychiatric disorders. 

Baulac et al., 2003 
De Ferrari and Moon, 2006 

De Strooper, 2003 

Kopan and Goate, 2000 
Nizzari et al., 2012 

Okerlund and Cheyette, 2011 

Pastoric and Das, 2007 

Schroeter et al., 1998 
Wang et al., 2010  

Zhang et al., 2012 

      
ZNF138(-) 

 
Transcriptional 

regulation 

This gene encodes the zinc finger protein 138 which is 

involved in transcriptional regulation. 

 

Moderate expression in fetal brain and in postnatal CNS, 

high expression in cerebellum.  

ZNF138 is probably involved in development. 
Mutations and/or CNVs affecting ZNF138 have never 

been reported in patients with ASD. 
Tommerup and Vissing, 1995 

     
ZNF236(-)* 

 
Transcriptional 

regulation 

This gene encodes the zinc finger protein 236 which is 

involved in transcriptional regulation. 

 

It is ubiquitous expressed with the highest levels in skeletal 

muscle and brain. 

 
Mutations and/or CNVs affecting ZNF236 have never 

been reported in patients with ASD. 
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ZNF280A(-) 
 

Transcriptional 

regulation 

This genes encoder the zinc finger protein 280A which acts 

as a transcription factor. 

 

Good expression in fetal brain and moderate expression in 

postnatal whole brain, in particular in amygdalaee. 

 
Mutations and/or CNVs affecting ZNF280A have never 

been reported in patients with ASD. 
 

§
In this table only the genes included in rare CNVs which do not localize in recurrent genomic regions have been analyzed. (-), deleted or disrupted gene due to a rare deletion; (-)*, possible disrupted gene due to a rare duplication; (+), duplicated gene due to a rare 

duplication. The genes already implicated in ASD, due to mutations and/or CNVs or SNPs, are depicted in red and purple, respectively. 
 

      Genes implicated in CNS metabolism. 

      Genes implicated in synaptogenesis and synaptic plasticity. 

      Genes implicated in CNS-IS network.     

      Genes implicated in intracellular signaling and membrane trafficking. 

      Genes implicated in neurogenesis and neurodevelopment. 

      Genes implicated in transcriptional and translational regulation, and chromatin remodeling. 
       

          Genes whose function may be related to the IS development and function, within and outside the CNS. 
 

ADHD, attention deficit hyperactivity disorder; AS, Angelman syndrome; BD, bipolar disorder; BWS, Beckwith-Wiedemann syndrome; CNS, central nervous system; CNV, copy number variation; CSF, cerebrospinal fluid; EP, epilepsy; ER, endoplasmic reticulon; HF-AU, 

high functioning autism; ID, intellectual disability; IS, immune system; MDD, major depressive disorder; MR, mental retardation; SCZ, schizophrenia; SNP, single nucleotide polymorphism; SRS, Siver-Russell syndrome; XLMR, X-linked mental retardation. 
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Tab. 4.1. Detailed list of the genes potentially perturbed by the identified rare CNVs and possible implicated in ASD pathogenesis (UCSC 

Genome Browser, hg19, February 2009)
§
. 

Gene name Function and expression Interactors and possible role in brain 
Findings in ASDs or in other neuropsychiatric 

disorders 
References 

 

+++++ 

.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

00000000000000000000000000000000000000000000000000000000000000000…………………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………………………………………… 

 

 Patient 10, gain of 3.9 Mb at 2q14.2q14.3 (chr2:119130298-123004562) 

 

 

CLASP1(+) 
 

Intracellular membrane 

trafficking: regulation of 

microtubule cytoskeleton 

dynamics 

This gene encodes the cytoplasmic linker associated protein 

1. CLASPs, such as CLASP1, are nonmotor microtubule-

associated proteins. CLASP1 is involved in the regulation of 

microtubule dynamics at the kinetochore and throughout the 

spindle. 

 

High expression in fetal brain and in postnatal CNS.  

High expression in immune cell types. 

It has been recently reported that CLASP protein (CLASP1 and 

CLASP2) function to both promote and restrict axon growth, 

thus suggesting that the opposing roles of CLASP are rooted in 

its unique microtubule (MT)-binding activities: CLASP 

supports axon extension when it binds to MT plus ends, whereas 

it restricts axon growth when bound along MT lattices. 

 

It directly interacts with CLIP2, the CAP-GLY domain 

containing linker protein 2, which seems to link microtubules to 

dendritic lamellar body (DLB), a membranous organelle 

predominantly present in bulbous dendritic appendages of 

neurons linked by dendrodendritic gap junctions. It may operate 

in the control of brain-specific organelle translocations. 

Mutations and/or CNVs affecting CLASP1 have never 

been reported in patients with ASD.  

Akhmanova et al., 2001 

Al-Bassam et al., 2010 

Hur et al. 2011 

Maiato et al., 2003 
Neukirchen and Bradke, 2011 

Watanabe et al., 2009  

Wittmann and Waterman-Storer, 

2005 

   

 

  

C1QL2(+) 

 
CNS development 

This gene encodes the complement component 1, q 

subcomponent-like 2. 

 

Highly expressed in the CNS. 

Many member of the C1q family are secreted and play a crucial 

role in intercellular signaling.  

The gene expression of the C1ql subfamily in adult and 

developing mouse brain has been recently investigated. In adult 

brain the C1ql1-C1ql3 mRNAs were mainly expressed in 

neurons and weak expression was found in glia-like structures. 

Moreover, although the C1ql1-C1ql3 mRNAs were detectable 

as early as embryonic day 13, the C1ql2 mRNA was observed at 

later embryonic stages.  

 

Another member of the C1q family of proteins, Cbln, is highly 

expressed in the CNS and plays two fundamental roles in 

cerebellum synapses: the formation and stabilization of synaptic 

contact, and the control of functional synaptic plasticity by 

regulating the postsynaptic endocytotic pathway. 

A de novo duplication of 4.2 Mb at 2q14.1q14.2, 

involving C1QL2, has been detected in an autistic boy 

carrying the paracentric inversion inv(2)(q14.2q37.3), 

that was inherited from the healthy mother, and a terminal 

deletion at 2q37.3. 

Devillard et al., 2010 

Iijima et al., 2010 

Yuzaki, 2010 
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DBI(+) 
 

Synaptic plasticity 

(GABA receptor 

modulation) 

This gene encodes the diazepam binding inhibitor (GABA 

receptor modulator, acyl-CoA binding protein), which is a 

protein that binds medium- and long-chain acyl-CoA esters 

with very high affinity and may function as an intracellular 

carrier of acyl-CoA esters. It is also able to displace 

diazepam from the benzodiazepine (BZD) recognition site 

located on the GABA type A receptor. It is therefore possible 

that this protein also acts as a neuropeptide to modulate the 

action of the GABA receptor located in brain synapses. 

 

Moderate expression in fetal brain, good expression in 

postnatal cerebellum, thalamus, amygdalae, corpus callosum 

and spinal cord. 

A potential imbalance between excitatory and inhibitory 

interneurons in the cortex may contribute to altered information 

processing in autism. Furthermore, reduced numbers of GABA 

and benzodiazepine receptors have been reported in the autistic 

brain, particularly in posterior cingulate cortex. 

A CNV (loss) including DBI has recently been reported in 

an autistic patient. 

 

A de novo duplication of 4.2 Mb at 2q14.1q14.2, 

involving DBI, has been detected in an autistic boy 

carrying the paracentric inversion inv(2)(q14.2q37.3), 

that was inherited from the healthy mother, and a terminal 

deletion at 2q37.3. 

 

A SNP in DBI has been associated with anxiety disorders 

with panic attacks.  

Devillard et al., 2010 

Griswold et al., 2012 

Oblak et al., 2011 

Thoeringer et al., 2007 

     

EN1(+) 
 

Intracellular Wnt 

signaling 

This gene encodes the engrailed homeobox 1 protein, which 

is a transcription factor that has been implicated in the 

control of pattern formation during CNS development.  

 

Low expression in fetal brain and moderate expression in 

postnatal occipital and temporal lobes, cerebellum, 

hypothalamus, and cervical ganglion. 

En1 and En2 are important transcription factors whose role in 

CNS development is well known. They are involved in Wnt 

signaling pathway and, in particular, En1 togheter with β-

catenin regulates transcription of β-catenin target genes in 

neuronal cells. 

A de novo duplication of 4.2 Mb at 2q14.1q14.2, 

involving EN1, has been detected in an autistic boy 

carrying the paracentric inversion inv(2)(q14.2q37.3), 

that was inherited from the healthy mother, and a terminal 

deletion at 2q37.3. 

 

A single study reported no SNPs affecting EN1 in 247 

patients with SCZ, 98 patients with autism, and 56 

patients with idiopathic MR. Conversely, a SNP in EN2 

has been associated with autism. 

 

Deregulation of Wnt/β-catenin signaling pathway has 

been implicated in the pathogenesis of ASD as well as of 

other neuropsychiatric disorders. 

Alves dos Santos and Smidt, 2011 

Benayed et al., 2009 

Chung et al., 2011 

De Ferrari and Moon, 2006 
Devillard et al., 2010 

Laroche et al., 2008 

Okerlund and Cheyette, 2011 

Sen et al., 2010 
Wang et al., 2010  

Yang et al., 2010  

Zhang et al., 2012 

     

EPB41L5(+) 
 

Neurodevelopment 

This gene encodes the erythrocyte membrane protein band 

4.1 like 5. 

 

Moderate expression in fetal brain and in postnatal CNS. 

EPB41L5 belongs to the family of the FERM proteins, which 

contain a FERM domain and are ubiquitous components of the 

cytocortex of animal cells where they are engaged in structural, 

transport, and signaling functions, thus contributing to animal 

morphogenesis. 

It has been demonstrated that the murine ortholog protein of the 

human Epb4.1L5, Lulu, helps anchor the actin-myosin 

contractile machinery to the cell membrane to allow the 

dynamic rearrangements of epithelia that mediate embryonic 

morphogenesis. In particular, this process is necessary for the 

organization of the neural plate (neuroepithelium polarity). 

A de novo duplication of 4.2 Mb at 2q14.1q14.2, 

involving EPB41L5, has been detected in an autistic boy 

carrying the paracentric inversion inv(2)(q14.2q37.3), 

that was inherited from the healthy mother, and a terminal 

deletion at 2q37.3. 

Devillard et al., 2010 

Lee et al., 2007 

Tepass, 2009 
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Tab. 4.1. Continued. 

GLI2(+) 
 

Transcriptional 

regulation 

This gene encodes the GLI family zinc finger 2 protein, 

which belongs to the C2H2-type zinc finger protein subclass 

of the Gli family. Members of this subclass are characterized 

as transcription factors which bind DNA through zinc finger 

motifs. It is thought to play a role during embryogenesis.  

 

High expression in fetal brain and low expression in 

postnatal CNS, except for cerebellum where the expression is 

good. 

In mouse embryo Gli2 shows an essential role in the 

establishment of dorsoventral polarity in the vertebrate CNS. In 

addition, in mouse brain the Gli transcription factor are essential 

for thalamic development acting downstream the 

Sonichedgehog (Shh) signaling. In particular, Gli2 is the major 

activator, while Gli3 acts primarily as a repressor. Moreover, the 

expression of sox2 gene, which is essential for the maintenance 

of neuronal stem cells (NSCs), is regulated by Gli2, by its 

binding to an enhancer that is vital for sox2 expression in 

telencephalic neuroepithelial cells, which consist of NSCs and 

neural precursor cells. 

Mutations and/or CNVs affecting GLI2 have never been 

reported in patients with ASD. 

 

Defects in GLI2 are the cause of holoprosencephaly type 

9 (HPE9) also called pituitary anomalies with 

holoprosencephaly-like features. The primary features of 

this disease include defective anterior pituitary formation 

and pan-hypopituitarism, with or without overt forebrain 

cleavage abnormalities, and holoprosencephaly-like  

midfacial hypoplasia.  

 

A SNP in GLI2 has been associated with tardive 

diskinesia in patients with chronic SCZ. 

Greenbaum et al., 2010 

Haddad-Tovolli et al., 2012 
Matise et al., 1998 

Roessler et al., 2003 

Takanaga et al., 2009 

     

MARCO(+) 

 
Microglial cells 

maturation 

This gene encodes the macrophage receptor with collagenous 

structure, which is a member of class A scavenger receptor 

family and it is part of the innate antimicrobial immune 

system. The protein MARCO acts as a homotrimer and binds 

both Gram.negative and Gram-positive bacteria.  

 

Low-moderate expression in fetal brain and in postnatal 

CNS. 

High expression in lymph nodes and monocytes. 

Microglial cells originate from bone marrow and migrate in the 

brain when they finish their differentiation under the influence 

of growth factors and cytokines release by resident cells, such as 

granulocyte-macrophage colony stimulated factor (GM-CSF). 

GM-CSF treated microglial cells show enhanced ability to 

process antigens and enhanced antigen-presentation capacity. 

It has been demonstrated a strong up-regulation of MARCO 

mRNA in maturing microglial cells. Furthermore, during 

microglia maturation, MARCO induces a profound actin 

cytoskeleton rearrangement and a down-regulation of antigen-

uptake function. 

A de novo duplication of 4.2 Mb at 2q14.1q14.2, 

involving MARCO, has been detected in an autistic boy 

carrying the paracentric inversion inv(2)(q14.2q37.3), 

that was inherited from the healthy mother, and a terminal 

deletion at 2q37.3. 

Devillard et al., 2010 

Gehrmann, 1996 
Granucci et al., 2003 

Ling and Wong, 1993 

Matyszak et al., 1999 

Ulvestad et al., 1994 

     
PCDP1(+) 
 

Ciliogenesis and ciliary 

motility 

This gene encodes the primary ciliary dyskinesia protein 1, 

which is required for ciliary motility. 

 

It is specifically expressed in brain ependymal cells. 

PCDP1 plays an important role in ciliary and flagellar 

biogenesis and motility. Homozygous mice for mutations 

affecting PCDP1 show the primary ciliary dyskinesia, which 

results from ciliary dysfunction and is commonly characterized 

by sinusitis, male infertility, hydrocephalus, and situs inversus.  

A de novo duplication of 4.2 Mb at 2q14.1q14.2, 

involving PCDP1, has been detected in an autistic boy 

carrying the paracentric inversion inv(2)(q14.2q37.3), 

that was inherited from the healthy mother, and a terminal 

deletion at 2q37.3. 

Devillard et al., 2010 
Lee et al., 2008 

     
 

 

 

PTPN4(+) 
 

Intracellular signaling 

This gene encodes the protein tyrosine phosphatase, non-

receptor type 4, which is a member of the protein tyrosine 

phosphatase (PTP) family. PTPs are known to be signaling 

molecules that regulate a variety of cellular processes 

including cell growth, differentiation, mitotic cycle, and 

oncogenic transformation. This PTP has been shown to 

interact with glutamate receptor delta 2 and epsilon subunits, 

and is thought to play a role in signaling downstream of the 

glutamate receptors through tyrosine dephosphorylation.  

 

High expression in fetal brain and in postnatal whole brain, 

in particolar in thalamus and amygdalae.  

High expression in immune cell types. 

PTPN4 associates directly with GRID2 and plays a role in 

signaling downstream of the GRID2 and/or in regulation of their 

activities through tyrosine dephosphorylation.  

GRID2 is selectively expressed in cerebellar Purkinje cells. It 

directly interacts with DLG2 and SHANK2 which act as adapter 

proteins in the postsynaptic density of excitatory synapses, 

interconnecting receptors of the postsynaptic membrane and the 

actin-based cytoskeleton. 

A de novo duplication of 4.2 Mb at 2q14.1q14.2, 

involving PTPN4, has been detected in an autistic boy 

carrying the paracentric inversion inv(2)(q14.2q37.3), 

that was inherited from the healthy mother, and a terminal 

deletion at 2q37.3. 

 

A de novo CNV at 4q22.2 including GRID2 has recently 

been reported in an autistic patient. 

 

Mutations and CNVs (de novo and inherited) affecting 

SHANK2 have been reported in ASD patients. 

Berkel et al., 2010, 2012 

Devillard et al., 2010 

He et al., 2012 

Hironaka et al., 2000 
Leblond et al., 2012 

Pinto et al., 2010 

Uemura et al., 2004 
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Tab. 4.1. Continued. 

 

 

 

RALB(+) 
 

Intracellular signaling: 

regulation of actin 

cytoskeleton dynamics 

This gene encodes the v-ral simian leukemia viral oncogene 

homolog B protein, which is a GTP-binding protein that 

belongs to the small GTPase superfamily and Ras family of 

proteins. It is a multifuntional GTPase involved in a variety 

of cellular processes including gene expression, cell 

migration, cell proliferation, oncogenic transformation and 

membrane trafficking.  

 

Moderate expression in fetal brain and good expression in 

postnatal whole brain, in particular in cortex, amygdalae, and 

thalamus. 

High expression in immune cell types. 

The Ras-like small GTPases, RalA and RalB, regulate a large 

variety of cellular processes including transcription, translation, 

cytoskeletal organization, membrane trafficking, cytokinesis, 

cell migration, cell proliferation, and cell survival.  

 

Recently, it has been demonstrated an involvement of RalA/B in 

projection neuron migration from the ventricular zone to the 

neocortical plate during mouse brain development. This process 

implies that the neurons become multipolar and move non-

radially in the intermediate zone. Both Reelin, the Rap1 

GTPase, and N-cadherin are important for multipolar neurons to 

polarize their migration towards the cortical plate. Indeed, 

Reelin regulates migration through Rap1 and Akt, and Rap1-

regulated GTPases, RalA/B, Rac1 and Cdc42, are also involved. 

A de novo duplication of 4.2 Mb at 2q14.1q14.2, 

involving RALB, has been detected in an autistic boy 

carrying the paracentric inversion inv(2)(q14.2q37.3), 

that was inherited from the healthy mother, and a terminal 

deletion at 2q37.3. 

 

The Rho GTPase Cdc42 is involved in neuronal 

morphogenesis, axonal guidance and synaptic plasticity 

by modulating the organization of actin cytoskeleton. 

The same pathway is involved in T-cell activation, 

migration, cell-cell adhesion.  

 

Point mutations and CNVs affecting TSC1 and TSC2 

have been reported in patients with ASD and Tuberous 

Sclerosis 1 or 2. TSC2 activates CdC42, thus regulating 

cell adhesion and migration. 

Devillard et al., 2010 

Fombonne et al., 1997 

Jossin and Cooper, 2011 
Lewis et al., 2004 

Muzykewicz et al., 2007 

Shirakawa et al., 2009 

Wiznitzer, 2004 
Wong, 2006 

     

RNU4ATAC(+) 

 
Neurodevelopment 

This gene encodes the RNA, U4atac, small nuclear RNA, 

which is part of the U12-dependent minor spliceosome 

complex.  

 

No expression data are available at UCSC Genome Browser, 

release February 2009. 

Homozygous defects in RNU4ATAC are a cause of 

microcephalic osteodysplastic primordial dwarfism type 1 

(MOPD). 

Mutations and/or CNVs affecting RNU4ATAC have never 

been reported in patients with ASD. 
Abdel-Salam et al., 2011 

     

SCTR(+) 
 

Synaptic plasticity:  

secretin receptor 

This gene encodes the secretin receptor, which is a G protein-

coupled receptor and belongs to the glucagon-VIP-secretin 

receptor family. It binds secretin which is the most potent 

regulator of pancreatic bicarbonate, electrolyte and volume 

secretion.  

 

Moderate expression in postnatal parietal lobe, prefrontal 

cortex, amygdalae, and hypothalamus. 

Secretin is a peptide hormone released from the duodenum to 

stimulate the secretion of digestive juice by the pancreas. It also 

functions as a neuropeptide hormone in the brain. Secretin 

receptor-deficient mice show an impaired synaptic plasticity in 

the hippocampus, and abnormal social and cognitive 

behaviours, thus suggesting that the secretin receptor system has 

an important role in the CNS relating to social behaviour such 

as autism. 

A de novo duplication of 4.2 Mb at 2q14.1q14.2, 

involving SCTR, has been detected in an autistic boy 

carrying the paracentric inversion inv(2)(q14.2q37.3), 

that was inherited from the healthy mother, and a terminal 

deletion at 2q37.3. 

 

Improved behavioral and language skills in autistic 

children who received porcine secretin have been firstly 

described in 1998. Subsequent controlled studies have 

either failed to confirm these results or have shown some 

behavioral improvements among a subset of children with 

autism. Secretin has also been described as being 

potentially therapeutic for other behavioral 

disorders such as SCZ. 

Alamy et al., 2004 

Devillard et al., 2010 
Esch and Carr, 2004 

Horvath et al., 1998 

Kern et al., 2002 

Nishijima et al., 2006 
Sheitman et al., 2004 

Tay et al., 2004  

Yung et al., 2001 
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Tab. 4.1. Continued. 

 Patient 14, gain of 442.5 kb at 9q34.3 (chr9:140527202-140969676) 

CACNA1B(-)* 

de novo 

 
Synaptogenesis and 

synaptic plasticity 

This gene encodes the calcium channel, voltage-dependent, 

N type, alpha 1B subunit. The protein encoded by this gene is 

the pore-forming subunit of an N-type voltage-dependent 

calcium channel, which controls neurotransmitter release 

from neurons.  

 

Good expression in fetal brain and moderate expression in 

postnatal CNS, in particular in cerebellum and thalamus. 

Calcium channels mediate the influx of calcium ions into the 

cell upon membrane polarization, and they are involved in a 

variety of calcium-dependent processes, including muscle 

contraction, hormone or neurotransmitter release, gene 

expression, cell motility, cell division and cell death. 

Clear function in presynaptic neurotransmitter release. 

CACNA1B maps in the chromosomal region which is 

implicated in the 9q subtelomeric deletion syndrome 

(Kleefstra syndrome), which is comorbidi with ASD. 

In addition, GWAS have previously associated 

CACNA1B with SCZ and BD and a few CNVs (both 

gains and losses) affecting CACNA1B have been found in 

SCZ patients. 

 

Mutations affecting different CACNA genes, such as 

CACNA1C, CACNA1F, and CACNA1H have been 

reported in idiopathic or syndromic patients with ASD.  

Anderlid et al., 2002 

Bhat et al., 2012 

Dawson et al., 2002 

Glessner et al., 2010 
Hemara-Wahanui et al., 2005 

Iwakoshi et al., 2004 

Kleefstra et al., 2005, 2009  

McMullan et al., 2009 
Moskvina et al., 2009 

Sahoo et al., 2006 

Splawski et al., 2004, 2006 

 

EHMT1(-)* 

de novo 

 
Chromatin remodeling 

This gene encodes the euchromatic histone-lysine N-

methyltransferase 1. The protein is a histone 

methyltransferase that is part of the E2F6 complex, which 

represses transcription, methylating the Lys-9 position of 

histone H3, which tags it for transcriptional repression. It 

could play a role in the G0/G1 cell cycle transition.  

 

Low expression in fetal brain and in postnatal CNS. 

Alterations in RNA levels are frequently reported in brain of 

subjects diagnosed with autism, SCZ, depression and other 

psychiatric diseases. Recently it has been demonstrated that 

different epigenetic regulation, through histone lysine 

methylation, is present in post-morten human brain of patients 

affected by neuropsychiatric disorders vs. controls.  

EHMT1 point mutations and deletions of different size 

includine EHMT1 cause the 9q subtelomeric deletion 

syndrome (Kleefstra syndrome), which is comorbidi with 

ASD. 

 

Balanced chromosomal abnormalities affecting EHMT1 

have been found in autistic patients.  

Akbarian and Huang, 2009 

Anderlid et al., 2002 
Dawson et al., 2002 

Iwakoshi et al., 2004 

Kleefstra et al., 2005, 2009  

McMullan et al., 2009 
Sahoo et al., 2006 

Talkowski et al., 2012 

  
 Patient 23, loss of 748 kb, at 17q21.31 (chr17:43193251-43941693)  

ACBD4(-) 

de novo 
 

Lipid metabolism 

This gene encodes the acyl-CoA binding domain containing 

4 protein, which is a member of the acyl-coenzyme A 

binding domain containing protein family. They are thought 

to play roles in acyl-CoA dependent lipid metabolism. 

 

Moderate expression in fetal brain and in postnatal CNS, in 

particular in prefrontal cortex, thalamus and hypothalamus. 

Recently, brain transcriptome variation among behaviorally 

distinct strains of zebrafish has been reported including acbd3 

and acbd4 genes.  

 

No data about the role in human brain are so far available. 

Mutations and/or CNVs affecting ACBD4 have never 

been reported in patients with ASD. 

 

ACBD4 maps in the proximity of the genomic region 

involved in the 17q21.31 microdeletion/microduplication 

syndrome, which shows comorbidity with ASD. One 

ASD deleted patient and several ASD duplicated patients 

have so far been reported. 

Betancur et al., 2008 

Drew et al., 2012 

Grisart et al., 2009 

Koolen et al., 2008 

      
 

 

CRHR1(-) 

de novo 
 

Synaptic plasticity: stress 

response modulation 

This gene encodes the corticotropin releasing hormone 

receptor 1, a G-protein coupled receptor that binds 

neuropeptides of the corticotropin releasing hormone family 

that are major regulators of the hypothalamic-pituitary-

adrenal pathway. The encoded protein is essential for the 

activation of signal transduction pathways that regulate 

diverse physiological processes including stress, 

reproduction, immune response and obesity. 

 

Good expression in fetal brain and postnatal CNS, in 

particular in cerebellum, amygdalae, and thalamus. 

It has been demonstrated that CRHR1 critically controls 

behavioral adaptation to stress and is causally linked to 

emotional disorders. In particular, the lack of CRHR1 in murine 

forebrain glutamatergic circuits reduces anxiety and impairs 

neurotransmission in the amygdalae and hippocampus whereas 

selective deletion of CRHR1 in midbrain dopaminergic neurons 

increases anxiety-like behavior and reduces dopamine release in 

the prefrontal cortex. Moreover, CRHR1 is involved in CRH-

induced hippocampal neuron apoptosis. 

CRHR1 maps within the genomic region involved in the 

17q21.31 microdeletion/microduplication syndrome, 

which shows comorbidity with ASD. One ASD deleted 

patient and several ASD duplicated patients have so far 

been reported. 

Amath et al., 2012 

Betancur et al., 2008 

Grisart et al., 2009 

Hsu et al., 2012 
Koolen et al., 2008 

Refojo et al., 2011 

Zhang et al., 2012 
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Tab. 4.1. Continued. 

 

FMNL1(-) 

de novo 
 

Neurodevelopment and 

macrophages motility 

and survival: actin 

cytoskeleton dynamics 

This gene encodes the formin-like 1 protein, which is a 

formin-related protein. Formin-related proteins have been 

implicated in morphogenesis, cytokinesis, and cell polarity. 

FMNL1 may play a role in the control of cell motility and 

survival of macrophages. 

 

Low expression in fetal brain and moderate-good expression 

in postnatal whole brain, in particular in parietal and occipital 

lobe, amygdalae and hypothalamus. 

Very high expression in bone marrow and immune cell types. 

FMNL1 is responsible for modifying actin at the macrophage 

podosome and may be involved in actin cytoskeleton dynamics 

during adhesion and migration within tissues. 

By analogies with other members of the same family, it may 

also have a role in neurogenesis. Indeed, recently it has been 

reported that Formin1 mediates the induction of dendritogenesis 

and synaptogenesis by neurogenin3 in mouse hippocampal 

neurons through a direct role in cytoskeleton dynamics. 

Mutations and/or CNVs affecting FMNL1 have never 

been reported in patients with ASD. 

 

FMNL1 maps in the proximityof  the genomic region 

involved in the 17q21.31 microdeletion/microduplication 

syndrome, which shows comorbidity with ASD. One 

ASD deleted patient and several ASD duplicated patients 

have so far been reported. 

Betancur et al., 2008 

Grisart et al., 2009 

Koolen et al., 2008 
Mersich et al., 2010 

Simon-Arceres et al., 2011 

Yu et al., 2011 

 

 Patient 25, gain of 377 kb at 15q13.3 (chr15:32085731-32462701) 

 

CHRNA7(+) 
 

Synaptogenesis and 

synaptic plasticity 

This gene encodes the cholinergic nicotinic receptor alpha 7. 

The nicotinic acetylcholine receptors (nAChRs) are members 

of a superfamily of ligand-gated ion channels that mediate 

fast signal transmission at synapses. The nAChRs are thought 

to be hetero-pentamers composed of homologous subunits. 

The protein encoded by this gene forms a homo-oligomeric 

channel, displays marked permeability to calcium ions and is 

a major component of brain nicotinic receptors that are 

blocked by, and highly sensitive to, alpha-bungarotoxin. 

Once this receptor binds acetylcholine, it undergoes an 

extensive change in conformation that affects all subunits 

and leads to opening of an ion-conducting channel across the 

plasma membrane.  

 

High expression in fetal brain and in postnatal CNS, in 

particular in cortex, amygdalae and thalamus.  

In human fetal brain high levels of CHRNA7 gene expression 

have been found in nuclei that receive sensory information, such 

as those of the neocortex and hippocampus, the thalamic nuclei, 

the reticular thalamic nucleus, the pontine nuclei and the 

superior olive complex, thus supporting a possible regulatory 

function for alpha 7-containing receptors in CNS development 

and in sensory processing, which may be involved in the 

pathological physiology of SCZ and autism.  

CHRNA7 maps within the genomic region involved in the 

15q13.3 microdeletion/microduplication syndrome, which 

shows comorbidity with ASD. 

 

SNPs in the CHRNA7 promoter have been associated 

with SCZ. 

CNVs sncompassing CHRNA7 have been found in 

patients with ADHD, DD, and ID. 

Ben-Shachar et al., 2009 

Guilmatre et al., 2009  
Hoppman-Chaney et al., 2012 

Leonard et al., 2002 

Masurel-Paulet et al., 2010 

Mikhail et al., 2011 
Miller et al., 2009 

Pagnamenta et al., 2009 

Pinto et al., 2010 

Sharp et al., 2008 
Szafranski et al., 2010 

van Bon et al., 2009 

Williams et al., 2012 
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Tab. 4.1. Continued. 

 Patient 25, gain of 538 kb at 16p11.2 (chr16:29652999-30190568)  

 Patient 38, gain 659 kb at 16p11.2 (chr16:29673954-30332581) 

 Patient 39, gain 659 kb at 16p11.2 (chr16:29673954-30332581) 

     

ALDOA(+) 

 
Brain metabolism: 

glycolysis 

This gene encodes the aldolase A, fructose-bisphosphate 

protein, which is a glycolytic enzyme that catalyzes the 

reversible conversion of fructose-1,6-bisphosphate to 

glyceraldehyde 3-phosphate and dihydroxyacetone 

phosphate. Three aldolase isozymes (A, B, and C), encoded 

by three different genes, are differentially expressed during 

development. Aldolase A is found in the developing embryo 

and is produced in even greater amounts in adult muscle, 

whereas is repressed in adult liver, kidney and intestine. 

Aldolase A shows levels similar to aldolase C in brain and 

other nervous tissue.  

 

Low expression in fetal brain and good expression in 

postnatal CNS. 

Defects in ALDOA are the cause of glycogen storage disease 

type 12, also known as red cell aldolase deficiency, a metabolic 

disorder associated with increased hepatic glycogen and 

hemolytic anemia. It may lead to myopathy with exercise 

intolerance and rhabdomyolysis. 

 

Using the zebrafish as a tool, a set of 16p11.2 homologs has 

been recently identified. This set of genes is highly active 

during the first 5 days of development, and most genes in this 

region are required for nervous system development (including 

aldoa) – impacting brain morphology, eye development, axonal 

density or organization, and motor response.  

Screening for 16p11.2 genes whose function is sensitive to 

hemizygosity, the aldoaa and kinesin family member 22 genes 

were identified as giving clear phenotypes when RNA levels 

were reduced by ~50%, suggesting that these genes are deletion 

dosage sensors.  

ALDOA maps within the genomic region involved in the 

16p11.2 microdeletion/microduplication syndrome, which 

shows comorbidity with ASD, EP, SCZ, ID and ADHD. 

Blaker-Lee et al., 2012 

Bijlsma et al., 2009 
Christian et al., 2008 

Fernandez et al., 2010  

Hanson et al., 2010 

Kumar et al., 2008 
Marshall et al., 2008 

Mochida et al., 1998 

Pinto et al., 2010 

Rosenfeld et al., 2010  
Shinawi et al., 2010 

Weiss et al., 2008 

     

ASPHD1(+) 

 
Neurodevelopment 

This gene encodes the aspartate beta-hydroxylase domain 

containing 1 protein. 

 

Good expression in fetal brain and in postnatal CNS, in 

particular in cerebellum. 

The zebrafish loss of function model for the ASPHD1 gene 

shows a weak phenotype with defective in brain morphology. 

ASPHD1 maps within the genomic region involved in the 

16p11.2 microdeletion/microduplication syndrome, which 

shows comorbidity with ASD, EP, SCZ, ID and ADHD. 

Blaker-Lee et al., 2012 

Bijlsma et al., 2009 
Christian et al., 2008 

Fernandez et al., 2010  

Hanson et al., 2010 

Kumar et al., 2008 
Marshall et al., 2008 

Mochida et al., 1998 

Pinto et al., 2010 

Rosenfeld et al., 2010  
Shinawi et al., 2010 

Weiss et al., 2008 

     

CDIPT(+) 

 
Intracellular signaling: 

phosphatidylinositol 

signaling system 

This gene encodes the CDP-diacylglycerol-inositol 3-

phosphatidyltransferase protein. Phosphatidylinositol 

breakdown products are ubiquitous second messengers that 

function downstream of many G protein-coupled receptors 

and tyrosine kinases regulating cell growth, calcium 

metabolism, and protein kinase C activity.  

 

Moderate expression in fetal brain and in postnatal CNS. 

In mice, CDIPT mRNA had already expressed on the prenatal 

day 15 throughout the neuroaxis including the spinal cord. 

During the postnatal stages, CDIPT gene expression has been 

detected widely in the gray matters throughout the entire brain. 

The highest levels have bee reported in the olfactory mitral 

cells, the cerebral cortex, the hippocampal and dentate neuronal 

layer and the cerebellar Purkinje and granule cells. 

 

The zebrafish loss of function model for the CDIPT gene shows 

defective in brain morphology. 

CDIPT maps within the genomic region involved in the 

16p11.2 microdeletion/microduplication syndrome, which 

shows comorbidity with ASD, EP, SCZ, ID and ADHD. 

Blaker-Lee et al., 2012 

Bijlsma et al., 2009 

Christian et al., 2008 
Fernandez et al., 2010  

Hanson et al., 2010 

Kumar et al., 2008 

Marshall et al., 2008 
Mochida et al., 1998 

Pinto et al., 2010 

Rosenfeld et al., 2010  

Saito et al., 1998 
Shinawi et al., 2010 

Weiss et al., 2008 
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Tab. 4.1. Continued. 

CORO1A(+) 

 
CNS 

immunosurveillance, 

neurodevelopment: actin 

cytoskeleton dynamics 

This gene encodes the coronin actin binding protein 1A, 

which is a member of the WD repeat protein family. 

Members of this family are involved in a variety of cellular 

processes, including cell cycle progression, signal 

transduction, apoptosis, and gene regulation. It is a crucial 

component of the cytoskeleton of highly motile cells, 

functioning both in the invagination of large pieces of plasma 

membrane, as well as in forming protrusions of the plasma 

membrane involved in cell locomotion. 

 

Good expression in fetal brain and very high expression in 

postnatal whole brain, in particular in cerebellum and 

amygdalae. 

Very high expression in thymus, bone marrow and immune 

cell types. 

Coronins are a highly conserved family of actin regulatory 

genes. They regulate the actin cytoskeleton through 

antagonizing actin polymerization and promoting actin severing. 

Mice with mutations in Coronin-1A, expressed predominantly in 

hematopoeitic cells, are T-lymphocytopenic in part due to 

inability of mature T cells to be released from the thymus into 

the peripheral circulation, suggesting the role of actin 

cytoskeleton regulation in T cell homeostasis. 

In the CNS coronin 1A is predominantly expressed in microglial 

cells. The zebrafish loss of function model for the CORO1A 

gene shows defective in the neural tube formation. 

 

Recently, a patient carrying a heterozygous microdeletion at 

16p11.2, affected by ADHD and a severe combined 

immunodeficiency, has been reported. The deletion 

encompassed the CORO1A gene and, in addition, a deletion of 

2bp on the CORO1A allele, inherited from the healthy father, 

was found. 

CORO1A maps within the genomic region involved in the 

16p11.2 microdeletion/microduplication syndrome, which 

shows comorbidity with ASD, EP, SCZ, ID and ADHD. 

Blaker-Lee et al., 2012 

Bijlsma et al., 2009 

Christian et al., 2008 
Fernandez et al., 2010  

Foger et al., 2006 

Hanson et al., 2010 

Kumar et al., 2008 
Marshall et al., 2008 

Mochida et al., 1998 

Pinto et al., 2010 

Rosenfeld et al., 2010  
Shinawi et al., 2010 

Shiow et al., 2008, 2009 

Uetrecht and Bear, 2006 
Weiss et al., 2008 

     

C16orf53(+) 

 
Chromatin remodeling 

This gene encodes the chromosome 16 open reading frame 

53, which is a component of a Set1-like multiprotein histone 

methyltransferase complex. 

 

Good expression in fetal brain and in postnatal CNS, in 

particular in amygdalae and cerebellum. 

The zebrafish loss of function model for C16orf53 shows 

defective in brain morphology. 

C16orf53 maps within the genomic region involved in the 

16p11.2 microdeletion/microduplication syndrome, which 

shows comorbidity with ASD, EP, SCZ, ID and ADHD. 

Blaker-Lee et al., 2012 
Bijlsma et al., 2009 

Cho et al., 2007 

Christian et al., 2008 

Fernandez et al., 2010  
Hanson et al., 2010 

Kumar et al., 2008 

Marshall et al., 2008 

Mochida et al., 1998 
Pinto et al., 2010 

Rosenfeld et al., 2010  

Shinawi et al., 2010 
Weiss et al., 2008 

     

DOC2A(+) 

 
Synaptic function and 

plasticity 

This gene encodes the double C2-like domains, alpha 

protein. DOC2A is mainly expressed in brain and is 

suggested to be involved in Ca2+-dependent neurotransmitter 

release through the interaction with UNC13B. It most 

probably regulates fusion of vesicles with membranes.  

 

Very high expression in fetal brain and in postnatal CNS, in 

particular in cortex, amygdalae, and cerebellum. 

It has been reported that DOC2A-UNC13B interaction in vitro 

plays a role in a step before the final fusion of synaptic vesicles 

with the presynaptic plasma membrane in the evoked 

neurotransmitter release process. 

Furthermore, DOC2A binds to STXBP1, the syntaxin (STX) 

binding protein 1, thus regulating the interaction STXBP1-STX 

which is essential for the activity of the synaptic vesicle fusion 

machinery. 

 

Doc2a knockout mice exhibit defects in excitatory synaptic 

transmission and long-term potentiation, whereas knockdown of 

doc2a in zebrafish resulted in defective brain morphology, but 

apparently normal motor responses and axon tracts. Because the 

mice were studied at later stages, similar phenotypes could 

develop in older fish. 

DOC2A maps within the genomic region involved in the 

16p11.2 microdeletion/microduplication syndrome, which 

shows comorbidity with ASD, EP, SCZ, ID and ADHD. 

Blaker-Lee et al., 2012 

Bijlsma et al., 2009 

Christian et al., 2008 
Fernandez et al., 2010 

Hanson et al., 2010 

Kumar et al., 2008 

Marshall et al., 2008 
Mochida et al., 1998 

Pinto et al., 2010 

Rosenfeld et al., 2010  

Sakaguchi et al., 1999 
Shinawi et al., 2010  

Weiss et al., 2008 
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Tab. 4.1. Continued. 

FAM57B(+) 

 
Neurodevelopment 

This gene encodes the family with sequence similarity 57 

protein. 

 

Good expression in fetal brain and in postnatal CNS. 

The zebrafish loss of function model for FAM57B shows 

defective in brain morphology. 

FAM57BA maps within the genomic region involved in 

the 16p11.2 microdeletion/microduplication syndrome, 

which shows comorbidity with ASD, EP, SCZ, ID and 

ADHD. 

Blaker-Lee et al., 2012 

Bijlsma et al., 2009 
Christian et al., 2008 

Fernandez et al., 2010  

Hanson et al., 2010 

Kumar et al., 2008 
Marshall et al., 2008 

Mochida et al., 1998 

Pinto et al., 2010 

Rosenfeld et al., 2010  
Shinawi et al., 2010 

Weiss et al., 2008 

     

GDPD3(+) 

 
Neurodevelopment 

This gene encodes the glycerophosphodiester 

phosphodiesterase domain containing 3 protein. 

 

Moderate expression in postnatal CNS. 

The zebrafish loss of function model for GDPD3 shows 

defective in brain morphology. 

GDPD3 maps within the genomic region involved in the 

16p11.2 microdeletion/microduplication syndrome, which 

shows comorbidity with ASD, EP, SCZ, ID and ADHD. 

Blaker-Lee et al., 2012 

Bijlsma et al., 2009 

Christian et al., 2008 
Fernandez et al., 2010  

Hanson et al., 2010 

Kumar et al., 2008 

Marshall et al., 2008 
Mochida et al., 1998 

Pinto et al., 2010 

Rosenfeld et al., 2010  

Shinawi et al., 2010 
Weiss et al., 2008 

     

HIRIP3(+) 

 
Neurodevelopment: 

histone metabolism 

This gene encodes the HIRA interacting protein 3, which 

shares sequence similarity with Hir1p and Hir2p, the two 

corepressors of histone gene transcription characterized in 

the yeast, Saccharomyces cerevisiae. The structural features 

of the HIRA protein suggest that it may function as part of a 

multiprotein complex, probably involved in some aspects of 

chromatin and histone metabolism. 

 

Low expression in fetal brain and in postnatal CNS, except 

for amygdalae, cerebellum and thalamus where good levels 

of expression have been detected.  

The zebrafish loss of function model for HIRIP3 shows 

defective in brain morphology. 

HIRIP3maps within the genomic region involved in the 

16p11.2 microdeletion/microduplication syndrome, which 

shows comorbidity with ASD, EP, SCZ, ID and ADHD. 

Blaker-Lee et al., 2012 

Bijlsma et al., 2009 
Christian et al., 2008 

Fernandez et al., 2010  

Hanson et al., 2010 

Kumar et al., 2008 
Marshall et al., 2008 

Mochida et al., 1998 

Pinto et al., 2010 

Rosenfeld et al., 2010  
Shinawi et al., 2010 

Weiss et al., 2008 

     

INO80E(+) 

 
Chromatin remodeling, 

transcriptional regulation 

This gene encodes the INO80 complex subunit E protein, 

which is a putative regulatory component of the chromatin 

remodeling INO80 complex that is involved in 

transcriptional regulation, DNA replication and probably 

DNA repair. 

 

Moderate expression in fetal brain and in postnatal whole 

brain. 

The zebrafish loss of function model for INO80E shows very 

strong phenotype, suggesting early embryonic defects. In 

particular, it shows abnormal body length and defective neural 

tubes, resulting in anomalies in brain morphology. 

INO80E maps within the genomic region involved in the 

16p11.2 microdeletion/microduplication syndrome, which 

shows comorbidity with ASD, EP, SCZ, ID and ADHD. 

Blaker-Lee et al., 2012 
Bijlsma et al., 2009 

Christian et al., 2008 

Fernandez et al., 2010  

Hanson et al., 2010 
Kumar et al., 2008 

Marshall et al., 2008 

Mochida et al., 1998 

Pinto et al., 2010 
Rosenfeld et al., 2010  

Shinawi et al., 2010 

Weiss et al., 2008 
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Tab. 4.1. Continued. 

 

 

KCTD13(+) 

 
Neurodevelopment: actin 

cytoskeleton dynamics 

This gene encodes the potassium channel tetramerisation 

domain containing 13 protein, which is the substrate-specific 

adapter of a BCR E3 ubiquitin-protein ligase complex 

involved in regulation of cytoskeleton structure. The BCRE3 

ubiquitin ligase complex mediates the ubiquitination of 

RHOA, leading to its degradation by the proteasome, thereby 

regulating the actin cytoskeleton and cell migration. 

 

High expression in fetal brain and in postnatal CNS. 

High expression in immune cell types. 

Overexpression of 16p11.2 human transcript in zebrafish 

embryos identified KCTD13 as the sole message capable of 

inducing the microcephaly phenotype associated with the 

16p11.2 duplication, whereas suppression of the same locus 

yielded the macrocephalic phenotype associated with the 

16p11.2 deletion. 

Analyses of zebrafish and mouse embryos suggest that 

microcephaly is caused by decreased proliferation of neuronal 

progenitors with concomitant increase in apoptosis in the 

developing brain, whereas macrocephaly arises by increased 

proliferation and no changes in apoptosis.  

KCTD13 maps within the genomic region involved in the 

16p11.2 microdeletion/microduplication syndrome, which 

shows comorbidity with ASD, EP, SCZ, ID and ADHD.  

 

A role for KCTD13 dosage changes is consistent with 

autism in both a recently reported family with a reduced 

16p11.2 deletion, encompassing five genes such as MVP, 

CDIPT, SEZ6L2, ASPHD1 and KCTD13, and a subject 

with a complex 16p11.2 rearrangement involving de novo 

structural alteration of KCTD13. 

Blaker-Lee et al., 2012 

Bijlsma et al., 2009 
Christian et al., 2008 

Crepel et al., 2011 

Fernandez et al., 2010  

Golzio et al., 2012 
Hanson et al., 2010 

Kumar et al., 2008 

Marshall et al., 2008 

Mochida et al., 1998 
Pinto et al., 2010 

Rosenfeld et al., 2010  

Shinawi et al., 2010 

Weiss et al., 2008 

     

KIF22(+) 

 
Intracellular membrane 

trafficking: regulation of 

microtubule cytoskeleton 

dynamics 

This gene encodes the kinesin family member 22 protein, 

which is a member of the kinesin-like protein family. They 

are microtubule-dependent molecular motors that transport 

organelles within cells and move chromosomes during cell 

division. Studies with the Xenopus homolog suggest its 

essential role in metaphase chromosome alignment and 

maintenance. 

 

Moderate expression in fetal brain and in postnatal CNS.  

In zebrafish loss of function model KIF22 is required for 

nervous system development, impacting brain morphology, eye 

development, axonal density or organization, and motor 

response. KIF22 was identified as giving a clear phenotype 

when RNA level was reduced by ~50%, suggesting that this 

gene is a deletion dosage sensor. 

KIF22 maps within the genomic region involved in the 

16p11.2 microdeletion/microduplication syndrome, which 

shows comorbidity with ASD, EP, SCZ, ID and ADHD. 

Blaker-Lee et al., 2012 

Bijlsma et al., 2009 

Christian et al., 2008 
Fernandez et al., 2010  

Hanson et al., 2010 

Kumar et al., 2008 

Marshall et al., 2008 
Mochida et al., 1998 

Pinto et al., 2010 

Rosenfeld et al., 2010  

Shinawi et al., 2010 
Weiss et al., 2008 

     

MAPK3-ERK1(+) 

 
Intracellular MAP kinase 

signaling 

This gene encodes the mitogen-activated protein kinase 3 

(ERK1), which is a member of the MAP kinase family. MAP 

kinases, also known as extracellular signal-regulated kinases 

(ERKs), act in a signaling cascade that regulates various 

cellular processes such as proliferation, differentiation, and 

cell cycle progression in response to a variety of extracellular 

signals.  

 

Good expression in fetal brain and in postnatal CNS. 

MAPK3 interacts with PTPN11, the protein tyrosine 

phosphatase, non-receptor type 11, which has a role in signal 

transduction.  

 

The zebrafish loss of function model for MAPK3 shows very 

strong phenotype, suggesting early embryonic defects. In 

particular, it shows abnormal body length and defective neural 

tubes, resulting in anomalies in brain morphology. 

MAPK3 maps within the genomic region involved in the 

16p11.2 microdeletion/microduplication syndrome, which 

shows comorbidity with ASD, EP, SCZ, ID and ADHD. 

 

Rare single missense mutations affecting MAPK3 have 

been reported in a few HF-AU patients. 

 

Up-regulation of the Ras/Raf/ERK1/2 signaling pathway 

has been found in the brain of autistic subjects and mouse 

animal model.  

 

Mutations affecting PTPN11 cause Noonan syndrome 

which is comorbid with ASD. 

Blaker-Lee et al., 2012 

Bijlsma et al., 2009 
Christian et al., 2008 

Fernandez et al., 2010  

Ghaziuddin et al., 1994 

Hanson et al., 2010 
Kumar et al., 2008 

Marshall et al., 2008 

Mochida et al., 1998 

Paul et al., 1983 
Pierpont et al., 2009  

Pinto et al., 2010 

Rosenfeld et al., 2010  

Schaaf et al., 2011 
Shinawi et al., 2010 

Swillen et al., 1996 

Weiss et al., 2008  

Yang et al., 2011, 2012 
Zou et al., 2011 
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Tab. 4.1. Continued. 

MAZ(+) 

 
Neurodevelopment 

This gene encodes the MYC-associated zinc finger protein, a 

purine-binding transcription factor. 

 

Moderate expression in fetal brain and in postnatal CNS. 

It has been demonstrated that MAZ mediates enhancement of 

NMDA receptor subunit type 1 (NR1) promoter activity during 

neuronal differentiation. Furthermore, MAZ binds to DDC 

(deleted in colorectal carcinoma), which is a receptor for netrin 

required for axon guidance. DDC mediates axon attraction of 

neuronal growth cones in the developing nervous system upon 

ligand binding.  

 

In zebrafish loss of function model MAZ is required for brain 

development. 

MAZ maps within the genomic region involved in the 

16p11.2 microdeletion/microduplication syndrome, which 

shows comorbidity with ASD, EP, SCZ, ID and ADHD. 

 

Significantly differential MAZ gene expression in relation 

to age between a group of patients with SCZ and controls 

has been reported in peripheral blood lymphocytes.  

Bataller et al., 2003 

Blaker-Lee et al., 2012 
Bijlsma et al., 2009 

Bowden et al., 2006 

Christian et al., 2008 

Fernandez et al., 2010  
Hanson et al., 2010 

Kumar et al., 2008 

Marshall et al., 2008 

Mochida et al., 1998 
Okamoto et al., 2002 

Pinto et al., 2010 

Rosenfeld et al., 2010  

Shinawi et al., 2010 
Weiss et al., 2008 

     

MVP(+) 

 
Intracellular signaling: 

regulation of MAP 

kinase signaling 

This gene encodes the major vault protein, which is the major 

component of the vault complex. Vaults are multi-subunit 

ribonucleoprotein structures that may be involved in nucleo-

cytoplasmic transport. The encoded protein may play a role 

in multiple cellular processes by regulating the MAP kinase, 

JAK/STAT and phosphoinositide 3-kinase/Akt signaling 

pathways.  

 

Low expression in fetal brain and in postnatal CNS. 

Recently, the cellular and subcellular expression of MVP in 

primate and rodent cerebral cortex, and in cortical neurons in 

vitro has been described. In prefrontal, somatosensory and 

hippocampal cortices, MVP was predominantly expressed in 

pyramidal neurons.  

Axons and particularly principal dendrites expressed MVP 

along individual microtubules, and in pre- and postsynaptic 

structures. Colocalization with microtubule-associated protein-

2, tubulin, tau, and phalloidin has been observed in neurites and 

growth cones in culture. Immunoprecipitation coupled with 

reverse transcription PCR showed that MVP associates with 

mRNAs that are known to be translated in response to synaptic 

activity.  

 

In zebrafish loss of function model MVP is required for brain 

development. 

MVP maps within the genomic region involved in the 

16p11.2 microdeletion/microduplication syndrome, which 

shows comorbidity with ASD, EP, SCZ, ID and ADHD. 

Blaker-Lee et al., 2012 

Bijlsma et al., 2009 

Christian et al., 2008 

Fernandez et al., 2010  
Hanson et al., 2010 

Kumar et al., 2008 

Marshall et al., 2008 

Mochida et al., 1998 
Paspalas et al., 2009 

Pinto et al., 2010 

Rosenfeld et al., 2010  

Shinawi et al., 2010 
Weiss et al., 2008 

     
 

 

 

QPRT(+) 

 
Tryptophan metabolism 

This gene encodes the quinolinate phosphoribosyltransferase, 

which is a key enzyme in catabolism of quinolinate, an 

intermediate in the tryptophan-nicotinamide adenine 

dinucleotide pathway. Quinolinate acts as a most potent 

endogenous exitotoxin to neurons.  

 

Low expression in postnatal CNS, in particular in amygdalae 

and thalamus. 

High expression in dendritic cells, NK-cells and monocytes. 

QPRT converts quinolic acid (QUIN) to nicotinic acid 

ribonucleotide, a precursor in the synthesis of NAD+, and 

carbon dioxide in the presence of Mg2+ and 5-phosphoribosyl- 

1-pyrophosphate. In the brain, QPRT is one 

of the rate-limiting enzymes of NAD+ synthesis from 

Tryptophane, and therefore likely to influence QUIN levels 

in the CNS. Thus, QPRT activity is essential for the 

maintenance of cellular energy metabolism and DNA repair. A 

reduction in QPRT activity can be envisioned to lead to an 

accumulation of QUIN, and likely to induce a cytotoxic 

cascade within astrocytes and neurons. 

 

The zebrafish homolog of human QPRT is not known. 

QPRT maps within the genomic region involved in the 

16p11.2 microdeletion/microduplication syndrome, which 

shows comorbidity with ASD, EP, SCZ, ID and ADHD. 

 

One possible explanation for ASD pathogenesis is the 

modern theory of immunoexcitotoxicity (see the ACMSD 

gene). 

Blaker-Lee et al., 2012 

Bijlsma et al., 2009 

Braidy et al., 2011 
Christian et al., 2008 

Fernandez et al., 2010  

Hanson et al., 2010 

Kumar et al., 2008 
Marshall et al., 2008 

Mochida et al., 1998 

Pinto et al., 2010 

Rosenfeld et al., 2010  
Schwarcz et al., 2012 

Shinawi et al., 2010 

Weiss et al., 2008 
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Tab. 4.1. Continued. 

 

 

PPP4C(+) 

 
Neurodevelopment: 

microtubule cytoskeleton 

dynamics 

This gene encodes the protein phosphatase 4, which is 

involved in many processes such as microtubule organization 

at centrosomes, maturation of spliceosomal snRNPs, 

apoptosis, DNA repair, tumor necrosis factor (TNF)-alpha 

signaling, activation of c-Jun N-terminal kinase MAPK8, 

regulation of histone acetylation, DNA damage checkpoint 

signaling, NF-kappa-B activation and cell migration.  

 

Moderate expression in fetal brain and in postnatal CNS. 

Very high expression in immune cell types. 

It has been recently reported that PPP4R2, a regulatory subunit 

of the protein phosphatase 4 (PPP4C), displays a very dynamic 

intracellular localization in mouse and rat neuronal cell lines 

and in rat primary hippocampal neurons, strongly correlating 

with differentiation. 

Furthermore, in zebrafish loss of function model PPP4C is 

required for brain development. 

PPP4C maps within the genomic region involved in the 

16p11.2 microdeletion/microduplication syndrome, which 

shows comorbidity with ASD, EP, SCZ, ID and ADHD. 

 

NF-κB is an important gene transcriptional factor that 

mediates cellular responses in inflammation, immunity, 

development, cell proliferation and apoptosis. Elevated 

levels of NF-κB have been reported in autistic patients vs. 

controls. 

Blaker-Lee et al., 2012 

Bijlsma et al., 2009 
Bosio et al., 2012 

Christian et al., 2008 

Fernandez et al., 2010  

Hanson et al., 2010 
Kumar et al., 2008 

Marshall et al., 2008 

Mochida et al., 1998 

Naik et al., 2011 
Philippe et al., 2012  

Pinto et al., 2010 

Rosenfeld et al., 2010  

Shinawi et al., 2010 
Weiss et al., 2008 

     

PRRT2(+) 

 
Neurodevelopment 

This gene encodes the proline-rich transmembrane protein 2, 

which contains a proline-rich domain in its N-terminal half. 

Studies in mice suggest that it is predominantly expressed in 

brain and spinal cord in embryonic and postnatal stages.  

 

Good expression in fetal brain and in postnatal CNS. High 

expression in cerebellum. 

Mutations in PRRT2 are associated with paroxysmal kinesigenic 

dyskinesia (PKD), infantile convulsions with choreoathetosis 

(PKD with infantile seizures), and benign familial infantile 

seizures. 

There is a limited amount of research regarding the function of 

PRRT2; however, some indirect evidence suggested its role in 

the pathogenesis of PKD. First, PRRT2 was found to be mainly 

expressed in the basal ganglia, a brain area possibly involved in 

the PKD pathogenesis. Secondly, SNAP25, an interactive 

protein of PRRT2, is also expressed in the brain, especially 

the basal ganglia, participates in the regulation of 

neurotransmitter release and is involved in ADHD onset. 

 

No phenotype has been observed in the zebrafish loss of 

function model for PRRT2 which is not expressed until the 48 

hours of life. 

PRRT2 maps within the genomic region involved in the 

16p11.2 microdeletion/microduplication syndrome, which 

shows comorbidity with ASD, EP, SCZ, ID and ADHD. 

Blaker-Lee et al., 2012 

Bijlsma et al., 2009 
Christian et al., 2008 

Fernandez et al., 2010  

Graham et al., 2002 

Hamano et al.,.1995 
Hanson et al., 2010 

Hayashi et al., 1997 

Iwasaki et al., 2004  

Ko et al., 2001  
Kumar et al., 2008 

Marshall et al., 2008 

Mochida et al., 1998 

Pinto et al., 2010 
Rosenfeld et al., 2010  

Shinawi et al., 2010 

Shirane et al., 2001 

Stelzl et al., 2005  
Volonte et al., 2001 

Wang et al., 2011 

Weiss et al., 2008 

     

SEZ6L2(+) 

 
Neurodevelopment 

This gene encodes the seizure related 6 homolog (mouse)-

like 2 protein, which is localized on the cell surface. 

Increased expression of this gene has been found in lung 

cancers, and the protein is therefore considered to be a novel 

prognostic marker for lung cancer.  

 

Very high expression in fetal brain and in postnatal CNS. 

In situ analyses in whole mouse embryos have demonstrate that 

Sez6l2 mRNA is expressed in the developing brain and spinal 

cord whereas in human fetal brain sections SEZ6L2 is enriched 

in the cortical plate in the post mitotic neuron, in the ventricular 

zone, in the hippocampus, thalamus, ganglionic eminence, 

basal ganglia, and amygdalae and at lower levels in the pons and 

the putamen.  

 

The zebrafish loss of function model for the SEZ6L2 gene 

shows a weak phenotype with defective in brain morphology. 

SEZ6L2 maps in the genomic region involved in the 

16p11.2 microdeletion/microduplication syndrome, which 

shows comorbidity ASD, EP, SCZ, ID and ADHD. 

 

A coding variant in SEZ6L2 has been significantly 

associated with ASD (datum not replicated). 

Blaker-Lee et al., 2012 

Bijlsma et al., 2009 

Christian et al., 2008 

Fernandez et al., 2010  
Hanson et al., 2010 

Konyukh et al., 2011 

Kumar et al., 2008, 2009 

Marshall et al., 2008 
Mochida et al., 1998 

Pinto et al., 2010 

Rosenfeld et al., 2010  

Shinawi et al., 2010 
Weiss et al., 2008 
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Tab. 4.1. Continued. 

SPN(+) 

 
T-cell activation 

This gene encodes the sialophorin protein, which is a major 

sialoglycoprotein found on the surface of thymocytes, T 

lymphocytes, monocytes, granulocytes, and some B 

lymphocytes.  

 

Moderate expression in fetal brain and low expression in 

postnatale CNS, except for amygdalae and hypothalamus 

where expression is moderate. 

High expression in immune cell types. 

SPN is part of a physiologic ligand-receptor complex involved 

in T-cell activation. During T-cell activation, this protein is 

actively removed from the T-cell-APC (antigen-presenting cell) 

contact site, suggesting a negative role in adaptive immune 

response. 

SPN maps within the genomic region involved in the 

16p11.2 microdeletion/microduplication syndrome, which 

shows comorbidity with ASD, EP, SCZ, ID and ADHD. 

Blaker-Lee et al., 2012 

Bijlsma et al., 2009 
Christian et al., 2008 

Fernandez et al., 2010  

Hanson et al., 2010 

Kumar et al., 2008 
Marshall et al., 2008 

Mochida et al., 1998 

Pinto et al., 2010 

Rosenfeld et al., 2010  
Shinawi et al., 2010 

Weiss et al., 2008 

     
 

 

SULT1A3(+) 

 
CNS metabolism 

This gene encodes the sulfotransferase family cytosolic 1A, 

phenol-preferring member 3 protein. 

Sulfotransferase enzymes catalyze the sulfate conjugation of 

many hormones, neurotransmitters, drugs, and xenobiotic 

compounds.  

 

Good expression in fetal brain and moderate expression in 

postnatal CNS. 

High expression in immune cell types. 

SULT1A3 sulfates catecholamine neurotransmitters and its 

expression is highest in cytosol from superior temporal gyrus, 

hippocampus, and temporal lobe.  

SULT1A3 has been found in both neurons and glial cells. 

SULT1A3 maps within the genomic region involved in 

the 16p11.2 microdeletion/microduplication syndrome, 

which shows comorbidity with ASD, EP, SCZ, ID and 

ADHD. 

Bijlsma et al., 2009 
Christian et al., 2008 

Fernandez et al., 2010  

Hanson et al., 2010 

Kumar et al., 2008 
Marshall et al., 2008 

Mochida et al., 1998 

Pinto et al., 2010 

Rosenfeld et al., 2010  
Salman et al., 2009 

Shinawi et al., 2010 

Weiss et al., 2008 

     

TAOK2(+) 

 
Intracellular signaling: 

dendrite morphogenesis 

This gene encodes the TAO kinase 2, which is a 

serine/threonine protein kinase that is involved in many 

different processes, including cell signaling, microtubule 

organization and stability, and apoptosis. 

 

Moderate expression in fetal brain and in postnatal CNS. 

Very recently, it has been demonstrated that TAOK2 is essential 

for dendrite morphogenesis. TAOK2 downregulation impairs 

basal dendrite formation in vivo without affecting apical 

dendrites. Moreover, TAOK2 interacts with Neuropilin 1, a 

receptor protein that binds the secreted guidance cue 

Semaphorin 3A. Finally, Sema3A and TAOK2 modulate the 

formation of basal dendrites through the activation of the c-Jun 

N-terminal kinase (JNK).  

 

In zebrafish loss of function model TAOK2 is required for brain 

development. 

TAOK2 maps within the genomic region involved in the 

16p11.2 microdeletion/microduplication syndrome, which 

shows comorbidity with ASD, EP, SCZ, ID and ADHD. 

Blaker-Lee et al., 2012 

Bijlsma et al., 2009 

Christian et al., 2008 

de Anda et al., 2012 
Fernandez et al., 2010  

Hanson et al., 2010 

Kumar et al., 2008 

Marshall et al., 2008 
Mochida et al., 1998 

Pinto et al., 2010 

Rosenfeld et al., 2010  

Shinawi et al., 2010 
Weiss et al., 2008 

     

YPEL3(+) 

 
Neurodevelopment 

This gene encoder the yippee-like 3 protein. 

 

Good expression in fetal brain and in postnatal CNS. 

YPEL3, a member of a recently discovered family of putative 

zinc finger motif coding genes consisting of YPEL1-5, is a p53-

regulated gene. YPEL3 expression induced by DNA damage 

leads to p53 recruitment to a cis-acting DNA response element 

located near the human YPEL3 promoter. Physiologic induction 

of YPEL3 results in a substantial decrease in cell viability 

associated with an increase in cellular senescence. 

 

In zebrafish loss of function model YPEL3 is required for brain 

development. 

YPEL3 maps within the genomic region involved in the 

16p11.2 microdeletion/microduplication syndrome, which 

shows comorbidity with ASD, EP, SCZ, ID and ADHD. 

Blaker-Lee et al., 2012 
Bijlsma et al., 2009 

Christian et al., 2008 

Fernandez et al., 2010  

Hanson et al., 2010 
Kelley et al., 2010 

Kumar et al., 2008 

Marshall et al., 2008 

Mochida et al., 1998 
Pinto et al., 2010 

Rosenfeld et al., 2010  

Shinawi et al., 2010 

Weiss et al., 2008 

     

 



98 

 

Tab. 4.1. Continued. 

 Patient 27, gain of 2.6 Mb at 22q11.21 (chr22:18894835-21505417)  

 Patient 32, loss of 120 kb at 22q11.21 (chr22:18890271-19010508) 

AIFM3(+) 

de novo 

 
Neurodevelopment 

This nuclear gene encodes the apoptosis-inducing factor, 

mitochondrion-associated 3 protein. 

 

Moderate expression in fetal brain and in postnatal CNS. 

Apoptosis-inducing factor (AIF) is implicated in caspase-

independent apoptotic-like death. AIF released from 

mitochondria translocates to the nucleus, where it mediates 

some apoptotic events such as chromatin condensation and 

DNA degradation.  

During cerebellar development, a significant increase in the 

number of neurons with nuclear AIF localization has been 

reported in an age-dependent manner, suggesting the idea that 

AIF could be involved in apoptotic-like death of cerebellar 

granule neurons and that it could be an alternative mechanism of 

neuronal death during cerebellar development. 

AIFM3 maps within the genomic region involved in the 

22q11 microdeletion/microduplication syndrome, which 

shows comorbidity with ASD, SCZ, ADHD and mood 

disorder. 

Antshel et al., 2007 

Blancas and Moran, 2011 
Bucan et al., 2009 

Fine et al., 2005 

Lo-Castro et al., 2009 

Marshall et al., 2008 
Mukkades and Herguner, 2007 

Niklasson et al., 2009 

Pinto et al., 2010 

Ramelli et al., 2008 
Szatmari et al., 2007  

Vorstman et al., 2006 

     

ARVCF(+) 

de novo 

 
Neurodevelopment 

This gene encodes the armadillo repeat gene deleted in 

velocardiofacial syndrome, which is a member of the catenin 

family. This family plays an important role in the formation 

of adherens junction complexes, which are thought to 

facilitate communication between the inside and outside 

environments of a cell. ARVCF belongs to the beta-catenin 

family. 

 

Good expression in fetal brain and in postnatal CNS. 

It has been demonstrated by haplotype analyses performed on a 

22q11.2 region including the TXNRD2, COMT and ARVCF 

genes, that a particular set of SNPs are over-transmitted in 

individuals with SCZ, a disorder characterized by specific 

cognitive impairments. 

Furthermore, the developmental impact of over-expression of an 

~190 kb segment of human 22q11.2, which includes TXNRD2, 

COMT and ARVCF, on behaviors in bacterial artificial 

chromosome transgenic mice vs. wild-type mice has been 

determined. The collected data suggest that over-expression of 

this 22q11.2 segment enhances incentive learning and impairs 

the prolonged maintenance of working memory, but has no 

apparent effect on working memory per se, affect- and 

stress-related behaviors or motor capacity. 

ARVCF maps within the genomic region involved in the 

22q11 microdeletion/microduplication syndrome, which 

shows comorbidity with ASD, SCZ, ADHD and mood 

disorder. 

 

Deregulation of Wnt/β-catenin signaling pathway has 

been implicated in the pathogenesis of ASD as well as of 

other neuropsychiatric disorders. 

Antshel et al., 2007 
Bucan et al., 2009 

Chung et al., 2011 

De Ferrari and Moon, 2006 

Fine et al., 2005 
Liu and Murray, 2012 

Lo-Castro et al., 2009 

Marshall et al., 2008 

Mas et al., 2009 
Mukkades and Herguner, 2007 

Niklasson et al., 2009 

Okerlund and Cheyette, 2011 

Pinto et al., 2010 
Ramelli et al., 2008 

Sanders et al., 2005 

Sim et al., 2012 

Suzuki et al., 2009 
Szatmari et al., 2007  

Vorstman et al., 2006 

Wang et al., 2010  

Zhang et al., 2012 

     

CDC45(+) 

de novo 

 
DNA replication 

This gene encodes the cell division cycle 45 homolog (S. 

cerevisiae), which is an essential protein required to the 

initiation of DNA replication. Cdc45 is a member of the 

highly conserved multiprotein complex including 

Cdc6/Cdc18, the minichromosome maintenance proteins 

(MCMs) and DNA polymerase, which is important for early 

steps of DNA replication in eukaryotes.  

 

Expressed during neurogenesis. 

It has been demonstrated that diminished dosage of the genes 

deleted in the 1.5 Mb 22q11 minimal critical deleted region, 

including CDC45, in a mouse model of 22q11 DiGeorge 

syndrome specifically compromises neurogenesis and 

subsequent differentiation in the cerebral cortex. In particular, 

CDC45 is expressed in the cortical ventricular and 

subventricular zones with highest level of expression during 

neurogenesis. 

CDC45 maps within the genomic region involved in the 

22q11 microdeletion/microduplication syndrome, which 

shows comorbidity with ASD, SCZ, ADHD and mood 

disorder. 

Antshel et al., 2007 

Bucan et al., 2009 

Fine et al., 2005 

Lo-Castro et al., 2009 
Marshall et al., 2008 

Meechan et al., 2009 

Mukkades and Herguner, 2007 

Niklasson et al., 2009 
Pinto et al., 2010 

Ramelli et al., 2008 

Szatmari et al., 2007  

Vorstman et al., 2006 
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Tab. 4.1. Continued. 

 

CLDN5(+) 

de novo 

 
CNS 

immunosurveillance: 

brain blood barrier 

permeability 

This gene encodes the claudin 5 protein. Claudins are 

integral membrane proteins and components of tight junction 

strands. Tight junction strands serve as a physical barrier to 

prevent solutes and water from passing freely through the 

paracellular space between epithelial or endothelial cell 

sheets. 

 

Moderate expression in fetal brain and good expression in 

postnatal CNS. 

Claudin-5 is a key tight junction protein whose expression in the 

brain endothelial cells is critical to the function of brain blood 

barrier. In mouse model it has been recently demonstrated a 

regulation of CLDN5 expression by Tnf-.  

 

Diminished levels of CLDN5 with tight junction structure 

alterations have been found in nueroinflammatory disease 

model. 

 

Mutations in this gene have been found in patients with 

velocardiofacial syndrome. 

CLDN5 maps within the genomic region involved in the 

22q11 microdeletion/microduplication syndrome, which 

shows comorbidity with ASD, SCZ, ADHD and mood 

disorder. 

 

A SNP in CLDN5 has been associated with SCZ. 

Antshel et al., 2007 

Aslam et al., 2012 
Bucan et al., 2009 

Fine et al., 2005 

Ishiguro et al., 2008 

Lo-Castro et al., 2009 
Marshall et al., 2008 

Mukkades and Herguner, 2007 

Niklasson et al., 2009 

Pinto et al., 2010 
Ramelli et al., 2008 

Sun et al., 2004 

Szatmari et al., 2007  

Vorstman et al., 2006 
Wu et al., 2010 

CLTCL1(+) 

de novo 

 
Intracellular trafficking 

This gene encodes the clathrin, heavy chain-like 1 protein, 

which is a member of the clathrin heavy chain family and 

encodes a major protein of the polyhedral coat of coated pits 

and vesicles.  

 

Moderate expression in fetal brain and in postnatal CNS. 

Good expression in amygdalae and thalamus. 

CLTCL1 encodes a member of the clathrin heavy chain 

family, which is involved in intracellular trafficking, that are 

important to glutamate receptor turnover. 

 

Chromosomal aberrations involving this gene are associated 

with meningioma, DiGeorge syndrome (DGS), and velo-cardio-

facial syndrome (VCFS). In particular, a patient with features of 

DGS/VCFS, who carry a balanced (21;22)(p12;q11) 

translocation that interrupts only the CLTCL1 gene, has been 

reported. 

CLTCL1 maps within the genomic region involved in the 

22q11 microdeletion/microduplication syndrome, which 

shows comorbidity with ASD, SCZ, ADHD and mood 

disorder. 

 

Recently, whole-exome sequencing of 16 autistic 

probands revealed validated homozygous, potentially 

pathogenic recessive mutations affecting candidate genes 

such as UBE3B, CLTCL1, NCKAP5L, and ZNF18, that 

segregated perfectly with the disease in 4/16 families. 

Moreover, it has been demonstrated that the mouse 

homologs of these four genes are upregulated in response 

to neuronal activity. 

Antshel et al., 2007 

Bucan et al., 2009 

Chahrour et al., 2012 
Fine et al., 2005 

Holmes et al., 1997 

Lo-Castro et al., 2009 

Marshall et al., 2008 
Mukkades and Herguner, 2007 

Niklasson et al., 2009 

Pinto et al., 2010 

Ramelli et al., 2008 
Szatmari et al., 2007  

Vorstman et al., 2006 

     

COMT(+) 

de novo 

 
Catecholamine 

metabolism 

This gene encodes the catechol-O-methyltransferase protein, 

which catalyzes the transfer of a methyl group from S-

adenosylmethionine to catecholamines, including the 

neurotransmitters dopamine, epinephrine, and 

norepinephrine. This O-methylation results in one of the 

major degradative pathways of the catecholamine 

transmitters. 

 

Low expression in fetal brain and moderate expression in 

postnatal whole brain, in particular in caudate nucleus, 

corpus callosum, thalamus, and hypothalamus. 

The methylation of dopamine by COMT is an important 

mechanism for dopamine inactivation and dopaminergic tone in 

the CNS. Although COMT is expressed widely throughout the 

brain, it appears to play a particularly important role in 

dopamine flux in the prefrontal cortex. In the cortex, the 

dopamine transporter, which has a 1,000-fold higher affinity for 

dopamine than does COMT, is expressed at very low levels and 

does not appear to affect extracellular dopamine levels. Thus, 

inactivation of dopamine in the prefrontal cortex appears to rely 

preferentially on catabolic enzymes, including COMT. 

 

Different polymorphisms of COMT have been associated over 

the years with many neuropsychiatric disorders such as BD, 

anorexia nervosa, obsessive-compulsive disorders, and 

aggressive behaviour in SCZ. 

COMT maps within the genomic region involved in the 

22q11 microdeletion/microduplication syndrome, which 

shows comorbidity with ASD, SCZ, ADHD and mood 

disorder. 

 

A SNP affecting COMT has been associated with ASD 

and probably correlates with a more aggressive 

phenotype. 

Antshel et al., 2007 

Bucan et al., 2009 
Chen et al., 2004 

Fine et al., 2005 

Frisch et al., 2001 

Garris et al., 1993 
James et al., 2006 

Jones et al., 2001 

Li et al., 1997 

Lo-Castro et al., 2009 
Marshall et al., 2008 

Mukkades and Herguner, 2007 

Nieoullon, 2002 

Niklasson et al., 2009 
Pinto et al., 2010 

Ramelli et al., 2008 

Schindler et al., 2000 

Suzuki et al., 2009 
Szatmari et al., 2007  

Tunbridge et al., 2006 

Vorstman et al., 2006 
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Tab. 4.1. Continued. 

CRKL(+) 

de novo 

 
Intracellular signaling 

This gene encodes the v-crk sarcoma virus CT10 oncogene 

homolog (avian)-like, which is a protein kinase containing 

SH2 and SH3 domains that activates the RAS and JUN 

kinase signaling pathways and transforms fibroblasts in a 

RAS-dependent fashion. It is a substrate of the BCR-ABL 

tyrosine kinase, plays a role in fibroblast transformation by 

BCR-ABL, and may be oncogenic. 

 

Moderate expression in fetal brain and in postnatal 

cerebellum and thalamus. 

The Crk and Crk-like (CrkL) adaptor proteins play important 

roles in numerous signaling pathways, bridging tyrosine kinase 

substrates to downstream signaling effectors by virtue of their 

phosphotyrosine-binding SH2 domains and their effector-

binding SH3 domains.  

Crk and CrkL are known biochemically and genetically to be 

essential mediators of Reelin/Disabled-1 (Dab1) signaling, 

which governs proper mammalian brain development. 

Multimeric Reelin clusters its receptors as well as the receptor-

bound intracellular scaffolding protein Dab1.  

Recently, 101 CrkL-SH3 binding proteins have been identified 

from embryonic murine brain. The identified proteins are 

enriched in the Crk/CrkL-SH3 binding motif and signaling 

activities regulating cell adhesion and motility.  

 

An atypical 0.8 Mb inherited duplication of 22q11.2, which 

encompasses 14 genes including CRKL, ZNF74, PIK4CA, 

SNAP29 and PCQAP known to contribute to several aspects of 

the DGS/VCFS phenotype, has been recently described in a 

patient with psychomotor impairment, suggesting a role for 

these genes in neurodevelopment. 

CRKL maps within the genomic region involved in the 

22q11 microdeletion/microduplication syndrome, which 

shows comorbidity with ASD, SCZ, ADHD and mood 

disorder. 

Antshel et al., 2007 
Bucan et al., 2009 

Cheerathodi and Ballif, 2011 

Fine et al., 2005 

Holmes et al., 1997 
Lo-Castro et al., 2009 

Marshall et al., 2008 

Mukkades and Herguner, 2007 

Niklasson et al., 2009 
Pebrel-Richard et al., 2012 

Pinto et al., 2010 

Ramelli et al., 2008 

Szatmari et al., 2007  
Vorstman et al., 2006 

     

DGCR2(+) 

de novo 

 
Neurodevelopment 

This gene encodes the DiGeorge syndrome critical region 

gene 2 protein, which is a novel putative adhesion receptor 

protein that could play a role in neural crest cell 

differentiation and migration. 

 

Moderate expression in fetal brain and in postnatal CNS. 

DGCR2 could be involved in cell-cell or cell-matrix interactions 

required for normal cell differentiation and migration. 

DGCR2 maps within the genomic region involved in the 

22q11 microdeletion/microduplication syndrome, which 

shows comorbidity with ASD, SCZ, ADHD and mood 

disorder. 

 

The association between DGCR2 and SCZ has been 

demonstrated through individual genotyping of 1,400 

subjects. In a subsequnt gene expression analysis the risk 

allele of a coding SNP associated with SCZ was found to 

be associated with a reduced expression of DGCR2. 

This datum was not later replicated in a German sample. 

 

A de novo potentially disruptive mutation in DGCR2 has 

been recently detected by exome sequencing analysis in a 

cohort of SCZ patient. 

Antshel et al., 2007 

Bucan et al., 2009 
Fine et al., 2005 

Georgi et al., 2009 

Ishiguro et al., 2008 

Liu et al., 2007 
Lo-Castro et al., 2009 

Marshall et al., 2008 

Mukkades and Herguner, 2007 

Niklasson et al., 2009 
Pinto et al., 2010 

Ramelli et al., 2008 

Szatmari et al., 2007  

Vorstman et al., 2006 
Xu et al., 2011 
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Tab. 4.1. Continued. 

DGCR6(-)*de novo 

DGCR6(-) 

 
Synaptogenesis and 

synaptic plasticity 

This gene encodes the DiGeorge syndrome critical region 

protein 6, which shares homology with the Drosophila 

melanogaster gonadal protein that participates in gonadal and 

germ cell development, and with the gamma-1 subunit of 

human laminin. This gene is a candidate for involvement in 

DiGeorge syndrome pathology and in SCZ. 

DGCR6 may play a role in neural crest cell migration into 

the third and fourth pharyngeal pouches. 

 

Low expression in fetal brain and high expression in 

postnatal CNS.  

Recently, it has been demonstrated a role for DGCR6 in 

GABAB-receptor localization, which mediate slow inhibitory 

effects of the neurotransmitter gamma-aminobutyric acid 

(GABA) on synaptic transmission in the CNS.  

DGCR6 maps within the genomic region involved in the 

22q11 microdeletion/microduplication syndrome, which 

shows comorbidity with ASD, SCZ, ADHD and mood 

disorder. 

 

CNVs (loss) exclusively affecting PRODH and DGCR6 

and parentally inherited have been significantly 

associated with ASD.  

 

A significant relationship between the increased 

frequency of anxiety disorders and low DGCR6 and 

DGCR6L expression has been recently reported in 

children with 22q11 DiGeorge syndrome. 

Antshel et al., 2007 
Bucan et al., 2009 

Das Chakraborty et al., 2012 

Fine et al., 2005 

Guilmatre et al., 2009 
Lo-Castro et al., 2009 

Marshall et al., 2008 

Meechan et al., 2009 

Mukkades and Herguner, 2007 
Niklasson et al., 2009 

Pinto et al., 2010 

Ramelli et al., 2008 

Szatmari et al., 2007  
Vorstman et al., 2006 

Zunner et al., 2010 

     

DGCR6L(+) 

de novo 

 
Synaptogenesis and 

synaptic plasticity? 

This gene encodes the DiGeorge syndrome critical region 

gene 6-like protein. 

This gene, the result of a duplication at this locus, is one of 

two functional genes encoding nearly identical proteins that 

have similar expression patterns. The product of this gene is 

a protein that shares homology with the Drosophila gonadal 

protein, expressed in gonadal tissues and germ cells, and with 

the human laminin gamma-1 chain that functions in cell 

attachment and migration. 

DGCR6L may play a role in neural crest cell migration into 

the third and fourth pharyngeal pouches. 

 

Low expression in fetal brain and high expression in 

postnatal CNS, except for corpus callosum and spinal cord 

where the expression is low. 

 

DGCR6L maps within the genomic region involved in the 

22q11 microdeletion/microduplication syndrome, which 

shows comorbidity with ASD, SCZ, ADHD and mood 

disorder. 

 

A significant relationship between the increased 

frequency of anxiety disorders and low DGCR6 and 

DGCR6L expression has been recently reported in 

children with 22q11 DiGeorge syndrome. 

Antshel et al., 2007 
Bucan et al., 2009 

Das Chakraborty et al., 2012 

Fine et al., 2005 

Lo-Castro et al., 2009 
Marshall et al., 2008 

Mukkades and Herguner, 2007 

Niklasson et al., 2009 

Pinto et al., 2010 
Ramelli et al., 2008 

Szatmari et al., 2007  

Vorstman et al., 2006 
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Tab. 4.1. Continued. 

DGCR8(+) 

de novo 

 
MicroRNA biogenesis 

This gene encodes the DiGeorge syndrome critical region 

gene 8 protein, which is a subunit of the microprocessor 

complex which mediates the biogenesis of microRNAs from 

the primary microRNA transcript. This protein is required for 

binding the double-stranded RNA substrate and facilitates 

cleavage of the RNA by the ribonuclease III protein, Drosha. 

 

Good expression in fetal brain and moderate expression in 

postnatal CNS. 

Good expression in immune cell types. 

It has been reported that Dgcr8+/- mice display reduced 

expression of a subset of microRNAs in the prefrontal cortex, a 

deficit that emerges over postnatal development. Layer V 

pyramidal neurons in the medial prefrontal cortex of Dgcr8+/- 

mice have altered electrical properties, decreased complexity of 

basal dendrites, and reduced excitatory synaptic transmission. 

These findings demonstrate that precise microRNA expression 

is critical for the postnatal development of prefrontal cortical 

circuitry. Similar defects in neuronal maturation resulting from 

microRNA deficiency could represent endophenotypes of 

certain neuropsychiatric diseases of developmental onset. 

 

Furthermore, mouse model of 22q11DS displays an age-

dependent increase in hippocampal long-term potentiation 

(LTP), a form of synaptic plasticity underlying learning and 

memory. The sarco(endo)plasmic reticulum Ca(2+) ATPase 

(SERCA2), which is responsible for loading Ca(2+) into the 

endoplasmic reticulum (ER), is elevated in this mouse model. 

Screening of multiple mutant mouse lines revealed that 

haploinsufficiency of Dgcr8 causes age-dependent, synaptic 

SERCA2 overexpression and increased LTP. Finally, SERCA2 

is elevated in the brains of patients with SCZ, providing a link 

between mouse model findings and the human disease.  

DGCR8 maps within the genomic region involved in the 

22q11 microdeletion/microduplication syndrome, which 

shows comorbidity with ASD, SCZ, ADHD and mood 

disorder. 

Antshel et al., 2007 
Bucan et al., 2009 

Earls et al., 2012 

Fine et al., 2005  

Lo-Castro et al., 2009 
Marshall et al., 2008 

Mukkades and Herguner, 2007 

Niklasson et al., 2009 

Pinto et al., 2010 
Ramelli et al., 2008 

Schofield et al., 2011 

Szatmari et al., 2007  

Vorstman et al., 2006 

     

DGCR14(+) 

de novo 
 

Transcript maturation 

This gene encodes the DiGeorge syndrome critical region 

gene 14 (DGCR14) protein, which may be a component of C 

complex spliceosomes. The orthologous protein in the mouse 

localizes to the nucleus. 

 

Moderate expression in fetal brain and in postnatal CNS, in 

particular in cortex, caudate nucleus and cerebellum. 

DGCR14 is possibly involved pre-mRNA splicing. 

 

It has been demonstrated that the Df(16)A+/− mice which carry 

a microdeletion including the Gscl and Dgcr14 genes, both 

located within the DiGeroge critical region, showed reduced 

synchrony of hippocampal theta with the neuronal activity of 

the prefrontal cortex. Moreover, it has been recently reported 

that loss of Gscl and Dgcr14 affects the regulation of 

hippocampal theta and REM sleep, possibly contributing to the 

psychiatric symptoms frequently seen in patients who have 

22q11 syndrome. 

DGCR14 maps within the genomic region involved in the 

22q11 microdeletion/microduplication syndrome, which 

shows comorbidity with ASD, SCZ, ADHD and mood 

disorder. 

 

Evidence of association between promoter 

polymorphisms in 22q11 gene DGCR14 and SCZ have 

been detected by transmission disequilibrium test. 

Antshel et al., 2007 

Bucan et al., 2009 

Fine et al., 2005  
Funato et al., 2010 

Lo-Castro et al., 2009 

Marshall et al., 2008 

Mukkades and Herguner, 2007 
Niklasson et al., 2009 

Pinto et al., 2010 

Ramelli et al., 2008 

Sigurdsson et al., 2010 
Szatmari et al., 2007  

Vorstman et al., 2006 

Wang et al., 2006 
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Tab. 4.1. Continued. 

GNB1L(+) 

de novo 
 

Intracellular signaling 

This gene encodes the guanine nucleotide binding protein (G 

protein), beta polypeptide 1-like, which is a member of the 

WD repeat protein family. WD repeats are minimally 

conserved regions of approximately 40 amino acids typically 

bracketed by gly-his and trp-asp (GH-WD), which may 

facilitate formation of heterotrimeric or multiprotein 

complexes. Members of this family are involved in a variety 

of cellular processes, including cell cycle progression, signal 

transduction, apoptosis, and gene regulation.  

 

Detected at high levels in fetal brain and at low levels in 

postnatal CNS. 

GNB1L shows homology to the human guanine nucleotide–

binding protein b subunit (GNB1). GNB1 functions in G-

protein–coupled receptor protein signaling pathways and 

intracellular signaling cascade. 

 

Recently, significant evidence for association between 

SCZ and GNB1L have been reported in a case–control 

association study. This observation, combined with the findings 

of reduced expression of GNB1L in postmortem brains of 

schizophrenics and the effect of heterozygous deletion of Gnbl1 

on prepulse inhibition, a SCZ endophenotype, in a mouse 

model, suggest that GNB1L is associated with SCZ phenotype 

observed in del22q11.2. 

GNB1L maps within the genomic region involved in the 

22q11 microdeletion/microduplication syndrome, which 

shows comorbidity with ASD, SCZ, ADHD and mood 

disorder. 

 

A patient with ASD and SCZ, who carry a balanced 

translocation involving the 22q11.2 region and 

interrupting GNB1L, has been recently reported. 

Furthermore, private GNB1L missense variants in 

conserved residues, that affect residues in the WD40 

repeat domains and are predicted to have deleterious 

effects on the protein, have been identified in three 

autistic families, thus supporting involvement of GNB1L 

in autism spectrum disorders as well. 

Antshel et al., 2007 
Bucan et al., 2009 

Chen et al., 2012 

Fine et al., 2005 

Ishiguro et al., 2010  
Lo-Castro et al., 2009 

Marshall et al., 2008 

Meechan et al., 2009 

Mukkades and Herguner, 2007 
Niklasson et al., 2009 

Paylor et al., 2006 

Pinto et al., 2010 

Ramelli et al., 2008 
Szatmari et al., 2007  

Vorstman et al., 2006 

Williams et al., 2008  

     
 

 

 

GP1BB(+) 

de novo 

 
Neurodevelopment 

This gene encodes the glycoprotein Ib (platelet), beta 

polypeptide, which is a heterodimeric transmembrane protein 

consisting of a disulfide-linked 140 kD alpha chain and 22 

kD beta chain. It is part of the GPIb-V-IX system that 

constitutes the receptor for von Willebrand factor (VWF), 

and mediates platelet adhesion in the arterial circulation. 

GPIb alpha chain provides the VWF binding site, and GPIb 

beta contributes to surface expression of the receptor and 

participates in transmembrane signaling through 

phosphorylation of its intracellular domain.  

 

Very high expression in fetal brain and in postnatal CNS. 

Very high expression in whole blood, dendritic cells and 

monocytes. 

Mutations in the GPIBB gene have been associated with 

Bernard-Soulier syndrome (BSS), velocardiofacial syndrome 

and giant platelet disorder. 

In particular, it has been recently reported on a four-year-old 

boy with a homozygous deletion comprising the GP1BB and 

SEPT5 genes, located 5' to GP1BB. He presented with BSS, 

cortical dysplasia (polymicrogyria), developmental delay, and 

platelet secretion defect, thus supporting the possible effect of 

defect of these two genes in neurodevelopment. 

GP1BB maps within the genomic region involved in the 

22q11 microdeletion/microduplication syndrome, which 

shows comorbidity with ASD, SCZ, ADHD and mood 

disorder. 

 

Both GP1BB and SEPT5 have been previously suggested 

as autism candidate genes by molecular cytogenetic 

analysis and in silico studies. 

Antshel et al., 2007 

Bartsch et al., 2011 

Bucan et al., 2009 
Fine et al., 2005  

Iurov et al., 2010 

Lo-Castro et al., 2009 

Marshall et al., 2008 
Mukkades and Herguner, 2007 

Niklasson et al., 2009 

Pinto et al., 2010 

Ramelli et al., 2008 
Szatmari et al., 2007  

Vorstman et al., 2006 

     

GSC2(GSCL)(+) 

de novo 

 
Transcriptional 

regulation 

This gene encodes the goosecoid homeobox 2 protein. 

Goosecoidlike (GSCL), a homeodomain-containing gene, 

resides in the critical region for VCFS/DGS on 22q11 and 

the encoded protein has a possible role in embryonic 

development as transcriptional regulator. 

 

Expressed in a limited number of adult tissues, including 

cerebral temporal and parietal lobes, as well as in early 

human development. 

It has been demonstrated that the Df(16)A+/− mice which carry 

a microdeletion including the Gscl and Dgcr14 genes, both 

located within the DiGeroge critical region, showed reduced 

synchrony of hippocampal theta with the neuronal activity of 

the prefrontal cortex. Moreover, it has been recently reported 

that loss of Gscl and Dgcr14 affects the regulation of 

hippocampal theta and REM sleep, possibly contributing to the 

psychiatric symptoms frequently seen in patients who have 

22q11 syndrome. 

GSCL maps within the genomic region involved in the 

22q11 microdeletion/microduplication syndrome, which 

shows comorbidity with ASD, SCZ, ADHD and mood 

disorder. 

Antshel et al., 2007 
Bucan et al., 2009 

Fine et al., 2005  

Funato et al., 2010 

Lo-Castro et al., 2009 
Marshall et al., 2008 

Mukkades and Herguner, 2007 

Niklasson et al., 2009 

Pinto et al., 2010 
Ramelli et al., 2008 

Szatmari et al., 2007  

Vorstman et al., 2006 
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Tab. 4.1. Continued. 

 

 

 

HIRA(+) 

de novo 
 

Embryonic development 

This gene encodes the HIR histone cell cycle regulation 

defective homolog A (S. cerevisiae), which is a histone 

chaperone that preferentially places the variant histone H3.3 

in nucleosomes. Orthologs of this gene in yeast, flies, and 

plants are necessary for the formation of transcriptionally 

silent heterochomatin. This gene plays an important role in 

the formation of the senescence-associated heterochromatin 

foci. These foci likely mediate the irreversible cell cycle 

changes that occur in senescent cells. It is considered the 

primary candidate gene in some haploinsufficiency 

syndromes such as DiGeorge syndrome, and insufficient 

production of the gene may disrupt normal embryonic 

development. 

 

Good expression in fetal brain and in postnatal caudate 

nucleus, amygdalae, and thalamus. 

High expression in immune cell types.  

HIR/HIRA, one of the histone chaperones, was initially 

identified in yeast as negative regulators of histone gene 

expression. It has been confirmed that HIRA contains a 

conserved family of proteins found in various species including 

low eukaryotes, invertebrates and vertebrates. It is essential for 

proper development. Mutations of Hir/Hira genes result in very 

serious defects in normal development not only in yeast but also 

in advanced eukaryotes.  

HIRA maps within the genomic region involved in the 

22q11 microdeletion/microduplication syndrome, which 

shows comorbidity with ASD, SCZ, ADHD and mood 

disorder. 

Antshel et al., 2007 

Bucan et al., 2009 

Fine et al., 2005  

Lo-Castro et al., 2009 
Marshall et al., 2008 

Mukkades and Herguner, 2007 

Niklasson et al., 2009 

Pinto et al., 2010 
Ramelli et al., 2008 

Szatmari et al., 2007  

Vorstman et al., 2006 

Wang and Du, 2005 

     

KLHL22(+) 

de novo 

 
Intracellular signaling: 

protein ubiquitination 

pathway  

This gene encodes the kelch-like 22 (Drosophila) protein 

which is a substrate-specific adapter of a BCR (BTB-CUL3-

RBX1) E3 ubiquitin ligase complex required for cell 

division.  

 

Good expression in fetal brain and in postnatal CNS, in 

particular in prefrontal cortex, cerebellum, amygdalae and 

hypothalamus.  

The ubiquitin-proteasome system plays crucial roles in various 

aspects of neuronal development, such as axon formation, 

elongation and pruning, and synapse formation and 

elimination.  

The Cullin3 (Cul3)-based ubiquitin E3 ligases use BTB 

domain–containing proteins as substrate adaptors and, recently, 

KLHL20, a protein possessing a BTB domain and six kelch 

repeats, has been identified as such an adaptor. KLHL20 mRNA 

is abundantly expressed in the brain of an embryonic day 14.5 

(E14.5) mouse embryo, implying its role in neural development. 

In the adult mouse brain KLHL20 mRNA is highly expressed in 

the hippocampus, especially in the dentate gyrus, where a 

lifelong neurogenesis occurs. 

 

By analogy, it is possible that also KLHL22 may be involved in 

neurodevelopment.  

KLHL22 maps within the genomic region involved in the 

22q11 microdeletion/microduplication syndrome, which 

shows comorbidity with ASD, SCZ, ADHD and mood 

disorder. 

 

The protein ubiquitination pathway has been previously 

implicated in ASD. 

Antshel et al., 2007 

Bucan et al., 2009 

Fine et al., 2005  
Lee et al., 2010 

Lin et al., 2011 

Lo-Castro et al., 2009 

Marshall et al., 2008 
Mukkades and Herguner, 2007 

Niklasson et al., 2009 

Pinto et al., 2010 

Ramelli et al., 2008 
Segref and Hoppe, 2009  

Szatmari et al., 2007  

Tai and Schuman, 2008 

Vorstman et al., 2006 
Yi and Ehlers, 2007 

     

LZTR1(+) 

de novo 

 
Neurodevelopment: 

Golgi complex 

stabilizator 

This gene encodes the leucine-zipper-like transcription 

regulator 1 protein, which is a member of the BTB-kelch 

superfamily. Initially described as a putative transcriptional 

regulator based on weak homology to members of the basic 

leucine zipper-like family, the encoded protein subsequently 

has been shown to localize exclusively to the Golgi network 

where it may help stabilize the Golgi complex.  

 

Good expression in fetal brain and in postnatal CNS. In 

particular, high expression in the cortex. 

It is a probable transcriptional regulator that may play a crucial 

role in embryogenesis. 

 

LZTR1 maps within the genomic region involved in the 

22q11 microdeletion/microduplication syndrome, which 

shows comorbidity with ASD, SCZ, ADHD and mood 

disorder. 

Antshel et al., 2007 

Bucan et al., 2009 
Fine et al., 2005  

Lo-Castro et al., 2009 

Marshall et al., 2008 

Mukkades and Herguner, 2007 
Niklasson et al., 2009 

Pinto et al., 2010 

Ramelli et al., 2008 

Szatmari et al., 2007  
Vorstman et al., 2006 
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Tab. 4.1. Continued. 

 

 

 

MED15(+) 

de novo 

 
Transcriptional 

regulation 

This gene encodes the mediator complex subunit 15, which is 

a subunit of the multiprotein complexes PC2 and ARC/DRIP 

and may function as a transcriptional coactivator in RNA 

polymerase II transcription.  

 

Moderate expression in fetal brain and in postnatal CNS.  

Good expression in immune cell types. 

Mediator is recruited to promoters by direct interactions with 

regulatory proteins and serves as a scaffold for the assembly of 

a functional preinitiation complex with RNA polymerase II and 

the general transcription factors.  

 

A possible involvement of the multiprotein complex MED15 in 

SCZ susceptibility was supported by the detection of an 

association in patients with SCZ vs. controls for an intragenic 

coding trinucleotide polymorphism. This datum was not later 

replicated. 

Recently, it has been reported that the mediator complex is used 

as a host RNA polymerase coactivator by herpes simplex, which 

diverts the polymerase activity toward viral RNA synthesis, thus 

suggesting a role of this protein in supporting cerebral infections 

which might be implicated in the onset of neurodevelopmental 

disorder. 

MED15 maps within the genomic region involved in the 

22q11 microdeletion/microduplication syndrome, which 

shows comorbidity with ASD, SCZ, ADHD and mood 

disorder. 

 

SNPs in MED12 have been associated with ASD. 

Antshel et al., 2007 

Beyer et al., 2012 

Bucan et al., 2009 

Carter, 2009 
De Luca et al., 2003 

Fine et al., 2005  

Lo-Castro et al., 2009 

Marshall et al., 2008 
Mukkades and Herguner, 2007 

Niklasson et al., 2009 

Pinto et al., 2010 

Ramelli et al., 2008 
Sandhu et al., 2004 

Szatmari et al., 2007  

Vorstman et al., 2006 

     

MRPL40(+) 

de novo 

 
Neurodevelopment and 

maintainance: 

mitochondrial protein 

synthesis 

This nuclear gene encodes the mitochondrial ribosomal 

protein L40. Mammalian mitochondrial ribosomal proteins 

are encoded by nuclear genes and help in protein synthesis 

within the mitochondrion. Mitochondrial ribosomes 

(mitoribosomes) consist of a small 28S subunit and a large 

39S subunit.  

 

Moderate expression in fetal brain and in postnatal CNS. 

MRPL40 appears more selectively, but not exclusively, 

associated with projecton neurons in the bulb, cortex and 

cerebellum. Expression was also detected in adult brain and 

enriched in brain synapses. 

MRPL40 facilitates expression from the mitochondrial genes. 

MRPL40 maps within the genomic region involved in the 

22q11 microdeletion/microduplication syndrome, which 

shows comorbidity with ASD, SCZ, ADHD and mood 

disorder. 

Accardi et al., 2004 
Antshel et al., 2007 

Bucan et al., 2009 

Fine et al., 2005  

Lo-Castro et al., 2009 
Marshall et al., 2008 

Maynard et al., 2008 

Mukkades and Herguner, 2007 

Niklasson et al., 2009 
Pinto et al., 2010 

Ramelli et al., 2008 

Szatmari et al., 2007  

Vorstman et al., 2006 
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Tab. 4.1. Continued. 

 

 

 

 

 

PI4KA(+) 

de novo 

 
Phosphatidylinositol 

signaling system 

This gene encodes the phosphatidylinositol 4-kinase, 

catalytic, alpha protein, which catalyzes the first committed 

step in the biosynthesis of phosphatidylinositol 4,5-

bisphosphate. 

 

Good expression in fetal brain and in postnatal CNS. 

Good expression in immune cell types. 

Recently, it has been demonstrated that reduced expression of 

individual phosphatidylinositol 4-kinase isozymes is associated 

with impaired survival of specific neuronal populations within 

the CNS. Furthermore, alterations to the concentrations of 

different phosphoinositide lipid species in the brain can have 

deleterious effects on clathrin-dependent membrane trafficking 

both in the Golgi-endosomal pathway and at the plasma 

membrane. 

Therefore, the four mammalian phosphatidylinositol 4-kinases 

modulate neuronal pools of phosphoinositide lipid and regulate 

intracellular membrane trafficking in the endocytic and 

secretory pathways. Dysfunctions in these enzymes have been 

associated with a broad spectrum of disorders including SCZ, 

BD, Lowe syndrome, age-related neurodegeneration, 

Alzheimer's disease and Down syndrome.  

 

An atypical 0.8 Mb inherited duplication of 22q11.2, which 

encompasses 14 genes including CRKL, ZNF74, PIK4CA, 

SNAP29 and PCQAP known to contribute to several aspects of 

the DGS/VCFS phenotype, has been recently described in a 

patient with psychomotor impairment, suggesting a role for 

these genes in neurodevelopment. 

PI4KA maps within the genomic region involved in the 

22q11 microdeletion/microduplication syndrome, which 

shows comorbidity with ASD, SCZ, ADHD and mood 

disorder. 

 

PI4KA has been previously suggested as autism candidate 

genes by molecular cytogenetic analysis and in silico 

studies. 

Antshel et al., 2007 

Bucan et al., 2009 

Clayton et al., 2012 

Fine et al., 2005  
Iurov et al., 2010 

Lo-Castro et al., 2009 

Marshall et al., 2008 

Mukkades and Herguner, 2007 
Niklasson et al., 2009 

Pebrel-Richard et al., 2012 

Pinto et al., 2010 

Ramelli et al., 2008 
Szatmari et al., 2007  

Vorstman et al., 2006 

     

PRODH(+)de novo 

PRODH(-) 

 
Proline metabolism 

This nuclear gene encodes the proline dehydrogenase 

(oxidase) 1, which is a mitochondrial protein that catalyzes 

the first step in proline degradation.  

 

High expression in the fetal brain and in postnatal CNS. 

Mutations in PRODH are associated with hyperprolinemia type 

1 and susceptibility to schizophrenia 4 (SCZD4), which is a 

complex, multifactorial psychotic disorder or group of disorders 

characterized by disturbances in the form and content of 

thought, in mood (e.g. inappropriate affect), in sense of self and 

relationship to the external world (e.g. loss of ego boundaries, 

withdrawal), and in behavior (e.g bizarre or apparently 

purposeless behavior). There may be mild impairment of 

cognitive function 

 

PRODH is known to be dosage-sensitive in mouse 

neurodevelopment. 

PRODH maps within the genomic region involved in the 

22q11 microdeletion/microduplication syndrome, which 

shows comorbidity with ASD, SCZ, ADHD and mood 

disorder. 

 

CNVs (loss) exclusively affecting PRODH and DGCR6 

and parentally inherited have been significantly 

associated with ASD.  

 

De novo CNVs (loss) affecting PRODH (demonstrated 

haploinsufficiency) have been reported in patients with 

ASD. 

Antshel et al., 2007 
Bucan et al., 2009 

Fine et al., 2005  

Guilmatre et al., 2009 

Lo-Castro et al., 2009 
Marshall et al., 2008 

Meechan et al., 2009 

Mukkades and Herguner, 2007 

Niklasson et al., 2009 
Nord et al., 2011 

Pinto et al., 2010 

Ramelli et al., 2008 
Szatmari et al., 2007  

Vorstman et al., 2006 

     

RANBP1(+) 

de novo 

 
Intracellular RAN-GTP 

signaling  

This gene encodes the RAN binding protein 1, which 

interacts specifically with GTP-charged RAN. RANBP1 does 

not activate GTPase activity of RAN but does markedly 

increase GTP hydrolysis by the RanGTPase-activating 

protein (RanGAP1).  

RANBP1 may act in an intracellular signaling pathway 

which may control the progression through the cell cycle by 

regulating the transport of protein and nucleic acids across 

the nuclear membrane. 

 

Moderate expression in fetal brain and in postnatal CNS. 

Changes of hippocampal signaling protein levels, including the 

GTP-binding nuclear protein RAN, during postnatal brain 

development in the rat have been reported, thus supporting a 

developmental regulation of individual signaling proteins in the 

brain. 

RANBP1 maps within the genomic region involved in the 

22q11 microdeletion/microduplication syndrome, which 

shows comorbidity with ASD, SCZ, ADHD and mood 

disorder. 

Antshel et al., 2007 

Bucan et al., 2009 
Fine et al., 2005  

Lo-Castro et al., 2009 

Marshall et al., 2008 

Mukkades and Herguner, 2007 
Niklasson et al., 2009 

Pinto et al., 2010 

Ramelli et al., 2008 

Szatmari et al., 2007  
Weitzdörfer et al., 2008 

Vorstman et al., 2006 
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RTN4R(+) 

de novo 
 

Regulation of 

synaptogenesis during 

neurodevelopment 

This gene encodes the reticulon 4 receptor precursor, an 

oligodendrocyte myelin glycoprotein and myelin-associated 

glycoprotein. This receptor mediates axonal growth 

inhibition and may play a role in regulating axonal 

regeneration and plasticity in the adult CNS.  

 

It is widespread expressed in the brain but highest levels are 

found in the gray matter. 

It has been recently reported that RTN4R, also known as NgR1, 

inhibits the formation of new synapses in the postsynaptic 

neuron by signaling through the coreceptor TROY and RhoA, 

and functions in the dendrite as a barrier that limits excitatory 

synapse number during brain development, in particular in 

hippocampus. 

RTN4R maps within the genomic region involved in the 

22q11 microdeletion/microduplication syndrome, which 

shows comorbidity with ASD, SCZ, ADHD and mood 

disorder. 

Antshel et al., 2007 

Bucan et al., 2009 

Fine et al., 2005 

Guilmatre et al., 2009 
Lo-Castro et al., 2009  

Marshall et al., 2008  

Mukaddes and Herguner, 2007 

Niklasson et al., 2009 
Pinto et al., 2010; 

Ramelli et al., 2008 

Szatmari et al., 2007 

Wills et al., 2012 
Vorstman et al., 2006 

     

SEPT5(+) 

de novo  
 
Intracellular vescicle 

trafficking: 

cytoskeleton dynamics 

This gene encodes the septin 5 protein, which is is a 

nucleotide binding protein, originally described in yeast as 

cell division cycle regulatory proteins. Septins are highly 

conserved in yeast, Drosophila, and mouse and appear to 

regulate cytoskeletal organization. Disruption of septin 

function disturbs cytokinesis and results in large 

multinucleate or polyploid cells. 

 

Very high expression in fetal brain and in postnatal CNS. 

SEPT5 acts as a filament-forming cytoskeletal GTPase and may 

play a role in cytokinesis and platelet secretion. Indeed, septins 

polymerize into heterooligomeric protein complexes that form 

filaments, and can associate with cellular membranes, actin 

filaments and microtubules.  

SEPT5 is important for active membrane movement such as 

vesicle trafficking and exocytosis in non-dividing cells (i.e. 

platelets, neurons). In a heterologous system, SEPT5 

overexpression has been shown to exert dopamine-dependent 

neurotoxicity. 

 

It has been recently reported on a four-year-old boy with a 

homozygous deletion comprising the GP1BB and SEPT5 genes, 

located 5' to GP1BB. He presented with Bernard-Soulier 

syndrome, cortical dysplasia (polymicrogyria), developmental 

delay, and platelet secretion defect, thus supporting the possible 

effect of defect of these two genes in neurodevelopment. 

SEPT5 maps within the genomic region involved in the 

22q11 microdeletion/microduplication syndrome, which 

shows comorbidity with ASD, SCZ, ADHD and mood 

disorder. 

 

Both GP1BB and SEPT5 have been previously suggested 

as autism candidate genes by molecular cytogenetic 

analysis and in silico studies. 

Antshel et al., 2007 
Bartsch et al., 2011 

Bucan et al., 2009 

Fine et al., 2005  

Iurov et al., 2010 
Lo-Castro et al., 2009 

Marshall et al., 2008 

Mukkades and Herguner, 2007 

Niklasson et al., 2009 
Pinto et al., 2010 

Ramelli et al., 2008 

Szatmari et al., 2007  

Vorstman et al., 2006 

     

SLC7A4(+) 

de novo 

 
Cellular trafficking: 

cationic amino acid 

transport 

This gene encodes the solute carrier family 7 (orphan 

transporter), member 4, which is involved in the transport of 

the cationic amino acids (arginine, lysine and ornithine). 

 

Moderate expression in fetal brain and in postnatal CNS. 

Cationic amino acid transporters (CAT) have important roles for 

normal brain functioning and various brain diseases.  

Recently, human cationic amino acid transporters 1, 2 and 3 

(hCAT1, 2, and 3) have been mapped immunohistochemically 

throughout five adult human brains. All three hCAT1s were 

mainly localized in neurons, but were also found in numerous 

astrocytes, oligodendrocytes, plexus choroideus epithelial cells, 

and small blood vessels. The highest density of hCAT 

expressing neurons was observed in the hypothalamus, in some 

areas of the cerebral cortex, the thalamic reticular nucleus and 

the caudate nucleus, whereas weak to moderate expression was 

detected in the hippocampus, the prefrontal cortex (hCAT1 

only), pons, brain stem and cerebellum. 

SLC7A4 maps within the genomic region involved in the 

22q11 microdeletion/microduplication syndrome, which 

shows comorbidity with ASD, SCZ, ADHD and mood 

disorder. 

Antshel et al., 2007 

Bucan et al., 2009 

Fine et al., 2005  

Jäger et al., 2012 
Lo-Castro et al., 2009 

Marshall et al., 2008 

Mukkades and Herguner, 2007 

Niklasson et al., 2009 
Pinto et al., 2010 

Ramelli et al., 2008 

Szatmari et al., 2007  

Vorstman et al., 2006 
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Tab. 4.1. Continued. 

SLC25A1(+) 

de novo 

 
Cerebral mitochondrial 

metabolism 

This gene encodes the solute carrier family 25 (mitochondrial 

carrier; citrate transporter), member 1 (CTP), which is 

responsible for the movement of citrate across the 

mitochondrial inner membrane. 

In mouse models, the citrate transporter Slc25a1 is expressed 

minimally, but apparently ubiquitously, throughout the brain. In 

addition, Slc25a1 is highly expressed in a subset of large cells in 

the globus pallidus. It is essential for mithochondrial 

metabolism. 

SLC25A1 maps within the genomic region involved in the 

22q11 microdeletion/microduplication syndrome, which 

shows comorbidity with ASD, SCZ, ADHD and mood 

disorder. 

Antshel et al., 2007 

Bucan et al., 2009 
Fine et al., 2005  

Kaplan et al., 1995 

Lo-Castro et al., 2009 

Marshall et al., 2008 
Maynard et al., 2009 

Mukkades and Herguner, 2007 

Niklasson et al., 2009 

Pinto et al., 2010 
Ramelli et al., 2008 

Szatmari et al., 2007  

Vorstman et al., 2006 

     
 

 

 

 

 

 

SNAP29(+) 

de novo  
 
Synaptic plasticity 

This gene encodes the synaptosomal-associated protein, 

29kDa, which is a member of the SNAP25 gene family and 

is involved in multiple membrane trafficking steps. Two 

other members of this gene family, SNAP23 and SNAP25, 

encode proteins that bind a syntaxin protein and mediate 

synaptic vesicle membrane docking and fusion to the plasma 

membrane. The protein encoded by this gene binds tightly to 

multiple syntaxins and is localized to intracellular membrane 

structures rather than to the plasma membrane.  

 

Moderate expression in fetal brain and postnatal CNS.  

High expression in immune cell types. 

In vitro studies in cultured hyppocampal neurons have recently 

reported SNAP-29 as a candidate molecule regulating the 

disassembly of the SNARE complex. Indeed, SNAP-29 is 

present at synapses and regulates recycling of the SNARE 

complexes by competing with α-SNAP for binding to the 

SNAREs and consequently inhibiting disassembly of the 

SNARE complex. These findings suggest that SNAP-29 acts as 

a negative modulator for neurotransmitter release, probably by 

slowing recycling of the SNARE-based fusion machinery and 

synaptic vesicle turnover. 

In presynaptic neurons SNAP-29 binds to STX1A, which is also 

involved in docking of synaptic vesicles at presynaptic active 

zones. Moreover, SNAP-29 promoter is one of the targets of β-

catenin. 

 

Defects in SNAP29 are the cause of CEDNIK syndrome, which 

is a neurocutaneous syndrome characterized by cerebral 

dysgenesis, neuropathy, ichthyosis and palmoplantar 

keratoderma. 

 

An atypical 0.8 Mb inherited duplication of 22q11.2, which 

encompasses 14 genes including CRKL, ZNF74, PIK4CA, 

SNAP29 and PCQAP known to contribute to several aspects of 

the DGS/VCFS phenotype, has been recently described in a 

patient with psychomotor impairment, suggesting a role for 

these genes in neurodevelopment. 

SNAP29 maps within the genomic region involved in the 

22q11 microdeletion/microduplication syndrome, which 

shows comorbidity with ASD, SCZ, ADHD and mood 

disorder. 

 

A polymorphism in the SNAP29 gene promoter has been 

associated to SCZ. 

 

SNPs in STX1A have been associated with ASD and HF-

AU. Moreover, in the postmortem anterior cingulate 

gyrus region of autistic patients, STX1A expression was 

found to be significantly lower than that of the control 

group. 

Antshel et al., 2007 

Bucan et al., 2009 
de Queiroz Soares et al., 2012 

Fine et al., 2005  

Guilmatre et al., 2009 

Lo-Castro et al., 2009 
Marshall et al., 2008 

Mukkades and Herguner, 2007 

Nakamura et al. 2008, 2011 

Niklasson et al., 2009 
Pedrosa et al., 2010 

Pan et al., 2005 

Pebrel-Richard et al., 2012 

Pinto et al., 2010 
Ramelli et al., 2008 

Saito et al., 2001 

Sprecher et al., 2005  

Su et al., 2001 
Szatmari et al., 2007  

Vorstman et al., 2006 
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Tab. 4.1. Continued. 

TBX1(+) 

de novo  
 
Transcriptional 

regulation  

This gene encodes the T-box 1 (TBX1), transcript variant B 

protein, which belongs to a family of conserved transcription 

factors involved in the regulation of developmental 

processes.  

 

Moderate expression in fetal brain and in postnatal CNS. 

Studies using mouse models of DiGeorge syndrome suggest a 

major role for TBX1 in the molecular etiology of DGS/VCFS, 

which are characterized by neural-crest-related developmental 

defects. 

 

It has been reported that Tbx1 heterozygous mice are impaired 

in social interaction, ultrasonic vocalization, memory-based 

behavioral alternation, working memory and thigmotaxis, 

compared with wild-type mice. Furthermore, Tbx1 mRNA and 

protein are ubiquitously expressed throughout the brain, but 

protein expression is enriched in regions that postnatally retain 

the capacity of neurogenesis. In postnatally derived 

hippocampal culture cells, Tbx1 levels are higher during 

proliferation than during differentiation, and expressed in neural 

progenitor cells, immature and matured neurons and glial cells.  

TBX1 maps within the genomic region involved in the 

22q11 microdeletion/microduplication syndrome, which 

shows comorbidity with ASD, SCZ, ADHD and mood 

disorder. 

 

An inactivating mutation of TBX1 has been previously 

reported in a patient with Asperger syndrome. 

Antshel et al., 2007 

Bucan et al., 2009 
Fine et al., 2005  

Hiramoto et al., 2011 

Lo-Castro et al., 2009 

Marshall et al., 2008 
Mukkades and Herguner, 2007 

Niklasson et al., 2009 

Paylor et al., 2006 

Pinto et al., 2010 
Ramelli et al., 2008 

Szatmari et al., 2007  

Vorstman et al., 2006 

     

TRMT2A 

(HTF9C)(+) 

de novo  
 
Neurodevelopment? 

This gene encodes the TRM2 tRNA methyltransferase 2 

homolog A (S. cerevisiae) protein, which has an unknown 

function. However, it is orthologous to the mouse Trmt2a 

gene and contains an RNA methyltransferase domain. 

Expression of this gene varies during the cell cycle, with 

aberrant expression being a possible biomarker in certain 

breast cancers. 

 

Low expression in fetal brain and moderate expression in 

postnatal CNS. 

TRMT2A probably functions as a regulator of cell cycle. 

TRMT2A maps within the genomic region involved in the 

22q11 microdeletion/microduplication syndrome, which 

shows comorbidity with ASD, SCZ, ADHD and mood 

disorder. 

 

A SNP of the HTF9C gene has been previously 

associated with a deficit in sustained attention within SCZ 

in a Taiwanese cohort that might be an endophenotype of 

SCZ. 

Antshel et al., 2007 
Bucan et al., 2009 

Fine et al., 2005  

Liu et al., 2007 

Lo-Castro et al., 2009 
Marshall et al., 2008 

Mukkades and Herguner, 2007 

Niklasson et al., 2009 

Pinto et al., 2010 
Ramelli et al., 2008 

Szatmari et al., 2007  

Vorstman et al., 2006 

     

TXNRD2(+) 

de novo  
 
Mitochondrial neuronal 

metabolism  

This nuclear gene encodes the thioredoxin reductase 2, a 

mitochondrial dimeric NADPH-dependent FAD containing 

enzyme that catalyzes the reduction of the active site 

disulfide of thioredoxin and other substrates. TR is a member 

of a family of pyridine nucleotide-disulfide oxidoreductases 

and is a key enzyme in the regulation of the intracellular 

redox environment. Three thioredoxin reductase genes have 

been found that encode selenocysteine containing proteins. 

This gene partially overlaps the COMT gene on chromosome 

22. 

 

Moderate expression in fetal brain and in postnatal CNS. 

Expression was also detected in adult brain and enriched in 

brain synapses. 

TXNRD2 has been analyzed in mammalian cells and it has been 

demonstrated that its role in reducing thioredoxin appears to be 

essential for preventing cell death. 

 

The developmental impact of over-expression of an ~190 kb 

segment of human 22q11.2, which includes TXNRD2, COMT 

and ARVCF, on behaviors in bacterial artificial chromosome 

transgenic mice vs. wild-type mice has been determined. The 

collected data suggest that over-expression of this 22q11.2 

segment enhances incentive learning and impairs the prolonged 

maintenance of working memory, but has no apparent effect on 

working memory per se, affect- and stress-related behaviors or 

motor capacity. 

TXNRD2 maps within the genomic region involved in the 

22q11 microdeletion/microduplication syndrome, which 

shows comorbidity with ASD, SCZ, ADHD and mood 

disorder. 

 

TXNRD2 polymorphisms in the shared upstream 

promoter with COMT have been associated with SCZ. 

Moreover, TXNRD2 is apparently elevated in 

schizophrenic brain samples. 

Antshel et al., 2007 
Bucan et al., 2009 

Fine et al., 2005  

Lo-Castro et al., 2009 

Marshall et al., 2008 
Maynard et al., 2008 

Mukkades and Herguner, 2007 

Niklasson et al., 2009 

Pinto et al., 2010 
Prabakaran et al., 2004 

Ramelli et al., 2008 

Sanders et al., 2005 

Suzuki et al., 2009 
Szatmari et al., 2007  

Vorstman et al., 2006 
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Tab. 4.1. Continued. 

UFD1L(+) 

de novo  
 
Intracellular signaling: 

protein ubiquitination 

pathway 

This gene encodes the ubiquitin fusion degradation 1 like 

(yeast) protein, which forms a complex with two other 

proteins, nuclear protein localization-4 and valosin-

containing protein, and this complex is necessary for the 

degradation of ubiquitinated proteins. In addition, this 

complex controls the disassembly of the mitotic spindle and 

the formation of a closed nuclear envelope after mitosis.  

 

Moderate expression in fetal brain and in postnatal CNS. 

Mutations in this gene have been associated with Catch 22 

syndrome as well as cardiac and craniofacial defects. 

 

UFD1L encodes for the ubiquitin fusion degradation 1 protein, 

which is expressed in the medial telencephalon during mouse 

development.  

An association between SCZ and a single nucleotide functional 

polymorphism, located within the noncoding region upstream 

the first exon of the UFD1L gene, has been reported. 

UFD1L maps within the genomic region involved in the 

22q11 microdeletion/microduplication syndrome, which 

shows comorbidity with ASD, SCZ, ADHD and mood 

disorder. 

 

The protein ubiquitination pathway has been previously 

implicated in ASD. 

Antshel et al., 2007 

Bucan et al., 2009 
De Luca et al., 2001 

Fine et al., 2005  

Lo-Castro et al., 2009 

Marshall et al., 2008 
Mukkades and Herguner, 2007 

Niklasson et al., 2009 

Pinto et al., 2010 

Ramelli et al., 2008 
Szatmari et al., 2007  

Vorstman et al., 2006 

     

ZDHHC8(+) 

de novo  
 
Synaptic transmission: 

post-translational 

modification 

(palmytoilation) 

This gene encodes the zinc finger, DHHC-type containing 8 

protein, which is a member of the zinc finger DHHC domain-

containing protein family. The encoded protein may function 

as a palmitoyltransferase and is localized in mitochondria. 

 

Moderate expression in fetal brain and in postnatal CNS. 

Expression was also detected in adult brain and enriched in 

brain synapses. 

Post-translational modification of proteins by the lipid palmitate 

is critical for protein localization and function. Palmitoylation is 

regulated by the opposing enzymes palmitoyl acyltransferases 

(PATs) and acyl protein thioesterases, which add and remove 

palmitate from proteins, respectively. Palmitoylation is 

particularly important for a number of processes including 

neuronal development and synaptic activity in the central 

nervous system.  

Dysregulated palmitoylation contributes to neuropsychiatric 

disease. Indeed, in total six PATs (HIP14, HIP14L, ZDHHC8, 

ZDHHC9, ZDHHC12, and ZDHHC15) have been implicated in 

Huntington disease, Alzheimer disease, SCZ, MR, and infantile 

and adult onset forms of neuronal ceroid lipofuscinosis. 

 

Zdhhc8 is found primarily in apparent presynaptic processes, 

with an apparent preference for Zdhhc8 in glutmatergic versus 

GABAergic processes indicates an enhanced role for Zdhhc8 in 

excitatory synaptic transmission.  

ZDHHC8 overexpression studies demonstrated an increased 

level of the corresponding protein and a subsequent increase in 

apoptotic cell death, perhaps leading to disrupted mitochondrial 

function. 

ZDHHC8 maps within the genomic region involved in the 

22q11 microdeletion/microduplication syndrome, which 

shows comorbidity with ASD, SCZ, ADHD and mood 

disorder.  

 

SNPs affecting ZDHHC8 have been robustly associated 

to SCZ. 

Antshel et al., 2007 

Bucan et al., 2009 

Fine et al., 2005  

Liu et al., 2002a and b 
Lo-Castro et al., 2009 

Marshall et al., 2008 

Maynard et al., 2008 

Mukkades and Herguner, 2007 
Niklasson et al., 2009 

Pinto et al., 2010 

Ramelli et al., 2008 

Szatmari et al., 2007  
Vorstman et al., 2006 

Young et al., 2012 

     

ZNF74(+) 

de novo  
 
Transcriptional 

regulation 

This gene encoder the zinc finger protein 74. 

 

High expression in fetal brain and good expression in 

postnatal CNS. 

A speciific ZNF74 genotype has been associated with age-at-

onset of SCZ. 

An atypical 0.8 Mb inherited duplication of 22q11.2, which 

encompasses 14 genes including CRKL, ZNF74, PIK4CA, 

SNAP29 and PCQAP known to contribute to several aspects of 

the DGS/VCFS phenotype, has been recently described in a 

patient with psychomotor impairment, suggesting a role for 

these genes in neurodevelopment. 

ZNF74 maps within the genomic region involved in the 

22q11 microdeletion/microduplication syndrome, which 

shows comorbidity with ASD, SCZ, ADHD and mood 

disorder. 

Antshel et al., 2007 

Bucan et al., 2009 

Fine et al., 2005  

Lo-Castro et al., 2009 
Marshall et al., 2008 

Mukkades and Herguner, 2007 

Niklasson et al., 2009 

Pebrel-Richard et al., 2012 
Pinto et al., 2010 

Ramelli et al., 2008 

Szatmari et al., 2007  

Takase et al., 2001 
Vorstman et al., 2006 
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Tab. 4.1. Continued. 

 Patient 29, gain of 8.0 Mb at 15q11.1q13.1 (chr15:20575646-28535051) 

 Patient 50, loss of 211 kb at 15q11.2 (chr15:22873688-23085096) 

 Patient 55, gain of 203 kb at 15q11.2 (chr15:22873688-23076420) 

     

ATP10A(+) 

de novo 

 
Neurodevelopment? 

This gene encodes the ATPase class V, type 10A protein, 

which belongs to the family of P-type cation transport 

ATPases, and to the subfamily of aminophospholipid-

transporting ATPases. The aminophospholipid translocases 

transport phosphatidylserine and phosphatidylethanolamine 

from one side of a bilayer to another. This gene is maternally 

expressed.  

 

Good expression in fetal brain and in postnatal whole brain. 

Defects in ATP10A contribute, in addition to mutations in 

UBE3A, to the onset of Angelman syndrome (AS). 

 

Allelic expression of ATP10A transcript in 16 human control 

brain samples has been recently examined: 10/16 exhibited 

biallelic expression while only 6/16 showed monoallelic 

expression. Contrary to the expectation for a maternally 

expressed imprinted gene, quantitative RT-PCR revealed 

significantly reduced ATP10A transcript in Prader-Willi 

syndrome brains with two maternal chromosomes due to 

uniparental disomy (PWS UPD). Investigation of factors that 

may influence allelic ATP10A expression status revealed that 

gender has a major affect, as females were significantly more 

likely to have monoallelic ATP10A expression than males. 

Moreover, a promoter polymorphism that disrupts binding of 

the transcription factor Sp1 also potentially contributes to allelic 

expression differences in females, thus supporting that 

monoallelic expression of human ATP10A is variable in the 

population and is influenced by both gender and common 

genetic variation. 

In mouse brain ATP10A is not imprinted. 

ATP10A maps within the genomic region which is deleted 

in PWS and AS, that both are comorbid with ASD. 

Moreover, this gene is involved in the 15q11.2-q13.1 

duplication syndrome, which is the most frequently 

chromosomal anomaly associated with ASD. 

 

SNPs in ATPA10 have been previously associated with 

ASD. 

Bolton, 2004 

Bonati et al., 2007 

Cook et al., 1997 
Depienne et al., 2009 

Descheemaeker et al., 2006 

DuBose et al., 2010 

Hogart et al., 2008, 2010 
Nurmi et al., 2003 

Pinto et al., 2010 

Sahoo et al., 2006 

Schroer et al., 1998 
Steffenburg et al., 1996 

Szatmari et al., 2007 

Trillingsgaaard and Østergaard, 

2004 
Veltman et al., 2005 

     

C15orf2(+) 

de novo 

 
Neurodevelopment?  

This gene encodes the chromosome 15 open reading frame 2 

protein. This gene is biallelically expressed in adult testis and 

brain but is paternally imprinted in fetal brain. Defects in this 

gene may be associated with Prader-Willi syndrome. 

 

Moderate expression in fetal brain and in postnatal CNS. 

C15orf2 has no ortholog in rodents, but appears to be under 

strong positive selection in primates. C15orf2 encodes a 1156 

amino acid protein with six nuclear localisation sequences. 

Recently, it has been predicted a sequence similarity of C15orf2 

to the nuclear pore complex (NPC) protein POM121 and it has 

been demonstrated that C15orf2 is located at the inner face of 

the nuclear envelope where it strongly associates with the NPC  

C15orf2 maps within the genomic region which is deleted 

in PWS and AS, that both are comorbid with ASD. 

Moreover, this gene is involved in the 15q11.2-q13.1 

duplication syndrome, which is the most frequently 

chromosomal anomaly associated with ASD. 

Bolton, 2004 

Bonati et al., 2007 

Cook et al., 1997 
Depienne et al., 2009 

Descheemaeker et al., 2006  

Hogart et al., 2010 

Neumann et al., 2012 
Pinto et al., 2010 

Sahoo et al., 2006 

Schroer et al., 1998 

Steffenburg et al., 1996 
Szatmari et al., 2007 

Trillingsgaaard and Østergaard, 

2004 

Veltman et al., 2005 
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Tab. 4.1. Continued. 

CYFIP1(+)de novo 

CYFIP1(-)de novo 

CYFIP1(+) 
 
Translational repression  

This gene encodes the cytoplasmic FMR1 interacting protein 

1, which is a component of the CYFIP1-EIF4E-FMR1 

complex that binds to the mRNA cap and mediates 

translational repression. CYFIP1 promotes the translation 

repression activity of FMR1 in brain probably by mediating 

its association with EIF4E and mRNA. Moreover, it regulates 

formation of membrane ruffles and lamellipodia, plays a role 

in axon outgrowth throught its actin remodeling activity. 

 

Moderate expression in fetal brain and in postnatal CNS, 

particularly in amygdalae. 

CYFIP1 is particularly enriched at synapses. 

CNVs (de novo and inherited) between BP1 and BP2 

encompassing CYFIP1, NIPA1, NIPA2, and TUBGCP5, 

are responsible for the 15q11.2 

microdeletion/microduplication syndrome, which is 

comorbid with ASD and shows incomplete penetrance. 

 

A few rare deletions and common SNPs at 15q11.2, 

including CYFIP1, have been recently associated with 

SCZ in a Chinese Han population. 

 

Mutation affecting FMR1 are responsible for the Fragile 

X syndrome which is comorbid with ASD. 

Clifford et al., 2007 
Doornbos et al., 2009 

Kielinen et al., 2004 

Schenck et al., 2003 

Sempere Perez et al., 2011 
Wang et al., 2010 

van der Zwaag et al., 2010 

Zhao et al., 2012 

     

GABRA5(+) 

de novo 

 
Synaptic function and 

plasticity 

This gene encodes the gamma-aminobutyric acid (GABA) A 

receptor, alpha 5. GABA is the major inhibitory 

neurotransmitter in the mammalian brain where it acts at 

GABA-A receptors, which are ligand-gated chloride 

channels. Chloride conductance of these channels can be 

modulated by agents such as benzodiazepines that bind to the 

GABA-A receptor. It is located at postsynaptic cell 

membrane. 

 

Very high expression in fetal brain and in postnatal CNS. 

An altered expression of gamma-aminobutyric acid A 

(GABAA) and gammaaminobutyric acid B (GABAB) receptors 

has been reported in the brains of subjects with autism. 

GABRA5 maps within the genomic region which is 

deleted in PWS and AS, that both are comorbid with 

ASD. Moreover, this gene is involved in the 15q11.2-

q13.1 duplication syndrome, which is the most frequently 

chromosomal anomaly associated with ASD. 

 

GABRA5 polymorphisms have been associated with BD, 

major depression and SCZ of a later-age onset. 

Bolton, 2004 
Bonati et al., 2007 

Cook et al., 1997 

Depienne et al., 2009 

Descheemaeker et al., 2006  
Fatemi et al., 2010 

Hogart et al., 2010 

Oruc et al., 1997 

Papadimitriou et al., 1998, 2001 
Pinto et al., 2010 

Sahoo et al., 2006 

Schroer et al., 1998 
Steffenburg et al., 1996 

Szatmari et al., 2007 

Trillingsgaaard and Østergaard, 

2004 
Veltman et al., 2005 

      

GABRB3(+) 

de novo 

 
Synaptic function and 

plasticity 

This gene encoder the gamma-aminobutyric acid (GABA) A 

receptor, beta 3 (GABRB3), which is a member of the ligand-

gated ionic channel family. The encoded protein is one of at 

least 13 distinct subunits of a multisubunit chloride channel 

that serves as the receptor for gamma-aminobutyric acid, the 

major inhibitory transmitter of the nervous system.  

 

Very high expression in fetal brain and in postnatal CNS, in 

particular in amygdalae.  

An altered expression of gamma-aminobutyric acid A 

(GABAA) and gammaaminobutyric acid B (GABAB) receptors 

has been reported in the brains of subjects with autism. 

GABRB3 maps within the genomic region which is 

deleted in PWS and AS, that both are comorbid with 

ASD. Moreover, this gene is involved in the 15q11.2-

q13.1 duplication syndrome, which is the most frequently 

chromosomal anomaly associated with ASD. 

 

Polymorphisms in GABRB3 have been reported in 

patients with ASD. 

 

Defects in GABRB3 are associated with absence epilepsy 

type 5 (ECA5), which is a subtype of idiopathic 

generalized EP characterized by an onset at age 6-7 years, 

frequent absence seizures (several per day) and bilateral, 

synchronous, symmetric 3-Hz spike waves on EEG. 

Bolton, 2004 

Bonati et al., 2007 
Buxbaum et al., 2002 

Cook et al., 1997, 1998 

Depienne et al., 2009 

Descheemaeker et al., 2006  
Fatemi et al., 2010 

Hogart et al., 2010 

Kim et al., 2006 

Pinto et al., 2010 
Sahoo et al., 2006 

Schroer et al., 1998 

Steffenburg et al., 1996 

Szatmari et al., 2007 
Tanaka et al., 2008 

Trillingsgaaard and Østergaard, 

2004 

Veltman et al., 2005 
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Tab. 4.1. Continued. 

GABRG3(+) 

de novo 

 
Synaptic function and 

plasticity 

This gene encodes the gamma-aminobutyric acid (GABA) A 

receptor, gamma 3 (GABRG3). GABA-A receptors are 

pentameric, consisting of proteins from several subunit 

classes: alpha, beta, gamma, delta and rho. The protein 

encoded by this gene is a gamma subunit, which contains the 

benzodiazepine binding site. GABA is the major inhibitory 

transmitter of the nervous system.  

 

Moderate expression in fetal brain and in postnatal CNS, in 

particolar in the cortex.  

An altered expression of gamma-aminobutyric acid A 

(GABAA) and gammaaminobutyric acid B (GABAB) receptors 

has been reported in the brains of subjects with autism. 

GABRG3 maps within the genomic region which is 

deleted in PWS and AS, that both are comorbid with 

ASD. Moreover, this gene is involved in the 15q11.2-

q13.1 duplication syndrome, which is the most frequently 

chromosomal anomaly associated with ASD. 

 

Two SNPs in GABRG3 have been associated with ASD.  

Bolton, 2004 

Bonati et al., 2007 
Cook et al., 1997 

Depienne et al., 2009 

Descheemaeker et al., 2006  

Hogart et al., 2010 
Menold et al., 2001 

Pinto et al., 2010 

Sahoo et al., 2006 

Schroer et al., 1998 
Steffenburg et al., 1996 

Szatmari et al., 2007 

Trillingsgaaard and Østergaard, 

2004 
Veltman et al., 2005 

     

MAGEL2(+) 

de novo 

 
Neurodevelopment  

This gene encodes the MAGE-like protein 2. This gene is 

structurally similar to NDN, is also localized to the PWS 

chromosomal region, and is paternally imprinted, suggesting 

a possible role for it in PWS. MAGEL2 belongs to the 

MAGE/necdin family of proteins, which have roles in cell 

cycle, differentiation, and apoptosis. 

 

Good expression in fetal brain and in postnatal CNS, in 

particular in amygdalae, thalamus and hypothalamus. 

MAGEL2 is expressed in various brain regions, most notably the 

hypothalamus. Mice with a targeted deletion of Magel2 display 

hypoactivity, blunted circadian rhythm, decreased fertility, and 

increased adiposity.  

It has been reported that in Magel2-null mice brain volume was 

reduced in specific regions, particularly in the parieto-temporal 

lobe of the cerebral cortex, the amygdalae, the hippocampus, 

and the nucleus accumbens, as measured by quantitative 

magnetic resonance imaging. Abnormal neurochemistry was 

detected in brain samples from adult mice, consisting of 

decreased serotonin and 5-hydroxyindoleacetic acid in the 

cortex and the hypothalamus, and decreased dopamine in the 

hypothalamus. Magel2-null mice displayed relatively normal 

motor and learning abilities, but exhibited abnormal behavior in 

novel environments.  

MAGEL2 maps within the genomic region which is 

deleted in PWS and AS, that both are comorbid with 

ASD. Moreover, this gene is involved in the 15q11.2-

q13.1 duplication syndrome, which is the most frequently 

chromosomal anomaly associated with ASD. 

Bolton, 2004 

Bonati et al., 2007 
Cook et al., 1997 

Depienne et al., 2009 

Descheemaeker et al., 2006 

Hogart et al., 2010 
Mercer et al., 2009 

Pinto et al., 2010 

Sahoo et al., 2006 

Schroer et al., 1998 
Steffenburg et al., 1996 

Szatmari et al., 2007 

Trillingsgaaard and Østergaard, 

2004 
Veltman et al., 2005 

     

MKRN3(+) 

de novo 

 
Probabably involved in 

protein ubiquitination 

pathway 

This gene encodes the makorin ring finger protein 3, which 

contains a RING (C3HC4) zinc finger motif and several C3H 

zinc finger motifs. This gene is intronless and imprinted, with 

expression only from the paternal allele. Disruption of the 

imprinting at this locus may contribute to Prader-Willi 

syndrome. An antisense RNA of unknown function has been 

found overlapping this gene. 

 

Low expression in fetal brain and good expression in 

postnatal amygdalae, thalamus and hypothalamus. 

MKRN3 encodes the zing finger protein 127 (ZNF127) which 

possibly function as a ribonucleoprotein. The intronless ZNF127 

gene is expressed ubiquitously and allele-specific analysis 

shows that ZNF127 is expressed only from the paternal allele. 

Consistent with this expression pattern, in the brain the ZNF127 

5' CpG island is completely unmethylated on the paternal allele 

but methylated on the maternal allele. 

ZNF127 probably belongs to the E3 ubiquitin ligase complex. 

 

Defects at this locus are not sufficient to cause PWS. 

MKRN3 maps within the genomic region which is deleted 

in PWS and AS, that both are comorbid with ASD. 

Moreover, this gene is involved in the 15q11.2-q13.1 

duplication syndrome, which is the most frequently 

chromosomal anomaly associated with ASD. 

 

The protein ubiquitination pathway has been previously 

implicated in ASD. 

Bolton, 2004 

Bonati et al., 2007 
Cook et al., 1997 

Depienne et al., 2009 

Descheemaeker et al., 2006 

Hogart et al., 2010 
Jong et al., 1999 

Pinto et al., 2010 

Sahoo et al., 2006 

Schroer et al., 1998 
Steffenburg et al., 1996 

Szatmari et al., 2007 

Trillingsgaaard and Østergaard, 

2004 
Veltman et al., 2005 
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Tab. 4.1. Continued. 

NDN(+) 

de novo 

 
Transcriptional 

regulation 

This intronless gene encodes the necdin homolog (mouse) 

protein, and is located in the Prader-Willi syndrome deletion 

region. It is an imprinted gene and is expressed exclusively 

from the paternal allele. Studies in mouse suggest that the 

protein encoded by this gene may suppress growth in 

postmitotic neurons, facilitating the entry of the cell into the 

cycle arrest. 

 

High expression in fetal brain and in postnatal CNS. 

NDN directly interacts with the transcription factor E2F1 via its 

transactivation domain and represses E2F1-dependent 

transcription. In addition, necdin interacts with NGFR, the nerve 

growth factor receptor, via its distinct intracellular domains. 

NDN maps within the genomic region which is deleted in 

PWS and AS, that both are comorbid with ASD. 

Moreover, this gene is involved in the 15q11.2-q13.1 

duplication syndrome, which is the most frequently 

chromosomal anomaly associated with ASD. 

Bolton, 2004 

Bonati et al., 2007 
Cook et al., 1997 

Depienne et al., 2009 

Descheemaeker et al., 2006  

Hogart et al., 2010 
Pinto et al., 2010 

Sahoo et al., 2006 

Schroer et al., 1998 

Steffenburg et al., 1996 
Szatmari et al., 2007 

Trillingsgaaard and Østergaard, 

2004 

Veltman et al., 2005 

     

NIPA1(+) de novo 

NIPA1(-) de novo 

NIPA1(-)* 

 
Neurodevelopment and 

maintenance 

This gene encodes the non imprinted in Prader-

Willi/Angelman syndrome 1 protein, which is a magnesium 

transporter that associates with early endosomes and the cell 

surface in a variety of neuronal and epithelial cells. This 

protein may play a role in nervous system development and 

maintenance.  

 

Widely expressed with highest levels in neuronal tissues. 

Two non imprinted genes in the 15q11.2 region, CYFIP1 and 

NIPA1, are widely expressed during mouse brain development 

and are known to be implicated in axonal growth, neuronal 

connectivity, and neuronal morphology, thus being good 

candidates for ASD pathogenesis. 

Moreover, defects in NIPA1 are the cause of spastic paraplegia 

autosomal dominant type 6 (SPG6). Spastic paraplegia is a 

degenerative spinal cord disorder characterized by a slow, 

gradual, progressive weakness and spasticity of the lower limbs. 

CNVs (de novo and inherited) between BP1 and BP2 

encompassing CYFIP1, NIPA1, NIPA2, and TUBGCP5, 

are responsible for the 15q11.2 

microdeletion/microduplication syndrome, which is 

comorbid with ASD and shows incomplete penetrance. 

 

A few rare deletions and common SNPs at 15q11.2, 

including NIPA1, have been recently associated with SCZ 

in a Chinese Han population. 

Doornbos et al., 2009 
Sempere Perez et al., 2011 

van der Zwaag et al., 2010 

Zhao et al., 2012 

     

NIPA2(+) de novo 

NIPA2(-) de novo 

NIPA2(+) 

 
Neurodevelopment 

This gene encodes the non imprinted in Prader-

Willi/Angelman syndrome 2 protein, which is a possible 

magnesium transporter. This gene is located adjacent to the 

imprinted domain in the Prader-Willi syndrome deletion 

region of chromosome 15. 

 

Low expression in fetal brain and high expression in postnatal 

amygdalae. 

NIPA2 plays a role in magnesium metabolism and regulation of 

renal magnesium conservation. 

 

NIPA2 heterozygous muutations cause the Childhood Absence 

Epilepsy in Chinese populations. 

CNVs (de novo and inherited) between BP1 and BP2 

encompassing CYFIP1, NIPA1, NIPA2, and TUBGCP5, 

are responsible for the 15q11.2 

microdeletion/microduplication syndrome, which is 

comorbid with ASD and shows incomplete penetrance. 

 

A few rare deletions and common SNPs at 15q11.2, 

including NIPA2, have been recently associated with SCZ 

in a Chinese Han population. 

Doornbos et al., 2009 
Goytan et al., 2008 

Jiang et al., 2012 

Sempere Perez et al., 2011 

van der Zwaag et al., 2010 
Zhao et al., 2012 

     
 

 

SNRPN(+) 

de novo 

 
Tissue-specific mRNA 

splicing regulation 

This gene encodes the small nuclear ribonucleoprotein 

polypeptide N, which belongs to the snRNP SMB/SMN 

family. The protein plays a role in pre-mRNA processing, 

possibly tissue-specific alternative splicing events. Multiple 

transcription initiation sites have been identified and 

extensive alternative splicing occurs in the 5' untranslated 

region.  

 

Good expression in fetal brain and high expression in 

postnatal CNS. 

Good-high expression in immune cell types. 

Defects in SNURF-SNRPN methylation cause Prader-Willy 

syndrome. 

 

Patients with the autoimmune disease systemic lupus 

erythematosus (SLE) have autoantibodies directed against some 

of the individual snRNP polypeptides. The most common 

autoantigen is called Sm. A wide range of non-specific 

symptoms can reveal neurolupus such as psychiatric disorders 

(mood disorders and schizoid personality)clear role of anti-

Sm autoantibodies in brain. 

SNRPN maps in the genomic region which is deleted in 

PWS and AS, that both are comorbid with ASD. 

Moreover, this gene is involved in the 15q11-q13 

duplication syndrome, which is the most frequently 

chromosomal anomaly associated with ASD. 

 

Recently, a rare CNV disrupting the SNRPN-SNURF 

genes has been reported in an autistic boy without clinical 

signs of PWS/AS. 

Bolton, 2004 
Bonati et al., 2007 

Cook et al., 1997 

Depienne et al., 2009 

Descheemaeker et al., 2006  
Hogart et al., 2010 

Pinto et al., 2010 

Sahoo et al., 2006 

Schroer et al., 1998 
Simonin et al., 2004 

Steffenburg et al., 1996 

Szatmari et al., 2007 

Talkowski et al., 2012 
Trillingsgaaard and Østergaard, 

2004 

Veltman et al., 2005 
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Tab. 4.1. Continued. 

 

 

 

SNURF(+)de novo 

 
Neurodevelopment? 

This gene encodes the SNRPN upstream reading frame 

protein, which is a highly basic protein localized to the 

nucleus. The evolutionarily constrained open reading frame is 

found on a bicistronic transcript which has a downstream 

ORF encoding the small nuclear ribonucleoprotein 

polypeptide N. The upstream coding region utilizes the first 

three exons of the transcript, a region that has been identified 

as an imprinting center. Multiple transcription initiation sites 

have been identified and extensive alternative splicing occurs 

in the 5' untranslated region but the full-length nature of these 

transcripts has not been determined. 

 

Moderate expression in fetal brain and very high expression 

in postnatal CNS. 

High expression in B- and T-cells. 

Defects in SNURF-SNRPN methylation cause Prader-Willy 

syndrome. 

SNURF maps in the genomic region which is deleted in 

PWS and AS, that both are comorbid with ASD. 

Moreover, this gene is involved in the 15q11-q13 

duplication syndrome, which is the most frequently 

chromosomal anomaly associated with ASD. 

 

Recently, a rare CNV disrupting the SNRPN-SNURF 

genes has been reported in an autistic boy without clinical 

signs of PWS/AS. 

Bolton, 2004 
Bonati et al., 2007 

Cook et al., 1997 

Depienne et al., 2009 

Descheemaeker et al., 2006  
Hogart et al., 2010 

Pinto et al., 2010 

Sahoo et al., 2006 

Schroer et al., 1998 
Steffenburg et al., 1996 

Szatmari et al., 2007 

Talkowski et al., 2012 

Trillingsgaaard and Østergaard, 
2004 

Veltman et al., 2005 

     
 

 

TUBGCP5(+) 

de novo 

TUBGCP5(-) 

de novo 

TUBGCP5(+)* 

 
Intracellular signaling: 

regulation of 

microtubule cytoskeleton 

dynamics 

This gene encodes the tubulin gamma complex associated 

protein 5. 

 

Low expression in fetal brain and good expression in 

postnatal parietal lobe, prefrontal cortex, and hypothalamus. 

High expression in T-cells. 

The gamma-tubulin complex is a large multiprotein complex, 

conserved among different species, that is required for 

microtubule nucleation at the centrosome. GCP5 and GCP6, like 

other components of the gamma-tubulin complex, localize to the 

centrosome and associate with microtubules, suggesting that the 

entire gamma-tubulin complex takes part in both of these 

interactions. Stoichiometry experiments revealed that there is a 

single copy of GCP5 and multiple copies of gamma-tubulin, 

GCP2, GCP3, and GCP4 within the gamma-tubulin complex. 

Thus, the gamma-tubulin complex is conserved in structure and 

function, suggesting that the mechanism of microtubule 

nucleation is conserved. 

Glycogen synthase kinase-3beta (GSK-3beta) is involved in the 

regulation of the dynamics of microtubule networks in cells. 

GSK-3beta interacts with GCP5 and both proteins partecipate in 

the proper formation of the mitotic spindles. 

CNVs (de novo and inherited) between BP1 and BP2 

encompassing CYFIP1, NIPA1, NIPA2, and TUBGCP5, 

are responsible for the 15q11.2 

microdeletion/microduplication syndrome, which is 

comorbid with ASD and shows incomplete penetrance. 

 

A few rare deletions and common SNPs at 15q11.2, 

including TUBGCP5, have been recently associated with 

SCZ in a Chinese Han population. 

Doornbos et al., 2009 

Izumi et al., 2008 
Murphy et al., 2001 

Sempere Perez et al., 2011 

van der Zwaag et al., 2010 

Zhao et al., 2012 

     

cluster 

snoRNAs(+) 

de novo 
 

Neurodevelopment 

These genes encode different classes of small nucleolar 

RNAs. 

 

High expression in the CNS. 

A few small deletions of different class of snoRNA genes  

The cluster of snoRNA genes map in the genomic region 

which is deleted in PWS and AS, that both are comorbid 

with ASD. Moreover, these genes are involved in the 

15q11-q13 duplication syndrome, which is the most 

frequently chromosomal anomaly associated with ASD. 

Bolton, 2004 

Bonati et al., 2007 

Cook et al., 1997 
Depienne et al., 2009 

Descheemaeker et al., 2006  

Hogart et al., 2010 

Pinto et al., 2010 
Sahoo et al., 2006 

Schroer et al., 1998 

Steffenburg et al., 1996 

Szatmari et al., 2007 
Trillingsgaaard and Østergaard, 

2004 

Veltman et al., 2005 
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Tab. 4.1. Continued. 

UBE3A(+) 

de novo 

 
Intracellular signaling: 

protein ubiquitination 

pathway 

This genen encodes the ubiquitin protein ligase E3A, which is 

part of the ubiquitin protein degradation system. This 

imprinted gene is maternally expressed in brain and 

biallelically expressed in other tissues.  

 

Good-high expression in fetal brain and moderate expression 

in postnatal CNS. 

Increased UBE3A gene dosage produce autism-related 

behavioral traits both in humans and mice that share the same 

conserved imprinting pattern. In particular, autism behavioral 

traits are weakly penetrant in individuals with mat dup15 

(double dose of UBE3A), but highly penetrant in mat idic15 

(triple dose of UBE3A). 

Indeed, UBE3A triple dosage reconstitute the three core autism 

traits in mice: defective social interaction, impaired 

communication, and increased repetitive stereotypic behavior. 

Moreover, in animals with increased UBE3A gene dosage, 

glutamatergic, but not GABAergic, synaptic transmission is 

suppressed as a result of reduced presynaptic release 

probability, synaptic glutamate concentration, and post-synaptic 

action potential coupling. 

Maternally inherited deletion of this gene causes 

Angelman Syndrome (AS), which is an imprinting 

disorder characterized by severe motor and intellectual 

retardation, ataxia, hypotonia, EP, absence of speech, and 

characteristic facies. AS is caused by maternal deletion of 

chromosome 15, paternal uniparental disomy, imprinting 

defect, or UBE3A mutation. Over one-half of the patients 

with Angelman syndrome have ASD. 

Moreover, UBE3A is involved in the 15q11.2-q13.1 

duplication syndrome, which is the most frequently 

chromosomal anomaly associated with ASD. 

 

CNVs involving other E3 ligase genes have been 

previously reported in patients with ASD.  

Bolton, 2004 

Bonati et al., 2007 
Cook et al., 1997 

Depienne et al., 2009 

Descheemaeker et al., 2006  

Glessner et al., 2009 
Hogart et al., 2010 

Kishino et al., 1997 

Matsuura et al., 1997 

Pinto et al., 2010 
Sahoo et al., 2006 

Schroer et al., 1998 

Scheuerle and Wilson, 2011 

Smith et al., 2011 
Steffenburg et al., 1996 

Szatmari et al., 2007 

Trillingsgaaard and Østergaard, 

2004 
Veltman et al., 2005 

 

 Patinet 30, gain of 800 kb at 16p13.11 (chr16:15492317-16292235) 

     
 

NDE1(+) 
 
Neurogenesis and 

neuronal migration: 

regulation of microtubule 

cytoskeleton dynamics 

This gene encodes the nudE nuclear distribution gene E 

homolog 1 protein, which is a member of the nuclear 

distribution E family of proteins. This protein is localized at 

the centrosome and interacts with other centrosome 

components as part of a multiprotein complex that regulates 

dynein function. Moreover, it plays an essential role in 

microtubule organization, mitosis and neuronal migration.  

 

Moderate expression in postnatal prefrontal cortex, occipital 

lobe, thalamus, and hypothalamus.  

High expression in immune cell types. 

NDE1 is known to interact with DISC1 (disrupted in 

schizophrenia, which has a role in neurogenesis and neuronal 

migration) and LIS1 (causing lissencephaly 1).  

Deficiency of the LIS1–NDE1 complex impairs cortical 

neurogenesis and neuronal migration frequently leading to EP, 

whereas DISC1-NDE1 deficiency appears to play a role in 

neuropsychiatric disorders, including SCZ and BD. 

  

Moreover, mutations in NDE1 cause lissencephaly 4, a disorder 

characterized by lissencephaly, severe brain atrophy, 

microcephaly, and severe MR.  

NDE1 mapswithin the genomic region involved in 

the16p13.11 microdeletion/microduplication syndrome, 

which shows comorbidity with ASD, EP, ID, and SCZ.  

 

Inherited CNV (loss) involving DISC1 has been reported 

in patients with ASD and SCZ. 

SNPs in DISC1 in Chinese-Han populations have been 

associated with autism. 

Barkicioglu et al., 2011 

de Kovel et al., 2010 

Hennah et al., 2009 

Hennah and Porteus, 2009 
Pawlisz et al., 2008 

Pinto et al., 2010 

Ullmann et al., 2007 

Williams et al., 2009 
Zheng et al., 2011 

     
     
     
 Patient 51, loss of 8.8 Mb at 2q14.3q21.3 (chr2:127083045-135910585) 

     
 

 

 

ACMSD(-) 

de novo 
 

Tryptophan metabolism 

This gene encoder the aminocarboxymuconate semialdehyde 

decarboxylase. 

Quinolinate is derived from alpha-amino-beta-carboxy-

muconate-epsilon-semialdehyde (ACMS). ACMSD can 

divert ACMS to a benign catabolite and thus prevent the 

accumulation of quinolinate from ACMS. 

 

Moderate expression in postnatal temporal lobe, occipital 

lobe, parietal lobe, prefrontal cortex, and cerebellum 

peduncles. Good expression in thalamus.  

Good expression in monocytes, NK-, T-, and B-cells. 

The essential amino acid tryptophan is not only a precursor of 

serotonin but is also degraded to several other neuroactive 

compounds, including kynurenic acid, 3-hydroxykynurenine 

and quinolinic acid. In particulare, the quinolinate induce a 

neuronal excitotoxin due to its role as a NMDA receptor 

agonist.  

The synthesis of these metabolites is regulated by an enzymatic 

cascade, known as the kynurenine pathway, that is tightly 

controlled by the immune system. Dysregulation of this 

pathway, resulting in hyper-or hypofunction of active 

metabolites, is associated with neurodegenerative and other 

neurological disorders, such as Huntington’s disease, 

Parkinson’s disease and Alzheimer’s disease, as well as with 

psychiatric diseases such as depression and SCZ. 

Mutations and/or CNVs affecting ACMSD have never 

been reported in patients with ASD. 

 

One possible explanation for ASD pathogenesis is the 

modern theory of immunoexcitotoxicity. Indeed, chronic 

microglial activation is present in autistic brains from age 

5 years to age 44 years, which result in an outpouring of 

neurotoxic levels of the excitotoxins, glutamate and 

quinolinic acid. Careful control of brain glutamate levels 

is essential to brain pathway development and excesses 

can result in arrest of neural migration, as well as 

dendritic and synaptic loss. In addition, certain cytokines, 

such as TNF-alpha, can, via its receptor, interact with 

glutamate receptors to enhance the neurotoxic reaction. 

Blaylock, 2008 

Schwarcz et al., 2012 
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Tab. 4.1. Continued. 

ARHGEF4(-) 

de novo 

 
Intracellular signaling: 

RhoA signaling 

implicated in regulation 

of actin cytoskeleton 

dynamics  

This gene encodes the Rho guanine nucleotide exchange 

factor 4.  

Rho GTPases play a fundamental role in numerous cellular 

processes that are initiated by extracellular stimuli that work 

through G protein coupled receptors. ARHGEF4 acts as 

guanine nucleotide exchange factor for RHOA, RAC1 and 

CDC42 GTPases. The APC-ARHGEF4 complex seems to be 

involved in cell migration as well as in E-cadherin-mediated 

cell-cell adhesion.  

 

Very high expression in fetal brain and in postnatal CNS. 

RhoGTPases play a pivotal role in regulating the actin 

cytoskeleton and influence cell polarity, microtubule dynamics, 

membrane-transport pathways, and transcription-factor activity. 

Numerous evidence has implicated RhoGTPases in neuronal 

morphogenesis, including cell migration, axonal growth and 

guidance, dendrite elaboration and plasticity, and synapse 

formation.  

RhoGEFs activate RhoGTPases by catalyzing the exchange of 

bound GDP for GTP, which induces a conformational change in 

the GTP-bound GTPase that allows its interaction with 

downstream effector proteins, thus playing a central role in 

defining the temporal and spatial activation of the corresponding 

GTPase within neuronal cells. 

Recently, a rare small (~450 kb unique sequence) 

recurrent deletion in a previously linked attention-deficit 

hyperactivity disorder (ADHD) locus at 2q21.1 has been 

identified in five unrelated families with developmental 

delay/ID, ADHD, EP and other neurobehavioral 

abnormalities. Moreover, the reciprocal duplications have 

been identified in five unrelated families with autism, 

developmental delay, seizures and ADHD. The 

rearranged segment harbors five genes: GPR148, 

FAM123C, ARHGEF4, FAM168B and PLEKHB2. 

 

RhoGEFs have been previously implicated in human 

genetic disorders: 

- a mutation in the DH domain of FGD1 

GEF cosegregates with faciogenital dysplasia, a 

developmental disorder;  

- mutations in ARHGEF6 are associated with 

X-linked nonsyndromic MR; 

- aberrant EphB/Ephexin5 signaling during the 

development of synapses may contribute to the abnormal 

cognitive function that occurs in Angelman syndrome 

and, possibly, ASD. 

Boguski and McCormick, 1993 

Bourne et al., 1990 
Dharmadhikari et al., 2012 

Etienne-Manneville and Hall, 

2002 

Hart et al., 1994 
Kutsche et al., 2000  

Margolis et al., 2010 

Pasteris et al., 1994 

Verhoeven et al., 2003 

     
 

 

 

 

 

 

BIN1(-) 

de novo 

 
Synaptic function and 

plasticity  

This gene encodes the bridging integrator 1 protein 

(amphiphysin 2), which is a nucleocytoplasmic adaptor 

protein. Isoforms that are expressed in the CNS may be 

involved in synaptic vesicle endocytosis and may interact 

with dynamin, synaptojanin, endophilin, and clathrin. 

Isoforms that are expressed in muscle and ubiquitously 

expressed isoforms localize to the cytoplasm and nucleus and 

activate a caspase-independent apoptotic process. Studies in 

mouse suggest that this gene plays an important role in 

cardiac muscle development. 

 

High expression in fetal brain and in postnatal CNS. 

Amphiphysin is an intracellular protein involved in the synaptic 

vesicle cycle that promotes cleavage of clathrin-coated vesicles 

via binding of its Src homology 3 (SH3)—domain to dynamin. 

Acute blocking of the function of amphiphysin impairs synaptic 

vesicle endocytosis in vitro, leading to alteration of the 

presynaptic architecture with an increased number of clathrin 

coat intermediates and a decrease in the releasable vesicle pool. 

This results in a functionally relevant synaptic transmission 

failure, particularly at higher frequencies. In knockout mice with 

amphiphysin deficiency, stimulus-dependent vesicle recycling is 

reduced, resulting in learning deficits and an increased 

susceptibility to seizures, consistent with reduced CNS 

inhibition. 

In humans, paraneoplastic stiff person syndrome (SPS) is an 

autoimmune disease associated with autoantibodies to 

amphiphysin. One of the symptoms is anxiety and a reduced 

function of GABAergic synapses in amygdalae of stiff patients 

has been recently reported, thus supporting the link between the 

presence of auto-Ab against BIN1 and the perturbation of 

GABAergic signaling.  

 

Defects in BIN1 are the cause of centronuclear myopathy 

autosomal recessive, also known as autosomal recessive 

myotubular myopathy.  

Mutations and/or CNVs affecting BIN1 have never been 

reported in patients with ASD. 

Folli et al., 1993 

Geis et al., 2010 
Wigge and McMahon, 1998 
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Tab. 4.1. Continued. 

CCDC115(-) 

de novo 

 
Neurogenesis 

This gene encodes the coiled-coil domain containing 115 

protein. 

 

Expressed throughout the brain. 

The CCDC115 (or CCP1) gene has been recently identified 

downstream of Fibroblast Growth Factor 2 (FGF2) by 

microarray analysis. The CCP1 transcript is 

up-regulated upon FGF2 stimulation in primary cortical 

neuron culture derived from mouse embryonic telencephalon at 

embryonic day 14.5 (E14.5) and in neuroblastoma cell line, SK-

N-SH. In situ hybridizations revealed that CCP1 is expressed in 

the ventricular zone (VZ), a region of the developing cerebral 

cortex known to be composed of progenitor cells undergoing 

proliferation. 

It has been demonstrated that forced CCP1 expression in mouse 

embryonic fibroblast and neuroblastoma SK-N-SH cell line 

increased cell proliferation, whereas down-regulation of CCP1 

expression by siRNA reduced it, thus suggesting that CCP1 

regulates cell number by promoting proliferation and 

suppressing cell death. 

Mutations and/or CNVs affecting CCDC115 have never 

been reported in patients with ASD. 

McConnell and Kaznowski,  

1991 
Pellicano et al., 2006, 2010 

     

ERCC3(-)  

de novo 

 
DNA repair and 

transcription 

This gene encodes the excision repair cross-complementing 

rodent repair deficiency, complementation group 3 protein. 

ERCC3 is an ATP-dependent DNA helicase that functions in 

nucleotide excision repair and complements xeroderma 

pigmentosum group B mutations. It also is the 89 kDa 

subunit of basal transcription factor 2 (TFIIH) and thus 

functions in class II transcription. 

 

Moderate expression in fetal brain and in postnatal CNS, in 

particular in amygdalae, thalamus and hypothalamus. 

Defects in ERCC3 are the cause of xeroderma pigmentosum 

complementation group B, also known as xeroderma 

pigmentosum group B combined with Cockayne syndrome 

(XP/CS), an autosomal recessive pigmentary skin disorder 

characterized by solar hypersensitivity of the skin, high 

predisposition for developing cancers on areas exposed to 

sunlight and, in some cases, neurological abnormalities. Some 

XP-B patients present features of Cockayne syndrome, 

including dwarfism, sensorineural deafness, microcephaly, MR, 

pigmentary retinopathy, ataxia, decreased nerve conduction 

velocities. 

Furthermore, defects in ERCC3 are a cause of 

trichothiodystrophy photosensitive, an autosomal recessive 

disease characterized by sulfur-deficient brittle hair and nails, 

ichthyosis, MR, impaired sexual development, abnormal facies 

and cutaneous photosensitivity correlated with a nucleotide 

excision repair (NER) defect.  

 

In order to explore the link between the defective gene and the 

neurological deficits in XP/CS, the expression of ERCC3 

mRNA in developing mice by in situ hybridisation was studied. 

ERCC3 was found to be ubiquitously expressed in cells from all 

regions and all developmental stages, from 9 day post-coitum 

embryo, to 15 day post-natal brain. In post-natal brain, regional 

differences in expression correlated with cell density and there 

was no evidence of cell specific or developmental alterations in 

levels of expression. It is possible that the neurological defects 

apparent in XP-B are likely to arise pleiotypically from the 

participation of ERCC3 in interactions with other elements 

involved in particular aspects of neurodevelopmental control.  

Mutations and/or CNVs affecting ERCC3 have never 

been reported in patients with ASD. 
Hubank and Mayne, 1994 
Oh et al., 2006 
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Tab. 4.1. Continued. 

FAM123C(-) 

de novo 

 
Neurodevelopment 

This gene encodes the family with sequence similarity 123C 

protein, which belongs to the FAM123 family. 

 

High expression in cerebellum. 

Recently, the characterizeation of the Wtx/Amer genes 

(FAM123) has been reported during mouse embryonic 

development. The three members of the family, namely Amer1 

(FAM123A), Amer2 (FAM123B) and Amer3 (FAM123C) are 

expressed in a highly overlapping manner, in particular 

concerning neuroectoderm derivatives, yet they also have 

distinct temporal and tissue-specific signatures. 

Amer genes share to a certain extent expression in neurons of 

both central and peripheral nervous systems, and in many neural 

crest derivatives including sensory cranial ganglia, dorsal 

root ganglia, autonomic ganglia, and branchial arches. This 

spatial and temporal overlap of gene expression patterns may 

suggest that one of the original functions of an AMER ancestor 

protein may have been related to the development of the 

nervous system. 

Recently, a rare small (~450 kb unique sequence) 

recurrent deletion in a previously linked attention-deficit 

hyperactivity disorder (ADHD) locus at 2q21.1 has been 

identified in five unrelated families with developmental 

delay/ID, ADHD, EP and other neurobehavioral 

abnormalities. Moreover, reciprocal duplications have 

been identified in five unrelated families with autism, 

developmental delay, seizures and ADHD. The 

rearranged segment harbors five genes: GPR148, 

FAM123C, ARHGEF4, FAM168B and PLEKHB2.  

 

Patients with germline mutations in AMER1 display, in 

addition to the sclerosing skeletal dysplasia, 

CNS malformations, and learning disabilities, pointing 

toward an important role of AMER1 during neurogenesis. 

Comai et al., 2010 

Dharmadhikari et al., 2012 

Jenkins et al., 2009 

     

FAM168B 

(MANI)(-) 

de novo 

 
Neurodevelopment 

This gene encodes the family with sequence similarity 168, 

member B protein, also known as MANI, myelin-associated 

neurite-outgrowth inhibitor. 

 

Good expression in fetal brain and high expression in 

postnatal CNS, in particular in the cortex. 

The protein MANI (myelin-associated neurite-outgrowth 

inhibitor) has been recently described: it localizes to neural 

membranes, promotes differentiation into catecholaminergic 

neurons, and one of its interacting protein is the cell division 

cycle protein 27 (Cdc27). Furthermore, MANI retards neuronal 

axonal growth as a positive effector of the protein Cdc27 

expression and activity, thus suggesting that the novel MANI-

Cdc27-APC pathway may be an important cascade that prevents 

neurons from extending axons, and providing implications for 

the potential treatment of neurodegenerative diseases. 

Recently, a rare small (~450 kb unique sequence) 

recurrent deletion in a previously linked attention-deficit 

hyperactivity disorder (ADHD) locus at 2q21.1 has been 

identified in five unrelated families with developmental 

delay/ID, ADHD, EP and other neurobehavioral 

abnormalities. Moreover, reciprocal duplications have 

been identified in five unrelated families with autism, 

developmental delay, seizures and ADHD. The 

rearranged segment harbors five genes: GPR148, 

FAM123C, ARHGEF4, FAM168B and PLEKHB2.  

Dharmadhikari et al., 2012 

Mishra et al., 2011 

     

GPR17(-) 

de novo 

 
Neurodevelopment 

This gene encodes the G protein-coupled receptor 17. 

 

Moderate expression in fetal brain and high expression in 

postnatal CNS, in particular in amygdalae, thalamus and 

hypothalamus. 

GPR17 is restricted to oligodendrocyte lineage cells in the CNS 

in a developmentally regulated manner. As development 

progress, GPR17 expression is downregulated and 

oligodendrocyte myelination begins. In vitro, GPR17 

overexpression not only blocks differentiation of neural 

progenitor cells into oligodendrocytes but also inhibits terminal 

differentiation of primary oligodendrocytes precursor cells 

(OPCs).  

In transgenic mice, sustained GPR17 overexpression in 

oligodendrocytes results in myelination arrest and 

oligodendrocyte loss. Conversely, GPR17 deletion accelerates 

OPC maturation in vitro and leads to an early-onset of 

myelination in the developing CNS. Taken together these 

data suggest that GPR17 acts to negatively regulate 

oligodendrocyte differentiation and myelination. 

Mutations and/or CNVs affecting GPR17 have never 

been reported in patients with ASD. 
Chen et al., 2009 
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Tab. 4.1. Continued. 

GPR39(-)  

de novo 

 
Intracellular signaling 

This gene encodes the G protein-coupled receptor 39. 

This receptor mediates its action by association with G 

proteins that activate a phosphatidylinositol-calcium second 

messenger system. It is involved in regulation of body 

weight, gastrointestinal mobility, hormone secretion and cell 

death. Zn2+ acts as an agonist. 

 

Good expression in fetal brain and in postnatal thalamus and 

hypothalamus. 

The effects of Zn2+ on synaptic plasticity and neuronal 

excitability, and the effects of Zn2+ deficiency on learning and 

memory in mice and humans have been reported. Moreover, a 

Zn2+-dependent metabotropic activity in hippocampal CA3 

neurons has been detected, which is probably mediated by 

GPR39 that shows a Zn2+ receptor activity. This activity in brain 

areas rich in synaptic Zn2+ may represent the longsought 

link between dynamic changes in extracellular Zn2+ and 

neuronal metabotropic signaling mediated by this metal.  

Mutations and/or CNVs affecting GPR39 have never 

been reported in patients with ASD. 

Besser et al., 2009 

Cole et al., 2000 

Kodirov et al., 2006 

Lopantsev et al., 2003 
Smart et al., 2004 

     

GPR148(-) 

de novo 

 
Neurodevelopment?  

This gene encodes the G protein-coupled receptor 148, which 

is an orphan receptor. 

 

Expression is restricted to nervous system and testis. 

 

Recently, a rare small (~450 kb unique sequence) 

recurrent deletion in a previously linked attention-deficit 

hyperactivity disorder (ADHD) locus at 2q21.1 has been 

identified in five unrelated families with developmental 

delay/ID, ADHD, EP and other neurobehavioral 

abnormalities. Moreover, reciprocal duplications have 

been identified in five unrelated families with autism, 

developmental delay, seizures and ADHD. The 

rearranged segment harbors five genes: GPR148, 

FAM123C, ARHGEF4, FAM168B and PLEKHB2. 

Dharmadhikari et al., 2012 

     

HS6ST1(-) 

de novo 

 
Heparan sulfate 

biosynthesis 

This gene encodes the heparan sulfate 6-O-sulfotransferase 1, 

which is a member of the heparan sulfate biosynthetic 

enzyme family. This enzyme is a type II integral membrane 

protein and is responsible for 6-O-sulfation of heparan 

sulfate. 

 

Specifically expressed in fetal brain. 

Heparan sulfate (HS) interactions with secreted morphogens 

such as fibroblast growth factors, hedgehogs, and Wnts are 

essential for embryonic development. Formation of biologically 

relevant HS structures is a result of the coordinated action of 

various biosynthetic enzymes, of which HS 6-O-

sulfotransferases (6OST) catalyze the transfer of sulfate groups 

to the 6-O position of glucosamine residues in HS.  

Three 6OST isoforms have been described in the mouse whose 

expression has been mapped during mouse organogenesis. 

6OST transcripts are differentially expressed in several sites 

where heparin-binding growth factors are critical for 

development. In particular, 6OST1 is predominantly transcribed 

in epithelial and neural-derived tissues, 6OST2 is more 

mesenchymal, whereas 6OST3 appears at later stages and in a 

more restricted manner. 

 

It has been reported that mutant mice lacking the heparan 

sulfotransferases Hs2st or Hs6st1 display major axon guidance 

defects at the developing optic chiasm and corpus callosum.  

Mutations and/or CNVs affecting HS6ST1 have never 

been reported in patients with ASD. 

 

The association of autism and other symptoms of mental 

impairment with multiple exostoses in patients carrying 

mutations in HS/HSPG genes has been reported.  

More recently, genetic association has been found 

between autism and the HS3ST5 gene encoding one of 

the HS 3-O sulfotransferases in two large cohorts of 

European ancestry. Furthermore, a genome-wide scan for 

rare CNVs in 996 autism cases has identified four 

independent CNVs in the GPC5/GPC6 gene cluster, 

which encodes the glypican-5 and glypican-6 HSPGs in 

tandem array, on chromosome 13q22. 

Bolton et al.,1995 

Conway et al., 2011 
Ethell and Yamaguchi, 1999  

Hsueh and Sheng 1999  

Inatani et al., 2003  

Irie et al., 2012 
Ishikawa-Brush et al., 1997  

Kantor et al., 2004  

Li et al., 2002  

Matsumoto et al., 2007 
Pinto et al., 2010 

Pratt et al., 2006 

Sedita et al., 2004 
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Tab. 4.1. Continued. 

LYPD1(-) 

de novo 

 
Neurodevelopment 

This gene encodes the LY6/PLAUR domain containing 1 

protein. 

 

High expression in fetal brain and in postnatal CNS. 

A large-scale systematic search for secreted proteins identified 

the gene LYPD1 that is encoded at the antisense DNA strand 

corresponding to the genomic locus of GPR39. 

LYPD1 was found highly expressed in all brain regions tested, 

with the highest levels observed in amygdalae and septum. 

However, the expression in peripheral tissues was large enough 

to be readily detected, with the heart showing the highest 

expression outside the CNS. 

The possible role of LYPD1 in regulation GPR39 expression 

must be still clarified. 

Mutations and/or CNVs affecting LYPD1 have never 

been reported in patients with ASD. 

Clark et al., 2003 

Egerod et al., 2007 

McKee et al., 1997 

     
 

 

MAP3K2(-) 

de novo 

 
Intracellular signaling: 

MAP kinase and NF-

kappa B signaling 

pathways 

This gene encodes the mitogen-activated protein kinase 

kinase kinase 2, which is a member of serine/threonine 

protein kinase family. This kinase preferentially activates 

other kinases involved in the MAP kinase signaling pathway. 

This kinase has been shown to directly phosphorylate and 

activate Ikappa B kinases, and thus plays a role in NF-kappa 

B signaling pathway. This kinase has also been found to bind 

and activate protein kinase C-related kinase 2, which 

suggests its involvement in a regulated signaling process. 

 

Moderate expression in fetal brain and in postnatal CNS. 

Moderate expression in immune cell types. 

ERK5, the extracellular signal-regulated kinase 5, is highly 

expressed in developing neurons of the CNS and plays a critical 

role in their survival. ERK5 is activated by neurotrophins 

including brain-derived neurotrophic factor (BDNF) and MEK5 

is known to mediate BDNF stimulation of ERK5 in CNS 

neurons. It has been reported in rat cortical neurons that BDNF 

induces a sustained activation of ERK5 and activates Rap1, a 

small GTPase, as well as MAP3K2 (MEKK2), a MEK5 

kinase.  

 

MAP3K2 directly binds to SH2D2A, which is involved in the 

control of T-cell activation.  

Mutations and/or CNVs affecting MAP3K2 have never 

been reported in patients with ASD. 

 

NF-κB is an important gene transcriptional factor that 

mediates cellular responses in inflammation, immunity, 

development, cell proliferation and apoptosis. Elevated 

levels of NF-κB have been reported in autistic patients vs. 

controls. 

Malik et al., 2011 

Naik et al., 2011 

Philippe et al., 2012  

Sun et al., 2001 
Wang et al., 2006 

     

MGAT5(-) 

de novo 

 
Glycoprotein 

oligosaccharide 

biosynthesis 

This gene encodes the mannosyl (alpha-1,6-)-glycoprotein 

beta-1,6-N-acetyl-glucosaminyltransferase, which belongs to 

the glycosyltransferase family. It catalyzes the addition of 

beta-1,6-N-acetylglucosamine to the alpha-linked mannose of 

biantennary N-linked oligosaccharides present on the newly 

synthesized glycoproteins. It is one of the most important 

enzymes involved in the regulation of the biosynthesis of 

glycoprotein oligosaccharides. Alterations of the 

oligosaccharides on cell surface glycoproteins cause 

significant changes in the adhesive or migratory behavior of 

a cell. Increase in the activity of this enzyme has been 

correlated with the progression of invasive malignancies. 

 

Moderate expression in fetal brain and in postnatal temporal 

lobe, amygdalae and thalamus. 

As known, the CNS is rich in glycoconjugates, located on cell 

surface and in extracellular matrix. The products of Golgi UDP-

GlcNAc:N-acetylglucosaminyltransferases (encoded by Mgat1, 

Mgat2, Mgat4 and Mgat5) act sequentially to generate the 

GlcNAc-branched complex-type N-glycans on glycoprotein 

receptors. 

It has been demonstrated in mice that functional alterations of 

these enzymes cause behavioural changes, suggesting in humans 

a possible role in the neurobiology of feelings and behaviours. 

Indeed, Mgat5(-/-) mice are not different from their wild-type 

littermates in physical and neurological assessments, anxiety 

level, startle reactivity and sensorimotor gating. However, they 

displayed a robust decrease in the immobility time in the forced 

swim test and the tail suspension test independent of locomotor 

activity, interpreted as a reduction in depression-like behavior.  

Mutations and/or CNVs affecting MGAT5 have never 

been reported in patients with ASD. 

 

An association between symptoms of depression and a 

SNP near to MGAT5 and NCKAP5 has been recently 

replicated in two independent samples. 

Luciano et al., 2012 

Soleimani et al., 2008 
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Tab. 4.1. Continued. 

 

NCKAP5(-) 

de novo 

 
Intracellular membrane 

trafficking: regulation of 

actin cytoskeleton 

dynamics 

This gene encodes the NCK-associated protein 5. 

 

Expressed in fetal and adult brain, leukocytes and fetal 

fibroblasts. 

Regulation of actin dynamics through the Nck/N-WASp (neural 

Wiskott-Aldrich syndrome protein)/Arp2/3 pathway is essential 

for organogenesis (including brain development), cell 

invasiveness, T-cell activation, and pathogen infection.  

Mutations and/or CNVs affecting NCKAP5 have never 

been reported in patients with ASD. 

 

A SNP in NCKAP5 has been strongly associated with BD 

in a sample of American individuals of European 

ancestry. Moreover, an association between symptoms of 

depression and a SNP near to MGAT5 and NCKAP5 has 

been recently replicated in two independent samples. 

 

Recessive mutations affecting NCKAP5L have been 

recently identified in an autistic patient.  

Chahrour et al., 2012 

Ditlev et al., 2012 
Luciano et al., 2012 

Smith et al., 2009 

     

PLEKHB2(-) 

de novo 

 
Intracellular signaling 

and trafficking  

This gene encodes the pleckstrin homology domain 

containing, family B (evectins) member 2 protein. 

 

High expression in fetal brain and in postnatal CNS. 

PLEKHB2 (EVT-2) works as a coupling factors between 

extracellular signals and intracellular membrane biosynthesis 

and trafficking. Its pleckstrin homology domain typically binds 

signaling phospholipids that are generated consequent to 

receptor activation.  

 

In mouse studies it has been found that EVT-2 is expressed 

throught fetal and adult brain, except for the white matter where 

EVT-1 shows a specific expression. 

Recently, a rare small (~450 kb unique sequence) 

recurrent deletion in a previously linked attention-deficit 

hyperactivity disorder (ADHD) locus at 2q21.1 has been 

identified in five unrelated families with developmental 

delay/ID, ADHD, EP and other neurobehavioral 

abnormalities. Moreover, reciprocal duplications have 

been identified in five unrelated families with autism, 

developmental delay, seizures and ADHD. The 

rearranged segment harbors five genes: GPR148, 

FAM123C, ARHGEF4, FAM168B and PLEKHB2. 

Dharmadhikari et al., 2012 

Dowler et al., 2000 

Krappa et al., 1999 

     
 

RAB6C(-) 

de novo 

 
Intracellular membrane 

trafficking: regulation of 

actin cytoskeleton 

dynamics 

This gene encodes the RAB6C protein, which is a small 

GTPase and belongs to the RAS oncogene family. 

 

High expression in fetal brain and in postnatal CNS. 

High expression in immune cell types. 

Several members of the Rab family small GTPases that are key 

mediators of membrane trafficking, regulate axon-specific 

trafficking events. For example, Rab17 regulates dendritic 

morphogenesis and postsynaptic development in mouse 

hippocampal neurons. Moreover, Rab17 mediates dendrite 

growth and branching and does not regulate axon growth or 

branching.  

Rab4 and Rab5 GTPases are key players in the regulation of 

endocytosis as recently demonstrated in astrocytes, the most 

abundant glial cells in the brain.  

Mutations and/or CNVs affecting RAB6C have never 

been reported in patients with ASD. 
Mori et al., 2012 
Potokar et al., 2012 
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Tab. 4.1. Continued. 

RAB3GAP1(-) 

de novo 

 
Intracellular membrane 

trafficking 

This gene encodes the RAB3 GTPase activating protein, 

catalytic subunit 1, which forms a heterodimer with a non-

catalytic subunit to specifically regulate the activity of 

members of the Rab3 subfamily of small G proteins. This 

protein mediates the hydrolysis of GTP bound Rab3 to the 

GDP bound form.  

 

Moderate expression in fetal brain and good expression in 

postnatal cortex, caudate nucleus, amygdalae, thalamus, and 

corpus callosum. 

Mutations in this gene are associated with Warburg micro 

syndrome, an autosomal recessive disorder characterized by 

severe ID, microcephaly, congenital cataract, microcornea, 

microphthalmia, agenesis, or hypoplasia of the corpus callosum 

and hypogenitalism. 

 

Synaptic vesicles contain several Rab proteins, including four 

Rab3 isoforms: Rab3A, Rab3B, Rab3C, and Rab3D. Rab3 is 

essential for the normal dynamics of neurotransmitter release 

and to maintain the long-term plasticity include long-term 

potentiation in hippocampal mossy-fiber synapses, cerebellar 

parallel-fiber synapses, corticostriatal and corticothalamic 

synapses, and cortico–lateral amygdalae synapses. In particular, 

recently it has been reported that Rab3B is required for long-

term depression of hippocampal inhibitory synapses which may 

contribute to learning and memory, presumably by stabilizing 

circuits established in previous learning processes. 

Mutations and/or CNVs affecting RAB3GAP1 have never 

been reported in patients with ASD. 

Castro-Alamancos and 

Calcagnotto, 1999  

Fourcaudot et al. 2008  

Linden and Ahn, 1999  
Nicoll and Malenka 1995  

Nicoll and Schmitz 2005  

Salin et al., 1996 

Schlüter et al., 2004 
Schlüter et al., 2006 

Spencer and Murphy 2002  

Südhof ,2004 

Tsetsenis et al., 2011 

     

TUBA3D(-) 

de novo 

 
Neurodevelopment: 

organization of 

microtubule cytoskeleton 

This gene encodes the tubulin, alpha 3d protein, which is a 

member of the alpha tubulin family. Tubulin is a major 

component of microtubules, which are composed of alpha- 

and beta-tubulin heterodimers and microtubule-associated 

proteins in the cytoskeleton. Microtubules maintain cellular 

structure, function in intracellular transport, and play a role in 

spindle formation during mitosis. 

 

High expression in fetal brain and in postnatal CNS. 

It has been demonstrated that prenatal exposure to cocain affects 

CNS development altering, for example, cytoskeleton 

organization through a down-regulation of TUBA3D expression. 

Mutations and/or CNVs affecting TUBA3D have never 

been reported in patients with ASD. 
Lee et al., 2009 

     

TUBA3E(-) 

de novo 

 
Neurodevelopment: 

organization of 

microtubule cytoskeleton 

This gene encodes the tubulin, alpha 3e protein, which is a 

member of the alpha tubulin family. Tubulin is a major 

component of microtubules, which are composed of alpha- 

and beta-tubulin heterodimers and microtubule-associated 

proteins in the cytoskeleton. Microtubules maintain cellular 

structure, function in intracellular transport, and play a role in 

spindle formation during mitosis. 

 

High expression in fetal brain and in postnatal CNS. 

By analogy with other members of the same family, TUBA3E 

may be involved in neurodevelopment. 

Mutations and/or CNVs affecting TUBA3E have never 

been reported in patients with ASD. 
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Tab. 4.1. Continued.  

 Patient 52, gain of 1.4 Mb at 7q11.23 (chr7:72726578-74139390) 
 

 

 

BAZ1B(+) 

de novo 
 

Chromatin remodeling  

This gene encodes the bromodomain adjacent to zinc finger 

domain, 1B protein, which is a member of the bromodomain 

protein family. The bromodomain is a structural motif 

characteristic of proteins involved in chromatin-dependent 

regulation of transcription. This gene is deleted in Williams-

Beuren syndrome, a developmental disorder caused by 

deletion of multiple genes at 7q11.23. 

 

Good expression in fetal brain and in postnatal CNS, in 

particular in cortex, thalamus and spinal cord. 

High expression in immune cell types. 

BAZ1B (WSTF) is a MAPK-dependent phosphoprotein 

(tyrosine-protein kinase) that plays a central role in chromatin 

remodeling and acts as a transcription regulator. It is involved in 

DNA damage response by phosphorylating 'Tyr-142' of histone 

H2AX (H2AXY142ph). H2AXY142ph plays a central role in 

DNA repair and acts as a mark that distinguishes between 

apoptotic and repair responses to genotoxic stress.  

 

It has been reported that during Xenopus laevis embryonic 

development WSTF is expressed differentially in neural tissue, 

especially during neurulae stages in the eye, in neural crest cells 

and the brain. 

BAZ1B maps within the genomic region involved in the 

Williams syndrome (7q11.23 deletion)/7q11.23 

duplication syndrome, which show comorbidity with 

ASD. 

 

Heterozygote (baz1b/-) and homozygote (-/-) mouse 

models show craniofacial abnormalities and cardiac 

malformations but no behavioural anomalies. 

Ashe et al., 2008  
Berg et al., 2007 

Challman et al., 2003 

Cus et al., 2006 

Depienne et al., 2007 
Gillberg and Rasmussen, 1994 

Gosch and Pankau, 1994 

Herguner and Mukaddes, 2006  

Kirchoff et al., 2007 
Klein-Tasman et al., 2009 

Lincoln et al., 2007 

Osborne, 2010 

Oya et al., 2009 
Qiao et al., 2009 

Reiss et al., 1985 

Van der Aa et al., 2009 

Yoshimura et al., 2009 

     

BCL7B(+) 

de novo 

 
IgE autoantigen 

This gene encodes the B-cell CLL/lymphoma 7B protein, 

which is a member of the BCL7 family including BCL7A, 

BCL7B and BCL7C proteins. BCL7B contains a region that 

is highly similar to the N-terminal segment of BCL7A or 

BCL7C proteins. The BCL7A protein is encoded by the gene 

known to be directly involved in a three-way gene 

translocation in a Burkitt lymphoma cell line. 

 

Low expression in fetal brain and good expression in 

postnatal whole brain, in particular in cortex, cerebellum, 

caudate nucleus, and amygdalae.  

High expression in immune cell types.  

Haploinsufficiency of BCL7B may be the cause of certain 

cardiovascular and musculo-skeletal abnormalities observed in 

WBS. 

Moreover, BCL7B causes an allergic reaction in human as it 

acts as an IgE autoantigen in atopic dermatitis patients with 

severe skin manifestations. The BCL7B atopy-related IgE 

autoantigens have been detected in serum bound to IgE 

antibodies, thus suggesting that intracellular IgE autoantigens 

can become released after tissue damage and may occur as IgE 

immune complexes. Via binding to antigen presenting cells as 

well as to effector cells, IgE autoantigen immune complexes 

may contribute to exacerbation and/or perpetuation of severe 

atopic diseases even in the absence of exogenous allergens. 

BCL7B maps within the genomic region involved in the 

Williams syndrome (7q11.23 deletion)/7q11.23 

duplication syndrome, which show comorbidity with 

ASD. 

Berg et al., 2007 

Challman et al., 2003 

Depienne et al., 2007 

Gillberg and Rasmussen, 1994 
Gosch and Pankau, 1994 

Herguner and Mukaddes, 2006  

Kirchhoff et al., 2007 

Klein-Tasman et al., 2009 
Lincoln et al., 2007 

Natter et al., 1998 

Qiao et al., 2009 

Reiss et al., 1985 
Van der Aa et al., 2009  

     

 

CLDN3(+) 

de novo 

 
CNS 

immunosurveillance: 

blood-brain barrier 

maturation through 

Wnt/β-catenin pathway  

This gene encodes the claudin 3 protein, which is a member 

of the claudin family. CLDN3 is an integral membrane 

protein and a component of tight junction strands. Tight 

junctions represent one mode of cell-to-cell adhesion in 

epithelial or endothelial cell sheets, forming continuous seals 

around cells and serving as a physical barrier to prevent 

solutes and water from passing freely through the 

paracellular space.  

 

Low expression in fetal brain and in postnatal CNS, except 

for postnatal cerebellum and amygdalae where the expression 

is good. 

CLDN3 is predominantly present in brain endothelial cells 

(ECs), where it plays a specific role in the establishment and 

maintenance of blood-brain barrier (BBB) tight junction 

morphology.  

A major pathway regulating brain development is the canonical 

Wnt/wingless pathway acting via β-catenin (β-cat) stabilization. 

This favors translocation of β-cat to the nucleus, where it binds 

to transcription factors of the lymphoid enhancer factor (Lef)/T 

cell factor (TCF) family, and thus modulates gene 

transcription.  

Endothelial Wnt/β-cat signaling regulates induction and 

maintenance of BBB characteristics during embryonic and 

postnatal development. Endothelial specific stabilization of β-

cat in vivo enhances barrier maturation, whereas inactivation of 

β-cat causes significant down-regulation of claudin3 (Cldn3), 

upregulation of plamalemma vesicle-associated protein, and 

BBB breakdown. 

CLDN3 maps within the genomic region involved in the 

Williams syndrome (7q11.23 deletion)/7q11.23 

duplication syndrome, which show comorbidity with 

ASD. 

Becanovic et al., 2006 

Berg et al., 2007  
Challman et al., 2003 

Depienne et al., 2007 

Gillberg and Rasmussen, 1994 

Gosch and Pankau, 1994 
Herguner and Mukaddes, 2006  

Kirchhoff et al., 2007 

Klein-Tasman et al., 2009 

Liebner et al., 2008 
Lincoln et al., 2007 

Moon, 2005 

Nitta et al., 2003 

Qiao et al., 2009 
Reiss et al., 1985 

Van der Aa et al., 2009  
Wolburg et al., 2003 
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Tab. 4.1. Continued. 

 

CLDN4(+) 

de novo 

 
CNS 

immunosurveillance: 

blood-brain barrier 

maturation 

This gene encodes the claudin 4, which is an integral 

membrane protein that belongs to the claudin family. The 

protein is a component of tight junction strands and may play 

a role in internal organ development and function during pre- 

and postnatal life.  

 

Very low expression in fetal brain and in postnatal CNS, 

except for postnatal thalamus where the expression is good. 

CLDN4 is a tight junction protein involved in the blood-brain 

barrier integrity. It has been reported that polymorphisms in 

CLDN4 may act as modulators of the phenotype in murine 

Experimental Autoimmune Encephalomyelitis model, which 

mimics the pathophysiology of multiple sclerosis (MS). 

Indeed, the syntenic region in human (7q11.23) has displayed 

suggestive linkage to MS.  

CLDN4  maps within the genomic region involved in the 

Williams syndrome (7q11.23 deletion)/7q11.23 

duplication syndrome, which show comorbidity with 

ASD. 

Berg et al., 2007  
Challman et al., 2003 
Depienne et al., 2007 

Gillberg and Rasmussen, 1994 

Gosch and Pankau, 1994 

Haines et al., 1996 
Herguner and Mukaddes, 2006  

Kirchhoff et al., 2007 

Klein-Tasman et al., 2009 

Lincoln et al., 2007 
Qiao et al., 2009 

Reiss et al., 1985 

Van der Aa et al., 2009  
Wolburg et al., 2003 

     

CLIP2(+) 

de novo 

 
Intracellular trafficking: 

axon growth throught 

microtubule cytoskeleton 

dynamics 

This gene encodes the CAP-GLY domain containing linker 

protein 2, which belongs to the family of cytoplasmic linker 

proteins, which have been proposed to mediate the 

interaction between specific membranous organelles and 

microtubules. This protein was found to associate with both 

microtubules and an organelle called the dendritic lamellar 

body, a membranous organelle predominantly present in 

bulbous dendritic appendages of neurons linked by 

dendrodendritic gap junctions. CLIP2 may operate in the 

control of brain-specific organelle translocations. 

 

High expression in fetal brain and in postnatal CNS. 

CLIP protein enable neuronal polarization by controlling the 

stabilization of microtubules and growth cone dynamics.In 

particular, CLIP2 regulates the cytoskeleton through the 

microtubule network, having a role in cytoskeleton remodeling.  

 

It has been previously reported that mouse models of CLIP2 

exhibited some degree of hippocampal dysfunction as 

evidenced by deficits in contextual fear conditioning and altered 

synaptic plasticity. However, the recently reported Clip2 

hetrozygotes and homozygotes show impaired motor 

coordination on some tasks, but no differences in anxiety 

or amygdalae function, suggesting that CLIP2 may contribute to 

coordination problems in WS but not to the characteristic 

behavioral profile. 

CLIP2 maps within the genomic region involved in the 

Williams syndrome (7q11.23 deletion)/7q11.23 

duplication syndrome, which show comorbidity with 

ASD. 

Berg et al., 2007 

Challman et al., 2003 
Depienne et al., 2007 

Gillberg and Rasmussen, 1994 

Gosch and Pankau, 1994 

Herguner and Mukaddes, 2006  
Hoogenraad et al., 2002, 2004 

Kirchhoff et al., 2007 

Klein-Tasman et al., 2009 

Lincoln et al., 2007 
Neukirchen and Bradke, 2011 

Osborne, 2010 

Qiao et al., 2009 

Reiss et al., 1985 
Van der Aa et al., 2009  

Vandeweyer et al., 2012 

     
 

 

 

 

 

EIF4H(+) 

de novo 

 
Translation regulation 

This gene encodes the eukaryotic translation initiation factor 

4H, which functions to stimulate the initiation of protein 

synthesis at the level of mRNA utilization.  

 

Moderate expression in fetal brain and in postnatal CNS. 

High expression in in immune cell types. 

Protein synthesis is a tightly regulated, energy-consuming 

process. The control of mRNA translation into protein is 

fundamentally important for the fine-tuning of gene expression; 

additionally, precise translational control plays a critical role in 

many cellular processes, including development, cellular 

growth, proliferation, differentiation, synaptic plasticity, 

memory, and learning. 

 

Knockout mice deficient in Eif4h have been recently generated. 

These mice display growth retardation with a significant 

reduction of body weight that began from the first week of 

postnatal development. Neuroanatomical profiling results 

revealed a smaller brain volume in null mice compared with 

controls as well as altered brain morphology, where anterior and 

posterior brain regions were differentially affected. The 

inactivation of Eif4h also led to a reduction in both the number 

and complexity of neurons. Behavioral studies revealed severe 

impairments of fear-related associative learning and memory 

formation, thus suggesting that Eif4h might contribute to certain 

deficits associated with Williams-Beuren syndrome. 

EIF4H maps within the genomic region involved in the 

Williams syndrome (7q11.23 deletion)/7q11.23 

duplication syndrome, which show comorbidity with 

ASD. 

 

Rare single gene mutations in EIF4E have been 

previously reported in a few autistic patients and their 

unaffected fathers. 

Berg et al., 2007 
Capossela et al., 2012 

Challman et al., 2003 

Depienne et al., 2007 

Gillberg and Rasmussen, 1994 
Gosch and Pankau, 1994 

Herguner and Mukaddes, 2006  

Kirchhoff et al., 2007 

Klein-Tasman et al., 2009 
Lincoln et al., 2007 

Neves-Pereira et al., 2009 

Qiao et al., 2009 

Reiss et al., 1985 
Van der Aa et al., 2009  
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Tab. 4.1. Continued. 

 

 

 

FZD9(+) 

de novo 

 
Intracellular Wnt 

signaling pathway 

This gene encodes the frizzled family receptor 9, which is a  

receptor for Wnt signaling proteins.  

Most of frizzled receptors are coupled to the beta-catenin 

canonical signaling pathway, which leads to the activation of 

disheveled proteins, inhibition of GSK- 3 kinase, nuclear 

accumulation of beta-catenin and activation of Wnt target 

genes. FZD9 may be involved in transduction and 

intercellular transmission of polarity information during 

tissue morphogenesis and/or in differentiated tissues. 

 

Good expression in fetal brain and in postnatal CNS. 

Heterozygote and homozygotes mouse models for FZD9 show 

diminished seizure threshold, abnormal hippocampal structure, 

splenomegaly, thymic atrophy, developing B-cell depletion, 

impaired spatial learning and memory.  
Moreover, it has been demonstrated a role for Fzd9 signaling in 

lymphoid development, particularly at points where B cells 

undergo self-renewal prior to further differentiation.  

FZD9 maps within the genomic region involved in the 

Williams syndrome (7q11.23 deletion)/7q11.23 

duplication syndrome, which show comorbidity with 

ASD. 

Berg et al., 2007 

Challman et al., 2003 
Depienne et al., 2007 

Gillberg and Rasmussen, 1994 

Gosch and Pankau, 1994 

Herguner and Mukaddes, 2006  
Kirchhoff et al., 2007 

Klein-Tasman et al., 2009 

Lincoln et al., 2007 

Osborne, 2010 
Qiao et al., 2009 

Ranheim et al., 2005 

Reiss et al., 1985 

Van der Aa et al., 2009  
Zhao et al., 2005 

     
 

 

 

GTF2I(-)* 

de novo 
 

Transcriptional 

regulation 

This gene encodes the general transcription factor II, which is 

a multifunctional phosphoprotein with roles in transcription 

and signal transduction.  

 

High expression in fetal brain and in postnatal CNS. 

High expression in immune cell types. 

The GTF2I and GTF2IRD1 paralogs encode two principal 

members of the TFII-I family of transcription factors. In humans 

haploinsufficiency of these two genes are linked to the facial 

dysmorphism and cognitive defects of Williams syndrome. 

 

Homozygous deletion of Gtf2i in mice causes lethality during 

embryonic development with neural tube closure defects and 

exencephaly, whereas heterozygous animals show no gross 

changes in brain structure or development. Furthermore, 

heterozygous animals show no alterations in learning and 

memory, including spatial memory, but show alterations in the 

recognition of novel objects as well as increased social 

interaction with unfamiliar mice, reminiscent of the 

hypersociability observed in WBS patients. 

GTF21 maps within the genomic region involved in the 

Williams syndrome (7q11.23 deletion)/7q11.23 

duplication syndrome, which show comorbidity with 

ASD. 

 

Two SNPs in GTF2I have recently been associated with 

ASD. 

Berg et al., 2007 

Challman et al., 2003 

Depienne et al., 2007  
Gillberg and Rasmussen, 1994 

Herguner and Mukaddes, 2006 

Klein-Tasman et al., 2009 

Kirchoff et al., 2007 
Licoln et al., 2007 

Makeyev and Bayarsaihan, 2009 

Malenfant et al., 2012 

Osborne, 2010 
Qiao et al., 2009 

Reiss et al., 1985 

Sakurai et al., 2011 

Van der Aa et al., 2009 

     

GTF2IRD1(+) 

de novo 
 

Transcriptional 

regulation 

This gene encodes the GTF2I repeat domain containing 1  

protein, which contains five GTF2I-like repeats and each 

repeat possesses a potential helix-loop-helix (HLH) motif. It 

functions as a transcription factor or as a positive 

transcriptional regulator under the control of Retinoblastoma 

protein.  

 

Moderate expression in fetal brain and in postnatal CNS. 

The Gtf2ird1 mouse showed several phenotypes that overlap 

with Williams-Beuren syndrome (WBS). Both heterozygous 

and homozygous mice exhibited increased social interaction, 

reduced aggression and anxiety and impaired amygdalae-based 

learning and memory, which correlates with the high sociability, 

lack of social anxiety and disinhibition seen in individuals with 

WBS.  

Their hippocampal function appeared to be intact and they had 

no problems with spatial tasks. Serotonin metabolism was also 

altered in the frontal cortex of these mice, and subsequent 

studies have demonstrated selectively enhanced serotonin 

receptor 1A-mediated responses in layer V pyramidal neurons 

of the pre-frontal cortex, suggesting altered neurophysiology. 

GTF2IRD1 maps within the genomic region involved in 

the Williams syndrome (7q11.23 deletion)/7q11.23 

duplication syndrome, which show comorbidity with 

ASD. 

Berg et al., 2007 
Challman et al., 2003 

Depienne et al., 2007  

Gillberg and Rasmussen, 1994 

Herguner and Mukaddes, 2006 
Klein-Tasman et al., 2009 

Kirchoff et al., 2007 

Licoln et al., 2007 

Osborne, 2010 
Proulx et al., 2010 

Qiao et al., 2009 

Reiss et al., 1985 

Schneider et al., 2012  
Van der Aa et al., 2009  
Young et al., 2008  
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Tab. 4.1. Continued. 

LAT2(+) 

de novo 

 
T-cell activation 

This gene encodes the linker for activation of T cell family, 

member 2 protein. 

 

Low expression in fetal brain and in postnatal CNS. 

Very high expression in spleen, peripheral blood 

lymphocytes, and germinal centers of lymph nodes. Present 

in B-cells, NK cells and monocytes. 

T cells are essential for the adaptive immune response to 

pathogens. However, dysfunctional T cell activity has been 

implicated in numerous diseases, including the failure of organ 

transplants, allergic reactions, asthma, autoimmune disorders, 

and coronary artery disease.  

T cell responses to pathogens require the induction of the 

primary activating receptor, the T cell receptor (TCR), along 

with other costimulatory and adhesion receptors. Signal 

transduction pathways activated downstream of these receptors 

drive T cell responses required for the immune response and 

disease progression.  

Upon stimulation of the TCR and other receptors, the LAT 

proteins are phosphorylated at several tyrosines residues on their 

cytoplasmic tails. This leads to the binding of SH2 domain-

containing proteins and their associated molecules and the 

formation of large multiprotein complexes. These dynamic and 

highly regulated signaling complexes facilitate the production of 

second messengers, activate downstream pathways, induce actin 

cytoskeleton polymerization, and stimulate the activity of 

multiple transcription factors. Thus, signaling pathways from 

several receptors feed into LATs, which then integrates this 

information and selectively induces pathways critical for T cell 

activation and the adaptive immune response.  

LAT2 maps within the genomic region involved in the 

Williams syndrome (7q11.23 deletion)/7q11.23 

duplication syndrome, which show comorbidity with 

ASD. 

Bartelt and Houtman, 2012 

Berg et al., 2007 
Challman et al., 2003 

Depienne et al., 2007  

Gillberg and Rasmussen, 1994 

Herguner and Mukaddes, 2006 
Klein-Tasman et al., 2009 

Kirchoff et al., 2007 

Licoln et al., 2007 

Qiao et al., 2009 
Reiss et al., 1985 

Van der Aa et al., 2009  

     

LIMK1(+) 

de novo 

 
Neurodevelopment: 

axon growth throught 

actin cytoskeleton 

dynamics 

This gene encodes the LIM domain kinase 1 protein. 

LIM domains are highly conserved cysteine-rich structures 

containing 2 zinc fingers. LIMK1 is a serine/threonine kinase 

that regulates actin polymerization via phosphorylation and 

inactivation of the actin binding factor cofilin. This protein is 

ubiquitously expressed during development and plays a role 

in many cellular processes associated with cytoskeletal 

structure. This protein also stimulates axon growth and may 

play a role in brain development.  

 

High expression in fetal brain and in postnatal CNS. 

It has been recently reported a novel interaction between 

LIMK1 and TrkB, which is required for the BDNF induced 

axonal elongation. BDNF induces TrkB dimerization, thus 

leading to LIMK1 dimerization and transphosphorylation 

independent of TrkB kinase activity, which could further 

enhance the activation and stabilization of LIMK1.  

Moreover, activated LIMK1 translocates to membrane fraction 

and phosphorylates its substrate cofilin, thus promoted actin 

polymerization and axonal elongation.  

 

Homozygote mice for LIMK1 show abnormal dendrite spine 

morphology, altered hippocampal function, mild deficit in 

spatial learning and memory. Limk1-null mice show altered 

dendritic spine morphology in pyramidal neurons, a 

phenomenon that has previously been associated with other 

genetic disorders involving ID, such as Down, fragile X and 

Rubinstein–Taybi syndromes. 

LIMK1 maps within the genomic region involved in the 

Williams syndrome (7q11.23 deletion)/7q11.23 

duplication syndrome, which show comorbidity with 

ASD. 

Berg et al., 2007 

Challman et al., 2003 
Depienne et al., 2007  

Gillberg and Rasmussen, 1994 

Herguner and Mukaddes, 2006 

Kaufmann and Moser, 2000 
Klein-Tasman et al., 2009 

Kirchoff et al., 2007 

Licoln et al., 2007 

Meng et al., 2002 
Osborne, 2010 

Qiao et al., 2009 

Reiss et al., 1985 

Van der Aa et al., 2009  
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Tab. 4.1. Continued. 

STX1A(+) 
de novo 
 

Synaptic plasticity 

This gene encodes the syntaxin 1A, which is a member of the 

syntaxin superfamily. Syntaxins are nervous system-specific 

proteins implicated in the docking of synaptic vesicles with 

the presynaptic plasma membrane.  

Syntaxins bind synaptotagmin in a calcium-dependent 

fashion and interact with voltage dependent calcium and 

potassium channels via the C-terminal H3 domain. This gene 

product is a key molecule in ion channel regulation and 

synaptic exocytosis.  

 

Very high expression in fetal brain and postnatal CNS. 

STX1A is part of the SNARE core complex containing 

SNAP25, VAMP2 and STX1A.  

 

Hemizygous deletion of STX1A in mice did not produce any 

obvious behavioral or cognitive phenotype, but mice 

homozygous for a truncated form of STX1A had altered synaptic 

plasticity, related to hippocampal dysfunction. 

STX1A maps within the genomic region involved in the 

Williams syndrome (7q11.23 deletion)/7q11.23 

duplication syndrome, which show comorbidity with 

ASD. 

 

SNPs in STX1A have been associated with ASD and HF-

AU. Moreover, in the postmortem anterior cingulate 

gyrus region of autistic patients, STX1A expression was 

found to be significantly lower than that of the control 

group. 

 

SNPs in SNAP25 have been associated to hyperactivity 

phenotype in ASD.  

Berg et al., 2007 

Challman et al., 2003 

Depienne et al., 2007  
Fujiwara et al., 2006 

Ghezzo et al., 2009  
Gillberg and Rasmussen, 1994 

Herguner and Mukaddes, 2006 
Klein-Tasman et al., 2009 

Kirchoff et al., 2007 

Licoln et al., 2007 

McRory et al., 2008 
Nakamura. et al. 2008, 2011 

Qiao et al., 2009 

Reiss et al., 1985 

Van der Aa et al., 2009  

     

TRIM50(-)* 

de novo 

 
Intracellular signaling: 

protein ubiquitination 

pathway 

This gene encodes the tripartite motif protein 50A, which is 

an E3 ubiquitin-protein ligase. 

 

Good expression in fetal brain and in postnatal cingulate 

cortex, cerebellum, amygdalae and spinal cord. 

Trim50 specifically interacts with E2 ubiquitin-conjugating 

enzymes and autoubiquitinates, showing that it can act as an E3 

ubiquitin ligase.Thus hemizygosity of the TRIM50 E3 ubiquitin 

ligase possibly plays a role in the WBS phenotype as the result 

of accumulation of specific TRIM50 target substrates. 
It is unclear how a defective TRIM50 E3 ligase activity could 

influence some of the clinical manifestations of WBS. The 

specific expression of TRIM50 in stomach, intestine, 

liver and brain suggests a possible involvement of 

TRIM50 haploinsufficiency in the gastrointestinal pathologies 

and/or the cognitive profile of WBS patients. 

TRIM50 maps within the genomic region involved in the 

Williams syndrome (7q11.23 deletion)/7q11.23 

duplication syndrome, which show comorbidity with 

ASD. 

 

The protein ubiquitination pathway has been previously 

implicated in ASD. 

Berg et al., 2007 
Challman et al., 2003 

Depienne et al., 2007  

Gillberg and Rasmussen, 1994 

Herguner and Mukaddes, 2006 
Klein-Tasman et al., 2009 

Kirchoff et al., 2007 

Licoln et al., 2007 

Micale et al., 2008 
Qiao et al., 2009 

Reiss et al., 1985 

Van der Aa et al., 2009  

     
      

 
 Patient 53, loss of 11.1 Mb at 2q31.3q32.3 (chr2:181882353-193007633)  

     

FRZB(-) 

de novo 

 
Intracellular Wnt 

signaling 

This gene encodes the frizzled-related protein (SFRP3), 

which is a secreted protein that is involved in the regulation 

of bone development.  

 

Good expression in fetal brain and moderate expression in 

postnatal cerebellum, caudate nucleus, thalamus and spinal 

cord. 

Defects in FRZB are a cause of female-specific osteoarthritis 

susceptibility.  

 

Although FRZB is primarily expressed in the cartilaginous cores 

of the long bone during embryonic and fetal development and in 

the appendicular skeleton, a role in regulating Wnt signaling 

during fetal and postnatal brain development has been proposed.  

Indeed, it has been demonstrated that in postnatal mouse 

cerebral cortex Wnt genes as well as SFRPs (secreted Frizzled-

related proteins) are expressed in gene-specific regional and 

lamina patterns in each of the major subdivisions of the cerebral 

cortex: the olfactory bulb, the hippocampal formation, and the 

neocortex. In particular, FRZB (sFRP3) binds to Wnt3a and acts 

as Wnt-antagonist regulating cell proliferation induced by Wnt 

signaling. 

Recently, epigenetic silencing of FRZB has been detected in 

medulloblastoma sample as well as in other tumors, suggesting 

that SFRP3 functions as a tumor suppressor. For example in 

medulloblastoma, FRZB acts as a melanoma migration and 

invasion suppressor by interfering with Wnt5a signaling.  

Mutations and/or CNVs affecting FRZB have never been 

reported in patients with ASD. 

 

A previous genome-wide screen for autism reported 

strong evidence for linkage to chromosomes 2q (in 

particular 2q32), which was subsequently confirmed 

considering a region of 20-30 cM at 2q31q33. 

Ëkström et al., 2011 

IMGSAC, 2001 
Rabionet et al., 2004 

Shimogori et al., 2004 

Wawrzak et al., 2007 
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GLS(-) 

de novo 

 
CNS metabolism: 

glutamine catabolism 

This nuclear gene encodes the glutaminase 2 protein, which 

is a mitochondrial phosphate-activated glutaminase that 

catalyzes the hydrolysis of glutamine to stoichiometric 

amounts of glutamate and ammonia. It plays an important 

role in the regulation of glutamine catabolism and promotes 

mitochondrial respiration and increases ATP generation in 

cells by catalyzing the synthesis of glutamate and alpha-

ketoglutarate. In addition, it increases cellular anti-oxidant 

function via NADH and glutathione production and may play 

a role in preventing tumor proliferation. 

 

Very high expression in fetal brain and in postnatal CNS. 

Recent research in ASD has aroused interest in anterior 

cingulate cortex and in the neurometabolite glutamate. Using 

single-voxel proton magnetic resonance spectroscopy in vivo it 

has been demonstrated in anterior cingulate cortex of 8 children 

with ASD a significant elevation of glutamate + glutamine (Glx) 

peak compared to 10 typically developing controls, who were 

well matched for age. The hyperglutamatergic state may reflect 

an imbalance of excitation over inhibition in the brain as 

proposed in recent neurodevelopmental models of ASD. 

Mutations and/or CNVs affecting GLS have never been 

reported in patients with ASD. 

 

Anomalies in glutamate metabolism may be one of the 

causes for ASD development. 

 

A previous genome-wide screen for autism reported 

strong evidence for linkage to chromosomes 2q (in 

particular 2q32), which was subsequently confirmed 

considering a region of 20-30 cM at 2q31q33. 

Bejjani et al., 2012 
IMGSAC, 2001 

Rabionet et al., 2004 

Shimmura et al., 2011 

     

GULP1(-) 

de novo 

 
Neurodevelopment 

This gene encodes the GULP, engulfment adaptor PTB 

domain containing 1 protein, which is an adapter protein 

necessary for the engulfment of apoptotic cells by 

phagocytes. Several transcript variants, some protein coding 

and some thought not to be protein coding, have been found 

for this gene. 

 

Good expression in fetal brain and moderate expression in 

postnatal CNS, except for cerebellum where the expression is 

low. 

It has been demonstrated that GULP1 is present in human 

hippocampal and neocortical neurons, where it interacts with the 

low-density lipoprotein receptor-related protein 1, LRP1, 

suggesting a potential relevance in Alzheimer's disease (AD). 

Moreover, GULP1 binds to the amyloid-β A4 precursor protein 

(APP). APP and its secreted form, sAPP, contribute to the 

development of neurons in hippocampus, a brain region critical 

for learning and memory.  

GULP1 colocalizes with APP in the Golgi and endoplasmic 

reticulum, and alters trafficking and processing of APP. 

Mutations and/or CNVs affecting GULP1 have never 

been reported in patients with ASD. 

 

A previous genome-wide screen for autism reported 

strong evidence for linkage to chromosomes 2q (in 

particular 2q32), which was subsequently confirmed 

considering a region of 20-30 cM at 2q31q33. 

Beyer et al., 2012 

Billnitzer et al., 2012 

IMGSAC, 2001 

Rabionet et al., 2004 

     

HIBCH(-) 

de novo 

 
CNS metabolism: amino 

acid degradation 

This nuclear gene encodes the 3-hydroxyisobutyryl-CoA 

hydrolase protein, which is a mitochondrial enzyme 

responsible for hydrolysis of both HIBYL-CoA and beta-

hydroxypropionyl-CoA. It is involved in L-valine 

catabolism. 

 

Moderate expression in fetal brain and in postnatal caudate 

nucleus, amygdalae, thalamus, corpus callosum, and spinal 

cord. 

Mutations in this gene have been associated with 3-

hyroxyisobutyryl-CoA hydrolase deficiency. 

 

Defects in HIBCH are the cause of HIBCH deficiency, also 

known as deficiency of beta- hydroxyisobutyryl CoA deacylase 

or methacrylic aciduria. The enzyme defect results in 

accumulation of methacrylyl-CoA, a highly reactive compound, 

which readily undergoes addition reactions with free sulfhydryl 

groups. Affected individuals showed delayed development of 

motor skills, hypotonia, initial poor feeding, and a deterioration 

in neurological function during first stages of life. 

 

Recently, it has been reported the identification of six potential 

regulators of synaptic and axonal degeneration in vivo, 

including HIBCH, using mutant Drosophila lines, thus 

suggestimg that pathways not previously linked to synaptic 

formation, such as valine catabolism, may be involved in 

neurodevelopment. 

Mutations and/or CNVs affecting HIBCH have never 

been reported in patients with ASD. 

 

A previous genome-wide screen for autism reported 

strong evidence for linkage to chromosomes 2q (in 

particular 2q32), which was subsequently confirmed 

considering a region of 20-30 cM at 2q31q33. 

IMGSAC, 2001 
Loupatty et al., 2007 

Rabionet et al., 2004 

Wishart et al., 2012 
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Tab. 4.1. Continued. 

INPP1(-) 

de novo 

 
Intracellular 

phosphatidylinositol 

signaling  

This gene encodes the inositol polyphosphate-1-phosphatase 

protein, which is one of the enzymes involved in 

phosphatidylinositol signaling pathway. This enzyme 

removes the phosphate group at position 1 of the inositol ring 

from the polyphosphates inositol 1,4-bisphosphate and 

inositol 1,3,4-trisphophosphate. 

 

Good expression in fetal brain and in postnatal CNS. 

Inositol and phosphatidylinositol phosphates are important 

for numerous cellular processes: neuronal survival, 

differentiation, neuroprotection, and transduction of signals 

from growth factors, neurotransmitters, and G protein 

coupled receptors.  

Mutations and/or CNVs affecting INPP1 have never been 

reported in patients with ASD. 

 

SNPs in genes implicated in phosphatidylinositol 

signaling pathway, suc as INPP1, PIK3CG, and TSC2 

have been previously associated with ASD, suggesting 

that phosphatidylinositol signaling may have a role in 

susceptibility to autism. 

 

A previous genome-wide screen for autism reported 

strong evidence for linkage to chromosomes 2q (in 

particular 2q32), which was subsequently confirmed 

considering a region of 20-30 cM at 2q31q33. 

Berridge, 1993 
Czech, 2000 

Delmas et al., 2002  

IMGSAC, 2001 

Rabionet et al., 2004 
Serajee et al., 2003 

     

ITGA4(-) 

de novo 

 
Neuroinflammation : 

focal adesion, leukocyte 

transendothelial 

migration 

This gene encodes the integrin, alpha 4 protein, which 

belongs to the integrin alpha chain family of proteins. 

Integrins are heterodimeric integral membrane proteins 

composed of an alpha chain and a beta chain. This gene 

encodes an alpha 4 chain. Unlike other integrin alpha chains, 

alpha 4 neither contains an I-domain, nor undergoes 

disulfide-linked cleavage.  

 

Good expression in fetal brain and in postnatal CNS, in 

particular in thalamus and corpus callosum. 

Very high expression in immune cell types. 

In experimental autoimmune encephalomyelitis, a model for 

multiple sclerosis, it has been recently reported that in vitro 

migration of CD8(+) T lymphocytes across blood-brain barrier-

endothelial cells is dependent on α4 integrin, which is 

considered a mediator of neuroinflammation. 

Mutations and/or CNVs affecting ITGA4 have never been 

reported in patients with ASD. 

 

SNPs in ITGA4 have been associated with ASD. 

Moreover, a positive association was found between one 

of these SNP markers and levels of a serum autoantibody 

directed to brain tissue, which was previously shown to 

be significantly more frequent in autistic patients than in 

age-matched controls, thus suggesting that ITGA4 could 

be involved in a neuroimmune process thought to occur in 

autistic patients. 

 

A previous genome-wide screen for autism reported 

strong evidence for linkage to chromosomes 2q (in 

particular 2q32), which was subsequently confirmed 

considering a region of 20-30 cM at 2q31q33. 

Conroy et al., 2009 

Correia et al., 2009 

Ifergan et al., 2011 
IMGSAC, 2001 

Rabionet et al., 2004 

     

NAB1(-) 

de novo 

 
Transcriptional 

regulation 

This gene encodes the NGFI-A binding protein 1, which acts 

as a transcriptional repressor for zinc finger transcription 

factors EGR1 and EGR2. 

 

Moderate expression in fetal brain and good expression in 

postnatal CNS, in particular in cortex, cerebellum, corpus 

callosum and spinal cord. 

The early growth response protein 1, EGR1, is a transcriptional 

switch that regulates a number of diverse gene targets. It is 

strongly expressed in neurons in the adult brain, and its levels 

are altered by neurotransmitter release and neuronal activation. 

It can also exert long-lasting changes in gene expression and 

subsequent protein synthesis that mediate synaptic plasticity. 

EGR1 has been implicated in mediating a variety of behaviors 

that are dysregulated in MDD, including learning and memory, 

fear conditioning, drug addiction, and social interaction.  
 

The early growth response gene 2 (EGR2) is one of the 

susceptibility loci in BD. EGR2 is involved in cognitive 

function, myelination, and signal transduction related to 

neuregulin-ErbB receptor, Bcl-2 family proteins, and brain-

derived neurotrophic factor. SNPs in EGR2 have been 

associated to BD in a Korean sample. 

Mutations and/or CNVs affecting NAB1 have never been 

reported in patients with ASD. 

 

A previous genome-wide screen for autism reported 

strong evidence for linkage to chromosomes 2q (in 

particular 2q32), which was subsequently confirmed 

considering a region of 20-30 cM at 2q31q33. 

Cole et al., 1989 
IMGSAC, 2001 

Kerman et al., 2012 

Kim et al., 2012 

Knapska and Kaczmarek, 2004  
Malkani et al., 2004  

Rabionet et al., 2004 

Ressler et al., 2002 

Stack et al., 2010 
Valjent et al., 2006  
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Tab. 4.1. Continued. 

NCKAP1(-) 

de novo 

 
Neuronal differentation: 

actin cytoskeleton 

organization  

This gene encodes the NCK-associated protein 1. 

 

Very high expression in fetal brain and in postnatal CNS. 

NCKAP1 (Nap1) is an adaptor protein that is thought to 

modulate actin nucleation by forming a pentameric complex 

with WAVE, PIR121, Abi1/2 and HSPC300. It is selectively 

expressed in the cortical plate region of the developing cortex, 

where neurons terminate their migration and begin their final 

laminar specific differentiation, characterized by the 

elaboration of distinct axonal and dendritic architecture. 

Functional analysis of Nap1 indicate that Nap1-mediated 

cytoskeletal rearrangements in the emerging cortical plate play 

an essential role in cortical neuronal differentiation underlying 

the formation of functional connectivity in cerebral cortex. 

Mutations and/or CNVs affecting NCKAP1 have never 

been reported in patients with ASD. 

 

A previous genome-wide screen for autism reported 

strong evidence for linkage to chromosomes 2q (in 

particular 2q32), which was subsequently confirmed 

considering a region of 20-30 cM at 2q31q33. 

Baumgartner et al., 1995  
Bladt et al., 2003 

Bogdan and Klambt, 2003 

Hummel et al., 2000 

IMGSAC, 2001 
Rabionet et al., 2004 

Soto et al., 2002 

Stradal et al., 2004 
Suzuki et al., 2000 

Yokota et al., 2007 

     

NEUROD1(-) 

de novo 

 
Transcriptional 

regulation 

This gene encodes the neurogenic differentiation 1 protein, 

which is a member of the NeuroD family of basic helix-loop-

helix (bHLH) transcription factors. The protein forms 

heterodimers with other bHLH proteins and activates 

transcription of genes that contain a specific DNA sequence 

known as the E-box. It regulates expression of the insulin 

gene, and mutations in this gene result in type II diabetes 

mellitus. 

 

Very high expression in fetal brain and in postnatal CNS. 

 

Mutations and/or CNVs affecting NEUROD1 have never 

been reported in patients with ASD. 

 

A previous genome-wide screen for autism reported 

strong evidence for linkage to chromosomes 2q (in 

particular 2q32), which was subsequently confirmed 

considering a region of 20-30 cM at 2q31q33. 

IMGSAC, 2001 
Rabionet et al., 2004 

     

ORMDL1(-) 

de novo 

 
Neurodevelopment? 

This gene encodes the ORM1-like 1 (S. cerevisiae) protein, 

which is a negative regulator of sphingolipid synthesis. 

 

Expressed in brain. 

By using an antibody specific for the C-terminus the expression 

of ORMDL1 (adoplin-1) has been determined in cultured 

neuronal cells and human brain tissues. Immunohistochemical 

analyses disclosed that adoplin proteins are primarily expressed 

in the neurons of cerebral cortices. Moreover, adoplin is 

localized mainly in the cell bodies and neurites of primary 

cortical neurons, which shows possible role(s) in nerve cells. 

Mutations and/or CNVs affecting ORMDL1 have never 

been reported in patients with ASD. 

 

A previous genome-wide screen for autism reported 

strong evidence for linkage to chromosomes 2q (in 

particular 2q32), which was subsequently confirmed 

considering a region of 20-30 cM at 2q31q33. 

Araki et al., 2008 

IMGSAC, 2001 

Rabionet et al., 2004 

     

PDE1A(-) 

de novo 

 
Intracellular cAMP 

signaling 

This gene encodes the phosphodiesterase 1A, calmodulin-

dependent protein. Cyclic nucleotide phosphodiesterases 

(PDEs) play a role in signal transduction by regulating 

intracellular cyclic nucleotide concentrations through 

hydrolysis of cAMP and/or cGMP to their respective 

nucleoside 5-prime monophosphates.  

 

Good expression in fetal brain and in postnatal CNS, in 

particular in amygdalae, corpus callosum, and spinal cord. 

It has been reported that intracranial self-stimulation to the 

murine lateral hypothalamus, a memory improving treatment, 

results in hippocampal changes in gene expression. For 

example, the PDE1A gene is overexpressed, suggesting a role of 

the intracellular calcium signaling in the development and 

improvement of cognitive function, by promoting 

neuroplasticity. 

Mutations and/or CNVs affecting PDE1A have never 

been reported in patients with ASD. 

 

A previous genome-wide screen for autism reported 

strong evidence for linkage to chromosomes 2q (in 

particular 2q32), which was subsequently confirmed 

considering a region of 20-30 cM at 2q31q33. 

Huguet et al., 2009 

IMGSAC, 2001 

Rabionet et al., 2004 
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Tab. 4.1. Continued. 

STAT1(-) 

de novo 

 
Modulation of 

neuroinflammation: 

intracellular STAT 

signaling 

This gene encodes the signal transducer and activator of 

transcription 1.91kDa protein, which is a member of the 

STAT protein family. In response to cytokines and growth 

factors, STAT family members are phosphorylated by the 

receptor associated kinases, and then form homo- or 

heterodimers that translocate to the cell nucleus where they 

act as transcription activators. This protein can be activated 

by various ligands including interferon-alpha, interferon-

gamma, EGF, PDGF and IL6. This protein mediates the 

expression of a variety of genes, which is thought to be 

important for cell viability in response to different cell 

stimuli and pathogens. 

 

Moderate expression in fetal brain and in postnatal CNS. 

High expression in immune cell types.  

The strong inflammatory response observed in 

neurodegenerative diseases can depend on the impairment of the 

endogenous control of microglial activation, triggering the 

release of potentially detrimental factors such as cytokines, 

nitric oxide (NO) and superoxide anion (O2
-).  

By studying microglial and mixed glial cell cultures activation 

from neonatal rats after exposure to IFN-gamma and/or IL-1beta 

and TNF-alpha, it has been proposed that IL-1beta modulates 

IFN-gamma-induced production of oxidative molecules through 

cross talk between STAT1 and MAPK pathways, regulating the 

amplitude and duration of microglial activation. Modulation of 

ERK was observed at 30 min, whereas inhibition of pSTAT was 

observed later (at 4 h), indicating that it was an early and 

transient phenomenon. 

 

Mutations in STAT1causes the mendelian susceptibility to 

mycobacterial disease (autosomal dominant, recessive and X-

linled), and the familial candidiasis type 7(autosomal dominant). 

Mutations and/or CNVs affecting STAT1 have never been 

reported in patients with ASD. 

 

A previous genome-wide screen for autism reported 

strong evidence for linkage to chromosomes 2q (in 

particular 2q32), which was subsequently confirmed 

considering a region of 20-30 cM at 2q31q33. 

IMGSAC, 2001 
Rabionet et al., 2004 

Tichauer et al., 2007 

     
     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     



133 

 

Tab. 4.1. Continued. 

STAT4(-) 

de novo 

 
Modulation of 

neuroinflammation: 

intracellular STAT 

signaling 

This gene encodes the signal transducer and activator of 

transcription 4 protein, which is a member of the STAT 

family of transcription factors. In response to cytokines and 

growth factors, STAT family members are phosphorylated 

by the receptor associated kinases, and then form homo- or 

heterodimers that translocate to the cell nucleus where they 

act as transcription activators. This protein is essential for 

mediating responses to IL12 in lymphocytes, and regulating 

the differentiation of T helper cells.  

 

Low expression in fetal brain and good expression in 

postnatal cortex, amygdalae and thalamus. 

Genetic variations in STAT4 are a cause of susceptibility to 

systemic lupus erythematosus and rheumatoid arthritis. 

 

Inflammatory cytokines are implemented in the pathogenesis of 

experimental autoimmune encephalomyelitis (EAE), an animal 

model of multiple sclerosis. Moreover, the glia maturation 

factor (GMF), a brain protein, induces expression of 

proinflammatory cytokine/chemokine in the central nervous 

system, and GMF-deficient (knockout) mice are relatively 

resistant to EAE development after immunization with 

encephalitogenic MOG peptide. 

The expression evaluation of six murine STAT genes, which are 

known to regulate the cytokine-dependent signal transduction 

pathways in autoimmune inflammation, in the brains and spinal 

cords of wild type and GMF-knockout mice, revealed that the 

expressions of STAT1, STAT2, STAT3, STAT4, STAT5, and 

STAT6 genes were significantly upregulated in the wild type 

mice exhibiting EAE symptoms. Therefore, a significant 

suppression of STATs expression in GMF-knockout mice 

suggests GMF as an upstream effector of JAK/STAT signaling. 

 

In order to identify the molecular mechanisms underlying the 

pathological processes in multiple sclerosis, the gene expression 

profile in non-lesion containing tissue, the so-called normal-

appearing white matter, has been studied. Genes known to be 

involved in anti-inflammatory and protective mechanisms such 

as STAT6, JAK1, IL-4R, IL-10, Chromogranin C and Hif-1alpha 

are consistently upregulated in the multiple sclerosis NAWM, 

and are mainly expressed in oligodendrocytes. On the other 

hand, genes involved in pro-inflammatory mechanisms, such as 

STAT4, IL-1beta and MCSF, were also upregulated but less 

regularly. STAT4 expression was detected predominantly in 

microglia. 

Therefore, the upregulation of genes involved in anti-

inflammatory mechanisms driven by oligodendrocytes may 

protect the CNS environment and thus limit lesion formation, 

whereas the activation of pro-inflammatory mechanisms in 

microglia may favour disease progression.  

Mutations and/or CNVs affecting STAT4 have never been 

reported in patients with ASD. 

 

A previous genomewide screen for autism reported strong 

evidence for linkage to chromosomes 2q (in particular 

2q32), which was subsequently confirmed considering a 

region of 20-30 cM at 2q31q33. 

IMGSAC, 2001 
Rabionet et al., 2004 

Zaheer et al., 2007 

Zeis et al., 2008 
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Tab. 4.1. Continued. 

TMEFF2(-) 

de novo 

 
Neurodevelopment 

This gene encodes thetransmembrane protein with EGF-like 

and two pollistatin-like domains. 

 

High expression in fetal brain and in postnatal CNS, with 

highest level in amygdalae and corpus callosum. 

TMEFF2 is a putative transmembrane protein whose survival 

effect has been measured using primary cultured neurons from 

several regions of fetal rat brain following treatment with a 

recombinant TMEFF2 protein fragment consisting of the 

putative extracellular domain. It has been reported that TMEFF2 

increased survival of neurons from the hippocampus and 

midbrain, but not from the cerebral cortex, indicating that the 

survival effects of TMEFF2 are specific to certain cell types. 

Recombinant TMEFF2 also promoted survival of 

mesencephalic dopaminergic neurons.  

Furthermore, using in situ hybridization analysis it has been 

found that both TMEFF genes are widely expressed in rat brain, 

although they exhibit different patterns of expression, 

suggesting that they have specific roles in the CNS. In 

particular, TMEFF2 is highly expressed in the medial habenular, 

CA2, CA3 and dentate gyrus region of the hippocampus, corpus 

callosum, cerebellar cortex and cranial nerve nuclei (III, IV, 

VII, X, XII).  

Mutations and/or CNVs affecting TMEFF2 have never 

been reported in patients with ASD. 

 

A previous genome-wide screen for autism reported 

strong evidence for linkage to chromosomes 2q (in 

particular 2q32), which was subsequently confirmed 

considering a region of 20-30 cM at 2q31q33. 

Horie et al., 2000 

IMGSAC, 2001 

Kanemoto et al., 2001  
Rabionet et al., 2004 

     

UBE2E3(-) 

de novo 

 
Intracellular signaling: 

protein ubiquitination 

pathway 

This gene encodes the ubiquitin-conjugating enzyme E2E3. 

Ubiquitination involves at least three classes of enzymes: 

ubiquitin-activating enzymes, or E1s, ubiquitin-conjugating 

enzymes, or E2s, and ubiquitin-protein ligases, or E3s. This 

gene encodes a member of the E2 ubiquitin-conjugating 

enzyme family. 

 

Good expression in fetal brain and moderate expression in 

postnatal CNS. 

Mutations and/or CNVs involving other E3 ligase genes have 

been reported in patients with ASD. 

Mutations and/or CNVs affecting UBE2E3 have never 

been reported in patients with ASD. 

 

The protein ubiquitination pathway has been previously 

implicated in ASD. 

 

A previous genome-wide screen for autism reported 

strong evidence for linkage to chromosomes 2q (in 

particular 2q32), which was subsequently confirmed 

considering a region of 20-30 cM at 2q31q33. 

Bonati et al., 2007 

Glessner et al., 2009 
IMGSAC, 2001 

Kishino et al., 1997 

Matsuura et al., 1997 

Rabionet et al., 2004 
Sahoo et al., 2006 

Scheuerle and Wilson, 2011 

Smith et al., 2011 

Trillingsgaaard and Østergaard, 
2004 

     

ZNF804A(-) 

de novo 
 

Transcriptional 

regulation 

This gene encodes the zinc finger protein 804A. 

 

High expression in fetal brain, especially in the developing 

hippocampus and the cortex, and good expression in 

postnatal CNS, in particular in adult cerebellum. 

 

A CNV affecting ZNF804A has been recently reported in 

a patient with ASD. 

 

SNP in ZNF804A (rs1344706) has been associated to a 

higher risk to develop BD and SCZ, affecting both brain 

volume and neural connettivity. 

 

A previous genome-wide screen for autism reported 

strong evidence for linkage to chromosomes 2q (in 

particular 2q32), which was subsequently confirmed 

considering a region of 20-30 cM at 2q31q33. 

Griswold et al., 2012 

IMGSAC, 2001 

Rabionet et al., 2004 

Johnson et al, 2009 
Lencz et al., 2010 

O’Donovan et al., 2008 

Owen et al., 2009 

Rabionet et al., 2004 
Talkowski et al., 2012 

Wassink et al., 2012 
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Tab. 4.1. Continued. 

 

 Patient 57, gain of 3.8 Mb at 5q31.1q31.2 (chr5:133871536-137708167) 

 

 

 

 

CAMLG(+) 

de novo 
 

Synaptogenesis and 

synaptic plasticity 

This gene encodes the calcium modulating ligand protein.  

The immunosuppressant drug cyclosporin A blocks a 

calcium-dependent signal from the T-cell receptor (TCR) that 

normally leads to T-cell activation. When bound to 

cyclophilin B, cyclosporin A binds and inactivates the key 

signaling intermediate calcineurin. The protein encoded by 

this gene functions similarly to cyclosporin A, binding to 

cyclophilin B and acting downstream of the TCR and 

upstream of calcineurin by causing an influx of calcium. This 

integral membrane protein appears to be a new participant in 

the calcium signal transduction pathway, implicating 

cyclophilin B in calcium signaling, even in the absence of 

cyclosporine. 

 

High expression in fetal brain and in postnatal CNS, in 

particular in caudate nucleus and amygdalae. 

High expression in immune cell types. 

CAMLG was first identified as a cyclophilin B binding protein 

and shown to implicate cyclophilin B in the calcium signal 

transduction pathway in T cell activation.  

CAMLG is reported to be involved in recycling and endocytic 

processing of GABAA receptors. In a cortical culture it has 

been demonstrated that the reduction of CAMLG translated into 

reduced GABAA receptors on the postsynaptic membrane with 

an effect specific to GABAA receptors since glutamate evoked 

current remained unaltered in these neurons.  

CAMLG binds to Tmub1, which is a protein containing a 

ubiquitin-like domain highly expressed in the nervous 

system. These proteins could work in concert to regulate cycling 

of receptors, such as GABA and glutamate receptors, to 

synaptic membranes. 

Mutations and/or CNVs affecting CAMLG have never 

been reported in patients with ASD. 

Bram and Crabtree, 1994 

Yuan et al., 2008 

Zhang et al., 2010 

     

C5orf20 

(DCNP1)(+) 

de novo 

 
T-cell activation, 

regulation of the 

corticotropin-releasing 

hormone in the brain 

This gene encodes the dendritic cell nuclear protein 1. It is 

specifically expressed in dendritic cells (DCs), which are 

potent antigen-presenting cells involved in activating naive T 

cells to initiate antigen-specific immune response. 

 

Moderate expression in fetal brain and good expression in 

postnatal CNS, in particular in thalamus and hypothalamus. 

Good expression in dendritic cells. 

In situ hybridization experiments have recently found a 

widespread distribution of DCNP1 expression in the human 

brain at both the mRNA and protein levels as well as in the 

microglial cells. Furthermore, DCNP1 is higher expressed in 

neurons of the paraventricular nucleus and supraoptic nucleus in 

patients with depression compared with controls. 

 

DCNP1 may play a role in the pathogenesis of the depressive 

disorder by upregulating the CRH (corticotropin-releasing 

hormone) promoter in the paraventricular nucleus. CRH neurons 

are the driving force for the hypothalamic-pituitary-adrenal axis, 

which is the final common pathway for the stress response and 

also a crucial system in the pathogenesis of depression. 

Mutations and/or CNVs affecting C5orf20 have never 

been reported in patients with ASD. 

 

A 1.2 Mb region of chromosome 5q31, including 

DCNP1, was previously identified in a genome-wide 

linkage analysis for autism. 

 

DCNP1 has been proposed to be a novel candidate gene 

for major depression and this finding has been recently 

replicated. 

Bosker et al., 2011 
Philippi et al., 2005  

Willis-Owen et al., 2006 

Zhou et al., 2010 

     
 

 

CDC23(+) 

de novo 

 
Intracellular signaling:  

protein ubiquitination 

pathway 

This gene encodes the cell division cycle 23 homolog (S. 

cerevisiae) protein, which is essential for cell cycle 

progression through the G2/M transition. This protein is a 

component of anaphase-promoting complex (APC), which is 

composed of eight protein subunits and highly conserved in 

eukaryotic cells.  

 

Moderate expression in fetal brain and low expression in 

postnatal CNS. 

High expression in immune cell types. 

CDC23 is a component of the anaphase promoting 

complex/cyclosome (APC/C), a cell cycle-regulated E3 

ubiquitin ligase that controls progression through mitosis and 

the G1 phase of the cell cycle. The APC/C complex acts by 

mediating ubiquitination and subsequent degradation of target 

proteins. In particular, APC catalyzes the formation of cyclin B-

ubiquitin conjugate that is responsible for the ubiquitin-

mediated proteolysis of B-type cyclins. 

 

In Drosophila loss of zygotic expression of cdc23 causes defects 

in the proliferation of brain neuroblasts and results in the 

absence of identified neuronal lineages in the central and 

peripheral nervous systems.  

Mutations and/or CNVs affecting CDC23 have never 

been reported in patients with ASD. 

 

The protein ubiquitination pathway has been previously 

implicated in ASD. 

Glessner et al., 2009 
Kishino et al., 1997 

Matsuura et al., 1997 

Zhang et al., 1991 
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Tab. 4.1. Continued. 

 

 

 

CDC25C(+) 

de novo 

 
Intracellular signaling: 

regulation of cell cycle 

progression 

This gene encodes the cell division cycle 25 homolog C (S. 

pombe) protein, is highly conserved during evolution and it 

plays a key role in the regulation of cell division. The 

encoded protein is a tyrosine phosphatase and belongs to the 

Cdc25 phosphatase family. It directs dephosphorylation of 

cyclin B-bound CDC2 and triggers entry into mitosis. It is 

also thought to suppress p53-induced growth arrest. 

 

Moderate expression in fetal brain and low expression in 

postnatal CNS, except for cortex where expression is high. 

High expression in immune cell types. 

CDC25C functions as a dosage-dependent inducer in mitotic 

control, directly dephosphorylating CDK1 and activating its 

kinase activity. 

 

In early animal development, cell proliferation and 

differentiation are tightly linked and coordinated. In Xenopus 

laevis, four isoforms of cdc25 have been identified: cdc25A, 

cdc25B, cdc25C and cdc25D. These isoforms show a specific 

temporal and spatial expression: cdc25A and cdc25C are 

expressed both maternally and zygotically, whereas cdc25B and 

cdc25D are expressed zygotically. Both cdc25A and cdc25C are 

expressed mainly in prospective neural regions, whereas cdc25B 

is expressed preferentially in the CNS, such as the spinal cord 

and the brain. Interestingly, cdc25D is expressed in the 

epidermal ectoderm of the late-neurula embryo, and in the liver 

diverticulum endoderm of the mid-tailbud embryo.  

Mutations and/or CNVs affecting CDC25C have never 

been reported in patients with ASD. 
Nakajo et al., 2011 

     

CXCL14(+) 

de novo 
 

Homeostasis of 

monocyte-derived 

macrophages, 

synaptic plasticity 

mediated by chemokine 

signaling 

This gene encodes the chemokine (C-X-C motif) ligand 14 

protein. It belongs to the cytokine gene family which encode 

secreted proteins involved in immunoregulatory and 

inflammatory processes. The protein encoded by this gene is 

structurally related to the CXC (Cys-X-Cys) subfamily of 

cytokines. It has been implicated that this cytokine is 

involved in the homeostasis of monocyte-derived 

macrophages rather than in inflammation. 

 

Moderate expression in fetal brain and high expression in 

postnatal CNS, except for cerebellum. 

Very low expression in immune cell types. 

CXCL14 is a member of the CXC chemokine family. CXCL14 

possesses chemoattractive activity for activated macrophages, 

immature dendritic cells and natural killer cells. 

CXCL14-deficient mice do not exhibit clear immune system 

abnormalities, suggesting that the function of CXCL14 can be 

compensated for by other chemokines.  

 

It has been recently reported that CXCL14 protein is present in 

a subset of hypothalamic neurons, thus suggesting its 

participation in hypothalamic functions such as control of 

autonomic nervous systems and/or in immune cell recruitment 

via the median eminence. During mouse development, CXCL14 

is not expressed in the nervous system prior to birth. 

Postnatally, CXCL14 is highly expressed in many regions of the 

brain, including the cortex, basal ganglia, septum and 

hippocampus. In particular, in the hippocampal dentate gyrus 

(DG) CXCL14 is expressed by GABAergic interneurons, where 

it inhibits GABAergic transmission to nestin-EGFP-expressing 

neural stem/progenitor cells in the adult DG. In contrast 

CXCL12 enhanced the effects of GABA at these same synapses.  

Moreover, recent evidence revealed that CXCL14 participates in 

glucose metabolism, feeding behaviour-associated neuronal 

circuits, and anti-microbial defense  

Mutations and/or CNVs affecting CXCL14 have never 

been reported in patients with ASD. 

 

A 1.2 Mb region of chromosome 5q31, including 

CXCL14, was previously identified in a genome-wide 

linkage analysis for autism. 

Banisadr et al., 2011 
Hara and Tanegashima, 2012 

Philippi et al., 2005 

Yamamoto et al., 2011 
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DDX46(+) 

de novo 

 
RNA metabolism 

This gene encodes the DEAD (Asp-Glu-Ala-Asp) box 

polypeptide 46, which is a member of the DEAD box protein 

family. DEAD box proteins are putative RNA helicases 

implicated in a number of cellular processes involving 

alteration of RNA secondary structure, such as translation 

initiation, nuclear and mitochondrial splicing, and ribosome 

and spliceosome assembly. Based on their distribution 

patterns, some members of this family are believed to be 

involved in embryogenesis, spermatogenesis, and cellular 

growth and division. 

 

High expression in fetal brain and moderate expression in 

postnatal CNS. 

High expression in immune cell types. 

The DExD/H-box RNA helicase family is a large protein group 

characterized by the presence of a helicase domain that is highly 

conserved from bacteria to humans. These proteins have been 

shown to play important roles in all aspects of RNA 

metabolism: pre-mRNA splicing, rRNA biogenesis, 

transcription, RNA stability and turnover, RNA export, and 

translation. 

 

It has been recently reported that a mutation in Ddx46 is 

responsible for defects in the digestive organs and brain of the 

zebrafish mutant. Indeed, Ddx46 is specifically expressed in the 

digestive organs and brain of zebrafish and is required for 

premRNA splicing in these organs. 

Mutations and/or CNVs affecting DDX46 have never 

been reported in patients with ASD. 

 

A 1.2 Mb region of chromosome 5q31, including DDX46, 

was previously identified in a genome-wide linkage 

analysis for autism. 

 

A rare CNV affecting DDX53 has been reported in a 

patient with ASD 

Bleichert and Baserga, 2007 

Hozumi et al., 2012 
Jankowsky, 2011  

Philippi et al., 2005 

Pinto et al., 2010 

Rocak and Linder, 2004  
Silverman et al., 2003 

FAM13B(+) 

de novo 

 
Unknown function 

This gene encodes the family with sequence similarity 13, 

member B protein, which shows an unknown function. 

 

High expression in fetal brain and in postnatal prefrontal 

cortex, amygdalae, and thalamus. 

High expression in immune cell types. 

 
Mutations and/or CNVs affecting FAM13B have never 

been reported in patients with ASD. 
 

     
FAM53C(+) 

de novo 

 
Unknown function 

This gene encodes the family with sequence similarity 53, 

member C protein, which shows an unknown function. 

 

Good expression in fetal brain and in postnatal CNS. 

High expression in immune cell types. 

 
Mutations and/or CNVs affecting FAM53C have never 

been reported in patients with ASD. 
 

     

FBXL21(+) 

de novo 

 
Intracellular signaling: 

protein ubiquitination 

pathway 

This gene encodes the F-box and leucine-rich repeat protein 

21, which is a member of the F-box protein family that is 

characterized by an approximately 40 amino acid motif, the 

F-box. The F-box proteins constitute one of the four subunits 

of ubiquitin protein ligase complex called SCFs (SKP1-

cullin-F-box), which function in phosphorylation-dependent 

ubiquitination.  

 

Moderate expression in fetal brain and in postnatal parietal 

and occipital lobes, cerebellum, amygdalae, and spinal cord. 

The FBXL21 gene encodes an F-box containing protein, which 

is a component of the SCF (SKP1-cullin-F-box) ubiquitin 

protein ligase complex. The SCF complex is involved in the 

phosphorylation-dependent ubiquitination of targeted proteins, 

leading to the degradation of the targeted proteins. The function 

of the F-box protein in the SCF complex is to target specific 

proteins.  

Several neuron specific F-box proteins have been previously 

identified, including FBL2 and Parkin that are involved in 

NMDA receptor degradation and Parkinson’s disease 

respectively. Furthermore, multiple linkage studies implicated 

the long arm of chromosome 5 as harboring susceptibility genes 

for SCZ. 

Mutations and/or CNVs affecting FBXL21 have never 

been reported in patients with ASD. 

 

A 1.2 Mb region of chromosome 5q31, including 

FBXL21, was previously identified in a genome-wide 

linkage analysis for autism.  

 

The protein ubiquitination pathway has been previously 

implicated in ASD. 

 

SNPs in FBXL21 have been associated with SCZ in two 

Irish samples. 

Cardozo and Pagano, 2004 

Chen et al., 2008 
Glessner et al., 2009 

Gurling et al., 2001 

Kishino et al., 1997 

Kato et al., 2005 
Liao et al., 2004 

Matsuura et al., 1997  

Noda et al., 2005 

Paunio et al., 2001 
Philippi et al., 2005 

Sklar et al., 2004 
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H2AFY(+) 

de novo 

 
Chromatin remodeling 

This gene encodes the H2A histone family, member Y. This 

gene encodes a member of the histone H2A family. It 

replaces conventional H2A histones in a subset of 

nucleosomes where it represses transcription and participates 

in stable X chromosome inactivation. 

 

Moderate expression in fetal brain and in postnatal CNS. 

Very high expression in imuune cell types. 

Histones play a central role in transcription regulation, DNA 

repair, DNA replication and chromosomal stability. In 

particular, H2AFY inhibits the binding of transcription factors, 

interferes with the activity of remodeling SWI/SNF complexes, 

and inhibits histone acetylation by EP300 and recruits class I 

HDACs, which induces an hypoacetylated state of chromatin. 

 

It has been recently reported that the dynamic regulator of 

chromatin plasticity H2AFY is specifically overexpressed 

in the blood and frontal cortex of patients with Huntington 

disease compared with controls. This association precedes the 

onset of clinical symptoms, was confirmed in two mouse 

models, and was independently replicated in cross-sectional and 

longitudinal clinical studies. 

Mutations and/or CNVs affecting H2AFY have never 

been reported in patients with ASD. 

 

A 1.2 Mb region of chromosome 5q31, including H2AFY, 

was previously identified in a genome-wide linkage 

analysis for autism. Nevrtheless, no association was 

found between a few SNPs in H2AFY and ASD. 

Hu et al., 2011 

Philippi et al., 2005, 2007 

     

IL9(+) 

de novo 

 
Cytokine-mediated 

neurodevelopment and 

neuroinflammation  

This gene encodes the interleukin 9, which is a cytokine that 

acts as a regulator of a variety of hematopoietic cells. This 

cytokine stimulates cell proliferation and prevents apoptosis. 

It functions through the interleukin 9 receptor (IL9R), which 

activates different signal transducer and activator (STAT) 

proteins and thus connects this cytokine to various biological 

processes.  

 

Low expression in fetal brain and moderate expression in 

postnatal temporal lobe, prefrontal cortex, cerebellum and 

thalamus. 

Good expression in NK-cells. 

IL9 has been identified as a candidate gene for asthma. Genetic 

studies on a mouse model of asthma demonstrated that this 

cytokine is a determining factor in the pathogenesis of bronchial 

hyperresponsiveness. 

 

In mammals, programmed cell death (PCD) is a central event 

during brain development. Trophic factors have been shown to 

prevent PCD in postmitotic neurons. Similarly, cytokines have 

neurotrophic effects involving regulation of neuronal survival. It 

has been reported that interleukin-9 and its receptor specifically 

control PCD of neurons in the murine newborn neocortex. IL-9 

antiapoptotic action appeared to be time-restricted to early 

postnatal stages as both ligand and receptor transcripts were 

mostly expressed in neocortex between postnatal days 0 and 10. 

This period corresponds to the physiological peak of apoptosis 

for postmitotic neurons in mouse neocortex. IL-9 effects were 

mediated by the activation of the JAK/STAT pathway. Finally, 

IL-9 reduced the expression of the mitochondrial pro-apoptotic 

factor Bax whereas Bcl-2 level was not significantly affected.  

 

Moreover, n the experimental autoimmune encephalomyelitis 

mousel, which is animal model of multiple sclerosis, it has been 

reported that in the CNS IL-9 is produced by several Th cell 

subsets in the presence of IL-4 and that IL-9 receptor complex is 

constitutively expressed by astrocytes. IL-9 induces CCL-20 

production by astrocytes to induce the migration of Th17 cells 

into the CNS, thus sustaining the neuroinflammatory process. 

Mutations and/or CNVs affecting IL9 have never been 

reported in patients with ASD. 

 

Elevated serum levels of a few interleukins have been 

previously reported in autistic patients. 

Fontaine et al., 2008 

Zhou et al., 2011 
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KIF20A(+) 

de novo 

 
Intracellular trafficking: 

retrograde transport from 

Golgi to ER 

This gene encodes the kinesin family member 20A, which 
interacts with guanosine triphosphate (GTP)-bound forms of 

RAB6A and RAB6B and may act as a motor required for the 

retrograde RAB6 regulated transport of Golgi membranes 

and associated vesicles along microtubules. KIF20A has a 

microtubule plus end-directed motility. 

 

Good expression in fetal brain and low expression in 

postnatal CNS. 

Very high expression in eritroid and myeloid cell lineages 

and in dendritic cells. 

KIF20A binds to Rab6B which is preferentially expressed in 

brain, especially in microglial cells, pericytes and Purkinje cells.  

In particular, Rab6B is abundant in SK-N-SH cells that can 

either differentiate into cells with a neuronal phenotype, or in 

cells exhibiting properties common to glial cells.  

Rab6B may also be abundant in human melanocytes. 

The interaction of Rab6B with Rabkinesin-6 (KIF20A) 

suggestes that Rab6B may regulate a transport route through a 

molecular machinery comparable to that of Rab6A, in particular 

a retrograde transport along microtubules from the Golgi 

apparatus to the endoplasmic reticulum. 

Mutations and/or CNVs affecting KIF20A have never 

been reported in patients with ASD. 

Opdam et al., 2000  

Sano et al., 1990 

Shinohara et al., 1997 

     

KLHL3(+) 

de novo 

 
Intracellular signaling: 

protein ubiquitination 

pathway 

This gene encodes the kelch-like 3 (Drosophila) protein, 

which has an N-terminal BTB domain followed by a BACK 

domain and six kelch-like repeats in the C-terminus. These 

kelch-like repeats promote substrate ubiquitination of bound 

proteins via interaction of the BTB domain with the CUL3 

(cullin 3) component of a cullin-RING E3 ubiquitin ligase 

(CRL) complex.  

 

Good expression in fetal brain and in postnatal CNS. 

The ubiquitin-proteasome system plays crucial roles in various 

aspects of neuronal development, such as axon formation, 

elongation, and pruning, and synapse formation and 

elimination.  

The Cullin3 (Cul3)-based ubiquitin E3 ligases use BTB 

domain–containing proteins as substrate adaptors and, recently, 

KLHL20, a protein possessing a BTB domain and six kelch 

repeats, has been identified as such an adaptor. KLHL20 mRNA 

is abundantly expressed in the brain of an embryonic day 14.5 

(E14.5) mouse embryo, implying its role in neural development. 

In the adult mouse brain KLHL20 mRNA is highly expressed in 

the hippocampus, especially in the dentate gyrus, where a 

lifelong neurogenesis occurs. 

By analogy, it is possible that also KLHL3 may be involved in 

neurodevelopment. 

 

Muatations in KLHL3 cause pseudohypoaldosteronism type IID 

(PHA2D); a rare Mendelian syndrome featuring hypertension, 

hyperkalaemia and metabolic acidosis. 

Mutations and/or CNVs affecting KLHL3 have never 

been reported in patients with ASD. 

 

Another member of the same family of proteins, 

KLHL22, maps within the genomic region involved in the 

22q11 microdeletion/microduplication syndrome, which 

shows comorbidity with ASD, SCZ, ADHD and mood 

disorder. 

 

The protein ubiquitination pathway has been previously 

implicated in ASD. 

Antshel et al., 2007  

Bucan et al., 2009 

Fine et al., 2005  
Glessner et al., 2009 

Kishino et al., 1997 

Lee et al., 2010 

Lin et al., 2011 
Lo-Castro et al., 2009 

Marshall et al., 2008 

Matsuura et al., 1997  

Mukkades and Herguner, 2007 
Niklasson et al., 2009 

Pinto et al., 2010 

Ramelli et al., 2008 

Segref and Hoppe, 2009  
Szatmari et al., 2007 

Tai and Schuman, 2008 

Vorstman et al., 2006 

Yi and Ehlers, 2007 

 

 

 

    
 

 

 

 

LECT2(+) 

de novo 

 
Neurodevelopment 

This gene encodes the leukocyte cell-derived chemotaxin 2, 

which is a secreted protein that acts as a chemotactic factor to 

neutrophils and stimulates the growth of chondrocytes and 

osteoblasts. A polymorphism in this gene may be associated 

with rheumatoid arthritis. 

 

Moderate expression in fetal brain and in postnatal CNS, 

except for cingulate cortex where the expression is good.  

High expression in fetal and adult liver. No expression has 

been detected in bone marrow.  

Leukocyte cell-derived chemotaxin 2 (LECT2) was first isolated 

as a chemotactic factor from phytohemagglutinin-activated 

human T-cell leukemia SKW-3 cells.  

To elucidate LECT2 functions in brain, the influence of a 

deficiency of LECT2 on the morphology of cultured 

hippocampal neurons during neuronal development was 

investigated, and the expression of neurotrophins (NGF, BDNF, 

and NT-3) and their receptors (TrkA, TrkB, TrkC, and p75NTR) 

in these neurons was examined. It has been reported that the 

extension of axons and dendrites in neurons from LECT2-

knockout mice was shorter than that in neurons from wild-type 

mice during culture and significantly less than that in wild-type 

mice after 4 days in culture. Moreover, neurons from LECT2-

KO mice showed different expression of NGF, BDNF and NT-3 

during culture compared to wild-type mice, suggesting that 

LECT2 regulates the extension of axons and dendrites and the 

expressions of NGF, BDNF and NT-3 during neuronal 

development. 

Mutations and/or CNVs affecting LECT2 have never been 

reported in patients with ASD. 
Koshimizu and Ohtomi, 2010 
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NEUROG1(+) 

de novo 

 
Transcriptional 

regulation 

This gene encodes the neurogenin 1 protein, which acts as a 

transcriptional regulator. It is involved in the initiation of 

neuronal differentiation, and associates with chromatin to 

enhancer regulatory elements in genes encoding key 

transcriptional regulators of neurogenesis.  

 

Good expression in postnatal thalamus, hypothalamus, 

amygdalae, and cerebellum. 

In mouse beta-catenin/TCF complex appears to directly regulate 

the promoter of neurogenin 1, a gene implicated in cortical 

neuronal differentiation. 

A 1.2 Mb region of chromosome 5q31, including 

NEUROG1, was previously identified in a genome-wide 

linkage analysis for autism.  

 

Deregulation of Wnt/β-catenin signaling pathway has 

been implicated in the pathogenesis of ASD as well as of 

other neuropsychiatric disorders. 

 

SNPs in NEUROG1 have been previously associated with 

SCZ. 

Chung et al., 2011 

De Ferrari and Moon, 2006 

Fanous et al., 2007 
Hirabayashi et al., 2004 

Ma et al., 1999  

Okerlund and Cheyette, 2011 

Philippi et al., 2005, 2007 
Wang et al., 2010  

Zhang et al., 2012 

     

PITX1(+) 

de novo 

 
Transcriptional 

regulation 

This gene encodes the paired-like homeodomain 1 protein, 

which is a member of the RIEG/PITX homeobox family, i.e., 

the bicoid class of homeodomain proteins. Members of this 

family are involved in organ development and left-right 

asymmetry. This protein acts as a transcriptional regulator 

involved in basal and hormone-regulated activity of 

prolactin.  

 

Moderate expression in fetal brain and in postnatal parietal 

lobe, prefrontal cortex, and hypothalamus. 

PITX1 plays a role in the development of anterior structures, 

and in particular, the brain and facies and in specifying the 

identity or structure of hindlimb. 

 

Defects in PITX1 are a cause of congenital clubfoot (CCF). 

Clubfoot is a congenital limb deformity defined as fixation of 

the foot in cavus, adductus, varus, and equinus (i.e. inclined 

inwards, axially rotated outwards, and pointing downwards) 

with concomitant soft tissue abnormalities. Clubfoot may occur 

in isolation or as part of a syndrome.  

Mutations and/or CNVs affecting PITX1 have never been 

reported in patients with ASD. 

 

A 1.2 Mb region of chromosome 5q31, including PITX1, 

was previously identified in a genome-wide linkage 

analysis for autism. Two SNPs in PITX1 have been 

associated with ASD. 

Philippi et al., 2005, 2007 

     
 

 

SAR1B(+) 

de novo 

 
Intracellular membrane 

trafficking 

This gene encodes the SAR1 homolog B (S. cerevisiae)  

protein, which is a small GTPase that acts as a homodimer. 

The encoded protein is activated by the guanine nucleotide 

exchange factor PREB and is involved in protein transport 

from the endoplasmic reticulum to the Golgi. This protein is 

part of the COPII coat complex. 

 

Moderate expression in fetal brain and in postnatal prefrontal 

cortex, cerebellum, amygdalae, and thalamus. 

Good expression in immune cell types, in particular in 

dendritic cells, monocytes, and NK-cells. 

SAR1B is involved in transport from the endoplasmic reticulum 

to the Golgi apparatus. 

 

Defects in SAR1B are the cause of chylomicron retention 

disease, also known as Anderson disease, which is an autosomal 

recessive disorder of severe fat malabsorption associated with 

failure to thrive in infancy. Furthermore, defects in SAR1B have 

also been associated with Marinesco-Sjögren syndrome, which 

is a progressive multisystem disease with autosomal recessive 

inheritance characterized by cataracts, MR, and cerebellar 

ataxia.  

Mutations and/or CNVs affecting SAR1B have never been 

reported in patients with ASD. 
Sakai et al., 2008 

     
 

 

SEC24A(+) 

de novo 

 
Intracellular membrane 

trafficking 

This gene encodes the SEC24 family, member A 

protein, which belongs to a family of proteins that are 

homologous to yeast Sec24. This protein is a component of 

coat protein II (COPII)-coated vesicles that mediate protein 

transport from the endoplasmic reticulum. COPII acts in the 

cytoplasm to promote the transport of secretory, plasma 

membrane, and vacuolar proteins from the endoplasmic 

reticulum to the golgi complex. 

 

Moderate expression in fetal brain and in postnatal cortex, 

and cerebellum. 

Good expression in immune cell types, in particular in 

dendritic cells, NK-cells, and CD4+ T-cells. 

SEC24A interacts with SAR1B to form the COPII complex. 
Mutations and/or CNVs affecting SAR1B have never been 

reported in patients with ASD. 
Wendeler et al., 2007 
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SLC25A48(+) 

de novo 

 
CNS metabolism: 

neuronal energy 

production 

This nuclear gene encodes the solute carrier family 25, 

member 48, which is a mitochondrial protein. 

 

High expression in postnatal whole brain, in particular in 

prefrontal cortex, amygdalae and hypothalamus, and in spinal 

cord. 

SLC25A48 is a member of the solute carrier 

family 25 proteins that function as transporters of a 

large variety of molecules including ATP/ADP and 

amino acids, and localize to the inner mitochondrial membrane.  

In particular, SLC25A48 is highly expressed in the CNS 

including the hypothalamus, pituitary and brainstem and has 

been shown to be important in healthy neurons for energy 

production and to have a role in neuronal signaling.  

Mutations and/or CNVs affecting SLC25A48 have never 

been reported in patients with ASD. 

 

Recently, a genome-wide association study has identified 

SLC25A48 as candidate genes for Parkinson’s disease in 

an Ashkenazi Jewish population. 

Haitina et al., 2006 

Liu et al., 2011 
Palmieri, 2004 

     

SPOCK1(+) 

de novo 

 
Neurogenesis: regulation 

of neuronal migration 

and axonal outgrowth 

This gene encodes the sparc/osteonectin, cwcv and kazal-like 

domains proteoglycan 1 (testican 1), which is the protein 

core of a seminal plasma proteoglycan containing 

chondroitin- and heparan-sulfate chains. The protein's 

function is unknown, although similarity to thyropin-type 

cysteine protease-inhibitors suggests its function may be 

related to protease inhibition. 

 

Very high expression in fetal brain and in postnatal CNS. 

Testican-1 is strongly expressed in the brain and has been 

reported to modulate neuronal attachment and matrix 

metalloproteinase activation.  

During mouse embryonic development SPOCK1 is actively 

expressed at the onset of neurogenesis during periods of neuron 

migration and axonal outgrowth. At a later developmental stage, 

its expression is particularly prevalent within developing 

synaptic fields. In particular, SPOCK1 is most prominently 

expressed in the thalamus, and is upregulated in activated 

astroglial cells of the cerebrum. The purified gene product has 

been shown to inhibit cell attachment and neurite extensions in 

culture. In the peripheral nervous system, SPOCK expression is 

also developmentally regulated particularly in dorsal root 

ganglion neurons. 

 

SPOCK1 has been proposed as a candidate for modulating the 

expression and maintenance of tyrosine hydroxylase (TH) 

content in murine mesencephalic dopamine neurons in vivo. TH 

is the first and rate limiting enzyme in the biosynthesis of 

catecholamine neurotransmitters in the substantia nigra-ventral 

tegmental area and the mesotelencephalic dopamine system is 

implicated in normal and pathological behaviors related to 

motor function, motivation, and learning.  

Mutations and/or CNVs affecting SPOCK1 have never 

been reported in patients with ASD. 

Charbonnier et al., 2000 

Edgell et al., 2004 

Röll et al., 2006 
Vadasz et al., 2007 

     

WNT8A(+) 

de novo 

 
Intracellular Wnt 

signaling pathway 

This gene encodes the wingless-type MMTV integration site 

family, member 8A protein. 

The WNT gene family consists of structurally related genes 

which encode secreted signaling proteins. These proteins 

have been implicated in oncogenesis and in several 

developmental processes, including regulation of cell fate 

and patterning during embryogenesis. This gene is a member 

of the WNT gene family, and may be implicated in 

development of early embryos as well as germ cell tumors. 

 

No expression data are available in UCSC Genome Browser 

(hg19, release February 2009). 

It has been reported in zebrafish that Wnt8 signaling emanating 

from lateral mesendodermal precursors is essential for 

neuroectodermal posteriorization starting from the organizing 

center, located at the midbrain-hindbrain boundary (MHB). 

Indeed, MHB patterns the midbrain and hindbrain primordia of 

the neural plate.  

Wnt8 is required for the initial subdivision of the neuroectoderm 

and graded Wnt8 activity mediates overall neuroectodermal 

posteriorization and thus determines the location of the MHB 

organizer.  

Mutations and/or CNVs affecting WNT8A have never 

been reported in patients with ASD. 

 

Deregulation of Wnt/β-catenin signaling pathway has 

been implicated in the pathogenesis of ASD as well as of 

other neuropsychiatric disorders. 

Chung et al., 2011 

De Ferrari and Moon, 2006 

Okerlund and Cheyette, 2011 
Rhinn et al., 2005, 2009 

Wang et al., 2010  

Zhang et al., 2012 
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 Patient 60, loss of 7.8 Mb at 5p15.33p15.31 (chr5:95243-7859564) 

     

ADCY2(-) 

de novo 

 
Intracellular signaling 

This gene encodes the adenylate cyclase 2 protein, which is a 

member of the family of adenylate cyclases. They are 

membrane-associated enzymes that catalyze the formation of 

the secondary messenger cyclic adenosine monophosphate 

(cAMP). This enzyme is insensitive to Ca(2+)/calmodulin, 

and is stimulated by the G protein beta and gamma subunit 

complex. 

 

High expression in fetal brain and in postnatal CNS, except 

for cerebellum, thalamus and hypothalamus.  

Quite discrete patterns of expression of Ca2+/calmodulin-

insensitive adenylyl cyclase were found in rat brain. Indeed, in 

some areas both species were co-expressed, but in others, little 

overlap was observed. The differential expression of the two 

mRNAs suggests that discrete roles may be fulfilled by the two 

adenylyl cyclases in neural tissues. 

 

Another member of the same family, ADCY1 (a 

Ca2+/calmodulin-sensitive adenylyl cyclase), is involved in 

calcium-signaling that is required for many brain functions, 

such as learning and memory. 

Mutations and/or CNVs affecting ADCY2  have never 

been reported in patients with ASD. 

 

The application of a genome-wide SNP microarray 

approach to a single multiplex consanguineous Pakistani 

family, affected by ID and distal myopathy, allow the 

localization of a single 2.5 Mb homozygosity-by-descent 

(HBD) locus in the region 5p15.32-p15.31, which 

includes ADCY2. 

Khan et al., 2012 

Mons et al., 1993 
Stengel et al., 1992 

Wieczorek et al., 2010 

     

AHRR(-) 

de novo 

 
CNS metabolism: 

hydrocarbon 

detoxification 

This gene encodes the aryl-hydrocarbon receptor repressor, 

which participates in the aryl hydrocarbon receptor (AhR) 

signaling cascade, that mediates dioxin toxicity, and is 

involved in regulation of cell growth and differentiation. It 

functions as a feedback modulator by repressing AhR-

dependent gene expression.  

 

Moderate expression in fetal brain and good expression in 

postnatal whole brain, in particular in amygdalae, thalamus 

and hypothalamus. 

The Aryl hydrocarbon receptor repressor shares structural 

similarities with Aryl hydrocarbon receptor (AhR) and AhR 

nuclear translocator (ARNT). The AhRR is thought to be 

involved in transcriptional control of AhR-regulated genes by 

sequestering ARNT.  

AhRR mRNA expression pattern in untreated C57BL/6 mice 

varies across tissues with high levels in hearts and brains. In 

other tissues, AhRR mRNA expression was low. In contrast to 

wild-type animals, the tissue levels in AhR-/- mice were about 

two to three orders of magnitude lower. Treatment of wild-type 

animals with benzo(a)pyrene resulted in an induced AhRR 

expression in liver, spleen, lung and ovary. No significant 

induction of AhRR mRNA was found in brain and heart tissues, 

which have a constitutively high level of AhRR expression.  

Mutations and/or CNVs affecting AHRR have never been 

reported in patients with ASD. 
Bernshausen et al., 2006 

     
 

 

CEP72(-) 

de novo 

 
Neurogenesis and 

neuronal migration? 

This gene encodes the centrosomal protein 72kDa, which is a 

member of the leucine-rich-repeat (LRR) superfamily of 

proteins. The protein is localized to the centrosome, a non-

membraneous organelle that functions as the major 

microtubule-organizing center in animal cells. It is involved 

in the recruitment of key centrosomal proteins to the 

centrosome. 

 

Moderate expression in fetal brain and in postnatal CNS. 

High expression in immune cell types. 

Several centrosomal proteins have been previously involved in 

neurodevelopment. For example, autosomal-recessive primary 

microcephaly (MCPH), a rare congenital disorder characterized 

by ID, reduced brain and head size, is due to mutations in seven 

known loci code for centrosomal proteins, such as CEP135 and 

STIL. Furthermore, CDK5RAP2 and CENPJ have been reported 

expressed in neuroepithelia during prenatal neurogenesis and 

the proteins were found localized to the spindle poles of mitotic 

cells, suggesting that a centrosomal mechanism controls neuron 

number in the developing mammalian brain. 

By analogy, CEP72 may be involved in neurogenesis and 

neuronal migration. 

Mutations and/or CNVs affecting CEP72 have never been 

reported in patients with ASD. 

Bond et al., 2005 

Hussain et al., 2012 
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C5orf38(-) 

de novo 

 
Neurogenesis 

This gene encodes the chromosome 5 open reading frame 38. 

 

Moderate expression in fetal brain and in postnatal CNS. 

Good expression in thalamus. 

An open reading frame coding for an unknown protein, 

C5orf38, is identified in the promoter of IRXA2 on chromosome 

5p. This new gene is composed of four exons and it is orientated 

in a head-to-head manner to IRXA2.  

The expression profile of the gene analysed in 9 different human 

tissues reveals that it is expressed in a coordinated fashion with 

IRXA2. The gene is only found in the human and the 

chimpanzee genome, but not in the mouse or the rat genome, 

which suggests that it is unique for higher primates. As the 

identified bi-directional promoter not being a relic of an ancient 

compact genome, C5orf38 may play an important role in the 

evolution of higher primates in coordination with the IRX genes. 

Mutations and/or CNVs affecting C5orf38 have never 

been reported in patients with ASD. 
Wu et al., 2006 

     
 

 

 

EXOC3(SEC6)(-) 

de novo 

 
Synaptogenesis: 

intracellulae membrane 

trafficking 

This gene encodes the exocyst complex component 3, which  

is a component of the exocyst complex, a multiple protein 

complex essential for targeting exocytic vesicles to specific 

docking sites on the plasma membrane. Though best 

characterized in yeast, the component proteins and functions 

of exocyst complex have been demonstrated to be highly 

conserved in higher eukaryotes. At least eight components of 

the exocyst complex, including this protein, are found to 

interact with the actin cytoskeletal remodeling and vesicle 

transport machinery. The complex is also essential for the 

biogenesis of epithelial cell surface polarity. 

 

Moderate expression in fetal brain and good expression in 

postnatal CNS, in particular in cortex and cerebellum. 

High expression in immune cell types. 

In a study of developing neurons, Sec6/8 complexes were found 

at the highest levels in regions of the brain undergoing 

synaptogenesis and in regions of cultured neurons where 

synapses will subsequently develop. In contrast, the level of 

Sec6/8 was downregulated in mature synapses. This led to the 

hypothesis that the main function of the Sec6/8 complex is in 

formation of synapses rather than in their function once formed. 

Moreover, it has been demonstrated that the interaction 

between Ral, a member of the Ras-GTPase family,which resides 

on the cytoplasmic side of vesicles, and the Sec6/8 exocyst 

complex, which resides on the inner surface of the plasma 

membrane, could promote the recruitment of synaptic vesicles 

from the reserve pool in the cytoplasm to the plasma membrane 

in response to stimuli like phorbol esters and calcium. 

Mutations and/or CNVs affecting EXOC3 have never 

been reported in patients with ASD. 

Hazuka et al., 1999 
Hsu et al., 1996, 1999 

Polzin et al., 2002 

     

IRX1(-) 

de novo 

 
Neurogenesis 

This gene encodes the iroquois homeobox 1 protein, which is 

a member of the Iroquois homeobox protein family. 

Homeobox genes in this family are involved in pattern 

formation in the embryo.  

 

No expression microarray data available. 

Iroquois homeoproteins are prepatterning factors that positively 

regulate proneural genes and control neurogenesis. In zebrafish 

the Iroquois gene, irx1, homolog has been identified, which is 

also higly homologous to Xenopus Xiro1, Gallus c-Irx1 and 

mouse Irx1. Expression of irx1 was initially detected at the bud 

stage. By 16 h post-fertilization (hpf), irx1 expression was 

exclusively limited to the prospective midbrain and hindbrain.  

Recently, loss of function studies in Xenopus clarified that Irx1 

and Irx3 seem to have a predominant role during regionalization 

of the neural plate. 

Mutations and/or CNVs affecting IRX1 have never been 

reported in patients with ASD. 

Cheng et al., 2001 
Rodríguez-Seguel et al., 2009 

     

IRX2(-) 

de novo 

 
Neurogenesis 

This gene encodes the iroquois homeobox 2 protein, which is 

a member of the Iroquois homeobox gene family. Members 

of this family appear to play multiple roles during pattern 

formation of vertebrate embryos. 

 

No expression microarray data available. 

The Iroquois (Irx) genes encode homeoproteins conserved 

during evolution. Vertebrate genomes contain six Irx genes 

organized in two clusters, IrxA (which harbors Irx1, Irx2 and 

Irx4) and IrxB (which harbors Irx3, Irx5 and Irx6).  

Loss-of-function study of all the early expressed Irx genes 

(Irx1-5) using specific morpholinos in Xenopus revealed that 

the five Irx genes display largely overlapping expression 

patterns and contribute to neural patterning. All Irx genes are 

required for proper formation of posterior forebrain, midbrain, 

hindbrain and, to a lesser an extent, spinal cord.  

Mutations and/or CNVs affecting IRX2 have never been 

reported in patients with ASD. 
Rodríguez-Seguel et al., 2009 
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IRX4(-) 

de novo 

 
Neurogenesis 

This gene encodes the iroquois homeobox 4 protein. 

 

Moderate expression in postnatal parietal lobe, cerebellum, 

thalamus hypothalamus, subtalamic nucleus, and spinal cord.  

High expression in prostate and heart. 

Loss-of-function study of all the early expressed Irx genes 

(Irx1-5) using specific morpholinos in Xenopus revealed that 

the five Irx genes display largely overlapping expression 

patterns and contribute to neural patterning. All Irx genes are 

required for proper formation of posterior forebrain, midbrain, 

hindbrain and, to a lesser an extent, spinal cord. 

Moreover, several findings support a role for IRX4 in heart 

development. 

Mutations and/or CNVs affecting IRX4 have never been 

reported in patients with ASD. 

Garriock et al., 2001 

Rodríguez-Seguel et al., 2009 

     
 

 

 

 

 

 

LPCAT1(-) 

de novo 

 
CNS homeostasis: lipid 

metabolism 

This gene encodes the lysophosphatidylcholine 

acyltransferase 1 protein, which catalyzes the conversion of 

LPC to phosphatidylcholine (PC) in the remodeling pathway 

of PC biosynthesis. 

 

High expression in fetal brain and in postnatal amygdalae. 

Very high expression in immune cell types. 

Phosphatidylcholine (PC) is the major phospholipid of the 

brain and comprises almost half of vertebrate retinal 

phospholipids. Lyso-PC (LPC) is a bioactive proinflammatory 

lipid generated by the pathological metabolism of PC. 

Accumulation of LPC is associated with a host of diseases, 

including atherosclerosis, myocardial ischemia, 

neurodegeneration, inflammatory diseases, and diabetic 

complications. 

LPCAT1 is a lysophospholipid acyltransferase implicated in the 

anti-inflammatory response by its role in conversion of LPC to 

PC. In addition, the LPCAT1 enzyme also catalyzes the 

synthesis of platelet-activating factor (PAF), another potent 

inflammatory lipid, from lyso-PAF with use of acetyl-CoA as a 

substrate. 

In naive mice constant levels of PAF are produced by microglia 

and astrocytes, thus contributing to the maintenance of 

CNS homeostasis. In the CNS of experimental allergic 

encephalomyelitis (EAE) mice, which mimics multiple 

sclerosis, the blood-brain barrier is broken and inflammatory 

cells, such as T cells and macrophages, infiltrate the CNS. Thus, 

activated microglia and macrophages produce higher amounts 

of LPCAT1/2 and therefore a robust PAF production has been 

observed, contributing to the inflammatory process. 

Mutations and/or CNVs affecting LPCAT1 have never 

been reported in patients with ASD. 

Cheng et al., 2009 

Kihara et al., 2008 

Matsumoto et al., 2007 
Nakanishi et al., 2006 
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NSUN2(-) 

de novo 

 
Translation regulation, 

epigenetic modifications 

This gene encodes the NOP2/Sun domain family, member 2 

protein, which is a methyltransferase that catalyzes the 

methylation of cytosine to 5-methylcytosine (m5C) at 

position 34 of intron-containing tRNA(Leu)(CAA) 

precursors. This modification is necessary to stabilize the 

anticodon-codon pairing and correctly translate the mRNA.  

 

Moderate expression in fetal brain and in postnatal cingulate 

cortex, cerebellum, and globus pallidus. 

High expression in B- and T-cells. 

NSUN2 was the first SUN-domain-containing protein to 

be characterized in vertebrates, and it is strongly conserved 

from bacteria to humans.It functions in spindle assembly during 

mitosis as well as chromosome segregation. 

By studying cortical and cerebellar region dissections from 

whole brains of 3-month-old mice, NSUN2 staining was 

sporadically observed in some cortical and brain-stem neurons 

although the most striking localization was observed in Purkinje 

cells of the cerebellum. 

 

It has been hypothesized that NSUN2 deficiency at critical 

stages during brain development might play a role in 

translational regulation needed for proper synaptic plasticity and 

thus learning and memory.  

Another conceivable disease mechanism might involve 

impaired methylation of hemimethylated DNA, which is 

also one of the targets of NSUN2 activity. It is a well 

established fact that alterations in DNA methylation 

patterns can lead to changes in gene transcription patterns 

and can also promote mutational events. Such epigenetic 

modifications can also cause specific changes in brain 

functions, which is of particular interest with respect to the 

cognitive phenotype. For instance, both the metabotropic 

(GRM1–7) and ionotropic (e.g., NMDA, AMPA, and kainate) 

glutamate-receptor-encoding genes undergo dynamic, 

region-specific, and cell-specific changes in expression 

during the course of brain development. 

Mutations and/or CNVs affecting NSUN2 have never 

been reported in patients with ASD. 

 

The application of a genome-wide SNP microarray 

approach to a single multiplex consanguineous Pakistani 

family, affected by ID and distal myopathy, allow the 

localization of a single 2.5 Mb homozygosity-by-descent 

(HBD) locus in the region 5p15.32–p15.31, which 

includes NSUN2, thus identifying homozygous missense 

changes in NSUN2 coding region which are responsible 

for an autosomal recessive form of ID. 

Interestingly, in addition to ID, NSUN2-mutation-positive 

individuals in the current study display features such as 

poor speech (dysarthria) and broad gait, which have 

previously been associated with cerebellar defects. 

 

Further NSUN2 mutations have been recently identified in 

Kurdish and Iranian ID consanguineous families. 

Abbasi-Moheb et al., 2012 

Akbarian and Huang, 2009  

Hong et al., 2003 
Hussain et al., 2009 

Khan et al., 2012 

Kuss et al., 2011 

Robertson, 2005  
Zhao et al., 2003 

Zschocke et al., 2002 

     
 

 

 

PDCD6(-) 

de novo 

 
Intracellular signaling for 

cell death 

This gene encodes the programmed cell death 6, a calcium-

binding protein belonging to the penta-EF-hand protein 

family, also known as ALG-2. Calcium binding is important 

for homodimerization and for conformational changes 

required for binding to other protein partners. This gene 

product participates in T cell receptor-, Fas-, and 

glucocorticoid-induced programmed cell death. In mice 

deficient for this gene product, however, apoptosis was not 

blocked suggesting this gene product is functionally 

redundant. 

 

Moderate expression in fetal brain and good expression in 

postnatal amygdalae, thalamus and hypothalamus. 

High expression in immune cell types. 

By using post-mitotic cerebellar neuron cultures it has been 

found that the complex Alix/ALG-2 regulates cell death 

controlling both caspase-dependent and -independent pathways. 

As Alix is a regulator of the endo-lysosomal system, these 

findings suggest a molecular link between the endo-lysosomal 

system and the effectors of the cell death machinery. 

PDCD6 has been previously suggested as autism 

candidate gene by molecular cytogenetic analysis and in 

silico studies. 

Iurov et al., 2010 

Trioulier et al., 2004 
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SDHA(-) 

de novo 

 
CNS metabolism: 

mitochondrial oxidative 

phosphorylation 

This nuclear gene encodes the mitochondrial succinate 

dehydrogenase complex, subunit A, flavoprotein, which is a 

major catalytic subunit of succinate-ubiquinone 

oxidoreductase, a complex of the mitochondrial respiratory 

chain. The complex is composed of four nuclear-encoded 

subunits and is localized in the mitochondrial inner 

membrane.  

 

Low expression in fetal brain and good expression in 

postnatal CNS.  

High expression in immune cell types. 

Mutations in SDHA have been associated with mitochondrial 

complex II deficiency, which shows heterogeneous clinical 

manifestations. Clinical features include psychomotor 

regression in infants, poor growth with lack of speech 

development, severe spastic quadriplegia, dystonia, progressive 

leukoencephalopathy, muscle weakness, exercise intolerance, 

cardiomyopathy. Severe forms are known as Leigh Syndrome, 
a severe disorder characterized by bilaterally symmetrical 

necrotic lesions in subcortical brain regions. 

Mutations and/or CNVs affecting SDHA have never been 

reported in patients with ASD. 
Alston et al., 2012 
Horvath et al., 2006 

     

SLC6A3(-) 

de novo 

 
Trafficking: dopamine 

transport 

This gene encodes the solute carrier family 6 protein, a 

dopamine transporter which is a member of the sodium- and 

chloride-dependent neurotransmitter transporter family.  

It terminates the action of dopamine by its high affinity 

sodium-dependent reuptake into presynaptic terminals. 

 

Low expression in fetal brain and moderate expression in 

postnatal parietal and occipital lobes, prefrontal cortex and 

thalamus. Good expression in amygdalae. 

Dopaminergic circuits are central to many key brain functions, 

i.e., memory, locomotion, reward mechanisms, motivation and 

cognition. Thus, the disturbances in dopaminergic tone are 

implicated in a broad spectrum of neuropsychiatric disorders, 

including ADHD, Parkinson’s disease (PD), SCZ, and diseases 

of addiction.  The 3' UTR of SLC6A3 contains a 40 bp tandem 

repeat, referred to as a variable number tandem repeat or VNTR, 

which can be present in 3 to 11 copies. Variation in the number 

of repeats is associated with several neuropsychiatric disorders. 

Moreover, defects in SLC6A3 are the cause of dystonia-

parkinsonism infantile, which is a neurodegenerative disorder 

characterized by infantile onset of parkinsonism and dystonia. 

Other neurologic features include global developmental delay, 

bradikinesia and pyramidal tract signs. 

 

It has been reportedt that PARK2, a multiprotein E3 ubiquitin 

ligase complex, increases dopamine uptake by enhancing the 

ubiquitination and degradation of misfolded SLC6A3, so as to 

prevent it from interfering with the oligomerization and cell 

surface expression of native SLC6A3. This function of parkin 

would enhance the precision of dopaminergic transmission, 

increase the efficiency of dopamine utilization, and reduce 

dopamine toxicity on neighboring cells. 

VNTR polymorphisms in SLC6A3 have been associated 

with idiopatic epiplepsy, ADHD, PD, addiction disorders. 

Moreover, specific SLC6A3 alleles have been associated 

with more severe social anxiety and tic symptoms in ASD 

patients. 

 

CNVs involving PARK2 have been reported in ASD 

patients. 

Arias-Carrion et al., 2010 

Gadow et al., 2008 
Glessner et al., 2009 

Jiang et al., 2004 

Lafuente et al., 2007 

Scheuerle and Wilson, 2011  
Shohamy and Adcock, 2010  

Shumay et al., 2011 

Swanson et al., 2007 

Vernier et al., 2004 
Volkow et al., 2007 

     

     

     

     

     

     

     

     

     

http://www.ncbi.nlm.nih.gov/pubmed?term=Scheuerle%20A%5BAuthor%5D&cauthor=true&cauthor_uid=21360662
http://www.ncbi.nlm.nih.gov/pubmed?term=Wilson%20K%5BAuthor%5D&cauthor=true&cauthor_uid=21360662
http://www.ncbi.nlm.nih.gov/pubmed?term=Shohamy%20D%5BAuthor%5D&cauthor=true&cauthor_uid=20829095
http://www.ncbi.nlm.nih.gov/pubmed?term=Adcock%20RA%5BAuthor%5D&cauthor=true&cauthor_uid=20829095


147 

 

Tab. 4.1. Continued. 

 

SRD5A1(-) 

de novo 

 
CNS metabolism: 

neurosteroid 

byosynthesis 

This gene encodes the steroid-5-alpha-reductase, alpha 

polypeptide 1, which catalyzes the conversion of testosterone 

into the more potent androgen, dihydrotestosterone (DHT). 

 

High expression in fetal brain and in postnatal CNS. 

Allopregnanolone (ALLO) and tetrahydrodeoxycorticosterone 

(THDOC) are potent positive allosteric modulators of GABA 

action at GABAA receptors. ALLO and THDOC are 

synthesized in the brain from progesterone or 

deoxycorticosterone, respectively, by the sequential action of 

two enzymes: 5α-reductase (5α-R) type I and 

3α-hydroxysteroid dehydrogenase (3α-HSD).  

The evaluation of 5α-R type I and 3α-HSD mRNA expression 

level in mouse brain by using in situ hybridization revealed that  

the two enzimes colocalize in cortical, hippocampal, and 

olfactory bulb glutamatergic principal neurons and in some 

output neurons of the amygdalae and thalamus. Moreover, they 

are significantly expressed in principal GABAergic output 

neurons, such as striatal medium spiny, reticular thalamic 

nucleus, and cerebellar Purkinje neurons, thus suggesting that 

ALLO and THDOC, which can be synthesized in principal 

output neurons, modulate GABA action at GABAA receptors, 

either with an autocrine or a paracrine mechanism or by 

reaching GABAA receptor intracellular sites through lateral 

membrane diffusion. 

Mutations and/or CNVs affecting SRD5A1 have never 

been reported in patients with ASD. 
Agis-Balboa et al., 2006 

     

TPPP(-) 

de novo 

 
Neurodevelopment: 

microtubule cytoskeleton 

dynamics 

This gene encodes the tubulin polymerization promoting 

protein, which has a role in maintaining the integrity of the 

microtubule network. 

 

Very high expression in fetal brain and in postnatal CNS. 

Microtubules, which form a major part of the 

cytoskeleton, display many physiological functions in 

eukaryotic cells. The dynamic reorganizing ability and stability 

of microtubular systems show great variability in different 

tissues and at different stages of tissue development.  

TPPP is a recently discovered, brain-specific unstructured 

protein involved in brain function. It is found predominantly in 

oligodendrocytes in normal brain and its physiological function 

seems to be the dynamic stabilization of microtubular 

ultrastructures, as well as the projections of mature 

oligodendrocytes and ciliary structures.  

TPPP has been previously suggested as autism candidate 

gene by molecular cytogenetic analysis and in silico 

studies. 

Colello et al., 2002 

Hlavanda et al., 2002 
Iurov et al., 2010 

Orosz et al., 2008 

Seki et al., 1999 

Skjoerringe et al., 2006 
Tirian et al., 2003 

Zhou et al., 2011 

     

ZDHHC11(-) 

de novo 

 
Intracellular trafficking: 

protein palmitoylation 

This gene encodes the zinc finger, DHHC-type containing 11 

protein. The DHHC domain is required for 

palmitoyltransferase activity. 

 

High expression in fetal brain and in postnatal CNS.  

Protein palmitoylation, a classical and common lipid 

modification, regulates diverse aspects of neuronal protein 

trafficking and function.  

Individual DHHC enzymes, which belong to a family of 

palmitoyltransferases, generate and maintain the specialized 

compartmentalization of substrates in polarized neurons. 

Moreover, protein palmitoylation is implicated in various 

aspects of pathophysiology, including neuronal development 

and synaptic plasticity. 

Mutations and/or CNVs affecting ZDHHC1 have never 

been reported in patients with ASD. 
Fukata and Fukata, 2010 
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 Patient 60, gain of 9.1 Mb at 18p11.32p11.22 (chr18:180229-9281969)  

ADCYAP1(+) 

de novo 

 
Synaptic transmission 

This gene encodes the adenylate cyclase activating 

polypeptide 1 (PACAP) (pituitary), which stimulates 

adenylate cyclase and subsequently increases the cAMP level 

in target cells. Adenylate cyclase activating polypeptide 1 is 

not only a hypophysiotropic hormone, but also functions as a 

neurotransmitter and neuromodulator.  

 

Moderate expression in fetal brain and in postnatal CNS, in 

particular in thalamus.  

The neuropeptide PACAP is an informational molecule released 

from stress-transducing neurons. It exerts post-synaptic effects 

required to complete hypothalamo-pituitary-adrenocortical 

(HPA) and hypothalamo-splanchnico-adrenomedullary (HSA) 

circuits activated by psychogenic and metabolic stressors. 

PACAP-responsive (in cell culture models) and PACAP-

dependent (in vivo) transcriptomic responses in the adrenal 

gland, hypothalamus, and pituitary upon activation of these 

circuits have been identified. Gene products produced in 

response circuits during stress include additional neuropeptides 

and neurotransmitter biosynthetic enzymes and neuroprotective 

factors.  

PACAP is widely expressed throughout the brain and exerts its 

functions through the PACAP-specific receptor (PAC(1)). 

Recent studies reveal that genetic variants of the PACAP and 

PAC(1) genes are associated with mental disorders, and several 

behavioral abnormalities of PACAP knockout mice are reported, 

thus suggesting that PACAP has an important role in the 

regulation of locomotor activity, social behavior, anxiety-like 

behavior and, potentially, working memory. 

Mutations and/or CNVs affecting ADCYAP1 have never 

been reported in patients with ASD. 

 

In a genetic linkage study, fine-scale mapping of a locus 

for severe bipolar mood disorder on chromosome 18p11.3 

suggests that the PACAP gene, which resides at 18p11.32, 

is located close to a BD locus. Recently, genetic 

association studies have also shown that genetic variants 

of the genes encoding PACAP or PAC1 are associated 

with SCZ, MDDand post-traumatic stress disorder.  

Hashimoto et al.,2007, 2010 
Hattori et al., 2012 

Ishiguro et al.,2001 

Koga et al.,2010 

Lohoff et al.,2008 
McInnes et al.,2001 

Ressler et al.,2011  

Stroth et al., 2011 

     
 

ARHGAP28(+) 

de novo 

 
Intracellular signaling: 

regulation of actin 

cytoskeleton dynamics 

This gene encodes the Rho GTPase activating protein 28. 

 

Good expression in fetal brain and in postnatal thalamus. 

Good expression in immune cell types. 

Very high expression in testis. 

Rho GTPases, RhoA and Cdc42, are involved in neuronal 

morphogenesis, axonal guidance and synaptic plasticity by 

modulating the organization of actin cytoskeleton. 

The same pathway is involved in T-cells activation, migration, 

cell-cell adhesion. 

Mutations or CNVs affecting ARHGAP28 have never 

been reported in patients with ASD.  

 

Point mutations and CNVs affecting TSC1 and TSC2 

have been reported in patients with ASD and Tuberous 

Sclerosis 1 or 2. Both TSC1 and TSC2 proteins activate 

RhoA whereas TSC2 activates CdC42, thus regulating 

cell adhesion and migration. 

Fombonne et al., 1997 

Lewis et al., 2004 

Muzykewicz et al., 2007 

Wiznitzer, 2004 
Wong, 2006 

     

DLGAP1(+) 

de novo 

 
Synaptogenesis and 

synaptic plasticity 

This gene encodes the discs, large (Drosophila) homolog-

associated protein 1. 

 

High expression in fetal brain an in postnatal CNS, in 

particolar in caudate nucleus, thalamus and corpus callosum. 

Very high expression in brain cortex. 

DLGAP1 is a member of the neuronal postsynaptic density 

complex and directly interacts with other members of the 

postsynaptic density such as SHANK1, SHANK2, DLG1, and 

DLG4. 

Mutations and/or CNVs affecting DLGAP1 have never 

been reported in patients with ASD. 

 

Mutations and/or CNVs affecting several genes encoding 

preoteins of the postsynaptic density (e.g., SHANK2, 

SHANK3, DLG1, DLG4) have been reported in autistic 

patients. 

CNVs affecting DLGAP2 have been reported in a few 

autistic patients.  

Berkel et al., 2010, 2012 

Durand et al., 2007 

Feyder et al., 2010 
Leblond et al., 2012 

Marshall et al., 2008 

Moessner et al., 2007 

Peca et al., 2011 
Pinto et al., 2010 
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EPB41L3(+) 

de novo 

 
Neurodevelopment: 

nerve conduction 

This gene encodes the erythrocyte membrane protein band 

4.1-like 3 (4.1B protein). 

 

Very high expression in fetal brain and in postnatal CNS and 

PNS. 

Myelinated axons are organized into specialized domains 

critical to their function in saltatory conduction, i.e., nodes, 

paranodes, juxtaparanodes, and internodes.  

4.1B is expressed by neurons, and at lower levels by Schwann 

cells, which also robustly express 4.1G. Immunofluorescence 

demonstrated that 4.1B is expressed subjacent to the axon 

membrane in all domains except the nodes.  

Mice deficient in 4.1B have preserved paranodes, in contrast to 

the juxtaparanodes, which are substantially affected in both the 

PNS and CNS.  

Mutations and/or CNVs affecting EPB41L3 have never 

been reported in patients with ASD. 
Einheber et al., 2012 

     

LAMA1(+) 

de novo 

 
Neurogenesis 

This gene encodes the laminin, alpha 1protein, which is 

thought to mediate the attachment, migration and 

organization of cells into tissues during embryonic 

development by interacting with other extracellular matrix 

components. 

 

Moderate expression in fetal brain and in postnatal CNS. 

To study the role of this crucial laminin chain during late 

developmental phases and organogenesis, a conditional Laminin 

α1 knockout-mouse model has been created. A strong defect in 

the organization of the adult cerebellum of Lama1(cko) mice 

has been reported. Indeed, the study of the postnatal cerebellum 

of Lama1(cko) animals revealed a disrupted basement 

membrane correlated to an unexpected excessive proliferation 

of granule cell precursors in the external granular layer, thus 

suggesting that Lama1 is essential for the proper cerebellum 

development. 

Mutations and/or CNVs affecting LAMA1 have never 

been reported in patients with ASD. 

 

A SNP in LAMA1 has been recently reported in a patient 

with ASD. 

Anney et al., 2012 

Heng et al., 2011 

     
 

 

NDUFV2(+) 

de novo 

 
CNS metabolism: 

mitochondrial oxidative 

phosphorylation 

This nuclear gene encodes the mitochondrial NADH 

dehydrogenase (ubiquinone) flavoprotein 2, 24kDa.  

The NADH-ubiquinone oxidoreductase complex (complex I) 

of the mitochondrial respiratory chain catalyzes the transfer 

of electrons from NADH to ubiquinone, and consists of at 

least 43 subunits. The complex is located in the inner 

mitochondrial membrane. This gene encodes the 24 kDa 

subunit of complex I, and is involved in electron transfer.  

 

Low expression in fetal brain and moderate expression in 

postnatal CNS. 

High expression in immune cell types. 

Susceptibility loci for psychosis that includes BD, SCZ, 

psychosis not otherwise specified, and schizoaffective disorder, 

have been mapped at chromosome 18p11. In particular, SNPs in 

the NDUFV2 gene promoter have been associated with BD and 

SCZ in a Japanese cohort. Moreover, NDUFV2 expression 

levels have been found altered in post-mortem brain of 

schizophrenic subjects compared with controls. 

Mutations and/or CNVs affecting NDUFV2 have never 

been reported in patients with ASD. 

Mukherjee et al., 2006 

Nakatani et al., 2006 

Washizuka et al., 2004, 2006 
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PTPRM(+) 

de novo 

 
Intracellular signaling 

This gene encodes the protein tyrosine phosphatase, receptor 

type, M, which is a member of the protein tyrosine 

phosphatase (PTP) family. PTPs are known to be signaling 

molecules that regulate a variety of cellular processes 

including cell growth, differentiation, mitotic cycle, and 

oncogenic transformation. This PTP has been shown to 

mediate cell-cell aggregation through the interaction with 

another molecule of this PTP on an adjacent cell. This PTP 

can interact with scaffolding protein RACK1/GNB2L1, 

which may be necessary for the downstream signaling in 

response to cell-cell adhesion. 

 

Good expression in fetal brain and in postnatal CNS, in 

particular in thalamus, hypothalamus, and amygdalae. 

Protein tyrosine phosphatases (PTPs) have emerged as a new 

class of signaling molecules that play important roles in the 

development and function of the CNS. They include both 

tyrosine-specific and dual-specific phosphatases. Based on their 

cellular localization they are also classified as receptor-like or 

intracellular PTP. However, the intracellular mechanisms by 

which these PTPs regulate cellular signaling pathways are not 

well understood.  

 

Recently, candidate blood biomarker genes for mood disorders 

have been identified: five genes are involved in myelination 

(Mbp, Edg2, Mag, Pmp22 and Ugt8), and six genes are involved 

in growth factor signaling (Fgfr1, Fzd3, Erbb3, Igfbp4, Igfbp6 

and Ptprm). All of these genes have prior evidence of 

differential expression in human postmortem brains from mood 

disorder subjects.  

Mutations and/or CNVs affecting PTPRM have never 

been reported in patients with ASD. 

 

A rare CNV affecting PTPRT has been reported in a 

patient with ASD. 

Christian et al., 2008 

Le-Niculescu et al., 2009 
Paul and Lombroso, 2003 

     

RAB12(+) 

de novo 

 
Intracellular membrane 

trafficking 

This gene encodes the RAB12 protein, which is a member of 

the RAS oncogene family of small GTPases. 

 

Moderate expression in fetal brain and in postnatal CNS. 

Plasma membrane receptor proteins play a key role in signal 

transduction and nutrient uptake. After endocytosis, receptor 

proteins are generally delivered to lysosomes for degradation or 

recycled back to the plasma membrane for recycling. 

Transferrin receptor (TfR) is a well-known representative of 

recycling receptor proteins, which are traveled between plasma 

membrane and recycling endosomes. It has been reported that 

the small GTPase Rab12 regulates membrane trafficking of TfR 

from recycling endosomes to lysosomes.  

 

As iron deficiency has been previously linked to cognitive 

impairments, recently the impact of iron deficiency on spatial 

learning and memory has been assessed in neonatal piglets as 

models of human infants. It has been established that neonatal 

iron deficiency leads to cognitive impairment, which may be 

due in part to a reduced iron concentration in the hippocampus. 

Mutations and/or CNVs affecting RAB12 have never been 

reported in patients with ASD. 
 

     
 

 

 

TGIF1(+) 

de novo 

 
Transcriptional 

regulation 

This gene encodes the TGFB-induced factor homeobox 1, 

which is a member of the three-amino acid loop extension 

(TALE) superclass of atypical homeodomains. TALE 

homeobox proteins are highly conserved transcription 

regulators. This particular homeodomain binds to a 

previously characterized retinoid X receptor responsive 

element from the cellular retinol-binding protein II promoter. 

In addition, TGIF1 is an active transcriptional co-repressor of 

SMAD2 and may participate in the transmission of nuclear 

signals during development and in the adult.  

 

Low expression in fetal brain and in postnatal CNS. 

Good expression in immune cell types, in particular in 

monocytes, B- and T-cells. 

TGIF is an atypical homeo-domain protein. In vitro studies have 

shown that TGIF can repress transcription mediated by either of 

two signaling pathways: TGF-beta and retinoic acid signaling. 

In vivo overexpression of TGIF in the developing chick neural 

tube demonstrated that TGIF plays an important role in 

regulating the expression of genes expressed in specific dorsal-

ventral domains during neural development.  

Moreover, it has been reported that TGIF1 together with 

MEIS2, another TALE family member, regulate the 

transcription of the D(1A) gene, which encodes the predominant 

dopamine receptor in the striatum. The two proteins have 

opposite roles: while MEIS2 activates D(1A) transcription, 

TGIF1 represses the transcription of this gene. 

 

Recently, it has been suggested that TGIF1 may have a role in 

macrophage activation. 

Mutations and/or CNVs affecting TGIF1 have never been 

reported in patients with ASD. 

 

SNPs in TGIF1 have been previously strongly associated 

with psychosis.  

 

Mutations in this gene are associated with 

holoprosencephaly type 4 (HPE-4), which is a structural 

anomaly of the brain associated with MR. HPE is the 

most common structural anomaly of the brain, in which 

the developing forebrain fails to correctly separate into 

right and left hemispheres. Holoprosencephaly is 

genetically heterogeneous and associated with several 

distinct facies and phenotypic variability. 

Chavarría-Siles et al., 2007 

Chen et al., 2003 

Knepper et al., 2006 
Ramsey et al., 2008 

Yang et al., 2000 
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Tab. 4.1. Continued. 

 

THOC1(+) 

de novo 

 
Transcriptional 

elongation 

This gene encodes the THO complex 1 protein, which is part 

of the TREX (transcription/export) complex, which includes 

TEX1, THO2, ALY, and UAP56. 

 

Expressed ubiquitously. High level in fetal brain and in 

postnatal CNS, in particular in cortex, caudate nucleus, 

corpus callosum, and spinal cord.  

Very high expression in immune cell types. 

 
Mutations and/or CNVs affecting THOC1 have never 

been reported in patients with ASD. 

Matsui and Fukuda, 2011 

Rytych et al., 2012 

     
 

 

 

USP14(-)* 

de novo 

 
Intracellular signaling: 

protein ubiquitination 

pathway 

This gene encodes the ubiquitin specific peptidase 14 (tRNA-

guanine transglycosylase), which is a member of the 

ubiquitin-specific processing family of proteases that is a 

deubiquitinating enzyme with His and Cys domains. This 

protein is located in the cytoplasm and cleaves the ubiquitin 

moiety from ubiquitin-fused precursors and ubiquitinylated 

proteins.  

 

High expression in fetal brain and in postnatal CNS. 

High expression in immune cell types. 

Recently, it has been reported that homozygous ataxic mice 

(ax(J)) express reduced levels of the deubiquitinating enzyme 

Usp14. They develop severe tremors by 2-3 wk of age, followed 

by hindlimb paralysis, and death by 6-8 wk. While changes in 

the ubiquitin proteasome system often result in the accumulation 

of ubiquitin protein aggregates and neuronal loss, these 

pathological markers are not observed in the ax(J) mice. Instead, 

defects in neurotransmission were observed in both the central 

and peripheral nervous systems of ax(J) mice. These results 

imply that ax(J) nerve terminals are unable to recruit a sufficient 

number of vesicles to keep pace with physiological rates of 

transmitter release.  

Therefore, ubiquitination of synaptic proteins appears to play an 

important role in the normal operation of the neurotransmitter 

release machinery and in regulating the size of pools of synaptic 

vesicles. 

Mutations and/or CNVs affecting USP14 have never been 

reported in patients with ASD. 

 

The protein ubiquitination pathway has been previously 

implicated in ASD. 

Bhattacharyya et al., 2012 

     

 Patient 62, gain of 1.5 Mb at Xp22.31 (chrX:6551155-8032120)   

 Patient 63, gain of 501 kb at Xp22.31 (chrX:7269569-7820659) 

 

PNPLA4(+) 

 
CNS metabolism: 

lipoprotein metabolism 

This gene encodes the patatin-like phospholipase domain 

containing 4 protein, which is a member of the patatin-like 

family of phospholipases. The encoded enzyme has both 

triacylglycerol lipase and transacylase activities and may be 

involved in adipocyte triglyceride homeostasis. 

 

It is expressed in all tissues examined including the brain: 

low expression in postnatal CNS. 

PNPLA4 has a role in the metabolism of structural 

phospholipids involved in the formation and repair of the 

neuronal membrane. 

Mutations or CNVs affecting PNPLA4 have never been 

reported in patients with ASD.  

 

In syndromic forms of X-linked ichthyosis (XLI), due to 

Xp22.31 microdeletion, it has been recently suggested a 

possible contribution of PNPLA4 deficiency as one of the 

causes of neurological disorders among males, such as 

ADHD, autism and X-linked MR. 

Carrascosa-Romero et al., 2012 

     
     

     

     

     

     

     

     

     



152 

 

Tab. 4.1. Continued. 

STS(+) 

STS(-)* 

 
CNS steroid metabolism 

This gene encodes the steroid sulfatase isozyme S, which 

catalyzes the conversion of sulfated steroid precursors to 

estrogens during pregnancy.  

 

Mild expression in fetal brain and high expression in 

postnatal CNS. 

STS mutations are known to cause X-linked ichthyosis, a 

keratinization disorder manifesting with mild erythroderma and 

generalized exfoliation of the skin within a few weeks after 

birth. Affected boys later develop large, polygonal, dark brown 

scales, especially on the neck, extremities, trunk, and buttocks. 

Recently, it has been demonstrated a function for STS in 

sulphate and no-sulfate steroids metabolism in CNS. Indeed, in 

the brain sulphated and non-sulfated steroids can influence the 

function of GABAA and NMDA receptors. 

Furthermore, based on work in mouse models, STS has been 

recently proposed as a novel ADHD candidate. Indeed, STS is 

expressed in regions of the developing brain relevant to ADHD 

pathology. 

STS deletion alone is not sufficient to develop ASD, but if 

the XLI deletion involves also NLGN4X the risk to 

develop ASD is higher. 

 

CNVs (gains) including STS have been reported in ASD 

patients. 

 

Individuals with deletions encompassing STS or 

inactivating STS mutations are at elevated risk of 

developing ADHD. 

Carrascosa-Romero et al., 2012 

Compagnone and Mellon, 2000 

Kent et al., 2008 
Davies et al., 2007  

Li et al., 2010 

Stergiakouli et al., 2011 

Trent et al., 2012 

     §
In this table only the genes included in rare CNVs which localize in recurrent genomic regions or in regions previously implicated in ASD and/or in other neuropsychiatric disorders by linkage studies have been analyzed. (-), deleted or disrupted gene due to a rare deletion; (-)*, 

possible disrupted gene due to a rare duplication; (+), duplicated gene due to a rare duplication. The genes already implicated in ASD, due to mutations and/or CNVs, SNPs, or known syndromes which are comorbid with ASD are depicted in red, purple, and dark red, respectively. 
 

      Genes implicated in CNS metabolism. 

      Genes implicated in synaptogenesis and synaptic plasticity. 

      Genes implicated in CNS-IS network.     

      Genes implicated in intracellular signaling and membrane trafficking. 

      Genes implicated in neurogenesis and neurodevelopment. 

      Genes implicated in transcriptional and translational regulation, and chromatin remodeling. 
       

          Genes whose function may be related to the IS development and function, within and outside the CNS. 
 

ADHD, attention deficit hyperactivity disorder; AS, Angelman syndrome; BD, bipolar disorder; BWS, Beckwith-Wiedemann syndrome; CNS, central nervous system; CNV, copy number variation; CSF, cerebrospinal fluid; DD, developmental delay; EP, epilepsy; ER, endoplasmic 

reticulon; GWAS, genome-wide association study; HF-AU, high functioning autism; ID, intellectual disability; IS, immune system; MDD, major depressive disorder; MR, mental retardation; SCZ, schizophrenia; SNP, single nucleotide polymorphism; SRS, Siver-Russell syndrome; 

XLMR, X-linked mental retardation. 
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6.1 Analysis of the identified rare CNVs: implication for genotype-phenotype 

correlation  

The collected ASD cohort was, as expected, clinically heterogeneous, including different 

phenotypic categories ranging from full autism to high-functioning autism (HF-AU), Pervasive 

Developmental Disorder not otherwise specified (PDD-NOS), Asperger syndrome (AS), and 

syndromic autism (S-AU), which were classified according to the DSM-IV international criteria 

[Task Force on DSM-IV, 2000]. In particular, 15% of the patients were diagnosed as S-AU, in 

agreement with previous studies reporting a frequency of 10% of cases of autism in combination 

with facial dysmorphism and/or congenital malformations [Devlin and Scherer, 2012]. In addition, 

epilepsy was diagnosed in only 3.5% of the collected patients, in contrast to the reported frequency 

of 25% [Baird et al., 2006; Tuchman and Rapin, 2002]. 

Through the application of a genome-wide approach, copy number variations (CNVs) were 

determined, both rare (de novo and inherited) and those already reported in healthy controls 

according to the Database of Genomic Variants, which may be implicated in ASD. Specifically, 

55% of the patients were found to be carriers of one or more rare CNV, and, in total, 120 rare 

CNVs were identified, 73 gains (60.8%) and 47 losses (39.2%), confirming that among rare CNVs 

the frequency of gains is higher than that of losses, as previously reported [Levy et al., 2011; 

Marshall et al., 2008; Pinto et al., 2010, Sanders et al., 2011; Sebat et al., 2007; Zhao et al., 2007]. 

Conversely, focusing on the subset of rare de novo CNVs, 60% of these variants are losses, and 

40% are gains, in agreement with published data, which report a higher frequency of losses than 

gains among rare de novo CNVs [Levy et al., 2011; Marshall et al., 2008; Pinto et al., 2010, 

Sanders et al., 2011; Sebat et al., 2007; Zhao et al., 2007].  

Furthermore, since recent studies on several ASD series analyzed by array CGH demonstrated a 

higher frequency of rare de novo CNVs in females than in males [Gilman et al., 2011; Levy et al., 

2011], it has been hypothesized that rearrangements with a more severe effect and a higher 

penetrance are necessary for a female individual to develop ASD, compared to those anomalies 

necessary for the development of the same disease in males. This finding has not been reproduced 

in the cohort reported here, probably due to the small sample size. Indeed, rare de novo CNVs were 

found at the same percentage among female and male patients: 4/23 females (17.4%) and 16/92 

males (17.4%). 

 

In agreement with recently published data, the genotype-phenotype correlation in the present ASD 

series is rather complex [Schaaf et al., 2011]. First, rare CNVs, which may unveil, in part, the 

genetic causes underlying the disease, were found in only 55% of the patients, thus emphasizing 

the need to analyze large cohorts of autistic patients by means of different high-throughput 
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genome-wide approaches (e.g., array CGH, whole-exome sequencing) in order to increase the 

detection rate for these disorders.  

In addition, most patients positive in the array CGH analysis (~76%) were found to be carriers of 

more than one CNV, which were present in different combinations (Fig. 15), thus supporting the 

existence of a genetic model characterized by oligogenic heterozygosity, i.e., the simultaneous 

presence in a single autistic patient of multiple heterozygous quantitative variants/rare mutations, 

both de novo and/or inherited, affecting multiple genes [Pinto et al., 2010; Schaaf et al., 2011]. 

Previous studies of parents and unaffected siblings for the presence of oligogenic events revealed 

that the vast majority of these combinations are unique to the probands [Schaaf et al., 2011], as 

confirmed in the present ASD series by siblings 38–39 (Tab. 3), although some exceptions have 

been reported [Schaaf et al., 2011], suggesting that some of these events are insufficient to cause 

autism alone. It can be speculated that the accumulation of several, if not many, of such inherited 

low-penetrating variants causes a genetic load, which ultimately crosses a given threshold and leads 

to clinical manifestation of the ASD in the respective individuals. 

Therefore, when more rare CNVs are found in a single patient, it is difficult to attribute a “major” 

causative role to one of them, even in case of de novo CNVs, which are generally considered high-

penetrance variants. Indeed, the more severe clinical pictures reported here (i.e., syndromic autism) 

do not always correlate with the finding of rare CNVs, neither with the CNV size nor with the 

presence of de novo CNVs in the subset of patients bearing rare CNVs (Tab. 3). Moreover, it 

cannot be excluded that “common” CNVs may have modulated the behavioural phenotype of the 

reported ASD patients, increasing the complexity of inter-individual genetic and phenotypic 

variability. 

Interestingly, most of the identified rare de novo CNVs map either within genomic regions 

previously implicated in recurrent microrearrangements, which are responsible for some 

microdeletion/microduplication syndromes that are comorbid with ASD (Tab. 3, patients 14, 23, 

27, 29, 50, 52, 62, and 63), or within genomic regions implicated by linkage studies in ASD or in 

other neurologic or neuropsychiatric disorders, such as bipolar and major depressive disorders, 

schizophrenia, and intellectual disability (ID) (Tab. 3, patients 51, 53, 57, and 60). Indeed, the 8.8 

Mb genomic region found deleted in patient 51 at 2q14.3q21.3 includes a small region of 450 kb at 

2q21.1, recurrent deletion of which has been associated with attention deficit hyperactivity 

disorder, ID, epilepsy, and other neurobehavioral abnormalities [Dharmadhikari et al., 2012]. More 

recently, reciprocal duplications have been identified in five unrelated families with autism, 

developmental delay, seizures, and attention deficit hyperactivity disorder [Dharmadhikari et al., 

2012]. The rearranged segment harbors five genes, namely GPR148, FAM123C, ARHGEF4, 

FAM168B, and PLEKHB2, which are deleted in patient 51 (Tabs. 3 and 4.1).  
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Furthermore, in patients 53 and 57, rare large de novo CNVs affecting chromosomal regions 

previously suggested as ASD susceptibility loci by genome-wide linkage analyzes were identified, 

which map to 2q31.3q32.3 and 5q31.1q31.2, respectively (Tab. 3). Finally, both the 7.8 Mb loss at 

5p15.33p15.21 and the 9.1 Mb gain at 18p11.32p11.22 identified in patient 60 have been proposed 

as candidate loci for ID and bipolar disorder, major depressive disorder, and schizophrenia, 

respectively [Hattori et al., 2012; Ishiguro et al., 2001; Kuss et al., 2011; Lohoff et al., 2008; 

McInnes et al., 2001], thus supporting the existence of shared neurological pathways among 

different neuropsychiatric diseases, as previously reported [Bateman and Gull; 2011; Elia et al., 

2011a and b; Jarick et al., 2012; Kirov et al., 2009; Lachman, 2008; Lionel et al., 2011; Shoukier et 

al., 2012; Stefansson et al., 2008; Utine et al., 2012; Vrijenhoek et al., 2008; Walsh et al., 2008; 

Williams et al., 2012].  

Interestingly, in the ASD cohort reported here, the finding of rare de novo CNVs mapping in 

genomic regions responsible for recurrent genomic disorders does not correlate with the presence 

of a syndromic clinical picture in the carrying patients, with the exception of patient 14, who shows 

a mild syndromic phenotype (Tabs. 3 and 4.1). However, there are several possible explanations to 

clarify this discrepancy. Firstly, if the identified de novo CNV is smaller than that reported in 

association with the microdeletion/microduplication syndrome, it may not involve all the causative 

genes, although, conversely, it is possible that the rearrangement also perturbs the expression of 

genes localized outside its range by a position effect (Tab. 3). Furthermore, if the large de novo 

CNV is a duplication, it is difficult to predict the real effect of the rearrangement on the involved 

genes, which may lead to a haploinsufficiency, thus mimicking the effect of a deletion, as well as a 

mild or null perturbation of the gene expression or an increase of the corresponding protein. 

Indeed, Schaaf et al. recently reported the finding of point mutations with a mild effect in 

“syndromic” genes (i.e., missense mutations), such as TSC1, TSC2, PTEN, and CACNA1C, which 

in combination with mutations in other genes may have led to ASD development in a cohort of 

high-functioning autistic patients who do not show any syndromic clinical features [Schaaf et al., 

2011], thus supporting our hypothesis. Therefore, a precise molecular characterization of the 

identified CNVs as well as a quantitative analysis of the gene transcripts is necessary to clarify 

their role in ASD. 

For example, patient 14 carries a duplication of 442 kb at 9q34.3 (Tab. 3), which is included in the 

region responsible for the 9q subtelomeric deletion syndrome (Kleefstra syndrome), and shows a 

mild syndromic clinical picture not yet clearly defined as “Kleefstra”. This syndrome, which is 

characterized by a typical gestalt, microcephaly, hypotonia, ID and, in some cases, ASD/autistic 

traits, is due to the deletion of the EHMT1 gene, encoding a histone-methyltransferase, and, often, 

of the CACNA1B gene, which is located more distally and encodes a voltage-dependent calcium 

channel implicated in neurotransmitter release (Tab. 4.1) [Anderlid et al., 2002; Dawson et al., 
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2002; Iwakoshi et al., 2004; Kleefstra et al., 2005, 2009; McMullan et al., 2009; Sahoo et al., 

2006b]. Although the genomic instability of the chromosome 9q34 region has been well 

documented [Talkowski et al., 2012], often in association with neurodevelopmental disorders, only 

recently were a few autistic patients reported to bear complex deletion-duplication or duplication-

triplication rearrangements involving EHMT1, thus suggesting that increased dosage of EHMT1 

may be responsible for neurodevelopmental impairment and ASD [Yatsenko et al., 2012]. 

However, as both the duplication breakpoints fall within the gene coding sequences in patient 14 

(Fig. 18), it is possible that both EHMT1 and CACNA1B have been disrupted by the 

microrearrangement, thus resulting in gene haploinsufficiency as seen in microdeletion. To confirm 

this hypothesis, the duplication will be molecularly characterized, and any quantitative changes in 

EHMT1 and CACNA1B expression will be evaluated. Furthermore, patient 14 bears another rare 

CNV, inherited from the mother, at Xq22.3, which likely disrupts, differently from what happens in 

the healthy mother, the only copy of the IL1RAPL2 gene, encoding an interleukin receptor (Tabs. 3 

and 4.1). By analogy with the function of another member of the same family, IL1RAPL1, 

IL1RAPL2 is likely involved in presynaptic calcium-dependent neurotransmitter release and 

differentiation of dendritic spines. Since mutations and CNVs affecting IL1RAPL1 have been 

identified in patients with schizophrenia or autism with or without association to X-linked mental 

retardation [Piton et al., 2008], and SNPs in IL1RAPL2 have recently been associated with ASD 

[Kantojarvi et al., 2011], this CNV may play a role in the onset of the disease. 
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Fig 18. (Top) High-resolution array CGH (Agilent Technologies) identified a duplication of 442 kb at 9q34.3 

in patient 14. (Bottom) Schematic view of the region involved in the 9q34.3 subtelomeric deletion syndrome. 

The most interesting genes mapped within this region are depicted in blue, previously reported deletions in 

green [Kleefstra et al., 2009], the duplication identified in patient 14 in red, and the segmental duplications 

on the bottom line. 

 

In patient 23, the de novo deletion of 749 kb at 17q21.31 includes part of the region involved in the 

17q21.31 microdeletion/microduplication syndrome (Tab. 3, Fig. 19). The deletion syndrome is 

characterized by facial dysmorphism, hypotonia, ID, and ASD has been reported in only two 

patients [Betancur et al., 2008; Cooper et al., 2011], whereas this clinical characteristic has been 

demonstrated by several patients with the reciprocal duplication [Grisart et al., 2009]. The minimal 

deleted region spans 424 kb [Koolen et al., 2008; Sharp et al., 2006] and encompasses six genes 

including CRHR1, encoding a G protein-coupled receptor that binds neuropeptides, and MAPT 
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encoding a protein that is involved in the assembly and stability of microtubules (Tab. 4.1). "Gain 

of function" mutations affecting MAPT cause autosomal dominant forms of fronto-temporal 

dementia [D'Souza et al., 1999; Hutton et al., 1998; Rademakers et al., 2004], and common 

variants have been associated with progressive paralysis [Pittman et al., 2005] and Alzheimer’s 

disease [Myers et al., 2005]; therefore defects in this gene have also been suggested as candidates 

for ASD.  

Interestingly, patient 23, who was diagnosed as PDD-NOS in the absence of a syndromic clinical 

picture, bears the deletion of only CRHR1, which is likely disrupted by the rearrangement (Fig. 

19). This finding is in agreement with the recent report of three atypical deletions at 17q21.31 in 

three patients with the clinical signs of 17q21.31 microdeletion syndrome (one of the three patients 

was reported as autistic), which seems to exclude a pathogenetic role of CRHR1 [Cooper et al., 

2011]. Indeed, the critical region for this syndrome has been refined and focused to only three 

genes, MAPT, STH, and KIAA1267, thus supporting the involvement of MAPT in the onset of this 

syndrome, and, likely, in ASD [Cooper et al., 2011]. Although MAPT is not deleted in patient 23, it 

is not possible to exclude its dysregulation due to the identified microrearrangement, which may 

perturb gene expression by a position effect. Similar to the situation described in patient 14, in 

patient 23 the rare de novo CNV at 17q21.31 occurs in combination with a rare inherited CNV at 

17q24, which likely disrupts the gene encoding PRKCA, a calcium-dependent kinase with roles in 

cell adhesion and differentiation, and may have contributed to ASD onset (Tabs. 3 and 4). 

 

Finally, considering the rare inherited variants reported here, as expected, a few CNVs affect 

genomic regions, such as the 15q11.2 and 16p11.2 loci (Tab. 3, patients 25, 38, 39, 55), which are 

involved in recurrent genomic rearrangements that show incomplete penetrance and variable 

expressivity as they have been previously found in autistic patients as well as in healthy parents and 

in controls [Kumar et al., 2008; Marshall et al., 2008; Sempere-Perez et al., 2011; Weiss et al., 

2008]. Interestingly, Nord et al. [Nord et al., 2011] recently described a decrease in the transcripts 

of several genes affected by rare CNVs in a group of autistic probands compared with their 

unaffected transmitting parents and a group of controls, suggesting that transcriptional anomaly 

may explain, at least in part, the phenotypic differences between patients and healthy parents or 

controls. Notably, however, a reduced mRNA level has also been reported in the transmitting 

parent compared with the non-transmitting parent [Nord et al., 2011]. 
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Fig. 19. (Top) High-resolution array CGH (Agilent Technologies) identified a deletion of 749 kb at 17q21.31 

in patient 23. (Bottom) Schematic view of the region involved in the 17q21.31 

microdeletion/microduplication syndrome. The most interesting genes mapped within this region are depicted 

in blue, the recurrent deletion in dark green [Koolen et al., 2008], the duplication identified in patient 23 in 

light green, the reciprocal duplications reported by Grisart et al. in red [Grisart et al., 2009], and the atypical 

deletions reported by Cooper et al. in orange [Cooper et al., 2011]. 
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6.2 Identification of functional networks of genes potentially implicated in ASD 

On the basis of the rare CNV gene content, it is possible to confirm in the present cohort the wide 

genetic heterogeneity associated with ASD. Indeed, the same affected loci were detected in only a 

few unrelated patients (LCLAT1 in patients 7 and 33, and MACROD2 in patients 3, 33, and the 

siblings 40–41), whereas most patients demonstrated specific subsets of rare CNVs in 

combinations characteristic for each patient, thus supporting the genetic complexity of ASD. 

Moreover, most of the selected genes have never been reported in association with ASD, and thus 

they are suggested as new candidate loci (Fig. 17). They can be grouped into six functional 

networks that all contribute to CNS development and maintenance. Convergent pathways of action 

for the vast number of ASD genes proposed so far have been previously reported, most of which 

converge on synaptic function, thus confirming the neurological interpretation of ASD as a 

“synaptopathy” [Zoghbi and Bear, 2012]. Specifically, the selected genes are implicated in (Tabs. 

4 and 4.1, Fig. 17): 

- neurogenesis and neurodevelopment; 

- transcriptional regulation and chromatin remodeling; 

- CNS metabolism; 

- synaptogenesis and synaptic plasticity; 

- intracellular signaling and trafficking; 

- local and systemic immune response. 

Of note, although the schematic subdivision of genes above is proposed, it is clear that all the 

networks are deeply interconnected, and more than one network generally contribute to the same 

final neuronal function. 

 

Neurogenesis and neurodevelopment (the genes affected by de novo CNVs are indicated in bold 

text, Tabs 4 and 4.1) 

Sixty-six of the 276 selected genes contribute to neurogenesis or, more generally, to 

neurodevelopment acting directly on neuronal growth (axon outgrowth and patterning) (e.g., 

ADAMTS9, CFDP1, CSH1, EPB41L5, FMNL1, GH2, CSPG5, DIP2A, and PLD5), neuronal 

migration and organization into tissues (e.g., CEP72, FLNA, LAMA1, LIMK1, NCKAP1, NDE1, 

PCNT, PPP4C, SPOCK1, TUBA3D/3E, TPPP, and TMSB15B), and cell cycle and apoptosis 

regulation (e.g., MPHOSPH9 and AIFM3) (Fig. 20). Most of the CNVs affecting these genes are 

parentally inherited, whereas the de novo variants map to recurrent genomic regions as well as 

regions previously associated with ASD or with other neurodevelopmental disorders by linkage 

studies (Tabs. 3–4.1). Both deletions and duplications were observed, confirming that a decrease in 

neuronal growth and migration, as well as an increase in the same processes, accompanied by 

dysregulation in the spatial organization of the neuronal layers, may result in the same final effect, 
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thus contributing to autism development. 

 

Fig. 20. Schematic view of the functional network of genes implicated in neurogenesis, subdivided on the 

basis of their function (green balls).  

 

For example, the CSPG5 gene (duplicated in patient 3, Tab. 3) encodes neuroglycan C, which is 

specifically expressed in the CNS and promotes neurite outgrowth that is, conversely, inhibited by 

both protein kinase C and phosphatidylinositol 3-kinase, both of which modulate CSPG5 function. 

FMNL1 (deleted in patient 23) encodes a formin-related protein that mediates the induction of 

dendritogenesis and synaptogenesis by neurogenin 3 in mouse hippocampal neurons through a 

direct role in cytoskeleton dynamics. Moreover, both the CSH1 and GH2 genes encode hormones 

of the pituitary GH1/IGF-I axis that play an important role in CNS functions, including those 

associated with neuronal growth, development, and protection. It has been suggested that the 

GH1/IGF axis may play a role in influencing aspects of mood and cognition [Donahue et al., 2006; 

Lodygensky et al., 2008; Zearfoss et al., 2008], and, therefore, it is likely that deletion of both 

CSH1 and GH2 in patient 45 may have played a role in autism development. Of note, the deletion 

detected in patient 45 is maternally inherited, and the mother also shows autistic traits (Tab. 3).  

Finally, LAMA1 encodes the laminin alpha1 protein, which is thought to mediate the attachment, 

migration, and organization of cells into tissues during embryonic development. In the conditional 

laminin α1 knockout mouse, a strong defect in the organization of the adult cerebellum has been 

reported. Indeed, the postnatal cerebellum of these animals revealed a disrupted basement 

membrane correlated to an unexpected excessive proliferation of granule cell precursors in the 

external granular layer, thus suggesting that LAMA1 is essential for proper cerebellum 

development [Heng et al., 2011]. It can be speculated that overexpression of LAMA1 in patient 60 

(Tab. 3), due to a full gene duplication, may have contributed to autism onset by acting on 
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cerebellum organization during embryonic development, thus supporting the fundamental role of 

cerebellum anomalies in ASD as previously reported [Fatemi et al., 2012]. 

It is interesting to note that the shared pathway underlying most of the actions that ultimately give 

rise to neurogenesis and neurodevelopment is the regulation of actin and microtubule cytoskeleton 

dynamics as well as the organization of the centrosome, as confirmed by the identification of 

several genes that modulate these processes whose dysregulation may contribute to ASD 

development. For example, FLNA (potentially disrupted in patient 61, Tab. 3) encodes the filamin 

A protein, which is an actin binding protein that crosslinks actin filaments and links them to 

membrane glycoproteins. FLNA is involved in remodeling the cytoskeleton to affect changes in 

cell shape and migration, and a direct interaction between FLNA and SHANK3 has been recently 

reported in mouse brain extracts [Lian et al., 2012]. Moreover, LIMK1 (duplicated in patient 52, 

Tab. 3) encodes the LIM domain kinase 1 protein, which is a serine/threonine kinase that regulates 

actin polymerization via phosphorylation and inactivation of the actin binding factor cofilin. 

LIMK1 stimulates axon growth and binds to TrkB, which is required for BDNF-induced axonal 

elongation. In Limk1-null mice, abnormal dendrite spine morphology as well as altered 

hippocampal function and mild deficits in spatial learning and memory have been reported 

[Osborne, 2010].  

The deletion of NCKAP1 seen in patient 53 may have resulted in an impairment of functional 

connectivity in the cerebral cortex (Tab. 3). NCKAP1 is an adaptor protein that is thought to 

modulate actin nucleation. It is selectively expressed in the cortical plate region of the developing 

cortex, where neurons terminate their migration and begin their final laminar-specific 

differentiation, characterized by the elaboration of distinct axonal and dendritic architecture 

[Yokota et al., 2007]. Similarly, overexpression of SPOCK1 in patient 57 due to a full gene 

duplication (Tab. 3) may have abnormally modulated neuronal attachment and matrix 

metalloproteinase activation during neurodevelopment. During mouse embryonic development, 

SPOCK1 is actively expressed at the onset of neurogenesis during periods of neuronal migration 

and axonal outgrowth. At a later developmental stage, its expression is particularly prevalent within 

developing synaptic fields. In particular, SPOCK1 is most prominently expressed in the thalamus 

and is upregulated in activated astroglial cells of the cerebrum [Charbonnier et al., 2000; Edgell et 

al., 2004; Röll et al., 2006; Vadasz et al., 2007].  

Both the TPPP and TUBA3D/3E genes encode proteins with a role in microtubule cytoskeleton 

organization. Indeed, the tubulin polymerization-promoting protein (TPPP) has a brain-specific role 

in the dynamic stabilization of microtubular ultrastructures as well as in the projections of mature 

oligodendrocytes and ciliary structures, whereas the tubulins alpha 3d and 3e are major components 

of microtubules. Thus, possible defects in microtubule assembly and organization due to TPPP and 

TUBA3D/3E deletions, identified in patients 60 and 51, respectively (Tab. 3), may be implicated 
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in ASD. 

Finally, four of the collected genes encode proteins that are integral components of the centrosome 

structure, a non-membranous organelle that functions as the major microtubule-organizing centre in 

animal cells, with clear roles in centrosome organization. Specifically, PCNT (potentially disrupted 

in patient 28, Tab. 3), an integral component of the filamentous matrix of the centrosome, is 

involved in the initial establishment of organized microtubule arrays in both mitosis and meiosis; 

NDE1 (duplicated in patient 30) interacts with other centrosome components as part of a 

multiprotein complex that regulates dynein function; PPP4C (duplicated in patients 25, 38, and 39) 

acts in many processes, such as microtubule organization at centrosomes, maturation of 

spliceosomal snRNPs, apoptosis, DNA repair, tumour necrosis factor (TNF)-alpha signaling, 

regulation of histone acetylation, DNA damage checkpoint signaling, NF-kappa-B activation, and 

cell migration; and CEP72 (deleted in patient 60) is involved in the recruitment of key centrosomal 

proteins to the centrosome. A few centrosomal proteins have been previously involved in 

neurodevelopment: mutations in the coding genes (e.g., CEP135, STIL, CDK5RAP2, and CENPJ) 

cause autosomal-recessive congenital disorders characterized by intellectual disability and reduced 

brain and head size, suggesting that a centrosomal mechanism controls neuron numbers in the 

developing mammalian brain [Bond et al., 2005; Hussain et al., 2012]. Therefore, it is likely that 

anomaly in centrosomal protein may also contribute to ASD onset. 

 

Transcriptional and translational regulation and chromatin remodeling (the genes affected by de 

novo CNVs are indicated in bold, Tabs. 4 and 4.1) 

Fifty-one of the 276 selected genes have reported functions correlated with neuronal nuclear 

activities, such as DNA replication, repair, transcriptional regulation, and chromatin remodeling, as 

well as with protein synthesis, which contribute to overall neurodevelopment (Fig. 21). Similar to 

the findings reported for the subset of genes involved in neurogenesis, both losses and gains were 

observed. Moreover, all the de novo CNVs, except for one detected in patient 24, map to recurrent 

genomic regions as well as to regions previously associated with ASD or with other 

neurodevelopmental disorders by linkage studies (Tabs. 3–4.1).  
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Fig. 21. Schematic view of the network of genes implicated in transcriptional and translational regulation, 

and in chromatin remodeling, subdivided on the basis of their function (light pink balls). 

 

The largest functional category is that of transcriptional regulation, where the encoded proteins 

may act both as activators and repressors of transcription, playing a role, in most cases, in early 

embryonic development and thus regulating the differential expression of genes involved in 

neurodevelopment in a time-dependent manner. In particular, RFX3 deletion is the only de novo 

variant that does not map to a recurrent genomic region (patient 24, Tab. 3). RFX3 is a 

transcriptional activator that acts as a transcription factor required for ciliogenesis. In mouse, it is 

strongly expressed in the ciliated ependymal cells of the subcommissural organ, choroid plexuses, 

and ventricular walls during embryonic and postnatal development [Benadiba et al., 2012; El-Zein 

et al., 2009], thus supporting a similar role in humans.  

In addition to the well known genes implicated in transcriptional regulation and already associated 

with ASD, such as GTF1 and GTF2IRD1 at 7q11.23 (patient 52, Tab. 3), NDN at 15q11q13 

(patient 29), and GSC2, MED15 and TBX1 at 22q11.21 (patient 27), other genes may be suggested 

as ASD candidate genes after careful analysis. For example, GLI2 encodes a member of the GLI 

family of zinc finger proteins that is thought to play a role during embryogenesis. In fact, in mouse 

embryo, GLI2 plays an essential role in the establishment of dorsoventral polarity and in thalamic 

development acting downstream of Sonic hedgehog (Shh) signaling [Haddad-Tovolli et al., 2012; 

Matise et al., 1998; Takanaga et al., 2009].  

Furthermore, TGIF1, which is duplicated in patient 60 along with THOC1 (Tab. 3), encodes the 

TGFB-induced factor homeobox 1 protein, a member of the highly conserved TALE homeobox 
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protein family of transcription regulators. In vivo overexpression of TGIF in the developing chick 

neural tube demonstrated that TGIF plays an important role in regulating the expression of genes 

expressed in specific dorsal-ventral domains during neural development [Knepper et al., 2006]. 

Interestingly, NAB1, which is deleted in patient 53 along with NEUROG1 and ZNF804A (Tab. 3), 

encodes NGFI-A binding protein 1, which acts as a transcriptional repressor for zinc finger 

transcription factors EGR1 and EGR2. Both EGR1 and EGR2 have previously been implicated in 

mood disorders, such as major depressive disorder and bipolar disorder, respectively [Kerman et 

al., 2012; Kim et al., 2012]. Indeed, EGR1 is strongly expressed in neurons in the adult brain, 

where it can exert long-lasting changes in gene expression and subsequent protein synthesis that 

mediate synaptic plasticity, whereas EGR2 is involved in cognitive function, myelination, and 

signal transduction related to neuregulin-ErbB receptor, Bcl-2 family proteins, and brain-derived 

neurotrophic factor [Cole et al., 1989; Knapska and Kaczmarek, 2004; Malkani et al., 2004; 

Ressler et al., 2002; Valjent et al., 2006]. Dysregulation of EGR1/2 due to NAB1 

haploinsufficiency may be speculated to contribute to ASD development. 

Finally, NEUROG1, which is duplicated along with PITX1 in patient 57 (Tab. 3), encodes 

neurogenin 1, which acts as a transcriptional regulator. It is involved in the initiation of cortical 

neuronal differentiation and associates with chromatin at enhancer regulatory elements in genes 

encoding key transcriptional regulators of neurogenesis. Interestingly, SNPs in NEUROG1 have 

previously been associated with schizophrenia, whereas SNPs in PITX1 have been associated with 

ASD [Fanous et al., 2007; Philippi et al., 2007]. PITX1 encodes the paired-like homeodomain 1 

protein, which plays a role in the development of anterior structures, in particular the brain and 

facies, and in specifying the identity or structure of hindlimbs [Philippi et al., 2007]. 

Interestingly, on the basis of the identified genes, anomalies in all the steps of neuronal nuclear 

activity may potentially be correlated with ASD pathology. Indeed, at least two genes are 

implicated in DNA replication, namely CDC45 (duplicated in patient 27, Tab. 3), which encodes a 

protein necessary for the early steps of DNA replication in eukaryotes and is highly expressed 

during neurogenesis in cortical ventricular and subventricular zones, and RNASEH2B (deleted in 

patient 34), whose encoded protein specifically degrades the RNA of RNA:DNA hybrids. Of note, 

mutations affecting RNASEH2B cause Aicardi-Goutières syndrome type 2 (autosomal recessive 

and, rarely, autosomal dominant inheritance), which is characterized by brain malformations and 

cognitive dysfunction [Crow and Livingston, 2008]; thus, anomaly in this gene is also suggested in 

ASD development.  

In addition, DNA repair must also be considered an essential process for proper neurogenesis. 

Indeed, the ERCC3 protein, whose corresponding gene demonstrated heterozygous deletion in 

patient 51 (Tab. 3), was found to be ubiquitously expressed in developing mouse brain from 9-day 

post-coitum embryo to 15-day postnatal brain, suggesting that defects may arise from ERCC3 
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interactions with other elements involved in particular aspects of neurodevelopmental control 

[Hubank and Mayne, 1994]. Moreover, mutations in ERCC3 cause recessive forms of xeroderma 

pigmentosum group B combined with Cockayne syndrome (XP/CS), characterized by anomalies in 

skin pigmentation and, sometimes, neurological features such as microcephaly, intellectual 

disability, pigmentary retinopathy, ataxia, and decreased nerve conduction velocities [Oh et al., 

2006].  

Once mRNA has been transcribed, the translational process must begin, and specific proteins are 

required to form the initiation complex for translation. Rare mutations and balanced chromosomal 

abnormalities affecting EIF4E, encoding translation initiation factor 4E, have previously been 

reported in a small group of autistic boys and their unaffected fathers [Neves-Pereira et al., 2009]. 

Thus, the findings of rare CNVs involving EIF4H (fully duplicated in patient 52, Tab. 3) and 

EIF2S3 (possibly disrupted in patient 1) seem to confirm a role of fine regulators of the 

translational process in ASD (Tabs. 3–4.1). The control of mRNA translation into protein is, in 

fact, fundamentally important for the fine tuning of gene expression; additionally, precise 

translational control plays a critical role in many cellular processes, including development, cellular 

growth, proliferation, differentiation, synaptic plasticity, memory, and learning. Knockout mice 

deficient in Eif4h demonstrated a smaller brain volume compared with controls, altered brain 

morphology, and a reduction in both the number and complexity of neurons. Behavioural studies 

revealed severe impairments of fear-related associative learning and memory formation, thus 

suggesting that Eif4h, which in humans maps to 7q11.23, may contribute to certain deficits 

associated with Williams-Beuren syndrome [Capossela et al., 2012].  

Similarly, when necessary translation must be finely repressed, one of the best-known genes 

encoding a protein that plays such a role is CYFIP1 at 15q11.2, which is both deleted and 

duplicated in the reported cohort (patients 29, 50, and 55, Tab. 3). This gene encodes the 

cytoplasmic FMR1-interacting protein 1, which is a component of the CYFIP1-EIF4E-FMR1 

complex that binds to the mRNA cap and mediates translational repression, thus promoting the 

translational repression activity of FMR1 in brain. 

However, the complex process of transcription may also be regulated by the action of non-coding 

RNAs as well as by DNA epigenetic modifications also known as chromatin remodeling. As the 

evolution of the human brain has resulted in the emergence of higher-order cognitive abilities such 

as reasoning, planning, and social awareness, it is likely that in addition to larger brain size with 

greater complexity and capacity, a concomitant expansion of novel functional components and 

regulatory systems evolved [Barry and Mattick, 2012]. Recently, it has been suggested that RNA-

directed epigenetic mechanisms have mediated human development and have contributed to brain 

plasticity, leading to the collateral emergence of psychiatric fragilities and conditions [Barry and 

Mattick, 2012]. In agreement with this hypothesis, ASD may be at least in part the result of 
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aberrant microRNA biogenesis, due to aberrations affecting, for example, DGCR8 (duplicated in 

patient 27, Tab. 3), which encodes a subunit of the microprocessor complex that mediates the 

biogenesis of microRNAs from the primary microRNA transcript and plays a fundamental role in 

transcriptional regulation in the prefrontal cortex of developing mice [Schofield et al., 2011]. 

Similarly, defects in chromatin remodeling may contribute to ASD (e.g., BAZ1B, EHMT1, 

JMJD2A, JMJD2C, SMARCC1, and SMYD3), as confirmed by patients with Kleefstra/reciprocal 

duplication syndromes (patient 14, Tab. 3) [Kleefstra et al., 2005, 2009; Talkowski et al., 2012], 

both of which are comorbid with ASD and caused by aberrant EHMT1 gene dosages leading to 

anomalies in histone methylation. Indeed, EHMT1 functions as a histone-lysine N-

methyltransferase, whereas JMJD2A (deleted in patient 2, Tab. 3) and JMJD2C (possibly disrupted 

in siblings 38–39, Tab. 3), are histone-lysine demethylases. Of note, a SNP in JMJD2C has been 

previously associated with ASD in Finnish samples [Kantojärvi et al., 2010]. 

Moreover, during neural development, a switch from a stem/progenitor to a post-mitotic chromatin 

remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult 

state. Therefore, anomalies in chromatin remodeling may have contributed to ASD in the reported 

cohort. For example, SMARCC1, which belongs to the neural progenitors-specific chromatin 

remodeling complex (npBAF complex) and to the neuron-specific chromatin remodeling complex 

(nBAF complex), participates in this process, displaying helicase and ATPase activities (possibly 

disrupted in patient 3, Tab. 3). In mouse embryonic stem cells, Smarcc1 is necessary for 

heterochromatin formation and chromatin compaction during differentiation and plays important 

roles in facilitating mESC differentiation by coupling gene repression with global and local 

changes in chromatin structure [Marei et al., 2012; Schaniel et al., 2009]. Finally, BAZ1B maps to 

7q11.23 (duplicated in patient 52, Tab. 3) and is deleted in the Williams-Beuren syndrome. It 

encodes a member of the bromodomain protein family, a MAPK-dependent phosphoprotein 

(tyrosine-protein kinase) that plays a central role in chromatin remodeling. Indeed, it is involved in 

DNA damage response by phosphorylating Tyr-142 of histone H2AX (H2AXY142ph). 

H2AXY142ph plays a central role in DNA repair and acts as a mark that distinguishes between 

apoptotic and repair responses to genotoxic stress [Cus et al., 2006; Oya et al., 2009]. Of note, 

heterozygote (Baz1b/-) and homozygote (-/-) mouse models show craniofacial abnormalities and 

cardiac malformations but no behavioural anomalies [Osborne, 2010]. 

 

Synaptogenesis and synaptic plasticity (the genes affected by de novo CNVs are indicated in bold, 

Tabs. 4 and 4.1) 

Twenty-nine of the 276 selected genes are directly implicated in synaptogenesis and synaptic 

function and plasticity. In agreement with reported data that consider ASD as a synaptopathy 

[Zoghbi and Bear, 2012], most of the genes previously implicated in ASD (genes depicted in red in 
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Tabs. 4 and 4.1) belong to this network and can be classified as either of the following: 

1) genes localized pre-synaptically, which are involved in the docking of the synaptic vesicles onto 

the presynaptic membrane, vesicle recycling, membrane depolarization, and, consequently, 

neurotransmitter release; 

2) genes localized post-synaptically, which encode either structural proteins that form the 

scaffolding complex known as postsynaptic density, adhesion molecules, or different types of 

neurotransmitter receptors such as glutamate, GABA, acetylcholine, and secretin receptors as well 

as synaptic signaling modulators (Fig. 22). 

 

Fig. 22. Schematic view of the subsequent steps involved in synaptic function. 

 

In observing a synapse from the presynaptic point of view, several known genes have been found 

to be affected by both de novo and inherited CNVs, such as CACNA1B (potentially disrupted in 

patient 14, Tab. 3) and CACNA1C (potentially disrupted in patients 38–39), which both encode 

voltage-dependent calcium channels responsible for intracellular Ca
2+

 influx that modulates 

neurotransmitter release. Additionally, IL1RAPL2 (potentially disrupted in patient 14) may play a 

similar role. It encodes a member of the interleukin 1 receptor family that interacts with the 

neuronal calcium sensor 1 protein, thus playing a role in the downregulation of voltage-dependent 

calcium channel activity and in calcium-dependent exocytosis in excitatory synapses [Valnegri et 

al., 2011].  

In addition, genes encoding proteins implicated in docking of synaptic vesicles to the membrane, 

such as DOC2A (duplicated in patients 25, 38, 39, Tab. 3), STX1A (duplicated in patient 52), and 

SNAP29 (duplicated in patient 27), were detected. STX1A binds synaptotagmin in a calcium-

dependent fashion and interacts with voltage-dependent calcium and potassium channels, thus 
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regulating calcium-dependent synaptic exocytosis. Furthermore, STX1A is part of the SNARE core 

complex, which also contains SNAP25 [Ghezzo et al., 2009]. SNAP29 forms a complex with 

SNAP23, SNAP25, and STX1A and acts as a negative modulator for neurotransmitter release, 

probably by slowing recycling of the SNARE-based fusion machinery and synaptic vesicle 

turnover [Pan et al., 2005; Su et al., 2001]. Moreover, DOC2A binds to STXBP1, the syntaxin 

(STX) binding protein 1, thus regulating the STXBP1-STX interaction, which is essential for the 

activity of the synaptic vesicle fusion machinery [Mochida et al., 1998]. All the genes encoding 

these proteins map to recurrent genomic regions previously implicated in genomic disorders that 

are comorbid with ASD (Tabs. 3-4.1) [Betancur, 2011] as well as in other neuropsychiatric 

disorders, such as attention deficit hyperactivity disorder, intellectual disability, and schizophrenia, 

confirming the existence of functional networks of genes whose dysregulation is the shared 

pathological base for the development of this class of diseases.  

Interestingly, the large de novo deletion detected in patient 60 at 5p15.33p15.31 (Tab. 3) involves, 

among others, the EXOC3 gene, also known as SEC6, which has not been previously suggested as 

an ASD candidate gene. This gene encodes the exocyst complex component 3, which is a 

component of the exocyst complex, a multiple-protein complex essential for targeting exocytic 

vesicles to specific docking sites on the plasma membrane. In a study of developing neurons, 

Sec6/8 complexes were found at the highest levels in regions of the brain undergoing 

synaptogenesis and in regions of cultured neurons where synapses will subsequently develop. By 

contrast, the level of Sec6/8 was downregulated in mature synapses [Hazuka et al., 1999; Hsu et 

al., 1996, 1999], leading to the hypothesis that the main function of the Sec6/8 complex is in the 

formation of synapses rather than in their function once formed. 

Furthermore, two ASD candidate genes emerged from the present study, the VAT1 and ADCYAP1 

genes (deleted in patient 25 and duplicated in patient 60, respectively, Tab.3). VAT1 is an 

abundant integral membrane protein of cholinergic synaptic vesicles and is thought to be involved 

in vesicular transport. In the CNS which uses acetylcholine as a neurotransmitter, is known to have 

a variety of neuromodulatory effects upon plasticity, arousal, and reward. Indeed, acetylcholine 

plays an important role in sustaining attention, learning, and short-term memory, and functional 

studies implicate the cholinergic system in the development of autism on the basis of neuronal 

nicotinic acetylcholine receptor losses in cerebral and cerebellar cortex and in the thalamus of 

autistic brains [Ray et al., 2005; Suzuki et al., 2011]. 

ADCYAP1 encodes adenylate cyclase activating polypeptide 1 (PACAP), which stimulates 

adenylate cyclase and subsequently increases the cAMP level in target cells. The neuropeptide 

PACAP is a molecule released from stress-transducing neurons. It exerts postsynaptic effects 

required to complete hypothalamo-pituitary-adrenocortical (HPA) and hypothalamo-splanchnico-

adrenomedullary (HSA) circuits activated by psychogenic and metabolic stressors. PACAP is 
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widely expressed throughout the brain and exerts its functions through the PACAP-specific 

receptor PAC(1). Recent studies reveal that genetic variants of the PACAP and PAC(1) genes are 

associated with mental disorders, and several behavioural abnormalities of PACAP knockout mice 

have been reported, thus suggesting that PACAP has an important role in the regulation of 

locomotor activity, social behaviour, anxiety-like behaviour, and, potentially, working memory 

[Hattori et al., 2012; Stroth et al., 2011]. 

Among genes encoding structural proteins that function post-synaptically as transmembrane or 

scaffolding proteins, most have been reported previously, such as NLGN4X (potentially disrupted 

in patient 35, Tab. 3), DLGAP2 (duplicated in patient 59), and DLG2 (deleted in patient 26). 

Conversely, to the best of our knowledge, this study is the first to report a rare de novo CNV 

affecting DLGAP1, which was fully duplicated in patient 60 (Tab. 3). Additionally, DLGAP1 

works at the postsynaptic density; therefore stoichiometric imbalances in the protein dosage may 

produce defects in scaffold formation, as previously suggested for SHANK3 [Toro et al., 2010]. 

Many transmembrane proteins encoded by this network of genes are actually neurotransmitter 

receptors, most of which have already been implicated in ASD. Specifically, CNVs affecting genes 

for glutamate receptors GRID2 (deleted in patient 42, Tab. 3) and GRM7 (potentially disrupted in 

patient 44) and receptors of GABA (GABRA5/B3/G3, duplicated in patient 29), acetylcholine 

(CHRNA7, duplicated in patient 25), and secretin (SCTR, duplicated in patient 10) have been 

identified.  

Moreover, some interesting genes have been identified that modulate synaptic plasticity. First, 

CAMLG, which is duplicated in patient 57 (Tab. 3), encodes a calcium modulating ligand protein 

that has been reported to be involved in recycling and endocytic processing of GABAA receptors. 

Indeed, in neuronal cortical cultures it has been demonstrated that a reduction of CAMLG 

translated to reduced GABAA receptors on the postsynaptic membrane with an effect specific to 

GABAA receptors, since glutamate-evoked current remained unaltered in these neurons [Yuan et 

al., 2008; Zhang et al., 2010]. Moreover, GABA signaling seems also to be modulated by the 

protein encoded by the DBI gene, which is fully duplicated in patient 10 (Tab. 3). This gene 

encodes the diazepam binding inhibitor, a GABA receptor modulator, which is able to displace 

diazepam from the benzodiazepine (BZD) recognition site located on the GABA type A receptor. It 

is possible that this protein acts as a neuropeptide to modulate the action of the GABA receptor 

located in brain synapses. Recently, a CNV involving loss of DBI was described in an autistic 

patient, and SNPs in DBI have been associated with anxiety and panic attacks [Griswold et al., 

2012; Thoeringer et al., 2007]. Furthermore, functional studies reported reduced numbers of 

GABA and benzodiazepine receptors in autistic brain, particularly in posterior cingulate cortex 

[Oblak et al., 2011].  
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Finally, the CA4 gene, which is fully duplicated in patient 16 as a result of a de novo duplication 

(Tab. 3), can be considered a good candidate for ASD development. It encodes carbonic anhydrase 

IV, which belongs to a large family of zinc metalloenzymes that catalyze the reversible hydration 

of carbon dioxide. These enzymes are indirectly implicated in regulation of excitatory synaptic 

transmission, because the curtailment of extracellular alkaline shifts by extracellular carbonic 

anhydrases was shown to limit postsynaptic NMDA receptor activation during synchronous neural 

activity [Tong et al., 2000]. To date, defects in CA4 have only been associated with retinitis 

pigmentosa type 17. However, rare single-gene mutations affecting CA6, another member of the 

same family, have been reported in a few autistic patients [Bucan et al., 2009]. 

 

CNS metabolism and homeostasis (the genes affected by de novo CNVs are indicated in bold, 

Tabs. 4 and 4.1) 

Twenty-seven of the 276 selected genes play roles essential for proper neuronal metabolism, 

coding for genes involved in amino acid catabolism (e.g., ACMSD, BCHDHA, GLDC, GLS, 

HIBCH, PRODH, and QPRT); neurotransmitter and neuropeptide maturation and degradation (e.g., 

COMT, PREP, and SULT1A3); glycolysis, Krebs cycle, and mitochondrial metabolism (e.g., 

ALDOA, ME3, NDUFV2, SDHA, SLC25A48, and TXNRD2); and biosynthesis of heparan sulfate 

molecules, phospholipids and lipoproteins (ABCD4, HS6ST1, LCLAT1, LPCAT1, and NDST2) 

(Tabs. 4 and 4.1, Fig. 23).   

 

Fig. 23. Schematic view of the principal reactions implicated in CNS metabolism that are potentially 

dysregulated in the present ASD cohort.  
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Among the subset of genes that encode anabolic enzymes, those implicated in heparan sulfate (HS) 

biosynthesis appear as very interesting new ASD candidates on the basis of previous studies that 

report, for example, autism in patients with multiple exostoses due to mutations in HS genes 

[Bolton et al.,1995; Ishikawa-Brush et al., 1997; Li et al., 2002]. Both these genes, namely 

HS6ST1 and NDST2, are affected by de novo deletions (Tab. 3, patients 36 and 51, respectively) 

and encode sulfotransferase proteins, which are necessary for processing glucosamine and heparin 

polymers. Indeed, roles of HS in neural development have been well established using animal 

models that carry mutations in genes encoding enzymes involved in HS synthesis, thus revealing 

that HS is necessary for the specification of certain brain structures, such as the cerebellum and the 

olfactory bulbs, cortical neurogenesis, and a variety of axon path-finding processes [Conway et al., 

2011; Irie et al., 2012]. Moreover, several pieces of evidence suggest a role for HS in synaptic 

function as well as in higher cognitive function. For example, in adult neurons, HS is enriched in 

synapses, especially in the postsynaptic membrane of dendritic spines [Ethell and Yamaguchi, 

1999]. Thus, it may be speculated that the anomalies in HS genes identified in the two patients 

reported here may have played a role in ASD.  

Another interesting gene appears to be LPCAT1, which is included in a large de novo deletion 

identified in patient 60 (Tab. 3). It encodes the lysophosphatidylcholine acyltransferase 1 protein, 

which plays important roles in phospholipid metabolism and modulation of inflammation. Indeed, 

LPCAT1 catalyzes the conversion of lysophosphatidylcholine (LPC) to phosphatidylcholine (PC), 

which is the major phospholipid of the brain. Since LPC is a bioactive pro-inflammatory lipid 

whose accumulation is associated with atherosclerosis, myocardial ischemia, neurodegeneration, 

and inflammatory diseases, LPCAT1 is implicated in the anti-inflammatory response by its role in 

the conversion of LPC to PC. In addition, the LPCAT1 enzyme catalyzes the synthesis of platelet-

activating factor (PAF), a potent inflammatory lipid, from lyso-PAF [Cheng et al., 2009; 

Matsumoto et al., 2007; Nakanishi et al., 2006]. In naïve mice, constant levels of PAF are produced 

by microglia and astrocytes, thus contributing to the maintenance of CNS homeostasis. Conversely, 

in the CNS of experimental allergic encephalomyelitis mice, which mimic multiple sclerosis, the 

blood-brain barrier is broken. Inflammatory cells, such as T cells and macrophages, infiltrate the 

CNS, and higher amounts of LPCAT1/2 and therefore of PAF are produced by the activated 

microglia and macrophages, contributing to the inflammatory process [Kihara et al., 2008]. 

 

Of note, other genes involved in CNS metabolism show implications in inflammation and strong 

relationships with immune cells, confirming that the role of the immune system is essential for 

correct CNS homeostasis. For example, PREP, which was found deleted in patient 18 due to a de 

novo CNV, encodes a prolyl endopeptidase protein that has been reported to be involved in the 

maturation and degradation of peptide hormones and neuropeptides. Several neuropeptides 
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associated with learning, memory, and neurodegenerative disorders have been proposed as the 

substrates for PREP, suggesting a possible role for PREP in these processes. Indeed, Prep knockout 

mice demonstrate decreased synaptic spine density in the hippocampus, reduced hippocampal long-

term potentiation, and impaired hippocampal-mediated learning and memory, thus revealing a 

possible role for PREP in mediating hippocampal plasticity and spatial memory formation 

[D’Agostino et al., 2012].  

More interestingly, PREP directly binds TAC1, tachykinin precursor 1, thus participating in its 

maturation. Tachykinins (substance P, neurokinin A and B) are active neuropeptides that have been 

recognized as key mediators of neuro-immune interactions in neuroinflammation and some 

autoimmune diseases [Veres et al., 2009]. They are found throughout the CNS, with evidence for 

both neuronal and glial cells as being sources of them, and traditionally show well-defined 

functions as neurotransmitters modulating glutamatergic excitatory synaptic transmission. 

Furthermore, tachykinins may have a role in augmenting the immune functions of CNS glial cells 

resulting in the progression and duration of damaging inflammation within the CNS, which has 

already been observed in autistic brains. Indeed, elevated serum levels of neurokinin A have been 

recently reported in some autistic children compared to controls. Interestingly, levels of neurokinin 

A correlated to the severity of autism and to serum levels of anti-ribosomal P protein antibodies, 

thus supporting the pathogenic role of neurokinin A and its possible link to autoimmunity in autism 

[Mostafa and Al-Ayadhi, 2011]. Thus, it is a likely hypothesis that altered PREP levels within the 

CNS may interfere with tachykinin metabolism and the subsequent response to inflammatory 

stimuli, thus playing a role in ASD. 

Finally, among the subset of genes that encode enzymes acting in amino acid catabolism, two are 

specifically involved in tryptophan catabolism, namely ACMSD, deleted in patient 51, and QPRT, 

duplicated in patients 25, 38, and 39 (Tab. 3). ACMSD is the aminocarboxymuconate 

semialdehyde decarboxylase that converts alpha-amino-beta-carboxy-muconate-epsilon-

semialdehyde to a benign catabolite, thus preventing the accumulation of quinolinate, whereas 

QPRT is the quinolinate phosphoribosyltransferase that converts quinolic acid to nicotinic acid 

ribonucleotide and carbon dioxide (Fig. 24) [Schwarcz et al., 2012]. Therefore, these enzymes are 

both implicated in limiting the cerebral levels of quinolate, which acts as a neuroactive compound, 

as well as other intermediates in tryptophan degradation, such as kynurenic acid and 3-

hydroxykynurenine (Fig. 24). In particular, quinolinate is able to induce a neuronal excitotoxin due 

to its role as a NMDA receptor agonist. 
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Fig. 24. The kynurenine pathway of tryptophan degradation in mammals [Schwarcz et al., 2012]. 

 

The synthesis of these metabolites is regulated by an enzymatic cascade known as the kynurenine 

pathway, which is tightly controlled by the immune system. Indeed, as shown in Fig. 25, the two 

branches of the pathway are performed normally by non-neuronal cells, such as astrocytes and 

other glial cells, which metabolize tryptophan and intermediate metabolites from the blood vessels, 

thus producing quinolate (microglia) and kynurenic acid (astrocytes) [Schwarcz et al., 2012]. 

Under normal conditions, in the periphery, the degradation of tryptophan and the subsequent 

formation of circulating kynurenines is normally regulated by steroid hormones, cytokines, and 

growth factors. Brain uptake of these kynurenines determines kynurenine pathway flux in the brain. 

Conversely, inflammatory conditions stimulate the kynurenine pathway both in the periphery and 

in the brain. Therefore, increased influx of brain-permeable metabolites leads to an excess of 
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kynurenines in the brain parenchyma. Furthermore, infiltrating cytokines stimulate the kynurenine 

pathway in activated microglial cells and blood-borne cells within the brain [Schwarcz et al., 

2012]. 

 

Fig. 25. Segregation of the two kynurenine pathway branches in the brain [Schwarcz et al., 2012]. 

 

It has been reported that dysregulation of this pathway, resulting in hyper- or hypofunction of 

active metabolites, is associated with neurodegenerative and other neurological disorders, such as 

Huntington’s disease, Parkinson’s disease, and Alzheimer’s disease, as well as with psychiatric 

diseases, such as depression and schizophrenia. In this context, one possible explanation for ASD 

pathogenesis is the modern theory of immunoexcitotoxicity, that is, an excessive stimulation of 

glutamatergic synapses mediated by increased levels of neuroactive compounds produced by 

microglial cells, as hypothesized in a few patients reported here. Indeed, chronic microglial 

activation has been reported in autistic brains, which results in an outpouring of neurotoxic levels 

of the excitotoxins glutamate and quinolinic acid. Careful control of brain glutamate levels is 

essential to brain pathway development, and excesses can result in arrest of neural migration, as 

well as in dendritic and synaptic loss. In addition, certain cytokines, such as TNF-alpha, can, via 

their receptors, interact with glutamate receptors to enhance the neurotoxic reaction [Schwarcz et 

al., 2012]. 

 

Intracellular signaling and trafficking (the genes affected by de novo CNVs are indicated in bold, 

Tabs. 4 and 4.1) 

Eighty-one of the 276 selected genes belong to a functional network implicated in intracellular 

signaling and trafficking, which acts in response to external signals that are first represented by 

synaptic neurotransmission. Of note, the present ASD cohort is enriched in rare CNVs affecting 

genes that act in this functional network, which, as expected, includes a few pathways already 
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suggested to be implicated in ASD pathogenesis: such as, the remodeling of actin cytoskeleton 

[Blanchoin et al., 2000; Linseman and Loucks, 2008], which is deeply interconnected with the 

Wnt/β-catenin signaling pathway [Okerlund and Cheyette, 2011; Rosso et al., 2005; Salinas and Zou, 

2008; Salinas et al., 199], the MAPK/ERK signaling pathway that ultimately regulates the mTOR 

pathway [Tavazoie et al., 2005; Wang et al., 2012], and the protein ubiquitination pathway [Ehlers, 

2003; Glessner et al., 2009; Peça and Feng, 2012; Philpot et al., 2010] (Fig. 26). 

However, most of the selected genes are new candidates, as they have not previously been 

associated with ASD (Tabs. 4 and 4.1). 

 

Fig. 26. Schematic view of the pathways (blue and light blue satellites) that act in concert to mediate the 

intracellular signaling processes. 

 

One of the most important types of information that is transmitted through the synapse is related to 

the regulation of the morphology of the dendritic spines. It is mediated by the GTPase Rho family 

of proteins, such as RhoA/B, CdC42, and Rac1, whose role in ASD is well known. In addition, 

GTPase activity is regulated by different GEF (guanine nucleotide exchange factor), GDI (GDP 

dissociation inhibitor), and GAP (GTP-activating) proteins. Actin cytoskeleton remodeling is 

involved in neuronal morphogenesis, axonal guidance, and synaptic plasticity, and, pre-

synaptically, it is necessary to mediate the docking of synaptic vesicles to the plasma membrane 

and subsequent neurotransmitter release. RhoGEFs have been previously implicated in human 

genetic disorders. For example, mutations in ARHGEF6 have been associated with X-linked 

nonsyndromic mental retardation [Kutsche et al., 2000], and aberrant EphB/Ephexin5 signaling 
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during the development of synapses has been linked to the abnormal cognitive function that 

possibly occurs in ASD [Margolis et al., 2010]. 

Thus, it may be hypothesized that anomalies in ARHGAP26 (potentially disrupted in patient 21, 

Tab. 3), ARHGAP28 (duplicated in patient 60), ARHGEF4 (deleted in patient 51), and 

ARHGEF10 (duplicated in patient 59) may be implicated in the neurobehavioral disorders 

described in the affected patients. Recently, a rare small recurrent deletion in a region previously 

linked attention deficit hyperactivity disorder at 2q21.1, including ARHGEF4, has been identified 

in five unrelated families with developmental delay, intellectual disability, attention deficit 

hyperactivity disorder, and epilepsy and other neurobehavioral abnormalities, whereas the 

reciprocal duplications have been identified in five unrelated families with autism [Dharmadhikari 

et al., 2012]. 

Another GEF protein, DOCK8, was recently found to be deleted in two unrelated autistic patients 

who carry a 9p24 terminal deletion also including the KANK1 gene [Lerer et al., 2005]. This 

finding is confirmed by the two rare duplications detected in patient 33, which potentially disrupt 

both the DOCK8 and KANK1 genes (Tab. 3). In particular, KANK1 functions in cytoskeleton 

formation in a RhoA-dependent manner by regulating actin polymerization, and recently it has 

been demonstrated that nucleo-cytoplasmic shuttling of human KANK protein accompanies 

intracellular translocation of beta-catenin and, therefore, beta-catenin-dependent transcription 

[Wang et al., 2006]. In addition, CFL2 (duplicated in patient 17) encodes the cofilin 2 protein, 

which plays a role in the direct regulation of actin filament dynamics. 

Interestingly, two genes encoding members of the Ras-like small GTPases that have not been 

previously associated with ASD were found to be affected by rare CNVs in the present cohort, 

namely RALB (deleted in patient 10, Tab. 3) and RAB6C (deleted in patient 51). RalA and RalB 

regulate a wide variety of cellular processes, including transcription, translation, cytoskeletal 

organization, membrane trafficking, cytokinesis, cell migration, cell proliferation, and cell survival. 

Recently, the involvement of RalA/B in projection neuron migration from the ventricular zone to 

the neocortical plate during mouse brain development has been demonstrated [Jossin and Cooper, 

2011]. Moreover, several members of the Rab family small GTPases are key mediators of 

membrane trafficking and regulate axon-specific trafficking events. For example, Rab17 regulates 

dendritic morphogenesis and postsynaptic development in mouse hippocampal neurons [Mori et 

al., 2012], whereas Rab4 and Rab5 are key players in the regulation of endocytosis, as recently 

demonstrated in astrocytes, the most abundant glial cells in the brain [Potokar et al., 2012]. By 

analogy, it is likely that Rab6 may also be implicated in neurodevelopment. 

Of note, all the genes involved in actin cytoskeleton remodeling show a high expression in immune 

cell types, as they are also involved in the maturation of dendritic cells, T cell activation, migration, 

and cell-cell adhesion, as well as formation of immunological synapses (Tabs. 4 and 4.1). Thus, it 
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is possible that a dysregulation of this pathway due to genetic defects may impact not only 

neurological but also immune system development.  

Interestingly, a small percentage of genes encode proteins that play a role in the organization of the 

microtubules at the kinetochore (B9D2 and CLASP1) as well as motor proteins required for the 

transport of organelles along the microtubules (KIF2A and KIF22), whose encoding genes may be 

suggested as new ASD candidate loci. In particular, the kinesin proteins are microtubule-dependent 

molecular motors that transport organelles within cells, an essential process for axonal growth and 

elongation, and move chromosomes during cell division. 

 

Wnt signaling is a key pathway that helps to organize development of the nervous system. It 

influences cell proliferation, cell fate, and cell migration in the developing nervous system, as well 

as axon guidance, dendrite development, and synapse formation. Given this wide range of roles, 

dysregulation of Wnt signaling could have any number of deleterious effects on neural 

development and thereby contribute in many different ways to the pathogenesis of 

neurodevelopmental disorders. Some major psychiatric disorders, including schizophrenia, bipolar 

disorder, and ASD, are, indeed, coming to be understood as involving subtle dysregulation of 

nervous system development, particularly of synapse formation and maintenance [Okerlund and 

Cheyette, 2011]. As shown in Fig. 27, a few genes, among those selected, participate in Wnt 

signaling and therefore may be new ASD candidates. 

 

 

Fig. 27. Canonical (β-catenin-dependent signal, left) and non-canonical (β-catenin-independent signal, right) 

Wnt signaling pathways [Okerlund and Cheyette, 2011]. The new suggested ASD candidate genes are circled 

in red. 
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For example, DVL3 (duplicated in patient 48, Tab. 3), the dishevelled (dsh) homolog 3 protein, is a 

member of a multi-gene family that shares strong similarity with the Drosophila dishevelled gene. 

DVL activation leads to its binding of AXIN, phosphorylation, and inhibition of glycogen synthase 

kinase-3β (GSK3β), and the regulation of several downstream targets, including β-catenin (Fig. 27) 

[Gao and Chen, 2010]. WNT8A (duplicated in patient 57) and FRZB (deleted in patient 53) encode 

secreted molecules that specifically bind receptor proteins, such as FZD9 (duplicated in patient 

52), thus activating the signaling cascade. Finally, EN1 (duplicated in patient 10) encodes a 

transcription factor with a well known role in CNS development, and together with β-catenin 

regulates transcription of β-catenin target genes in neuronal cells [Alves dos Santos and Smidt, 

2011], whereas CAMK2G (deleted in patient 36) is the only identified gene with a specific role in 

non-canonical Wnt signaling.  

Furthermore, it is known that the Ras/Raf/ERK1/2 signaling pathway (Fig. 28) plays important 

roles in the genesis of neural progenitors and in learning and memory, as well as death-promoting 

apoptotic roles in neural cells. Upregulation of this pathway has been observed in the brains of 

autistic subjects and mouse models [Yang et al., 2011, 2012; Zou et al., 2011]. In addition, rare 

single missense mutations affecting MAPK3 have been reported in a few HF-AU patients [Schaaf 

et al., 2011]. 
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Fig. 28. Synaptic ERK1/2 signaling pathway [Wang et al., 2012]. The new suggested ASD candidate genes 

are circled in red. The AMPA (orange), NMDA (red), and mGlu (green) receptors are indicated at the 

postsynaptic membrane. 

 

ERK1 (duplicated in patients 25, 38, and 39, Tab. 3), ERK8 (deleted in patient 37), and MAP3K2 

(deleted in patient 51) have been found to be affected by rare CNVs in the present ASD series, and 

therefore they may be potentially implicated in ASD (Fig. 28). Interestingly, myelin basic protein, 

encoded by MBP (potentially disrupted in patient 42), which is a major constituent of the myelin 

sheath of oligodendrocytes and Schwann cells in the nervous system, is also related to the ERK 

signaling pathway. Indeed, MBP directly interacts with ERK1 and ERK2, and in vitro assays 

indicated a direct interaction between ERK8 and MBP (Fig. 28) [Abe et al., 2002].  

Finally, due first of all to the well known implications of mutations affecting UBE3A in ASD 

pathogenesis, dysregulation of the ubiquitination pathway, which regulates the levels of synapse 

proteins and their turnover, has been previously implicated in ASD [Ehlers, 2003; Glessner et al., 

2009; Peça and Feng, 2012; Philpot et al., 2010]. The finding of many genes encoding proteins that 

function in this pathway seems to confirm this observation. As shown in Fig. 29, the ubiquitin 

ligase UBE3A (duplicated in patient 29), which belongs to the E3 ubiquitin ligase family, works as 
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a single enzyme, directly binding the target protein as well as an ubiquitin conjugating enzyme 

(E2), whereas the SCF E3 ubiquitin ligase works as a complex. 

 

 

Fig. 29. E3 ubiquitin ligases. (a) UBE3A-type E3 ubiquitin ligase, which acts as a single protein; (B) SCF 

(Skp, Cullin, F-box containing complex) E3 ubiquitin ligase, which acts as a multiprotein complex. 

 

Among the selected genes, TRIM50 (potentially disrupted in patient 52, Tab. 3) encodes an E3 

ubiquitin ligase; UBE2E3 (deleted in patient 53) encodes a conjugating enzyme belonging to the 

family of E3 ubiquitin ligases; and KLHL22 (duplicated in patient 27), KLHL3 (duplicated in 

patient 57), and FBXL21 (duplicated in patient 57) encode proteins of the SCF E3 ubiquitin ligase 

family. In particular, KLHL22 and KLHL3 are substrate adaptors for the ubiquitin ligase, whereas 

FBX22 is a specific F-box protein whose role is to target specific proteins. Furthermore, two of the 

selected genes, USP9Y (potentially disrupted in patient 19) and USP14 (potentially disrupted in 

patient 60), code for peptidases that cleave the ubiquitin residues in order to recycle the proteins, 

thus contributing to protein turnover. 

 

CNS development and homeostasis mediate by the immune system, immunosurveillance and 

modulation of inflammation (in bold are indicated the genes affected by de novo CNVs, Tabs. 4 

and 4.1). 

In agreement with published data, the CNV gene content analysis in the present ASD cohort has 

revealed deep interconnections between all the identified functional networks of genes and the 

immune system, thus supporting the hypothesis that ASD may be the result of defects in both the 

CNS and the immune system (Tabs. 4 and 4.1) [Onore et al., 2012]. In addition, 19 of the 276 

selected genes have been classified as genes encoding proteins which specifically play a role in 

mediating the cross-talk between the CNS and the immune system (Fig. 30). 
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Over the years several theories have been proposed to explain immune dysfunctions in ASD, 

howevere some questions are still unresolved: 

- is there a strong genetic basis in patients with ASD, which may result in immune dysregulation? 

- what role do viral or bacterial infections as well as maternal antibodies against foetus brain 

epitopes play in the CNS development during pregnancy or in the early months/years of life? 

- why markers of chronic inflammation have been found in a subset of autistic patients? Is this 

phenomenon the consequence of genetic alterations, or is an abnormal response to non-genetic 

stimuli? 

 

Fig. 30. Schematic view of the functional network of genes which are implicated in the cross-talk between 

the CNS and the IS. CNS, central nervous system; IS, immune system. 

 

A few CNVs have been identified in the present ASD cohort whose gene content analysis might be 

of some help in answering to the above questions. First, a few genes are involved in 

neurodevelopment and CNS homeostasis, thus confirming that aberrations in immune genes may 

alter not only the immune response but also neurodevelopment, and that these events may have a 

genetic bases. For example, MARCO (duplicated in patient 10, Tab.3) is involved in microglial 

maturation, IL-9 (duplicated in patient 57) is implicated in regulation of programmed cell death in 

developing brain, CXCL14 (duplicated in patient 57) is involved in post-natal regulation of 

GABAergic transmission in specific areas of the brain, and TSPAN5 (possibly disrupted in patient 

6) encodes the tetraspanin 5, that mediates signal transduction events which play a role in the 

regulation of cell development, activation, growth and motility.  
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One of the first TSPAN5 interacting proteins is NOTCH2, that is involved in differentiation and 

synapse formation. Expression studies of autistic and matched control brains reported increased 

transcript levels of many immune system related genes such as NOTCH2. However, these 

expression patterns appear to be more associated with the late recovery phase of autoimmune brain 

disorders, than with the innate immune response characteristic of neurodegenerative diseases 

[Garbett et al., 2008]. Interestingly, rare single gene mutations affecting TSPAN7, another member 

of the tetraspanin family, have been reported in a few autistic patients [Piton et al., 2011]. 

 

Other genes of interest are implicated in CNS immunosurveillance, which is first mediated by the 

integrity of blood brain barrier, or in modulation of pro-inflammatory pathways. For example, in 

patient 55 the duplication of the SELE and SELEL genes has been identified (Tab. 3). These genes 

encode E-selectin and L-selectin, respectively, which are two members of the selectin family of 

proteins. E protein is generally found in cytokine-stimulated endothelial cells and is thought to be 

responsible for the accumulation of blood leukocytes at sites of inflammation by mediating the 

adhesion of cells to the vascular lining. P-selectin is expressed on the endothelium of the blood–

CNS barrier and soluble L-selectin has been found in cerebrospinal fluid. Moreover, both P and L-

selectin play important roles in the entry of circulating T-lymphocytes into the CNS. Therefore, it 

has been hypothesized that molecules not expressed in the brain may alter CNS function. 

Diminished expression of P-selectin has been associated with delayed neutrophil transmigration in 

neonatal rats [Engelhardt and Ransohoff , 2005; Onore et al., 2012]. Thus, decreased expression of 

P-selectin in individuals early in life may contribute to delayed leukocyte transmigration and 

increased susceptibility to infection, which may in turn damage neural tissues during CNS 

development. A decreased serum level of P- and L-selectin has been recently observed in a group 

of autistic subjects vs. controls, confirming a previous finding in a cohort of HF-AU patients, thus 

indicating an involvement of hypoactivity of T-lymphocytes in the pathophysiology of ASD [Iwata 

et al., 2008; Onore et al., 2012]. Similarly, it may be speculated that hyperactivity of T-

lymphocytes, mediated by increased dosage of selectins, could contribute to ASD. 

Conversely, the potential overexpression of the CLDN3, CLDN4 (duplicated in patient 52), and 

CLDN5 (duplicated in patient 27) genes, which encode integral membrane proteins with a role in 

maintaining the integrity of the blood brain barrier, may play a role in CNS homeostasis as well as 

in protecting the CNS against infections [Nitta et al., 2003; Wolburg et al., 2003]. In addition, 

patient 52 was found to carry the duplication of the LAT2 gene (Tab. 3), which encodes the linker 

for activation of T cell family, member 2. T cell responses to pathogens require the induction of the 

primary activating receptor, the T cell receptor (TCR), along with other costimulatory and adhesion 

receptors. Signal transduction pathways activated downstream of these receptors drive T cell 

responses required for the immune response and disease progression. One of this pathways is the 
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LAT signaling pathway which has the role to integrate the information and selectively induces 

pathways critical for T cell activation and the adaptive immune response [Bartelt and Houtman, 

2012]. To date, it is not possible to predict if an up-regulation of the LAT signaling, possible due to 

the LAT2 gene duplication, may have produced a T-cell hyper-responsiveness in patient 53; 

however, this hypothesis can not be excluded. 

Similarly, other pathways, which are known to modulate inflammation, may be predicted to be 

dysregulated in a subset of the ASD patients reported here. The STAT1 and STAT4 genes are 

found deleted in patient 53 (Tab. 3), and both encode proteins with a pro-inflammatory role. In 

response to cytokines and growth factors, STAT family members are phosphorylated by the 

receptor associated kinases, and then form homo- or heterodimers that translocate to the cell 

nucleus where they act as transcription activators. In particular, STAT1 mediates the expression of 

a variety of genes, which is thought to be important for cell viability in response to different cell 

stimuli and pathogens. It has been proposed that the strong inflammatory response observed in 

neurodegenerative diseases may depend on the impairment of the endogenous control of microglial 

activation, and that the cross-talk between STAT1 and MAPK pathways may regulate the 

amplitude and duration of microglial activation [Zaheer et al., 2007].  

Moreover, patient 53 bears the deletion of the ITGA4 gene, which encodes an integral membrane 

protein that mediates the migration of T lymphocytes across blood-brain barrier-endothelial cells, 

and therefore it is considered a mediator of neuroinflammation [Ifergan et al., 2011]. Interestingly, 

SNPs in ITGA4 have been previously associated with ASD [Correia et al., 2009]. Furthermore, a 

positive association was found between one of these SNP markers and levels of a serum 

autoantibody directed to brain tissue, which was previously shown to be significantly more 

frequent in autistic patients than in age-matched controls, thus suggesting that ITGA4 could be 

involved in a neuroimmune process thought to occur in autistic patients [Correia et al., 2009]. 

Previous data reported elevated levels of NF-κB in autistic patients vs. controls [Malik et al., 2011; 

Naik et al., 2011]. NF-κB is an important gene transcriptional factor that mediates cellular 

responses in inflammation, immunity, development, cell proliferation and apoptosis. The IKBKG 

gene (duplicated in patient 61, Tab.3) encodes the inhibitor of kappa light polypeptide, which is the 

regulatory subunit of the inhibitor of kappaB kinase (IKK) complex, which, in turn, activates NF-

kappaB resulting in activation of genes involved in inflammation, immunity, cell survival, and 

other pathways. Recently, it has been reported that brain abnormalities correlate with additional 

copies of the IKBKG gene [Ramocki et al., 2009, 2010]. Indeed, IKBKG overexpression causes 

impaired NF-κB signaling in skin fibroblasts derived from patients with white matter anomalies, 

thus further supporting the role of NF-κB signaling in astroglial cells for normal myelin formation 

of the CNS [Philippe et al., 2012]. Similarly, it is possible that an excessive induction of NF-κB, 

due to IKBKG gene duplication, may be involved in ASD pathogenesis. 
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Of note, most of the reported genes are affected by de novo large CNVs, thus their role in ASD 

pathogenesis must be interpreted in the context of a genomic disorder. However, the collected data 

support the hypothesis of the existence of a genetic basis, likely wide heterogeneous, that might 

explain, almost in part, the immune dysfunction observed in ASD patients. In addition, it is 

important to stress the idea that the genetic causes must be researched not only in anomalies 

affecting genes with a clear role in immunity but also in genes implicated in functional pathways 

which ultimately lead to CNS development, which also show high expression in immune cell types 

and, thus, may contribute to immune system development as well. 

Nevertheless, further studies are necessary to replicate the hypothesized genetic aetiology of a part 

of immune system dysfunctions in ASD, although it will be more likely to replicate the implication 

of recurrent pathways rather than of recurrent genes, as already confirmed for the plethora of genes 

implicated in neurodevelopment. In addition, in order to validate genomic data the challenge will 

be to correlate in each patient the single genetic lesion with specific aberrations of the immune 

system. 
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