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Chapter 1

Introduction

Hadron collider such as Tevatron at Fermilab and LHC at Cern provide essen-
tial data from the TeV region in order to explore the electroweak symmetry
breaking (EWSM) scale.

Hadron colliders probe fundamental interactions in a wide energy range,
which is an important requirement in order to discover new physics signals
that will emerge at the EWSB scale. However, in hadronic processes, high
pT events are seen in association with multiparticle emissions and low energy
radiation which makes hadronic final states more complex to describe. Thus
a key ingredient in the quest for physics beyond the Standard Model is the
precise understanding of hadron processes.

Quantum Chromo-Dynamics (QCD) provides the modern description of
strong interactions in terms of more fundamental particles, quarks and glu-
ons; its remarkable success is due to the notion of asymptotic freedom of non
Abelian gauge theories.

QCD is a non Abelian gauge theory with gauge group SU(3). The QCD
Lagrangian reads

L = −1

4
F µν
a F a

µν +
∑

f

ψ̄
(f)
i ((i 6∂ −mf )δij − gSt

a
ij 6Aa)ψ

(f)
j (1.0.1)

F a
µν = ∂µA

a
ν − ∂νA

a
µ − gS

∑

b,c

fabcA
b
µA

c
ν , (1.0.2)

where f is the flavour index, the 3 × 3 traceless matrices ta are the SU(3)
generators and fabc are the structure constant of the SU(3) algebra

[ta, tb] = ifabct
c. (1.0.3)

The non Abelian character of QCD is manifest by looking at the field strength
F a
µν , indeed the last term in eq. (1.0.2) is responsible for the three and four

point gluon vertices.

1
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Analogously to the case of QED, we can introduce the coupling constant

αS =
g2S
4π
. (1.0.4)

At leading order the scale dependence of the running coupling is given by

αS(p
2
T ) =

1

b0 log
p2T

Λ2
QCD

, b0 =
11CA − 4TFnf

12π
(1.0.5)

where TF = 1/2, CA = 3 When the tipical scale p2T of the hadron process
becomes large compared to ΛQCD, the coupling αS becomes small and quarks
and gluons behave like free particles.

The perturbative expansion is the ordinary tool which allows us to make
predictions from field theories. Hadronic observables however cannot be cal-
culated from perturbative QCD only because the strong interaction forces
quarks and gluons to be confined in colorless bound states after a complex
fragmentation process where long distances effect, not described by pertur-
bative QCD, dominate. One of the most important results is that non per-
turbative effects which determine how quarks and gluons are bounded in
hadrons can be factorized out in the cross section and their contribution
can be expressed in terms of universal parton distribution functions (PDFs)
which contain all the informations on how fundamental particles are stored
inside bound states. We can extract the PDFs from one experiment and use
them as an input to make predictions on other cross sections. Therefore, the
predictivity of perturbative QCD is guaranted by the factorization theorem,
which allows us to determine hadronic observables in terms of hard (short
distances) cross sections which can be calculated in perturbation theory and
universal quantities (PDFs) which encode all the non perturbative effects.

Quantitatively reliable QCD predictions require next-to-leading order
(NLO) calculations. For very precise measurements as for the vector bosons
production, or for processes which are very sensitive to radiative corrections
like Higgs boson production, the next-to-next-to-leading order results is re-
quired to obtain theoretical uncertainties less then 10%.

However, large radiative corrections can invalidate the perturbative ex-
pansion especially in particular kinematic configurations like in presence of
thresholds in the phase space or when some characteristic scale becomes
large. The presence of large logarithms, tipically, is the signal that the cou-
pling constant is not the suitable parameter for perturbation theory since
contributions of the form

(

αS(p
2
T ) log

µ2

p2T

)n

(1.0.6)
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Figure 1.1: Running coupling evolution. Comparison between data and theo-
retical prediction up to next-to-next-to leading calculation.

are always of the same order when µ2 ≫ p2T even though the coupling is
small. This is the tipical problem when there is a hierarchy between the
various scales of the process. All these cases require a different treatment
which involve an all-order resummation procedure to recover the accuracy of
NLO calculations.

When the center-of-mass energy S is large compared with the tipical scale
p2T , the ratio

x =
4p2T
S

(1.0.7)

is small and the hard cross section is affected by large corrections character-
ized by powers of αS log x to all order tipically of order 1. The resummation
of such tower of terms, in principle, could predict a huge deviation from the
leading order results. However, once all pieces are properly added, the impact
of the resummation is tiny and in the most of the cases negligible even at the
LHC energy range. In this thesis we review the resummation procedure at
high energy and discuss the application of the technique to the case of the
prompt photon production and discuss the phenomenological impact of the
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resummation at Tevatron and LHC.
As was pointed out from the beginning of the hadronic collider hera,

electromagnetic probe such as the production of direct photons in hadron
collisions are important processes in order to understand the strong interac-
tions. In particular, the prompt photon production process represents the
most important reducible background for the H → γγ signal in the light
Higgs scenario. Moreover, prompt photon data would provide a constraint
to the gluon structure function which can be used in a global fit of parton
distribution functions, however the inclusion of such data in a global fit is a
long-standing problem due to discrepancies between theoretical results and
a particular class of these data.

As we shall discuss in the following chapter, the inclusion of high energy
enhanced higher order terms do not change significantly the NLO QCD result.
The impact of the resummation is les than 1% thus it is negligible compared
to the theoretical uncertainties of parton distributions and unphysical scales.
However, even though the resummation has no impact on the NLO result,
it will be necessary when the theoretical accuracy will reach the NNLO level
in order to stabilize the logarithmic growth of the cross section in the high
energy limit.

The content of this thesis is organized as follows:
in Chapter 2 we give a brief overview of general aspects of QCD, in par-
ticular we will focus on the factorization properties of the cross section and
the DGLAP evolution equations, which are both essential ingredients of the
theory.

Chapter 3 is devoted to the prompt photon production process. We will
discuss the motivations which make this process particularly interesting from
a phenomenological point of view. Moreover, the prompt photon production
involves several theoretical and experimental issues which nowdays are only
partially solved. In particular, discrepancies between fixed target data sets
and NLO QCD are not yet fully understood. As we shall see, the photon must
be considered as a hadronic final state. As a consequence, the factorization
theorem for this process contain two separate pieces, the direct component
and the fragmentation component. The separation of the two contributions
to the cross section is not trivial and it is responsible for the presence of
collinear singularities of the final state.

In Chapter 4 we review resummation techniques which allow precise pre-
dictions in high energy (small-x) region. This region is now of high interest
since LHC will probe hadronic processes at very low values of the scaling
variable x (up to 10−4 in the case of prompt photon). We will show how
resummed coefficient functions can be obtained for inclusive quantities as
well as for rapidity distributions in terms of simple recipes.
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In Chapter 5 we will discuss how to apply the high energy resummation to
the case of direct component of the prompt photon production. Resummed
analitical results for the coefficient function will be derived.

In Chapter 6 the resummation of the direct photon production will be
discussed from a phenomenological point of view in comparison with CDF
Tevatron data.

In Chapter 7 we summarize our conclusions and discuss future works and
prospects.



Chapter 2

Perturbative Quantum

Chromo-dynamics

In this chapter we briefly review fundamental aspects of perturbative QCD,
from asymptotic freedom to the DLGLAP evolution equations. One of the
most remarkable properties of QCD is that non perturbative effects can be
factorized in terms of universal quantities. We will show how this factoriza-
tion property arises for the deep inelastic scattering (DIS) cross section in
the framework of the operator product expansion (OPE).

The factorization of collinear singularities arising from initial state radi-
ation yield to the DGLAP evolution equations which describe the scale de-
pendence of parton distributions. As we shall see, the renormalization group
invariance of the cross section will provide a procedure for the resummation
of large logarithms of the hard scale of the process.

2.1 Renormalization group invariance

2.1.1 Large logarithms

The renormalization group was first discussed by Gell-Mann & Low (1954) in
order to extend perturbation theory at high energy. The n-loop contribution
for a matrix element contains powers of log qi/m, hence at high momentum, a
rearrangement of the perturbative expansion is needed, because the smallness
of the coupling no longer guarantees the smallness of higher order corrections,
indeed, if α log qi

m
≈ 1, all terms of the form

(

α qi
m

)

are of the same size.
The problem is solved by imposing the independence of the parameters

(cut-off, dimensional scales, large masses) which we introduced in the the-
ory in order to regularize cross sections and physical observables: clearly
all these quantities do not depends on the choice we make to extract the

6
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physical content of the theory. Imposing such an invariance correspond to
write renormalization group equation, from which we can resum all large
logarithms and resum them. As a result, the coupling “constant” becomes a
function of the scale.

Since the logarithmic enhancement of physical quantities is a common
feature in quantum field theory, some general consideration can be made.
Consider a physical amplitude Γ(E,Λ, x, gΛ, m) that depends on an over-all
energy scale E, a set of angles x, various dimensionless constants g and the
masses m. The additional scale Λ is a regularization parameter. By naive
dimensional analysis, at fixed Λ, it follows that:

Γ(E,Λ, x, gΛ, m) = ED Γ(1,
Λ

E
, x, gΛ,

m

E
) (2.1.1)

where D is the mass dimension of Γ. From this observation, we could expect
that at very high energy E ≫ m, Γ behaves according to the power law given
by its dimension, but this is not the case since logarithmic corrections arise
in perturbative expansion. At this level, two obserbation can be made: first,
since Λ is an arbitrary parameter, we can choose E = Λ obtaining:

Γ(E,Λ, x, gΛ, m) = ED Γ(1, 1, x, gE,
m

E
) (2.1.2)

this is the reason because we need a running coupling constant in order to
get rid of the regularization scale. Second, since at high energy E, Γ depends
only on the ratio m

E
the large logs structure is related to the massless limit.

2.1.2 Asymptotic freedom and confinement

In this section we introduce the concept of asymptotic freedom of the running
coupling in QCD. One of the main properties of strong interactions is that
asymptotic states are not given by quarks and gluons, instead, non perturba-
tive effects which dominate at long distances produce a mass gap. This is the
reason why final states in hadronic collisions are showers of heavy colorless
hadrons. For this phenomenological reason in the past it was hard to believe
that a quantum field theory could describe such processes. The discovery
of asymptotic freedom in non Abelian gauge theory changed drastically the
situation and QCD became early the best candidate as a model of strong
interactions.

In order to describe asymptotic freedom, let us consider a dimensionless
observable R in the limit where the only relevant scale is Q2, i.e. where
Q2 is much larger than any other physical mass scale. In this limit we could
expect a constant behaviour (scaling), however, in quantum field theories the
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renormalization procedure introduces a mass scale µ, due to the subtraction
of ultraviolet singularities, as the fixed energy value where physical input of
the theory (physical masses and couplings) are evaluated.

The presence of the renormalization scale µ introduce a non trivial scale
dependence tipically characterized by logarithms of the ratio Q2/µ2. How-
ever, the physical predictions of a field theory should not depend on µ as
a free parameter. This independence is known as renormalization group in-
variance and for our quantity R can be expressed by

µ2 d

dµ2
R(Q2/µ2, αs) =

[

µ2 ∂

∂µ2
+ µ2 αs

∂µ2

∂

∂αs

]

R = 0 (2.1.3)

by using the standard notation t = logQ2/µ2 and β(αs) = µ2 ∂αs

∂µ2 we have

[

− ∂

∂t
+ β(αs)

∂

∂αs

]

R(et, αs) = 0 (2.1.4)

which can be solved in terms of a new function α(Q2) known as running
coupling which satisfy the equation

∂α(Q2)

∂t
= β(α(Q2)). (2.1.5)

Therefore R(1, α(Q2) is the solution where the independence on µ is explicit.

2.1.3 Dimensional transmutation

So far, we have seen how the coupling constant acquires a dependence on the
energy scale through logarithmic quantum corrections. In a classical theory,
without mass scales (for example massive terms in the Lagrangian), there
is a conformal symmetry in the Lagrangian. When we introduce quantum
correction, the simmetry is broken (conformal anomaly), this is the reason
why after the renormalization procedure, a change in the coupling constant
corresponds to a change in the energy scale. This phenomenon is called
dimensional transmutation.

Consider a renormalizable massless theory [1] with a dimensionless cou-
pling constant g and µ the energy scale given in the renormalization pro-
cedure. Let Λ be a physical observable of dimension of a mass (the mass
of a particle, for example). Physical quantities must be independent of the
renormalization parameter µ, thus:

µ
dΛ(g, µ)

dµ
= µ

∂Λ

∂µ
+ β(g)

∂Λ

∂g
= 0. (2.1.6)
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Since µ is the only scale of the theory Λ must be a product of µ times a
function of g only, thus we have:

Λ + β(g)
∂Λ

∂g
= 0, (2.1.7)

where we have used the expansion β(g) = −β0g2 − β1g
3 − . . ..

The solution is given by:

Λ = µ C exp

{

−
∫ g

g0

dg′

β(g′)

}

=

= µC exp

{

− 1

β0g
− β1
β0

log g +O(g2)

}

(2.1.8)

where C is a constant fixed by the value of g mesured at an energy µ0.
This calculation implies that non-zero particle masses cannot be computed in
ordinary perturbation theory (in a theory with no mass in the Lagrangian).
Moreover, if the theory is asymptotically free (β0 > 0) we have µ ≫ Λ
whenever g(µ) is small, than perturbation theory is very useful only when
all momenta are much bigger of Λ. We have seen that in a theory without
energy scales, renormalization group imposes strong limits on the validity
of perturbation theory, which show up when we try to calculate massive
observables.

Solving the renormalization group equation, the coupling constant be-
comes scale-dependent. A meaningful scale in QCD is given by ΛQCD: the
energy at which colour confinement occurs. This scale separates the pertur-
bative spectrum of the theory from the region where the coupling becomes
effectively strong.

In the next section I briefly discuss the main application of this formalism
in the case of deep-inelastic scattering. Renormalization group solves the
problem of (divergent) collinear gluon radiation and allow us to prove (in DIS)
factorization of the non-perturbative contributions in physical processes.

2.2 Deep inelastic scattering

2.2.1 The DIS cross section

Consider the process in fig. (2.1) where a high energy electron scatters from
a proton beam. The relevant variables are

Q2 = −q2, x =
Q2

2q · p (2.2.1)
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k

k′

p

X

q

Figure 2.1: Deep inelastic scattering.

The full inclusive cross section for the DIS process can be written as

Q4 dσ

dxdQ2
= LµνW

µν , (2.2.2)

where Lµν = 4e2(kµk
′
ν + kνk

′
µ− gµνk · k′) and the hadronic tensor W µνcan be

parametrized as

Wµν =

(

−gµν +
qµqν
q2

)

F1 +

(

pµ − qµ
p · q
q2

)(

pν − qν
p · q
q2

)

F2

p · q (2.2.3)

in terms of structure functions F1 and F2 which contain all the information
about the proton wave function.

From the optical theorem we know that

2ImA(γP → γP ) =
∑

X=final states

∫

dLIPS(X) · |A(γP → X)|2 (2.2.4)

therefore the hadronic tensor can be written as the time product of two
electromagnetic currents

Wµν =
1

2π
Im

∫

d4xeiq·x〈P |T (Jµ(0)Jν(x))|P 〉. (2.2.5)

where |P 〉 represents the proton state.

2.2.2 The Operator product expansion

When q is much larger than any external momentum, the operator product
in eq. (2.2.5), can be expressed as a sum of operators of definite spin

Tµν(q) ≡
∫

eiq·xT (Jµ(0)Jν(x)) ∼
∑

s

Cµ1···µs
µν (q)Oµ1···µs . (2.2.6)
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In order to separe the contributions to F1 and F2 in eq. (2.2.3) we parametrize
the coefficients of eq. (2.2.6) as

∑

s

Cµ1···µs
µν (q)Oµ1···µs =

∑

s

(

2

Q2

)s [(

−gµν +
qµqν
q2

)

C(1)
s (q)qµ1qµ2+

+

(

gµµ1gνµ2 − gνµ1

qµqµ2

q2
− gµµ1

qνqµ2

q2
+ qµqν

qµ1qµ2

q4

)

Q2C(2)
s (q)s

]

qµ3 · · · qµsOµ1···µs

(2.2.7)

where we have factorized a Q−s in the sum in order to compensate the
pµ1 · · · pµs . Since operators of definite spin are traceless, the matrix element
of such operators between the proton state can be expressed simply as

〈P |Oµ1···µs |P 〉 = 2As(p
2)pµ1 · · · pµs (2.2.8)

because we have only p as a Lorentz vector. Thus by using eq. (2.2.8) we
obtain

〈P |T µν|P 〉 =
∑

s

[(

−gµν +
qµqν
q2

)

x−sC(1)
s (q)+

+

(

pµ − qµ
p · q
q2

)(

pν − qν
p · q
q2

)

2x−s+1

p · q C(2)
s (q)

]

2As(p
2) (2.2.9)

In the high Q2 limit only a subset of operators give the leading contribu-
tion to the Wilson expansion. Let us consider an operator of dimension d and
spin s. From eq. (2.2.8) the dimension of the scalar coefficients A is d− s−2
and since 〈P |T µν |P 〉 is dimensionless, we have [C] = −d + s + 2. Since the
functions Cs and As depend respectevely on p2 and q2, the contribution of
the operator O is of orders

(

1

x

)s(
mP

Q

)d−s−2

. (2.2.10)

The quantity t = d − s is the ”twist” of the operator, higher twist operator
are power suppressed in the Wilson expansion.

Let us concentrate on the second tensor structure in eq. (2.2.9), which
will allow us to express F2 in terms of Wilson coefficients. We define

T2 ≡
∑

s

λs−14AsC
(2)
s (λ,Q2), (2.2.11)

where we used λ = 1/x. By looking at eq. (2.2.5), we see that the hadronic
tensor must be invariant under the transformation (q, µ) → (−q, λ), there-
fore also the structure function F2 must satisfies the parity relation F2(λ) =
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F2(−λ). This means that in eq. (2.2.11) operators of odd spin do not con-
tribute. The convergence radius of the series in eq. (2.2.11) is 1, thus we can
perform an analytic continuation of T2 as a function of the complex variable
λ. T2(λ) has two branch cuts in the regions |Reλ|2 > 1.

By dividing eq. (2.2.11) by λk and integrating around a circle centered
in the origin, we can obtain 4AkCk as the residue of the pole 1/λ via the
Cauchy theorem, thus we have

4(2πi)AkCk =

∮

dλ

λ
λ−k+1T2. (2.2.12)

By modifying the contour integral on the right hand side of eq. (2.2.12) and
using the parity of T2 we obtain

AkCk =
1

4(2πi)
2

∫ ∞

1

dλ

λ
λ−k+1(2i)ImT2 =

=

∫ 1

0

dx

x
xk−1F2 = M

[

F2

x

]

(2.2.13)

where we defined the Mellin transform

M [f ] (N) ≡ f(N) =

∫ 1

0

dx

x
f(x)xN . (2.2.14)

which satisfies the following convolution theorem

M [f ⊗ g] = f(N)g(N), f ⊗ g ≡ M
[
∫ 1

x

dy

y
f(x)g(y/x)

]

. (2.2.15)

If we rewrite Ak and Ck as Mellin transforms

Ak =

∫ 1

0

dx

x
xkq(x) (2.2.16)

Ck =

∫ 1

0

dx

x
xkC(x) (2.2.17)

we can obtain F2 using eq. (2.2.15)

F2(x,Q
2) = x[C ⊗ q]. (2.2.18)

In general, with nf flavours we can separate the contribution of quarks and
gluon to obtain the factorization theorem in DIS

F2(x,Q
2) = x

nf
∑

f=1

Cf ⊗ (qf + q̄f ) + Cg ⊗G. (2.2.19)
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in terms of parton distribution functions (PDFs) qf and G which can be
interpreted as the probability of finding partons of momentum xp inside a
proton of momentum p. In particular PDFs do not depend on the particular
process we choose to describe. The coefficient functions Cf do depend on
the process but can be calculated in perturbative QCD by using quarks and
gluons as external states. At leading order, we have

Cf(x) = e2fδ(1− x), Cg(x) = 0 (2.2.20)

where ef is the quark electric charge. Thus, using the simple leading order
result in eq. (2.2.20) we obtain

F2(x,Q
2) = x

nf
∑

f=1

e2f (qf + q̄f ). (2.2.21)

2.2.3 Collinear logarithms and factorization

Since the hadronic tensor and W µν must be independent of our arbitrary
scale µ as well, we can write the Callan Symanzik equations for coefficient
functions:

d

d logµ2

[

Ck

(

Q2

µ2
, αµ2

)

Ak(µ
2, αµ2)

]

= 0 (2.2.22)

by defining the anomalous dimension γk(α) = d logAk(µ
2, α)

log µ2 and using the
chain rule it follows:

(

µ2 ∂

∂µ2
+ β(αµ2)

∂

∂αµ2

)

Ck = −γkCk, (2.2.23)

Since µ2 ∂
∂µ2 = −Q2 ∂

∂Q2 , we obtain the following Callan Symanzik equation:

(

Q2 ∂

∂Q2
− β(αµ2)

∂

∂αµ2

)

Ck

(

Q2

µ2
, αµ2

)

= γk(αµ2)Ck

(

Q2

µ2
, αµ2

)

(2.2.24)

It is easy to find the solution of Eq. (2.2.24) using the method of character-
istics. We introduce the running coupling α(Q2):

{

Q2 ∂
∂Q2α(Q

2) = β(α(Q2))

α(µ2) = αµ2

, (2.2.25)

Let us now introduce the running of the coupling α(Q2) in the product of
coefficient function and the matrix element:

Ck

(

Q2

µ2
, α(Q2)

)

Ak(µ
2, α(Q2)). (2.2.26)
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With a straightforward computation, after substituting in Eq. (2.2.24) the
two terms in l.h.s. become (omitting the arguments):

Q2 ∂

∂Q2
Ck = Q2 ∂

∂Q2
Ck

∣

∣

∣

α(Q2) fixed
+ β(α(Q2))

∂

∂α(Q2)
Ck

β(αµ2)
∂

∂αµ2

Ck = β(αµ2)
β(α(Q2))

β(α(Q2))

∂

∂αµ2

Ck = β(α(Q2))
∂

∂α(Q2)
Ck.

(2.2.27)

All terms in β cancel and the equation for the coefficients Cks becomes

Q2 ∂

∂Q2
Ck

∣

∣

∣

α(Q2) fixed
= γk(α(Q

2)) Ck. (2.2.28)

Notice that the argument of γk now has changed since in Eq. (2.2.26) we have
rearranged the Q2 dependence. The Callan Symanzik equation integrates to

Ck

(

Q2

µ2
, α(Q2)

)

= Ck

(

1, α(Q2)
)

· exp
{

∫ Q2

µ2

dk2

k2
γk(α(k

2))

}

. (2.2.29)

By expanding in α both γk and β:

β(α) = −α2β0 +O(α3)

γk(α) = αγ0 +O(α2). (2.2.30)

We obtain:

−
∫ Q2

µ2

dk2

k2
γ(α) = −

∫ α(Q2)

αµ2

dα′ γ0
β0

· 1

α′ = −γ0
β0

log
α(Q2)

αµ2

(2.2.31)

while from the definition of α(Q2) Eq. (2.2.25) at leading log it follows:

α(Q2) =
αµ2

1 + β0αµ2 log Q2

µ2

+O
(

αn+2
µ2 logn

Q2

µ2

)

. (2.2.32)

Finally we obtain the expression at leading order for the coefficient functions

Ck

(

Q2

µ2
, α(Q2)

)

= Ck

(

1, α(Q2)
)

·
(

α(Q2)

αµ2

)− γ0
β0

=

= Ck

(

1, α(Q2)
)

·
(

1 + γ0αµ2 log
Q2

µ2
+O(α2)

)

.

(2.2.33)
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The term in eq. (2.2.33) proportional to logQ2 is the first of the leading log
series in powers of α logQ2. Where do these logs come from? In order to
anwer to this question, consider the phase space for two real gluon emissions
in the t channel from an initial state quark of momentum p. We parametrize
the two gluon momenta as

k1 = (1− z1)p+ z̄1n + kT1 , z̄1 =
k2
1

2p · n(1− z1)

k2 = (1− z2)z1p+ z̄2n+ kT2 , z̄2 =
k2
2

2p · n(1 − z2)z1

where n is a light-like fourvector with 2n · p = s > 0 and kT are such that
kT · p = kT · n = 0. By following the fermion line of the relative Feynmann
graph we have two propagators of virtuality

(p− k1)
2 = − k2

1

(1− z1)
,

(p− k1 − k2)
2 = −k2

1

(

1 +
z1z2
1− z1

)

− k2
2

1− z2
− 2k1 · k2.

Now if we take the limit of k1 ≪ k2 we get the factor

∫ Q2

µ2

dk2
1

k2
1

∫ k2
1

µ2

dk2
2

k2
2

=
1

2
log2

Q2

µ2
. (2.2.34)

Therefore, the leading log series in powers of logQ2 is produced exactly
by multiple collinear emission from the initial state with strong ordering of
transverse momenta k1 ≪ k2 ≪ · · · ≪ kn.

2.2.4 DGLAP equations

Now let us come back to the product CkAk we have started from. In order
to guarantee the independence on the arbitrary scale of regularization, the
coefficients Ck and the matrix elements Ak must contain the opposite µ2

dependence, in order to make the resulting product properly independent.
Moreover, we can get rid of the scale µ in the coefficient function since we are
interested on the Q2-evolution from a physical scale Q2

0 which represent our
initial condition. We can write explicitly the initial condition by separating
the integral in two region: from the arbitrary scale µ to Q0 and from Q0 to Q.
By using the structure of the result, we can factorize the contribution starting
from Q0 into the coefficient function (which can be used in order to compute
the partonic structure function F ) and move the remaining integration into
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the matrix element which again cancels the µ dependence of the product. So
we have:

Ck

(

Q2

µ2
, α(Q2)

)

Ak(µ
2, α(Q2)) =

= Ck

(

1, α(Q2)
)

· e
∫ Q2

Q2
0

dk2

k2
γk(α(k

2)) · e
∫Q2

0
µ2

dk2

k2
γk(α(k

2))
Ak(µ

2, α(Q2))

= Ck

(

1, α(Q2)
)

· e
∫ Q2

Q2
0

dk2

k2
γk(α(k

2)) · Ak(Q
2
0, α(Q

2)) (2.2.35)

In order to derive the GLAP evolution equations, we only have to focus
on the matrix elements Ak.As shown above, the evolution equation of the
Aks is given by:

Q2 d

dQ2
Ak = γkAk (2.2.36)

If we define the parton distribution functions (PDF) q(x) and the splitting
functions P (x):

Ak = M[q](k) (2.2.37)

γk = M[P ] (2.2.38)

using the definition above, Eq. (2.2.36) take the standard form of Altarelli-
Parisi equation:

Q2 d

dQ2
q(x, Q2) =

∫ 1

x

dz

z
P (z, α(Q2)) q

(x

z
, Q2

)

(2.2.39)

Finally, since the cross section is proportional to the structure functions,
which are obtained by convolution between parton densities and coefficient
functions, the general form of cross section in deep-inelastic scattering, ac-
cording to factorization theorem, can be written as a convolution as well:

σ(x,Q2) =

∫ 1

z

dx C(x/z,Q2/µ2, αµ2)q(z, µ2) (2.2.40)

where C are the hard perturbative coefficients and µ is the factorization scale.
In Mellin space we have:

σ(N,Q2) = C(N,Q2/µ2, αµ2)q(N, µ2) =

= C(N, 1, α(Q2))q(N,Q2) (2.2.41)

where the last equation gives the standard renormalization group improved
form of the factorized cross section.
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γ⋆ γ⋆

q

q̄

Figure 2.2: Multiple radiation of gluons.

2.2.5 Amplitudes in the collinear limit

As we have seen, powers of logQ2 are produced by radiation of collinear par-
tons. If we rewrite the left hand side of eq. (2.2.33) in x-space and dropping
all the functional dependencies for simplicity we obtain

C(Q2/µ2, x) = C(1, x) + α

∫ 1

x

dy

y
P0(x/y)C(y) log

Q2

µ2
+O(α2). (2.2.42)

We can view the splitting function Pij(x) as the probability that the splitting
ij occurs, since they appear as coefficients for the relative collinear logarithm.

In this section we show how the factorization properties of the cross sec-
tion arise naturally at the amplitude level. To show this, we use the helicity
formalism described in Appendix B. Furthermore, the colour decomposition
of the amplitude lead us to the study of simpler colour ordered amplitudes.
The colour decomposition of the tree-level n-gluon amplitude is [2, 3]

An = gn−2
∑

Sn/Zn

Tr(T dσ(1) · · ·T dσ(n))An(pσ(1), νσ(1); · · · ; pσ(n), νσ(n)) (2.2.43)

where d1, · · · , dn and σ1, · · · , σn are respectively the colours and the polar-
izations of the gluons, the T ’s are the colour matrices in the fundamental
rapresentation of SU(3) and the sum is over the non-cyclic permutations
Sn/Zn of the set {1, · · · , n}.

First we recall from Appendix B a short hand notation for the two com-
ponent (Weyl) spinors associated with an n-parton process [4, 5]

(λi)α ≡ [u+(ki)]α, (λ̃i)α̇ ≡ [u−(ki)]α̇. (2.2.44)
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It is also convenient to describe the spinors with a ’bra’ and ’ket’ notation

λi = |i+〉 = 〈i−|, (2.2.45)

λ̃i = |i−〉 = 〈i+|. (2.2.46)

Lorentz-invariant spinor products can be defined using the antisymmetric
tensors ǫαβ and ǫα̇β̇ for the two SU(2) factors in the Lorentz algebra:

〈jl〉 = ǫαβ(λj)α(λl)β = ū−(kj)u+(kl), (2.2.47)

[jl] = ǫα̇β̇(λ̃j)α̇(λ̃l)β̇ = ū+(kj)u−(kl). (2.2.48)

The usual momentum dot products can be constructed from the spinor prod-
ucts using the relation

〈lj〉[jl] = 2kj · kl (2.2.49)

Whith this notation, for the class of partial amplitude known as Maximal
Helicity Violating (MHV) where all the helicities are positive (negative) but
two of them, a simple analytical expression holds

AtreeMHV, (jk)
n ≡ An(1

+, . . . , j−, . . . , k−, . . . , n+) =

= i
〈jk〉

〈12〉〈23〉 · · · 〈n1〉 . (2.2.50)

In this expression, only gluons j and k have negative helicity; the remaining
(n − 2) gluons have positive helicity. The splitting function Pgg can be eas-
ily calculated taking advantage of the spinor formalism with color ordered
Feynman rules. Let us consider the five point amplitude A(1−, 2−, 3+, 4+, 5+)
shown in fig. (2.3). The explicit form of the amplitude is given by the general
form of MHV amplitudes

A(1−, 2−, 3+, 4+, 5+) =
i〈12〉4

〈12〉〈23〉〈34〉〈45〉〈51〉. (2.2.51)

Now if we take the collinear limit where k5 = (1−z)k4 and P = k4+k5 = zk4,
we can replace |5〉 →

√
1− z/

√
z|P > and |4〉 → 1/

√
z|P 〉 in the amplitude,

therefore we get

A5(1
−, 2−, 3+, 4+, 5+)

4||5−→ z√
1− z

gs
〈45〉A4(1

−, 2−, 3+, P+). (2.2.52)

In order to compute the Pgg splitting function we have to consider all the
possible helicity configurations of 4 and 5, sum the squared amplitude and
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1−

2−3+

4+

5+

A5 4||5−→
1−

2−

3+

4+

5+

+

−

A4

Figure 2.3: Factorization of the five point amplitude in the collinear limit 4||5,
the opposite choice of the helicities in the internal line vanishes.

extract the factor of |A4|2. By taking the collinear limit in the (+,−), (−,−)
and (−+) helicity amplitudes we obtain

A5(1
−, 2−, 3+, 4+, 5−)

4||5−→ 1

z
√
1− z

gs
[45]

A4(1
−, 2−, 3+, P+)

A5(1
−, 2−, 3+, 4−, 5−)

4||5−→ 0

A5(1
−, 2−, 3+, 4−, 5+)

4||5−→ (
√
1− z)3

z

gs
[45]

A4(1
−, 2−, 3+, P+).

By taking the modulus squared and summing over the helicity configurations
of 4 and 5 we have

∑

|A5|2 =
g2s

(k4 − k5)2
2

z
Pgg(z)|A4|2 (2.2.53)

where

Pgg(z) = Pgg(1− z) =
(1− x+ x2)2

x(1 − x)
. (2.2.54)

By using the Sudakov parametrization k5 = (1−z)p4+ z̄n+kT for the phase
space integration on k5 the contribution to the cross section reads

σcollinear ∼
1

2s

∫

dzd2kT
2(1− z)

1

(k4 − k5)2
2

z
Pgg(z)

∫

dΠ|A4|2 (2.2.55)

If we use (k4 − k5)
2 =

k2T
(1−z)

and the reduced flux factor 2s′ ≡ 2zs we obtain

σcollinear ∼
αs

2π

(
∫

dk2T
k2T

)
∫

dzP (z)σ′ (2.2.56)
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where we factorized out the kT integration which produces the collinear log-
arithm and σ′ is the cross section of the process with an incoming gluon of
momentum zp4 instead of the two collinear gluons 4 and 5.

Analogously, one can obtain the splitting function related to quark branch-
ing

Pqq(x) =
2

1− x
− 1− x (2.2.57)

Pqg(x) = x2 + (1− x)2 (2.2.58)

Pgq(x) =
1 + (1− x)2

x
(2.2.59)



Chapter 3

Prompt Photon Production

Prompt photon production [6] is a relevant processes for the study of hard
interactions in high-energy collisions. For example, it is the most important
reducible background for the H → γγ signal in the light Higgs scenario [7].

In this chapter we will discuss several features of prompt photon pro-
duction. Compared to hadronic jet production, the study of direct photons
at hadron colliders has many advantages, for example no jet reconstruction
algorithm is needed. Currently the direct photon cross-section is known up
to O(αα2

s) [8] and Sudakov resummation effects have been computed up to
NLL accuracy [9]. Prompt photon production is especially useful to probe
the gluon parton density over a wide range of x [10], since the initial state
gluon appears already at leading order. Direct photons data can be used in
PDFs fits as a strong constraint for the gluon distribution. However all the
data obtained so far are still not completely understood, in particular, some
of them show large deviations from the NLO QCD prediction.

The most peculiar aspect of prompt photon process is that we have two
different contribution to the cross section: the direct component, where the
photon participate to the hard process and the fragmentation component,
where the photon is emitted at the hadronization level, thus closely accom-
pained by hadronic activity. The second component involve much more the-
oretical uncertainty since the fragmentation function of the photon is poorly
known. In order to suppress the fragmentation component contribution, tipi-
cally isolation cuts are applied on the electromagnetic trigger. At the end of
the chapter we will describe the various prescriptions which are adopted in
the currently used NLO codes.

21
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3.1 General aspects

3.1.1 Direct photons

The use of direct photon production as an electromagnetic probe of hard
scattering processes has a long history. As in the case of DIS, the point-like
coupling of the photon to charged particles allows an easier treatment com-
pared to hadronic probes. Furthermore, already at leading order in perturba-
tion theory, the gluon participates to the process of direct photon production
via Compton scattering.

Analogously to the deep inelastic process, we can introduce a scaling
variable x as

x =
4p2T
S

(3.1.1)

where pT is the transverse momentum of the photon and S is the center-of-
mass energy of the hadron process. The tipical range of transverse momenta
avaiable at hadron collider can reach very low values (pT > 20GeV ). Recent
measurements at Tevatron from CDF, use a minimum value of pT = 32GeV
which brings the x-range down to 10−3.

From both the experimental and theoretical side, direct photon produc-
tion is an interesting process, however various complications arise basically
because the photon can be produced during the hadronization process. This
possibility require a particular treatment of the cross section. Let us clar-
ify this point by looking at the factorization formula for prompt photon
production[9] in the hadronic process pp→ γ +X

p3T
dσγ(x⊥, p

2
T )

dpT
=
∑

a,b

∫ 1

x⊥

dx1 fa/H1(x1, µ
2
F )

∫ 1

x⊥/x1

dx2 fb/H2(x2, µ
2
F )×

×
∫ 1

0

dx

{

δ

(

x− x⊥
x1x2

)

Cγ
ab(x, αs(µ

2); p2T , µ
2
F , µ

2
f)+

+
∑

c

∫

dz z2dc/γ(z, µ
2
f)δ

(

x− x⊥
zx1x2

)

Cc
ab(x, αs(µ

2); p2T , µ
2
F , µ

2
f)

}

.

(3.1.2)

The first contribution to the sum in this formula is known as the direct
component, fa/Hi

are the customary PDFs corresponding to the probability
density of finding a parton a with momentum fraction xi in the hadron
Hi and Cγ

ab is the short distance cross section related to the hard process
a + b → γ +X . Here the photon participates at the level of the hard cross
section. The second term in eq. (3.1.2) is the fragmentation component.
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This contribution involve every subprocess ab → c + X where a, b, c are all
partons. The relative hard cross section given by Cc

ab is multiplied by PDFs,
which describe the initial state, as well by a fragmentation function of the
photon dc/γ(z) which gives the probability of finding a photon of momentum
fraction z in the hadronization shower produced by the parton c.

In the factorization formula, three arbitrary scales appear: the factor-
ization scale µF , the renormalization scale µR and the fragmentation scale
µf . All this scales are defined as the subtraction points of collinear (from
initial and final state) and ultraviolet divergencies. The cross section cannot
depend on these subtraction scales, indeed one can improve the fixed order
results by imposing renormalization group invariance, which is equivalent
to resum higher order contributions which cure this unphysical dependence.
Therefore, the fixed order scale dependence gives informations about the rel-
evance of higher order terms which can be viewed as a source of theoretical
uncertainty. Tipically, an estimate of this uncertainty can be obtained by
varying independently µ2

F , µ
2 and µ2

f from p2T/k to kp2T
1, however this pro-

cedure tipically overestimates the uncertainty, a more suitable choice is to
avoid the presence of those large scale ratios which would produce a larger
scale dependence.

The inclusion of a fragmentation component is due to the presence of
collinear singularities in the final state which do not cancel in the direct
component, instead they must be absorbed in the fragmentation function
definition. Analogously to the PDFs, the fragmentation function satisfies a
DGLAP evolution equation. From a phenomenological point of view, the
fragmentation component is an issue because it represents a large source of
uncertainty since the fragmentation function which describe the hadronic
content of the photon is poorly known.

The procedure to reduce the fragmentation contribution is to impose
isolation cuts realized by drawing a cone of fixed aperture in (η, φ) space
around the photon, restricting the hadronic transverse energy allowed in this
cone to a certain small fraction ǫ of the photon transverse energy. In this way,
the fragmentation contribution is substantially reduced, However, the cone
isolation is not enough to get rid of this contribution, in particular at very low
values of the transverse momentum (pT ∼< 20GeV ) the fragmentation term
gives the 30% of the cross sectionx[11], thus at small-x is certainly relevant.

An alternative isolation criterion has been proposed by Frixione in Ref. [12];
with this particular choice, the fragmentation component is identically zero,
and the direct component aquires a physical meaning. We shall discuss this
prescription in the next section.

1The tipical choice is k = 2.
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Collaboration Reaction
√
s p

T
range x

F
/rapidity x

T
range

[GeV] [GeV/c] range

WA70[13] p p 23.0 p
T
> 4.0 −.35 < x

F
< .45 x

T
> .35

UA6[14] p p 24.3 p
T
> 4.1 −0.1 < η < 0.9 x

T
> .34

UA6[14] p̄ p 24.3 p
T
> 4.1 −0.1 < η < 0.9 x

T
> .34

E706[15] p Be 31.6 p
T
> 3.5 −.75 < η < .75 x

T
> .22

E706[15] p Be 38.8 p
T
> 3.5 −1.0 < η < 0.5 x

T
> .18

R806[16] p p 63. p
T
> 3.5 −0.2 < η < 0.2 x

T
> .11

R110[17] p p 63. p
T
> 4.5 −0.8 < η < 0.8 x

T
> .14

AFS/R807[18] p p 63. p
T
> 4.5 −0.7 < η < 0.7 x

T
> .14

CDF RunII[19] p̄p 1960. 30 < pT < 350 −1 < η < 1 xT > 10−3

Table 3.1: Summary of the main features of the data sets. The transverse
and longitudinal variables 2pT/

√
s and 2p

L
/
√
s.

3.1.2 Consistency among data sets

Prompt-photon production at high transverse momentum has been measured
in various hadron processes including pp, pp̄ and pN . A comparison between
data and NLO prediction is shown in Fig. (3.1).

One of the principal experimental complications in this process is that
photons can be accompained by hadronic activity, indeed, the tipical back-
ground comes from the π0 decay. This is the reason why one has to introduce
the a perturbative fragmentation function.

Despite to many years of experimental efforts, this process is not yet
fully understood, since some measurements, in particular the fixed-target
ones show large discrepancies from the NLO pQCD prediction. The problem
of consistency among fixed target data has been discussed in Ref. [20], how-
ever still there is no agreement on how to treat these data in order to include
the photon production on a global fit of PDFs. Several attempts have been
done in the past to explain the fixed target data. It has been shown that the
disagreement between theoretical prediction and data cannot be explained
by fine-tuning of unphysical scales and the gluon density. Alternative solu-
tions to this problem take into account intrinsic transverse momentum of the
gluon produced by initial state radiation. Such corrections can have various
origines, soft and high energy resummation, non perturbative or higher-twist
effect, therefore can be included only with ad hoc models. This possibil-
ity has been investigated using phenomenological models with gaussian kT
smearing for justify the enhancement of the E706 data[15].

These model-dependent contributions are only partially under control and
moreover they are not sufficient to recover the consistency of fixed-target and
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Direct photon production
by proton beams

Figure 3.1: Comparison between prompt photon data and NLO prediction for
several experiments as a function of 2p2T /S.

collider data, thus it is still an open problem the consistent treatment of these
data.

The more recent measurement from CDF shows a good agreement with
the NLO prediction (see Fig. (3.2). However, at low values of the transverse
momentum the NLO underpredicts the cross section. This discrepancy is
partially understood in terms of soft resummation as shown in Ref. [21] in
the framework of soft collinear effective theory. The inclusion of higher-order
contributions coming from the soft radiation improves the agreement with
CDF data. As we shall discuss, this deviation is not related to small-x effects.



3.2 Prompt photons: theoretical results 26

3.2 Prompt photons: theoretical results

In this section we review the known perturbative results on prompt photon
production. As we already mentioned, according to perturbative factoriza-
tion, the NLO cross section can be written as shown in eq. (3.1.2), where the
coefficient functions are series in the strong coupling

Cγ
ab(x, αs(µ

2); p2T , µ
2
F , µ

2
f) = ααs(µ

2)

[

Cγ(0)
ab (x) +

∞
∑

n=1

αn
s (µ

2)Cγ(n)
ab (x, αs(µ

2); p2T , µ
2
F , µ

2
f)

]

Cc
ab(x, αs(µ

2); p2T , µ
2
F , µ

2
f) = α2

s(µ
2)

[

Cc(0)
ab (x) +

∞
∑

n=1

αn
s (µ

2)Cc(n)
ab (x, αs(µ

2); p2T , µ
2
F , µ

2
f)

]

.

(3.2.1)

At leading order in perturbation theory, the direct component receives con-
tribution from the qq̄ annihilation and the qg channel (Compton scattering).
The corresponding leading-order hard coefficient functions are given by [6, 22]

Cγ,LO
qq̄ (x) =

q3dσ̂qq̄→γg

dq
= ααsQ

2
qπ
CF

CA

x√
1− x

(2− x), (3.2.2)

Cγ,LO
q(q̄)g (x) =

q3dσ̂q(q̄)g→γq(q̄)

dq
= ααsQ

2
qπ

1

2CA

x√
1− x

(1 +
x

4
) (3.2.3)

in terms of the partonic variable x = 4q2/ŝ, where ŝ is the partonic center-
of-mass energy.

3.2.1 The NLO cross section and computer codes

The NLO calculation[23, 24, 25] O(αα2
s) receives contributions from the sub-

processes qq̄ → γgg, gq(q̄) → γgq(q̄) and from the virtual corrections to the
Born diagrams. In the litterature the following factorization formula can be
found

Eγ
d3σAB

d3pγ
=

1

πp4T

∑

a,b

∫ 1−
√

x
2

e−η

√
x
2

eη
dv

∫ 1

√
x

2v
eη
dw x1f

A
a (x1) x2f

B
b (x2) ·

·v(1− v)wŝ
dσ̂ab

dvdw
(3.2.4)

in terms of the variables v and w which are related to x1, x2 and the rapidity
η by the relations

x1 =

√
xeη

2vw
, x2 =

√
xe−η

2(1− v)
, (3.2.5)
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Analitic expressions for the v and w distribution are avaiable in Ref. [25].
The next-to-leading order prediction for both polarized and unpolarized cross
section, including isolation prescriptions, have been implemented in various
numerical codes. All the plots shown in this thesis have been produced by
the Gordon-Vogelsang’s code[25] which is based on the analitic calculation
and it is fully inclusive in the hadronic final state.

The advantage of using the inclusive calculation is that the cancellation
of soft singularities is performed analitically, which makes the code faster
than a MonteCarlo program. The inclusion of isolation criteria is performed
by adding suitable ”subtraction” terms to the cross section. This proce-
dure is equivalent to imposing cuts in the phase space in the narrow-cone
approximation. Since the flexibility of an inclusive code is limited, fully ex-
clusive MonteCarlo codes have been developped like Fixione-Vogelsang[26]
and JETPHOX[27, 28]. In Fig. (3.3) we show the unisolated NLO cross section
normalized to the leading order one. As shown in the plot, the correction
increase the LO result of 15-20% in the range between 20GeV and 400GeV.

As we already mentioned, one of the important feature of the prompt pho-
ton production is that the gluon participate at leading order by a Compton-
like subprocess. This is the reason why this process can provide an important
constraint to the gluon density. Let us investigate which is the region x-space
which gives the dominant contribution to the cross section. This can be easily
achieved by considering the following function

R(xmin) =
1

σ

∫ 1

xmin

dx1G1(x1)

∫

xmin/x1

G2(x2)Cγ(x̂), x̂ =
xT
x1x2

(3.2.6)

which schematically is the convolution of a parton density G with the NLO
coefficient function Cγ . The function R(xxmin) is the contribution to the cross
section coming from the region xmin > xT inside the convolution integral
normalized to the inclusive cross section. The meaning of this function is
to select the contribution to the cross section coming from the region of
the phase space where the parton densities are evaluated at x1 > xmin and
x1x2 > xmin.

As shown in Fig. (3.4) the function R(xmin at pT = 20GeV is close to
one up to 5 · 10−2 at the Tevatron energy and up to 5 · 10−3 at LHC. In
the case of Tevatron, at pT = 20GeV we have x ≈ 4 · 1−−4, therefore the
convolution integral is dominated by medium-large arguments of the PDFs
x1, x2 > 5 · 10−2 and, correspondly, the coefficient function is evaluated in
the range x̂ < 20xT ≈ 10−2. Namely, the prompt photon cross section is
very sensitive to the parton densities for medium-large values of xi, thus we
expect that the inclusion of prompt photon data in a global PDF fit would
provide a constraint in that region.
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3.2.2 Isolation prescriptions

From the experimental point of view, it is not difficult to select a data sample
where the direct contribution is dominant over the fragmentation mechanism.
This can be achieved by imposing a selection cut on those events where the
photon is not isolated from hadronic tracks. From the theory side, instead,
the problem to isolate a photon from the hadronic activity is more involved.
Indeed, the naive procedure to avoid soft radiations of quarks and gluons
inside a cone drawn around the photon momentum would spoil the cancella-
tion of infrared divergency, which is a crucial requirement in order to obtain
a physical cross section.

Traditional isolation cuts which preserve the infrared safety of the cross
section are based on the cone approach[12], where only a small amount of
hadronic energy can be found inside the cone as a fraction of photon energy

E < ǫEγ (3.2.7)

where ǫ is a fixed parameter. With such isolation prescription we put a maxi-
mum limit on the energy contribution coming from QCD radiation, therefore
soft partons can be emitted as well as the collinear radiation. The latter still
require a fragmentation component but its contribution to the total cross
section is reduced by the isolation cut as shown Fig. (3.5).

Now we will describe a different approach which allows us to define a
physical cross section given only by the direct component. The profound
reason why we need a fragmentation component is the presence collinear sin-
gularities when the photon momentum becomes parallel to the quark inside
the cone. These singularities cancel in the sum of the direct and fragmen-
tation parts, therefore such a criterion must involve a suitable constraint on
the phase space which avoid purely collinear radiation. Let us define the
quantity

Riγ =

{

δiγ e+e−process
√

(ηi − ηγ)2 + (φi − φγ)2 hadronic collisions
(3.2.8)

where δiγ is the angle between the three-momenta of a parton i and the
photon while, in the case of hadronic collision, η and φ are the pseudorapidity
and azimuthal angle. In terms of this angular distance, given a fixed cone
drawn around the photon momentum of fixed angle δ0, the condition which
allow to get rid of collinear radiation is

∑

i

Eiθ(δ − Riγ) ≤ H(δ) for all δ < δ0 (3.2.9)
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where H is an arbitrary function which satisfies

lim
δ→0

H(δ) = 0. (3.2.10)

This constraint forces the hadronic energy due to quark and gluon radiation
inside the cone to scale as a function of the opening angle which vanishes when
δ approaches to zero, thus the collinear singularity is dampted by the soft
quark region. With the condition in eq. (3.2.9) a parton emitted collinearly
to the photon must be soft. A suitable function H(δ) is given by

H(δ) = Eγǫγ

(

1− cos δ

1− cos δ0

)n

(3.2.11)

where Eγ is the photon energy, for e+e− process, or pT for hadron collisions.
In order to show that no collinear divergencies can appear with this isola-
tion prescription let us consider in the e+e− case a quark emitted inside the
isolation cone. Since a quark emission cannot produce a soft singularity, the
leading behaviour of the cross section is 1/(kTq )

2 ∼ 1/(1 − cos δ), therefore
including the phase space integration we have

σ ∼
∫

0

EqdEq

∫ δ0

0

d cos δ

1− cos δ
θ(H(δ)− Eq) = (3.2.12)

=
E2

γǫ
2
γ

4n
. (3.2.13)

Now we have eliminated the purely collinear region from the quark phase
space the fragmentation component is identically zero because it comes pre-
cisely from the region we have excluded. In other words, the fragmentation
is concentrated on the z = 1 (soft) region which is a set of zero measure.
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Figure 3.2: (a) Measured inclusive cross section at CDF runII compared to
NLO prediction. (b) Ratio data/theory: the shaded bands show scale (red) and
PDFs (blue) uncertainties.
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Figure 3.3: Ratio between NLO and LO unisolated cross section with scale
uncertainty. The central line (solid, red) corresponds to the scale choice µF =
µR = µf = 1 while the blue band has been obtained vay varying independently
the three subtraction scales between 2pT and pT /2 but excluding ”large” scale
ratios.
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Figure 3.4: The function R(xmin) at the LHC
√
S = 14 TeV (red solid line)

and at Tevatron Run II
√
S = 1.96 TeV (blue dashed line) for the production of

photon with pT = 20 GeV. It is clear that the cross-section is dominated by the
contribution of the coefficient function at medium and large-x, x ∼> 5 10−3 for LHC
and x ∼> 5 10−2 for the Tevatron.
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Chapter 4

High Energy Resummation

Perturbative QCD provides accurate theoretical predictions for hard pro-
cesses at high-energy colliders. Logarithmic corrections to the lowest-order
cross-sections can be systematically computed in the region of large hard
scale Q2, Λ2 ≪ Q2 ∼ S, by a renormalization group approach which leads to
the factorization theorem of mass singularities [29]. However, the TeV energy
range opens up the two scale region Λ2 ≪ Q2 ≪ S, where the usual perturba-
tive expansion receives large contributions characterized by logarithms of the
ratio x = Q2/S. In order to recover the accuracy of the perturbative results,
logarithmically enhanced small-x contributions to the hard cross-sections,
associated to multiple gluon emission, must be resummed to all orders.

The general procedure for the small-x leading-log (LLx) resummation of
hard coefficient functions is well established in perturbative QCD within the
framework of the kt-factorization theorem [30, 31], and involves the compu-
tation of the leading amplitude of the process with off-shell incoming gluons.
This technique has been used to obtain resummed cross-sections for heavy
quarks photo- and hadro-production [30, 32, 33, 34], deep inelastic scatter-
ing [31, 35], Higgs production [36, 37, 38] and recently for the Drell-Yan
process [39].

Other applications of the kt-factorization theorem can be found in refs. [40,
41] for the NLO corrections to the jet vertex and the DIS impact factor. In
this chapter we will discuss the high energy resummation in general, starting
from the kt-factorization theorem, which generalizes the well known collinear
factorization to kt-dependent parton distributions. We shall see that the
high energy logarithms come from the BFKL kinematics and that the corre-
sponding evolution equation is related to DGLAP by duality relations. The
general technique which allows to resum all the small-x logarithms will be
derived in the light of recent developments on the resummation of rapidity
distributions. As application of this technique, we will focus on the processes

34
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of heavy quark pair production and Drell-Yan.

4.1 A two-scale problem

4.1.1 Finding logarithms

As we anticipated, at high energy, physical observables are affected by large
logarithms of the scaling variable x. At leading-log, gluon ladder diagrams are
the only source of such logarithms[42, 43, 44, 45], let us consider the multiple
gluon emission depicted in Fig. (4.1). In terms of light-cone variables, the

pn

p1

p2

p0

pn+1

pa

pb

l0

l1

ln

Figure 4.1: Multiple gluon emission.

phase space integration reads

dΦ =
n+1
∏

i=0

(

d2p⊥i dp
+
i dp

−
i δ(p

2
i )
)

· δ4(pa + pb − P0,n+1) (4.1.1)

where we defined Pi,j =
∑j

k=i pk. Now if we express the integration in terms
of the exchanged momenta in the propagators li = pb −Pi+1,n+1, the on-shell
constraint for outgoing momenta becomes

0 = p2i = (li − li−1)
2 = l2i − 2lili−1 + l2i−1 =

= 2(l+i l
−
i − l̄ili)− 2(l+i l

−
i−1 + l−i l

+
i−1 + li l̄i−1 + l̄ili−1) + l2i−1 (4.1.2)
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we have

dΦ =

n
∏

i=0

(

d2l⊥i
dl−i

2(l−i − l−i−1)

)

· δ4(pa + l0 − p0)d
4p0. (4.1.3)

with ln+1 = pb. Notice that in the reference frame where

pa = (p+a , 0, 0, 0),

pb = (0, p−b , 0, 0),

the ”plus” component represents the longitudinal part, parallel to pa, while
the ”minus” component is parallel to pb. Now, in the region where the
longitudinal components l−i are strong ordered

l−0 ≪ l−1 ≪ · · · ≪ l−n−1 ≪ l−n , (4.1.4)

the phase space integration reduces to

dΦ =

n
∏

i=0

(

d2l⊥i
dl−i
2l−i

)

(4.1.5)

which give rise to a large logarithm in the high energy limit. If we parametrize
the light-cone components of outgoing momenta as

pi = (p⊥i e
yi, p⊥i e

−yi ; pi, p̄i) (4.1.6)

the constraint in eq. (4.1.4) becomes

p⊥1 e
−y1 ≪ p⊥2 e

−y2 ≪ · · · ≪ p⊥n e
−yn ≪ p⊥n+1e

−yn+1 . (4.1.7)

The strong ordering of the ”minus” components can be obtained in two ways.
The first one is to impose the strong ordering of transverse momenta, which
is the usual ordering for the factorization of collinear singularities. Another
way to get the same hierarchy is to allow the strong ordering in rapidities yi
keeping the transverse momenta of the same order of magnitude, so we have

y1 ≫ y2 ≫ · · · ≫ yn ≫ yn+1

p⊥1 ∼ p⊥2 ∼ · · · ∼ p⊥n ∼ p⊥n+1 (4.1.8)

which is known as the multi Regge kinematics.
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4.1.2 Resummed coefficient function from

kt-factorization

In this section we will show how the properties of gluon ladders (from BFKL
theory) can be used to obtain a resummed cross section. In the approach
proposed in Ref. [30, 31], the collinear factorization of hard cross section and
structure function is replaced with the corresponding high-energy factoriza-
tion which is kT -dependent

Q2σ(x,Q2/µ2) =

∫

d2k

k2

∫ 1

x

dz

z
σ̂(x/z,k2/Q2)F(z,k2, µ2) (4.1.9)

where F is the unintegrated gluon structure function and σ̂ is the off-shell
hard cross section, defined as the Born coefficient function with off shell
incoming gluons.

This improved factorization reduces to the traditional form in the limit
S ≫ Q2 ≫ k2T . In this limit, the hard cross section σ̂ reduces to the on-
shell Born cross section and the standard parton distribution function are
obtained by integration in the transverse variables

G(z, µ2) =

∫

d2kF(z,k, µ2) (4.1.10)

but eq. (4.1.9) holds also for any value of the ratio k2T/Q
2. The kT -factorization

formula embodies all the high energy enhanced contributions which at leading-
log level stem from ladder-type gluon exchanges. All the informations about
the gluon ladder are included in the kT -dependent structure function F . Let
us concentrate first on the properties of the gluon ladder. The structure
function F satisfies the integral equation

F(x,k2/Q2
0) = δ(1−x)k2δ(k2−Q2

0)+ᾱs

∫

k2dq2

q2|q2 − k2|reg

∫ 1

x

dz

z
F(x/z,q2/Q2

0)

(4.1.11)
where we used the regularized distribution

1

|q2 − k2|reg
≡ 1

|q2 − k2| − δ(q2 − k2)

∫ 2k2

0

dq′2

|q′2 − k2| . (4.1.12)

The second piece in eq. (4.1.12) comes from the virtual correction to the
multigluon ladder and regulates the singularity in q2 = k2. If we take the
Mellin moments in eq. (4.1.11) we obtain

FN(k
2/Q2

0) = k2δ(k2 −Q2
0) +

ᾱs

N

∫

k2dq2

q2|q2 − k2|reg
FN(q

2/Q2
0). (4.1.13)
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with as usual

FN(k
2/Q2

0) ≡
∫ 1

0

dx

x
xNF(x,k2/Q2

0). (4.1.14)

Eq. (4.1.13) can be solved in terms of the double Mellin moments

FNM ≡
∫ ∞

0

dk2

k2

(

k2

Q2
0

)−M

FN(k
2/Q2

0), (4.1.15)

indeed we have

FNM = 1 +
ᾱs

N

∫ ∞

0

dk2

k2

(

k2

Q2
0

)−M ∫ ∞

0

k2dq2

q2|q2 − k2|reg
FN(q

2/Q2
0) =

= 1 +
ᾱs

N

∫ ∞

0

dq2

q2
FN(q

2/Q2
0)

(

q2

Q2
0

)−M ∫ ∞

0

dk2

q2|1− k2/q2|reg

(

k2

q2

)−M

=

= 1 +
ᾱs

N
FNMf(M)

where

f(M) ≡
∫ ∞

0

dξ

|1− ξ|reg
ξ−M = 2ψ(1)− ψ(M)− ψ(1−M), (4.1.16)

therefore we have

FNM =
1

1− ᾱs

N
f(M)

(4.1.17)

which in k space yields

FN(k
2) =

1

2πi

∫ 1
2
+i∞

1
2
−i∞

dM

1− ᾱs

N
f(M)

(

k2

Q2
0

)M

. (4.1.18)

Now we can rewrite the convolution in eq. (4.1.9) in Mellin space and using
F in eq. (4.1.18) we have

σN (Q
2/Q2

0) =

∫ 1
2
+i∞

1
2
−i∞

dM

2πi

(

Q2

Q2
0

)M
1

1− ᾱs

N
f(M)

h(N,M)

M
(4.1.19)

where we introduced the impact factor

h(N,M)

M
=

∫ ∞

0

dk2

k2

(

k2

Q2

)M

σ̂N (k
2). (4.1.20)

The integration in eq. (4.1.19) can be performed by closing the contour
integral (Re(M) = 1/2 ) at infinity as shown in fig. (4.4), therefore the result
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Figure 4.3: The perturbative branch γs.

is a sum of all residues of each pole of the integrand inside the contour. If
the impact factor h(M) is a holomorphic function everywhere, the poles are
all the zeroes of the denominator 1− ᾱs

N
f(M). The contribution of a pole in

the region M < 0 is suppressed by negative powers of Q2/Q2
0 which is the

tipical behaviour of non perturbative effects. The perturbative branch can
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be expressed as

M = γs(ᾱs/N) =
ᾱs

N
+ 2ζ(3)

(ᾱs

N

)4

+O
(

( ᾱs

N

)6
)

. (4.1.21)

As shown in fig. (4.3), in a wide range of the ratio ᾱs/N , γs can be ap-
proximated by ᾱs/N , while when ᾱs/N approaches the minimum value of f ,
(4 log 2)−1, γs is 1/2. Thus the final result is

σN (Q
2/Q2

0) =

(

Q2

Q2
0

)γs (

−γs
ᾱs

N
f ′(γs)

)−1

h(N, γs). (4.1.22)

where h(N, γs) represents the resummed coefficient function.

Figure 4.4: Pole structure of the cross section in MN -space. The contribution
of poles in the region M < 0 is power suppressed. At high Q2 the only contribution
comes from the positive pole γs.

4.2 Resummation techniques

4.2.1 Inclusive cross section

In the previous section we focussed on the construction of a resummed coef-
ficient function starting from the kT -factorization theorem. We assumed to
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be able to calculate the kT -dependent hard cross section. In this section we
show how to compute it in terms of ordinary Feynman diagrams. Consider
the generic photo-production process

γ(n) + g(p) → J +X (4.2.1)

characterized by a hard scale Q2. As we said, high energy enhanced con-
tributions stem from multiple gluon emission. We can take advantage of
this information by factorizing the generic cross section σ into a process-
dependent part and an universal gluon ladder as shown in fig. (4.5). Thus

H(n, pL)

n

p

pL

pk

pk−1

p1

p

n

pL

H(n, pL)

Lk(p, pL, p1, ..., pk)

L(pL, pk)

L(pk, pk−1)

L(p1, p)

Figure 4.5: .

we write the differential cross section with k gluons in the final state as the
Lorentz product

dσ ≡ Q2

2s
Hµν(n, pL, Q

2) ·
(

Lk
µν(pL, p, p1, · · · , pk)

k
∏

i=1

d3qi
2Ei

)

(4.2.2)

where H contains the phase space integration of the final state J as well
as the momentum conservation delta function, qi are the momenta of the
outgoing gluons and pi are the exchanged propagators through the ladder.
Notice that the ladder part does not depend on the hard scale Q2 of the
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upper process. The hard part can be decomposed as

Hµν =

(

−gµν + pµLp
ν
L

p2L

)

H⊥(p
2
L, n · pL, Q2) +

+p2L

(

pµl
p2L

− nµ

n · pL

)(

pνl
p2L

− nν

n · pL

)

H‖(p
2
L, n · pL, Q2).

(4.2.3)

Now consider the one-gluon emission. The ladder part can also be decom-
posed as

L1,µν(p, pL) =
1

p2L

(

−gµν + pµLp
ν
L

p2L

)

L1
⊥(p

2
L, p · pL) +

+

(

pµl
p2L

− nµ

n · pL

)(

pνl
p2L

− nν

n · pL

)

L‖(p
2
L, n · pL).

(4.2.4)

with dimensionless tensor coefficients. In order to extract the high en-
ergy enhanced contribution to the cross section, we introduce the Sudakov
parametrization for the emitted gluon

q = (1− z)p + k + z̄n (4.2.5)

where k = (0, kx, ky, 0) with k2 = −k2 and p · n = s/2. The gluon phase
space integration give

d3q

2Eq
=

dz

2(1− z)
d2k (4.2.6)

with z̄ = k2

s(1−z)
fixed by the onshellness condition.

Tipically, the z integration is bounded from x to 1. The lower bound,
in particular, is given by the kinematical constraint produced by the hard
final state J and it depends on the process. The small-x limit is therefore
associated with the small-z limit in the case of the one-gluon emission. Also
the transverse momentum of the gluon is bounded by the hard scale Q2,
therefore the high energy limit Q2 ≪ s can be replaced by k2 ≪ s.

Now we assume that the functions H⊥,‖ and L1
⊥,‖ have the same small-x

behaviour. Thus the leading behaviour is given by

dσ =

[

− Q2

2zs
H‖

(

Q2

k2
,
Q2

zs
, θ

)

(1 +O(z))

]

(2πL1
‖)
dz

z

dk2

k2
. (4.2.7)

A meaningfull way to extract the coefficient H‖ is to apply the projector

Pµν =
kµkν

k2
(4.2.8)
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to the full hard tensor Hµν . In the limit

z ≪ 1

k2 ≪ s (4.2.9)

the combination in the squared brackets of eq. (4.2.7) can be interpreted as
the partonic cross section of the process γ+g∗ → J with an off-shell incoming
gluon of momentum

q = zp + k, q2 = −k2. (4.2.10)

With this interpretation, the projector in eq. (4.2.8) can be thought asthe
sum over the polarizations of the gluon. Now we discuss the ladder part.
As we shall see, the high energy structure is completely determined by the
collinear factorization. If we define the combination

C

(

Q2

zs
,
Q2

k2

)

=
Q2

2zs
PµνH

µν (4.2.11)

the cross section reads

σ(x,Q2) =

∫ 1

x

dz

z

∫

dk2

k2
C

(

x

z
,
Q2

k2

)

(2παsL
1
0) (4.2.12)

where L1
‖ = αsL

1
0. The z-integration can be done by taking the N -space

mellin moments, thus we get

σ(N,Q2) =

∫

dk2

k2
C

(

N,
Q2

k2

)

2παsL
1
0

N
(4.2.13)

The integration in the transverse momentum gives a collinear divergence
which can be cured by doing the integration in d = 4−2ǫ dimensions then it
can be subtracted in MS scheme. The d-dimensional form of eq. (4.2.13) is

σ

(

N,Q2, αs

(

µ2

Q2

)ǫ

, ǫ

)

=

=

∫ ∞

0

dk2

k2T

(

Q2

k2

)ǫ

C

(

N,
Q2

k2
, αs

(

µ2

Q2

)ǫ

, ǫ

)

αs

(

µ2

Q2

)ǫ
2πL1

0 (N
ǫ, ǫ)

N
=

=

∫ ∞

0

dξ

ξ1+ǫ
C

(

N, ξ, αs

(

µ2

Q2

)ǫ

, ǫ

)

αs

(

µ2

Q2

)ǫ
2πL1

0 (N
ǫ, ǫ)

N
, (4.2.14)

where we defined the ratio

ξ =
k2

Q2
. (4.2.15)
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Now we take the collinear limit k2 ≪ Q2, thus eq. (4.2.14) becomes

σ

(

N,Q2, αs

(

µ2

Q2

)ǫ

, ǫ

)

=

∫ ∞

0

dξ

ξ1+ǫ
C

(

N,αs

(

µ2

Q2

)ǫ

, ǫ

)

[1 + O(ξ)]×

×αs

(

µ2

Q2

)ǫ
2πL1

0 (N
ǫ, ǫ)

N
= −1

ǫ
σ (γ(n) + g(zp) → V) 2παsL

1
0

N
+ finite.

(4.2.16)

In the last step we see that the combination 2παsL
1
0/N is an anomalous

dimension since it is the residue of a collinear pole. In the one gluon case, it
is precisely the small-N limit of the γgg anomalous dimension, namely

2παsL
1
0

N

αsNC

π
γ0(N) = ᾱsγ0 (4.2.17)

where we have defined ᾱs ≡ αsNc/π and γ0 = 1/N . If we iterate the sin-
gle emission we obtain the standard exponentiation of collinear singularity.
Furthermore, it can be shown[46] that the ladder part of the cross section is
always an anomalous dimension, hence if we can consider the full kernel L
instead of the single emission we obtain the formula

σ
(

N,Q2, αs(Q
2)
)

=

L
(

ᾱs(Q
2), N

)

∫ ∞

0

dξ

ξ
ξL(ᾱs(Q2),N)C

(

N, ξ, αs(Q
2)
)

R
(

αsb(Q
2), N

)

,

(4.2.18)

where the extra factor R comes from the interferences between 1/ǫ poles and
the ǫ-dependent part of the kernel L. In order to obtain the high energy
limit, we can expand L as

L(ᾱs, N) = γs

( ᾱs

N

)

+ ᾱsγss

( ᾱs

N

)

+ · · · (4.2.19)

and analogously for R. The coefficients of the expansion in eq. (4.2.19) can be
obtained by the duality relation that we already anticipated in the previous
section

f(γs) =
ᾱs

N
(4.2.20)

where f(γ) is the kernel of the BFKL at leading order in αs defined in
eq. (4.1.17).
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4.2.2 Rapidity distributions

Differential distributions are in general much more sensitive to small-x effects
than inclusive observables. As an example, in the case of Drell-Yan rapid-
ity distribution, the slow convergence of the perturbative series in the large
rapidity region shows that higher order corrections become more and more
important. Thus, the impact of resummation effect should be more visible
in this region. The rapidity in the partonic center-of-mass frame is defined
as

y =
1

2
ln
E + pz
E − pz

=
1

2
ln
p+

p−
. (4.2.21)

In this section we will give the recipe for the high energy resummation de-
scribed in full detail in Ref. [46]. The derivation of this procedure is analogue
to the inclusive case discussed in the previous section. The crucial difference
is the introduction of a Mellin-Fourier transform

f(N, b) ≡
∫ 1

0

dxxN−1

∫ ∞

0

dξξM−1

∫ ∞

−∞
dyeibyf(x, ξ, y) (4.2.22)

in terms of which the resummation formulas have a factorized expression.
Note that f(N,M, 0) is the inclusive cross section. The main steps in the
derivation of Ref. [46] are the same of the inclusive case which can be sum-
marized as follows

1. Separate the gluon ladder emissions from the hard part (i.e. withouth
gluon emissions)

2. Perform the calculation of the n-gluon emission in the region of strong
ordered transverse momenta.

3. Substitute the Altarelli-Parisi anomalous dimension with the small-x
resummed γs.

In the inclusive case, we know that high energy enhanced contributions
are given by poles of increasing order in N = 0. Now, these poles correspond
to contributions of the form

(

αs

N + f(b)

)k

(4.2.23)

with f(0) = 0, in the rapidity distribution because, in Mellin-Fourier space,
setting b = 0 is equivalent to take the inclusive cross-section.

If we consider the gluon radiation coming from the lower leg only, the
final form of the resummed rapidity distribution is

dσ

dy
(N, b) =MC(N,M, b)|M→Γ(N,b) (4.2.24)
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where C(N,M, b) is the Mellin-Fourier transform of the off-shell hard coeffi-
cient function and where we introduced the function Γ+(N, b) defined as

Γ(N, b) ≡ γs

(

αs

N + ib
2

)

. (4.2.25)

If we allow the gluon radiation from both initial legs we have the generalized
version of eq. (4.2.25)

dσ

dy
(N, b) =M1M2C(N,M1,M2, b) (4.2.26)

with
M1 = Γ(N, b), M2 = Γ(N,−b) (4.2.27)

4.2.3 Running coupling effects

So far, the formalism we developped both for the inclusive and the rapidity
differential cross section does not account for running coupling effects. In-
deed, as shown in Refs. [47, 48, 49, 32] the running of αs produces a new
series of relevant contributions in the high energy limit which modify the na-
ture of the singularity of the anomalous dimension at small-x. Furthermore,
the inclusion of these running coupling contributions is strongly required in
order to obtain stable small-x limit because their leading singularities are of
increasing higher order at higher orders in β0αs. The fixed coupling resum-
mation, indeed, would produce a huge deviation from the NLO resuls, which
is obviously not the case. This is the reason why the running coupling terms
are required to make a precise prediction comparable with collider data.

At fixed αs, the resummation procedure requires the identification of the
Mellin variableM (conjugate of Q2) with the sum of the leading singularities
of the resummed anomalous dimension

M = γs (αs/N) . (4.2.28)

Now, if we include running effects, αs becomes a function of Q2 which cor-
responds to an operator in M-Mellin space, for example, at leading log level
we have

α̂s =
αs

1− β0αs
∂

∂M

(4.2.29)

and Eq. (4.2.28) is understood as an equality between operators. At the run-
ning coupling level, the identification given by Eq. (4.2.28) produces a class
of terms proportional to increasing derivatives of γs. In practice these are
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most easily computed by using Eq. (4.2.28) to turn the expansion Eq. (6.2.1)
in powers of ᾱs/N into an expansion in powers ofM : since powers ofM cor-
respond to derivatives with respect to lnQ2, this then gives the resummed
coefficient function even when the coupling runs. For a thorough description
of the inclusion of running coupling effects see Refs. [32, 35].



Chapter 5

High energy resummation in

prompt photon production

As we discussed in the previous chapter, the inclusion of prompt photon data
in a global next-to-leading order QCD fit can provide a strong constraint for
medium-large values of x. However, large higher order corrections at small-x,
would spoil the accuracy of the NLO cross section in the medium-x region.
A thorough understanding of this process in the small-x limit is thus relevant
to make predictions for the LHC.

Prompt photon cross-section contains two different contributions: the
direct component, where the photon participates at leading order to the hard
process, and a fragmentation component, which is needed to take account of
the hadronic component of the photon. From a phenomenological point of
view, at high-energy both terms are important [11]. This chapter is focused
on the direct contribution. Future efforts on the fragmentation component
will be discussed later on.

All the processes for which small-x resummation has been performed so
far are free of collinear singularities in the final state since the corresponding
cross-sections are totally inclusive; on the contrary such a divergence does
appear in direct photon production because the process is exclusive with
respect to the final state photon, which from this point of view must be
viewed as another hadronic state [22]. In this work we perform the high-
energy resummation of the direct photon coefficient function consistently
with the MS scheme of subtraction of the final state singularity to all orders
in perturbation theory.

48
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5.1 Prompt photon production

5.1.1 Collinear factorization

As we discussed in detail, the prompt photon process is characterized by a
hard event involving the production of a single photon. Let us consider the
hadronic process

H1(P1) +H2(P2) → γ(q) +X. (5.1.1)

According to perturbative QCD, the direct and the fragmentation component
of the inclusive cross-section at fixed transverse momentum q of the photon
can be written as [9]

q3dσγ(x⊥,q
2)

dq
=
∑

a,b

∫ 1

x⊥

dx1 fa/H1
(x1, µ

2
F )

∫ 1

x⊥/x1

dx2 fb/H2
(x2, µ

2
F )×

×
∫ 1

0

dx

{

δ

(

x− x⊥
x1x2

)

Cγ
ab(x, αs(µ

2);q2, µ2
F , µ

2
f)+

+
∑

c

∫

dz z2dc/γ(z, µ
2
f )δ

(

x− x⊥
zx1x2

)

Cc
ab(x, αs(µ

2);q2, µ2
F , µ

2
f)

}

, .(5.1.2)

Let us recall that the customary scaling variable is defined as

x⊥ =
4q2

S
, 0 < x⊥ < 1. (5.1.3)

in terms of the hadronic center-of-mass energy S = (P1 + P2)
2. In the fac-

torization formula eq. (C.1.1) we have used the short-distance cross-sections

Cγ(c)
ab ≡ q3

dσ̂ab→γ(c)(x, αs(µ
2);q2, µ2

F , µ
2
f)

dq
, (5.1.4)

where a, b and c are parton indices (q, q̄, g) while fi/Hj
(xi, µ

2
F ) is the parton

density at the factorization scale µF . The fragmentation component is given
in terms of a convolution with the fragmentation function dc/γ(z, µ

2
f).
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If we define the Mellin moments

σγ(N) =

∫ 1

0

dx⊥ x
N−1
⊥

(

q3dσγ(x⊥,q)

dq

)

,

Fi/H(N, µ
2
F ) =

∫ 1

0

dx xN−1 xfi/H(x, µ
2
F ),

Dc/γ(N, µ
2
f) =

∫ 1

0

dx xN−1 x3dc/γ(x, µ
2
f ),

C̃γ(c)
ab (N) =

∫ 1

0

dx xN−1 Cγ(c)
ab (x)

the collinear factorization theorem in N -space becomes

σγ(N) =
∑

a,b

Fa/H1
(N)Fb/H2

(N)

(

C̃γ
ab(N) +

∑

c

Dc/γ(N)C̃c
ab(N)

)

. (5.1.5)

5.1.2 Leading-order coefficient functions and beyond

At leading order the processes that contribute to the direct component of
the prompt photon cross-section are

qq̄ → γg, q(q̄)g → γq(q̄). (5.1.6)

The corresponding leading-order hard coefficient functions are given by [6, 22]

Cγ,LO
qq̄ (x) =

q3dσ̂qq̄→γg

dq
= ααsQ

2
qπ
CF

CA

x√
1− x

(2− x), (5.1.7)

Cγ,LO
q(q̄)g (x) =

q3dσ̂q(q̄)g→γq(q̄)

dq
= ααsQ

2
qπ

1

2CA

x√
1− x

(1 +
x

4
) (5.1.8)

in terms of the partonic variable x = 4q2/ŝ, where ŝ is the partonic center-of-
mass energy. QCD corrections to the Born coefficient functions eqs. (5.1.7)
and (5.1.8) have been computed in ref. [8] up NLO accuracy.

In the high-energy limit, the leading coefficient function is logarithmically
enhanced by contributions of the form

Cγ
qg(x) = Cγ,LO

qg (x) + αα2
s

∞
∑

k=0

c(k)qg (αs log x)
k +O

(

αα3
s(αs log x)

n
)

(5.1.9)
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Figure 5.1: In this picture are shown the dominant Feynman graphs in the
high-energy limit. Both of the two diagram determine the constant behaviour
of the hard coefficient function Cγ

qḡ at small-x.

which, in N -Mellin space, becomes a sum of poles at N = 0 of increasing
order:

C̃γ
qg(N) = C̃γ,LO

qg (N) + ααs

∞
∑

k=1

c̃(k)qg

(αs

N

)k

+O
(

αα2
s

(αs

N

)n)

, n ≥ 1.

(5.1.10)
As in the case of heavy quark production (HQ) and of the Drell-Yan pro-
cesses (DY), the Born coefficients C̃γ,LO

ab are regular as N → 0: indeed,
eqs. (5.1.7,5.1.8) vanish when x approaches zero. The first singular term
in eq. (5.1.10) is a simple pole in N = 0 given by the NLO contribution to
the perturbative series; in x-space, this pole corresponds to a constant value,
while the small-x logarithms arise from the poles of increasingly higher order.

The NLO contribution to the expansion given in eq. (5.1.9) αα2
sc

(0)
qg has

been computed for various processes in ref. [50], in particular for direct pho-
ton production, by considering the Feynman diagrams in fig. (5.1) where an
extra gluon is radiated from the initial state. This is a general feature of
the high-energy limit to all orders in perturbation thory: dominant contri-
butions at high-energy (LLx) are given by the exchange of spin-1 particles
in the t-channel therefore all the relevant Feynman diagrams in the small-x
limit are given by the BFKL ladders in fig. (5.2).

From the NLO onwards, the direct photon cross-section acquires a final
state divergence when the photon becomes collinear to the outgoing parton;
this collinear divergence cannot be removed by adding the virtual corrections,
rather it must be absorbed in the fragmentation component of eq. (C.1.1)
as it happens for the initial state collinear divergences which are properly
absorbed in the definition of the parton densities [22]. In the next sections
we will show how to remove this divergence in the MS scheme consistently
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Figure 5.2: Multiple gluon emission (BFKL ladder) from the initial state
in direct photon production.

with the resummation procedure of the gluon ladder and we will give the
analytic expression for the resummed hard coefficient function Cγ

qq̄ and Cγ
qḡ.

5.2 High-energy resummation

In this section we compute the leading logarithmic corrections to the direct
photon cross-section at high-energy. The high-energy resummation of gluon
ladders arises from the general formalism of the kt-factorization theorem [30,
31] and can be performed by following the computational procedure outlined
in ref. [37] which allows us to compute the coefficient of the dominant log x
to all orders in perturbation theory. This procedure requires the calculation
of the Born cross-section with off-shell (transverse) incoming gluons and off-
shellness fixed in terms of their transverse momenta ki (impact factor).

For a single off-shell gluon, we can parametrize the dependence on the
virtuality k2 through the dimensionless variable

ξ =
k2

Q2
, (5.2.1)

where Q2 is the hard scale of the process which determines the argument of
the running coupling α(Q2). In direct photon productionQ2 is the magnitude
of the transverse momentum of the photon q2. The LLx resummation is
performed by taking a Mellin transform of the off-shell cross-section

h(N,M) ≡
∫ ∞

0

dξ ξM−1

∫ 1

0

dx xN−1σ̂(x, ξ), (5.2.2)
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k

p q

p′

Figure 5.3: Diagrams for direct photon production.

and by identifying M as the sum of leading singularities of the largest eigen-
value of the singlet anomalous dimension matrix [51] (BFKL anomalous di-
mension)

M = γs

(αs

N

)

+O
(

α2
s

N

)

(5.2.3)

γs

(αs

N

)

=

∞
∑

n=1

cn

(

CAαs

πN

)n

, cn = 1, 0, 0, 2ζ(3), . . . (5.2.4)

This corresponds to the sum of the high energy contributions coming from all
diagrams of fig. (5.2). Finally, the NkLO coefficient of the maximum power
of log x is given by expanding the impact factor in powers of αs.

5.2.1 The off-shell cross-section

Let us consider the process

g⋆(k) + q(p) → γ(q) + q(p′), (5.2.5)

with an off-shell incoming gluon. We use a Sudakov parametrization for both
incoming and outgoing momenta of the diagrams in fig. 5.3, thus we have

p = z2p2, (5.2.6)

k = z1p1 + k⊥, (5.2.7)

q = x1z1p1 + (1− x2)z2p2 + q⊥, (5.2.8)

p′ = (1− x1)z1p1 + x2z2p2 + k⊥ − q⊥, (5.2.9)
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where

k2⊥ = −|~k⊥|2 = −k2,

q2⊥ = −|~q⊥|2 = −q2,

with light-like vectors p1 and p2 such that p1 ·p2 = S/2 where S is the energy
in the center-of-mass frame. The relevant scalar products are

p · k = s/2,

p · q = x1s/2,

k · q = (1− x2)s/2− ~k⊥ · ~q⊥ =
q2

2x1
− ~k⊥ · ~q⊥,

where we introduced the longitudinal energy s = z1z2S. The d-dimensional
phase space

dΦ(d) =
1

(2π)d−2
ddqddp′ δ(p′2)δ(q2)δ(d)(k + p− q − p′) =

=
1

(2π)d−2
ddq δ((p+ k − q)2) δ(q2) (5.2.10)

can be rewritten in terms of the Sudakov parameters since ddq = s
2
dd−2qdx1dx2.

We obtain

dΦ(d) =
1

(2π)2
s

2
dd−2qdx1dx2δ(−k2 + s− x1s− (1− x2)s+ 2k · q) ·

·δ(−q2 + x1(1− x2)s) =

=
(4π)−ǫ

√
π

(2π)2
(sin θ)2ǫ

Γ(1/2 + ǫ)

dx1
x1

q1+2ǫdq δ(−k2 + s(1− x1)−
q2

x1
+ 2k · q)(5.2.11)

where θ is the angle between q and k and we used the last δ-function to
perform the integration in x2, now fixed to x2 = 1 − q2

x1s
, which implies

x < 4x1.
Since we are interested in the differential cross-section σ̂(x, ξ) = q3 dσ

dq
,

our phase space in four dimension reduces to

q3dΦ
(4)

dq
= dφ(4) =

1

(2π)2
dx1
2x1

q4dθ δ

(

−k2 + s(1− x1)−
q2

x1
+ 2k · q

)

Θ(s−k2),

(5.2.12)
which in terms of the dimensionless partonic variables x = 4q2/s and ξ =
k2/q2 reads

dφ(4) =
1

(2π)2
xsdx1
8x1

dθ δ

(

4

x
(1− x1)− ξ − 1

x1
+ 2
√

ξ cos θ

)

Θ(
4

x
− ξ)Θ(4x1 − x) =

=
1

(2π)2
sxdx1

32x1(1− x1)
dθ δ

(

1

x
−
ξ + 1

x1
− 2

√
ξ cos θ

4(1− x1)

)

Θ(
4

x
− ξ)Θ(4x1 − x).
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In the resummation procedure of refs. [30, 31, 37] the computation of
Feynman diagrams is performed by using the eikonal rule for the gluon po-
larization sum

∑

λ

ǫλµ(k)ǫ
λ
ν(k) =

kµkν

k2
, kµ ≡ (0,k, 0), (5.2.13)

understood as the projector P over the high-energy singularities, analogously
to the approach of refs. [52], which factorizes the gluon ladder from the Born
coefficient. The channels s and t lead to the simple result for the amplitude
in d = 4 + 2ǫ dimensions

A(d)(x, x1, ξ) =
∑

M2 =
4e2g2s
2 · 2CA

[

(q2 − sx1)
2 + s2x21 + ǫq4

sx31(s− k2)

]

=
16e2g2s
2 · 2CA







1 +
(

1− x
4x1

)2

+ x2

16x2
1
ǫ

xx1
(

4
x
− ξ
)






(5.2.14)

averaged over color and helicity (of the quark) and summed over the final
states. This off-shell amplitude has been used in ref. [53] to evaluate numer-
ically the cross section, however we will show that both Mellin and phase
space integrals can be performed in closed form.

As shown in eq. (5.1.10), the high-energy enhancement appears as a series
of poles in N = 0, therefore we are interested in the most singular term in
the small-N limit.

Since the off-shell cross-section is well behaved at N = 0, all the singular
terms come from the substitution shown in eq. (5.2.3), hence at this level we
can reduce the computation to the N = 0 moment of the impact factor in
the (N,M) space

h(0,M) =
1

(2π)2
1

2s

∫ 2π

0

dθ

∫ 1

0

s dx1
32x1(1− x1)

∫ 4x1

0

dx ·

·
∫ 4/x

0

dξ ξM−1A(4)(x, x1, ξ)δ

(

1

x
−
ξ + 1

x1
− 2

√
ξ cos θ

4(1− x1)

)

=

=
1

(2π)2
1

2

∫ 2π

0

dθ

∫ 1

0

dx1
32x1(1− x1)

∫ ∞

0

dξ ξM−1 ·

·
∫ +∞

max( 1
4x1

, ξ
4
)

dρ

ρ2
A(4)(1/ρ, x1, ξ)δ

(

ρ−
ξ + 1

x1
− 2

√
ξ cos θ

4(1− x1)

)

,(5.2.15)

where we introduced the variable ρ = 1/x and we exchanged the order of
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integration of ξ and ρ. By using the delta function we obtain:

h(0,M) =
1

(2π)2
1

2

∫ 2π

0

dθ

∫ 1

0

dx1
32x1(1− x1)

∫ ∞

0

dξ ξM−1 ·

· 1
ρ̄2

A(4)(1/ρ̄, x1, ξ)Θ

(

ρ̄−max(
1

4x1
,
ξ

4
)

)

, (5.2.16)

where we have defined

ρ̄ =
ξ + 1

x1
− 2

√
ξ cos θ

4(1− x1)
. (5.2.17)

The argument of the Heaviside Θ-function in eq. (5.2.16) is always positive
since

ρ̄− 1

4x1
=
ξx1 + 1− 2x1

√
ξ cos θ − 1 + x1

4x1(1− x1)
=
ξ − 2

√
ξ cos θ + 1

4x1(1− x1)
>

(
√
ξ − 1)2

4x1(1− x1)
> 0

when 1/x1 > ξ, and

ρ̄−ξ
4
=
ξ + 1

x1
− 2

√
ξ cos θ − ξ(1− x1)

4(1− x1)
=

1
x1

− 2
√
ξ cos θ + ξx1

4(1− x1)
>

( 1√
x1

−
√
ξx1)

2

4(1− x1)
> 0

in the opposite case. Therefore we have

h(0,M) =
1

(2π)2
1

2

∫ ∞

0

dξ ξM−1

∫ 2π

0

dθ

∫ 1

0

dx1
32x1(1− x1)

1

ρ̄2
A(4)(1/ρ̄, x1, ξ).(5.2.18)

The integration over the region 0 < θ < 2π, 0 < x1 < 1 in eq. (5.2.18)
is always divergent when ξ > 1, i.e. |k| > |q|; indeed the latter condition
defines the kinematical region where the photon can be radiated collinearly
to the quark in the final state. In the collinear limit, the amplitude in
eq. (5.2.14) is singular and the divergence is given by the fermionic propagator
in the s-channel. In the collinear limit we have:

4ρ̄− ξ =
ξx21 − 2

√
ξx1 cos θ + 1

x1 − x21
= 0, (5.2.19)

which happens when
{

θ = 0
x1 =

1√
ξ

. (5.2.20)
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5.2.2 Subtraction of the collinear singularity in MS scheme

In order to cancel the collinear divergence in the MS scheme, first, we regu-
larize the integrations of eq. (5.2.18) by subtracting the collinear limit of the
four dimensional amplitude before doing any integration, second we recover
the pole in ǫ = 0 and the remaining finite parts by adding back the same
quantity computed in d dimensions.

We can do this by writing the impact factor in 4 + 2ǫ dimensions as

h(d)(x, ξ) =

∫

dφ(d) A(d). (5.2.21)

We then remove the singularity of the integrand by introducing a function
D(d) which has the same singular behaviour of the squared amplitute A(d) in
the collinear limit eq. (5.2.20). In four dimension we have

D(4) =
e2g2s
CA

Pqγ(1/
√

ξ)

√
ξ − 1

(1−
√
ξx1)2 + θ2

Θ(ξ − 1), (5.2.22)

where

P (z) =
1 + (1− z)2

z
. (5.2.23)

By adding and subtracting the phase space integral of the function D(d) to
the d-dimensional impact factor we obtain

h(d) = lim
ǫ→0

(
∫

dφ(d)A(d) −
∫

dφ(d)D(d)

)

+

∫

dφ(d)D(d) +O(ǫ) =

=

∫

dφ(4)
(

A(4) −D(4)
)

+ fA +

∫

dφ(d)D(d) +O(ǫ) (5.2.24)

where the first integral is finite in four dimensions and the finite part fA
comes from the linear term in ǫ in the d-dimensional amplitude eq. (5.2.14).

By using the d-dimensional phase space, the last term in eq. (5.2.24) is

dφ(d)D(d) =
ααs

2CA

√
π(4π)−ǫ

Γ(1/2 + ǫ)

(

µ2

q2

)−ǫ
1

ξ
Pqγ(1/

√

ξ)
Θ(ξ − 1)δ

(

1
x
− 4x21

)

[

(1−
√
ξx1)2 + θ2

] θ2ǫ dx1dθ,

(5.2.25)
where the dimensional scale µ2 (introduced by dimensional regularization)
from now on will be identified with q2. By using this result in eq. (5.2.24)
and performing the Mellin integrations with N = 0 we have

h(d)(0, ξ) =
1

(2π)2
1

2

∫ 1

0

dx1

(∫ π

−π

dθ
1

ρ̄2
A(4)(ρ̄, x1, ξ)

32x1(1− x1)
−
∫ ∞

−∞
dθ

1

2ξ
D(4)

)

+ fA +

+
ααs

2CA

√
π(4π)−ǫ

Γ(1/2 + ǫ)

1

ξ

∫ 1

0

dx1

∫ +∞

−∞
dθ
θ2ǫ Pqγ(1/

√
ξ)Θ(ξ − 1)

[

(1−
√
ξx1)2 + θ2

] (5.2.26)
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where we have extended the limits of the angular integration of the function
D in order to simplify the results of the integration while the finite part fA
is

fA = lim
ǫ→0

ααsǫ

CA

∫

dξ ξM−1

∫ 1

0

dx1
√

ξ

(

∫ +∞

−∞
dθ

ξ−2 θ2ǫ
[

(1−
√
ξx1)2 + θ2

]

)

=

=
πααs

CA

1

2−M
. (5.2.27)

All the integrations in eq. (5.2.26) can be performed in closed form, thus
by subtracting the pole in ǫ = 0 with the usual combination 1/ǫ+γE− log 4π
we obtain1

h(0, ξ) =
πααs

CA

{

Θ(ξ − 1)

(

−1

ξ
+

8√
ξ
(1− log 2)

)

+

+ sign(ξ − 1)

(

3−
(

1 +
1

2ξ

)

log(1− ξ)2 − 1√
ξ
log

(√
ξ + 1

1−
√
ξ

)2
)}

,(5.2.28)

while the M-Mellin moments are

h(0,M) =
ααsπ

CA

{

(7− 7M + 2M2)

(M − 1)(M − 2)(2M − 3)

(

π cot(Mπ) + 2HM−2 +
2

M − 1

)

+
1

2−M

}

,

(5.2.29)
where HM−2 is the harmonic number of argument M − 2.

1In ref. [50] the impact factor hq(a) was only computed in the region 0 < ξ < 1 where
no collinear singularity is present. The result for hq, given in eq. (3.7) of ref. [50], is seen
to agree with our result recalling that in the region 0 < ξ < 1 hq is related to h eq. (5.2.28)
by

ξ
dhq(ξ)

dξ
= h(ξ), (0 < ξ < 1).

Note however that the expression for the cross-section σqg(q > pT ) given in eq. (3.11) of
ref. [50] is too large by a factor 2 [54].
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5.3 Results

5.3.1 The resummed coefficient function

By expanding the impact factor obtained in the previous section around
M = 0, we obtain

Mh(0,M ;αs) =
πααs

CA

{

7

6
+

67

36
M +

385M2

216
+

(

2323

1296
+

7ζ(3)

3

)

M3+

+

(

14233

7776
+

49ζ(3)

18

)

M4 +

(

87307

46656
+

331ζ(3)

108
+

7ζ(5)

3

)

M5 +O
(

M6
)

}

.(5.3.1)

Notice that in this formalism the collinear divergence from the initial state
appears as a simple pole in M = 0. The resummed coefficient function in
the MS factorization scheme is given by the relation

C̃γ
qg(N,αs) =Mh(N,M ;αs)R(M)

∣

∣

M=γs
(5.3.2)

in terms of the impact factor eq. (5.2.29) and the function

R(M) = 1 +
8

3
ζ3M

3 − 3

4
ζ4M

4 +O(M5) (5.3.3)

which takes into account finite parts coming from the MS subtraction of
initial state collinear singularities and where M is identified as the BFKL
anomalous dimension

γs

( ᾱs

N

)

=
ᾱs

N
+ 2ζ3

( ᾱs

N

)4

+ 2ζ5

( ᾱs

N

)6

+ . . . , ᾱs =
αsCA

π
(5.3.4)

We have

C̃γ
qg(N,αs) =

πααs

CA

{

7

6
+

67

36

( ᾱs

N

)

+
385

216

( ᾱs

N

)2

+

(

2323

1296
+

49ζ(3)

9

)

( ᾱs

N

)3

+

+

(

14233

7776
− 7π4

720
+

308ζ(3)

27

)

( ᾱs

N

)4

+O

(

( ᾱs

N

)5
)}

. (5.3.5)

The NLO term in eq. (6.2.4) gives, in the x-space, the constant value 67/36 αα2
s

which is in agreement with the fixed order calculation of refs. [8, 50]. By using
the high-energy color charge relation between the hard coefficient functions

C̃γ
qq̄(q)(N,αs) =

CF

CA

(

C̃γ
qg(N,αs)− C̃γ,LO

qg (0, αs)
)

(5.3.6)
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Figure 5.4: The picture shows a comparison between the leading order
direct photon coefficient function (black solid) and the relative small-x cor-
rections up to NLO (green dashed) and N4LO (red dashed).

we can also obtain the LLx contributions coming from the process qq̄ → γg

C̃γ
qq̄(q)(N,αs) = α

α2
s

N

CF

CA

{

67

36
+

385

216

( ᾱs

N

)

+

(

2323

1296
+

49ζ(3)

9

)

( ᾱs

N

)2

+

+

(

14233

7776
− 7π4

720
+

308ζ(3)

27

)

( ᾱs

N

)3

+O

(

( ᾱs

N

)4
)}

. (5.3.7)

5.3.2 Phenomenology

In fig. 5.4 we compare in x-space the coefficient function Cqg(x, αs) at LO,
NLO and N4LO in the high-energy limit. The large contributions at small-
x spoil the perturbative expansion and must be resummed in order to re-
cover accurate results. The resummation of these logarithmic terms in the
hadronic cross-section can be performed to all orders [35, 49] including run-
ning coupling. A full phenomenological study could be performed by combin-
ing the resummed hard cross section computed here with the resummation
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Figure 5.5: Ratio between F2 (C̄DIS and direct photon (DPhP) (C̄γ) coeffi-
cient functions, both of them normalized to their LO values

of DGLAP evolution equations, following the formalism of refs [35, 49] (see
also ref. [47] for an alternative approach). However, we can get a feeling for
the size of resummation effects by comparing the result in eq. (6.2.4) with
the DIS coefficient function Cg

2 (N). As shown in fig. 5.5 the ratio between Cg
2

and Cγ
qg (both of them normalized to the respective LO values) is of order 1,

therefore we expect that, at low-x, resummation effects may be as important
as those obtained in the DIS case.



Chapter 6

Resummation phenomenology

at hadron collider

6.1 Prompt photon at high energy: introduc-

tion

The high–energy regime of QCD is the kinematical regime in which hard
scattering processes happen at a center-of-mass energy

√
S which is much

larger than the characteristic hard scale of the process Q. An understanding
of strong interactions in this region is therefore necessary in order to perform
precision physics at high–energy colliders. The high–energy regime is also
known as the small-x regime, since it is the regime in which the scaling
variable x = Q2/S ≪ 1. In this sense, HERA was the first small x machine,
while at LHC the small x regime will be even more important.

As is well known, deep–inelastic partonic cross sections and parton split-
ting functions receive large corrections in the small x limit due to the presence
of powers of αs log x to all orders in the perturbative expansion [30, 31]. This
suggests dramatic effects from yet higher orders, so the success of NLO per-
turbation theory at HERA was for a long time very hard to explain. In the
last several years this situation has been clarified [55, 49, 32, 35, 47, 56, 48],
showing that, once the full resummation procedure accounts for running cou-
pling effects, gluon exchange symmetry and other physical constraints, the
effect of the resummation of terms which are enhanced at small x is per-
ceptible but moderate — comparable in size to typical NNLO fixed order
corrections in the HERA region.

A major development for high–energy resummation was presented in
Ref. [35] where the full small x resummation of deep-inelastic scattering
(DIS) anomalous dimensions and coefficient functions was obtained includ-

62
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ing quarks, which allowed for the first time a consistent small-x resumma-
tion of DIS structure functions. Furthermore, the resummation of hard par-
tonic cross sections has been performed for several LHC processes such as
heavy quark production [33], Higgs production [37, 36], Drell-Yan [39, 57]
and prompt photon production [58]. Hints of the presence of small-x re-
summation have also recently found in inclusive HERA data [59]. Small–x
resummation should also be very important at a high–energy DIS collider like
the Large Hadron Electron Collider [60, 61]. A more detailed summary of
recent theoretical developements in high–energy resummation may be found
in Ref.[62]. These results mean that a detailed analysis of the impact of
high–energy resummation on precision LHC physics is now possible.

As a part of such a program, in this letter we present a study of the phe-
nomenological implications of the high–energy resummation of direct photon
production at hadronic colliders. The production of direct photons [63] is a
very important process at hadronic colliders, relevant both for fundamentals
reasons (tests of perturbative QCD, measurement of the gluon PDF) and as
background to new physics searches, the H → γγ decay being the classical
example. In the case of direct photon production, several works have stud-
ied in detail the comparison of theoretical QCD predictions with available
experimental data from fixed target and collider experiments. Such compar-
isons have been performed using fixed order NLO computations [64, 28, 65],
Monte Carlo event generators [66] and supplementing the fixed order result
with threshold resummations [9, 67, 68, 21]. The latter aim to improve the
accuracy of the perturbative prediction in the regime where the photon’s
pT is large, close to the kinematic production threshold, where soft gluon
emission enhances the cross section.

The present chapter is focused on the low pT region, where terms of the
type αk

s ln
p x, enhanced by logarithms of the scaling variable x⊥ ≡ 4p2T/S,

are important to all orders in perturbation theory. For this reason we do
not consider fixed target data, which are characterized by moderate and
large values of x⊥ where high–energy resummation is certainly irrelevant,
and concentrate instead on collider data for which the large center of mass
S ≫ p2T available guarantees that the kinematical region sensitive to small-x
effects is explored. As an illustration, if the small-pT region is defined naively
as the region in which the hadronic cross section becomes sensitive to PDFs
and partonic coefficient functions for x ∼< 10−3, then at Tevatron this criterion
corresponds to pT ∼< 30 GeV and at the LHC 14 TeV to pT ∼< 200 GeV.

The prompt photon process is characterized by a hard event involving
the production of a single photon. Let us consider the hadronic process

H1(P1) +H2(P2) → γ(q) +X. (6.1.1)
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According to perturbative QCD, the direct and the fragmentation component
of the inclusive cross-section at fixed transverse momentum pT of the photon
can be written as [9]

p3T
dσγ(x⊥, p

2
T )

dpT
=
∑

a,b

∫ 1

x⊥

dx1 fa/H1
(x1, µ

2
F)

∫ 1

x⊥/x1

dx2 fb/H2
(x2, µ

2
F)×

×
∫ 1

0

dx

{

δ

(

x− x⊥
x1x2

)

Cγ
ab(x, αs(µ

2); p2T , µ
2
F, µ

2
f )+

+
∑

c

∫ 1

0

dz z2dc/γ(z, µ
2
f)δ

(

x− x⊥
zx1x2

)

Cc
ab(x, αs(µ

2); p2T , µ
2
F , µ

2
f)

}

,(6.1.2)

where we have introduced the customary scaling variable in terms of the
hadronic center-of-mass energy S = (P1 + P2)

2 :

x⊥ =
4p2T
S
, 0 < x⊥ < 1 . (6.1.3)

The fragmentation component is given in terms of a convolution with the
fragmentation function dc/γ(z, µ

2
f). In the factorization formula Eq. (C.1.1)

we have used the short-distance cross-sections

Cγ(c)
ab ≡ p3T

dσ̂ab→γ(c)(x, αs(µ
2); p2T , µ

2
F , µ

2
f)

dpT
, (6.1.4)

where a, b and c are parton indices (q, q̄, g) while fi/Hj
(xi, µ

2
F ) is the parton

density at the factorization scale µF . The leading order coefficient func-
tions for the Compton scattering channel (qg) and for the quark annihilation
channel (qq̄) are given by

Cγ,LO
qg (x) =

ααse
2
qπ

2Nc

x√
1− x

(

1 +
x

4

)

,

Cγ,LO
qq̄ (x) =

ααse
2
qCFπ

Nc

x√
1− x

(2− x) . (6.1.5)

In Fig. 6.1 we show the associated LO Feynman diagrams for these two
channels. NLO corrections to the direct partonic cross section in Eq. (C.1.1)
were computed in Refs. [69, 70, 8], while for the fragmentation component
they were evaluated in Refs. [71, 72].

6.2 Kinematics and resummed coefficient func-

tion

The kinematics of direct photon production at hadronic colliders are sum-
marized in Fig. 6.2, where the minimum value of x, x⊥, probed in the pro-
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Figure 6.1: The Feynman diagrams for the direct production of a photon in
hadronic collisions at leading order: the gq channel, also known as Compton scat-
tering channel (left) and the qq̄ channel, also known as quark annihilation channel
(right).

duction of a photon with a given pT is shown. For illustrative purposes,
the corresponding kinematics for a notional VLHC with

√
S = 200 TeV are

also shown. From Fig. 6.2 follows that collider experiments have the po-
tential reach down to very small values of x, for example, at LHC 14 TeV
PDFs and coefficient functions are probed down to x ∼ 10−5 for a pT ∼ 20
GeV photon. This implies that one should worry about those terms in the
perturbative expansion which are formally subleading but which are loga-
rithmically enhanced to all orders at small-x, both in the PDF evolution and
in the partonic cross-sections.

Due to multiple gluon emissions, the perturbative expansion of the par-
tonic cross sections, Eq. (6.1.4), is logarithmically enhanced at small-x start-
ing from NNLO. While at NLO the single gluon emission produces the con-
stant behaviour at low-x of the coefficient function Eq. (6.1.4), the NNLO
behaves like a single logarithm and, in general, at NkLO, the dominant con-
tribution is given by αs(αs log x)

k−1.
The high–energy resummed coefficient function of the direct component

in Eq. (C.1.1) has been obtained in Ref. [58] in the framework of the kT -
factorization theorem, which allows one to perform the leading log resumma-
tion in terms of the off shell impact factor, which is the leading order cross
section computed with off-shell incoming gluons. Following the resummation
procedure one obtains the sum of the leading contributions at high–energy
and, by re-expanding in powers of αs, we have the coefficients of each power
of log x to all orders in perturbation theory.

The high-energy enhanced terms in the direct photon partonic cross sec-
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Figure 6.2: The minimum values of x, xmin = x⊥ = 4p2T /S which are probed
in the production of a direct photon with transverse momentum pT at hadronic
colliders: Tevatron Run II (

√
S=1.96 TeV), LHC 7 TeV and LHC 14 TeV and

VLHC 200 TeV. As can be seen from the plot, for the production of a pT ∼ 20
GeV photon, PDFs and coefficient functions are probed down to x ∼ 5 10−4 at
the Tevatron and x ∼ 10−5 at the LHC 14 TeV. Note that no cuts in rapidity are
assumed in the definition of the kinematical ranges, experimentally realistic cuts
reduce the reach in x for a given pT .

tion, as discussed in Ref. [58], in N space are given in the qg channel by

C̃γ
qg(N, ᾱs, κr) =

αα2
s

N

∞
∑

k=0

c(k)qg (κr)
( ᾱs

N

)k−1

(6.2.1)

where the renormalization scale has been set to proportional to the transverse
momentum of the photon µr = κrpT and where ᾱs ≡ αsCA/π with αs is the
fixed strong coupling and α = 1/137 the electromagnetic coupling constant.
The first few coefficients in Eq. (6.2.1) read

c(0)qg = 7
6

c(1)qg = 67
36

− 7
3
log κr

c(2)qg = 7
4
log2 κr − 29

9
log κr +

385
216

c(3)qg = −7
9
ln3 κr − 55

26
ln2 κr − 179

54
ln κr +

49
9
ζ(3) + 2323

1296
(6.2.2)
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The NLO term in Eqs. (6.2.1-6.2.2) gives, in the x-space, the constant value
αα2

s67/36 for κr = 1, in agreement with the fixed order calculation of
Refs. [8, 50]. By using the high-energy color charge relation between the
hard coefficient functions

C̃γ
qq̄(q)(N,αs, κr) =

CF

CA

(

C̃γ
qg(N,αs, κr)− C̃γ,LO

qg (0, αs, κr)
)

(6.2.3)

we can obtain the high–energy coefficient function in the qq̄(q) channel.
In the rest of this work we will set κr = 1. In this case, the resummed

coefficient function Eq. (6.2.1) in x−space reads

Cγ
qg(x, ᾱs) = αα2

s

{

67
36

+ 385
216
ᾱs ln

1
x
+ 1

2
(2323
1296

+ 49
9
ζ(3))ᾱ2

s ln
2 1
x

+ 1
6
(14233
7776

− 7
720
π3 + 308

27
ζ(3))ᾱ3

s ln
3 1
x
+O(ᾱ4

s ln
4 1
x
)
}

.(6.2.4)

Note that the logarithms of x (high–energy enhanced terms) which lead to
the rise of the partonic cross section at small-x appear only from NNLO
onwards.

However, this formalism is incomplete as we already discussed in the pre-
vious chapter because it does not account for running coupling effects. The
running of αs produces a new series of relevant contributions in the high
energy limit which modify the nature of the singularity of the anomalous
dimension at small-x and stabilize the small-x limit of the resummed co-
efficient function. For a thorough description of the inclusion of running
coupling effects see Refs. [32, 35].

In this way a fully resummed coefficient function in the MS scheme, which
can be consistently matched to standard M̄S fixed order computations, can
be obtained. This resummed coefficient function Cγ,res

ab can be matched to
the fixed order NLO coefficient function to obtain a resummed coefficient
functions which reproduces at large-x the fixed order result,

Cγ,NLOres
ab = Cγ,NLO

ab + Cγ,res
ab − Cγ,dc

ab . (6.2.5)

In Eq. (6.2.5) the matching between the fixed order NLO result and the
resummed one has been performed being careful of avoiding double count-
ing. Therefore, the double counting contribution Cγ,dc

ab , that is, the terms
in Eq. (6.2.4) up to O (αα2

s) is removed from the NLO coefficient functions.
The fixed order NLO coefficient functions are taken from Ref. [8].

Note that Eq. (6.2.5) accounts for the high–energy resummation of the
direct part of the photon production cross section without photon isolation
effects. At the resummed level, the effects of the photon isolation in the coef-
ficient function Eq. (6.2.1) can be computed in the small cone approximation.
It can be shown that isolation leads an effect analogous to the variation of
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the renormalization scale, that is, using the usual isolation with a cone of ra-
dius R implies a modifications of the renormalization scale κr → κrR. Note
also that we do not attempt a resummation of the fragmentation compo-
nent of the photon production cross section, which in any case is very much
suppressed by the photon isolation.

In Fig. 6.3 we show the LO, NLO and resummed coefficient functions for
the two relevant channels: Compton scattering, qg, and quark annihilation,
qq̄. On top of these, we also show the NLO coefficient functions supplemented
by the NNLO high–energy contribution (the O (αα3

s) term in Eq. (6.2.4), and
similarly for NLO plus NNNLO high–energy contributions (the O (αα3

3) and
O (αα4

s) terms in Eq. (6.2.4). These two latter cases are shown for illustration,
with the well know caveat that subleading corrections at a fixed αs might
sizably reduce the effect of the leading high–energy contributions. Fig. 6.3
shows the important result that the steep rise at small-x of the fixed order
coefficient function due to the increasing powers of log x is stabilized after
the including the running coupling effects, as happens for DIS [35].

Now that the resummed partonic cross-section, suitably matched to the
fixed-order NLO result, has been obtained, we can use it to estimate the im-
pact of high–energy resummation on the hadronic cross–section, Eq. (C.1.1),
at the Tevatron and at the LHC. The fixed order NLO computation of iso-
lated photon production has been obtained using the code of Ref. [8]. The
small cone approximation for the isolation criterion has been used, which
is shown to be an excellent approximation [27] to the exact result for typi-
cal isolation parameters. The photon fragmentation functions are the BFG
set [73], although the choice is irrelevant since the fragmentation component
is severely suppressed by the isolation criterion.

Note that in the following the same PDF set will be used used both in the
NLO and in the resummed computations. The motivation for this is that we
are interested only in the impact of the resummation of the partonic cross-
section. A consistent high–energy resummed cross section would require
PDFs obtained from a global analysis based on small-x resummation, which
are not available yet.

6.3 Phenomenology at Tevatron and LHC

In order to assess the impact of high–energy resummation at the Tevatron, we
consider recent Run II data on isolated photon production from the CDF col-
laboration [19]. CDF data is provided in the range 30 GeV ≤ pT ≤ 350 GeV,
integrated in the photon’s rapidity range |ηγ| ≤ 1.0. The parameters of
the photon isolation criterion in the theoretical calculation match those of
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the experimental analysis, namely R = 0.4 and Ehad
T ≤ 2 GeV. The par-

ton distribution set used for the comparison with experimental data is the
recent NNPDF2.0 global analysis [74]. As compared to previous NNPDF
sets [75, 76, 77], NNPDF2.0 has a more precise gluon both at small-x from
the combined HERA-I dataset and at large-x from the Tevatron inclusive
jet data, which translate into very accurate predictions for direct photon
production.

In Fig. 6.4 we present the results of this comparison between the fixed
order NLO and the resummed predictions with the recent direct photon mea-
surements from the CDF Collaboration at Run II. We show as well the PDF
uncertainties and the theoretical uncertainties from missing higher orders
estimated as usual varying the scales of the NLO expressions. Good agree-
ment between NLO QCD and experimental data within the experimental
uncertainties is found through most of the pT range, except for a system-
atic discrepancy at small pT . This discrepancy is present also for other PDF
sets [65] as well as for the D0 data [78].

Since the high–energy resummed coefficient functions, Fig. 6.3 are inte-
grated in the photon’s rapidity ηγ, we will assume that the effects of the
resummation are constant in ηγ . This means that the resummed result in
Fig. 6.4 has been obtained as follows

dσres
γ (x⊥, p

2
T , |ηγ| ≤ ηcut)

dpT
=
dσNLO

γ (x⊥, p
2
T , |ηγ| ≤ ηcut)

dpT

dσres
γ (x⊥, p

2
T )

dσNLO
γ (x⊥, p

2
T )
(6.3.1)

This approximation could be improved by computing the high–energy resum-
mation of the photon rapidity distribution, for which qualitative arguments
suggest that the impact of resummation is more important towards forward
rapidities.

To estimate the theoretical uncertainty due to missing higher orders terms
in the NLO computation the common scale κr = κF = κf has been varied
within a reasonable range. In particular we have computed the cross section
for κr = 0.5, 1 and 2. The scale variation uncertainty is defined as the
envelope of the most extreme results obtained this way for any given pT . As
seen in Fig. 6.4, PDF uncertainties for isolated photon production at the
Tevatron are below 5% in all the pT range, and O (2%) in the small pT ∼< 100
GeV region. Scale variation uncertainties are O (5%) approximately constant
in pT .

We do not attempt here to estimate the combined PDF and αs uncer-
tainty [79, 80, 81], which could be important in direct photon production
since the cross section starts at O (ααs). Moreover, in this work we do
not address the important issue of the compatibility of predictions obtained
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from different modern PDF sets, which has already been presented in detail
in Ref. [65].

From Fig. 6.4 it is clear that at the Tevatron the prediction from high–
energy resummation is essentially identical to that of the fixed order NLO
computation. This might seem unintuitive, since we have shown in Fig. 6.3
that the respective coefficient functions are rather different in the small x
region within the kinematical reach of experimental data (Fig. 6.2). In order
to explain this result, let us define the contribution to the total cross section
for x ≥ xmin

⊥ as follows

q3dσγ(x⊥, x
min
⊥ , p2T )

dq
≡
∑

a,b

∫ 1

xmin
⊥

dx1 fa/H1
(x1, µ

2
F)

∫ 1

xmin
⊥ /x1

dx2 fb/H2
(x2, µ

2
F)×

×
∫ 1

0

dx

{

δ

(

x− x⊥
x1x2

)

Cγ
ab(x, αs(µ

2); p2T , µ
2
F, µ

2
f ) + fragmentation

}

(6.3.2)

and then we can construct the ratio

Rγ

(

x⊥, x
min
⊥ , p2T

)

≡ dσγ(x⊥, x
min
⊥ , p2T )/dpT

dσγ(x⊥, x⊥, p
2
T )/dpT

(6.3.3)

which measures the fraction of the cross–section for which PDFs and coeffi-
cient functions with x ≥ xmin

⊥ are probed.
In Fig. 6.5 we show this ratio at the Tevatron, the LHC and the notional

VLHC for the production of a photon with pT = 20 GeV. We observe that
the direct photon cross section at the Tevatron is completely dominated by
the region x ∼> 5 10−2. In this region, the resummed coefficient functions are
almost identical to the fixed order NLO ones. Therefore, despite the fact
that the values of x probed in small-pT photon production are such that the
resummed coefficient functions, Fig. 6.3, differ sizably from their fixed order
NLO counterparts, this difference is restricted to a region with very little
weight in the total cross–section. This feature of direct photon production
(shared also by Higgs production [37, 36]) explains the smallness of high–
energy resummation at the Tevatron. Note that this applies to the rapidity
integrated cross–section, it is conceivable that more important effects are
observed if one is restricted to forwards rapidities.

Note that Fig. 6.5 implies also that direct photon production is sensitive
to the large-x PDFs, especially the gluon, but not to the small-x ones: the
inclusion of collider direct photon data into a global PDF analysis might
improve the precision of the gluon at large-x, but not at small-x.

Let us finish the discussion on the impact of high-energy resummation
at the Tevatron by noting that the origin of the discrepancy between NLO
QCD and experimental data at small pT is still not completely understood, in
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particular, it is not caused by unresummed terms in the high-energy regime.
However, as we have discussed, since the direct photon cross section is much
more sensitive to large-x effects, this discrepancy could be partially cured by
soft resummation [21].

Now we turn to discuss the phenomenological impact of the resummation
at LHC. At the LHC, the production cross section of isolated photons is much
larger than at the Tevatron, which will make possible a high-statistics mea-
surement. The ALICE, ATLAS, CMS and LHCb experiments at the LHC
have photon reconstruction capabilities with the electromagnetic calorimetry
in various rapidity ranges [65]. The two main LHC experiments can measure
photons in the central rapidity region |ηγ| ∼< 3 down to pT = 10 GeV, ALICE
can do measurements in the central region |ηγ| ∼< 0.7 down to pT = 5 GeV,
while LHCb can measure forwards photons, 2 ≤ |ηγ| ≤ 5 in the low pT ≤ 20
GeV region as well. The LHCb measurements are specially interesting since
small-x resummation effects, which are only important at low pT , should be
enhanced at forward rapidities.

From the discussion in the case of the Tevatron, we expect the impact
of high–energy resummation to be also small at the LHC. To illustrate such
impact, in Fig. 6.6 we show the ratio between the resummed and NLO direct
photon production cross section at LHC, for

√
S = 14 TeV. We show for

simplicity the direct part of the photon production cross section only. No
cuts in the photon’s rapidity are imposed. We have used again the NNPDF2.0
set for the theoretical prediction, and scale variation uncertainty is estimated
as discussed above.

From Fig. 6.6 we observe that the effect of high–energy resummation is
very small above pT ∼ 10 GeV, and it is only for photon transverse momenta
in the range 2 GeV ∼< pT ∼< 10 GeV that it becomes of the order of a few
percent. The origin of the smallness of the high–energy resummation can be
traced back, as in the case of the Tevatron to Fig. 6.5: the direct photon
cross section for the production of a photon with pT = 20 GeV is completely
dominated by the region x ∼> 5 10−3. In this region, the resummed coefficient
functions are almost identical to the fixed order NLO ones. It is only for
smaller values of pT that the difference between NLO and resummed coeffi-
cient functions at small-x, evident from Fig. 6.3, begin to contribute to the
total cross section. At very small-pT the effects of high–energy resumma-
tion are much smaller than the PDF uncertainties. This implies that the
small-pT region can be used to constrain accurately the gluon PDF, provided
that systematic experimental uncertainties in this region can be kept under
control.

Let us emphasize however that the smallness of the high–energy resum-
mation with respect to fixed order NLO does not imply that resumming
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high–energy enhanced terms is not relevant at hadronic colliders. Indeed,
the crucial role of high–energy resummation is to cure the instability of the
cross section which appears in any fixed order calculation at high–energy
starting from NNLO. To illustrate this point, in Fig. 6.6 we also show the
results for direct photon production if the dominant NNLO contribution at
small-x (the term proportional to O (α3

s) in Eq. (6.2.4) is added to the fixed
order NLO result, as an approximation to the full fixed order NNLO result.
We see that here the difference with respect NLO is more important, being
∼10% at pT ∼ 20 GeV and much larger at even smaller pT . The corre-
sponding effect would be even larger for the dominant NNNLO corrections.
Thus the full high-energy resummation is required in order to obtain stable
predictions for future higher order calculations of direct photon production
(starting from NNLO accuracy) at small pT at hadronic colliders.

Finally, in Fig. 6.7 we show the impact of the resummation of the high–
energy coefficient function for photon production at a notional VLHC with√
S = 200 TeV. From Fig. 6.5 we see that for a 20 GeV photon the cross

section is sensitive to the coefficient functions with x ≥ 5 10−4, so one ex-
pected the effects of the resummation to be more important that at lower
CM energies. However, even at this huge energy, the effect is of a few percent
at most at the smallest pT .

To summarize, in this chapter results for the high energy resummation
of direct photon production have been matched to NLO computations and
predictions for hadronic colliders have been obtained. We have shown that
main impact of the full high–energy resummation procedure is to stabilize the
logarithmic enhancement of the cross section at high energies which is present
at any fixed order in the perturbative expansion starting at NNLO. At the
Tevatron the effects of the resummation are completely negligible, while at
the LHC high–energy resummation of the partonic cross section enhances
the hadronic cross section be a few percent at small pT , pT ∼< 10 GeV. One
important implication of our results is that the small pT discrepancy between
NLO QCD and Tevatron data cannot be described by unresummed higher
order contributions enhanced in the high–energy regime. We have also shown
that at the LHC the full resummation of the inclusive direct photo cross-
section is very close to the fixed order NLO QCD result, becoming significant
only at very low pT , and that even at a VLHC resummation effects are rather
small in this channel.
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Figure 6.3: Upper plot: the coefficient functions (partonic cross sections) for
direct photon production in the qg (Compton) channel. The following approxima-
tions to the partonic cross section are shown: LO (black, solid), NLO (blue, solid),
NLO with the addition of the dominant small-x NNLO terms (blue, dashed), NLO
with the addition of the dominant small-x NNNLO terms (blue, dot-dashed), and
finally the high–energy resummed coefficient function, suitably matched of the
fixed order NLO Eq. (6.2.5) (red, solid). Lower plot: the same comparison for
the coefficient functions in the qq̄ (quark annihilation) channel. Note that the
coefficient functions rise at small-x begins at NNLO only.
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Figure 6.4: Comparison between the NLO cross section and the recent CDF
data using the NNPDF2.0 PDF set. The solid black line is the ratio between the
high–energy resummed result and the NLO prediction, as can be seen, the two
results are essentially identical. The scale variation uncertainty corresponds to the
NLO calculation.
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Figure 6.5: The ratio Rγ , Eq. (6.3.2), as a function of xmin
⊥ at the LHC

√
S = 14

TeV (red solid line) and at Tevatron Run II
√
S = 1.96 TeV (blue dashed line) for

the production of photon with pT = 20 GeV. It is clear that the cross-section is
dominated by the contribution of the coefficient function at medium and large-x,
x ∼> 5 10−3 for LHC and x ∼> 5 10−2 for the Tevatron. The fact that the total cross
section is insensitive to the partonic cross-sections at small-x explains the reduced
impact of the high–energy resummation at hadronic colliders.
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Figure 6.6: Ratio between resummed and NLO prediction (solid red line) for
the inclusive cross section at LHC, for a center of mass energy of

√
S = 14 TeV.

The NNPDF2.0 set has been used to compute the theoretical prediction. PDF and
scale variation uncertainties are also shown. We also show the ratio to NLO of the
approximated NNLO result, where the dominant NNLO contributions at small x
have been added to the fixed order NLO result (black dashed line) .
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Chapter 7

Conclusion and Outlook

7.1 Renormalization group and resummation

at high energy

As we have seen, in the high energy limit the dominant contribution to the
cross section is given by logarithms of increasing powers of the scaling variable
x, defined as the ratio between the characteristic scale of our process and the
center-of-mass energy. When x approaches to zero, terms of the form

(αs log x)
k ∼ O(1) (7.1.1)

are present to all orders in the perturbative expansion and are all equally
relevant in the ordinary expansion in powers of the coupling αs.

It is a very known fact that large logarithms can appear in the pertur-
bative expansion in quantum field theory. Tipically the key ingredient in
solving this problem is the renormalization group. This method allow to
resum all the large contributions to all order in terms of running couplings.
This is precisely what we have shown in Chapter 2 when we discussed the
DGLAP equations.

The renormalization group provide a very simple resummation recipe
when the perturbative expansion involves a single energy scale, say Q2. How-
ever, in the small-x limit we have two scales, in particular at the LHC energy
range, the phase space opens up the high energy region

ΛQCD ≪ Q2 ≪ S (7.1.2)

where the renormalization group is not sufficient to solve the problems of
perturbation theory.

The resummation of the large logarithms of x can be performed both in
the inclusive cross section and the rapidity distributions by summing all the
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BFKL ladder-type diagrams which are multiple gluon emission in the Regge
kinematics. In Chapter 4 we discussed how the resummation recipe can be
obtained by summing up the n-gluon emissions (strong ordered in the trans-
verse momenta) and substituting the DGLAP anomalous dimension with the
BFKL anomalous dimension γs which contains all the leading singularities
at small-x.

7.2 Prompt photon and resummation

In Chapter 3 we focussed our attention to the prompt photon process. The
motivations to study the production of photons in hadronic collisions are
many, among them we mentioned the well known fact that photons can be
used as ’probes’ of the gluon density of the proton. Furthermore, the prompt
photon process is the most important reducible background for the signal
H → γγ signal in the light Higgs scenario.

Unlike the most of the benchmark QCD processes, the prompt photon
cross section contains two different contributions. In the direct component,
the photon participates to the hard process while in the fragmentation com-
ponent it is produced during the jet fragmentation and require the introduc-
tion of the fragmentation function that cannot be calculated from perturba-
tive QCD and it is poorly known so far. From the theoretical point of view,
the separation of these two contribution to the cross section is not trivial.
Without any restriction to the phase space of the photon only the sum of
the two coponent is meaningful, however, thanks to the careful analysis of
Frixione[12], it can be shown that a isolation criterion for the direct com-
ponent can be defined properly in such a way that the fragmentation part,
vanishes identically.

In Chapters 5 and 6 we have discussed the application of the inclusive
high energy resummation to the direct photon production cross section and
its phenomenological impact at Tevatron and LHC. The effect of the leading
log resummation to the NLO prediction is less than 1% even at the LHC
energy range. This result has been obtained by considering all the logarithmic
enhancement at small-x as well as the running coupling effects. In particular
we noticed that the reason of this small effect to the hadronic cross section is
the shape of the resummed coefficient function, which starts to deviate from
the NLO result only for x < 10−2. Since the resummation impact is so small,
our conclusion is that the resummation procedure stabilize the perturbative
expansion in the high energy limit. This is a remarkable information which
is related to higher order calculations from the NNLO towards; indeed, as
we have shown in Chapter 6, the cross section is much more sensitive to the
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inclusion of the next powers of log x thus the resummation will be needed in
order to stabilize the behaviour at low x.

7.3 Outlooks

In this work we have discussed only the direct component of the prompt
photon cross section. We justified this choice because in the small isolation
cone approximation we have control on the extra contributions coming from
an isolation criterion which in general reduces the effect of the fragmentation
component. We can mention here that a resummed result for the fragmenta-
tion contribution would require the resummation of the two-jet cross section.
In particular, this calculation cannot be performed in terms of the simple
recipe given by the kT -factorization theorem, instead it requires the new ap-
proach developped in Ref. [46] where the sum of the leading contribution is
performed by direct calculation of the Feynman diagrams.

Even though the resummation of the inclusive cross section is small, it
is possible that the rapidity distribution of the prompt photon is the right
observable to see the resummation effect, indeed while the inclusive result
spread the resummation to the whole rapidity range, by looking to the ra-
pidity distribution we can focus on the large rapidity region which is much
more sensitive to the small-x contributions.

As we mentioned many times, the prompt photon data can provide im-
portant constraints to the gluon density since it appears at leading order in
perturbation theory. Moreover the discrepancies between the fixed target set
of data and the NLO prediction are still not completely understood. How-
ever, it could be easy and interesting to evaluate the impact of different data
sets on the actual global fit of parton distribution. This could be done by
means of a Bayesian reweighting.



Appendix A

Light-cone coordinates

Given a four dimensional vector pµ = (E, px, py, pz), the following variables

p± =
E ± pz√

2
(A.0.1)

k =
px + ipy√

2
(A.0.2)

k̄ =
px − ipy√

2
(A.0.3)

define the light-cone parametrization

pLC = (p+, p−, k, k̄). (A.0.4)

The matrix form of this transformation is

M =
1√
2









1 0 0 1
1 0 0 −1
0 1 i 0
0 1 −i 0









(A.0.5)

Since the matrix M is not real, the complex conjugate of a complex vector
transforms with the matrix M⋆, i.e. with p and p̄ exchanged. In terms of
these variables, Lorentz scalars become

pµqµ = p+q− + p−q+ − pq̄ − p̄q (A.0.6)

(p⋆)µqµ = (p+)⋆q− + (p−)⋆q+ − (p⋆)q − (p̄)⋆q̄ (A.0.7)

For a massless particle, the relation p2 = 0 takes the form

p+p− = p̄p (A.0.8)
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Polarization vectors for a particle with momentum ~k are given by eigenvectors
of the operator associated to eigenvalues +1 and -1.

J(k) = kxJx + kyJy + kzJz (A.0.9)

that is

ǫ−(~k) = N

(

−kzE + ikxky
kxE − ikykz

,
i (k2x + k2z)

kxE − ikykz
, 1

)

(A.0.10)

ǫ+(~k) = N

(

−kzE − ikxky
kxE + ikykz

,− i (k2x + k2z)

kxE + ikykz
, 1

)

(A.0.11)

where N is the normalization factor. For ǫ−(~k) we obtain

ǫ−(~k) = N

(

−(p+)2 − (p−)2 − k̄2 + k2

2kp− + 2k̄p+
,
i((p+)2 + (p−)2 + k̄2 + k2

2kp− + 2k̄p+
, 1

)

which in light-cone coordinates becomes

ǫ−(~k) =
N√
2

(

1,−1,
−(p+)2 − k2

kp− + k̄p+
,
(p−)2 + k̄2

kp− + k̄p+

)

=
N√
2

(

1,−1,−p
+

k̄
,
k̄

p+

)

(A.0.12)

The constant N can be obtained by the condition ǫ · ǭ = −1

N2

2

(

−2− (p+)2

kk̄
− kk̄

(p+)2

)

= −1 (A.0.13)

N2 =
2

∣

∣

∣

p+

k
+ k̄

p+

∣

∣

∣

2 =
k2T

(p+ + p−)2
(A.0.14)

The polarization vector ǫ+(~k) can be derived by the complex conjugate of

ǫ−(~k) by exchanging the third component with the fourth one (complex con-
jugate vector are mapped in the light-cone representation with the matrix
M⋆). Therefore we obtain

ǫ+(~k) =
kT√

2(p+ + p−)

(

1,−1,
k

p+
,−p

+

k

)

(A.0.15)



Appendix B

Helicity formalism

In this appendix we recall the notation of the helicity formalism. The two
dimensional spinors λ and λ̃ for a massless fermion with momentum p are
defined through the Dirac equation

6Pλ(p) = 0, 6 P̄ λ̃(p) = 0, (B.0.1)

with

6P ≡ pµσ
µ, 6 P̄ ≡ pµσ̄

µ, σµ = (1, ~σ), σ̄µ = (1,−~σ) (B.0.2)

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 i
−i 0

)

, σ3 =

(

1 0
0 −1

)

. (B.0.3)

Now we define

[u+(ki)]α = [v−(ki)]α ≡ |i〉 ≡ (λ(ki))α (B.0.4)

[u−(ki)]
α̇ = [v+(ki)]

α̇ ≡ |i] ≡ (λ̃(ki))
α̇ (B.0.5)

conjugate spinors are obtained by lowering (raising) the dotted (undotted)
indices by the antisymmetric tensors ǫab and ǫȧḃ:

[ū+(ki)]α̇ = [v̄−(ki)]α̇ ≡ [i| ≡ (λ̃(ki))α̇ ≡ ǫα̇β̇(λ̃(ki))
β̇ (B.0.6)

[ū−(ki)]
α = [v̄+(ki)]

α ≡ 〈i| ≡ (λ(ki))
α ≡ ǫαβ(λ(ki))β (B.0.7)

Scalar spinor products are defined as

〈ij〉 ≡ ū−(ki)u+(kj) = (λ(ki))
α(λ(kj))α, (B.0.8)

[ij] ≡ ū+(ki)u−(kj) = (λ̃(ki))
α̇(λ̃(kj))α̇. (B.0.9)

Because φak
a = ǫabφ

akb, both the products above [♠|♣] and 〈♠|♣〉 are anti-
symmetric, hence 〈ii〉 = [jj] = 0.
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From the condition in eq. (B.0.1) we can write

( 6P )ȧa = λ̃ȧλa = |λ]〈λ| (B.0.10)

( 6P )ȧa = λ̃ȧλa = |λ〉[λ| (B.0.11)

thus Lorentz vector products can be written in terms of spinor products since
we have

〈i|j〉 [ij] = ( 6ki)ȧa( 6kj)ȧa = kµi k
ν
jTr(σµσ̄ν) (B.0.12)

but we have also Tr(σµσ̄ν) = 2gµν , therefore we have

〈i|j〉 [ij] = 2kikj. (B.0.13)

In this formalism polarization vectors of gauge bosons can be expressed
in terms of spinor products

ǫ±µ (k; q) = ±〈q|γµ|k]√
2〈qk〉

(B.0.14)

where q is a reference Lorentz vector. Since the amplitude do not depend on
q’s, the recerence vectors can be choosen properly to reduce the number of
Feynman diagrams.

Let us consider an n-gluon amplitude with two gluons of negative helic-
ity and (n − 2) gluons with positive helicity. This amplitude is known as
Maximal-Helicity-Violating (MHV) and it can be shown that

AtreeMHV, (jk)
n ≡ An(1

+, . . . , j−, . . . , k−, . . . , n+) =

= i
〈jk〉

〈12〉〈23〉 · · · 〈n1〉 . (B.0.15)

A similar expression holds in the opposite case of two positive helicities and
(n− 2) negative helicities:

AtreeMHV, (jk)
n ≡ An(1

−, . . . , j+, . . . , k+, . . . , n−) =

= −i [jk]

[12] [23] · · · [n1] . (B.0.16)



Appendix C

Inclusive cross section and

rapidity distribution

C.1 Factorization

In this Appendix we discuss some tecnical details which involve the rapidity
integration. In the litterature, the rapidity distributions are written in terms
of two variables v and w related to the momentum fractions x1 and x2 of the
parton distribution. With these variables, the distributions which appear in
the NLO coefficient function are simple ”plus” prescriptions and δ-functions.
Here we show how to derive the inclusive factorization formula from the
rapidity distribution in (v, w) variables. The differential cross section for the
prompt photon production can be written in the following form:

Eγ
d3σAB

d3pγ
=

1

πp4T

∑

a,b

∫ 1−
√

x
2

e−η

√
x
2

eη
dv

∫ 1

√
x

2v
eη
dw x1f

A
a (x1) x2f

B
b (x2) ·

·v(1− v)wŝ
dσ̂ab

dvdw
(C.1.1)

where the momentum fractions x1 and x2 are given in terms of the variables
v and w:

x1 =

√
xeη

2vw
, x2 =

√
xe−η

2(1− v)
, (C.1.2)

and x = 4p2T/S. We parametrize the photon momentum pγ in terms of the
transverse momentum and pseudorapidity

pγ = (pT cosh η, ~pT , pT sinh η). (C.1.3)

In the center-of-mass frame, the momenta of hadrons A and B are

PA =

√
S

2
(1, 0, 0, 1), PB =

√
S

2
(1, 0, 0,−1) (C.1.4)
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therefore, from the condition (PA + PB − pγ)
2 > 0 we have

S − 2
√
SEγ > 0 → cosh η <

1

x
. (C.1.5)

which in terms of η becomes

1√
x
(1−

√
1− x) < eη <

1√
x
(1 +

√
1− x) (C.1.6)

Let us consider the rapidity integration. We have

dσ =
1

πp4TEγ

d3pγ(· · · ) =
2

p3T
dpTdη(· · · ) =

2

p3T
dpT

dy

y
(· · · ) (C.1.7)

where we introduced the variable y = eη. The cross section p3T
dσ
dpT

is given by

p3T
dσAB

dpT
=
∑

a,b

2

∫ 1√
x
(1+

√
1−x)

1√
x
(1−

√
1−x)

dy

y

∫ 1−
√

x
2

e−η

√
x
2

eη
dv

∫ 1

√
x

2v
eη
dw x1f

A
a (x1) x2f

B
b (x2) ·

·v(1− v)wŝ
dσ̂ab

dvdw
(C.1.8)

In order to obtain the partonic cross section p3T
dσ
dpT

, first we change the

integration variables to x1 and x2, then we need to integrate Eq. (C.1.1) in
rapidity and change the integration ordering from (η, x2, x1) to (x2, x1, η). If
we express v and w from Eq. (C.1.2) we obtain

v = 1−
√
xe−η

2x2
, w =

√
xeη

2vx1
. (C.1.9)

From v < 1 −
√
x
2
e−η and w >

√
x

2v
eη we obtain x1, x2 < 1, furthermore we

have

v >

√
x

2
eη → x2 >

√
xe−η

2−√
xeη

(C.1.10)

w < 1 → x1 >

√
xeη

2−√
x/x2e−η

(C.1.11)

By taking into account the jacobian we have

dvdw = dx1dx2
x

4v(x1x2)2
, (C.1.12)
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thus the integrations are

∫ 1√
x
(1+

√
1−x)

1√
x
(1−

√
1−x)

dy

y

∫ 1−
√

x
2

e−η

√
x
2

eη
dv

∫ 1

√
x

2v
eη
dw =

=

∫ 1√
x
(1+

√
1−x)

1√
x
(1−

√
1−x)

dy

y

∫ 1

√
x

2y−
√

xy2

dx2

∫ 1

√
xy2

2y−
√
x/x2

dx1
x

4v(x1x2)2
. (C.1.13)

Let us start by inverting the order of integration of y and x2. The integration
region is

{ √
x/y

2−√
xy
< x2 < 1

1√
x
(1−

√
1− x) < y < 1√

x
(1 +

√
1− x)

(C.1.14)

Note that the lower value of x2 as a function of y is symmetric respect to
y = 1√

x
and for y = 1√

x
(1±

√
1− x), x2 = 1. Thus by inverting Eq. (C.1.14)

we have
{

1√
x
(1−

√

1− x/x2) < y < 1√
x
(1 +

√

1− x/x2)

x < x2 < 1
. (C.1.15)

Now let us invert y and x1. The integration region now is
{ √

xy2

2y−√
x/x2

< x1 < 1
1√
x
(1−

√

1− x/x2) < y < 1√
x
(1 +

√

1− x/x2)
. (C.1.16)

and analogously to x2 we have
{

x
x2
< x1 < 1

x1√
x
(1−

√

1− x
x1x2

) < y < x1√
x
(1 +

√

1− x
x1x2

)
. (C.1.17)
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Thus, the reordered integrations are

∫ 1√
x
(1+

√
1−x)

1√
x
(1−

√
1−x)

dy

y

∫ 1

√
x

2y−
√
xy2

dx2

∫ 1

√
xy2

2y−
√

x/x2

dx1
x

4v(x1x2)2
=

∫ 1

x

dx2

∫ 1

x/x2

dx1

∫
x1√
x
(1−

√
1+ x

x1x2
)

x1√
x
(1−

√
1− x

x1x2
)

dy

y

x

4v(x1x2)2
(C.1.18)

Now we introduce the partonic variable ŷ =
√

x2

x1
y and change the inner

integration variable, so we obtain

∫ 1

x

dx2

∫ 1

x/x2

dx1

∫ 1√
x̂
(1−

√
1−x̂)

1√
x̂
(1−

√
1−x̂)

dy

y

x̂

4vx1x2
(C.1.19)

where we introduced the partonic variable x̂ = x
x1x2

. Note that v and w can
be written in terms of partonic variables

v = 1−
√
x̂

2ŷ
, w =

√
x̂ŷ

2v
. (C.1.20)

Therefore, the final factorized expression is

p3T
dσAB

dpT
=
∑

a,b

∫ 1

x

dx2

∫ 1

x/x2

dx1

∫ 1√
x̂
(1−

√
1−x̂)

1√
x̂
(1−

√
1−x̂)

dy

y

x̂

2v
fA
a (x1) f

B
b (x2) · C(v, w)

(C.1.21)

where

C(v, w) = v(1− v)wŝ
dσ̂ab

dvdw
(C.1.22)

now, we can use w as integration variable since

y = f(w) ≡ w√
x̂

(

1±
√

1− x̂/w
)

(C.1.23)

and the measure is

dy

y
=

{

dw
2w
J−(w) y < w√

x
dw
2w
J+(w) y > w√

x

,

J±(w) = 1± 1
√

1− x̂/w
(C.1.24)

We can also express v in terms of w

v± = g±(w) ≡
1

2
(1±

√

1− x̂/w) (C.1.25)
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So we obtain

∑

a,b

∫ 1

x

dx2f
A
a (x2)

∫ 1

x/x2

dx1f
B
b (x1)

∫ 1

x̂

dw

4w
x̂

[

J+
C(v+, w)
v+

− J−
C(v−, w)
v−

]

(C.1.26)

C.2 δ and ”+” distributions

The formula we derived above is meaninful only for contributions to the coef-
ficient dσ̂ab

dvdw
which do not contain plus or delta-function distributions because

they modify the argument of the parton density.
Let us start with the simplest case of the delta-distribution δ(1−w) which

appears in the NLO computation. We have

p3T
dσ

dpT
= 2

∑

a,b

∫ 1

x

dx2f
A
a (x2)

∫ y+

y−

dy

y

x′

4v(y)

∫ 1

√
x′y

2v(y)

dw

w
fB
b

(√
x′y

2v(y)

)

· k(v)δ(1− w) =

= 2
∑

a,b

∫ 1

x

dx2f
A
a (x2)

∫ y+

y−

dy

y

x′

4v(y)
fB
b

(√
x′y

2v(y)

)

· k(v)

with x′ = x/x2, by changing the inner integration variable to x1 =
√
x′y

2−
√
x′/y

(which is not the same x1 as before!) y = x1√
x′ (1±

√

1− x′/x1) thus

=
∑

a,b

∫ 1

x

dx2f
A
a (x2)

∫ 1

x′

dx1
4
fB
b (x1) x̂

(

J+(1)

g+(1)
k(g+(1))−

J̃−
g−(1)

k(g−(1))

)

=

=
∑

a,b

∫ 1

x

dx2f
A
a (x2)

∫ 1

x/x2

dx1f
B
b (x1)

∫ 1

x̂

dw

4w
x̂

[

J+
k(v+)

v+
− J−

k(v−)

v−

]

δ(1− w).

(C.2.1)

Now consider contributions to v(1− v)wŝ dσ̂ab

dvdw
of the form

c(v, w)

(1− w)+
, (C.2.2)

where

1

(1− w)+
=

1

(1− w)A
+ log(1− A)δ(1− w),

∫ 1

A

f(w)

(1− w)A
dw ≡

∫ 1

A

f(w)− f(1)

1− w
dw. (C.2.3)
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From Eq. (C.1.8) we have

p3T
dσAB

dpT
=
∑

a,b

2

∫ 1√
x
(1+

√
1−x)

1√
x
(1−

√
1−x)

dy

y

∫ 1−
√

x
2y

√
x
2

y

dv

∫ 1

√
x

2v
y

dw x1f
A
a (x1) x2f

B
b (x2) ·

c(v)

(1− w)+

(C.2.4)
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