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Introduction

A brief history on quasiconvex duality on vector spaces and our
contribution in the conditional case

Quasiconvex analysis has important applications in several optimization prob-
lems in science, economics and in finance, where convexity may be lost due to
absence of global risk aversion, as for example in Prospect Theory [56].

The first relevant mathematical findings on quasiconvex functions were provided
by De Finetti [18], mostly motivated by Paretian ordinal utility. Since then many
authors, as [13], [14], [26], [57], [69] and [71] - to mentionjust a few, contributed
significantly to the subject. More recently, a Decision Theory complete duality in-
volving quasiconvex real valued functions has been proposed by [10]: in this theory
a key role is played by the uniqueness of the representation and in such a way a
one to one relationship between the primal functional and his dual counterpart is
provided. For a review of quasiconvex analysis and its application and for an ex-
haustive list of references on this topic we refer to Penot [70].

Our interest in quasiconvex analysis was triggered by the recent paper [11] on
quasiconvex risk measures, where the authors show that it isreasonable to weaken
the convexity axiom in the theory of convex risk measures, introduced in [31] and
[35]. This allows to maintain a good control of the risk, if one also replaces cash
additivity by cash subadditivity [25]. The choice of relax the axiom of cash addi-
tivity is one of the main topics nowadays, especially when markets present lack of
liquidity. Maccheroni et al. [11] point out that loosing this property convexity is not
anymore equivalent to the principle of diversification: ‘diversification should not
increase the risk ’. The recent interest in quasiconvex static risk measures is also
testified by a second paper [19] on this subject, that was inspired by [11].
Furthermore when passing to the dynamics of the risk the usual axioms of risk
measures seem too restrictive and incompatible with time consistency: Kupper and
Schachermayer [54] showed that the only law invariant time consistent convex risk
measure turns out to be the entropic one.

A function f : L→ R := R∪{−∞}∪ {∞} defined on a vector spaceL is qua-
siconvex if for allc ∈ R the lower level sets{X ∈ L | f (X)≤ c} are convex. In a
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2 Introduction

general setting, the dual representation of such functionswas shown by Penot and
Volle [71]. The following theorem, reformulated in order tobe compared to our re-
sults, was proved by Volle [76], Th. 3.4. and its proof relieson a straightforward
application of Hahn Banach Theorem.
Theorem ([76]). Let L be a locally convex topological vector space, L′ be its dual
space and f: L→R :=R∪{−∞}∪{∞} be quasiconvex and lower semicontinuous.
Then

f (X) = sup
X′∈L′

R(X′(X),X′) (C.1)

where R: R×L′→R is defined by

R(t,X′) := inf
ξ∈L

{
f (ξ ) | X′(ξ )≥ t

}
.

The generality of this theorem rests on the very weak assumptions made on the
domain of the functionf , i.e. on the spaceL. On the other hand, the fact that only
real valuedmaps are admitted considerably limits its potential applications, spe-
cially in a dynamic framework.

To the best of our knowledge, aconditionalversion of this representation was
lacking in the literature. When(Ω ,F ,(Ft )t≥0,P) is a filtered probability space,
many problems having dynamic features lead to the analysis of mapsπ : Lt → Ls

between the subspacesLt ⊆ L1(Ω ,Ft ,P) andLs⊆ L0(Ω ,Fs,P), 0≤ s< t.
In the first chapter of this thesis we consider quasiconvex maps of this form

and analyze their dual representation. We provide (see Theorem 1.2 for the exact
statement) a conditional version of (C.1):

π(X) = ess sup
Q∈L∗t ∩P

R(EQ[X|Fs],Q), (C.2)

where
R(Y,Q) := essinf

ξ∈Lt

{π(ξ ) | EQ[ξ |Fs]≥Q Y} , Y ∈ Ls,

L∗t is the order continuous dual space ofLt andP =:
{

dQ
dP |Q<< P

}
.

Furthermore, we show that if the mapπ is quasiconvex, monotone and cash additive
then it is convex and we easily derive from (C.2) the well known representation of
a conditional risk measure [17].
The formula (C.2) is obtained under quite weak assumptions on the spaceLt which
allow us to consider mapsπ defined on the typical spaces used in the literature
in this framework:L∞(Ω ,Ft ,P), Lp(Ω ,Ft ,P), the Orlicz spacesLΨ (Ω ,Ft ,P). In
Theorem 1.2 we assume thatπ is lower semicontinuous, with respect to the weak
topologyσ(Lt ,L∗t ). As shown in Proposition 1.2 this condition is equivalent to con-
tinuity from below, which is a natural requirement in this context. We also provide
in Theorem 1.3 the dual representation under a strong upper semicontinuity assump-
tion.
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The proofs of our main Theorems 1.2 and 1.3 are not based on techniques sim-
ilar to those applied in the quasiconvex real valued case [76], nor to those used for
convex conditional maps [17]. Indeed, the so called scalarization ofπ via the real
valued mapX→EP[π(X)] does not work, since this scalarization preserves convex-
ity but not quasiconvexity. The idea of our proof is to apply (C.1) to the real valued
quasiconvex mapπA : Lt → R defined byπA(X) := esssupω∈A π(X)(ω), A ∈ Fs,
and to approximateπ(X) with

πΓ (X) := ∑
A∈Γ

πA(X)1A,

whereΓ is a finite partition ofΩ of Fs measurable setsA ∈ Γ . As explained in
Section 1.6.1, some delicate issues arise when one tries to apply this simple and
natural idea to prove that:

ess sup
Q∈L∗t ∩P

essinf
ξ∈Lt

{π(ξ )|EQ[ξ |Fs]≥Q EQ[X|Fs]}

= essinf
Γ

ess sup
Q∈L∗t ∩P

essinf
ξ∈Lt

{
πΓ (ξ )|EQ[ξ |Fs]≥QEQ[X|Fs]

}
(C.3)

The uniform approximation result here needed is stated in the key Lemma 1.8 and
Section 1.6.3 is devoted to prove it.

The starting point of this Thesis: Stochastic Utilities andthe Con-
ditional Certainty Equivalent

In the last decade many methodologies for pricing in incomplete markets were
build on expected utility maximization with respect to terminal wealth: classic ex-
amples of this approach are the notions of fair price [15], certainty equivalent [32]
and indifference price [5], [16], [43].

These techniques were developed both in a static framework and in a dynamic
context [22]. In the dynamic case however, the utility function represents prefer-
ences at a fixed time T, while the pricing occurs at any time between today and the
expiration T (backward pricing). The martingale property of the indirect utility (the
value function of the optimization problem [24]) is an automatic consequence of the
dynamic programming principle.

This classic backward approach has recently been argued in [6], [42], [62], [63]
and a novel forward theory has been proposed: the utility function is stochastic, time
dependent and moves forward.

In this theory, the forward utility (which replaces the indirect utility of the classic
case) is built through the underlying financial market and must satisfy some appro-
priate martingale conditions.

Our research is inspired by the theory just mentioned, but a different approach is
here developed: our preliminary object will be a stochasticdynamic utilityu(x, t,ω)
- i.e. a stochastic field [52] - representing the evolution ofthe preferences of the
agent (see Definition 2.1).
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The definition of the Conditional Certainty Equivalent (CCE) that we propose
and analyze (Definition 2.9), is the natural generalizationto the dynamic and
stochastic environment of the classical notion of the certainty equivalent, as given
in [74]. The CCE, denoted byCs,t(·), provides the times value of anFt measur-
able claim (s≤ t) in terms only of the Stochastic Dynamic Utility (SDU) and the
filtration.

The SDU that we consider does not requirea priori the presence of a financial
market; neither it will have any specific recursive structure, nor will necessarily be
an indirect utility function based on optimal trading in themarket. However appro-
priate conditions are required on the SDU in order to deduce interesting properties
for the CCE.

The next step, which is left for future research, would be theinvestigation of the
compatibility conditions between the value assigned by theCCE and existing prices
when an underlying market indeed exists. Clearly, not all SDU are compatible with
the market. One extreme case is when the SDU can be determinedby the market
and the initial preferences structure, as in the case of the forward utility theory.

When we first bumped into the notion of Conditional CertaintyEquivalent we
immediately realized that this was in general a non concave map: anyway it was
a monotone and quasiconcave operator between vector lattices. For this reason a
theory of duality involving quasiconcavity instead of concavity was necessary to
start a rigorous study of this topic. Due to the particular structure of the CCE, we
were soon able to provide a direct proof of the dual representation (see Section 2.5):
we exploit directly the results of Maccheroni et al. [10], avoiding any intermediate
approximation argument. In this way the reader can appreciate the value of the result
-that confirms what have been obtained in Chapter 1- without getting crazy in a thick
maze of technical lemmas.

However, in order to show the dual representation of the CCE we must first de-
fine it on appropriate vector lattices. A common approach is to restrict the view to
bounded random variables, so that no further integrabilityconditions are requested.
But as soon as we try to extend the scenario to unbounded random variables it im-
mediately appears that the distortion provoked by utility function can be mastered
only in ad hocframeworks.

To this end we introduce in Section 2.4, in the spirit of [7], ageneralized class
of Orlicz spaces which are naturally associated to the SDU taken into account. We
show with some examples that these spaces also play a fundamental role for time
compatibility of the CCE, sinceCs,t : Mût → Mûs, whereMût is the generalized
Orlicz space ofFt measurable random variables associated tou(x, t,ω).

Further comments

Chapter 2 appears as a short parenthesis in this work and can be read as a self
contained discussion. But as a matter of fact this was the main reason that lead us in
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our research: one of the simplest example of evaluation map,such it is the Certainty
Equivalent, fails in general to be concave. Since the standard duality theory for
concave maps fails we were forced to look for a generalization of the duality results
provided by Penot and Volle.
For this reason we report here the original proof of the dual representation theorem
for the CCE (Theorem 1.2), which gave us the motivation and the strength to look
for the more general and involving one provided in Chapter 1.

A brand new point of view: the module approach

The concept of module over a ring of functions is not new in theoverview of
mathematical studies but appeared around fifties as in [37],[40], [41] and [68]. Hahn
Banach type extension theorems were firstly provided for particular classes of rings
and finally at the end of seventies (see for instance [9]) general ordered rings were
considered, so that the case ofL0 was included. Anyway, until [28], no Hyperplane
Separation Theorems were obtained. It is well known that many fundamental results
in Mathematical Finance rely on it: for instance Arbitrage Theory and the duality
results on risk measure or utility maximization.

In the series of three papers [27], [28] and [53] the authors brilliantly succeed in
the hard task of giving an opportune and useful topological structure toL0-modules
and to extent those functional analysis theorems which are relevant for financial
applications. Once a rigorous analytical background has been carefully built up, it is
easy to develop it obtaining many interesting results. In Chapter 3 of this Thesis we
are able to generalize the quasiconvex duality theory to this particular framework.

It is worth to notice that this effort to extend the results inChapter 1 toL0-
modules, is not a mathematical itch. Whenever dealing with conditional financial
applications - such as conditional risk measures - vector spaces present many draw-
backs as it has been argued in Filipovic et al. [27]. In the paper Approaches to
Conditional Risk, the authors compare the two possible points of view using vector
spaces (as it is common in the present literature) orL0- modules. The results ob-
tained are crystalline and highlight how the second choice better suites the financial
scopes.
The intuition hidden behind the use of modules is simple and natural: suppose a
setS of time-T maturity contingent claims is fixed and an agent is computing the
risk of a portfolio selection at an intermediate timet < T. A flow of information
- described byFt - will be available at that timet: as a consequence, all theFt -
measurable random variables will be known. Thus theFt measurable random vari-
ables will act as constants in the process of diversificationof our portfolio, forcing
us to consider the new setS ·L0(Ω ,Ft ,P) as the domain of the risk measures. This
product structure is exactly the one that appears when working withL0-modules.

The main result of quasiconvex duality is given in Theorem 3.1 and Corollar-
ies 3.1 and 3.2. Differently from Theorems 1.2 and 1.3 here the representation is
obtained dropping the assumption of monotonicity, as it happened for real valued
quasiconvex maps. The mapπ : E→ L̄0(G ) can be represented as
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π(X) = sup
µ∈L (E,L0(G ))

R(µ(X),µ),

whereE is aL0-module andL (E,L0(G )) the module of continuousL0-linear func-
tionals overE.
A posteriori, adding the assumption of monotonicity, we can restrict theoptimiza-
tion problem over the set of positive and normalized functional, as we show in The-
orem 3.2.

The proof of these results are plain applications of the Hyperplane Separation
theorems and not in any way linked to some approximation or scalarization argu-
ment. If one carefully analyzes them then he would appreciate many similarities
with the original demonstrations by Penot and Volle.
A remarkable upgrade compared to Chapter 1, which appears asthe best evidence
of the power an novelty brought by modules, is the strong uniqueness result for con-
ditional risk measures (see Theorem 3.2 for the precise statement), which perfectly
matches what had been obtained in [10] for the static case.
Under suitable conditions,ρ : Lp

G
(F )→ L0(G ) is a conditional quasiconvex risk

measureif and only if

ρ(X) = sup
Q∈Pq

R

(
E

[
−

dQ
dP

X|G

]
,Q

)
(C.4)

whereR is unique in the classM prop(L0(G )×Pq). In this sense, in agreement
with [10], we may assert that there exists a complete quasiconvex duality between
quasiconvex risk measures andM prop(L0(G )×Pq).



Chapter 1
On the dual representation on vector spaces

Conditional maps are a characteristic feature of the Probabilistic environment. We
may hazard that the ‘red line’that distinguishes Probability from Analysis is the con-
cept of Conditional Expectation, which is the simplest example of conditional map.
The conditional expectationEP[X|G ] filters a random variableX with the informa-
tion provided by the sigma algebraG , giving a sort of backward projection ofX.
When Probability crashes in Mathematical Finance and Economics a great number
of questions arise: in fact any linear property -such those satisfied by the conditional
expectation- crumbles under the heavy load of the risk aversion of the agents play-
ing in the markets. This affects the properties of the conditional maps taken into
account in Pricing Theory and Risk Management. A peculiar example can be found
in [73] where a general theory of Nonlinear Expectations is developed relying on
Backward Stochastic Differential Equations.
The current literature is rolling around four mainstreams about conditional maps: the
discussion of the axioms, the right domain (usually vector spaces of random vari-
ables), the robustness of the method and the time consistency. In this Chapter we
would like to make a tiny step forward on these themes: considering general vec-
tor spaces and quasiconvex conditional maps we will nevertheless obtain a robust
representation which is a crucial prerequisite for discussing (in the future research)
time consistency.

1.1 Conditional quasiconvex maps

The probability space(Ω ,F ,P) is fixed throughout this chapter and supposed to be
non-atomic.G ⊆F is any sigma algebra contained inF . As usual we denote with
L0(Ω ,F ,P) the space ofF measurable random variables that areP a.s. finite and
by L̄0(Ω ,F ,P) the space of extended random variables that take values inR∪{∞}.
We also defineL0

+(F ) = {Y ∈ L0
F
| Y ≥ 0} andL0

++(F ) = {Y ∈ L0
F
| Y > 0}.

EQ[X] represents the expected value of a random variableX with respect to a given
probability measureQ. For every setA ∈ F the indicator function1A belongs to
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L0(Ω ,F ,P) and is valued 1 forP-almost everyω ∈ A and 0 forP-almost every
ω ∈ AC.

The Lebesgue spaces,

Lp(Ω ,F ,P) = {X ∈ L0(Ω ,F ,P) | EP[|X|
p]<+∞} p∈ [0,∞]

and the Orlicz spaces (see next Chapter for further details)

Lû(Ω ,F ,P) =
{

X ∈ L0(Ω ,F ,P)| ∃α > 0 EP[û(αX)]< ∞
}

MΦ (Ω ,F ,P) =
{

X ∈ L0(Ω ,F ,P) |EP[Φ(αX)]< ∞ ∀α > 0
}

will simply be denoted byLp/Lû/Mû, unless it is necessary to specify the sigma
algebra, in which case we writeLp

F
/Lû

F
/Mû

F
.

It may happen that given a TVSL we denote byL∗ either the topological dual
space ofL or the order dual space (see [2] p. 327 for the exact definition). Topolog-
ical/order dual spaces may coincide as forLp spaces or Morse spacesMΦ , but in
general they can differ as for the Orlicz spaceLΦ (for an opportune choice ofΦ).
Anyway we will specify case by case what we are intending byL∗.

In presence of an arbitrary measureµ , if confusion may arise, we will explic-
itly write =µ (resp.≥µ), meaningµ almost everywhere. Otherwise, all equali-
ties/inequalities among random variables are meant to holdP-a.s..

The essential (P almost surely)supremum esssupλ (Xλ ) of an arbitrary family
of random variablesXλ ∈ L0(Ω ,F ,P) will be simply denoted by supλ (Xλ ), and
similarly for the essentialinfimum. Thesupremumsupλ (Xλ ) ∈ L̄0(Ω ,F ,P) gives
by definition the smallest extended random variable greaterof anyXλ ; similarly the
infimumis the greatest extended random variable smaller of anyXλ . Both of them
are unique up to a set ofP-measure equal to 0. The reader can look at [30] Section
A.5 for an exhaustive list of properties. Here we only recallthat 1Asupλ (Xλ ) =
supλ (1AXλ ) for anyF measurable setA.
∨ (resp.∧) denotes the essential (P almost surely)maximum(resp. the essential

minimum) between two random variables, which are the usual lattice operations.
Hereafter the symbol→֒ denotes inclusion and lattice embedding between two lat-
tices; a lattice embedding is an isomorphism between two vector spaces that pre-
serves the lattice operations.

We consider a latticeLF := L(Ω ,F ,P) ⊆ L0(Ω ,F ,P) and a latticeLG :=
L(Ω ,G ,P)⊆ L̄0(Ω ,G ,P) of F (resp.G ) measurable random variables.

Definition 1.1. A mapπ : LF → LG is said to be

(MON) monotone increasing if for everyX,Y ∈ LF

X ≤Y ⇒ π(X)≤ π(Y) ;

(QCO) quasiconvex if for everyX,Y ∈ LF , Λ ∈ L0
G

and 0≤Λ ≤ 1

π(ΛX+(1−Λ)Y)≤ π(X)∨π(Y) ;
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(LSC) τ−lower semicontinuous if the set{X ∈ LF | π(X) ≤ Y} is closed for
everyY ∈ LG with respect to a topologyτ onLF .

(USC)⋆ τ−strong upper semicontinuous if the set{X ∈ LF | π(X)<Y} is open
for everyY ∈ LG with respect to a topologyτ onLF and there exists at least one
θ ∈ LF such thatπ(θ )<+∞.

Remark 1.1. On the condition (QCO)
As it happens for real valued maps, the definition of (QCO) is equivalent to the fact
that all the lower level sets

A (Y) = {X ∈ LF | π(X)≤Y} ∀Y ∈ LG

are conditionally convex i.e. for allX1,X2 ∈ A (Y) and anyG -measurable r.v.Λ ,
0≤Λ ≤ 1, one hasΛX1+(1−Λ)X2 ∈A (Y).
Indeed letπ(Xi)≤Y, i = 1,2: thanks to (QCO)

π(ΛX1+(1−Λ)X2)≤max{π(X),π(Y)} ≤Y

i.e.A (Y) is conditionally convex.
Viceversa setY = max{π(X1),π(X2)} thenX1,X2 ∈A (Y) implies from convexity
thatΛX1+(1−Λ)X2 ∈A (Y) and thenπ(ΛX1+(1−Λ)X2)≤Y.

Remark 1.2. On the condition (LSC)
The class of closed and convex sets is the same in any topologycompatible with a
given dual system (Grothendieck [38] Chapter 2, Section 15). We remind the reader
that a topologyτ is compatible with a dual system(E,E′) if the topological dual
space ofE w.r.t. τ is E′. Therefore - assuminga priori (QCO) - if two topologies
τ1, τ2 give rise to the same dual space, then the conditionsτ1-(LSC),τ2 -(LSC), are
equivalent. This simplifies the things up when dealing with nice spaces such asLp

spaces.

Remark 1.3. On the condition (USC)⋆

WhenG = σ(Ω) is the trivial sigma algebra, the mapπ is real valued and (USC)⋆

is equivalent to

{X ∈ LF | π(X)≥Y} is closed for everyY ∈ R.

But in general this equivalence does not hold true: in fact

{X ∈ LF | π(X)<Y}C = {X ∈ LF | P(π(X)≥Y)> 0}% {X ∈ LF | π(X)≥Y}

Anyway (USC)⋆ implies that considering a net{Xα}, Xα
τ
→X then limsupα π(Xα)≤

π(X). For sake of simplicity suppose thatπ(X)<+∞: letY ∈ LG , π(X)<Y thenX

belongs to the open setV = {ξ ∈ LF | π(ξ )<Y}. If Xα
τ
→ X then there will exists

α0 such that for everyXβ ∈ V for everyβ ≥ α0. This means thatπ(Xβ ) < Y for
everyβ ≥ α0 and

limsup
α

π(Xα)≤ sup
β≥α0

π(Xβ )≤Y ∀Y > π(X).
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Conversely it is easy to check thatXα
τ
→ X ⇒ limsupα π(Xα)≤ π(X) implies that

the set{X ∈ LF | π(X) ≥ Y} is closed. We thus can conclude that the condition
(USC)⋆ is a stronger condition than the one usually given in the literature for upper
semicontinuity. The reason why we choose this one is that it will be preserved by
the mapπA.
Finally we are assuming that there exists at least oneθ ∈ LF suchπ(θ ) < +∞:
otherwise the set{X ∈ LF | π(X)<Y} is always empty (and then open) for every
Y ∈ LG ∩L0

G
.

Definition 1.2. A vector spaceLF ⊆ L0
F

satisfies the property (1F ) if

X ∈ LF andA∈F =⇒ X1A ∈ LF . (1F )

Suppose thatLF (resp.LG ) satisfies the property(1F ) (resp 1G ).
A mapπ : LF → LG is said to be

(REG) regular if for everyX,Y ∈ LF andA∈ G

π(X1A+Y1AC) = π(X)1A+π(Y)1AC.

or equivalently ifπ(X1A)1A = π(X)1A.

Remark 1.4.The assumption (REG) is actually weaker than the assumption

π(X1A) = π(X)1A ∀A∈ G . (1.1)

As shown in [17], (1.1) always implies (REG), and they are equivalent if and only
if π(0) = 0.

It is well known thatπ(0)= 0 and conditional convexity implies (REG) (a simple
proof can be found in [17] Proposition 2). However, such implication does not hold
true any more if convexity is replaced by quasiconvexity. Obviously, (QCO) and
(REG) does not imply conditional convexity, as shown by the map

X→ f−1 (E [ f (X)|G ]))

when f : R→R is strictly increasing and convex onR.

1.2 The case of real valued maps whenG = σ(Ω).

In this section we resume what has been already fully studiedin the caseG is the
trivial sigma algebra and thenLG reduces to the extended real lineR. We report also
the proofs which matches those given by Penot and Volle, to help the understanding
of the role played by Hahn Banach Separation Theorem. In thisway the reader
will be helped to appreciate the analogies between the following proofs and the
generalizations to the modules framework in Chapter 3.
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HereLF = L can be every locally convex topological vector space andL∗ denotes
its topological dual space. Considerπ : L→ R := R∪{∞} satisfying (QCO) and
define:R : L∗×R→R by

R(X∗, t) := sup{π(X) | X ∈ L such thatX∗(X)≥ t} .

Theorem 1.1.Letπ as before
(i) If π is (LSC) then:

π(X) = sup
X′∈L∗

R(X′,X′(X)).

(ii) If π is (USC)⋆ then:

π(X) = max
X′∈L∗

R(X′,X′(X)),

Proof. (i)By definition, for anyX′ ∈ L′, R(X′(X),X′)≤ π(X) and therefore

sup
X′∈L′

R(X′(X),X′)≤ π(X), X ∈ L.

Fix anyX ∈ L and takeε ∈R such thatε > 0. ThenX does not belong to the closed
convex set{ξ ∈ L : π(ξ )≤ π(X)− ε} := Cε (if π(X) = +∞, replace the setCε
with {ξ ∈ L : π(ξ )≤M} , for anyM). By the Hahn Banach theorem there exists a
continuous linear functional that strongly separatesX andCε , i.e. there existsα ∈R
andX′ε ∈ L′ such that

X′ε(X)> α > X′ε(ξ ) for all ξ ∈ Cε . (1.2)

Hence:
{

ξ ∈ L : X′ε(ξ )≥ X′ε(X)
}
⊆ (Cε)

C = {ξ ∈ L : π(ξ )> π(X)− ε} (1.3)

and

π(X) ≥ sup
X′∈L′

R(X′(X),X′)≥ R(X′ε(X),X′ε)

= inf
{

π(ξ ) | ξ ∈ L such thatX′ε(ξ )≥ X′ε(X)
}

≥ inf {π(ξ ) | ξ ∈ L satisfyingπ(ξ )> π(X)− ε} ≥ π(X)− ε.

(ii)For any fixedX ∈ L, the set{ξ ∈ L : π(ξ )< π(X)} := E is convex open and
X /∈ E . By the Hahn Banach theorem there exists a continuous linearfunctional
that properly separatesX and E , i.e. there existsα ∈ R and X∗ ∈ L∗ such that:
X∗(X)> α ≥ X∗(ξ ) for all ξ ∈ E .
Hence:{ξ ∈ L : X∗(ξ )≥ X∗(X)} ⊆ (E )C = {ξ ∈ L : π(ξ )≥ π(X)} and
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π(X) ≥ sup
Y∗∈L∗

R(Y∗,Y∗(X))≥ R(X∗,X∗(X))

= inf {π(ξ ) | ξ ∈ L such thatX∗(ξ )≥ X∗(X)}

≥ inf
{

π(ξ ) | ξ ∈ (E )C
}
≥ π(X).

Proposition 1.1.Suppose L is a lattice, L∗ = (L,≥)∗ is the order continuous dual
space satisfying L∗ →֒ L1 and(L,σ(L,L∗)) is a locally convex TVS. If f: L→ R is
quasiconvex,σ(L,L∗)-lsc (resp usc) and monotone increasing then

π(X) = sup
Q∈L∗+|Q(1)=1

R(Q(X),Q),

resp. π(X) = max
Q∈L∗+|Q(1)=1

R(Q(X),Q).

Proof. We apply Theorem 1.1 to the locally convex TVS(L,σ(L,L∗)) and deduce:

π(X) = sup
Z∈L∗⊆L1

R(Z(X),Z).

We now adopt the same notations of the proof of Theorem 1.1 andlet Z ∈ L, Z≥ 0.
Obviously if ξ ∈ Cε thenξ −nZ∈ Cε for everyn∈ N and from (1.2) we deduce:

X′ε(ξ −nZ)< α < X′ε(X) ⇒ X′ε(Z)>
X′ε(ξ −X)

n
, ∀n∈N

i.e.X′ε ∈ L∗+ ⊆ L1 andX′ε 6= 0. HenceX′ε(1) = EP[X′ε ]> 0 and we may normalizeX′ε
to X′ε/X′ε(1).

1.3 Dual representation for an arbitrary G

From now onG is anyσ -algebraG ⊂F .

1.3.1 Topological assumptions

Definition 1.3. We say thatπ : LF → LG is

(CFB) continuous from belowif

Xn ↑ X P a.s. ⇒ π(Xn) ↑ π(X) P a.s.

In [8] it is proved the equivalence between: (CFB), order lscandσ(LF ,L∗
F
)-

(LSC), for monotone convex real valued functions. In the next proposition we show
that this equivalence holds true for monotone quasiconvex conditional maps, under
the same assumption on the topologyσ(LF ,L∗

F
) adopted in [8].
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Definition 1.4 ([8]).Let{Xα}⊂ LF be a net. A linear topologyτ on the Riesz space
LF has the C-property ifXα

τ
→X implies the existence of of a sequence{Xαn}n and

a convex combinationZn ∈ conv(Xαn, ...) such thatZn
o
→ X.

As explained in [8], the assumption thatσ(LF ,L∗
F
) has the C-property is very

weak and is satisfied in all cases of interest. When this is thecase, in Theorem 1.2
theσ(LF ,L∗

F
)-(LSC) condition can be replaced by (CFB), which is often easy to

check.

Proposition 1.2.Suppose thatσ(LF ,L∗
F
) satisfies the C-property and that LF is

order complete. Givenπ : LF → LG satisfying (MON) and (QCO) we have:
(i) π is σ(LF ,L∗

F
)-(LSC) if and only if (ii)π is (CFB).

Proof. Recall that a sequence{Xn} ⊆ LF order converge toX ∈ LF , Xn
o
→ X, if

there exists a sequence{Yn} ⊆ LF satisfyingYn ↓ 0 and|X−Xn| ≤Yn.
(i)⇒ (ii): ConsiderXn ↑ X. SinceXn ↑ X implies Xn

o
→ X, then for every order

continuousZ ∈ L∗
F

the convergenceZ(Xn)→ Z(X) holds. FromL∗
F
→֒ L1

F

EP[ZXn]→ EP[ZX] ∀Z ∈ L∗F

and we deduce thatXn
σ(LF ,L∗

F
)

−→ X.
(MON) impliesπ(Xn) ↑ andp := limn π(Xn)≤ π(X). The lower level setAp = {ξ ∈
LF | π(ξ )≤ p} is σ(LF ,L∗

F
) closed and thenX ∈Ap, i.e.π(X) = p.

(ii)⇒(i): First we prove that ifXn
o
→ X thenπ(X)≤ lim infn π(Xn). DefineZn :=

(infk≥n Xk)∧X and note thatX−Yn≤ Xn≤ X+Yn implies

X ≥ Zn =

(
inf
k≥n

Xk

)
∧X ≥

(
inf
k≥n

(−Yk)+X

)
∧X ↑ X

i.e.Zn ↑X. We actually have from (MON)Zn≤Xn impliesπ(Zn)≤ π(Xn) and from
(CFB) π(X) = limn π(Zn)≤ lim infn π(Xn) which was our first claim.
For Y ∈ LG considerAY = {ξ ∈ LF | π(ξ ) ≤ Y} and a net{Xα} ⊆ LF such

that Xα
σ(LF ,L∗

F
)

−→ X ∈ LF . Since LF satisfies the C-property, there existsYn ∈

Conv(Xαn,...) suchYn
o
→ X. The property (QCO) implies thatAY is convex and then

{Yn} ⊆AY. Applying the first step we get

π(X)≤ lim inf
n

π(Yn)≤Y i.e. X ∈AY

Standing assumptions on the spaces

(a) G ⊆F and the lattice LF (resp. LG ) satisfies the property(1F ) (resp 1G ).
Both LG and LF contains the constants as a vector subspace.

(b) The order continuous dual of(LF ,≥), denoted by L∗
F
= (LF ,≥)∗, is a lattice

( [2], Th. 8.28) that satisfies L∗
F
→֒ L1

F
and property(1F ).

(c) The space LF endowed with the weak topologyσ(LF ,L∗
F
) is a locally convex

Riesz space.
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The condition (c) requires that the order continuous dualL∗
F

is rich enough to
separate the points ofLF , so that(LF ,σ(LF ,L∗

F
)) becomes a locally convex TVS

and Proposition 1.1 can be applied.

Remark 1.5.Many important classes of spaces satisfy these conditions,such as
- TheLp-spaces,p∈ [1,∞]: LF = Lp

F
, L∗

F
= Lq

F
→֒ L1

F
.

- The Orlicz spacesLΨ for any Young functionΨ : LF = LΨ
F
, L∗

F
= LΨ ∗

F
→֒ L1

F
,

whereΨ∗ denotes the conjugate function ofΨ ;
- The Morse subspaceMΨ of the Orlicz spaceLΨ , for any continuous Young func-
tionΨ : LF = MΨ

F
, L∗

F
= LΨ ∗

F
→֒ L1

F
.

1.3.2 Statements of the dual results

Set

P =:

{
dQ
dP
|Q<< P andQ probability

}
=
{

ξ ′ ∈ L1
+ | EP[ξ ′] = 1

}

From now on we will write with a slight abuse of notationQ∈ L∗
F
∩P instead of

dQ
dP ∈ L∗

F
∩P. DefineK : LF × (L∗

F
∩P)→ L̄0

G
andR : L0

G
×L∗

F
as

K(X,Q) := inf
ξ∈LF

{π(ξ ) | EQ[ξ |G ]≥Q EQ[X|G ]} (1.4)

R(Y,ξ ′) := inf
ξ∈LF

{
π(ξ ) | EP[ξ ′ξ |G ]≥Y

}
. (1.5)

K is well defined onLF × (L∗
F
∩P). On the other hand the actual domain ofR is

not on the wholeL0
G
×L∗

F
but we must restrict to

Σ = {(Y,ξ ′) ∈ L0
G ×L∗F |∃ξ ∈ LF s.t.EP[ξ ′ξ |G ]≥Y}. (1.6)

Obviously(EP[ξ ′X|G ],ξ ′) ∈ Σ for everyX ∈ LF , ξ ′ ∈ L∗
F

. Notice thatK(X,Q) de-
pends onX only throughEQ[X|G ]. MoreoverR(EP[ξ ′X|G ],ξ ′)=R(EP[λ ξ ′X|G ],λ ξ ′)
for everyλ > 0. Thus we can considerR(EP[ξ ′X|G ],ξ ′), ξ ′ ≥ 0, ξ ′ 6= 0, always de-
fined on the normalized elementsQ∈ L∗

F
∩P.

It is easy to check that

EP

[
dQ
dP

ξ | G
]
≥ EP

[
dQ
dP

X | G

]
⇐⇒ EQ[ξ |G ]≥Q EQ[X|G ],

and forQ∈ L∗
F
∩P we deduce

K(X,Q) = R

(
EP

[
dQ
dP

X | G

]
,Q

)
.
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Remark 1.6.Since the order continuous functional onLF are contained inL1, then
Q(ξ ) := EQ[ξ ] is well defined and finite for everyξ ∈ LF andQ ∈ L∗

F
∩P. In

particular this and(1F ) imply thatEQ[ξ |G ] is well defined. Moreover, sinceL∗
F
→֒

L1
F

satisfies property(1F ) then dQ
dP 1A ∈ L∗

F
wheneverQ∈ L∗

F
andA∈F .

Theorem 1.2.Suppose thatσ(LF ,L∗
F
) satisfies the C-property and LF is order

complete Ifπ : LF → LG is (MON), (QCO), (REG) andσ(LF ,L∗
F
)-(LSC) then

π(X) = sup
Q∈L∗

F
∩P

K(X,Q). (1.7)

Theorem 1.3.If π : LF → LG is (MON), (QCO), (REG) andτ-(USC)⋆ then

π(X) = sup
Q∈L∗

F
∩P

K(X,Q). (1.8)

Notice that in (1.7), (1.8) thesupremumis taken over the setL∗
F
∩P. In the

following corollary, proved in Section 1.6.2, we show that we can match the con-
ditional convex dual representation, restricting our optimization problem over the
set

PG =:

{
dQ
dP
|Q∈P andQ= P onG

}
.

Clearly, whenQ∈PG thenL̄0(Ω ,G ,P) = L̄0(Ω ,G ,Q) and comparison ofG mea-
surable random variables is understood to hold indifferently for P orQalmost surely.

Corollary 1.1. Under the same hypothesis of Theorem 1.2 (resp. Theorem 1.3), sup-
pose that for X∈ LF there existsη ∈ LF and δ > 0 such thatP(π(η) + δ <
π(X)) = 1. Then

π(X) = sup
Q∈L∗

F
∩PG

K(X,Q).

1.4 Possible applications

1.4.1 Examples of quasiconvex maps popping up from the
financial world

As a further motivation for our findings, we give some examples of quasiconvex
(quasiconcave) conditional maps arising in economics and finance. The first one is
studied in detail in the second chapter: as explained in the introduction this was
the main reason that moved us to this research and the complexity of the theme
deserves much space to be dedicated. The analysis of DynamicRisk Measures and
Acceptability Indices was out of the scope of this thesis andfor this reason we limit
ourselves to give some simple concrete examples. For sure the questions arisen on
the meaning of diversification will play a central role in theMath Finance academic
world in the next few years.
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Certainty Equivalent in dynamic settings

Consider a stochastic dynamic utility

u : R×[0,∞)×Ω →R

We introduce theConditional Certainty Equivalent(CCE) of a random variable
X ∈ Lt , as the random variableπ(X) ∈ Ls solution of the equation:

u(π(X),s) = EP [u(X, t)|Fs] ,

whereLt andLs are appropriate lattices of random variables. Thus the CCE defines
thevaluationoperator

π : Lt → Ls, π(X) = u−1 (EP [u(X, t)|Fs]) ,s).

The CCE, as a mapπ : Lt → Ls is monotone, quasi concave, regular.

Dynamic Risk Measures

As already mentioned the dual representation of a conditional convexrisk measure
can be found in [17]. The findings of the present paper show thedual representation
of conditionalquasiconvexrisk measures when cash additivity does not hold true.
For a better understanding we give a concrete example: considert ∈ [0,T] and a non
empty convex setCT ∈ L∞(Ω ,FT ,P) such thatCT +L∞

+⊆CT . The setCT represents
the future positions considered acceptable by the supervising agency. For allm∈ R
denote byvt(m,ω) the price at timet of m euros at timeT. The functionvt(m, ·)
will be in generalFt measurable as in the case of stochastic discount factor where
vt(m,ω) = Dt(ω)m. By adapting the definitions in the static framework of [3] and
[11] we set:

ρCT ,vt (X)(ω) = ess inf
Y∈L0

Ft

{vt(Y,ω) | X+Y ∈CT}.

Whenvt is linear, thenρC,vt is a convex monetary dynamic risk measure, but the
linearity ofvt may fail when zero coupon bonds with maturityT are illiquid. It seems
anyway reasonable to assume thatvt(·,ω) is increasing and upper semicontinuous
andvt(0,ω) = 0, forP almost everyω ∈Ω . In this case

ρCT ,vt (X)(ω) = vt(ess inf
Y∈L0

Ft

{Y | X+Y ∈CT},ω) = vt(ρCT (X),ω),

whereρCT (X) is the convex monetary dynamic risk measure induced by the set CT .
Thus in generalρCT ,vt is neither convex nor cash additive, but it is quasiconvex and
eventually cash subadditive (under further assumptions onvt ).
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Acceptability Indices

As studied in [12] the index of acceptability is a mapα from a space of random
variablesL(Ω ,F ,P) to [0,+∞) which measures the performance or quality of the
randomX which may be the terminal cash flow from a trading strategy. Associ-
ated with each levelx of the index there is a collection of terminal cash flows
Ax = {X ∈ L|α(X)≥ x} that are acceptable at this level . The authors in [12] suggest
four axioms as the stronghold for an acceptability index in the static case: quasicon-
cavity (i.e. the setAx is convex for everyx∈ [0,+∞)), monotonicity, scale invari-
ance and the Fatou property. It appears natural to generalize these kind of indices to
the conditional case and to this aim we propose a couple of basic examples:

i) Conditional Gain Loss Ratio: letG ⊆F

CGLR(X|G ) =
EP[X|G ]

EP[X−|G ]
1{EP[X|G ]>0}.

This measure is clearly monotone, scale invariant, and welldefined onL1(Ω ,F ,P).
It can be proved that it is continuous from below and quasiconcave.

ii) Conditional Coherent Risk-Adjusted Return on Capital:let G ∈F and sup-
pose a coherent conditional risk measureρ : L(Ω ,F ,P)→ L0(Ω ,G ,P) is given
with L(Ω ,F ,P) ⊆ L1(Ω ,F ,P) is any vector space. We define

CRARoC(X|G ) =
EP[X|G ]

ρ(X)
1{EP[X|G ]>0}.

We use the convention thatCRARoC(X|G ) = +∞ on theG -measurable set where
ρ(X)≤ 0. AgainCRARoC(·|G ) is well defined on the spaceL(Ω ,F ,P) and takes
values in the space of extended random variables; moreover is monotone, quasi-
concave, scale invariant and continuous from below whenever ρ is continuous from
above.

1.4.2 Back to the representation of convex risk measures

In the following Lemma and Corollary, proved in Section 1.5.2, we show that the
(MON) property implies that the constraintEQ[ξ |G ]≥Q EQ[X|G ] may be restricted
to EQ[ξ |G ] =Q EQ[X|G ] and that we may recover the dual representation of a dy-
namic risk measure. WhenQ∈ L∗

F
∩PG the previous inequality/equality may be

equivalently intendedQ-a.s. orP-a.s. and so we do not need any more to emphasize
this in the notations.

Lemma 1.1.Suppose that for every Q∈ L∗
F
∩PG andξ ∈ LF we have EQ[ξ |G ] ∈

LF . If Q∈ L∗
F
∩PG and if π : LF → LG is (MON) and (REG) then

K(X,Q) = inf
ξ∈LF

{π(ξ ) | EQ[ξ |G ] = EQ[X|G ]} . (1.9)
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Proof. Let us denote withr(X,Q) the right hand side of equation (3.20) and
notice thatK(X,Q) ≤ r(X,Q). By contradiction, suppose thatP(A) > 0 where
A=: {K(X,Q)< r(X,Q)}. As shown in Lemma 1.4 iv), there exists a r.v.ξ ∈ LF

satisfying the following conditions

• EQ[ξ |G ]≥Q EQ[X|G ] andQ(EQ[ξ |G ]> EQ[X|G ])> 0.
• K(X,Q)(ω)≤ π(ξ )(ω)< r(X,Q)(ω) for P-almost everyω ∈ B⊆ A and

P(B)> 0.

SetZ =Q EQ[ξ −X|G ]. By assumption,Z∈ LF and it satisfiesZ≥Q 0 and, since
Q∈PG , Z≥ 0. Then, thanks to (MON),π(ξ )≥ π(ξ −Z).
FromEQ[ξ −Z|G ] =Q EQ[X|G ] we deduce:

K(X,Q)(ω)≤ π(ξ )(ω)< r(X,Q)(ω)≤ π(ξ −Z)(ω) for P-a.e.ω ∈ B,

which is a contradiction.

Definition 1.5. The conditional Fenchel convex conjugateπ∗ of π is given, forQ∈
L∗

F
∩PG , by the extended valuedG−measurable random variable:

π∗(Q) = sup
ξ∈LF

{EQ[ξ |G ]−π(ξ )}.

A mapπ : LF → LG is said to be

(CAS) cash invariant if for all X∈ LF andΛ ∈ LG

π(X+Λ) = π(X)+Λ .

In the literature [36], [17], [29] a mapρ : LF → LG that is monotone (decreas-
ing), convex, cash invariant and regular is called aconvex conditional (or dynamic)
risk measure. As a corollary of our main theorem, we deduce immediately the dual
representation of a mapρ(·) =: π(−·) satisfying (CAS), in terms of the Fenchel
conjugateπ∗, in agreement with [17]. Of course, this is of no surprise since the
(CAS) and (QCO) properties imply convexity, but it supportsthe correctness of our
dual representation.

Corollary 1.2. Suppose that for every Q∈L∗
F
∩PG andξ ∈LF we have EQ[ξ |G ]∈

LF .
(i) If Q ∈ L∗

F
∩PG and if π : LF → LG is (MON), (REG) and (CAS) then

K(X,Q) = EQ[X|G ]−π∗(Q). (1.10)

(ii) Under the same assumptions of Theorem 1.2 and ifπ satisfies in addition (CAS)
then

π(X) = sup
Q∈L∗

F
∩PG

{EQ[X|G ]−π∗(Q)} .

so thatρ(·) = π(−·) is a conditional convex risk measure and can be represented
as
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ρ(X) = sup
Q∈L∗

F
∩PG

{EQ[−X|G ]−ρ∗(−Q)} .

with ρ∗(−Q) given by

ρ∗(−Q) = sup
ξ∈LF

{EQ[−ξ |G ]−ρ(ξ )} .

Proof. The (CAS) property implies that for everyX ∈ LF andδ >0,P(π(X−2δ )+
δ < π(X)) = 1. So the hypothesis of Corollary 1.1 holds true and we only need to
prove (3.23), since (ii) is a consequence of (i) and Corollary 1.1. LetQ∈ L∗

F
∩PG .

Applying Lemma 1.1 we deduce:

K(X,Q) = inf
ξ∈LF

{π(ξ ) | EQ[ξ |G ] =Q EQ[X|G ]}

= EQ[X|G ]+ inf
ξ∈LF

{π(ξ )−EQ[X|G ] | EQ[ξ |G ] =Q EQ[X|G ]}

= EQ[X|G ]+ inf
ξ∈LF

{π(ξ )−EQ[ξ |G ] | EQ[ξ |G ] =Q EQ[X|G ]}

= EQ[X|G ]− sup
ξ∈LF

{EQ[ξ |G ]−π(ξ ) | EQ[ξ |G ] =Q EQ[X|G ]}

= EQ[X|G ]−π∗(Q),

where the last equality follows fromQ∈PG and

π∗(Q) = sup
ξ∈LF

{EQ[ξ +EQ[X− ξ |G ] | G ]−π(ξ +EQ[X− ξ |G ])}

= sup
η∈LF

{EQ[η |G ]−π(η) | η = ξ +EQ[X− ξ |G ]}

≤ sup
ξ∈LF

{EQ[ξ |G ]−π(ξ ) | EQ[ξ |G ] =Q EQ[X|G ]} ≤ π∗(Q).

1.5 Preliminaries

In the sequel of this section it is always assumed thatπ : LF → LG satisfies (REG).

1.5.1 Properties ofR(Y,ξ ′)

We remind thatΣ denotes the actual domain ofRas given in (1.6). Given an arbitrary
(Y,ξ ′) ∈ Σ , we haveR(Y,ξ ′) = inf A (Y,ξ ′) where

A (Y,ξ ′) := {π(ξ ) |ξ ∈ LF , EP[ξ ′ξ |G ]≥Y}.

By conventionR(Y,ξ ′) = +∞ for every(Y,ξ ′) ∈ (L0
G
×L∗

F
)\Σ
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Lemma 1.2.For every(Y,ξ ′)∈ Σ the setA (Y,ξ ′) is downward directed and there-
fore there exists a sequence{ηm}

∞
m=1∈ LF such that EP[ξ ′ηm|G ]≥Y and as m↑∞,

π(ηm) ↓ R(Y,ξ ′).

Proof. We have to prove that for everyπ(ξ1),π(ξ2)∈A (Y,ξ ′) there existsπ(ξ ∗)∈
A (Y,ξ ′) such thatπ(ξ ∗)≤min{π(ξ1),π(ξ2)}. Consider theG -measurable setG=
{π(ξ1)≤ π(ξ2)} then

min{π(ξ1),π(ξ2)}= π(ξ1)1G+π(ξ2)1GC = π(ξ11G+ ξ21GC) = π(ξ ∗),

whereξ ∗ = ξ11G+ ξ21GC. HenceEP[ξ ′ξ ∗|G ] = EP[ξ ′ξ1|G ]1G+EP[ξ ′ξ2|G ]1GC ≥
Y so that we can deduceπ(ξ ∗) ∈A (Y,ξ ′).

Lemma 1.3.Properties of R(Y,ξ ′).
i) R(·,ξ ′) is monotone, for everyξ ′ ∈ L∗

F
.

ii) R(λY,λ ξ ′) = R(Y,ξ ′) for anyλ > 0, Y ∈ L0
G

andξ ′ ∈ L∗
F

.
iii) For every A∈ G , (Y,ξ ′) ∈ Σ

R(Y,ξ ′)1A = inf
ξ∈LF

{
π(ξ )1A | EP[ξ ′ξ |G ]≥Y

}
(1.11)

= inf
ξ∈LF

{
π(ξ )1A | EP[ξ ′ξ 1A|G ]≥Y1A

}
= R(Y1A,ξ ′)1A. (1.12)

iv) R(Y,ξ ′) is jontly quasiconcave on L0
G
×L∗

F
.

v) infY∈L0
G

R(Y,ξ ′1) = infY∈L0
G

R(Y,ξ ′2) for everyξ ′1,ξ
′
2 ∈ L∗

F
.

vi) For every Y1,Y2 ∈ L0
G

(a) R(Y1,ξ ′)∧R(Y2,ξ ′) = R(Y1∧Y2,ξ ′)
(b) R(Y1,ξ ′)∨R(Y2,ξ ′) = R(Y1∨Y2,ξ ′)

vii) The map R(·,ξ ′) is quasi-affine in the sense that for every Y1,Y2,Λ ∈ L0
G

and
0≤Λ ≤ 1, we have

R(ΛY1+(1−Λ)Y2,ξ ′)≥ R(Y1,ξ ′)∧R(Y2,ξ ′) (quasiconcavity)
R(ΛY1+(1−Λ)Y2,ξ ′)≤ R(Y1,ξ ′)∨R(Y2,ξ ′) (quasiconvexity).

Proof. (i) and (ii) are trivial consequences of the definition.
(iii) By definition of the essential infimum one easily deduce(1.11). To prove (1.12),
for everyξ ∈ LF such thatEP[ξ ′ξ 1A|G ]≥Y1A we define the random variableη =
ξ 1A+ ζ1AC whereEP[ξ ′ζ |G ]≥Y. ThenEP[ξ ′η |G ]≥Y and we can conclude

{
η1A | η ∈ LF , EP[ξ ′η |G ]≥Y

}
=
{

ξ 1A | ξ ∈ LF , EP[ξ ′ξ 1A|G ]≥Y1A
}

Hence from (1.11) and (REG):

1AR(Y,ξ ′) = inf
η∈LF

{
π(η1A)1A | EP[ξ ′η |G ]≥Y

}

= inf
ξ∈LF

{
π(ξ 1A)1A | EP[ξ ′ξ 1A|G ]≥Y1A

}

= inf
ξ∈LF

{
π(ξ )1A | EP[ξ ′ξ 1A|G ]≥Y1A

}
.
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The second equality in (1.12) follows in a similar way since again

{
η1A | η ∈ LF , EP[ξ ′η |G ]≥Y

}
=
{

ξ 1A | ξ ∈ LF , EP[ξ ′ξ |G ]≥Y1A
}

(iv) Consider(Y1,ξ ′1),(Y2,ξ ′2) ∈ L0
G
×L∗

F
andλ ∈ (0,1). Define(Y,ξ ′) = (λY1+

(1− λ )Y2,λ ξ ′1 + (1− λ )ξ ′2) and notice that for everyA ∈ G the set{ξ ∈ LF |
E[ξ ′ξ 1A]≥ E[Y1A]} is contained in

{ξ ∈ LF | E[ξ ′1ξ 1A]≥ E[Y11A]}∪{ξ ∈ LF | E[ξ ′2ξ 1A]≥ E[Y21A]}.

Taking the intersection over allA ∈ G we get that{ξ ∈ LF | E[ξ ′ξ |G ] ≥ Y} is
included in

{ξ ∈ LF | E[ξ ′1ξ |G ]≥Y1}∪{ξ ∈ LF | E[ξ ′2ξ |G ]≥Y2},

which impliesR(Y,ξ ′)≥ R(Y1,ξ ′1)∧R(Y2,ξ ′2).
(v) This is a generalization of Theorem 2 (H2) in [10]. In facton one hand

R(Y,ξ ′)≥ inf
ξ∈LF

π(ξ ) ∀Y ∈ L0
F

implies
inf

Y∈L0
G

R(Y,ξ ′)≥ inf
ξ∈LF

π(ξ ).

On the other

π(ξ )≥ R(EP[ξ ξ ′|G ],ξ ′)≥ inf
Y∈L0

G

R(Y,ξ ′) ∀ξ ∈ LF

implies
inf

Y∈L0
G

R(Y,ξ ′)≤ inf
ξ∈LF

π(ξ ).

vi) a): SinceR(·,ξ ′) is monotone, the inequalitiesR(Y1,ξ ′)∧R(Y2,ξ ′) ≥ R(Y1 ∧
Y2,ξ ′) andR(Y1,ξ ′)∨R(Y2,ξ ′)≤ R(Y1∨Y2,ξ ′) are always true.
To show the opposite inequalities, define theG -measurable sets:B := {R(Y1,ξ ′)≤
R(Y2,ξ ′)} andA := {Y1≤Y2} so that

R(Y1,ξ ′)∧R(Y2,ξ ′) = R(Y1,ξ ′)1B+R(Y2,ξ ′)1BC ≤ R(Y1,ξ ′)1A+R(Y2,ξ ′)1AC

(1.13)
R(Y1,ξ ′)∨R(Y2,ξ ′) = R(Y1,ξ ′)1BC +R(Y2,ξ ′)1B≥ R(Y1,ξ ′)1AC +R(Y2,ξ ′)1A

Set:D(A,Y) = {ξ 1A | ξ ∈ LF , EP[ξ ′ξ 1A|G ]≥Y1A} and check that

D(A,Y1)+D(AC,Y2) =
{

ξ ∈ LF | EP[ξ ′ξ |G ]≥Y11A+Y21AC

}
:= D

From (3.10) and using (1.12) we get:
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R(Y1,ξ ′)∧R(Y2,ξ ′)≤ R(Y1,ξ ′)1A+R(Y2,ξ ′)1AC

= inf
ξ1A∈D(A,Y1)

{π(ξ 1A)1A}+ inf
η1AC∈D(AC,Y2)

{π(η1AC)1AC}

= inf
ξ1A∈D(A,Y1)

η1AC∈D(AC,Y2)

{π(ξ 1A)1A+π(η1AC)1AC}

= inf
(ξ1A+η1AC)∈D(A,Y1)+D(AC,Y2)

{π(ξ 1A+η1AC)}

= inf
ξ∈D
{π(ξ )}= R(Y11A+Y21AC,ξ ′) = R(Y1∧Y2,ξ ′).

Simile modo:vi) b).
(vii) Follows from point (vi) and (i).

1.5.2 Properties of K(X,Q)

For ξ ′ ∈ L∗
F
∩ (L1

F
)+ andX ∈ LF

R(EP[ξ ′X|G ],ξ ′) = inf
ξ∈LF

{
π(ξ ) | EP[ξ ′ξ |G ]≥ EP[ξ ′X|G ]

}
= K(X,ξ ′).

Notice thatK(X,ξ ′)=K(X,λ ξ ′) for everyλ > 0 and thus we can considerK(X,ξ ′),
ξ ′ 6= 0, always defined on the normalized elementsQ∈ L∗

F
∩P.

Moreover, it is easy to check that:

EP

[
dQ
dP

ξ | G
]
≥ EP

[
dQ
dP

X | G

]
⇐⇒ EQ[ξ |G ]≥Q EQ[X|G ].

ForQ∈ L∗
F
∩P we then set:

K(X,Q) := inf
ξ∈LF

{π(ξ ) | EQ[ξ |G ]≥Q EQ[X|G ]}= R

(
EP

[
dQ
dP

X | G

]
,
dQ
dP

)
.

Lemma 1.4.Properties of K(X,Q). Let Q∈ L∗
F
∩P and X∈ LF .

i) K(·,Q) is monotone and quasi affine.
ii) K (X, ·) is scaling invariant: K(X,ΛQ) = K(X,Q) for everyΛ ∈ (L0

G
)+.

iii) K (X,Q)1A = infξ∈LF
{π(ξ )1A | EQ[ξ 1A|G ]≥Q EQ[X1A|G ]} for all A ∈ G .

iv) There exists a sequence
{

ξ Q
m

}∞

m=1
∈ LF such that

EQ[ξ Q
m |G ]≥Q EQ[X|G ] ∀m≥ 1, π(ξ Q

m) ↓ K(X,Q) as m↑ ∞.

v) The setK =
{

K(X,Q) |Q∈ L∗
F
∩P

}
is upward directed, i.e. for every K(X,Q1),

K(X,Q2)∈K there exists K(X,Q̂)∈K such that K(X,Q̂)≥K(X,Q1)∨K(X,Q2).
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vi) Let Q1 and Q2 be elements of L∗
F
∩P and B∈ G . If dQ1

dP 1B = dQ2
dP 1B then

K(X,Q1)1B = K(X,Q2)1B.

Proof. The monotonicity property in (i), (ii) and (iii) are trivial; from Lemma 1.3 v)
it follows thatK(·,Q) is quasi affine; (iv) is an immediate consequence of Lemma
3.1.

(v) Define F = {K(X,Q1) ≥ K(X,Q2)} and let Q̂ given by dQ̂
dP := 1F

dQ1
dP +

1FC
dQ2
dP ; up to a normalization factor (from property (ii)) we may supposeQ̂ ∈

L∗
F
∩P. We need to show that

K(X,Q̂) = K(X,Q1)∨K(X,Q2) = K(X,Q1)1F +K(X,Q2)1FC .

FromEQ̂[ξ |G ] =Q̂ EQ1[ξ |G ]1F +EQ2[ξ |G ]1FC we getEQ̂[ξ |G ]1F =Q1 EQ1[ξ |G ]1F

andEQ̂[ξ |G ]1FC =Q2 EQ2[ξ |G ]1FC. In the second place, fori = 1,2, consider the
sets

Â= {ξ ∈ LF | EQ̂[ξ |G ]≥Q̂ EQ̂[X|G ]} Ai = {ξ ∈ LF | EQi [ξ |G ]≥Qi EQi [X|G ]}.

For everyξ ∈ A1 defineη = ξ 1F +X1FC

Q1 << P ⇒ η1F =Q1 ξ 1F ⇒ EQ̂[η |G ]1F ≥Q̂ EQ̂[X|G ]1F

Q2 << P ⇒ η1FC =Q2 X1FC ⇒ EQ̂[η |G ]1FC =Q̂ EQ̂[X|G ]1FC

Thenη ∈ Â andπ(ξ )1F = π(ξ 1F)−π(0)1FC = π(η1F)−π(0)1FC = π(η)1F .
Viceversa, for everyη ∈ Â define ξ = η1F + X1FC. Then ξ ∈ A1 and again
π(ξ )1F = π(η)1F . Hence

inf
ξ∈A1

π(ξ )1F = inf
η∈Â

π(η)1F .

In a similar way: infξ∈A2
π(ξ )1FC = infη∈Â π(η)1FC and we can finally deduce

K(X,Q1)∨K(X,Q2) = K(X,Q̂).
(vi). By the same argument used in (v), it can be shown that infξ∈A1

π(ξ )1B =
infξ∈A2

π(ξ )1B and the thesis.

1.5.3 Properties of H(X) and an uniform approximation

ForX ∈ LF we set

H(X) := sup
Q∈L∗

F
∩P

K(X,Q) = sup
Q∈L∗

F
∩P

inf
ξ∈LF

{π(ξ ) | EQ[ξ |G ]≥Q EQ[X|G ]}

and notice that for allA∈ G
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H(X)1A = sup
Q∈L∗

F
∩P

inf
ξ∈LF

{π(ξ )1A | EQ[ξ |G ]≥Q EQ[X|G ]} .

In the following Lemma we show thatH is a good candidate to reach the dual
representation.

Lemma 1.5.Properties of H(X). Let X∈ LF .
i) H is (MON) and (QCO)
ii) H (X1A)1A = H(X)1A for any A∈ G i.e. H is (REG).
iii) There exist a sequence

{
Qk
}

k≥1 ∈ L∗
F

and, for each k≥ 1, a sequence{
ξ Qk

m

}
m≥1
∈ LF satisfying EQk [ξ Qk

m | G ]≥Qk EQk[X|G ] and

π(ξ Qk

m ) ↓ K(X,Qk) as m↑ ∞, K(X,Qk) ↑ H(X) as k↑ ∞, (1.14)

H(X) = lim
k→∞

lim
m→∞

π(ξ Qk

m ). (1.15)

Proof. i) (MON) and (QCO) follow from Lemma 1.4 (i); ii) follows applying the
same argument used in equation (1.12); the other property isan immediate con-
sequence of what proved in Lemma 1.4 and 3.1 regarding the properties of being
downward directed and upward directed.

The following Proposition is an uniform approximation result which stands under
stronger assumptions, that are satisfied, for example, byLp spaces,p∈ [1,+∞]. We
will not use this Proposition in the proof of Theorem 1.2, even though it can be
useful for understanding the heuristic outline of its proof, as sketched in Section
1.6.1.

Proposition 1.3.Suppose that L∗F →֒ L1
F

is a Banach Lattice with the property: for
any sequence{ηn}n ⊆ (L∗F)+, ηnηm = 0 for every n6= m, there exists a sequence
{αk}k⊂ (0,+∞) such that∑n αnηn ∈ (L∗F)+. Then for everyε > 0 there exists Qε ∈
L∗F ∩P such that

H(X)−K(X,Qε)< ε (1.16)

on the set F∞ = {H(X)<+∞}.

Proof. From Lemma 1.5, eq. (1.14), we know that there exists a sequence Qk ∈
L∗

F
∩P such that:

K(X,Qk) ↑ H(X), ask ↑ ∞.

Define for eachk≥ 1 the sets

Dk =: {ω ∈ F∞ | H(X)(ω)−K(X,Qk)(ω)≤ ε}

and note that
P(F∞ \Dk) ↓ 0 ask ↑ ∞. (1.17)

Consider the disjoint family{Fk}k≥1 of G−measurable sets:F1 = D1, Fk = Dk \

Dk−1, k ≥ 2. By induction one easily shows that
n⋃

k=1
Fk = Dn for all n≥ 1. This
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and (1.17) imply thatP
(

F∞ \
∞⋃

k=1
Fk

)
= 0. Consider the sequence

{
dQk
dP 1Fk

}
. From

the assumption onL∗
F

we may find a sequence{αk}k ⊂ (0,+∞) such thatdQ̃ε
dP =:

∑∞
k=1 αk

dQk
dP 1Fk ∈ L∗

F
→֒ L1

F
. Hence,Q̃ε ∈ (L∗

F
)+ ∩ (L1

F
)+ and, since{Fk}k≥1 are

disjoint,
dQ̃ε
dP

1Fk = αk
dQk

dP
1Fk, for anyk≥ 1.

Normalize Q̃ε and denote withQε = λ Q̃ε ∈ L∗
F
∩P the element satisfying‖

dQε
dP ‖L1

F
= 1. Applying Lemma 1.4 (vi) we deduce that for anyk≥ 1

K(X,Qε)1Fk = K(X,Q̃ε)1Fk = K(X,αkQk)1Fk = K(X,Qk)1Fk,

and
H(X)1Fk−K(X,Qε)1Fk = H(X)1Fk−K(X,Qk)1Fk ≤ ε1Fk.

The condition (3.7) is then a consequence of equation (1.17).

1.5.4 On the mapπA

Consider the following

Definition 1.6. Givenπ : LF → LG we define for everyA∈ G , the map

πA : LF →R by πA(X) := esssup
ω∈A

π(X)(ω).

Proposition 1.4.Under the same assumptions of Theorem 1.2 (resp. Theorem 1.3)
and for any A∈ G

πA(X) = sup
Q∈L∗

F
∩P

inf
ξ∈LF

{πA(ξ ) | EQ[ξ |G ]≥Q EQ[X|G ]} . (1.18)

Proof. Notice that the mapπA inherits fromπ the properties (MON) and (QCO).
1) Under the assumptions of Theorem 1.2, applying Proposition 1.2 we get that

π is (CFB) and this obviously implies thatπA is (CFB). Applying toπA Proposition
1.2 , which holds also for real valued maps, we deduce thatπA is σ(LF ,L∗

F
)-(LSC).

2) Under the assumptions of Theorem 1.3 we prove thatπA is τ-(USC) by show-
ing thatBc := {ξ ∈ LF |πA(ξ )< c} is τ open, for any fixedc∈R. W.l.o.g.Bc 6= /0.
If we fix an arbitraryη ∈Bc, we may findδ > 0 such thatπA(η)< c− δ . Define

B := {ξ ∈ LF | π(ξ )< (c− δ )1A+(π(η)+ δ )1AC}.

Since(c− δ )1A + (π(η) + δ )1AC ∈ LG and π is (USC) we deduce thatB is τ
open. MoreoverπA(ξ ) ≤ c− δ for everyξ ∈ B, i.e. B ⊆Bc, andη ∈ B since
π(η)< c− δ onA andπ(η)< π(η)+ δ onAC.
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We can apply Proposition 1.1 and get the representation ofπA both in the (LSC)
and (USC) case. Only notice that in caseπA is (USC) the sup can be replaced by a
max. Moreover

πA(X) = sup
Q∈L∗

F
∩P

inf
ξ∈LF

{πA(ξ ) | EQ[ξ ]≥ EQ[X]}

≤ sup
Q∈L∗

F
∩P

inf
ξ∈LF

{πA(ξ ) | EQ[ξ |G ]≥Q EQ[X|G ]} ≤ πA(X).

1.6 Proofs of the main results

We remind that a partitionΓ =
{

AΓ} is a collection of measurable sets such that
P(AΓ1 ∩AΓ2) = 0 andP(∪AΓ∈Γ AΓ ) = 1. Notations: in the following, we will only
considerfinitepartitionsΓ =

{
AΓ} of G measurable setsAΓ ∈ Γ and we set

πΓ (X) : = ∑
AΓ∈Γ

πAΓ (X)1AΓ ,

KΓ (X,Q) : = inf
ξ∈LF

{
πΓ (ξ ) | EQ[ξ |G ]≥Q EQ[X|G ]

}

HΓ (X) : = sup
Q∈L∗

F
∩P

KΓ (X,Q)

1.6.1 Outline of the proof

We anticipate an heuristic sketch of the proof of Theorem 1.2, pointing out the
essential arguments involved in it and we defer to the following section the details
and the rigorous statements.

The proof relies on the equivalence of the following conditions:

1. π(X) = H(X).
2. ∀ε > 0,∃Qε ∈ L∗

F
∩P such thatπ(X)−K(X,Qε)< ε.

3. ∀ε > 0,∃Qε ∈ L∗
F
∩P such that

{ξ ∈ LF | EQε [ξ |G ]≥Qε EQε [X|G ]} ⊆ {ξ ∈ LF | π(ξ )> π(X)− ε}. (1.19)

Indeed, 1.⇒ 2. is a consequence of Proposition 1.3 (when it holds true); 2.⇒ 3.
follows from the observation thatπ(X)<K(X,Qε)+ε impliesπ(X)< π(ξ )+ε for
everyξ satisfyingEQε [ξ |G ]≥Qε EQε [X|G ]; 3.⇒ 1. is implied by the inequalities:

π(X)− ε ≤ inf{π(ξ ) | π(ξ )> π(X)− ε}
≤ inf

ξ∈LF

{π(ξ ) | EQε [ξ |G ]≥Qε EQε [X|G ]} ≤ H(X)≤ π(X).
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Unfortunately, we cannot prove Item 3. directly, relying onHahn-Banach Theorem,
as it happened in the real case (see the proof of Theorem 1.1, equation (1.3), in
Appendix). Indeed, the complement of the set in the RHS of (1.19) is not any more
a convex set - unlessπ is real valued - regardless of the continuity assumption made
on π .

Also the method applied in the conditional convex case [17] can not be used here,
since the mapX→ EP[π(X)] there adopted preserves convexity but not quasicon-
vexity.

The idea is then to apply an approximation argument and the choice of approxi-
matingπ(·) by πΓ (·), is forced by the need to preserve quasiconvexity.

I The first step is to prove (see Proposition 1.5) that:HΓ (X) = πΓ (X). This is
based on the representation of thereal valuedquasiconvex mapπA in Proposition
1.4. Therefore, the assumptions (LSC), (MON), (REG) and (QCO) onπ are here
all needed.

II Then it is a simple matter to deduceπ(X) = infΓ πΓ (X) = infΓ HΓ (X), where
the inf is taken with respect to all finite partitions.

III As anticipated in (C.3), the last step, i.e. proving thatinfΓ HΓ (X) = H(X), is
more delicate. It can be shown easily that is possible to approximateH(X) with
K(X,Qε) on a setAε of probability arbitrarily close to 1. However, we need the
following uniformapproximation: For anyε > 0 there existsQε ∈ L∗

F
∩P such

that for any finite partitionΓ we haveHΓ (X)−KΓ (X,Qε) < ε on the same set
Aε . This key approximation result, based on Lemma 1.8, shows that the element
Qε does not depend on the partition and allows us (see equation (1.26)) to con-
clude the proof .

1.6.2 Details

The following two lemmas are applications of measure theory

Lemma 1.6.For every Y∈ L0
G

there exists a sequenceΓ (n) of finite partitions such
that∑Γ (n)

(
supAΓ (n) Y

)
1AΓ (n) converges in probability, andP-a.s., to Y .

Proof. Fix ε,δ > 0 and consider the partitionsΓ (n) = {An
0,A

n
1, ...A

n
n2n+1+1

} where

An
0 = {Y ∈ (−∞,−n]}

An
j =

{
Y ∈

(
−n+

j−1
2n ,−n+

j
2n

]}
∀ j = 1, ...,n2n+1

An
n2n+1+1 = {Y ∈ (n,+∞)}

SinceP(An
0∪An

n2n+1+1
)→ 0 asn→ ∞, we considerN such thatP(AN

0 ∪AN
N2N+1

)≤

1− ε. Moreover we may findM such that 1
2M < δ , and hence forΓ = Γ (M∨N) we

have:
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P

{
ω ∈Ω | ∑

AΓ∈Γ

(
sup
AΓ

Y
)
1AΓ (ω)−Y(ω)< δ

}
> 1− ε. (1.20)

Lemma 1.7.For each X∈ LF and Q∈ L∗
F
∩P

inf
Γ

KΓ (X,Q) = K(X,Q)

where theinfimum is taken with respect to all finite partitionsΓ .

Proof.

inf
Γ

KΓ (X,Q) = inf
Γ

inf
ξ∈LF

{
πΓ (ξ ) | EQ[ξ |G ]≥Q EQ[X|G ]

}

= inf
ξ∈LF

{
inf
Γ

πΓ (ξ ) | EQ[ξ |G ]≥Q EQ[X|G ]

}

= inf
ξ∈LF

{π(ξ ) | EQ[ξ |G ]≥Q EQ[X|G ]}= K(X,Q). (1.21)

where the first equality in (1.21) follows from the convergence shown in Lemma
1.6.

The following already mentioned key result is proved in the Appendix, for it
needs a pretty long argument.

Lemma 1.8.Let X∈ LF and let P and Q be arbitrary elements of L∗
F
∩P. Suppose

that there exists B∈ G satisfying: K(X,P)1B >−∞, πB(X)<+∞ and

K(X,Q)1B≤ K(X,P)1B+ ε1B,

for someε ≥ 0. Then for every partitionΓ = {BC,Γ̃ }, whereΓ̃ is a partition of B,
we have

KΓ (X,Q)1B≤ KΓ (X,P)1B+ ε1B.

SinceπΓ assumes only a finite number of values, we may apply Proposition 1.4
and deduce the dual representation ofπΓ .

Proposition 1.5.Suppose that the assumptions of Theorem 1.2 (resp. Theorem 1.3)
hold true andΓ is a finite partition. Then:

HΓ (X) = πΓ (X)≥ π(X) (1.22)

and therefore
inf
Γ

HΓ (X) = π(X).

Proof. First notice thatKΓ (X,Q)≤HΓ (X)≤ πΓ (X) for all Q∈ L∗
F
∩P. Consider

the sigma algebraG Γ := σ(Γ )⊆ G , generated by the finite partitionΓ . Hence from
Proposition 1.4 we have for everyAΓ ∈ Γ
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πAΓ (X) = sup
Q∈L∗

F
∩P

inf
ξ∈LF

{πAΓ (ξ ) | EQ[ξ |G ]≥Q EQ[X|G ]} . (1.23)

MoreoverHΓ (X) is constant onAΓ since it isG Γ -measurable as well. Using the
fact thatπΓ (·) is constant on eachAΓ , for everyAΓ ∈ Γ we then have:

HΓ (X)1AΓ = sup
Q∈L∗

F
∩P

inf
ξ∈LF

{
πΓ (ξ )1AΓ | EQ[ξ |G ]≥Q EQ[X|G ]

}

= sup
Q∈L∗

F
∩P

inf
ξ∈LF

{πAΓ (ξ )1AΓ | EQ[ξ |G ]≥Q EQ[X|G ]}

= πAΓ (X)1AΓ = πΓ (X)1AΓ (1.24)

where the first equality in (1.24) follows from (1.23). The remaining statement is a
consequence of (1.22) and Lemma 1.6

Proof (Proofs of Theorems 1.2 and 1.3).Obviouslyπ(X)≥H(X), sinceX satisfies
the constraints in the definition ofH(X).

Step 1.First we assume thatπ is uniformly bounded, i.e. there existsc> 0 such
that for allX ∈ LF |π(X)| ≤ c. ThenH(X)>−∞.

From Lemma 1.5, eq. (1.14), we know that there exists a sequenceQk ∈ L∗
F
∩P

such that:
K(X,Qk) ↑ H(X), ask ↑ ∞.

Therefore, for anyε > 0 we may findQε ∈ L∗
F
∩P andAε ∈ G , P(Aε) > 1− ε

such that
H(X)1Aε −K(X,Qε)1Aε ≤ ε1Aε .

SinceH(X)≥ K(X,Q) ∀Q∈ L∗
F
∩P,

(K(X,Qε)+ ε)1Aε ≥ K(X,Q)1Aε ∀Q∈ L∗F ∩P.

This is the basic inequality that enable us to apply Lemma 1.8, replacing thereP
with Qε andB with Aε . Only notice that supΩ π(X) ≤ c and K(X,Q) > −∞ for
everyQ∈ L∗

F
∩P. This Lemma assures that for every partitionΓ of Ω

(KΓ (X,Qε)+ ε)1Aε ≥ KΓ (X,Q)1Aε ∀Q∈ L∗F ∩P. (1.25)

From the definition ofessential supremumof a class of r.v. equation (1.25) implies
that for everyΓ

(KΓ (X,Qε)+ ε)1Aε ≥ sup
Q∈L∗

F
∩P

KΓ (X,Q)1Aε = HΓ (X)1Aε . (1.26)

SinceπΓ ≤ c, applying Proposition 1.5, equation (1.22), we get

(KΓ (X,Qε )+ ε)1Aε ≥ π(X)1Aε .

Taking theinfimumover all possible partitions, as in Lemma 1.7, we deduce:
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(K(X,Qε )+ ε)1Aε ≥ π(X)1Aε . (1.27)

Hence, for anyε > 0

(K(X,Qε)+ ε)1Aε ≥ π(X)1Aε ≥ H(X)1Aε ≥ K(X,Qε)1Aε

which impliesπ(X) = H(X), sinceP(Aε)→ 1 asε → 0.
Step 2.Now we consider the case whenπ is not necessarily bounded. We de-

fine the new mapψ(·) := arctan(π(·)) and notice thatψ(X) is a G -measurable
r.v. satisfying|ψ(X)| ≤ Π

2 for everyX ∈ LF . Moreoverψ is (MON), (QCO) and
ψ(X1G)1G = ψ(X)1G for everyG∈ G . In addition,ψ inherits the (LSC) (resp. the
(USC)∗) property fromπ . The first is a simple consequence of (CFB) ofπ . For the
second we may apply Lemma 1.9 below.

ψ is surely uniformly bounded and by the above argument we may conclude

ψ(X) = Hψ(X) := sup
Q∈L∗

F
∩P

Kψ(X,Q)

where
Kψ (X,Q) := inf

ξ∈LF

{ψ(ξ ) | EQ[ξ |G ]≥Q EQ[X|G ]} .

Applying again Lemma 1.5, equation (1.14), there existsQk ∈ L∗
F

such that

Hψ (X) = lim
k

Kψ (X,Qk).

We will show below that

Kψ(X,Qk) = arctanK(X,Qk). (1.28)

Admitting this, we have forP-almost everyω ∈Ω

arctan(π(X)(ω)) = ψ(X)(ω) = Hψ(X)(ω) = lim
k

Kψ (X,Qk)(ω)

= lim
k

arctanK(X,Qk)(ω)) = arctan(lim
k

K(X,Qk)(ω)),

where we used the continuity of the function arctan. This impliesπ(X)= limk K(X,Qk)
and we conclude:

π(X) = lim
k

K(X,Qk)≤ H(X)≤ π(X).

It only remains to show (1.28). We prove that for every fixedQ∈ L∗
F
∩P

Kψ (X,Q) = arctan(K(X,Q)) .

Sinceπ andψ are regular, from Lemma 1.4 iv), there existξ Q
h ∈ LF andηQ

h ∈ LF

such that
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EQ[ξ Q
h |G ]≥Q EQ[X|G ], EQ[ηQ

h |G ]≥Q EQ[X|G ], ∀h≥ 1, (1.29)

ψ(ξ Q
h ) ↓ Kψ (X,Q) andπ(ηQ

h ) ↓ K(X,Q), ash ↑ ∞. From (1.29) and the definitions
of K(X,Q), Kψ(X,Q) and by the continuity and monotonicity of arctan we get:

Kψ (X,Q) ≤ lim
h

ψ(ηQ
h ) = lim

h
arctanπ(ηQ

h ) = arctanlim
h

π(ηQ
h )

= arctanK(X,Q)≤ arctanlim
h

π(ξ Q
h ) = lim

h
ψ(ξ Q

h ) = Kψ(X,Q).

and this ends the proof of both Theorem 1.2 and 1.3.

Remark 1.7.Let D ∈F . If U is a neighborhood ofξ ∈ LF then also the set

U1D+U1DC =: {Z = X1D+Y1Dc | X ∈U,Y ∈U}

is a neighborhood ofξ . Indeed, sinceU is a neighborhood ofξ , there exists an
open setV such thatξ ∈V ⊆U. SinceU ⊆U1D+U1DC, we deduce thatξ ∈V ⊆
U1D+U1DC and thereforeξ is in the interior ofU1D+U1DC.

LetY beG -measurable and define:

A := {ξ ∈ LF | π(ξ )< tan(Y)} B := {ξ ∈ LF | arctan(π(ξ ))<Y} ,

where

tan(x) =





−∞ x≤−Π
2

tan(x) −Π
2 < x< Π

2
+∞ x≥ Π

2

Notice thatA =
{

ξ ∈ B | π(ξ )< ∞ on
{
Y > π

2

}}
⊂ B but the reverse inclusion

does not hold true in general: in fact everyξ0 ∈ A satisfiesπ(ξ0) < +∞ on the
set{Y > Π

2 } but it may happen that aξ0 ∈ B brings toπ(ξ0) = +∞ on{Y > Π
2 }.

Lemma 1.9.Suppose thatπ is regular and there existsθ ∈ LF such thatπ(θ ) <
+∞. For anyG -measurable random variable Y, if A is open then also B is open.
As a consequence if the mapπ is (USC)⋆ so it is the maparctanπ .

Proof. We may assumeY ≥ − π
2 , otherwiseB = /0. Let ξ ∈ B, θ ∈ LF such that

π(θ ) < +∞. Defineξ0 := ξ 1{Y≤ π
2}

+ θ1{Y> π
2}

. Thenξ0 ∈ A (sinceπ is regular

andπ(θ )< tg(Y)). SinceA is open, we may find a neighborhoodU of 0 such that:

ξ0+U ⊆ A.

Define:

V := (ξ0+U)1{Y≤ π
2}

+(ξ +U)1{Y> π
2}

= ξ +U1{Y≤ π
2}

+U1{Y> π
2}

.

Thenξ ∈V and, by the previous remark,U1{Y≤ π
2}

+U1{Y> π
2}

is a neighborhood

of 0. HenceV is a neighborhood ofξ . To show thatB is open it is then sufficient to
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show thatV ⊆ B. Let η ∈V. Then

η = η11{Y≤ π
2}

+η21{Y> π
2}

, η1 ∈ (ξ0+U), η2 ∈ (ξ +U).

Sinceξ0+U ⊆A, η1∈A; therefore:π(η1)< tg(Y). Sinceπ is regular and
{
Y ≤ π

2

}

is G measurable,π(η) = π(η1) on the set
{
Y ≤ π

2

}
, which implies:π(η)< tg(Y)

on
{
Y ≤ π

2

}
andη ∈ B.

Remark 1.8.ConsiderQ∈P such thatQ∼ P onG and define the new probability

Q̃(F) := EQ

[
dP
dQ

G

1F

]
where

dP
dQ

G

=: EQ

[
dP
dQ

∣∣G
]
, F ∈F .

ThenQ̃(G) = P(G) for all G ∈ G , and soQ̃ ∈PG . Moreover, it is easy to check
that for allX ∈ LF andQ∈ L∗

F
∩P such thatQ∼ P onG we have:

EQ̃[X|G ] = EQ[X|G ] (1.30)

which impliesK(X,Q̃) = K(X,Q). To get (1.30) consider anyA∈ G

EP[EQ̃[X|G ]1A] = EQ̃[EQ̃[X|G ]1A] = EQ̃[X1A]

= EQ

[
X

dP
dQ

G

1A

]
= EQ

[
EQ

[
X

dP
dQ

G

1A
∣∣G
]]

= EQ

[
EQ [X|G ]

dP
dQ

G

1A

]
= EQ̃ [EQ [X|G ]1A]

= EP [EQ [X|G ]1A]

Proof (Proof of Corollary 1.1).Consider the probabilityQε ∈ L∗
F
∩P built up in

Theorem 1.2, equation (1.27). We claim thatQε is equivalent toP on Aε . By con-
tradiction there existsB∈ G , B⊆ Aε , such thatP(B) > 0 butQε(B) = 0. Consider
η ∈ LF , δ > 0 such thatP(π(η)+ δ < π(X)) = 1 and defineξ = X1BC + η1B

so thatEQε [ξ |G ] ≥Qε EQε [X|G ]. By regularityπ(ξ ) = π(X)1BC + π(η)1B which
implies forP-a.e.ω ∈ B

π(ξ )(ω)+ δ = π(η)(ω)+ δ < π(X)(ω)≤ K(X,Qε)(ω)+ ε ≤ π(ξ )(ω)+ ε

which is impossible forε ≤ δ . SoQε ∼ P onAε for all smallε ≤ δ .

ConsiderQ̂ε such thatdQ̂ε
dP = dQε

dP 1Aε +
dP
dP1(Aε)C. Up to a normalization factor̂Qε ∈

L∗
F
∩P and is equivalent toP. Moreover from Lemma 1.4 (vi),K(X,Q̂ε)1Aε =

K(X,Qε)1Aε and from Remark 1.8 we may definẽQε ∈PG such thatK(X,Q̃ε)1Aε =

K(X,Q̂ε)1Aε = K(X,Qε)1Aε . From (1.27) we finally deduce:K(X,Q̃ε)1Aε +ε1Aε ≥

π(X)1Aε , and the thesis then follows from̃Qε ∈PG .
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1.6.3 Proof of the key approximation Lemma 1.8

We will adopt the following notations: IfΓ1 andΓ2 are two finite partitions ofG -
measurable sets thenΓ1∩Γ2 := {A1∩A2 | Ai ∈ Γi , i = 1,2} is a finite partition finer
than eachΓ1 andΓ2.

Lemma 1.10 is the natural generalization of Lemma 3.1 to the approximated
problem.

Lemma 1.10.For every partitionΓ , X ∈ LF and Q∈ L∗
F
∩P, the set

A
Γ
Q (X)⊜ {πΓ (ξ ) |ξ ∈ LF and EQ[ξ |G ]≥Q EQ[X|G ]}

is downward directed. This implies that there exists existsa sequence
{

ηQ
m

}∞

m=1
∈

LF such that

EQ[ηQ
m|G ]≥Q EQ[X|G ] ∀m≥ 1 , πΓ (ηQ

m) ↓ KΓ (X,Q) as m↑ ∞.

Proof. To show that the setA Γ
Q (X) is downward directed we use the notations and

the results in the proof of Lemma 3.1 and check that

πΓ (ξ ∗) = πΓ (ξ11G+ ξ21GC)≤min
{

πΓ (ξ1),πΓ (ξ2)
}
.

Now we show that for any given sequence of partition there exists one sequence
that works for all.

Lemma 1.11.For any fixed, at most countable, family of partitions{Γ (h)}h≥1 and

Q∈ L∗
F
∩P, there exists a sequence

{
ξ Q

m

}∞

m=1
∈ LF such that

EQ[ξ Q
m |G ] ≥Q EQ[X|G ] for all m≥ 1

π(ξ Q
m) ↓ K(X,Q) as m↑ ∞

and for all h πΓ (h)(ξ Q
m) ↓ KΓ (h)(X,Q) as m↑ ∞.

Proof. Apply Lemma 3.1 and Lemma 1.10 and find{ϕ0
m}m,{ϕ1

m}m, ...,{ϕh
m}m, ...

such that for everyi andm we haveEQ[ϕ i
m | G ]≥Q EQ[X|G ] and

π(ϕ0
m) ↓ K(X,Q) asm↑ ∞

and for allh πΓ (h)(ϕh
m) ↓ KΓ (h)(X,Q) asm↑ ∞.

For eachm≥ 1 consider
∧m

i=0 π(ϕ i
m): then there will exists a (non unique) finite

partition ofΩ , {F i
m}

m
i=1 such that

m∧

i=0

π(ϕ i
m) =

m

∑
i=0

π(ϕ i
m)1F i

m
.



34 1 On the dual representation on vector spaces

Denoteξ Q
m =: ∑m

i=0 ϕ i
m1F i

m
and notice that∑m

i=0 π(ϕ i
m)1F i

m

(REG)
= π

(
ξ Q

m

)
andEQ[ξ Q

m |G ]≥Q

EQ[X|G ] for everym. Moreoverπ(ξ Q
m) is decreasing andπ(ξ Q

m) ≤ π(ϕ0
m) implies

π(ξ Q
m) ↓ K(X,Q).

For every fixedh we haveπ(ξ Q
m)≤ π(ϕh

m) for all h≤m and hence:

πΓ (h)(ξ Q
m)≤ πΓ (h)(ϕh

m) impliesπΓ (h)(ξ Q
m) ↓ KΓ (h)(X,Q) asm↑ ∞.

Finally, we state the basic step used in the proof of Lemma 1.8.

Lemma 1.12.Let X∈ LF and let P and Q be arbitrary elements of L∗
F
∩P. Sup-

pose that there exists B∈ G satisfying: K(X,P)1B >−∞, πB(X)<+∞ and

K(X,Q)1B≤ K(X,P)1B+ ε1B,

for someε ≥ 0. Then for anyδ > 0 and any partitionΓ0 there existsΓ ⊇ Γ0 for
which

KΓ (X,Q)1B≤ KΓ (X,P)1B+ ε1B+ δ1B

Proof. By our assumptions we have:−∞<K(X,P)1B≤ πB(X)<+∞ andK(X,Q)1B≤
πB(X)< +∞. Fix δ > 0 and the partitionΓ0. Suppose by contradiction that for any
Γ ⊇ Γ0 we haveP(C)> 0 where

C= {ω ∈ B | KΓ (X,Q)(ω)> KΓ (X,P)(ω)+ ε + δ}. (1.31)

Notice thatC is the union of a finite number of elements in the partitionΓ .

Consider that Lemma 1.4 guarantees the existence of
{

ξ Q
h

}∞

h=1
∈ LF satisfying:

π(ξ Q
h ) ↓ K(X,Q), ash ↑ ∞, , EQ[ξ Q

h |G ]≥Q EQ[X|G ] ∀h≥ 1. (1.32)

Moreover, for each partitionΓ andh≥ 1 define:

DΓ
h :=

{
ω ∈Ω | πΓ (ξ Q

h )(ω)−π(ξ Q
h )(ω)<

δ
4

}
∈ G ,

and observe thatπΓ (ξ Q
h ) decreases if we pass to finer partitions. From Lemma 1.6

equation (1.20), we deduce that for eachh≥ 1 there exists a partitioñΓ (h) such that

P
(

DΓ̃ (h)
h

)
≥ 1− 1

2h . For everyh≥ 1 define the new partitionΓ (h) =

(
h⋂

j=1
Γ̃ (h)

)
∩

Γ0 so that for allh≥ 1 we have:Γ (h+1)⊇ Γ (h)⊇ Γ0, P
(

DΓ (h)
h

)
≥ 1− 1

2h and

(
π(ξ Q

h )+
δ
4

)
1

D
Γ (h)
h
≥
(

πΓ (h)(ξ Q
h )
)

1
D

Γ (h)
h

, ∀h≥ 1. (1.33)
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Lemma 1.11 guarantees that for the fixed sequence of partitions{Γ (h)}h≥1, there
exists a sequence

{
ξ P

m

}∞
m=1 ∈ LF , which does not depend onh, satisfying

EP[ξ P
m|G ] ≥P EP[X|G ] ∀m≥ 1, (1.34)

πΓ (h)(ξ P
m) ↓ KΓ (h)(X,P), asm↑ ∞, ∀h≥ 1. (1.35)

For eachm≥ 1 andΓ (h) define:

CΓ (h)
m :=

{
ω ∈C | πΓ (h)(ξ P

m)(ω)−KΓ (h)(X,P)(ω)≤
δ
4

}
∈ G .

Since the expressions in the definition ofCΓ (h)
m assume only a finite number of

values, from (1.35) and from our assumptions, which imply that KΓ (h)(X,P) ≥
K(X,P) > −∞ on B, we deduce that for eachΓ (h) there exists an indexm(Γ (h))

such that:P
(
C\CΓ (h)

m(Γ (h))

)
= 0 and

KΓ (h)(X,P)1
C

Γ (h)
m(Γ (h))

≥

(
πΓ (h)(ξ P

m(Γ (h)))−
δ
4

)
1

C
Γ (h)
m(Γ (h))

, ∀h≥ 1. (1.36)

SetEh = DΓ (h)
h ∩CΓ (h)

m(Γ (h)) ∈ G and observe that

1Eh→ 1C P−a.s. (1.37)

From (1.33) and (1.36) we then deduce:
(

π(ξ Q
h )+

δ
4

)
1Eh ≥

(
πΓ (h)(ξ Q

h )
)

1Eh, ∀h≥ 1, (1.38)

KΓ (h)(X,P)1Eh ≥

(
πΓ (h)(ξ P

m(Γ (h)))−
δ
4

)
1Eh, ∀h≥ 1. (1.39)

We then have for anyh≥ 1

π(ξ Q
h )1Eh +

δ
4

1Eh ≥
(

πΓ (h)(ξ Q
h )
)

1Eh (1.40)

≥ KΓ (h)(X,Q)1Eh (1.41)

≥
(

KΓ (h)(X,P)+ ε + δ
)

1Eh (1.42)

≥

(
πΓ (h)(ξ P

m(Γ (h)))−
δ
4
+ ε + δ

)
1Eh (1.43)

≥

(
π(ξ P

m(Γ (h)))+ ε +
3
4

δ
)

1Eh. (1.44)
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(in the above chain of inequalities, (1.40) follows from (1.38); (1.41) follows from
(1.32) and the definition ofKΓ (h)(X,Q); (1.42) follows from (1.31); (1.43) follows
from (1.39); (1.44) follows from the definition of the mapsπAΓ (h) ).
Recalling (1.34) we then get, for eachh≥ 1,

π(ξ Q
h )1Eh ≥

(
π(ξ P

m(Γ (h)))+ ε +
δ
2

)
1Eh ≥

(
K(X,P)+ ε +

δ
2

)
1Eh >−∞. (1.45)

From equation (1.32) and (1.37) we haveπ(ξ Q
h )1Eh → K(X,Q)1C P-a.s. ash ↑ ∞

and so from (1.45)

1CK(X,Q) = lim
h

π(ξ Q
h )1Eh ≥ lim

h
1Eh

(
K(X,P)+ ε +

δ
2

)

= 1C

(
K(X,P)+ ε +

δ
2

)

which contradicts the assumption of the Lemma, sinceC⊆ B andP(C)> 0.

Proof (Proof of Lemma 1.8).First notice that the assumptions of this Lemma are
those of Lemma 1.12. Assume by contradiction that there exists Γ0 = {BC,Γ̃0},

whereΓ̃0 is a partition ofB, such that

P(ω ∈ B | KΓ0(X,Q)(ω)> KΓ0(X,P)(ω)+ ε)> 0. (1.46)

By our assumptions we haveKΓ0(X,P)1B ≥ K(X,P)1B > −∞ andKΓ0(X,Q)1B ≤
πB(X)1B < +∞. SinceKΓ0 is constant on every elementAΓ0 ∈ Γ0, we denote with

KAΓ0(X,Q) the value that the random variableKΓ0(X,Q) assumes onAΓ0. From
(1.46) we deduce that there existsÂΓ0 ⊆ B , ÂΓ0 ∈ Γ0, such that

+∞ > KÂΓ0
(X,Q)> KÂΓ0

(X,P)+ ε >−∞.

Let thend > 0 be defined by

d =: KÂΓ0(X,Q)−KÂΓ0(X,P)− ε. (1.47)

Apply Lemma 1.12 withδ = d
3 : then there existsΓ ⊇ Γ0 (w.l.o.g. Γ = {BC,Γ̃ }

whereΓ̃ ⊇ Γ̃0) such that

KΓ (X,Q)1B≤
(
KΓ (X,P)+ ε + δ

)
1B. (1.48)

Considering only the two partitionsΓ andΓ0, we may apply Lemma 1.11 and con-
clude that there exist two sequences{ξ P

h }
∞
h=1 ∈ LF and{ξ Q

h }
∞
h=1 ∈ LF satisfying

ash ↑ ∞:
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EP[ξ P
h |G ]≥P EP[X|G ], πΓ0(ξ P

h ) ↓ KΓ0(X,P), πΓ (ξ P
h ) ↓ KΓ (X,P) (1.49)

EQ[ξ Q
h |G ]≥Q EQ[X|G ], πΓ0(ξ Q

h ) ↓ KΓ0(X,Q), πΓ (ξ Q
h ) ↓ KΓ (X,Q) (1.50)

SinceKΓ0(X,P) is constant and finite on̂AΓ0, from (1.49) we may findh1≥ 1 such
that

πÂΓ0(ξ
P
h )−KÂΓ0

(X,P)<
d
2
,∀h≥ h1. (1.51)

From equation (1.47) and (3.3) we deduce that

πÂΓ0(ξ
P
h )< KÂΓ0(X,P)+

d
2
= KÂΓ0(X,Q)− ε−d+

d
2
, ∀h≥ h1,

and therefore, knowing from (1.50) thatKÂΓ0(X,Q)≤ πÂΓ0(ξ
Q
h ),

πÂΓ0(ξ
P
h )+

d
2
< πÂΓ0(ξ

Q
h )− ε ∀h≥ h1. (1.52)

We now take into account all the setsAΓ ⊆ ÂΓ0 ⊆B. For the convergence ofπAΓ (ξ Q
h )

we distinguish two cases. On those setsAΓ for whichKAΓ
(X,Q)>−∞ we may find,

from (1.50),h≥ 1 such that

πAΓ (ξ Q
h )−KAΓ

(X,Q)<
δ
2
∀h≥ h.

Then using (1.48) and (1.49) we have

πAΓ (ξ Q
h )< KAΓ

(X,Q)+
δ
2
≤ KAΓ

(X,P)+ ε + δ +
δ
2
≤ πAΓ (ξ P

h )+ ε + δ +
δ
2

so that

πAΓ (ξ Q
h )< πAΓ (ξ P

h )+ ε +
3δ
2
∀h≥ h.

On the other hand, on those setsAΓ for which KAΓ
(X,Q) = −∞ the convergence

(1.50) guarantees the existence ofĥ≥ 1 for which we obtain again:

πAΓ (ξ Q
h )< πAΓ (ξ P

h )+ ε +
3δ
2
∀h≥ ĥ (1.53)

(notice thatKΓ (X,P)≥ K(X,P)1B >−∞ and (1.49) imply thatπAΓ (ξ P
h ) converges

to a finite value, forAΓ ⊆ B).
Since the partitionΓ is finite there existsh2≥ 1 such that equation (1.53) stands

for everyAΓ ⊆ ÂΓ0 and for everyh≥ h2 and for our choice ofδ = d
3 (1.53) becomes

πAΓ (ξ Q
h )< πAΓ (ξ P

h )+ ε +
d
2
∀h≥ h2 ∀AΓ ⊆ ÂΓ0. (1.54)
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Fix h∗ > max{h1,h2} and consider the valueπÂΓ0(ξ
Q
h∗). Then among allAΓ ⊆ ÂΓ0

we may findBΓ ⊆ ÂΓ0 such thatπBΓ (ξ Q
h∗) = πÂΓ0(ξ

Q
h∗). Thus:

πÂΓ0(ξ
Q
h∗) = πBΓ (ξ Q

h∗)
(1.54)
< πBΓ (ξ P

h∗)+ ε +
d
2
≤ πÂΓ0(ξ

P
h∗)+ ε +

d
2

(1.52)
< πÂΓ0(ξ

Q
h∗).

which is a contradiction.

1.7 A complete characterization of the mapπ

In this section we show that any conditional mapπ can be characterizedvia the
dual representation (see Proposition 1.6): we introduce the classRc f b of maps
S : Σ → L̄0

G
such thatS(·,ξ ′) is (MON), (CFB) and (REG) (i.e.S(Y1A,Q)1A =

S(Y,Q)1A ∀A∈ G ).

Remark 1.9. S: Σ → L̄0
G

such thatS(·,ξ ′) is (MON) and (REG) is automatically
(QCO) in the first component: letY1,Y2,Λ ∈ L0

G
, 0≤ Λ ≤ 1 and defineB= {Y1 ≤

Y2}, S(·,Q) = S(·).
S(Y11B)≤ S(Y21B) andS(Y21BC)≤ S(Y11BC) so that from (MON) and (REG)

S(ΛY1+(1−Λ)Y2) ≤ S(Y21B+Y11BC)
(REG)
= S(Y2)1B+S(Y1)1BC

≤ S(Y1)∨S(Y2).

Notice that the classRc f b is non-empty: for instance consider the mapR+(·,ξ ′)
defined by

R+(Y,ξ ′) = esssup
Y′<Y

R(Y′,ξ ′) (1.55)

As shown in the next Lemma,R+ inherits fromR (MON), (REG) and is automati-
cally (CFB). This function plays an important role in the proof of Proposition 1.7.
Proposition 1.6 is in the spirit of [10]: as a consequence of the dual representation
the mapπ induces onR (resp.R+) its characteristic properties and so doesR (resp.
R+) on π .

Lemma 1.13.If π : LF → LG is (REG) and (MON) then R+ ∈R.

Proof. Clearly R+(·,Q) inherits fromR(·,Q) the properties (REG) and (MON).
From Remark 1.9 we then know thatR+(·,Q) is (QCO). We show that it is also
(CFB). LetYn ↑ Y. It is easy to check that (MON) ofR(·,ξ ′) implies that the set
{R(η ,ξ ′)|η < Y} is upward directed. Then for everyε,δ > 0 we can findηε < Y
such that

P(R+(Y,ξ ′)−R(ηε ,ξ ′)< ε)> 1− δ (1.56)

There exists annε such thatP(Yn > ηε) > 1− δ for every n > nε . Denote by
An = {Yn > ηε} so that from (REG) we haveR+(Yn,ξ ′)1An ≥ R(ηε ,ξ ′)1An. This
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last inequality together with equation (1.56) implies

P(R+(Y,ξ ′)−R+(Yn,ξ ′)< ε)> 1−2δ ∀n> nε

i.e.R+(Yn,Q)
P
→R+(Y,Q). SinceR+(Yn,Q) ↑we conclude thatR+(Yn,Q) ↑R+(Y,Q)

P-almost surely.

Proposition 1.6.Consider a map S: Σ → LG .
(a) Letχ ⊆ L∗

F
, X ∈ LF and

π(X) = sup
ξ ′∈χ

S(E[Xξ ′|G ],ξ ′).

(Recall that(E[ξ ′X|G ],ξ ′) ∈ Σ for every X∈ LF , ξ ′ ∈ L∗
F

).
Then for every A∈ G , (Y,ξ ′) ∈ Σ , Λ ∈ LG ∩LF and X∈ LF

i) S(Y1A,ξ ′)1A = S(Y,ξ ′)1A =⇒ π (REG);
ii) Y 7→ S(Y,ξ ′) (MON) =⇒ π (MON);
iii) Y 7→ S(Y,ξ ′) is conditionally convex=⇒ π is conditionally convex;
iv) Y 7→ S(Y,ξ ′) (QCO) =⇒ π (QCO);
v) S(λY,ξ ′) = λS(Y,ξ ′) =⇒ π(λX) = λ π(X), (λ > 0);
vi) S(λY,ξ ′) = S(Y,ξ ′) =⇒ π(λX) = π(X), (λ > 0);
vii) Y 7→ S(Y,ξ ′) (CFB) =⇒ π (CFB).
viii) S(E[(X+Λ)ξ ′|G ],ξ ′) = S(E[Xξ ′|G ],ξ ′)+Λ =⇒ π(X+Λ) = π(X)+Λ .
ix) S(E[(X+Λ)ξ ′|G ],ξ ′)≥ S(E[Xξ ′|G ],ξ ′)+Λ =⇒ π(X+Λ)≥ π(X)+Λ .

(b) When the map S is replaced by R defined in (1.5), all the above items - except
(vii) - hold true replacing “=⇒” by “ ⇐⇒”.

(c) When the map S is replaced by R+ defined in (1.55), all the above items - except
(iii) - hold true replacing “=⇒” by “ ⇐⇒”.

Proof. (a) Items from (i) to (ix) are trivial. To make an example we show (iv):
for everyG -measurableΛ , 0≤ Λ ≤ 1, andX1,X2 ∈ LF , we haveEP[(ΛX1+(1−
Λ)X2)ξ ′|G ] = ΛEP[X1ξ ′|G ]+ (1−Λ)EP[X2ξ ′|G ]. Thus

S(ΛEP[X1ξ ′|G ]+ (1−Λ)EP[X2ξ ′|G ],ξ ′)
≤ max

{
S(EP[X1ξ ′|G ],ξ ′),S(EP[X2ξ ′|G ],ξ ′)

}

≤ max

{
sup
ξ ′∈χ

S(EP[X1ξ ′|G ],ξ ′), sup
ξ ′∈χ

S(EP[X2ξ ′|G ],ξ ′)

}

thus
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π(ΛX1+(1−Λ)X2) = sup
Q∈P

S
(
ΛEQ[X|G ]+ (1−Λ)EQ[Y|G ],Q

)

≤ max

{
sup

Q∈P

S(EQ[X|G ],Q), sup
Q∈P

S(EQ[Y|G ],Q)

}

= π(X1)∨π(X2).

(b): The ‘only if’ in (i) and (ii) follow from Lemma 1.3. Now weprove the remaining
‘only if’ conditions.

(iii): let Y1,Y2,Λ ∈ L0
G

, 0≤Λ ≤ 1 then

R(ΛY1+(1−Λ)Y2,ξ ′)
= inf

ξ∈LF

{π(ξ ) | E[ξ ξ ′|G ]≥ΛY1+(1−Λ)Y2}

= inf
η1,η2∈LF

{π(Λη1+(1−Λ)η2) | E[(Λη1+(1−Λ)η2)ξ ′|G ]≥ΛY1+(1−Λ)Y2}

≤ inf
η1,η2∈LF

{π(Λη1+(1−Λ)η2) | E[η1ξ ′|G ]≥Y1∩E[η2ξ ′|G ]≥Y2}

≤ ΛR(Y1,ξ ′)+ (1−Λ)R(Y2,ξ ′)

(iv): follows from Remark 1.9 sinceR is (MON) and (REG).
(v):

R(λY,ξ ′) = inf
ξ∈LF

{π(ξ ) | E[λ−1ξ ξ ′|G ]≥Y}

= inf
λ η∈LF

{π(λ η) | E[ηξ ′|G ]≥Y}= λR(Y,ξ ′)

(vi): similar to (v).
(viii):

R(E[(X+Λ)ξ ′|G ],ξ ′)
= inf

ξ∈LF

{
π(ξ ) | E

[
(ξ −Λ)ξ ′|G

]
≥ E[Xξ ′|G ]

}

= inf
η+Λ∈LF

{
π(η +Λ) | E

[
ηξ ′|G

]
≥ E[Xξ ′|G ]

}
= R(E[Xξ ′|G ],Q)+Λ

(ix): similar to (viii).
(c): by definitionR+ inherits fromR(MON) and (REG) so that we can also conclude
by Remark 1.9 that the ‘only if ’in (i), (ii) and (iv) holds true.

(v): we know thatπ(λ ·) = λ π(·) impliesR(λ ·,ξ ′) = λR(·,ξ ′). By definition

R+(Y,ξ ′) = sup
Y′<Y

R(Y′,ξ ′) = sup
Y′<Y

1
λ

R(λY′,ξ ′)

=
1
λ

sup
Y′<λY

R(Y′,ξ ′) =
1
λ

R+(λY,ξ ′).

(vi), (vii) and (ix) follows as in (v).
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(vii): is proved in Lemma 3.10.

Proposition 1.7.Suppose thatσ(LF ,L∗
F
) satisfies the C-property and LF is order

complete.π : LF → LG is (MON), (QCO), (REG) andσ(LF ,L∗
F
)-(LSC)if and only

if there exists S∈Rc f b such that

π(X) = sup
Q∈L∗

F
∩P

S

(
E

[
dQ
dP

X|G

]
,Q

)
. (1.57)

Proof. The ‘if ’follows from Proposition (1.6). For the ‘only if ’wealready know
from Theorem 1.2 that

π(X) = sup
Q∈L∗

F
∩P

R

(
E

[
dQ
dP

X|G

]
,Q

)
.

whereR is defined in (1.5). For everyQ∈ L∗
F
∩P we considerR+(·,Q) ≤ R(·,Q)

and denoteXQ = E
[

dQ
dP X|G

]
. We observe that

π(X) ≥ sup
Q∈L∗

F
∩P

R+(XQ,Q) = sup
Q∈L∗

F
∩P

sup
Y′<XQ

R(Y′,Q)

δ>0
≥ sup

Q∈L∗
F
∩P

sup
XQ−δ<XQ

R(XQ− δ ,Q)

= sup
δ>0

sup
Q∈L∗

F
∩P

R(E[(X− δ ) ·dQ/dP|G ],Q) = sup
δ>0

π(X− δ )
(CFB)
= π(X)

and so forR+ ∈R
c f b
Q we have the representation

π(X) = sup
Q∈L∗

F
∩P

R+(EQ[X|G ],Q).

1.7.1 A hint for further research: on the uniqueness of the
representation

In [10] the authors provide a complete duality for real valued quasiconvex function-
als when the spaceLF is anM-space (such asL∞): the idea is to reach a one to one
relationship between quasiconvex monotone functionalsπ and the functionRof the
dual representation. ObviouslyRwill be unique only in an opportune class of maps
satisfying certain properties. A similar result is obtained in [11] for theLp spaces
with p∈ [1,+∞), which are notM-spaces.
Other later results can be found in the recent preprint by Drapeau and Kupper [19]
where a slightly different duality is reached, gaining on the generality of the spaces.
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Uniqueness is surely a more involving task to be proved for the conditional case
and a complete proof need further investigation in the vector space case. Fortunately
we are able in Chapter 3 to succeed it for the class ofL0-modules ofLp type, which
is the counterpart of the findings presented in [11].

For what concerns vector spaces, we provide only a partial - not much rigorous -
result whenG is countably generated. For sake of simplicity we restrict our discus-
sion to the spaceLF = L∞

F
in order to exploit directly the uniqueness results in [10]

section 5. The following argument can be adapted to the case of Lp, p ∈ [1,+∞),
combining the results in [11] and [10].

Consider the following conditions

H1 S(·,Q) is increasing for everyQ∈ L∗
F
∩P;

H2 infY∈L0
G

S(Y,Q1) = infY∈L0
G

S(Y,Q2) for everyQ1,Q2 ∈ L∗
F
∩P;

H3 S(Y,Q)1A = S(Y1A,Q)1A = S(Y1A,Q1A)1A;
H4 for everyn, S(·,Q)1An =SAn(·,Q)1An, whereSAn(·,Q) is jointly♦-evenly qua-

siconcave onR×Q∈ L∗
F
∩P;

H5 for everyX ∈ LF

sup
Q∈L∗

F
∩P

S(E[XdQ/dP|G ],ξ ′) = sup
Q∈L∗

F
∩P

S+(E[XdQ/dP|G ],ξ ′)

with S+ as in (1.55).

Claim: let G = σ({An}n∈N) where{An}n∈N is a partition ofΩ andπ satisfying
the assumptions of Theorem 1.2. The functionR is the unique in the classM 0

qcx of
functionsSsatisfying H1, H2, H3, H4 and H5.

Idea of the proof.Surely from Lemma 1.3R∈M 0
qcx (the last item is explained

in the second part of the proof). By contradiction suppose that there existsS∈M 0
qcx

such that

π(X) = sup
Q∈L∗

F
∩P

S

(
E

[
dQ
dP

X|G

]
,Q

)
. (1.58)

andP(S(Y,Q) 6=R(Y,Q))> 0 for some(Y,Q)∈ L0
G
×(L∗

F
∩P). Hence we can find

A= An for somen such thatR1A 6= S1A.
As previously mentionedπ induces onπA the properties (MON), (QCO), (CFB).
The spaceL∞

F
1A = {ξ 1A|ξ ∈ L∞

F
} is an M-space so we may apply Theorem 5 in

[10] on the mapπA : L∞
F

1A→ R. Clearly the order dual(L∞
F

1A)
∗ = L1

F
1A and then

we get

πA(X) = sup
Q∈L1

F
∩P

RA
(

E

[
dQ
dP

X1A

]
,Q1A

)
= sup

Q∈L1
F
∩P

RA
+

(
E

[
dQ
dP

X1A

]
,Q1A

)

(1.59)
RA : R× (L∗

F
∩P)→ R is given by
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RA(y,Q1A) = inf
ξ∈LF

{
πA(ξ ) | E

[
dQ
dP

ξ 1A

]
≥ y

}

andRA
+(t,Q1A) = supt′<t RA(t ′,Q1A). RA is unique in the classM 0

qcx(A) of functions

SA : R× (L1
F
∩P)→ R such thatSA is increasing in the first argument in the first

component, jointly♦-evenly quasiconcave, inft∈R SA(t,Q11A) = inft∈R SA(t,Q21A)
for everyQ1,Q2 ∈ L∗

F
∩P and the second equality in (1.59) holds true.

Now notice thatRA1A = R1A and from (1.58)

πA(X)1A = sup
Q∈L1

F
∩P

S

(
E

[
dQ
dP

X1A

]
,Q1A

)
1A

hence from uniquenessS1A = RA1A = R1A which is absurd.





Chapter 2
An application to Finance and Economics: the
Conditional Certainty Equivalent

2.1 An intuitive flavour of the problem

A non-atomic probability space(Ω ,F ,P) and a right continuous filtration{Ft}t≥0

are fixed throughout this chapter. All the other notations are conformed to those in
Chapter 1.

It is well known in Mathematical Finance literature that under opportune No-
Arbitrage assumptions we can guarantee the existence of an equivalent probability
measureQ∼P such that the price processes are martingales. Let us consider a repli-
cable claimC, with time T maturity (i.e.FT measurable). The Black and Scholes
time-t value, is given by the formula

Vt(H) = πt,T(C) =
1
βt

EQ[βTC|Ft ] t < T (2.1)

whereVT(H) =C, H is the replication strategy andβ the discount stochastic factor.
In order to introduce the main purpose of this chapter we wantto look to this

formula from an utility point of view. Suppose that an investor’s preferences are
described by the stochastic field

u(x, t,ω) = xβt(ω)
dQt

dP
(ω)

wheredQt
dP = EP[

dQ
dP |Ft ]. If one consider aFt -measurable random variableX, then

the solutionYs of the equation

u(Ys,s,ω) = EP[u(X, t) |Fs]

gives the the time-s equivalent random endowment ofX with respect to the prefer-
ences induced byu. It is well known that a processY turns out to be aQ martingale
if and only if EP[Yt

dQt
dP |Fs] =Ys

dQs
dP ; applying this result to the equation
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βsYs
dQs

dP
= EP

[
βtX

dQt

dP
|Fs

]
(2.2)

we get that the process{βsYs}0≤s≤t is aQ-martingale. Then

βsYs = EQ[βtX |Fs]

i.e. wheneverX is replicableYs is exactly the priceπs,t(X) given by (2.1).
From this point of view Black and Scholes theory appears as a particular case of a
general theory involving dynamic stochastic preferences,in which the linearity of
the utility functions implies the complete absence of the investor’s risk aversion.

Moreover the formula (2.2) highlights another troublesomefeature arising when
we work with stochastic fields: it concerns with theP-integrability of βtX

dQt
dP ,

namely

EP

[
βt |X|

dQt

dP

]
< ∞ (2.3)

One may overcome it assuming thatβ is deterministic or satisfies some boundary
conditions. Another approach could be introducing the right space of random vari-
ables for which condition (2.3) is naturally satisfied, without any further assumption
onβ . As we will show later Musielak-Orlicz spaces seem to fit perfectly to our aim:
for each timet the utility u(x, t,ω) induces a generalized Young function ˆut which
defines a spaceMût (Ω ,Ft ,P). Thus we are dealing with a time-indexed class of
spaces for which the pricing functionalπs,t is compatible with time consistency.

2.2 Definitions and first properties

Definition 2.1. A stochastic dynamic utility (SDU)

u : R×[0,∞)×Ω →R∪{−∞}

satisfies the following conditions: for anyt ∈ [0,+∞) there existsAt ∈Ft such that
P(At) = 1 and

(a) the effective domain,D(t) := {x∈ R : u(x, t,ω)>−∞} and the rangeR(t) :=
{u(x, t,ω) | x∈D(t)} do not depend onω ∈At ; moreover 0∈ intD(t), EP[u(0, t)]<
+∞ andR(t)⊆R(s);

(b) for all ω ∈ At andt ∈ [0,+∞) the functionx→ u(x, t,ω) is strictly increasing on
D(t) and increasing, concave and upper semicontinuous onR.

(c) ω → u(x, t, ·) is Ft−measurable for all(x, t) ∈D(t)×[0,+∞)

The following assumption may turn out to be relevant in the sequel of the paper,
even if not necessary for the definition of SDU.

(d) For any fixedx∈D(t), u(x, t, ·)≤ u(x,s, ·) for everys≤ t.
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Remark 2.1.We identify two SDU,u∼ ũ, if for everyt ∈ [0,+∞), the two domains
are equal (D(t) = D̃(t)) and there exists anFt -measurable setBt such thatP(Bt) =
1 andu(x, t,ω) = ũ(x, t,ω) for every(x,ω) ∈D(t)×Bt .
In the sequel, we denoteu(x, t, ·) simply byu(x, t), unless confusion may arise.

In order to define the conditional certainty equivalent we introduce the set

U (t) = {X ∈ L0(Ω ,Ft ,P) |u(X, t) ∈ L1(Ω ,F ,P)}.

Lemma 2.1.Let u be a SDU.

i) (Inverse) Let t∈ [0,∞) and At ∈ Ft as in Definition 2.1: the inverse function
u−1 : R(t)×[0,∞)×At →D(t)

u−1(u(x, t,ω), t,ω) = x (2.4)

is well defined. For eachω ∈ At , the function u−1(·, t,ω) is continuous and
strictly increasing onR(t) and u−1(y, t, ·) is Ft−measurable for all y∈R(t).

ii) (Comparison) Fix any t∈ [0,∞); if X ,Y ∈U (t) then u(X, t)≤ u(Y, t) if and only
if X ≤Y. The same holds if the inequalities are replaced by equalities.

iii) (Jensen) If X∈ L1
Ft

and u(X,s) is integrable, then, for all s≤ t,

EP [u(X,s)|Fs]≤ u(EP[X|Fs],s).

iv) (Extended Jensen) Suppose u(x,s) is integrable for every x∈D(s). Let X∈ L0
Ft

,
such that u(X,s)− is integrable. Then

EP [u(X,s)|Fs]≤ u(EP[X|Fs],s). (2.5)

where the conditional expectation is meant in an extended way.

Proof. i) Since both assumptions (a) and (b) hold onAt , the existence of a continu-
ous, increasing inverse function follows straightforwardly. From assumption (c) we
can deduce thatu−1(y, t, ·) is Ft -measurable for ally∈R(t).
ii) Is also immediate sinceu is strictly increasing as a function ofx.
iii) This property follows from the Theorem p.79 in [59].
iv) First we suppose thatu(0,s) = 0. This implies thatu(X,s)1A = u(X1A,s) for
everyA∈Ft . Recall that ifY ∈ L0

Ft
andY≥ 0 thenEP[Y|Fs] := limnEP[Y1Y≤n|Fs]

is well defined.
First we show thatu(X,s)− integrable impliesEP[X1{X<0}|Fs]>−∞ and there-

fore both terms in (2.5) are well defined. From the equality−u(X,s)1{X<0} =
u(X,s)− we get thatu(X,s)1{X<0} is integrable. From iii) we have thatu(0,s) ≥
u(X1{0>X≥−n},s) ≥ u(−n,s) implies:

EP[u(X1{0>X≥−n},s)|Fs]≤ u(EP[X1{0>X≥−n}|Fs],s). (2.6)

By monotone convergence, from (2.6) we then get our claim:
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−∞ < EP[u(X1{X<0},s)|Fs]≤ u(EP[X1{X<0}|Fs],s).

Applying iii) in the second inequality below we get:

EP[u(X,s)|Fs] = lim
n

EP[u(X,s)1{0≤u(X,s)≤n}|Fs]+EP[u(X,s)1{u(X,s)<0}|Fs]

(2.7)

≤ lim
n

EP[u(X,s)1{0≤X≤n}|Fs] = lim
n

EP[u(X1{0≤X≤n},s)|Fs]

≤ lim
n

u(EP[X1{0≤X≤n}|Fs],s) = u(EP[X
+|Fs],s). (2.8)

Notice that on theFs-measurable setG∞ := {EP[X|Fs] = +∞} the equation (2.5)
is trivial. SinceEP[−X−|Fs]>−∞, it is clear thatEP[|X||Fs] =+∞ on a setA∈F

iff EP[X|Fs] = +∞ on the same setA. Therefore, by definingGn := {ω ∈Ω \G∞ |
EP[|X| |Fs](ω)≤ n}, we have:Gn ↑ Ω \G∞. Since eachGn is Fs-measurable, the
inequality (2.7)-(2.8) guarantees that

−EP[u(X1Gn,s)
−|Fs] ≤ EP[u(X1Gn,s)|Fs]≤ u(EP[X

+1Gn|Fs],s)

≤ u(EP[|X||Fs],s)1Gn ≤ u(n,s)

and thereforeu(X1Gn,s) is integrable. Obviously,X1Gn is also integrable and we
may apply iii) (replacingX with X1Gn) and deduce

EP[u(X,s)|Fs]1Gn = EP[u(X1Gn,s)|Fs]≤ u(EP[X1Gn|Fs],s) = u(EP[X|Fs],s)1Gn.

The thesis follows immediately by taking the limit asn→ ∞, sinceGn ↑Ω \G∞.
For a generalu(x,s), apply the above argument tov(x,s) =: u(x,s)−u(0,s).

A SDU allows us to define the backward conditional certainty equivalent, that
represents the time-s-value of the time-t-claimX, for 0≤ s≤ t < ∞.

Definition 2.2. (Conditional Certainty Equivalent) Let u be a SDU. The back-
ward Conditional Certainty EquivalentCs,t(X) of the random variableX ∈U (t), is
the random variable inU (s) solution of the equation:

u(Cs,t(X),s) = EP [u(X, t)|Fs] . (2.9)

Thus the CCE defines thevaluationoperator

Cs,t : U (t)→U (s), Cs,t(X) = u−1(EP [u(X, t)|Fs]) ,s). (2.10)

Observe thatEP [u(Cs,t(X),s)] = EP[u(X, t)] and so indeedCs,t(X) ∈U (s).

The definition is well posed

1. For any givenX ∈U (t), EP [u(X, t)|Fs] ∈ L1(Ω ,Fs,P).
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2. Choose two arbitrary versions of the conditional expectation and of the SDU at
times, namelyẼP [u(X, t)|Fs], ÊP [u(X, t)|Fs] andũ(x,s), û(x,s).

3. For allω ∈ At , ẼP [u(X, t)|Fs] (ω) ∈R(t)⊆R(s). We find a unique solution of
ũ(C̃s,t(X),s) = ẼP [u(X, t)|Fs] defined as

C̃s,t(X)(ω) = ũ−1(ẼP [u(X, t)|Fs] (ω),s,ω) ∀ω ∈ At .

4. Repeat the previous argument for the second version and find Ĉs,t(X) which dif-
fers fromC̃s,t(X) only on aP-null set.

We could equivalently reformulate the definition of the CCE as follows:

Definition 2.3. The conditional certainty equivalent process is the only process
{Ys}0≤s≤t such thatYt ≡ X and the process{u(Ys,s)}0≤s≤t is a martingale.

In the following proposition we show some elementary properties of the CCE,
which have however very convenient interpretations. In i) we show the semigroup
property of the valuation operator; iii) show the time consistency of the CCE: if the
time-v-values of two timet claims are equal, then the two values should be equal at
any previous time; iv) and v) are the key properties to obtaina dual representation
of the mapCs,t as shown in Chapter 1; property vi) shows that the expectation of the
valuation operator is increasing, as a function of thevaluation time sand the second
issue expresses the risk aversion of the economic agent.

Proposition 2.1.Let u be a SDU,0≤ s≤ v≤ t < ∞ and X,Y ∈U (t).

i) Cs,t(X) =Cs,v(Cv,t (X)).
ii) Ct,t(X) = X.
iii) If C v,t (X)≤Cv,t(Y) then for all0≤ s≤ v we have: Cs,t(X)≤Cs,t(Y). Therefore,

X ≤Y implies that for all0≤ s≤ t we have: Cs,t(X)≤Cs,t(Y). The same holds
if the inequalities are replaced by equalities.

iv) Regularity: for every A∈ Fs we have

Cs,t(X1A+Y1AC) =Cs,t(X)1A+Cs,t(Y)1AC

and then Cs,t(X)1A =Cs,t(X1A)1A.
v) Quasiconcavity: the upper level set{X ∈Ut |Cs,t(X)≥Y} is conditionally con-

vex for every Y∈ L0
Fs

.
vi) Suppose u satisfies (d) and for every t∈ [0,+∞), u(x, t) is integrable for every x∈

D(t). Then Cs,t(X) ≤ EP [Cv,t (X)|Fs] and EP [Cs,t(X)] ≤ EP [Cv,t(X)]. Moreover
Cs,t(X)≤ EP[X|Fs] and therefore EP [Cs,t(X)]≤ EP[X].

Proof. By definition:

u(Cv,t(X),v)
(·)
= EP [u(X, t)|Fv] , X ∈U (t)

u(Cs,t(X),s)
(+)
= EP [u(X, t)|Fs] , X ∈U (t)

u(Cs,v(Z),s)
(×)
= EP [u(Z,v)|Fs] , Z ∈U (v)
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i) Let Z =Cv,t(X) and compute:

u(Cs,v(Cv,t (X)),s) = u(Cs,v(Z),s)
(×)
= EP [u(Z,v)|Fs]

(·)
= EP [EP [u(X, t)|Fv] |Fs] = EP [u(X, t)|Fs]

(+)
= u(Cs,t(X),s)

ii) Obvious, sinceu(Ct,t(X), t)
(·)
= EP [u(X, t)|Ft ]

(c)
= u(X, t).

iii)

u(Cs,t(X),s)
(+)
= EP [u(X, t)|Fs] = EP [EP [u(X, t)|Fv] |Fs]

(·)
= EP [u(Cv,t(X),v)|Fs]≤ EP [u(Cv,t(Y),v)|Fs]

(·)
= EP [EP [u(Y, t)|Fv] |Fs]

(+)
= u(Cs,t(Y),s).

If X ≤Y thenCt,t (X)≤Ct,t(Y) and the statement follows from what we just proved.
The same for equalities.
iv) Consider everyA∈Fs and notice that

Cs,t(X1A+Y1AC) = u−1(EP[u(X, t)1A+u(Y, t)1AC |Fs],s)

= u−1(EP[u(X, t) |Fs]1A,s)+u−1(EP[u(Y, t) |Fs]1AC,s)

= Cs,t(X)1A+Cs,t(Y)1AC

v) Fix an arbitraryY ∈ L0
Fs

and consider the setY = {X ∈Ut |Cs,t(X)≥Y}. Take

X1,X2 ∈ Y andΛ ∈ L0
Fs

, 0≤Λ ≤ 1:

EP[u(ΛX1+(1−Λ)X2, t)|Fs] ≥ ΛEP[u(X1, t)|Fs]+ (1−Λ)EP[u(X2, t)|Fs]≥ u(Y,s)

hence we get the thesis composing both sides withu−1(·,s) .
vi)

u(Cs,t(X),s)
(+)
= EP [u(X, t)|Fs] = EP [EP [u(X, t)|Fv] |Fs]

(·)
= EP [u(Cv,t(X),v)|Fs]

(d)
≤ EP [u(Cv,t(X),s)|Fs]

≤ u(EP [Cv,t (X)|Fs] ,s).

We applied in the last inequality the extended Jensen inequality, since(u(Cv,t (X),s))−

is integrable. The second property follows by takingv = t and observing that
Ct,t (X) = X.

Remark 2.2.Comparing the definition of SDU with the existing literatureabout for-
ward performances ([6],[62],[63]), we may notice that the CCE does not rely on the
existence of a market: this allows a higher level of generality and freedom in the
choice of the preferences of the agent. We recall that an adapted processU(x, t) is
said to be a forward utility if



2.2 Definitions and first properties 51

1. it is increasing and concave as a function ofx for eacht.
2. U(x,0) = u0(x) ∈ R
3. for all T ≥ t and each self-financing strategy represented byπ , the associated

discounted wealthXπ (see Section 2.3 for the rigorous definitions) satisfies

EP[U(Xπ
T ,T) |Ft ]≤U(Xπ

t , t)

4. for all T ≥ t there exists a self-financing strategyπ∗ such thatXπ∗ satisfies

EP[U(Xπ∗
T ,T) |Ft ] =U(Xπ∗

t , t)

Surely if one take into account this stronger definition and tries to apply it for the
computation of the CCE of these self-financing discounted portfolios Xπ then only
for the optimal strategyπ∗t we have that

Cs,t

(
Xπ∗

t

)
= Xπ∗

s

whereas in general
Cs,t (X

π
t )≤ Xπ

s

This points out an economic interpretation of the CCE: giventhe final outcome of
some risky position we backwardly build up a process which takes into account
the agent’s random risk-aversion. For replicable contingent claims it means that
Xπ

s −Cs,t(Xπ
t ) measures the gap between the real value of the claim at times, and

the smallest amount for which the decision maker would willingly sell the claim if
he had it. The gap will be deleted whenever we move through an optimal strategy.

The previous remark suggests the following

Definition 2.4. Let 0≤ s≤ t < ∞ and letu be a SDU. Theconditional risk premium
of the random variableX ∈U (t) is the random variableρs,t(X) ∈ L0(Ω ,Fs,P;D)
defined by:

ρs,t(X) := EP[X|Fs]−Cs,t(X).

We now consider some properties of the dynamic stochastic utility u when it is
computed on stochastic processes.

Proposition 2.2.Let{St}t≥0 be an{Ft}t≥0− adapted process such that St ∈U (t)
and consider the process{Vt}t≥0 defined by Vt = u(St , t).

i) {Vt}t≥0 is a ({Ft}t≥0,P)−supermartingale (resp. submartingale, resp martin-
gale) if and only if Cs,t(St) ≤ Ss (resp. Cs,t(St) ≥ Ss, resp Cs,t(St) = Ss) for all
0≤ s≤ t < ∞.

Moreover if in addition u satisfies (d) and for every t∈ [0,+∞), u(x, t) is integrable
for every x∈D(t) then

ii) If {St}t≥0 is a ({Ft}t≥0,P)−supermartingale, then the process{Vt}t≥0 defined
by Vt = u(St , t) is a ({Ft}t≥0,P)−supermartingale and thus Cs,t(St)≤ Ss for all
0≤ s≤ t < ∞.
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iii) IfC s,t(St)=Ss for all 0≤ s≤ t <∞ then{St}t≥0 is a({Ft}t≥0,P)−submartingale.

Proof. i) If u(St , t) is a supermartingale, then

u(Cs,t(St),s)
(2.9)
= EP [u(St , t)|Fs]≤ u(Ss,s) for all 0≤ s≤ t

and thereforeCs,t(St)≤ Ss. Conversely ifCs,t(St)≤ Ss then

EP [u(St , t)|Fs]
(2.9)
= u(Cs,t(St),s) ≤ u(Ss,s)

andu(St , t) is a supermartingale. Similarly, for the other cases.
ii) From extended Jensen we get:

EP [u(St , t)|Fs]
(d)
≤ EP [u(St ,s)|Fs]≤ u(EP [St |Fs] ,s) ≤ u(Ss,s) .

iii) From Proposition 2.1 vi) we deduce:Ss =Cs,t(St)≤ EP [St |Fs] .

Remark 2.3.When u satisfies (d) and for everyt ∈ [0,+∞), u(x, t) is integrable
for every x ∈ D(t) and {St}t≥0 is a ({Ft}t≥0,P)−martingale, then{Vt}t≥0 is a
({Ft}t≥0,P)− supermartingale, not necessarily a martingale.

2.3 A local formulation of the CCE

Let (Ω ,F ,{Ft}t≥0,P) be a filtered probability space where the filtration{Ft}t≥0

is generated by ad-dimensional brownian motionW = {(W1
t , ...,W

d
t )

†}t≥0, where
† indicates the transposed of a matrix. Fori = 1, ...,k, the price of theith risky asset
and the bond are described respectively by

dSi
t = Si

t

(
µ i

t dt+σ i
t ·dWt

)
, dBt = rtBtdt

with Si
0 > 0, B0 = 1; σt = (σ j ,i

t ) is thed× k volatility matrix and· the usual vector
product, which will be often omitted. Following Musiela andZariphopoulou, we
assumeµt − rt1 ∈ Lin(σ†

t ), i.e. the linear space generated by the columns ofσ†
t .

Denote by(σ†
t )

+ the Moore-Penrose pseudo-inverse of the matrixσ†
t and define

λt = (σ†
t )

+(µt − 1rt), which is the solution of the equationσ†
t x = µt − 1rt . The

present value of the amounts invested inBt ,Si
t are denoted byπ0

t ,π i
t , respectively.

The present value of investment is then given byXπ
t = ∑k

i=0 π i
t and satisfies the SDE

dXπ
t = σtπt(λtdt+dWt)

whereπt = (π1
t , ...,πk

t )
†.

LetU(x, t) be a dynamic stochastic utility of the form
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U(x, t) =U(x,0)+
m

∑
j=1

∫ t

0
u j(x,s)dζ j

s =U(x,0)+
∫ t

0
u(x,s) ·dζs

dζ j
t = a j(ζt , t)dt+

d

∑
i=1

bi, j(ζt , t)dWi
t = a j(ζt , t)dt+b j(ζt , t) ·dWt

where everyu j(x, t) belongs toC2,1(R× [0,T]) and is a strictly increasing concave
function ofx. We denote bybs thed×m-matrix(bi, j(ζs,s)).

Proposition 2.3.Suppose that for every t> 0,

∫ t

0
EP
[
(bsu(X

π
s ,s))

2]ds<+∞ and
∫ t

0
EP
[
(Ux(X

π
s ,s)σsπs)

2]ds<+∞

The conditional certainty equivalent can be approximated as

Ct,T(X
π
T ) = EP[X

π
T |Ft ]−

1
2

α(Xπ
t , t)(σtπt)

2(T− t)−β (Xπ
t , t)(T− t)+o(T− t)

where we have denoted respectively thecoefficient of absolute risk aversionand the
impatience factorby

α(x, t) := −
Uxx(x, t)
Ux(x, t)

β (x, t) := −
u(x, t) ·a(ζt , t)+btux(x, t) ·σtπt

Ux(x, t)

As a consequence the risk premium is given by

ρt,T(X
π
T ) = +

1
2

α(Xπ
t , t)(σtπt)

2(T− t)+β (Xπ
t , t)(T− t)+o(T− t)

Proof. For simplicity we denoteXπ
t by Xt . We apply the generalized Itô’s formula

(see [52], Chapter 2), so for everyv∈ [t,T]

U(Xv,v) = U(Xt , t)+
∫ v

t
u(Xs,s) ·dζs+

∫ v

t
Ux(Xs,s)dXs

+
1
2

∫ v

t
Uxx(Xs,s)(σsπs)

2ds+ 〈
∫ v

t
Ux(Xs,ds),Xv〉

Notice that in this case

〈
∫ v

t
Ux(Xs,ds),Xv〉= 〈

∫ v

t
ux(Xs,s)·dζs,Xv〉=

m

∑
j=1

∫ v

t
u j

x(Xs,s)

(
d

∑
i=1

bi, j(ζs,s)(σsπs)
k

)
ds

and then we have
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U(Xv,v) = U(Xt , t)

+

∫ v

t
(u(Xs,s) ·a(ζs,s)+σsπsλsUx(Xs,s)

+
1
2

Uxx(Xs,s)(σsπs)
2+bsux(Xs,s)σsπs)ds

+

∫ v

t
(bsu(Xs,s)+Ux(Xs,s)σsπs)dWs

From the assumption of the theorem,It =
∫ t

0 (u(Xs,s) ·bs+Ux(Xs,s)σsπs)dWs is
a martingale: so the conditional expectation is given by

EP[U(Xv,v)|Ft ] = U(Xt , t) (2.11)

+
∫ v

t
EP

[
ua+σπλUx+

1
2

Uxx(σπ)2+buxσπ
∣∣Ft

]
ds

From the definition of CCE we have

U(Ct,v(Xv), t) = EP[U(Xv,v)|Ft ]

If we denote{Zv}v∈[t,T ] the stochastic process defined byZv =: EP[U(Xv,v)|Ft ] then
the stochastic differential

dCt,v(Xv) = dU−1(Zv, t) =

(
∂ (U(x, t))

∂y
∣∣x=U−1(Zv,t)

)−1

dZv

=
1

Ux(Ct,v(Xv), t)
EP

[
ua+σπλUx+

1
2

Uxx(σπ)2+buxσπ
∣∣Ft

]
dv

Hence, sinceU−1(Zt , t) = Xt

Ct,T(XT) = Xt +

∫ T

t
EP [(⋆) |Ft ]ds

where

(⋆) =
u(Xs,s)a(ζs,s)+σsπsλsUx(Xs,s)+ 1

2Uxx(Xs,s)(σsπs)
2+bsux(Xs,s)σsπs

Ux(Ct,s(Xs), t)

Notice that

EP[XT |Ft ] = Xt +EP

[∫ T

t
σsπsλsds|Ft

]
= Xt +σtπtλt(T− t)+o(T− t)
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Ct,T(X) = Xt +σtπtλt(T− t)+
1
2

Uxx(Xt , t)
Ux(Xt , t)

(σtπt)
2(T− t)

+
u(Xt , t)a(ζt , t)+btux(Xt , t)σtπt

Ux(Xt , t)
(T− t)+o(T− t)

= EP[XT |Ft ]−
1
2

α(Xt , t)(σtπt)
2(T− t)−β (Xt, t)(T− t)+o(T− t)

Remark 2.4.If the utility U(x, t) is deterministic (i.e. the matrixbt ≡ 0 for every
t ≥ 0) we deduce that

β (x, t) =−
u(x, t)a(ζt , t)

Ux(x, t)
=−

Ut(x, t)
Ux(x, t)

which is the usual definition of impatience factor.

2.4 The right framework for the CCE

Until now we have consideredCs,t as a map defined on the set of random variables
U (t) which is not in general a vector space. In order to show the dual representation
of the CCE it is convenient to define it on a Banach lattice.

Orlicz spaces have become an important tool whenever we approach to the
utility-maximization framework and we are dealing with unbounded random vari-
ables (see for instance [7] and [8]).
The question which naturally arise is: what happens if we consider a utility functions
which has some explicit dependence on the randomness? May weactually define a
class of “stochastic” Orlicz spaces?
Therefore we now introduce the general class of Musielak-Orlicz spaces induced by
the stochastic dynamic utility taken into account.

2.4.1 Generalities on Musielak-Orlicz Spaces

Given a non-atomic probability space(Ω ,F ,P) and a functionΨ : R×Ω → R∪
{+∞}, with D = {x ∈ R |Ψ(x,ω) < +∞} 6= /0, we say thatΨ is a (generalized)
Young function ifΨ(x, ·) is F -measurable and forP a.e.ω ∈Ω

1. Ψ(·,ω) is even and convex;
2. the effective domainD does not depend onω and 0∈ int(D);
3. Ψ(∞,ω) = +∞, Ψ(0,ω) = 0.

Note thatΨ may jump to+∞ outside of a bounded neighborhood of 0. In caseΨ is
finite valued however, it is also continuous w.r.t.x by convexity. Whenever possible,
we will suppress the explicit dependence ofΨ from ω .
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The Musielak-Orlicz spaceLΨ , on(Ω ,F ,P) is then defined as

LΨ =
{

X ∈ L0 | ∃α > 0EP[Ψ(αX)]<+∞
}
.

endowed with the Luxemburg norm

NΨ (X) = inf
{

c> 0 | EP
[
Ψ
(
X ·c−1)]≤ 1

}
.

Although there are no particular differences with Musielakwork (see [67]), here
we are dropping the hypothesis onΨ to be finite (and so continuous). But since the
domainD does not depend onω we have that non continuousΨs always induce the
spaceL∞(Ω ,F ,P) and the Luxemburg norm is equivalent to the supremum norm.

It is known that(LΨ ,NΨ ) is a Banach space (Theorem 7.7 in [67]), and with the
usual pointwise lattice operations,LΨ is a Banach lattice.

There is an important linear subspace ofLΨ , which is also a Banach lattice

MΨ =
{

X ∈ L0 | EP [Ψ(αX)]<+∞ ∀α > 0
}
.

In general,MΨ $ LΨ and this can be easily seen whenΨ is non continuous since in
this caseMΨ = {0}, but there are also non trivial examples of the strict containment
with finite-valued, continuous Young functions, that we will consider soon.

Other convenient assumptions onΨ that we will use in the forthcoming discus-
sion are

(int) EP[Ψ(x)] is finite for everyx∈D ;
(sub) there exists a Young functiong : R→ R∪{+∞} such thatg(x) ≤Ψ(x,ω) for

P-a.e.ω ∈Ω
(∆2) There existsK ∈ R, h∈ L1 andx0 ∈ R such that

Ψ (2x, ·)≤ KΨ(x, ·)+h(·) for all x> x0, P−a.s.

WhenΨ satisfies (int) and the(∆2) condition (and it is henceforth finite-valued
and continuous) the two spacesMΨ ,LΨ coincide andLΨ can simply be written as
{X ∈ L0 | EP[Ψ(X)]<+∞} (see [67], Theorem 8.14). This is the case of theLp

spaces whenΨ does not depend onω .
In [67] (Theorem 7.6) it is also shown that whenΨ is (int) and continuous onR,

thenMΨ = L∞Ψ
with closure taken in the Luxemburg norm. WhenΨ is continuous

but grows too quickly, it may happen thatMΨ = L∞Ψ $ LΨ . As a consequence,
simple functions are not necessarily dense inLΨ .

If both (int) and (sub) hold, it is not difficult to prove that

L∞ →֒MΨ →֒ LΨ →֒ Lg →֒ L1

with linear lattice embeddings (the inclusions).
As usual, the convex conjugate functionΨ∗ of Ψ is defined as

Ψ ∗(y,ω) =: sup
x∈R
{xy−Ψ(x,ω)}
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and it is also a Young function. The functionΨ ∗ in general does not satisfy (int), but
a sufficient condition for it is thatΨ is (sub). The Musielak-Orlicz spaceLΨ∗ will
be endowed with the Orlicz (or dual) norm

‖X‖Ψ∗ = sup{EP[ |X f | ] | f ∈ LΨ : EP[Ψ ( f )]≤ 1},

which is equivalent to the Luxemburg norm.

2.4.2 The Musielak-Orlicz spaceLû induced by an SDU

In the spirit of [7], we now build the time-dependent stochastic Orlicz space induced
by the SDUu(x, t,ω). The even function̂u : R× [0,+∞)×Ω →R∪{+∞} defined
by

û(x, t,ω) = u(0, t)−u(−|x|, t,ω)

is a Young function and the induced Orlicz spaces are

Lût = {X ∈ L0
Ft
| ∃α > 0EP[û(αX, t)]<+∞}

Mût = {X ∈ L0
Ft
| EP[û(αX, t)]<+∞ ∀α > 0}

endowed with the Luxemburg normNût (·).
Notice the following important fact:

Mût ⊆U (t).

Indeed, for any givenλ > 0 andX ∈ L0
Ft

such thatEP[û(λX, t)] < +∞ we have:
EP[u(λX, t)]≥EP[u(−λ |X|, t)]>−∞. On the other handu(x, t)−u(0, t)≤ û(x, t) so
thatEP[u(λX, t)]≤EP[û(λX, t)+u(0, t)]<+∞ and the claim follows. In particular
this means that (int) impliesu(x, t) is integrable for everyx∈D(t).

This argument highlights one relevant feature: everyX ∈ Mût belongs to the
setU (t) so that the CCE is well defined onMût . In the following examples also
Cs,t(X) ∈ Mûs holds true, so thatCs,t : Mût → Mûs and it make sense to study the
time consistency ofCs,t .

2.4.3 Examples

Exponential random utilities

Let us consideru : R×[0,∞)×Ω → R defined by

u(x, t,ω) =−e−αt(ω)x+βt (ω)
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whereαt > 0 andβt are adapted stochastic processes.
In this example the CCE may be simply computed inverting the functionu(·, t,ω):

Cs,t(X) =−
1
αs

ln
{

EP[e
−αtX+βt |Fs]

}
+

βs

αs
(2.12)

Notice the measurability requirement on the risk aversion processαt , which is dif-
ferent from what can be found in some examples in the literature related to dynamic
risk measures, as e.g. in [1], where theαt in (2.12) is replaced byαs.

Assumptions:We suppose thatβt belongs toL∞(Ft) for anyt > 0 and thateαtx ∈
L1

Ft
for everyx∈ R.

These assumptions guarantee that (int) holds. In particular if αt (ω) ≡ α ∈ R and
βt ≡ 0 thenCs,t(X) =−ρs,t(X), whereρs,t is the dynamic entropic risk measure in-
duced by the exponential utility. Unfortunately when the risk aversion coefficient is
stochastic we have no chance thatCs,t has any monetary property. On the other
hand monotonicity and concavity keep standing. The first is due to Proposition
2.1, whereas the second is a straightforward application ofHolder-conditional in-
equality. This means that in generalρs,t(X) =: −Cs,t(X) satisfies all the usual as-
sumptions of dynamic risk measures, only failing the cash additive property. We
now show a sufficient condition by whichρs,t(X) is at least cash subadditive, i.e.
ρs,t(X+Y)≥ ρs,t(X)−Y whereY ∈ L∞

Fs
andY ≥ 0.

Proposition 2.4.Under the previous assumptions, the functional

ρs,t(X) =
1
αs

ln
{

EP[e
−αtX+βt |Fs]

}
+

βs

αs

is cash subadditive if the process{αt}t≥0 is almost surely decreasing.

Proof. For everyY ∈ L∞
Fs

andY ≥ 0:

ρs,t(X+Y) =
1
αs

ln
{

EP[e
− αt

αs
αsYe−αtX+βt |Fs]

}
−

βs

αs

≥
1
αs

ln
{

EP[e
−αsYe−αtX+βt |Fs]

}
−

βs

αs
= ρs,t(X)−Y.

Proposition 2.5.Under the previous assumptions

Mût
i
→֒ Lût

j
→֒ Lp(Ω ,F ,P) p≥ 2

where i, j are isometric embeddings given by the set inclusions.

Proof. The first inclusion is trivial since the two spaces are endowed with the same
norm. MoreoverMût is a closed subspace ofLût .
For the second inclusion we simply observe that since
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d(u(x, t))
dx |x=0

= αte
At > 0

for almost everyω ∈Ω then for everyp≥ 2 andλ > 0

|x|p≤ û(λx, t,ω) ∀x∈ R, for P−a.e.ω ∈Ω

which implies
||X||p≤ kNût (X) (2.13)

Proposition 2.6.Under the the previous assumptions

Cs,t : Mût →Mûs

Proof. Let λ ≥ 1, and since no confusion arises we denote byut(x)⊜ u(x, t). Define
A= {lnEP[e−αtX+βt |Fs]≤ βs} and notice that

ûs(λCs,t(X))−us(0) = −us

(
−

λ
αs

∣∣∣− lnEP[e
−αtX+βt |Fs]+βs

∣∣∣
)

= eβs exp(λ |− lnEP[e
−αtX+βt |Fs]+βs|)

= eβs exp(λ (βs− lnEP[e
−αtX+βt |Fs]))1A

+ eβs exp(λ (lnEP[e
−αtX+βt |Fs]−βs))1AC

= eβs(1+λ )EP[e
−αtX+βt |Fs]

−λ 1A+eβs(1−λ )EP[e
−αtX+βt |Fs]

λ 1AC

Since onA we haveEP[e−αtX+βt |Fs]≤ eβs and in generaleβs(1−λ ) ≤ a∈R+ then

E
[
ûs(λCs,t(X))

]
≤ EP[e

βs(1+λ−λ )1A]+aE
{

EP[e
−αtX+βt |Fs]

λ 1AC

}
+EP[us(0)]

≤ −EP[us(0)]+aEP

[
eλ (−αtX+βt )

]
+EP[us(0)]

≤ +a‖(e(λ−1)βt)‖∞EP

[
ût(λX)+eβt

]
≤ KEP [ût(λX)]

Notice that the second step is a simple application of Jensen’s inequality, in fact:
E[Y|G ]λ ≤EP[Yλ |G ] ∀λ ≥ 1. Moreover we have that for 0< λ < 1E

[
ûs(λCs,t(X))

]
≤

E
[
ûs(Cs,t(X))

]
< ∞ and thenCs,t(X) ∈Mûs.

Random-power utilities

Consider the utility function given by

u(x, t,ω) =−γt(ω)|x|pt(ω)1(−∞,0)

whereγt , pt are adapted stochastic processes satisfyingγt > 0 andpt > 1. We have
û(x, t) = γt |x|pt . Here assumption (int) is troublesome but not needed for what fol-
lows. On the other hand the utility fails to be strictly increasing so that we won’t
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have uniqueness of the solution for the equation defining theCCE, namely

−γs|Cs,t(X)|ps1{Cs,t (X)<0} = EP
[
−γt |X|

pt 1{X<0}|Fs
]

(2.14)

Notice thatCs,t(X) =Cs,t(X−+K1X≥0) whereK is any positiveFt r.v.; moreover if
G := {EP[γt |X|pt 1{X<0}|Fs]> 0} thenP(G\ {Cs,t(X)< 0}) = 0. If we decompose
X asX+−X− we can conclude that

Cs,t(X) =−
1
γs

(
EP[γt(X

−)pt |Fs]
) 1

ps +K1GC

it’s the class of solutions of (2.14) whereK ∈ L0
Fs

and K > 0. This is a natural
consequence of the choice of a preference system in which theagent is indifferent
among all the positive variables. If in particularK ∈Mûs then it is easy to check that
Cs,t : Mût −→Mûs.

Stochastic transformations of static utilities

One may wonder what happens for an arbitrary SDU. Clearly thefact thatCs,t is a
map between the the two corresponding Orlicz spaces at timet ands is a key feature
for the time-consistency. We take into account a particularclass of SDU, which are
a stochastic transformation of a standard utility function.

LetV : R→R a concave, strictly increasing function: take an adapted stochastic
process,{αt}t≥0, such that for everyt ≥ 0, αt > 0. Thenu(x, t,ω) =V(αt (ω)x) is
a SDU and

Cs,t(X) =
1
αs

V−1 (EP[V(αtX) |Fs])

Proposition 2.7.LetΘt = {X ∈ Lût |EP[u(−X−, t)]>−∞} ⊇Mût . Then

Cs,t : Θt →Θs

Moreover ifû(x,s) satisfies the(∆2) condition, then

Cs,t : Mût →Mûs.

Proof. Denoteût(x) = û(x, t); from Jensen inequality we have

1
αs

V−1 (EP[V(αtX) |Fs])≤
1
αs

EP[αtX |Fs] (2.15)

Define theFs measurable sets

F = {EP[V(αtX) |Fs]≥V(0)} , G= {EP[αtX |Fs]≥ 0}

and deduce from equation (2.15) that
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0≤Cs,t(X)+ =
1
αs

V−1 (EP[V(αtX) |Fs])1F ≤
1
αs

EP[(αtX)1G |Fs]

For everyX ∈ Lût we may find aλ > 0 such thatEP[ût(λX1G)]<+∞:

EP

[
ûs

(
λ
αs

V−1(EP[V(αtX) |Fs])1F

)]
≤ EP

[
ûs

(
λ
αs

EP[(αtX)1G |Fs]

)]

= EP[V(0)−V(−EP[(λ αtX)1G |Fs])] ≤ EP[V(0)−V(−λ αtX1G)]

≤ EP[ût(λX1G)].

HenceX ∈ Lût impliesCs,t(X)+ ∈ Lûs.
Now let’s consider a r.v.X ∈Θt : −Cs,t(X)− = 1

αs
V−1 (EP[V(αtX) |Fs])1FC.

We can conclude that

0≤ EP[ûs(−Cs,t(X)−)] = EP
[
−V ◦V−1(EP[V(αtX)1FC|Fs])+V(0)

]
=

= EP[−V(αtX)1FC +V(0)]<+∞

where the last inequality follows fromX ∈Θt , {X ≥ 0} ⊆ F and

V(αtX)1FC =
(
V(αtX

+)1{X≥0}+V(−αtX
−)1{X<0}

)
1FC =V(−αtX

−)1{X<0}∩FC

This shows that surelyCs,t(X) ∈Θs, if X ∈Θt .

2.5 Dual representation of CCE

In this section we prove a dual formula for the CCE, which is similar to the general
result that can be found in [33]: due to the particular structure of the CCE the proof
is simpler and more readable.

Consider the condition:

there existsX∗ ∈ (Lût )∗ s.t.EP[ f
∗(X∗, t)]<+∞ (2.16)

where f ∗(x, t,ω) = supy∈R {xy+u(y, t,ω)}.
As a consequence of Theorem 1 [75], we may deduce that if (2.16) holds, if

û(x, t) is (int) andX ∈ Lût thenEP[u(λX, t)]<+∞ for everyλ > 0.

Remark 2.5.The condition (2.16) is quite weak: it is satisfied, for example, if
u(x, t,ω)≤ ax+b with a,b∈ R since

f ∗(−a, t,ω)≤ sup
y∈R
{(−a+a)y+b}= b.

We now take into account(LΨ )∗, the norm dual ofLΨ and consider the following
three cases which cover a pretty large class of possible Young functions.

1. Ψ(·,ω) is (int) and discontinuous, i.e.D $R.
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In this case,LΨ = L∞ and from the Yosida-Hewitt decomposition for elements of
ba(Ω ,F ,P) we have

ba= (L∞)∗ = L1⊕A
d,

whereA d consists of pure charges, i.e. purely finitely additive measures (which
are not order continuous).

2. Ψ(·,ω) is continuous,Ψ andΨ∗ are (int) and satisfy:

Ψ (x,ω)

x
→+∞ P−a.s, asx→ ∞.

These conditions are not restrictive and hold as soon asΨ is (int) and (sub)
with limx→∞

g(x)
x →+∞. For such Young functions it can be easily deduced from

Theorem 13.17 in [67] that(MΨ )∗ = LΨ ∗ : µr ∈ (MΨ )∗ can be identified with its
densitydµr

dP ∈ LΨ ∗ so that we will write its action onX ∈ LΨ asµr(X) = EP[µrX].

Moreover(MΨ )∗ is a band in the dual space(LΨ )∗ (see [2] Section 8) so that we
may decompose

(LΨ )∗ = (MΨ )∗⊕ (MΨ )⊥

i.e. everyX∗ ∈ (LΨ )∗ can be uniquely represented asX∗ = µr + µs whereµs be-
longs to the annihilator ofMΨ (µs(X) = 0 for everyX ∈MΨ ) andµr ∈ (MΨ )∗ =
LΨ∗ . Notice that every elementµr ∈ (MΨ )∗ is clearly order continuous. More-
over it can be shown, applying an argument similar to the one used in Lemma 10
[7], that everyµs∈ (MΨ )⊥ is not order continuous.

3. Ψ(·,ω) is continuous and

0< a= ess inf
ω∈Ω

lim
x→∞

Ψ(x,ω)

x
≤ esssup

ω∈Ω
lim
x→∞

Ψ (x,ω)

x
= b<+∞

Here (int) automatically holds for bothΨ andΨ∗. It follows thatLΨ = L1 and
theL1-norm is equivalent to the Luxemburg norm, so that(LΨ )∗ = LΨ∗ = L∞.

Assumptions for the dual result

In this sectionu(x, t,ω) is a SDU, such that:

1. For allt ≥ 0, the induced Young function̂u(x, t,ω) belongs to one of the three
classes mentioned above

2. The condition (2.16) holds true.

As shown above, under the assumption (1) the order dual spaceof Lût is known
and is contained inL1. This will also allow us to apply Proposition 1.1. The second
assumption implies thatEP[u(·, t)] : Lût → [−∞,+∞) is a well defined convex func-
tional ([75]).
Thus we haveu(X+, t) ∈ L1

Ft
, but in general we do not have integrability for

u(−X−, t). This means that ifX /∈ Θt = {X ∈ Lût |EP[u(−X−, t)] > −∞} we are
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forced to consider the generalized conditional expectation

EP[u(X, t) |Fs] := EP[u(X, t)+ |Fs]− lim
n

EP[u(X, t)−1{−n≤−u(X,s)−<0} |Fs],

which can be equivalently written as:

EP[u(X, t) |Fs] = EP[u(X
+, t)1{X≥0} |Fs]+ lim

n
EP[u(−X−, t)1{−n≤X<0} |Fs].

Therefore,EP[u(X, t) |Fs] ∈ L̄0
Fs

andCs,t(·) is defined on the entire spaceLût . We
fix throughout this section 0< s≤ t and define

PFt = {X
∗ ∈ (Lû∗t )+ | EP[X

∗] = 1} ⊆ {Q<< P |Q probability}

U : Lût → L̄0
Fs

given byU(X) := EP[u(X, t) |Fs]

The mapU is concave and increasing and admits the dual representation stated in
Lemma 2.2. From equation (2.18) we deduce the dual representation ofCs,t(·) =
u−1(U(·),s) as follows.

Theorem 2.1.Fix s≤ t. For every X∈ Lût

Cs,t(X) = inf
Q∈PFt

G(EQ[X|Fs],Q) (2.17)

where for every Y∈ L0
Fs

,

G(Y,Q) = sup
ξ∈Lût

{Cs,t(ξ ) | EQ[ξ |Fs] =Q Y} .

Moreover if X∈Mût then the essentialinfimum in (2.17) is actually aminimum.

The proof is based on the following Lemma.

Lemma 2.2.Let s≤ t. For every X∈ Lût

U(X) = inf
Q∈PFt

S(EQ[X|Fs],Q) (2.18)

where S(Y,Q) = supξ∈Lût {U(ξ ) | EQ[ξ |Fs] =Q Y} for any Y∈ L0
Fs

.

Moreover if X∈Mût then the essentialinfimum in (2.18) is actually aminimum.

Proof. Obviously∀Q∈PFt

EP[u(X, t) |Fs]≤ sup
ξ∈Lût

{U(ξ ) | EQ[ξ |Fs] =Q EQ[X|Fs]}

and then

EP[u(X, t) |Fs]≤ inf
Q∈PFt

sup
ξ∈Lût

{U(ξ ) | EQ[ξ |Fs] =Q EQ[X|Fs]} . (2.19)
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Important remark: we have thatE(U(X)) = E(u(X, t)); this means that

E(U(·)) : Lût → [−∞,+∞)

is a concave functional. From the monotone convergence theorem and Jensen in-
equality the functionalE(u(X, t)) is continuous from above (i.e.Xn ↓X⇒E(u(Xn, t)) ↓
E(u(X, t))). Applying Lemma 15 in [8],E(U(X)) is order u.s.c. and thusσ(Lût ,Lû∗t )-
u.s.c. (Proposition 24 [8]).
From Proposition 1.1 in Section 1.2:

E(U(X)) = inf
Q∈PFt

sup
ξ∈Lût

{EP[U(ξ )] | EQ[ξ ] = EQ[X]}

≥ inf
Q∈PFt

sup
ξ∈Lût

{E(U(ξ )) | EQ[ξ |Fs] =Q EQ[X|Fs]} ≥ E(U(X))

i.e.

E(U(X)) = inf
Q∈PFt

sup
ξ∈Lût

{E(U(ξ )) | EQ[ξ |Fs] =Q EQ[X|Fs]} (2.20)

Surely the mapU is regular (i.e. for everyA ∈Fs, U(X1A+Y1AC) = U(X)1A+
U(Y)1AC) and then the setA = {U(ξ ) | EQ[ξ |Fs] =Q EQ[X|Fs]} is upward di-
rected. In fact givenξ1,ξ2 ∈A we have

U(ξ1)∨U(ξ2) =U(ξ1)1F +U(ξ2)1FC =U(ξ11F + ξ21FC)

whereF = {U(ξ1)≥U(ξ2)} andEQ[ξ11F + ξ21FC|Fs] =Q EQ[X|Fs]. By this last
property and the monotone convergence theorem we deduce

EP[S(EQ[X|Fs],Q)] = sup
ξ∈Lût

{EP[U(ξ )] | EQ[ξ |Fs] =Q EQ[X|Fs]}

Hence

E(U(X)) = inf
Q∈PFt

sup
ξ∈Lût

{E(U(ξ )) | EQ[ξ |Fs] =Q EQ[X|Fs]}

= inf
Q∈PFt

E

(
sup

ξ∈Lût

{U(ξ ) | EQ[ξ |Fs] =Q EQ[X|Fs]}

)

≥ E

(
inf

Q∈PFt

sup
ξ∈Lût

{U(ξ ) | EQ[ξ |Fs] =Q EQ[X|Fs]}

)

This last chain of inequalities together with inequality (2.19) gives

U(X) = inf
Q∈PFt

sup
ξ∈Lût

{U(ξ ) | EQ[ξ |Fs] =Q EQ[X|Fs]} ∀X ∈ Lût (2.21)
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Moreover from generalized Namioka-Klee theorem, the functional E(u(·)) : Lût is
norm continuous onint(Θu) ⊇Mût (see [8] Lemma 32) and thenE(U(X)) as well
sinceE(U(X)) = E(u(X)).
Again from Proposition 1.1 we have that:

E(U(X)) = min
Q∈PFt

sup
ξ∈Mût

{E(U(ξ )) | EQ[ξ ] = EQ[X]}

= sup
ξ∈Mût

{EP[U(ξ )] | EQmin[ξ ] = EQmin[X]}

≥ sup
ξ∈Mût

{
EP[U(ξ )] | EQmin[ξ |Fs] =Qmin EQmin[X|Fs]

}
≥ EP[(U(X))

The remaining proof matches the previous case and then we get

U(X) = min
Q∈PFt

sup
ξ∈Mût

{U(ξ ) | EQ[ξ |Fs] =Q EQ[X|Fs]} ∀X ∈Mût (2.22)

where the minimizer is exactlyQmin.

Proof (of Theorem 2.1).Since s, t are fixed throughout this proof we redefine
Cs,t(·) = C(·), u(x, t) = u(x) and u(x,s) = v(x). We show that for every fixed
Q∈PFt , v−1S(EQ[X|Fs],Q) = G(EQ[X|Fs],Q).

SinceC,U are regular, for every fixedQ∈PF the sets

{C(ξ ) | ξ ∈Lût , EQ[ξ |Fs]=QEQ[X|Fs]}, {U(ξ ) | ξ ∈Lût , EQ[ξ |Fs]=QEQ[X|Fs]}

are upward directed and then there existξ Q
h ,ηQ

h such thatEQ[ξ Q
h |Fs] =Q EQ[X|Fs],

EQ[ηQ
h |Fs] =Q EQ[X|Fs], for everyh> 0, and

C(ξ Q
h ) ↑G(EQ[X|Fs],Q) , U(ηQ

h ) ↑ S(EQ[X|Fs],Q) P−a.s.

Thus sincev−1 is continuous in the interior of its domain:

G(EQ[X|Fs],Q) ≥ lim
h

C(ηQ
h ) = v−1 lim

h
U(ηQ

h ) = v−1S(EQ[X|Fs],Q)

≥ v−1 lim
h

U(ξ Q
h ) = lim

h
C(ξ Q

h ) = G(EQ[X|Fs],Q)

and this ends the first claim.
It’s not hard to prove that the infimum is actually a limit (using the property of

downward directness of the set as has been shown in Chapter 1 Lemma 1.4 (v)):
therefore we deduce from the continuity ofv−1 that

C(X) = v−1 inf
Q∈PFt

S(EQ[X|Fs],Q) = inf
Q∈PFt

v−1S(EQ[X|Fs],Q)

= inf
Q∈PFt

G(EQ[X|Fs],Q)





Chapter 3
Conditional quasiconvex maps: aL0-module
approach

This last Chapter -compared to Chapter 1- is not a mere generalization to a different
framework. Our desire is to motivate future researchers to this new tool that shows
huge potentiality in the financial and economic applications. Convex/quasiconvex
conditional maps (see also [27]) is only one of these numerous applications. It was
our surprise and pleasure to discover howL0(G )-modules naturally fitted to our pur-
poses and simplified most of the proofs.
Anyway there is a drawback that still urges to be answered: isthere a way to com-
bine modules with a time continuous financial problem? Is there a notion of time
consistency in agreement with modules?

3.1 A short review onL0 modules

The probability space(Ω ,F ,P) is fixed throughout this chapter andG ⊆F is
any sigma algebra contained inF . We denote withL0(Ω ,F ,P) = L0(F ) (resp.
L0(G ) ) the space ofF (resp.G ) measurable random variables that areP a.s.
finite, whereas byL̄0(F ) the space of extended random variables which may
take values inR∪ {∞}; this differs from the previous chapters, but this choice
is needed not to mess the things up with the notations linked to the presence of
modules. In general since(Ω ,P) are fixed we will always omit them. We define
L0
+(F ) = {Y ∈ L0(F ) |Y ≥ 0} andL0

++(F ) = {Y ∈ L0(F ) |Y > 0}. We remind
that all equalities/inequalities among random variables are meant to holdP-a.s..
Since in this chapter the expected valueEP[·] of random variables is mostly com-
puted w.r.t. the reference probabilityP, we will often omitP in the notation.
Moreover the essential (P almost surely)supremum esssupλ (Xλ ) of an arbitrary
family of random variablesXλ ∈ L0(Ω ,F ,P) will be simply denoted by supλ (Xλ ),
and similarly for the essentialinfimum. ∨ (resp.∧) denotes the essential (P al-
most surely)maximum(resp. the essentialminimum) between two random variables,
which are the usual lattice operations.
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We choose the framework introduced by Filipovic et al. and just recall here some
definitions. To help the reader in finding further details we use the same notations
as in [28] and [53].

L0(G ) equipped with the order of the almost sure dominance is a lattice ordered
ring: define for everyε ∈ L0

++(G ) the ballBε = {Y ∈ L0G | |Y| ≤ ε} centered in 0∈
L0(G ), which gives the neighborhood basis of 0. A setV ⊂ L0(G ) is a neighborhood
of Y ∈ L0(G ) if there existsε ∈ L0

++(G ) such thatY+Bε ⊂V. A setV is open if
it is a neighborhood of allY ∈V. (L0(G ), | · |) stands forL0(G ) endowed with this
topology: in this case the space looses the property of beinga topological vector

space. It is easy to see that a net converges in this topology,namelyYN
|·|
→ Y if for

everyε ∈ L0
++(G ) there exists̄N such that|Y−YN|< ε for everyN > N̄.

From now on we suppose thatE ⊆ L0(F ).

Definition 3.1. A topological L0(G )-module (E,τ) is an algebraic moduleE on
the ringL0(G ), endowed with a topologyτ such that the operations

(i) (E,τ)× (E,τ)→ (E,τ), (X1,X2) 7→ X1+X2,
(ii) (L0(G ), | · |)× (E,τ)→ (E,τ), (Γ ,X2) 7→ Γ X2

are continuous w.r.t. the corresponding product topology.
A setC is said to beL0

G
-convex if for everyX1,X2 ∈ C andΛ ∈ L(G ), 0≤ Λ ≤ 1,

we haveΛX1+(1−Λ)X2∈ C .
A topologyτ onE is locallyL0(G )-convex if(E,τ) is a topologicalL0(G )-module
and there is a neighborhood baseU of 0 ∈ E for which eachU ∈ U is L0(G )-
convex,L0(G )-absorbent andL0(G )-balanced. In this case(E,τ) is alocally L0(G )-
convex module.

Definition 3.2. A function‖ · ‖ : E→ L0
+(G ) is aL0(G )-seminorm onE if

(i) ‖Γ X‖= |Γ |‖X‖ for all Γ ∈ L0(G ) andX ∈ E,
(ii) ‖X1+X2‖ ≤ ‖X1‖+ ‖X2‖ for all X1,X2 ∈ E.

‖ · ‖ becomes aL0(G )-norm if in addition
(iii) ‖X‖= 0 impliesX = 0.

Any family Z of L0(G )-seminorms onE induces a topology in the following
way. For any finiteS ⊂Z andε ∈ L0

++(G ) we define

US ,ε :=
{

X ∈ E | sup
‖·‖∈S

‖X‖ ≤ ε
}

U := {US ,ε |S ⊂Z finite andε ∈ L0
++(G )}.

U gives the neighborhood base of 0 and then we induce a topologyas forL0(G )
obtaining a locallyL0(G )-convex module. In fact Filipovic et al. proved (Theorem
2.4 [28]) that a topologicalL0(G )-convex module(E,τ) is locallyL0(G )-convex if
and only ifτ is induced by a family ofL0(G )-seminorms. When‖ · ‖ is a norm we
will always endowE with the topology induced by‖ · ‖.

Definition 3.3 (Definition 2.7 [28]).A topologicalL0(G )-module has the countable
concatenation property if for every countable collection{Un}n of neighborhoods
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of 0 ∈ E and for every countable partition{An}n ⊆ G the set∑n 1AnUn is again a
neighborhood of 0∈ E.

This property is satisfied byL0(G )-normed modules.

From now on we suppose that(E,τ) is a locallyL0(G )-convex module and we
denote byL (E,L0(G )) theL0(G )-module of continuousL0(G )-linear maps.
Recall thatµ : E→ L0(G ) is L0(G )-linear if

µ(αX1+βX2) = αµ(X1)+β µ(X2) ∀α,β ∈ L0(G ) andX1,X2 ∈ E.

In particular this impliesµ(X11A +X21AC) = µ(X1)1A + µ(X2)1AC which corre-
sponds to the property (REG) in Chapter 1. On the other handµ : E→ L0(G ) is
continuous if the counterimage of any open set (in the topology of almost sure dom-
inance provided onL0(G )) is an open set inτ.

Definition 3.4. A setC is said to be evenlyL0(G )-convex if for everyX ∈ E such
that1B{X}∩1BC = /0 for everyB∈ G with P(B) > 0, there exists aL0(G )-linear
continuous functionalµ : E→ L0(G ) such that

µ(X)> µ(ξ ) ∀ξ ∈ C

Example 3.1.We now give an important class ofL0(G )-normed modules which
plays a key role in the financial applications and is studied in detail in [53] Sec-
tion 4.2.
The classical conditional expectation can be generalized to E[·|G ] : L0

+(F ) →
L̄0
+(G ) by

E[X|G ] =: lim
n→+∞

E[X∧n|G ]. (3.1)

The basic properties of conditional expectation still holdtrue: for everyX,X1,X2 ∈
L0
+(F ) andY ∈ L0(G )

• YE[X|G ] = E[YX|G ];
• E[X1+X2|G ] = E[X1|G ]+E[X2|G ];
• E[X] = E[E[X|G ]].

For everyp≥ 1 we introduce the algebraicL0-module defined as

Lp
G
(F ) =: {X ∈ L0(Ω ,F ,P) | ‖X|G ‖p ∈ L0(Ω ,G ,P)} (3.2)

where‖ · |G‖p is aL0(G )-norm given by

‖X|G ‖p =:

{
E[|X|p|G ]

1
p if p<+∞

inf{Y ∈ L̄0(G ) |Y ≥ |X|} if p=+∞
(3.3)

We denote byτp theL0-module topology induced by (3.3). We remind thatLp
G
(F )

has the product structure i.e.
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Lp
G
(F ) = L0(G )Lp(F ) = {YX |Y ∈ L0(G ), X ∈ Lp(F )}

This last property allows the conditional expectation to bewell defined for every
X̃ ∈ Lp

G
(F ): sinceX̃ =YXwith Y∈ L0(G ) andX ∈ Lp(F ) thenE[X̃|G ] =YE[X|G ]

is a finite valued random variable.
For p∈ [1,+∞), anyL0(G )-linear continuous functionalµ : Lp

G
(F )→ L0(G ) can

be identified with a random variableZ∈Lq
G
(F ) asµ(·)=E[Z· |G ]where1

p+
1
q = 1.

3.2 Quasiconvex duality on generalL0 modules

Definition 3.5. A mapπ : E→ L̄0(G ) is said to be

(MON) monotone: for everyX,Y ∈ E, X ≤Y we haveπ(X)≤ π(Y);
(QCO) quasiconvex: for everyX,Y ∈ E, Λ ∈ L0(G ) and 0≤Λ ≤ 1

π(ΛX+(1−Λ)Y)≤ π(X)∨π(Y),

(or equivalently if the lower level sets{ξ ∈ Lp
G
(F )|π(ξ ) ≤ η} areL0

G
-convex

for everyη ∈ L0
G

.)
(REG) regular if for everyX,Y ∈ E andA∈ G ,

π(X1A+Y1AC) = π(X)1A+π(Y)1AC;

(EVQ) evenly quasiconvex if the lower level sets{ξ ∈ E|π(ξ ) ≤ η} are evenly
L0

G
-convex for everyη ∈ L0

G
.

Finally the following optional assumptions will be important in the dual result
(PRO) there is at least a coupleX1,X2 ∈ E such thatπ(X1)< π(X2)<+∞.
(TEC) if for someY ∈ L0(G ) {ξ ∈ Lp

G
(F ) | π(ξ ) < Y} = /0 thenπ(ξ ) ≥ Y for

everyξ ∈ Lp
G
(F ).

Remark 3.1.Remarks on the assumptions.

• Notice that surely an evenlyL0(G )-convex set is alsoL0(G )-convex and then
(EVQ) implies (QCO).

• (PRO) assure that the mapπ is in some sense a proper map. In fact we want
to avoid that the mapπ is constant on some setA ∈ G i.e. π(ξ1)1A = π(ξ2)1A

for everyξ1,ξ2 ∈ E. If this is the case, it appears reasonable to split the mea-
sure spaceΩ in the two partsA,AC and threat them separately, since onA the
representation turns out to be trivial. This is anyway a pretty weak assumption.

• (TEC) is obviously satisfied if{ξ ∈ E | π(ξ )<Y} 6= /0 for everyY ∈ L0(G ), and
in general by maps likef (E[u(·)|G ]) where f ,u are real function.

• As shown in Chapter 1 the dual representation is linked to thecontinuity proper-
ties of the map: it can be shown (see for instance Proof of Corollary 3.1 and 3.2)
that (EVQ) is implied by (QCO) together with either
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(LSC) lower semicontinuity i.e. the lower level sets{ξ ∈ E | π(ξ ) ≤ Y} are
closed for everyY ∈ L0(G ))

or

(USC)⋆ strong upper semicontinuity i.e. the strict lower level sets {ξ ∈ E |
π(ξ )<Y} are open for everyY ∈ L0(G ).

This is basically consequence of Hahn Banach Separation Theorems for modules
(see [28] Theorems 2.7/2.8).

3.2.1 Statements of the main results

This first Theorem matches the representation obtained by Maccheroni et al. in [10]
for general topological spaces. Respect to the first chapter, the interesting feature
here, is that in the module framework we are able to have a dualrepresentation
for evenly quasiconvex maps: as shown in the corollaries above this is a weaker
condition that (QCO) plus (LSC) (resp. (USC)⋆) and is an important starting point
to obtain a complete quasiconvex duality as in [10]. From nowon we suppose that
F ⊆ L̄0(G ) is a lattice of extended random variable, which represents the codomain
of the mapπ .

Theorem 3.1.Let E be a locally L0(G )-convex module. Ifπ : E → F is (REG),
(EVQ) and (TEC) then

π(X) = sup
µ∈L (E,L0(G ))

R(µ(X),µ), (3.4)

where
R(Y,µ) := inf

ξ∈E
{π(ξ ) | µ(ξ )≥Y}

If in addition E satisfies the countable concatenation property then (TEC) can be
replaced by (PRO).

Corollary 3.1. Let E be a locally L0(G )-convex module satisfying the countable
concatenation property. Ifπ : E→ F is (QCO), (REG), (TEC) andτ-(LSC) then

π(X) = sup
µ∈L (E,L0(G ))

R(µ(X),µ). (3.5)

In alternative, since the concatenation property holds true (TEC) can be switched
into (PRO).

Corollary 3.2. Let E be a locally L0(G )-convex module. Ifπ : E→ F is (QCO),
(REG), (TEC) andτ-(USC)⋆ then

π(X) = max
µ∈L (E,L0(G ))

R(µ(X),µ). (3.6)
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If in addition E satisfies the countable concatenation property then (TEC) can be
replaced by (PRO).

In Theorem 3.1,π can be represented as a supremum but not as a maximum.
The following Corollary shows that nevertheless we can find aR(µ(X),µ) arbitrary
close toπ(X).

Corollary 3.3. Under the same assumption of Theorem 3.1 or Corollary 3.1, for
everyε > 0 there existsµε ∈L (E,L0(G )) such that

π(X)−R(µε(X),µε)< ε on the set{π(X)<+∞} (3.7)

3.2.2 General properties ofR(Y,µ)

In this sectionπ : E→ F ⊆ L̄0(G ) always satisfies (REG). Following the path traced
in the first Chapter, we state and adapt the proofs to the module framework, of the
foremost properties holding for the functionR(Y,µ). Notice thatR is not defined on
the whole product spaceL0(G )×L (E,L0(G )) but its actual domain is given by

Σ = {(Y,µ) ∈ L0
G ×L (E,L0(G ))|∃ξ ∈ E s.t.µ(ξ )≥Y}. (3.8)

Lemma 3.1.Let µ ∈L (E,L0(G )) and X∈ E.
i) R(·,µ) is monotone non decreasing.
ii) R(Λ µ(X),Λ µ) = R(µ(X),µ) for everyΛ ∈ L0(G ).
iii) For every Y∈ L0(G ) andµ ∈L (E,L0(G )), the set

Aµ(Y)⊜ {π(ξ ) |ξ ∈ E, µ(ξ )≥Y}

is downward directed in the sense that for everyπ(X1),π(X2) ∈Aµ(Y) there exists
π(X∗)∈Aµ(Y) such thatπ(X∗)≤min{π(X1),π(X2)}. Thus there exists a sequence{

ξ µ
m
}∞

m=1 ∈ E such that

µ(ξ µ
m)≥Y ∀m≥ 1, π(ξ µ

m) ↓ R(Y,µ) as m↑ ∞.

In particular if for α ∈ L0(G ), R(Y,µ) < α then there existsξ such thatµ(ξ )≥Y
andπ(ξ )< α.
iv) For every A∈ G , (Y,µ) ∈ Σ

R(Y,µ)1A = inf
ξ∈E
{π(ξ )1A |Y1A≥ µ(X1A)}= R(Y1A,µ)1A (3.9)

v) For every X1,X2 ∈ E
(a) R(µ(X1),µ)∧R(µ(X2),µ) = R(µ(X1)∧µ(X2),µ)
(b) R(µ(X1),µ)∨R(µ(X2),µ) = R(µ(X1)∨µ(X2),µ)

vi) The map R(µ(X),µ) is quasi-affine with respect to X in the sense that for every
X1,X2 ∈ E, Λ ∈ L0(G ) and0≤Λ ≤ 1, we have
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R(µ(ΛX1+(1−Λ)X2),µ)≥ R(µ(X1),µ)∧R(µ(X2),µ) (quasiconcavity)
R(µ(ΛX1+(1−Λ)X2),µ)≤ R(µ(X1),µ)∨R(µ(X2),µ) (quasiconvexity).

vii) infY∈L0(G )R(Y,µ1) = infY∈L0(G )R(Y,µ2) for everyµ1,µ2 ∈L (E,L0(G )).

Proof. i) and ii) follow trivially from the definition. Most of the leftover items are
proved in similar way than the properties in Lemma 1.3. We report here all of them
for sake of completeness.
iii) Consider theG -measurable setG= {π(X1)≤ π(X2)} then

min{π(X1),π(X2)}= π(X1)1G+π(X2)1GC
REG
= π(X11G+X21GC)

Sinceµ(X11G+X21C
G) = µ(X1)1G+µ(X2)1GC ≥Y thenπ(X11G+X21C

G)∈Aµ(Y).
The existence of the sequence

{
ξ µ

m
}∞

m=1 ∈E such thatπ(ξ µ
m) ↓R(Y,µ) for µ(ξ µ

m)≥
Y is a well known consequence for downward directed sets. Now let R(Y,µ) < α:
consider the setsFm = {π(ξ µ

m) < α} and the partition ofΩ given byG1 = F1 and
Gm = Fm\Gm−1. We have from the properties of the moduleE and (REG) that

ξ =
∞

∑
m=1

ξ µ
m1Gm ∈ E, µ(ξ )≥Y andπ(ξ )< α

iv) To prove the first equality in (1.12): for everyξ ∈ E such thatµ(ξ 1A)≥Y1A we
define the random variableη = ξ 1A+ ζ1AC with µ(ζ1AC)≥Y1AC, which satisfies
µ(η)≥Y. Therefore

{η1A | η ∈ E, µ(η)≥Y}= {ξ 1A | ξ ∈ E, µ(ξ 1A)≥Y1A}

Hence from from the properties of theessinfand (REG):

1AR(Y,µ) = inf
η∈E
{π(η1A)1A | µ(η)≥Y}

= inf
ξ∈E
{π(ξ 1A)1A | µ(ξ 1A)≥Y1A}

= inf
ξ∈E
{π(ξ )1A | µ(ξ 1A)≥Y1A}

and (1.12) follows. Similarly for the second equality.
v) a): SinceR(·,µ) is monotone, the inequalitiesR(µ(X1),µ) ∧ R(µ(X2),µ) ≥
R(µ(X1)∧µ(X2),µ) andR(µ(X1),µ)∨R(µ(X2),µ)≤ R(µ(X1)∨µ(X2),µ) are al-
ways true.
To show the opposite inequalities, define theG -measurable sets:B := {R(µ(X1),µ)≤
R(µ(X2),µ)} andA := {µ(X1)≤ µ(X2)} so that

R(µ(X1),µ)∧R(µ(X2),µ) = R(µ(X1),µ)1B+R(µ(X2),µ)1BC

≤ R(µ(X)1,µ)1A+R(µ(X2),µ)1AC (3.10)

R(µ(X1),µ)∨R(µ(X2),µ) = R(µ(X)1,µ)1BC +R(µ(X2),µ)1B

≥ R(µ(X)1,µ)1AC +R(µ(X2),µ)1A



74 3 Conditional quasiconvex maps: aL0-module approach

Set:D(A,X) = {ξ 1A | ξ ∈ E, µ(ξ 1A)≥ µ(X1A)} and check that

D(A,X1)+D(AC,X2) = {ξ ∈ E | µ(ξ )≥ µ(X11A+X21AC)} := D

From (3.10) and using (1.12) we get:

R(µ(X1),µ)∧R(µ(X2),µ)≤ R(µ(X1),µ)1A+R(µ(X2),µ)1AC

= inf
ξ1A∈D(A,X1)

{π(ξ 1A)}+ inf
η1AC∈D(AC,X2)

{π(η1AC)}

= inf
ξ1A∈D(A,X1)

η1AC∈D(AC,X2)

{π(ξ 1A)+π(η1AC)}

= inf
(ξ1A+η1AC)∈D(A,X1)+D(AC,X2)

{π(ξ 1A+η1AC)}

= inf
ξ∈D
{π(ξ )}= R(µ(X1)1A+ µ(X2)1AC,µ)

= R(µ(X1)∧µ(X2),µ).

Simile modo:v) b).
vi) From the monotonicity ofR(·,µ), R(µ(X1) ∧ µ(X2),µ) ≤ R(µ(ΛX1 + (1−
Λ)X2),µ) (resp.R(µ(X1)∨ µ(X2),µ) ≥ R(µ(ΛX1 +(1−Λ)X2),µ)) and then the
thesis follows from iv).
(vii) Notice that

R(Y,µ)≥ inf
ξ∈E

π(ξ ) ∀Y ∈ L0
F

implies
inf

Y∈L0(G )
R(Y,µ)≥ inf

ξ∈E
π(ξ ).

On the other hand

π(ξ )≥ R(µ(ξ ),µ)≥ inf
Y∈L0(G )

R(Y,µ) ∀ξ ∈ E

implies
inf

Y∈L0(G )
R(Y,µ)≤ inf

ξ∈E
π(ξ ).

3.2.3 Bridging the gap between convex and non convex maps

In this short section we would like to analyze how the Fenchelconjugate is related
to the functionR in the quasiconvex representation. The above simple resultcan be
used in order to obtain a risk/economic interpretation of the role acted byR (see
later Remark 3.3).

Considerπ : E→ F andµ ∈ E◦+ where
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E◦+ =: {µ ∈L (E,L0(G )) | µ(X)≥ 0, for everyX ≥ 0}.

We define forX ∈ E andµ ∈ E◦+

r(X,µ) := inf
ξ∈E
{π(ξ ) | µ(ξ ) = µ(X)}

r⋆(µ) := sup
ξ∈E
{µ(ξ )− r(ξ ,µ)}

R⋆(µ) := sup
ξ∈E
{µ(ξ )−R(µ(ξ ),µ)}

π∗(µ) := sup
ξ∈E
{µ(ξ )−π(ξ )}

Proposition 3.1.For an arbitraryπ we have the following properties

1. r(X,µ)≥ R(µ(X),µ)≥ µ(X)−π∗(µ);
2. r⋆(µ) = R⋆(Z) = π∗(µ).

Proof. 1. For allξ ∈ E we haveπ∗(µ) = supξ∈E{µ(ξ )− π(ξ )} ≥ µ(ξ )− π(ξ ).
Hence:µ(X)−π∗(µ) ≤ µ(X)− µ(ξ )+π(ξ )≤ π(ξ ) for all ξ ∈ E s.t. µ(ξ )≥
µ(X). Therefore

µ(X)−π∗(µ)≤ inf
ξ∈E
{π(ξ ) | µ(ξ )≥ µ(X)}= R(µ(X),µ)≤ r(X,µ)

2. From 1. we haveµ(ξ )−R(µ(ξ ),µ)≤ π∗(µ) and

r⋆(µ) = sup
ξ∈E
{µ(ξ )− r(ξ ,µ)}≤ sup

ξ∈E
{µ(ξ )−R(µ(ξ ),µ)}= R⋆(µ)≤ π∗(µ)

(3.11)
sincer(ξ ,µ)≤ π(ξ ) we have

µ(ξ )− r(ξ ,µ)≥ µ(ξ )−π(ξ ) ⇒ r⋆(µ)≥ π∗(µ)

and together with equation (3.11) we deduce

r⋆(µ)≥ π∗(µ)≥ R⋆(µ)≥ r⋆(µ).

3.2.4 Proofs

Proof (Proof of Theorem 3.1).Fix X ∈ E and denoteG= {π(X)<+∞}; for every
ε ∈ L0

++(G ) consider the evenly convex set

Cε =: {ξ ∈ E | π(ξ )≤ (π(X)− ε)1G+ ε1GC}.

Step 1.If Cε = /0 then by assumption (TEC) we haveπ(ξ ) ≥ (π(X)− ε)1G+
ε1GC for everyξ ∈ E. In particular it follows thatR(µ(X),µ) ≥ (π(X)− ε)1G+
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ε1GC for everyµ ∈L (E,L0(G )) and thus

π(X)≥ sup
µ∈L (E,L0(G ))

R(µ(X),µ)≥ (π(X)− ε)1G+ ε1GC (3.12)

Step 2.Now suppose thatCε 6= /0. For everyB∈ G , P(B) > 0 we have1B{X}∩
1BCε = /0: in fact if ξ 1B = X1B then by (REG) we getπ(ξ )1B = π(ξ 1B)1B =
π(X1B)1B = π(X)1B. SinceCε is evenlyL0-convex then we can findµε ∈L (E,L0(G ))
such that

µε(X)> µε(ξ ) ∀ξ ∈ Cε . (3.13)

Let nowA∈ G be an arbitrary element such thatP(A)> 0 and define

C
A
ε =: {ξ ∈ E|π(ξ )1A≤ (π(X)− ε)1A∩G+ ε1A∩GC}.

We want to show thatµε(X)> µε (ξ ) on A for everyξ ∈ C A
ε . Let ξ ∈ C A

ε , η ∈ Cε
and defineξ̄ = ξ 1A+η1AC which surely will belong toCε . Henceµε(X)> µε(ξ̄ )
so thatµε(X1A) = µε(X)1A ≥ µε (ξ̄ )1A = µε(ξ 1A) andµε (X) > µε(ξ ) on A. We
then deduce thatC A

ε ⊆DA
ε =: {ξ ∈ E|µε(X)> µε(ξ ) onA} for everyA∈ G which

means that ⋂

A∈G

(
D

A
ε
)C
⊆
⋂

A∈G

(
C

A
ε
)C

By definition

(
C

A
ε
)C

= {ξ ∈ E | ∃B⊆ A, P(B)> 0 and[⋆ ]}

where

[⋆ ]←→




π(ξ )(ω)> π(X)(ω)− ε(ω) for a.e.ω ∈ B∩G
or

π(ξ )(ω)> ε(ω) for a.e.ω ∈ B∩GC

so that
⋂

A∈G

(
C

A
ε
)C

= {ξ ∈ E | ∀A∈ G , ∃B⊆ A, P(B)> 0 and[⋆ ]}

= {ξ ∈ E | π(ξ )> (π(X)− ε)1G+ ε1GC}.

Indeed if ξ ∈ E such thatπ(ξ ) > (π(X)− ε)1G + ε1GC then ξ ∈
⋂

A∈G

(
C A

ε
)C

.

Viceversa letξ ∈
⋂

A∈G

(
C A

ε
)C

: suppose that there exists aD ∈ G , P(D) > 0 and
π(ξ )≤ (π(X)−ε)1G+ε1GC onD. By definition of(C D

ε )C we can findB⊆D such
thatπ(ξ )> π(X)− ε on G∩D or π(ξ )> +ε on D∩GC and this is clearly a con-

tradiction. Hence
⋂

A∈G

(
C A

ε
)C

= {ξ ∈ E|π(ξ )> (π(X)−ε)1G+ε1GC}. Matching

the previous argument we can prove that
⋂

A∈G

(
DA

ε
)C

= {ξ ∈ E|µε(X)≤ µε(ξ )}.
We finally deduce that
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π(X) ≥ sup
µ∈L (E,L0(G ))

R(µ(X),µ)≥ R(µε(X),µε) = inf
ξ∈E
{π(ξ ) | µε(X)≤ µε(ξ )}

≥ inf
ξ∈E
{π(ξ ) | π(ξ )> (π(X)− ε)1G+ ε1GC} ≥ (π(X)− ε)1G+ ε1GC.

By equation (3.12) and this last sequence of inequalities wecan assure that for ev-
ery ε ∈ L0

++(G ) π(X)≥ supµ∈L (E,L0(G ))R(µ(X),µ)≥ (π(X)− ε)1G+ ε1GC. The

thesis follows takingε arbitrary small onG and arbitrary big onGC.

Step 3.Now we pass to that the second part of the Theorem and assume that E
have the concatenation property. We follow the notations ofthe first part of the proof
and introduce theG measurable random variableYε =: (π(X)− ε)1G+ ε1GC and
the set

A = {A∈ G | ∃ξ ∈ E s.t.π(ξ )≤Yε onA}

For everyA,B ∈ A we have thatA∪B. Consider the set{1A|A ∈ A }: the set is
upward directed since1A1 ∨1A2 = 1A1∪A2 for everyA1,A2 ∈A . Hence we can find
a sequence1An ↑ sup{1A|A∈A }= 1Amax whereAmax= ∪nAn ∈ G .
By definition for everyAn we can findξn such thatπ(ξn) ≤ Yε onAn. Now rede-
fine the sequence of setBn = An \Bn−1, so thatη = ∑n ξn1Bn has the property that
π(η)≤Yε onAmax i.e.Amax∈A .

As a consequence of the definition ofA and sinceAmax is the maximal element
in A we deduce thatπ(ξ )>Yε on (Amax)C for everyξ ∈ E.
In particular it follows thatR(µ(X),µ)≥Yε on(Amax)C for everyµ ∈L (E,L0(G ))
and thus

π(X)≥ sup
µ∈L (E,L0(G ))

R(µ(X),µ)≥ (π(X)− ε)1G+ ε1GC on (Amax)C (3.14)

We know by (PRO) that there exists aζ1,ζ2 ∈ E such thatπ(ζ1) < π(ζ2) ∈
L0(G ). Introduce the evenly convex set

C
1
ε =: {ξ ∈ E | π(ξ )≤Yε1Amax+π(ζ1)1(Amax)C} 6= /0.

SurelyX̃ = X1Amax+ ζ21(Amax)C has the property that1B{X̃}∩1BC 1
ε = /0 for every

B∈ G so that we can findµε ∈L (E,L0(G )) such that

µε(X̃)> µε(ξ ) ∀ξ ∈ C
1
ε . (3.15)

Repeating the argument of Step 2 we get

π(X̃) ≥ sup
µ∈L (E,L0(G ))

R(µ(X̃),µ)≥ R(µε(X̃),µε) = inf
ξ∈E
{π(ξ ) | µε(X̃)≤ µε(ξ )}

≥ inf
ξ∈E
{π(ξ ) | π(ξ )>Yε1Amax+π(ζ1)1(Amax)C} ≥Yε1Amax+π(ζ1)1(Amax)C.

Restricting to the setAmax we deduce
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π(X1Amax)1Amax ≥ sup
µ∈L (E,L0(G ))

R(µ(X1Amax),µ)1Amax≥Yε1Amax.

This last inequality together with equation (3.14) gives by(REG)

π(X)≥ R(µε(X),µε)≥ (π(X)− ε)1G+ ε1GC (3.16)

and the thesis follows taking againε arbitrary small onG and arbitrary big onGC.

Proof (Proof of Corollary 3.1).Assuming (TEC). We only have to show that the set
Cε - which is now closed - defined in the previous proof can be separated as in (3.13).
For everyB∈ G , P(B)> 0 we have already shown that1B{X}∩1BCε = /0. We thus
can apply the generalized Hahn Banach Separation Theorem (see [28] Theorem 2.8)
and findµε ∈L (E,L0(G )) andδ ∈ L0

++(G ) so that

µε(X)> µε(ξ )+ δ ∀ξ ∈ Cε . (3.17)

Similarly when we assume (PRO).

Proof (Proof of Corollary 3.2).In order to obtain the representation in terms of a
maximumwe prove the claim directly. FixX ∈ E and consider the open convex set
C =: {ξ ∈ E | π(ξ )< π(X)}.
If C = /0 then by assumption (TEC) we haveπ(ξ ) ≥ π(X) for every ξ ∈ E. In
particular it follows thatR(µ(X),µ) ≥ π(X) for everyµ ∈L (E,L0(G )) and thus
the thesis follows since

π(X)≥ sup
µ∈L (E,L0(G ))

R(µ(X),µ)≥ π(X) (3.18)

Now supposeC 6= /0: notice that1B{X}∩1BC = /0. We thus can apply the gener-
alized Hahn Banach Separation Theorem (see [28] Theorem 2.7) and findµmax∈
L (E,L0(G )) so that

µmax(X)> µmax(ξ ) ∀ξ ∈ C .

Let nowA∈ G be an arbitrary element such thatP(A)> 0: repeat the argument of
the previous proof considering

C
A =: {ξ ∈ E|π(ξ )< π(X) onA}.

D
A =: {ξ ∈ E|µmax(X1A)> µmax(ξ 1A) onA}

and find that

{ξ ∈ E|µmax(X)≤ µmax(ξ )} ⊆ {ξ ∈ E|π(ξ )≥ π(X)}

Again the thesis follows from the inequalities
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π(X) ≥ sup
µ∈L (E,L0(G ))

R(µ(X),µ)≥ inf
ξ∈E
{π(ξ ) | µmax(X)≤ µmax(ξ )}

≥ inf
ξ∈E
{π(ξ ) | π(ξ )≥ π(X)} ≥ π(X)

When we assume (PRO) instead of (TEC) we just have to repeat the argument in
the proof of Theorem 3.1.

Proof (Proof of Corollary 3.3).Follows directly from the last three lines of Step 2
(or Step 3) in the proof of Theorem 3.1.

3.3 Application to Risk Measures

In Section 1.4 we briefly discussed the application of quasiconvex analysis to the
theory of Risk Measures. Now we would like to better detail this powerful tool
in the module environment. It’s important to notice that at the actualstatusof the
research on this subject, not all of the following results can be adapted to the vector
space case. Hopefully this will be developed in the future.
First of all we specify the definition of risk measure.

Definition 3.6. A quasiconvex (conditional) risk measure is a mapρ : Lp
G
(F )→

L̄0(G ) satisfying
(MON)′ monotonicity: for everyX,Y ∈ Lp

G
(F ), X ≤Y we haveρ(X)≥ ρ(Y);

(QCO) quasiconvexity: for everyX,Y ∈ Lp
G
(F ), Λ ∈ L0(G ) and 0≤Λ ≤ 1

ρ(ΛX+(1−Λ)Y)≤ ρ(X)∨ρ(Y),

(REG) regular if for everyX,Y ∈ Lp
G
(F ) andA∈ G ,

ρ(X1A+Y1AC) = ρ(X)1A+ρ(Y)1AC;

Recall that the principle of diversification states that ‘diversification should not in-
crease the risk ’, i.e. the diversified positionΛX+(1−Λ)Y is less risky than both
the positionsX andY. Under cash additivity axiom convexity and quasiconvexityare
equivalent, so that they both give the right interpretationof this principle. As already
mentioned with an example in Section 1.4 (and vividly discussed by El Karoui and
Ravanelli [25]) the lack of liquidity of the zero coupon bonds is the primary reason
of the failure of cash additivity. Thus it is unavoidable to relax the convexity axiom
to quasiconvexity in order to regain the best modeling of diversification.
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3.3.1 A characterizationvia the risk acceptance family

In this subsection we assume for sake of simplicity thatρ(0) ∈ L0(G ): in this way
we do not loose any generality imposingρ(0) = 0 (if not just defineρ̃(·) = ρ(·)−
ρ(0)). We remind that ifρ(0) = 0 then (REG) turns out to beρ(X1A) = ρ(X)1A.
Given a risk measure one can always define for everyY ∈ L0(G ) the risk acceptance
set of levelY as

A
Y
ρ = {X ∈ Lp

G
(F ) | ρ(X)≤Y}.

This set represents the collection of financial positions whose risk is smaller of the
fixed levelY and are strictly related to the Acceptability Indices [12].Given a risk
measure we can associate a family of risk acceptance sets, namely{A Y

ρ |Y ∈ L0(G )}
which are called Risk Acceptance Family of the risk measureρ as suggested in [19].
In general

Definition 3.7. A family A = {A Y|Y ∈ L0(G )} of subsetsA Y ⊂ Lp
G
(F ) is called

risk acceptance family if
(i) convex:A Y is L0(G )-convex for everyY ∈ L0(G );
(ii) monotone:

• X1 ∈A Y andX2 ∈ Lp
G
(F ), X2≥ X1 impliesX2 ∈A Y;

• for anyY′ ≤Y we haveA Y′ ⊆A Y;

(iii) regular:X ∈A Y then for everyG∈ G we have

inf{Y1G ∈ L0(G ) | X ∈A
Y}= inf{Y ∈ L0(G ) | X1G ∈A

Y}

(iv) right continuous:A Y =
⋂

Y′>Y A Y′ for everyY ∈ L0(G ).

These four properties allows to induce a one to one relationship between quasi-
convex risk measures and risk acceptance families as we prove in the following

Proposition 3.2.For any quasiconvex risk measureρ : Lp
G
(F )→ L̄0(G ) the family

Aρ = {A Y
ρ |Y ∈ L0(G )}

with A Y
ρ = {X ∈ Lp

G
(F ) | ρ(X)≤Y} is a risk acceptance family.

Viceversafor every risk acceptance familyA the map

ρA(X) = inf{Y ∈ L0(G ) | X ∈A
Y}

is a well defined quasiconvex risk measureρA : Lp
G
(F )→ L̄0(G ) such thatρA(0) =

0.
MoreoverρAρ = ρ andAρA = A.

Proof. (MON)′ and (QCO) ofρ imply thatA Y
ρ is convex and monotone. Also notice

that
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inf{Y ∈ L0(G ) | X1G ∈A
Y
ρ }= inf{Y ∈ L0(G ) | ρ(X1G)≤Y}= ρ(X1G)

= ρ(X)1G = inf{Y1G ∈ L0(G ) | ρ(X)≤Y}= inf{Y ∈ L0(G ) | X1G ∈A
Y
ρ },

i.e.A Y
ρ is regular.

ObviouslyA Y
ρ ⊂

⋂
Y′>Y A Y′ for anyY ∈ L0(G ). If X ∈

⋂
Y′>Y A Y′ thenρ(X)≤Y′

for everyY′ >Y and henceρ(X)≤Y i.e.A Y
ρ ⊃

⋂
Y′>Y A Y′ .

Viceversa:we first prove thatρA is (REG). For everyG∈ G

ρA(X1G)= inf{Y∈L0(G ) |X1G∈A
Y}

(iii )
= inf{Y1G∈L0(G ) |X ∈A

Y}= ρA(X)1G

Now considerX1,X2∈Lp
G
(F ), X1≤X2. LetGC = {ρA(X1)=+∞} so thatρA(X11GC)≥

ρA(X21GC). Otherwise consider the collection ofYs such thatX11G ∈ A Y. Since
A Y is monotone we have thatX21G ∈A Y if X11G ∈A Y and this implies that

ρA(X1)1G = inf{Y1G ∈ L0(G ) | X1 ∈A
Y}= inf{Y ∈ L0(G ) | X11G ∈A

Y}

≥ inf{Y ∈ L0(G ) | X21G ∈A
Y}= inf{Y1G ∈ L0(G ) | X2 ∈A

Y}= ρ(X2)1G,

i.e.ρA(X11G)≥ ρA(X21G). And this shows thatρA(·) is (MON)′.
Let X1,X2 ∈ Lp

G
(F ) and take anyΛ ∈ L0(G ), 0≤ Λ ≤ 1. Define the setB =:

{ρA(X1) ≤ ρA(X2)}. If X11BC +X21B ∈ A Y′ for someY′ ∈ L0(G ) then for sure
Y′ ≥ ρA(X1)∨ρA(X2)≥ ρ(Xi) for i = 1,2. Hence alsoρ(Xi) ∈A Y′ for i = 1,2 and
by convexity we have thatΛX1+(1−Λ)X2 ∈A Y′ . ThenρA(ΛX1+(1−Λ)X2)≤
ρA(X1)∨ρA(X2).
If X11BC +X21B /∈A Y′ for everyY′ ∈ L0(G ) then from property (iii) we deduce that
ρA(X1) = ρA(X2) = +∞ and the thesis is trivial.

Now considerB= {ρ(X) = +∞}: ρAρ (X) = ρ(X) follows from

ρAρ (X)1B = inf{Y1B ∈ L0(G ) | ρ(X)≤Y}=+∞1B

ρAρ (X)1BC = inf{Y1BC ∈ L0(G ) | ρ(X)≤Y}

= inf{Y ∈ L0(G ) | ρ(X)1BC ≤Y}= ρ(X)1BC

For the second claim notice that ifX ∈ A Y then ρA(X) ≤ Y which means that
X ∈A Y

ρA . Conversely ifX ∈A Y
ρA thenρA(X)≤Y and by monotonicity this implies

thatX ∈ A Y′ for everyY′ > Y. From the right continuity we take the intersection
and get thatX ∈A Y.
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3.3.2 Complete duality

This last Section is devoted to one of the most interesting result of this thesis: a
complete quasiconvex duality between the risk measureρ and the dual mapR. We
restrict the discussion to the particular case ofL0(G )-modules ofLp

G
(F ) type for

one main reason: actually it is the only class of modules for which there is a full
knowledge of the dual moduleL (E,L0(G )). When analytical results will be avail-
able on modules of the Orlicz type (see [53] for the exact definition) or others the
following proof will be easily adapted.

We transpose the definitions of Section 3.2, with some littledifferences of signs.

R(Y,Z) := inf
ξ∈Lp

G
(F )
{ρ(ξ ) | E [−ξ Z|G ]≥Y} (3.19)

is well defined on the domain

Σ = {(Y,Z) ∈ L0
G ×Lq

G
(F )|∃ξ ∈ Lp

G
(F ) s.t.E[−Zξ |G ]≥Y}.

Let also introduce the following notations:

P
q =: {Z ∈ Lq

G
(F ) | Z≥ 0, E[Z|G ] = 1}

=

{
dQ
dP
∈ Lq

G
(F ) |Q probability, E

[
dQ
dP
|G

]
= 1

}

and the classM (L0(G )×Pq) composed by mapsK : L0(G )×Pq→ L̄0(G ) s.t.

• K is increasing in the first component.
• K(Y1A,Q)1A = K(Y,Q)1A for everyA∈ G and(Y, dQ

dP ) ∈ Σ .
• infY∈L0(G )K(Y,Q) = infY∈L0(G ) K(Y,Q′) for everyQ,Q′ ∈Pq.

• S is ⋄-evenlyL0(G )-quasiconcave: for every(Ȳ,Q̄) ∈ L0(G )×Pq, A ∈ G and
α ∈ L0(G ) such thatK(Ȳ,Q̄)< α on A, there exists(S̄, X̄) ∈ L0

++(G )×Lp
G
(F )

with

ȲS̄+E

[
X̄

dQ̄
dP
|G

]
<YS̄+E

[
X̄

dQ
dP
|G

]
onA

for every(Y,Q) such thatK(Y,Q)≥ α onA.

• the setK (X) =
{

K(E[X dQ
dP |G ],Q) |Q∈Pq

}
is upward directed for everyX ∈

Lp
G
(F ) .

We will write with a slight abuse of notationR(Y,Q) instead ofR
(
Y, dQ

dP

)
. The

classM (L0(G )×Pq) is non empty in general as we show in the following Lemma.

Lemma 3.2.The function R defined in (3.19) belongs toM (L0(G )×Pq)

Proof. First: Rmonotone in the first component follows from 3.1 i).
Second:R(Y1A,Q)1A = R(Y,Q)1A follows from 3.1 iv).
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Third: observe thatR(Y,Q)≥ infξ∈Lp
G
(F ) ρ(ξ ) for all (Y,Q) ∈ L0(G )×Pq so that

inf
Y∈L0(G )

R(Y,Q)≥ inf
ξ∈Lp

G
(F )

ρ(ξ ).

Conversely notice that the set{ρ(ξ )|ξ ∈ Lp
G
(F )} is downward directed and then

there existsρ(ξn) ↓ infξ∈Lp
G
(F ) ρ(ξ ). For everyQ∈Pq we have

ρ(ξn)≥ R

(
E

[
−ξn

dQ
dP
|G

]
,Q

)
≥ inf

Y∈L0(G )
R(Y,Q)

so that
inf

Y∈L0(G )
R(Y,Q)≤ inf

ξ∈Lp
G
(F )

ρ(ξ ).

Fourth: forα ∈ L0(G ) andA ∈ G defineUA
α = {(Y,Q) ∈ L0(G )×Pq|R(Y,Q) ≥

α onA}, and suppose /06= UA
α 6= L0(G )×Pq. Let (Ȳ,Q̄) ∈ L0(G )×Pq such

that R(Ȳ,Q̄) < α on A. From Lemma 3.1 (iii) there exists̄X ∈ Lp
G
(F ) such that

E[−X̄ dQ̄
dP |G ]≥ Ȳ andρ(X̄)<α onA. SinceR(Y,Q)≥α onA for every(Y,Q)∈UA

α
then E[−X̄ dQ

dP |G ] < Y for every (Y,Q) ∈ Uα on A: otherwise we could define

B= {ω ∈ A | E[−X̄ dQ
dP |G ]≥Y}, P(B)> 0 and then from Lemma 3.1 (iv) it must be

thatR(Y1B,Q)< α on the setB. Finally we can conclude that for every(Y,Q) ∈UA
α

Ȳ+E

[
X̄

dQ̄
dP
|G

]
≤ 0<Y+E

[
X̄

dQ
dP
|G

]
onA.

Fifth: K =
{

R(E[X dQ
dP |G ],Q) |Q∈Pq

}
is upward directed. TakeQ1,Q2 ∈Pq

and defineF = {R(E[X dQ1
dP |G ],Q1)≥ R(E[X dQ2

dP |G ],Q2)} and letQ̂ given by

dQ̂
dP

:= 1F
dQ1

dP
+1FC

dQ2

dP
∈P

q.

It is easy to show, using an argument similar to the one in Lemma 1.4 that

R

(
E

[
X

dQ̂
dP
|G

]
,Q̂

)
= R

(
E

[
X

dQ1

dP
|G

]
,Q1

)
∨R

(
E

[
X

dQ2

dP
|G

]
,Q2

)
.

Lemma 3.3.Let Q∈Pq andρ satisfying (MON)′, (REG) then

R(Y,Q) = inf
ξ∈Lp

G
(F )

{
ρ(ξ ) | E

[
−ξ

dQ
dP
|G

]
=Y

}
. (3.20)

Proof. For sake of simplicity denote byµ(·) = E[·dQ
dP |G ] andr(Y,µ) the right hand

side of equation (3.20). Notice thatR(Y,µ) ≤ r(Y,µ). By contradiction, suppose
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thatP(A)> 0 whereA=: {R(Y,µ)< r(Y,µ)}. From Lemma 3.1, there exists a r.v.
ξ ∈ Lp

G
(F ) satisfying the following conditions

• µ(−ξ )≥Y andP(µ(−ξ )>Y)> 0.
• R(Y,µ)(ω)≤ ρ(ξ )(ω)< r(Y,µ)(ω) for P-almost everyω ∈ A.

SetZ = µ(−ξ )−Y ∈ L0(G ) ⊆ Lp
G
(F ) and it satisfiesZ≥ 0, P(Z > 0)> 0. Then,

thanks to (MON)′, ρ(ξ )≥ ρ(ξ +Z). Fromµ(−(ξ +Z)) =Y we deduce:

R(Y,µ)(ω)≤ ρ(ξ )(ω)< r(Y,µ)(ω)≤ ρ(ξ +Z)(ω) for P-a.e.ω ∈ A,

which is a contradiction.

Consider the classM prop(L0(G )×Pq) composed by mapsK : L0(G )×Pq→
L̄0(G ) such thatK ∈M (L0(G )×Pq) and there existX1,X2 such that

supK (X1)< supK (X2)<+∞.

Theorem 3.2.ρ : Lp
G
(F )→ L0(G ) satisfies (MON)′, (REG), (EVQ) and (PRO) if

and only if

ρ(X) = sup
Q∈Pq

R

(
E

[
−

dQ
dP

X|G

]
,Q

)
(3.21)

where

R(Y,Q) = inf
ξ∈Lp

G
(F )

{
ρ(ξ ) | E

[
−ξ

dQ
dP
|G

]
=Y

}

is unique in the classM prop(L0(G )×Pq).

Remark 3.2.SinceQ<< P we can observe

EP

[
dQ
dP

ξ | G
]
= EP

[
dQ
dP

X | G

]
⇐⇒ EQ[ξ |G ] =Q EQ[X|G ],

so that we will write sometimes with a slight abuse of notation

R(EQ[X|G ],Q) = inf
ξ∈Lp

G
(F )
{ρ(ξ ) | EQ[ξ |G ] =Q EQ[X|G ]}

From this last proposition we can deduce the following important result which
confirm what we have obtained in Chapter 1.

Proposition 3.3.Suppose thatρ satisfies the same assumption of Theorem 3.2. Then
the restrictionρ̂ := ρ1Lp(F ) defined bŷρ(X) = ρ(X) for every X∈ Lp(F ) is a
quasiconvex risk measure that can be represented as

ρ̂(X) = sup
Q∈Pq

inf
ξ∈Lp(F )

{ρ̂(ξ ) | EQ[−ξ |G ] =Q EQ[−X|G ]} .

Proof. For everyX ∈ Lp(F ), Q∈Pq we have
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ρ̂(X) ≥ inf
ξ∈Lp(F )

{ρ̂(ξ ) | EQ[−ξ |G ] =Q EQ[−X|G ]}

≥ inf
ξ∈Lp

G
(F )
{ρ(ξ ) | EQ[−ξ |G ] =Q EQ[−X|G ]}

and hence the thesis.

It’s a moot point in financial literature whether cash additivity (CAS) (ρ(X +
Λ) = ρ(X)−Λ for Λ ∈ L0(G ) is a too much restrictive assumption or not. Surely
adding (CAS) to a quasiconvex risk measure it automaticallyfollows thatρ is con-
vex. The following result is meant to confirm that the dual representation chosen for
quasiconvex maps is indeed a good generalization of the convex case. Differently
from Corollary 1.2 here there are no restrictive additionalhypothesis and it becomes
clear how a powerful tool the modules are in this kind of applications.

Corollary 3.4. (i) If Q ∈Pq and if ρ is (MON), (REG) and (CAS) then

R(EQ(−X|G ),Q) = EQ(−X|G )−ρ∗(−Q) (3.22)

where
ρ∗(−Q) = sup

ξ∈Lp
G
(F )

{EQ[−ξ |G ]−ρ(ξ )} . (3.23)

(ii) Under the same assumptions of Proposition 3.2 and ifρ satisfies in addition
(CAS) then

ρ(X) = sup
Q∈Pq

{EQ(−X|G )−ρ∗(−Q)} .

Proof. Denote byµ(·) =: E
[

dQ
dP · | G

]
; by definition ofR

R(EQ(−X|G ),Q) = inf
ξ∈Lp

G
(F )
{ρ(ξ ) | µ(−ξ ) = µ(−X)}

= µ(−X)+ inf
ξ∈Lp

G
(F )
{ρ(ξ )− µ(−X) | µ(−ξ ) = µ(−X)}

= µ(−X)+ inf
ξ∈Lp

G
(F )
{ρ(ξ )− µ(−ξ ) | µ(−ξ ) = µ(−X)}

= µ(−X)− sup
ξ∈Lp

G
(F )

{ρ(ξ )− µ(−X) | µ(−ξ ) = µ(−X)}

= µ(−X)−ρ∗(−Q),

where the last equality follows from

ρ∗(−Q)
(CAS)
= sup

ξ∈Lp
G
(F )

{µ(−ξ − µ(X− ξ ))−ρ(ξ + µ(X− ξ ))}

= sup
η∈Lp

G
(F )

{µ(−η)−ρ(η) | η = ξ + µ(X− ξ )}

≤ sup
η∈Lp

G
(F )

{µ(−η)−ρ(η) | µ(−η) = µ(−X)} ≤ ρ∗(−Q).
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Remark 3.3.If we look at equation (3.21) in the light of Proposition 3.1 we could
naively claim that the inequality

R

(
E

[
−

dQ
dP

X|G

]
,Q

)
≥ E

[
−

dQ
dP

X|G

]
−ρ∗(−Q)

can be translated into : ‘If the preferences of an agent are described by a quasiconvex
- not convex - risk measure I can’t recover the risk only taking asupremumof the
Fenchel conjugate over all the possible probabilistic scenarios. I shall need to choose
a more cautious and conservative penalty function.’

3.3.3 Proof of Theorem 3.2

We recall thatLp
G
(F ) is a normed module so that the concatenation property always

holds true. During the whole proof we fix an arbitraryX ∈ Lp
G
(F ). We are assuming

(PRO) and for this reason we refer to proof of Theorem 3.1 step3 for the definitions
and notations. There exists aζ1,ζ2 ∈ E such thatρ(ζ1) < ρ(ζ2) ∈ L0(G ) and we
recall that the evenly convex set

C
1
ε =: {ξ ∈ Lp

G
(F ) | ρ(ξ )≤Yε1Amax+ρ(ζ1)1(Amax)C} 6= /0.

may be separated from̃X = X1Amax+ ζ21(Amax)C by µε ∈L (Lp
G
(F ),L0(G )) i.e.

µε(X̃)> µε(ξ ) ∀ξ ∈ C
1
ε .

ONLY IF.

Let η ∈ Lp
G
(F ), η ≥ 0. If ξ ∈C 1

ε then (MON) impliesξ +nη ∈C 1
ε for everyn∈N.

In this caseµε(·) = E[Zε · |G ] for someZε ∈ Lq
G
(F ) and from (3.17) we deduce:

E[Zε(ξ +nη)|G ]<E[Zε X̃|G ] ⇒ E[−Zε η |G ]>
E[Zε(ξ − X̃)|G ]

n
, ∀n∈N

i.e. E[Zε η |G ] ≤ 0 for everyη ∈ Lp
G
(F ), η ≥ 0. In particularZε ≤ 0: only notice

that1{Zε>0} ∈ Lp
G
(F ) so thatE[Zε 1{Zε>0}]≤ 0 if and only ifP({Zε > 0}) = 0.

If there exists aG -measurable setG, P(G) > 0, on whichZε = 0, then we have a
contradiction. In fact fixξ ∈ C 1

ε : from E[Zε ξ |G ] < E[Zε X̃|G ] we can find aδξ ∈

L0
++(G ) such that

E[Zε ξ |G ]+δξ <E[Zε X̃|G ] ⇒ δξ 1G=E[Zε1Gξ |G ]+δξ 1G≤E[Zε1GX̃|G ] = 0.

which is absurd becauseP(δξ 1G > 0)> 0.
We deduce thatE[Zε1B] =E[E[Zε |G ]1B]< 0 for everyB∈ G and thenP(E[Zε |G ]<
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0) = 1. Hence we may normalizeZε to Zε
E[Zε |G ]

= dQ
dP ∈ L1(F ).

From equation (3.16) in the proof of Theorem 3.1 we can deducethat

ρ(X) = π(−X) = sup
Q∈Pq

inf
ξ∈Lp

G
(F )

{
π(ξ ) | E

[
ξ

dQ
dP
|G

]
≥ E

[
−X

dQ
dP
|G

]}

= sup
Q∈Pq

inf
ξ∈Lp

G
(F )

{
ρ(ξ ) | E

[
−ξ

dQ
dP
|G

]
≥ E

[
−X

dQ
dP
|G

]}

(3.24)

Applying Lemma 3.3 we can substitute= in the constraint.
To complete the proof of the ‘only if ’statement we only need to show thatR∈

M prop(L0(G )×Pq). By Lemma 3.2 we already know thatR∈M (L0(G )×Pq)
so that applying (PRO) and (3.24) we have thatR∈M prop(L0(G )×Pq).

IF.

We assume thatρ(X)= supQ∈Pq R(E[−X dQ
dP |G ],Q) holds for someR∈M prop(L0(G )×

Pq). SinceR is monotone in the first component andR(Y1A,Q)1A = R(Y,Q)1A for
everyA∈ G we easily deduce thatρ is (MON) and (REG). Alsoρ is clearly (PRO).
We need to show thatρ i (EVQ).
Let Vα = {ξ ∈ Lp

G
(F )|ρ(ξ ) ≤ α} whereα ∈ L0(G ) and X̄ ∈ Lp

G
(F ) such that

X̄1A∩Vα1A = /0. Henceρ(X̄) = supQ∈Pq R(E[−X̄ dQ
dP |G ],Q)> α.

Since the set{R(E[−X̄ dQ
dP |G ],Q)|Q∈Pq} is upward directed we find

R

(
E

[
−X̄

dQm

dP
|G

]
,Qm

)
↑ ρ(X̄) asm↑+∞.

Consider the setsFm= {R(E[−X̄ dQm
dP |G ],Qm)> α} and the partition ofΩ given by

G1 = F1 andGm = Fm\Gm−1. We have from the properties of the moduleLq
G
(F )

that
dQ̄
dP

=
∞

∑
m=1

dQm

dP
1Gm ∈ Lq

G
(F )

and thenQ̄∈Pq with R(E[−X̄ dQ̄
dP |G ],Q̄)> α.

Let X ∈ Vα : if there existsA ∈ G such thatE[X dQ̄
dP 1A|G ] ≤ E[X̄ dQ̄

dP 1A|G ] on A

thenρ(X1A) ≥ R(E[−X dQ̄
dP 1A|G ],Q̄) ≥ R(E[−X̄ dQ̄

dP 1A|G ],Q̄) > α on A. This im-

pliesρ(X)> α onA which is a contradiction unlessP(A) = 0. HenceE[X dQ̄
dP |G ]>

E[X̄ dQ̄
dP |G ] for everyX ∈Vα .
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UNIQUENESS.

We show that for everyK ∈M prop(L0(G )×Pq) such that

ρ(X) = sup
Q∈Pq

K(E[−X
dQ
dP
|G ],Q),

K must satisfy

K(Y,Q) = inf
ξ∈Lp

G
(F )

{
ρ(ξ ) | E

[
−ξ

dQ
dP
|G

]
≥Y

}
.

Define the setA (Y,Q) =
{

ξ ∈ Lp
G
(F ) | E

[
−ξ dQ

dP |G
]
≥Y

}
.

Lemma 3.4.For each(Ȳ,Q̄) ∈ L0(G )×Pq

K(Ȳ,Q̄) = sup
Q∈Pq

inf
X∈A (Ȳ,Q̄)

K

(
E

[
−X

dQ
dP
|G

]
,Q

)
(3.25)

Proof (Proof of the Lemma).To prove (3.25) we consider

ψ(Q,Q̄,Ȳ) = inf
X∈A (Ȳ,Q̄)

K

(
E

[
−X

dQ
dP
|G

]
,Q

)

Notice thatE[−X dQ̄
dP |G ]≥ Ȳ for everyX ∈A (Ȳ,Q̄) implies

ψ(Q̄,Q̄,Ȳ) = inf
X∈A (Ȳ,Q̄)

K

(
E

[
−X

dQ̄
dP
|G

]
,Q̄

)
≥ K(Ȳ,Q̄)

On the other handE[Ȳ dQ̄
dP |G ] = Ȳ so that−Ȳ ∈A (Ȳ,Q̄) and the the second inequal-

ity is actually an equality basically

ψ(Q̄,Q̄,Ȳ)≤ K

(
E

[
−(−Ȳ)

dQ̄
dP
|G

]
,Q̄

)
= K(Ȳ,Q̄).

If we show thatψ(Q,Q̄,Ȳ)≤ ψ(Q̄,Q̄,Ȳ) for everyQ∈Pq then (3.25) is done. To
this aim we define

C =

{
A∈ G | E

[
X

dQ̄
dP
|G

]
= E

[
X

dQ
dP
|G

]
onA, ∀X ∈ Lp

G
(F )

}

D =

{
A∈ G | ∃X ∈ Lp

G
(F ) s.t.E

[
X

dQ̄
dP
|G

]
≶ E

[
X

dQ
dP
|G

]
onA

}

For everyC∈ C we have for everyX ∈ Lp
G
(F )
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K

(
E

[
−X

dQ
dP
|G

]
,Q

)
1C = K

(
E

[
−X

dQ
dP
|G

]
1C,Q

)
1C

= K

(
E

[
−X

dQ̄
dP
|G

]
1C,Q̄

)
1C = K

(
E

[
−X

dQ̄
dP
|G

]
,Q̄

)
1C

which impliesψ(Q,Q̄,Ȳ)1C = ψ(Q̄,Q̄,Ȳ)1C.

For everyD ∈ D there will existsX ∈ Lp
G
(F ) such that whetherE

[
−X dQ̄

dP |G
]
>

E
[
−X dQ

dP |G
]

on D or < on D. Let us defineZ = X − E
[
−X dQ̄

dP |G
]
. Surely

E
[
Z dQ̄

dP |G
]
= 0 butE

[
ZdQ

dP |G
]
≶ 0 onD. We may deduce that for everyα ∈ L0(G ),

−Ȳ+αZ ∈ A (Ȳ,Q̄) and also notice that anyY ∈ L0(G ) can be written asY =

E[(−Ȳ+αYZ)dQ
dP |G ] on the setD. Finally

ψ(Q,Q̄,Ȳ)1D ≤ inf
α∈L0(G )

K

(
E

[
−(−Ȳ+αZ)

dQ
dP
|G

]
,Q

)
1D

= inf
Y∈L0(G )

K (Y1D,Q)1D = inf
Y∈L0(G )

K
(
Y1D,Q̄

)
1D

= K
(
Ȳ,Q̄

)
1D

Now we need to show that there exists a maximal element in bothclassC and
D . To this aim notice that ifA,B ∈ C then A∪B, A∩B belong toC . Consider
the set{1C|C ∈ C }: the set is upward directed since1C1 ∨1C2 = 1C1∪C2 for every
C1,C2 ∈ C . Hence we can find a sequence1Cn ↑ sup{1C|C ∈ C } = 1Cmax where
Cmax=∪nCn∈G . Through a similar argument we can get a maximal element forD ,
namelyDmax: notice thatP(Cmax∪Dmax) = 1 so that we conclude thatψ(Q,Q̄,Ȳ)≤
ψ(Q̄,Q̄,Ȳ) = K(Ȳ,Q̄) and the claim is proved.

Back to the proof of uniqueness. By the Lemma

K(Ȳ,Q̄) = sup
Q∈Pq

inf
X∈A (Ȳ,Q̄)

K

(
E

[
−X

dQ
dP
|G

]
,Q

)

≤ inf
X∈A (Ȳ,Q̄)

sup
Q∈Pq

K

(
E

[
−X

dQ
dP
|G

]
,Q

)
= inf

X∈A (Ȳ,Q̄)
ρ(X)

We need to prove the reverse inequality and then we are done. Again we consider
two classes ofG -measurable sets:

C =
{

A∈ G | K(Ȳ,Q̄)1A≥ K(Y,Q)1A ∀(Y,Q) ∈ L0(G )×P
q}

D =
{

A∈ G | ∃(Y,Q) ∈ L0(G )×P
q s.t.K(Ȳ,Q̄)< K(Y,Q) onA

}

For everyC∈ C the reverse inequality is obviously true.
For everyD ∈ D there exists some(Q,Y) ∈ L0(G )×Pq such thatK(Y,Q) >
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K(Ȳ,Q̄) on D. This means that it can be easily build up aβ ∈ L0(G ) such that
β > K(Ȳ,Q̄) onD and the setUD

β = {(Y,Q)∈ L0(G )×Pq|K(Y,Q)≥ β onD} will

be non empty. There exists(S̄, X̄) ∈ L0
++(G )×Lp

G
(F ) with

ȲS̄+E

[
X̄

dQ̄
dP
|G

]
<YS̄+E

[
X̄

dQ
dP
|G

]
onD

for every(Y,Q) ∈UD
β .

All the following equalities and inequalities are meant to be holdingP al-
most surely only on the setD. SetΛ = −Ȳ−E[ X̄

S̄
dQ̄
dP |G ] andX̂ = X̄

S̄
+Λ , so that

E[X̂ dQ̄
dP |G ] =−Ȳ: for every(Y,Q) ∈Uβ

ȲS̄+E
[
X̄ dQ̄

dP |G
]
<YS̄+E

[
X̄ dQ

dP |G
]

implies Ȳ+E
[(

X̄
S̄
+Λ

)
dQ̄
dP |G

]
<Y+E

[(
X̄
S̄
+Λ

)
dQ
dP |G

]

implies Ȳ+E
[
X̂ dQ̄

dP |G
]
<Y+E

[
X̂ dQ

dP |G
]

i.e.Y+E
[
X̂ dQ

dP |G
]
> 0 for every(Y,Q) ∈Uβ .

For everyQ∈Pq defineYQ = E
[
−X̂ dQ

dP |G
]
. If there exists aB⊆ D ∈ G such

thatK(YQ,Q)≥ β onB thenYQ+E
[
X̂ dQ

dP |G
]
> 0 onB.

In fact just take(Y1,Q1) ∈UD
β and definẽY =YQ1B+Y11BC andQ̃∈Pq such that

dQ̃
dP

=
dQ
dP

1B+
dQ1

dP
1BC

Thus K(Ỹ,Q̃) ≥ β on D and Ỹ + E
[
X̂ dQ̃

dP |G
]
> 0 on D, which impliesYQ +

E
[
X̂ dQ

dP |G
]
> 0 onB and this is absurd.

HenceK(YQ,Q)< β . SurelyX̂ ∈A (Ȳ,Q̄) and we can conclude that

K(Ȳ,Q̄)1D ≤ inf
X∈A (Ȳ,Q̄)

sup
Q∈Pq

K

(
E

[
−X

dQ
dP
|G

]
,Q

)
1D

≤ sup
Q∈Pq

K

(
E

[
−X̂

dQ
dP
|G

]
,Q

)
1D ≤ β1D

The equality follows sinceβ can be taken near as much as we want toK(Ȳ,Q̄) and
then we conclude that

K(Ȳ,Q̄) = inf
X∈A (Ȳ,Q̄)

ρ(X).
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Repeating the argument in Lemma 3.4 we can find a maximal element Dmax∈ D

andCmax∈ C and conclude fromP(Cmax∪Dmax) = 1.



92 3 Conditional quasiconvex maps: aL0-module approach

References

1. ACCIAIO B. AND I. PENNER (2009) Dynamic risk measures, Preprint.
2. ALIPRANTIS, C.D. AND BORDER, K.C. (2005) Infinite Dimensional Analysis, Springer,

Berlin (Third edition).
3. ARTZNER, P., DELBAEN, F., EBER, J.M. AND HEATH D. (1997) Thinking coherently,

RISK10, 68-71.
4. ARTZNER, P., DELBAEN, F., EBER, J.M. AND HEATH D. (1999) Coherent measures of

risk, Mathematical Finance4, 203-228.
5. BELLINI , F. AND FRITTELLI , M. (2008) On the existence of minimax martingale measures,

Mathematical Finance12 (1), 1-21.
6. BERRIER, F.P.Y.S., ROGERS, L.C.G.AND THERANCHI, M.R. (2007) A characterization

of forward utility functions, preprint.
7. BIAGINI , S. AND FRITTELLI , M. (2008) A unified frameork for utility maximization prob-

lems: an Orlicz space approach,Ann. Appl. Prob.18 (3), 929-966.
8. BIAGINI , S.AND FRITTELLI , M. (2009) On the extension of the Namioka-Klee theorem and

on the Fatou property for risk measures, Optimality and risk: modern trends in mathematical
finance, The Kabanov Festschrift, Editors: F. Delbaen, M. Rasonyi, Ch. Stricker.

9. BRECKNER, W.W. AND SCHEIBER, E. (1977) A HahnBanach type extension theorem for
linear mappings into ordered modules,Mathematica19(42), 1327.

10. CERREIA-V IOGLIO, S., MACCHERONI, F., MARINACCI , M. AND MONTRUCCHIO, L.
(2009) Complete monotone quasiconcave duality,preprint.

11. CERREIA-V IOGLIO, S., MACCHERONI, F., MARINACCI , M. AND MONTRUCCHIO, L.
(2009) Risk measures: rationality and diversification,to appear on Math. Fin..

12. CHERNY, A. AND MADAN , D. (2009) New measures for performance evaluationReview of
Financial Studies22, 2571-2606.

13. CROUZEIX, J.P (1977) Contributions a l’étude des fonctions quasiconvexes , PhD Thesis,
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