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ABSTRACT 
 
Flavoproteins are involved in a wide range of biological processes, with a variety of catalytic 

reactions performed, which range from typical redox catalyses such as the dehydrogenation of an 

amino acid, or activation of dioxygen, to photochemistry; from DNA damage repair to light 

emission. Recently, genomics trascriptomic and proteomic approaches led to the identification of 

new flavoproteins playing a key role in the metabolism of many organisms. Several of these new 

enzymes are involved in fundamental processes, such as cellular differentiation, apoptosis, protein 

folding and pathologies. The production and biochemical characterization of two medically-relevant 

flavoenzymes will be discussed. In a last section we will address a combined computational and 

experimental study on flavocytochrome b2, a well-characterised flavoenzyme, whose catalytic 

mechanism is stillat the center of a lively debate. 

Seladin-1/DHCR24 is a novel antiapoptotic factor, whose expression levels vary in neurons 

susceptible of degeneration typical of Alzheimer disease, in certain cancer cell lines and during 

differentiation. Seladin-1 was shown to be identical to the putative human 3-β-hydroxysterol Δ24 

reductase (DHCR24), the mutations of which are associated with desmosterolosis, a severe 

recessive disease that causes multiple congenital anomalies and mental development delays. 

Sequence analyses and activity assays in whole cell extracts suggested that Seladin-1/DHCR24 may 

be a FAD-containing NADPH-dependent enzyme that catalyzes the last step of cholesterol 

biosynthesis from desmosterol. To provide key information for the interpretation of the biological 

role of the protein, a project aiming to overproduce, purify Seladin-1/DHCR24 was initiated as a 

prelude to its biochemical characterization. However, in spite of efforts, none of the constructs for 

protein production in E. coli or S. cerevisiae cells we generated so far led to protein forms suitable 

for purification. On the contrary, several forms of the N-terminal putative FAD-dependent 

monooxygenase domain of MICAL (from the Macromolecule Interacting with CasL) have been 

produced in E.coli and were purified to homogeneity in a stable form and in quantities sufficient to 

initiate its biochemical characterization. MICAL indicates a family of multidomain proteins 

involved in the transduction of signals initiated by semaphorins that result in cytoskeletal 

rearrangements linked to axon steering, cell-cell junctions formation, cell migration and vesicular 

trafficking by interacting with a number of proteins critical for signaling events to the cytoskeleton. 

The N-terminal monoxygenase-like domain (MICAL-MO), structurally similar to p-

hydroxybenzoate hydroxylase (PHBH), the prototype of FAD-containing monooxygenases, has 

been shown to be essential for MICAL function, but its catalytic activity has not been defined yet. 

At variance with PHBH, MICAL-MO exhibits a detectable NADPH oxidase activity. The rate of 

the overall reaction is fully determined by that of enzyme reduction by NADPH, which takes place 
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at 25°C and pH 7.0 without detection of spectroscopically distinguishable intermediates. However, 

MICAL shares with enzymes of the PHBH family NADPH binding the high sensitivity to the ionic 

strength of the medium and to specific anions suggesting that NADPH binding is governed by 

electrostatics. Solvent viscosity effects revealed the presence of conformational changes taking 

place during the catalytic cycle, another property shared with enzymes of the PHBH family that 

avoid waste of reducing power and release of reactive oxygen species through conformational 

changes triggered by the redox state of the flavin cofactor and binding of the substrate to be 

hydroxylated. The search of the physiological activity of MICAL-MO has been initiated by 

studying its reactivity with actin. We here confirm the proposal that MICAL promotes 

depolymerization of actin filaments and present preliminary data that support the hypothesis that 

MICAL may use actin as its second substrate. 

Flavocytochrome b2 (Fcb2) is the prototype of a family of α-hydroxyacid dehydrogenases, 

composed by enzymes supposed to share a common mechanism for the oxidation of the substrate in 

the enzyme reductive half reaction. Computational studies were carried out to contribute to the 

understanding of the mechanism of substrate dehydrogenation, which is still debated. These studies 

demonstrated that lactate oxidation takes place with direct transfer of L-lactate αH to the FMN N(5) 

position as a hydride anion, as opposed to a two step mechanism that implies α-OH hydrogen 

abstraction (as a proton) by the active site H373 followed by two-electron transfer to the flavin. The 

same studies revealed the presence of a water molecule (Wat609), conserved in all enzymes of the 

Fcb2 family and belonging to third shell residues, which may modulate the acid-base properties of 

the catalytic residue H373, through a Ser371-Wat609-Asp282-His373 hydrogen bond network.. To 

experimentally test this hypothesis we produced S371A variants of the isolated flavo-

dehydrogenase domain as well as of the full-length enzyme. As previously observed for other Fcb2 

active site mutants, the S/A substitution clearly impaired protein folding preventing FMN insertion 

into the isolated flavoprotein domain and allowing us to obtain partially flavinylated full-length 

forms. Kinetic experiments on full length enzymes demonstrated that the S/A substitution led to a 

20-fold decrease of kcat completely attributable to a decrease of the rate of enzyme reductive half 

reaction, a 10-fold increase of the value of the dissociation constant of the enzyme-sulfite complex 

but the pH profile and the Km(Kd) for L-lactate were unchanged. Although we cannot rule out that 

the observed effects of the S/A substitution are due to a change of the overall geometry of the active 

site, the results are fully consistent with the prediction made through computational studies that 

removal of Wat609 through the S/A substitution lowers the H373 proton affinity in the reduced 

enzyme impairing lactate oxidation and concomitant flavin reduction.  
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1. FLAVOPROTEINS 

 
Flavoproteins are involved in a wide range of biological processes, with a variety of catalytic 

reactions performed, which range from typical redox catalyses such as the dehydrogenation of an 

amino acid, or activation of dioxygen, to photochemistry; from DNA damage repair to light 

emission (Figure 1.1). This variety of reactions is due to the extraordinary chemical versatility of 

their flavin cofactors, that are typically non-covalently bound to the apoprotein. The chemistry of 

the flavin is restricted to the amphipathic isoalloxazine nucleus, a tricyclic ring system formed by 

the fusion of the hydrophobic dimethylbenzene moiety with the hydrophilic pyrimidine ring (Fraaije 

and Mattevi, 2000). This group can exists in an oxidized state and in a fully reduced one (Figure 

1.2, Ghisla and Massey, 1989). Reduction of the flavin occurs reversibly by two one-electron steps, 

ore one two-electron step and the redox potential for the two-electron reduction is around -200 mV. 

However, this value can greatly vary in flavoenzymes, spanning a range from approximately -400 

mV and + 600 mV (Fraajie and Mattevi, 2000). The isoalloxazine ring present also side-chain 

functions that are not involved in the catalysis, but serve in anchoring the coenzyme at the active 

site. In some flavoenzymes the isoalloxazine ring of the falvin is covalently linked to a His, Cys or 

Tyr residue of the polypeptide chain. This attachment is an autocatalytic process that might be 

beneficial for saturating the active site, cofactor economy, protein stability, preventing flavin 

modification and inactivation, facilitating electron transfer, oxygen reactivity and tuning the flavin 

redox potential (Joosten and van Berkel, 2007). In agreement with the beneficial effects of the 

covalent binding of flavin cofactor to flavoenzymes is the increasing number of oxidoreductases of 

the vanillyl-alcohol oxidase (VAO) family (Fraaije et al, 1998; Leferink et al, 2008). Members of 

this family share a conserved flavin-binding domain that favours the covalent attachment of the 

cofactor. 

Three types of flavin cofactors exist in flavoproteins: the riboflavin, or vitamin B2, which contains 

a ribityl chain at the N10 of the isoalloxazine group, and its derivatives flavin mononucleotide 

(FMN), and flavin adenine dinucleotide (FAD). The phosphorylation in ester linkage at the terminal 

hydroxyl group of the ribityl side chain of riboflavin leads to the formation of FMN, and the 

reaction is catalyzed by riboflavin kinase. The adenylation of FMN by FAD synthetase leads to the 

FAD molecule (Figure 1.2). 

As already mentioned, flavins can participate in one-electron transfer reactions, which 

automatically implies the existence of semiquinone oxidation states. In free solution, i.e. when not 

enzyme-bound, a mixture of oxidized and reduced flavin very rapidly sets up an equilibrium in 

which a certain amount of flavin radical is formed. This equilibrium is very much to the left, so that 
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only about 5% radical is stabilized in an equimolar mixture of oxidized and reduced flavin (Figure 

1.4 panel A, Massey, 2000). The semiquinone can exist in a neutral or an anionic form (Figure 1.3). 

On binding to a specific protein, this equilibrium can change dramatically. Some enzymes show 

essentially no stabilization of semiquinone, while others give almost 100% stabilization. Flavins 

show a typical absorption spectrum between 300 nm and 700 nm, with maxima at 380 nm and 450 

nm for the oxidized flavin. The various flavin oxidation states show large spectral differences 

(Figure 1.3, Massey, 2000) that are influenced also by the solvent and the protein environment. 

Thus, it is possible to monitor the events occurring in catalyses using the flavin itself as a reporter. 

The anionic form can be stabilized by the presence of positive charge conserved residues at the 

flavin binding site, such as Lys and Arg, or by the N-terminus of an α helix or a cluster of peptides 

nitrogens (Fraajie and Mattevi, 2000).  

All flavoprotein reactions involve two separate half-reactions (Figure 1.4 panel B, Massey, 2000). 

The majority of flavoprotein-reducing substrates are dehydrogenated in a two-electron reduction 

step. The resulting reduced flavin is then re-oxidized by its oxidizing substrate, either in a two-

electron step, as shown in Figure 1.4, or in single one-electron steps, in which the flavin 

semiquinone would be observed as an intermediate. In some enzymes, molecular oxygen is the 

physiological substrate. Figure 1.4 panel C (Massey, 2000) shows the chemical reactions that occur 

in the reaction of reduced flavin with oxygen. The initial reaction is a one-electron reduction of O2 

by the reduced flavin (I) to yield a caged radical pair of neutral flavin radical and superoxide (II). 

This radical pair can collapse into a flavin C4a-peroxide (IV), a nucleophile, which on protonation 

becomes the electrophilic hydroperoxide (V). The peroxide species may eliminate hydrogen 

peroxide to yield oxidized flavin (VI), or there may be a second electron transfer from the radical 

pair (II) to give the same products (VI). The third alternative route is the dissociation of the radical 

pair into its components, flavin radical and superoxide (III). 

Several attempts have been made to achieve a rational classification of the different types of 

flavoproteins, depending on the type of chemical reactions catalyzed, the nature of the reducing and 

oxidizing substrates, the physicochemical properties of the enzymes and, more recently, their 

structural motifs as determined by X-ray crystallography. None of these attempts has been entirely 

satisfactory. Nevertheless, it is clear that enzymes catalyzing similar chemical reactions tend to 

have common characteristics which are particular to that group. 

Simple flavoproteins are conveniently classified on the basis of the reactivity of the reduced enzyme 

with molecular oxygen. The oxidases, such as D-amino acid oxidase, glucose oxidase, glycolate 

oxidase, react very rapidly with O2 to yield H2O2 and oxidized flavoprotein in what appears to be a 

simple second-order process without observable intermediates (Massey, 1995). Hydrogen peroxide 
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produced is very useful in diagnostic and food applications and for the high-throughput selection of 

improved enzyme variants produced by laboratory evolution (Joosten and van Berkel, 2007). 

The second class of simple flavoproteins is characterized by flavoprotein monooxygenases. The 

reduced enzyme reacts with O2 to form readily observable flavin C4a hydroperoxide intermediates 

(Figure 1.4 and Figure 1.5). With all enzymes of this class the physiological reductant is NADH or 

NADPH. In the absence of further substrate, the flavin hydroperoxide decays non-productively to 

H2O2 and oxidiezed flavin. However, in the presence of the physiological substrate the flavin 

hydroperoxide reacts to transfer an oxygen atom to the substrate, resulting in a C4a-hydroxyflavin, 

which upon dehydration returns the flavin to its oxidized state for the next catalytic cycle (Figure 

1.5 and Figure 3.1.4). Based on fold and function, a reclassification of monooxygenases into six 

subfamilies (A-F) has been proposed (Table 1.1; Joosten and van Berkel, 2007; van Berkel et al, 

2006). p-hydroxybenzoate hydroxylase is the prototype of class A, where the aromatic substrate is 

hydroxylated at the position ortho to the activating para-substituent. This enzyme is the most 

thoroughly studied mechanistically and work from two separate groups has presented evidence for 

substantial movement of the flavin within the protein during catalysis (Chapter 3). 

Enzymes of the electron transferases class are all involved in single-electron transfers, e.g. 

flavodoxin, ferredoxin-NADP+ reductase and NADPH-cytochrome P-450 reductase. These enzymes 

all react sluggishly with O2 and in the process produce O2
- and the flavin semiquinone. This is 

somewhat unsatisfactory categorization, since many enzymes that function in one-electron transfers 

also dehydrogenate an organic substrate. This is the case of acyl-CoA dehydrogenases, whose 

reaction with the acyl-CoA substrate involves the formation of an unsaturated C=C structure by 

concerted proton abstraction from the substrate α-carbon to the flavin N(5) (Massey, 2000).  

Finally, there are flavoproteins containing auxiliary redox centers, as flavoprotein disulfite 

reductases, metal-containing flavoproteins and heme-containing flavoporteins. The best-known 

example of the latter class is yeast lactate dehydrogenase (flavocytochrome b2), the prototype of a 

family of enzymes catalyzing the oxidation of α-hydroxy acids to α-keto acids. Components of this 

extended family play important roles in the metabolism and some of them are also of significant 

interest for industrial and medical purposes. As described in detail in Chapter 4, the mechanism of 

reaction catalyzed by flavocytochrome b2 is still a debated issue and computational approaches 

have been shown to be a powerful tool for the understanding of the mechanistic features. 

Recently, genomics, trascriptomics and proteomics approaches led to the identification of new 

flavoproteins playing a key role in the metabolism of many organisms. Many of these new enzymes 

are involved in fundamental processes, such as cellular differentiation, apoptosis, protein folding 

and pathologies. Two of these novel medically-relevant flavoenzymes will be discussed in Chapter 
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2 and Chapter 3, respectively, namely Seladin-1/DHCR24, the putative flavoprotein member of the 

VAO family proposed to play a key role in the cholesterol biosynthesis pathway, and the human 

MICAL, a multidomain flavoprotein monooxygenase involved in axon guidance. 
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Figure 1.1: Biological functions of flavoenzymes (Joosten and van Berkel, 2007) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.2: Panel A: Isoalloxazine nucleus in the oxidized and reduced forms (Ghisla and Massey, 1989). 
Panel B: structure of riboflavin (left), FMN (centre) and FAD (right) cofactors. 
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Figure 1.3: Structures (Panel A) and Spectra (Panel B) of the isoalloxazine group in the oxidized, semiquinones and hydroquinone forms (Massey, 2000). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A

B 

C 

Figure 1.4: Panel A: Flavin semiquinone equilibria. Fl, flavin; ox, oxidized; red, 
reduced. Panel B: Reductive and oxidative half-reactions of flavoproteins. Panel 
C: Reactions of reduced flavin with oxygen (Massey, 2000). 
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Figure 1.5: FAD-dependent monoxygenases reactions.  
 
     
Table 1.1: Classification of external flavoprotein monoxygenases (van Berkel et al, 2006) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a The most commonly found in vivo oxidation activities are given 
 
Table 1.2: Classification of flavoproteins 
  

Class Reaction 

Oxidase Sred + O2                   Sox + H2O2 

Monooxygenase S + NAD(P)H + O2             SOH + NAD(P)+ + H20 

Electron-transferase Sred + Aox              Sox + Arid 

Dehydrogenase Srid + NADP+             Sox + NADPH 
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2. SELADIN-1, THE PUTATIVE 3-β-HYDROXYSTEROL-Δ24 
REDUCTASE 
 

2.1 INTRODUCTION 
Alzheimer’s disease (AD) is characterized by a substantial loss of neurons and synapses in selective 

brain regions, by the generation of intracellular neurofibrillary tangles and extracellular deposits of 

Aβ-amyloids (Figure 2.1.1). Severe degeneration of neurons occurs predominantly in selectively 

vulnerable neuronal population, such as the large pyramidal neurons of the inferior temporal cortex, 

the hippocampus, the amygdale and the entorhinal cortex. The pathology is associated to a 

decreased level of acetylcholine in neurons, a fundamental neurotransmitter. Furthermore, Aβ-

amyloid aggregates led to an inflammatory response, with the accumulation of cytokynine, 

interleukins and TNF by macrophages, and consequent cell damage. Studies aimed to understand 

the pathological conditions underlying this selective vulnerability led to the identification of a novel 

gene, Seladin-1, from Selective Alzheimer Disease Indicator Protein-1, that was shown to be 

underexpressed in neurons undergoing Alzheimer degeneration (Greeve et al, 2000). Furthermore, 

studies on the expression level of this protein were extended to other tissues, revealing that Seladin-

1 is also expressed in liver, spleen, ovary and adrenal gland (Greeve et al, 2000). Seladin-1 is 

mainly localized in the endoplasmic reticulum, and to a lesser extent in the Golgi complex. (Figure 

2.1.2). The overexpression of Seladin-1 in neuroglioma cells protected cells from apoptosis induced 

by oxidative stress and increased resistance against Aβ-induced toxicity. The anti-apoptotic activity 

of Seladin-1 may be related to its inhibitory effect on caspase-3 activity (Greeve et al, 2000).  

Seladin-1 expression was also found to vary in certain cancer cell lines, for example in 

adrenocortical adenomas and carcinomas, where the protein levels decreased during the tumor 

progression (Luciani et al, 2004). On the contrary, Seladin-1 gene expression is upregulated in 

melanoma metastases (Di Stasi et al, 2005) and in pituitary adenomas (Luciani et al, 2005), 

protecting cells from apoptosis induced by oxidative stress. Seladin-1 expression levels were shown 

to increase in neuronal cells treated with estrogens, explaining, at least in part, the beneficial effects 

of estrogens in preventing neurodegenerative diseases (Benvenuti et al, 2004). Furthermore, it was 

demonstrated that Seladin-1 expression is significantly reduced during human mesenchymal stem 

cells differentiation into neurons, suggesting that the defective Seladin-1 expression detected in AD 

vulnerable brain regions may be linked to an impaired neuronal stem cell compartment that could 

be a potential risk factor to develop the disease (Benvenuti et al, 2006). Thus, it has been proposed 

that reinforced Seladin-1 expression might be an additional point to be raised in favor of a stem 

cell-based therapy in AD. 
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Seladin-1 was shown to be identical to the putative human 3-β-hydroxysterol Δ24 reductase 

(DHCR24) (Waterham et al, 2001). Mutations on this gene are associated to desmosterolosis, an 

autosomic recessive disease that causes multiple congenital anomalies and mental development 

delays. Patients affected by this pathology showed altered plasma levels of desmosterol, the 

precursor of cholesterol in the cholesterol synthesis pathway (Figure 2.1.3). Cholesterol is an 

important structural component of cellular membranes and myelin, and the precursor of oxysterols, 

steroid hormones and bile acids. The identification of a number of inherited disorders due to a 

defect in cholesterol biosynthesis has made clear that cholesterol plays an important role in human 

embryogenesis and development (Waterham, 2006; Figure 2.1.3). Seladin-1 was proposed to be the 

enzyme that catalyzes the conversion of desmosterol into cholesterol, by reducing the Δ24 double 

bond of the substrate. All studies available indicate that the enzyme is rather promiscuous being 

able to reduce the same unsaturated function in cholesterol precursors other than desmosterol, 

leading to the conclusion that the increased level of desmosterol and the low cholesterol levels 

observed in patients may result from the funnelling of lanosterol towards desmosterol, which cannot 

be converted into cholesterol (Figure 2.1.3).  

By searching for the putative human DHCR24 gene, Waterham et al (2001) located it to 

chromosome 1 (position 1p31.1-p33). The cDNA was found to encode a protein of 516 residues 

(Figure 2.1.4 panel A), corresponding to a mass of 60.1 kDa. Analyses of the primary structure of 

DHCR24 revealed that the N-terminal region of Seladin-1 presents a putative signal sequence 

(residues 1-21) for the localization of the protein in the endoplasmic reticulum (ER). Two putative 

transmembrane helices should anchor the protein to the ER membrane (residues 23-65), as reported 

by Greeve et al (2000). They are followed by a putative soluble domain. It has been proposed that 

the catalytic activity of the enzyme is associated to this domain, and that the enzyme contains a 

bound FAD cofactor on the basis of the finding of a (actually rather weak) similarity with the FAD-

binding region of a class of flavoenzymes, which comprise oxidases, monooxygenases and 

reductases (Mushegian et al, 1995; Fraaije et al, 1998; Mattevi et al, 1998). Among similar proteins, 

Seladin-1 shows a marked sequence similarity to Arabidopsis thaliana DWARF1/DIMINUTO 

protein. This protein, also believed to be associated to the endoplasmic reticulum, has been 

proposed to participate in the synthesis of plant sterols and of brassinosteroids (Figure 2.1.5 panel 

B). Indeed, in DWARF1/DIMINUTO mutants altered levels of campesterol, the brassinolide 

precursor, were found and they led to severe growth defects (Klahre et al, 1998; Choe et al,1999). 

The similarity of Seladin-1 with DWARF1 supports the hypothesis that Seladin-1 is implicated in 

sterol methabolism (Figure 2.1.5; Waterham et al, 2001; Greeve et al, 2000). Another important 

evidence in line with the proposed catalytic activity of Seladin-1, is that expression of DHCR24 in 
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Saccaromyces cerevisiae cells led to measuring conversion of desmosterol into cholesterol in the 

presence of NADPH in whole cell extracts (Waterham et al, 2001). Interestingly, the activity 

doubled when the assays included FAD, a fact that was interpreted in support of the hypothesis that 

DHCR24 is a flavoenzyme.  

Very recently, a model of DHCR24 in complex with FAD, desmosterol or cholesterol was built 

using the 3D structure of cytokinine dehydrogenase (Pedretti et al, 2008), a flavoprotein with 

structural similarities with the enzymes of the vanillyl alcohol oxidase (VAO) family (for a recent 

review see Leferink et al, 2008) (Figure 2.1.4 panel B). However, this model may not fully reflect 

the actual properties of DHCR24. During molecular dynamics simulation of the reduced enzyme in 

complex with desmosterol, FAD and desmosterol are tightly bound and close to each other. 

However, the sterol Δ24 double bond is too far from the flavin to be reduced by the postulated 

hydride transfer from the flavin N(5) to the C24 or C25 position. Simulations of the oxidized 

enzyme/cholesterol couple also led to puzzling results: FAD and cholesterol are very loosely bound 

to the enzyme model, leading (Pedretti et al, 2008) to imply that oxidized FAD will exit the active 

site at the end of the catalytic cycle acting as substrate rather than a co-enzyme. Finally, no obvious 

NADPH binding site was observed. The possibility that DHCR24 may not bind NADPH should not 

be disregarded, in fact the enzyme flavin may be reduced by a protein partner (e.g: a reduced 

cytochrome or ferredoxin). 

Whether under some conditions DHCR24 may produce reactive oxygen species (ROS) is not 

known, but it has been proposed as a possibility on the basis of: (i) the known reactivity of reduced 

flavins with molecular oxygen as either part of their physiological activity (oxidases) or in the 

absence of the physiological substrate (monooxygenase) or following proteolytic or (oxidative) 

damage (Massey, 1995; Palfey and Massey, 1998; Massey, 2000) and (ii) the known roles of ROS 

in the cells. It has been proposed that DHCR24 may actually scavenge H2O2 (Lu et al, 2008). 

The possible link between defects of sterol metabolism and the observed effect on cells, which 

include the severe developmental disorders observed in desmosterolosis, AD and cancer, is still not 

understood and is an open and controversial issue. There is accumulating evidence indicating a 

potentially important link between cholesterol, Aβ and AD. High levels of cholesterol in 

membranes was initially proposed to be a risk factor for AD. Thus, inhibiting cholesterol production 

in the brain might inhibit Aβ production, as supported by the fact that therapy with statins that 

reduce cholesterol synthesis appears to protect from AD (Wolozin, 2001; Fassbender et al, 2001). 

This theory is questioned by the proposed neuroprotective and antiapoptotic function of Seladin-1, 

which may protect cells from oxidative stress and from Aβ amyloid toxicity by degradation of H2O2 

produced during inflammatory response to Aβ amyloid accumulation. Alternatively, the 
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antiapoptotic effect of DHCR24 may be linked to its enzymatic activity as a 24-dehydrocholesterol 

reductase, with the consequent increase of cholesterol in membranes, whose levels are very tightly 

controlled. Cholesterol plays multiple roles in cell metabolism being: (i) a component of cell 

membranes and, especially, (ii) lipid rafts, (iii) a hormone, (iv) an intracellular signalling molecule 

and (v) an essential player in the correct activation and function of hedgehog proteins, the secreted 

signalling proteins implicated in different embryonic patterning processes (Waterham, 2006). It as 

been proposed that the amount of cell cholesterol may affect amyloidogenesis, and, in particular, 

that the link between cholesterol and β-amyloid production is related to the membrane localization 

of the enzymes involved in the processing of the APP. 

Seladin-1/DHCR24 has been found to be expressed in several tissues, and its levels vary in different 

situations with patterns that are sometimes difficult to interpret because the link between the 

DHCR24 enzymatic activity and its function as an antiapoptotic factor is unclear. The relation 

between the location and the function of Seladin-1 is also unclear. In the cells it is found associated 

with ER, the Golgi apparatus, but also with the nucleus (Battista et al, 2007; Battista et al, 2009). 

However it has not been established if the observed localization determines the function, if the 

localization is accompanied (due to) interaction with other proteins, posttranslational modifications 

or to production of different protein forms through alternative splicing events. All information on 

DHCR24 properties are indirect deriving from cell biology experiments, activity measurements in 

whole cell extracts or microsomes and from sequence analyses and (in silico) structural models. The 

fact that DHCR24 or its plant homolog have not been isolated yet in a homogeneous form results in 

no information being actually available on the actual structural and kinetic properties of the 

enzyme.  

In order to gain information about the role of DHCR24 in the cell, the reaction(s) catalyzed and the 

nature of the protein, which are essential to complement cell biology studies, attempts to produce 

and characterize soluble forms of Seladin-1/DHCR24 were initiated with the production in E. coli 

of truncated forms of the enzyme in which N-terminal fragments were removed in order to produce 

the soluble catalytically active domain (Figure 2.1.4 panel A). 
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2.2 METHODS 

 

Construction of plasmids for the production of DHCR24Δ26, - Δ33, -Δ41 and –Δ50 variants 

Construction of pUC18DHCR24Δ26 vector: Amplification of the DHCR24Δ26 encoding fragment 

was done with the oligonucleotides “EcoRI-NheI Δ26” and “XhoI-HindIII reverse”  

 

EcoRI-NheI Δ26 5’–GAAGGGGCTGGAATTCGTGGCTAGCCACCAGCGCTGGGTG–3’ 

 

XhoI-HindIII reverse 5’–GTACAAGAAAGCTTATCACTCGAGCCTGGCGGCCTTGCAG–3’ 

 

EcoRI-NheI Δ26 introduces an EcoRI (italic) and a NheI (underlined) restriction site. XhoI-HindIII 

reverse introduces XhoI (italic) and HindIII (underlined) sites and a stop codon (bold). The 

amplification was carried out with 0.4 μM oligonucletides, Platinum Taq High Fidelity DNA 

polymerase (Invitrogen, 1 U), dNTPs (0.2 mM each), pDEST15DHCR24, the polymerase buffer 

and 2 mM MgSO4 in a final volume of 50 μl. PCR conditions were as follows: initial denaturation, 

2 min at 94°C; cycle 1-30, 30 s at 94°C, 30 s at 55°C and 2 min at 68°C; final extension, 15 min at 

72°C. The amplified fragment was digested with EcoRI and HindIII, purified by agarose gel 

electrophoresis followed by extraction and purification with the Wizard SV Gel and Clean-up 

system kit (Promega). The fragment was cloned into pUC18 plasmid digested and purified in the 

same way.  

Construction of pCRII-TOPODHCR24Δ33, -Δ41 and –Δ50 vectors: Amplification of DHCR24Δ33, 

-Δ41 and –Δ50 encoding fragments from pDEST15DHCR24 was carried out using conditions 

described for the DHCR24Δ26 fragment and the following forward oligonucleotides  

 

EcoRI-NheI Δ33 5’- CGTGCTCATCCACGAATTCTGGGCTAGCGTGTGCCTCTTCC-3’  

 

EcoRI-NheI Δ41  5’- GTTCGTGTGCGAATTCCTCCTGCCGGCTAGCCTTATCTTCG-3’  

 

EcoRI-NheI Δ50  5’- GCTCTCGCTTGAATTCGATATGGCTAGCTACTACTACGTGCG-3’  

 

The “XhoI-HindIII reverse” primer was used in combination with each one of the forward 

oligonucleotides. The amplification reaction was directly used to set up TOPO cloning reactions 

using the “TOPO-TA Cloning kit” (Invitrogen) as follows: 2 μl of fresh PCR product; 1 μl of salt 

solution; 1 μl of pCRII-TOPO vector in a final volume of 6 μl. Mixture was incubated 5 min at 
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room temperature and used to transform E. coli Mach T1 cells included in the TOPO-TA cloning 

kit. Transformants were selected on LB plates supplemented with 50 μg/ml kanamicin (Kan). The 

resulting plasmids pTOPODHCR24Δ33, -Δ41 and –Δ50 from one of the resulting clones were 

sequenced (by Primm s.r.l., Milano, Italy) and used for the subcloning of the region encoding the 

truncated forms of DHCR24 into expression vectors. 

Construction of plasmids for the expression of DHCR24 truncated forms: The DHCR24Δ26, -Δ33, 

-Δ41 and -Δ50 encoding fragments were excised from pUC18DHCR24Δ26 and pCRII-

TOPODHCR24Δ33, -Δ41 and –Δ50 as NheI-XhoI, NheI-HindIII, EcoRI-HindIII and EcoRI-XhoI 

fragments and purified by agarose gel electrophoresis and Wizard SV Gel and Clean-up system kit 

(Promega). The fragments were inserted into pET23b and pETSUMO, pET28b, pMAL-c and 

pGEX-4T-1, respectively. Ligation was carried out with T4 ligase (Fermentas) at 16°C for 16 hours, 

using vector:insert ratios value of 1:3 and1:6. The ligation mixture was directly used to transform E. 

coli DH5α competent cells by the heat shock method. Transformants were selected on LB plates 

supplemented with 100 μg/ml ampicillin (Amp, for pUC18, pET23b, pETSUMO, pMAL and 

pGEX-4T-1 derivatives) and with 50 μg/ml kanamicin (for pET28b derivatives). DNA plasmid 

from one of the resulting clones was purified with QIAGEN® Plasmid Midi Kit (Qiagen), analyzed 

by restriction digestions and sequenced.  

All manipulations were done using standard protocols (Molecular cloning, a laboratory manual, 

1982; Sambrook et al, 2001; Current Protocols in Molecular Biology, 2005). 

 

Expression of Seladin-1/DHCR24 variants 

E. coli Rosetta (DE3) competent cells were transformed with the heat-shock method with ~ 100 ng 

of the plasmid of interest and selected on LB plates containing 25 μg/ml cloramphenicol (Clm) and 

100 μg/ml Amp or 50 μg/ml Kan. Expression was carried out in Falcon tubes or in flasks. LB (50 or 

100 ml) containing antibiotics was inoculated with ~20 colonies of transformants and the culture 

was grown at 25°C. The OD600 value was measured using a Uvikon810 (Kontron) 

spectrophotometer. When the OD600 reached a value of approximately 1, 100 μg/ml Amp was added 

(if the plasmid conferred Amp resistance) and the culture was transferred at 4°C overnight. The 

following day, the culture was transferred in a sterile 50 ml Falcon tube and the cells were harvested 

at 3500xg for 10 min, at 4°C in a swing-out centrifuge (Labofuge 400, Haereus). The supernatant 

was discarded and the cellular pellet was resuspended in LB (10 or 20 ml). Aliquots of the cellular 

suspension were used to inoculate 10 ml (in Falcon tubes) or 500 ml (in flasks) of selective LB, in 

order to obtain an initial OD600 value of 0.05. Cultures were grown at 25°C at 220 rpm, and Amp 

was added, if necessary, when the OD600 reached a value of 0.5. Induction of the expression of the 
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target protein was achieved by adding 0.1 mM IPTG (from a 100 mM sterile stock solution, in 

water). Cultures were maintained at 25°C or transferred at 15°C, after addition of Amp, if 

requested. Growth was monitored by OD600 measurement. Cells were harvested after 16 or 40 hours 

after IPTG addition at 5000 rpm for 10 min at 4°C in Sorvall centrifuges (Sorvall RC5C, GS3 rotor; 

Sorvall RC6 plus, SLA300 rotor). The cell pellet was then resuspended in cold 0.9% NaCl solution 

and centrifuged at 6000 rpm for 15 min. The supernatant was discarded and pellet was stored at -

20°C. 

Culture aliquots used for the OD600 measurement were also used to prepare total cell extracts for 

SDS-PAGE analysis. Cells were harvested in a microfuge at 13000 rpm for 1-2 min and the pellet 

was resuspended in a volume of SB1X determined as OD600 * 100 * ml of culture. Denaturation 

was carried out at 100°C for 10 minutes. 

Cells (0.5 g) were used for the analysis of the soluble fraction by homogenization with glass beads. 

Cells are transferred in a glass tube (Ø=1 cm) and resuspendend in 1 ml of cold buffer (50 mM 

sodium phosphate, pH 8.0, 0.1 M NaCl). 3 g of glass beads (Ø=0.25-0.3 mm) were mixed to the 

suspension. Homogenization was carried out by applying 5 cycles of 1 minute on vortex and 1 min 

on ice. 2 ml of cold buffer were added and the homogenate was transferred in a 10 ml centrifuge 

tube. Glass beads were washed with an additional 1 ml of buffer and the sample was centrifuged at 

18000 rpm for 1 hour at 4°C (SS34 rotor). 75 μl of crude extract were denatured for SDS-PAGE by 

adding 25 μl of SB4X (0.25 M Trs/HCl, pH 6.8, 8% SDS, 40% glycerol, 0.004% Bromophenol 

Blue, 29% β-Mercaptoethanol). The SDS-PAGE sample for the insoluble fraction was prepared by 

resuspending 20 mg of the pellet obtained after centrifugation of the homogenate with 400 μl of 

SB1X. Denaturation was done at 100°C for 10 minutes. 

 

Analytical purification of DHCR24 truncated forms with N- or C- terminal His-tag.  

Affinity chromatography on Ni-NTA Sepharose: DHCR24Δn variants of Seladin-1/DHCR24 with a 

N- or C-terminal His-tag were purified by affinity chromatography on Ni-NTA Sepharose. Buffers 

used for purification were: buffer A) 50 mM sodium phosphate pH 8.0, 0.1 M NaCl; buffer B) 50 

mM sodium phosphate pH 8.0, 0.1 M NaCl, 10 mM imidazole; buffer C) 50 mM sodium phosphate 

pH 8.0, 0.1 M NaCl, 100 mM imidazole; buffer D) 50 mM sodium phosphate pH 8.0, 0.1 M NaCl, 

500 mM imidazole. For analytical purification, E. coli Rosetta (DE3) cells (4 g) that had produced 

DHCR24 truncated variants were homogenized by sonication (six 30 s cycles with a Branson 

Sonifier with temperature controlled by immersion in a ice-salt bath). The crude extract was loaded 

on 2 ml of Ni-NTA Sepharose column, that had been equilibrated with 5 volumes of buffer A. 
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Elution was carried out by gravity with discontinuous gradient of imidazole (10-100-500 mM, 5 

volumes each). 

Extraction of membrane-bound His-Δ41 or solubilization of aggregates was attempted in the 

presence of detergents at concentrations (from 10% stocks prepared in buffer A) reported below.  

 

 

 

 

 

 

 

 

Aliquots of cells (1 g) were homogenized using the glass beads method in buffer A containing the 

indicated detergents; alternatively 5 g of cells were sonicated in buffer A and the detergents were 

added to aliquots of the homogenate. In both cases, samples were incubated in the presence of 

detergents for 1 hour at 4°C at 10 rpm on a wheel in order to enhance the extraction of proteins 

bound to E. coli membranes or dissolve aggregates. Samples were then centrifuged at 15000 rpm 

for 1 h and crude extracts were incubated with 1 ml Ni-NTA Sepharose resin equilibrated in buffer 

A for 1 h on a wheel. A 3 min centrifugation at 900 g in a swing-out rotor (Labofuge 400, Heraeus) 

was carried out to pellet the resin after each incubation. The supernatant (unbound material) was 

discarded and additional unbound material was removed in batch by washing the resin with buffer 

A containing detergents (2 ml each, 10 min). The resin was then washed twice with 2 ml buffer B 

containing the detergent. It was resuspended in 2 ml of the buffer and packed in a small column. 

Elution of bound proteins was obtained by applying buffer A containing detergent and 250 mM 

imidazole (6 column volumes) and 2 ml fractions were collected. 

Anionic exchange chromatography: The crude extract from 1 g of E. coli cells that had produced 

His-DHCR24Δ41 was loaded on 1 ml Q-Sepharose column, equilibrated in 20 mM sodium 

phosphate buffer, pH 8.0 (buffer E). The column was developed by gravity flow with a 

discontinuous NaCl gradient (100 mM, 500 mM and 1 M; 5, 7 and 4 column volumes, respectively) 

and 1 ml fractions were collected.  

Cationic exchange chromatography: The crude extract from E. coli cells (1 g) that had produced 

His-DHCR24Δ41 was loaded on 2 ml SP-Sepharose resin equilibrated with buffer E, pH 7.0. A 

discontinuous NaCl gradient was applied (0.1, 0.2, 0.3, 0.4 and 0.5 M NaCl, 2 volumes each) to 

elute bound proteins. Column was developed by gravity flow and 2 ml fractions were collected. 

Detergent    
(%)  

  CMCa Concentration 
TRITON - 100X   0.02 0.2 
CHAPS   0.6 0.6, 2 
Octylglucoside   0.7 0.7, 2 
Deoxycholate   0.2 0.2 
a CMC, critical micellar concentration
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Preparative purification of His-tagged DHCR24Δn mutants. 

For the preparative purification, the crude extract from 40 g of cells that had produced 

DHCR24Δ50-His was loaded on 20 ml of Ni-NTA Sepharose resin (in a XK16 column, GE 

Healthcare) equilibrated in buffer 50 mM sodium phosphate pH 8.0, 0.1 M NaCl (buffer A), 

connected to a FPLC Akta system. Elution of weakly bound proteins was obtained with buffer B 

(100 ml). A gradient from 10 mM to 500 mM imidazole (in 200 ml) was applied to elute bound 

proteins.  

Gel filtration was carried on using a Superose-12 HR 10/30 column (GE Healthcare), equilibrated 

with buffer A, with a FPLC system. Gel filtration was carried out in the same buffer (0.5 ml/min) 

and 0.5 ml fractions were collected. The eluted sample was then chromatographated on anionic 

exchange Mono-Q HR 5/5 column, equilibrated with 20 mM sodium phosphate buffer, pH 8.0 

(buffer E). Elution was obtained with salt gradient (0-500 mM NaCl, in 20 ml), applying a 0.5 

ml/min flow and collecting 0.5 ml fractions.  

After each purification step, the sample was concentrated by ultrafiltration in a Amicon 

concentrator equipped with a YM10 membrane, with 0.5-1 atm pressure. 

According to methods reported by (Magnusdottir et al, 2009), osmotic shock on cells expressing the 

His-DHCR24Δ41 variant was performed in order to increase the amount of protein able to bind the 

Ni-NTA functional groups. It is reported that the presence of periplasmic low molecular weight 

compounds could interfere with the bound of poorly expressed His-tagged proteins to the functional 

groups of the resin. Thus, periplsmic environment was removed by osmotic shock. Fresh harvested 

cells were resuspended with 50 mM Hepes buffer, pH 7.9, 20% sucrose, 1 mM EDTA with a ratio 

of 5 ml buffer/g cells. The sample was centrifuged for 30 min 7000g and pellet resuspended in 5 

ml/g of cell of 5 mM Mg(SO)4, taking care to maintain cells on ice. Cells were incubated for 10 min 

on ice, harvested by centrifuging for 20 min at 4500g at 4°C and finally resuspended in 1.5 ml/g of 

cells of lysis buffer (100 mM Hepes buffer, pH 8.0, 500 mM NaCl, 10% glycerol, 10 mM 

imidazole, 0.5 mM β-Me, 1 mM PMSF, DNase). Resuspention can be stored at -20°C or directly 

homogenized for the further purification.  

 

Analytical purification of DHCR24 truncated forms with N- terminal GST and MBP tags. 

Affinity chromatography on Glutathionyl Sepharose resin: Glutathionyl Sepharose resin was 

equilibrated with 10mM sodium phosphate, 1.8mM potassium phosphate buffer, pH 7.2, 140 mM 

NaCl, 2.7 mM KCl (PBS buffer). Crude extracts in PBS buffer containing 1 mM EDTA, 1 mM 

PMSF, 1 mM DTT were loaded by gravity on a 1 ml column. Alternatively, 1 ml resin was 

incubated with the sample for 30 minutes at 4°C at 10 rpm. The resin was packed into a column. In 
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both cases the resin was washed with 5 volumes of PBS buffer containing 1 mM EDTA and 1 mM 

PMSF. Elution of bound proteins was carried out by gravity with PBS buffer containing 10 mM 

glutathione. 1 ml fractions were collected and analyzed spectrophotometrically and by SDS-PAGE.  

Affinity chromatography on amylose resin: 1 ml of amylose resin was used for the purification on 

analytical scale of MBP-DHCR24Δn proteins. The resin was equilibrated with 20 mM Tris/HCl 

buffer, pH 7.4, 0.2 M NaCl, 1 mM EDTA (CB buffer), containing 5 mM β-Me, 1 mM PMSF. The 

column was washed with 5 volumes of CB buffer and elution was carried out by flowing CB buffer 

containing 10 mM maltose (5 volumes). 1 ml and 0.5 ml fractions were collected for the washing 

and elution steps, respectively. A 0.1% SDS solution was used to elute proteins precipitated on the 

resin. 
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2.3 RESULTS 

 

Preliminary results on the expression of Seladin-1/DHCR24 and its Δ20, Δ60 and Δ90 variants 

Preliminary expression experiments were carried out in a small scale in order to rapidly identify the 

conditions for the production of soluble Seladin-1/DHCR24 forms. pDEST15DHCR24, 

pBAD49DHCR24 and pDEST17-18DHCR24 Gateway plasmids encoding the full-length human 

Seladin-1/DHCR24 and forms carrying N-terminal tags (from RZPD, Germany) have been used for 

these trials and different E. coli strains, BL21 (DE3), C41, and Rosetta (DE3), were tested as the 

host. In all cases no protein was produced.  

DHCR24 has been proposed to be a flavin-dependent enzyme, associated with the endoplasmic 

reticulum membrane through two predicted N-terminal transmembrane helices. Therefore, 

pDEST15DHCR24 plasmid was used to generate truncated forms of the enzyme with a C-terminal 

His-tag (cloning into pET23b) by removing N-terminal fragments (Δ20, Δ60 and Δ90) in order to 

produce the catalytic domain in a soluble form. The Δ20 enzyme could not be produced in E. coli 

cells, resulting very toxic even at low temperature (15°C). For the other two variants, Δ60 and Δ90, 

best results were obtained expressing proteins in E. coli Rosetta (DE3) at 15°C and a small fraction 

of soluble protein could be isolated thanks to the presence of His-tags, but had no cofactor bound. 

On the basis of sequence analyses and inspection of a three-dimensional homology model of 

Seladin-1 based on plant cytokinin dehydrogenase (Pedretti et al, 2008), the production of a novel 

series of plasmids was planned for the production of soluble forms of the enzyme, in fusion with 

different tags (Fig 2.3.1).  

 

Production and purification of DHCR24 His-tagged truncated forms 

Expression of DHCR24Δ26 and Δ41 variants with N- and C-terminal His-tag.  

Taking into account the results obtained for the expression of DHCR24Δ60 and Δ90 in E. coli 

strains, preliminary expression experiments were carried out firstly with the His-tagged Δ26 and 

Δ41 variants.  

E. coli Rosetta (DE3) cells were transformed with the plasmids encoding His-DHCR24Δ26 (His-

Δ26), DHCR24Δ26-His (Δ26-His), His-DHCR24Δ41 (His-Δ41) and DHCR24Δ41-His (Δ41-His). 

50 ml cultures of transformants were grown in LB medium containing 25 μg/ml Clm and 100 μg/ml 

Amp or 50 μg /ml Kan (for the pET23b and pET28b derivatives, respectively) at 25 °C, 220 rpm. 

When the OD600 reached value of approximately 1, cultures were transferred at 4°C overnight. 20 

ml of cultures were harvested at 3500xg for 10 min at 4°C and pellets were resuspended into 40 ml 
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of fresh LB. Two aliquots of 9 ml of LBClmAmp/Kan (in falcon) for each mutant were inoculated 

with 1 ml of cellular resuspension, and cultures were grown at 25°C, until OD600 reached value of 

approximately 1. Protein expression was induced adding 0.1 mM IPTG. A this point, for each 

mutant, one 10 ml culture was maintained at 25°C, and the other was transferred at 15°C. 16 hours 

after induction, cells were harvested and total, soluble and insoluble protein fractions were 

investigated. As shown in Figure 2.3.2, His-Δ26 and Δ26-His forms had a very low or even absent 

level of expression at both temperatures, thus, they were abandoned. On the contrary, His-Δ41 and 

Δ41-His variants showed good expression levels, higher than those observed previously for the 

Δ60-His and Δ90-His variants. An appreciable amount of soluble protein was present only in cells 

grown at 15°C, in spite of the fact that most of it was in inclusion bodies. 

These first encouraging results led us to experiment the expression of the Δ41 His-tagged mutants 

in a larger scale, in order to obtain sufficient grams of cell for the further purification trials. E. coli 

Rosetta (DE3) cells expressing Δ41 truncated forms with His-tag at the C-terminal (pET23b 

derivatives) and N-terminal (pET28b derivatives) were grown as previously described, in 1-2 litres 

of culture, that were incubated at 15°C for 16 or 41 hours after induction with 0.1 mM IPTG. The 

total amount of expressed proteins was similar to that obtained in the previous experiment, with no 

significant increase after 41 hours induction. It was confirmed that most of the protein was 

produced as insoluble fraction and only a small part was soluble. 

Analytical purification of DHCR24Δ41 variants: affinity chromatography on Ni-NTA-Sepharose  

Analytical purification trials on NiNTA Sepharose were carried out firstly for Δ41 His tagged 

forms. E. Coli cells that had produced the His-Δ41 and Δ41-His (4 g) were resuspended in 2.5 ml/g 

cells of buffer A containing 1 mM β-mercaptoethanol and they were homogenized by sonication. 

The homogenate was then diluted with 2.5 ml/g cells with buffer A and centrifuged. The crude 

extract was directly loaded on a 2 ml column of Ni-NTA Sepharose pre-equilibrated with 5 volumes 

of buffer A. The resin was washed with 3 volumes of buffer A and elution of bound proteins was 

obtained with a discontinuous gradient of imidazole (buffers B, C, D; 3 column volumes each). 

Fractions (1 ml) were analyzed by SDS-PAGE and spectrophotometrically. A flavin signal was 

observed for the first time in fractions eluted with 100 mM imidazole, as confirmed by fluorescence 

analysis (Figure 2.3.3). As shown in figure 2.3.4 (panel A and C) the fractions contained several 

protein species, so that it was not possible to identify the band corresponding to His-Δ41 and Δ41-

His. Thus, western-blot was necessary to verify the actual presence of His-Δ41 and Δ41-His which 

might be responsible for the flavin signal we observed. Western blot detection with antibodies 

directed against Seladin N- or C-terminal peptides (Figure 2.3.4 panel B and D) confirmed that His-

Δ41 and Δ41-His were present in large amounts in the whole cell extracts and in the insoluble 
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fraction. Only a small fraction of soluble DHCR24 bound to the resin and eluted with 100 mM 

imidazole (Figure 2.3.4 panel B and D).  

In order to increase the amount of protein able to bind the Ni-NTA resin, a pre-treatment of the cell 

by osmotic shock was attempted, as described in (Magnusdottir et al, 2009) using 17 g of cells 

grown at 15°C for 16 hours after IPTG induction. After the osmotic shock, the preparative 

purification of His-Δ41 was carried out. Cells were homogenized by sonicaton (45 cycles of 4 sec) 

and sample was centrifuged 15 min at 20000 rpm at 4°C. The crude extract (18 ml, 15 mg/ml) 

appeared cloudy, so it was filtered with 0.2 μm membrane. It was loaded by gravity on a 5 ml Ni-

NTA Sepharose column equilibrated with the lysis buffer and 2 ml fractions were collected. The 

column was then connected to a Akta system (GE Healthcare) and developed with continuous 10-

500 mM imidazole gradient (1 ml/min flow). Spectrophotometric analyses of fractions showed a 

flavin signal coeluting with His-Δ41, as confirmed by western blot, but, also in this case, the 

amount of unbound protein was the same as that observed before, indicating that the osmotic shock 

treatment did not increase the amount of bound protein. N-terminal sequencing of the His-Δ41 

variant from the insoluble fraction (Figure 2.3.2 panel D) confirmed the presence of the His-tag at 

the N-terminus of the protein produced in E. coli. Thus, we could suggest that the low adsorption of 

the protein to Ni-NTA Sepharose may be a consequence of a modification at the N-terminus 

occurring during the purification procedure, or that the soluble fraction of the enzyme is actually 

characterized by large aggregates that prevent the His-tag recognition of the Ni-NTA Sepharose 

functional group. 

The production of DHCR24Δ41 in E. coli cells showed a poor recovery of soluble protein from cell 

homogenates, so that one can suppose that the protein is accumulated in inclusion bodies and/or is 

associated with E. coli membranes. Attempts to increase the soluble fraction of the enzyme were 

done using different detergents during the purification. In a pilot experiment, 5 g of E. coli cells 

containing His-Δ41 were homogenized in buffer A. Aliquots of the homogenate were incubated for 

1 h at 4°C in the presence of the following detergents (%, w/v): sodium deoxicholate (DOC; 0.2 and 

2%); octylglucoside (OGL; 0.7 and 2%) and CHAPS (0.6 and 2%). A negative control with no 

detergent was also analyzed. During incubation at 4°C 2% DOC precipitated, so this sample was 

abandoned. The crude extracts obtained after centrifugation of the homogenate were incubated on a 

wheel with 1 ml of Ni-NTA Sepharose resin equilibrated with the same homogenization buffer for 1 

hour. The resin was packed in a column. The elution of bound proteins was carried out with a 

discontinuous gradient of imidazole (10-250 mM) in buffer A in the presence of detergents at the 

same concentration. SDS-PAGE analysis revealed that detergents did not significantly alter the 

SDS-PAGE pattern of E. coli proteins and decreased the soluble level of His-Δ41 in the crude 
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extract. Very similar results were obtained when 2% CHAPS, 2% OGL and 0.2% Triton were 

added directly in the homogenization buffer. Also in this case, CHAPS and OGL affected the 

solubility of His-Δ41, while the level of soluble protein in the presence of Triton X100 was 

comparable to the control (Fig 2.3.5). Thus, we can suppose that the poor recovery of soluble 

protein from cell homogenates was not due to its association with the E. coli membranes and its 

levels could not be significantly increased using detergents. 

Analytical purification of DHCR24Δ41 variants: ionic exchange chromatography  

In order to circumvent the problem of the low binding to the metal affinity column, small scale 

purifications on anionic and cationic exchange resins were attempted with cells that had produced 

His-DHCR24Δ41. Homogenization of 1 g of cells was carried out using glass beads in buffer E. 

Crude extract obtained after centrifugation at 18000 rpm for 1 hour was directly loaded on a 2 ml 

Q-Sepharose column, equilibrated with buffer E. The column was developed with a discontinuous 

gradient of NaCl (0.1, 0.5 and 1M) in buffer E and 1 ml fractions were collected. Western blot 

analysis of fractions showed that also in this case the enzyme did not bind to the resin, eluting 

totally in the flow-through (Fig 2.3.6 panel A and B) of the column. Furthermore, no flavin signal 

was detected in any fraction.  

Analytical purification on a cationic exchange resin was also attempted. Crude extract from 1 g of 

cells was loaded on a 2 ml SP-Sepharose column, equilibrated with buffer E, pH 7.0 and proteins 

were eluted with steps by increasing the concentration of NaCl (0-1M) stepwise. Also in this case 

the protein did not bind the resin, indicating that large aggregates are formed that cannot interact 

with the functional groups of the resins (Fig 2.3.6 panel C and D).  

Although His-Δ41 and 41-His could not be successfully purified, the flavin signal observed for the 

first time, which coeluted with the enzymes, was very encouraging. Thus we tried to produce other 

protein mutants, in order to improve the solubility of the protein by identifying the boundary of the 

soluble (catalytic) domain. 

Expression and analytical purification of Δ33 and Δ50 His-tagged variants 

E. coli Rosetta (DE3) cells were transformed with pET23b and pET28b derivatives encoding the 

Δ33 and Δ50 enzyme forms. For protein expression cells were grown as described for the Δ41 

variants. His-Δ33 and His-Δ50 showed expression levels similar to those observed for His-Δ41 and 

Δ41-His, with an considerable amount of soluble protein (Fig 2.3.7 panel A). On the contrary, 

plasmids encoding the protein forms with C-terminal His-tags were mildly toxic for E. coli cells 

(Figure 2.3.7 panel B). The amount of protein detected in total extracts was lower than that 
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observed for N-terminal His-tagged forms, but the soluble fraction was similar. In all cases 3-4 g of 

cells per litre of culture were obtained. 

Purification of His-Δ33, Δ33-His, His-Δ50 and Δ50-His on Ni-NTA Sepharose resin was carried 

out from cells grown at 15°C as described for the Δ41 mutants, with essentially identical results. In 

particular, we confirmed that most of the protein did not bind to the resin, in spite of the fact that 

also His-Δ33 and His-Δ50 carry their N-terminus, as indicated by N-terminal sequencing. As 

observed for the Δ41 variant, also in this case the bound DHCR24 eluted with 100 mM imidazole 

(Figure 2.3.7 panel C and D), associated with a flavin signal.  

Preparative purification of DHCR24Δ50-His variant. 

In order to verify whether the flavin signal was actually associated with DHCR24 rather than to one 

of the contaminants that elute with 100 mM imidazole, we carried out a complete purification of the 

protein associated to the flavin, using cells that had overproduced DHCR24Δ50-His, one of the 

forms showing good solubility.  

The crude extract from 20 g cells was chromatographed on a 20 ml Ni-NTA Sepharose column, 

which was developed with a 10 to 500 mM imidazole linear gradient (10 columns volumes, Figure 

2.3.8 panel A). Spectrophotometric analysis revealed that fractions 96-104 contain a flavoprotein. 

SDS-PAGE showed that these fractions contained several protein species (Figure 2.3.8 panel B). 

Thus western-blot was necessary to confirm the presence of Δ50-His. As shown in fig 2.3.8 panel 

C, DHCR24Δ50 was actually present in these fractions. Therefore they were pooled and 

concentrated. After concentration, the sample still showed the flavin signal (Figure 2.3.8 panel D). 

The sample was gel filtered on a Superose12 column, pre-equilibrated with buffer A (Figure 2.3.9 

panel A). A flavin signal coeluted with fractions 25-27, which contain three main protein species, 

one of which had the expected mass for Δ50-His (Figure 2.3.9 panel C). Thus, these fractions were 

pooled, concentrated (spectrum of the sample in Figure 2.3.9 panel B) and chromatographed on a 

Mono-Q column (in 20 mM sodium phosphate buffer, pH 8.0), which was eluted with a gradient of 

NaCl from 0 to 500 mM (Figure 2.3.10 panel A). Fractions collected during the initial wash and the 

0-500 mM NaCl gradient were analyzed by absorbance spectroscopy and SDS-PAGE. These 

analyses showed that the flavin signal was associated with a protein of 55 kDa, i.e. the expected 

mass of Δ50-His (Figure 2.3.10 panel B and C). However, this protein was not recognized by the 

anti-Seladin-1 antibodies (Figure 2.3.11 panel A). Further analyses showed that Δ50-His eluted 

from the gel filtration column at a mass higher than 100 kDa as a colourless protein. (Figure 2.3.11 

panel B and figure 2.3.9 panel A). 
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This result may suggest that or DHCR24 is not a flavoprotein, or, more likely, that the produced 

forms do not correspond to the domain of the holoenzyme. N-terminal sequencing confirmed that 

the 50 kDa flavin-associated protein is the E. coli alchil-hydroperoxide reductase (56 kDa). 

 

Production of GST- and MBP-DHCR24Δn derivatives 

Expression of GST-DHCR24 truncated forms in E. coli and purification on glutathionyl (GSH)-

Sepharose 

Plasmids encoding DHCR24Δ26, -Δ33, -Δ41 and -Δ50 forms in fusion with GST tag at N-terminus 

were used to transform E. coli Rosetta (DE3) competent cells. Cells containing pGEX-4T-1 vector 

were grown as negative control to monitor the toxicity effect due to the plasmid or to the 

heterologous proteins expression. 500 ml cultures were grown as described for the pET derivatives. 

As shown in figure 2.3.12, the expression of GST-Δ26 at 15°C for 42 hours after induction with 0.1 

mM IPTG was not toxic. A higher protein level was observed in total cell extracts, compared to that 

observed with pET vectors, but the amount of soluble protein was not significantly increased. 

Expression of GST-Δ33, GST-Δ41 and GST-Δ50 for 17 hours after induction showed similar 

results.  

Purification attempts on an analytical scale were carried out for all the GSTDHCR24 derivatives 

and for the negative control expressing GST. 2 or 4 g of cells were resuspended in 2.5 volumes of 

PBS buffer, containing 1 mM EDTA, 1 mM PMSF, 1 mM DTT and homogenized with glass beads 

or by sonication (6 cycles of 30 sec) in the presence of DNase. In all cases the crude extract was 

clear and appeared pale yellow after centrifugation at 18000 rpm for 1 h. The rude extracts obtained 

from 2 g of cells that had produced GST-Δ26 GSTΔ33 –Δ41 and -Δ50 were incubated with GSH-

Sepharose resin for 30 min at 4°C. GST protein produced in positive control cells was also purified. 

After incubation with the crude extract, the resin was washed in batch with PBS buffer, containing 1 

mM EDTA, 1 mM PMSF, 1 mM DTT (6 column volumes) and packed into a column. The elution 

of bound proteins was done by flowing PBS buffer containing 10 mM glutathione (5 column 

volumes). SDS-PAGE analysis of fractions revealed that the DHCR24 proteins did not bind the 

resin (see, e.g. the case of GST- Δ33 in Figure 2.3.12 panel B), while GST was successfully 

purified (Figure 2.3.12 panel C). 

Production and analytical purification on amylose resin of MBP-DHCR24Δn enzymes 

The expression of MBP-DHCR24Δ26, -Δ33, Δ41 and Δ50 forms in E. coli was carried out as 

previously described. E. coli expressing MBP alone was used as positive control. SDS-PAGE of 

total cell extracts showed a similar degree of expression 41 hours after induction (Figure 2.3.13 
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panel B), except for the Δ26 form, whose level was lower then that of the other constructs (Figure 

2.3.13 panel A). Proteins were extracted by sonication in CB buffer containing 5 mM β-Me, 1 mM 

PMSF. The crude extracts were characterized by a significantly higher amount of soluble MBP-

DHCR24 protein, as compared to the corresponding His-tagged forms, in particular for the Δ41 

(Figure 2.3.13 panel B and C) and Δ50 forms. This result indicates that MBP increased the 

solubility of the heterologous proteins. The MBP-DHCR24 forms were purified to near 

homogeneity by affinity chromatography on a 1 ml of amylose column, equilibrated with CB 

buffer. The fractions eluted with CB buffer containing 10 mM maltose were characterized by the 

presence of a species with the expected mass of ~ 98 kDa (Figure 2.3.13 panel C). Western-blot 

with anti Seladin C-terminal antibodies confirmed the proteins to be MBP-DHCR24 variants 

(Figure 2.3.13 panel D). No flavin signal was associated to these fractions. Dynamic light scattering 

(DLS) measurements on fractions containing MBPDHCR24Δn variants were performed (20-30 

acquisitions, at 15°C). As shown in figure 2.3.13 panel E, a radius of 47 nm was obtained, which 

corresponds to a molecular mass of 20 MDa. This indicates that the MBPDHCR24Δn proteins all 

form high molecular mass aggregates. 

Denaturation of fractions containing MBPΔ26 by a 5 hours dialysis in the presence of 6 M Urea 

followed by refolding in buffer containing 0.1 mM FAD led to the obtainment of very low amount 

of soluble protein that did not contain FAD.  

Fluorescence analyses on fractions containing MBPΔ33, -Δ41 and Δ50 did not show any flavin 

signal (see, e.g. the MBPΔ33 case in Figure 2.3.14), suggesting that these variants do not contain 

any cofactor or that the flavin signal is quenched. Thus, heat denaturation of fractions containing 

these proteins was carried out by incubation at 100°C for 15 min in the dark in order to release the 

cofactor, if present. As shown in Figure 2.3.14, denaturation of the MBPDHCR24Δ33 led small 

amounts of flavin released and similar results were obtained with the other constructs. To identify 

the nature of the flavin, samples were reacted with phosphodiesterase (PDE) that converts FAD in 

FMN (Aliverti et al, 1999). Emission spectrum of FMN at 530 nm is 10 folds higher than that of 

FAD. A Cary Eclipse (Varian) fluorimeter was used, measuring emission spectra between 500 and 

600 nm and exciting samples at 450 nm. The emission spectrum of 2 ml of CB buffer, 10 mM 

maltose, 20 mM MgCl2 was recorded in a 3 ml cuvette. 100 μl of the denatured fractions were 

added and fluorescence emission spectrum registered. The observed flavin signal was greater than 

80% FAD, but it accounted for less than 1% of the expected amount estimated from the quantity of 

DHCR24 present in the sample if DHCR24 is a properly folded protein. 
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Production of His-SUMODHCR24Δn mutants 

Construction of plasmids for the expression of His-SUMODHCR24 truncated forms.  

Attempts to purify the His-DHCR24 truncated forms by chromatography on Ni-NTA Sepharose 

resulted in a low binding to the metal affinity column, with the most of the protein eluting in the 

flow-through of the column. This result may suggest that proteins are expressed as aggregates that 

may interfere with the recognition of the His-tag with the functional groups of the resin. The 

adopted strategy was then to interpose a linker between the His-tag and the DHCR24 protein that 

could enhance the correct folding and the subsequent binding of the His-tag to the resin. 

Using the same cloning strategy adopted for the other constructs, fragments encoding for 

DHCR24Δ26, -Δ33, -Δ41 and -Δ50 proteins were excised from donor vectors with NheI/XhoI 

digestions and inserted into pETSUMO vector, previously mutagenized to delete the NheI 

restriction site present at the 5’ of the SUMO gene. Expression of the target protein with His-

SUMO protein fused at the N-terminus has been shown to be a powerful tool to increase solubility 

and folding levels of several proteins (Butt et al, 2005; Malakhov et al, 2004; Marblestone et al, 

2006) and should facilitate their purification by mean of affinity chromatography. Furthermore, the 

presence of a specific SUMO-protease cleavage site just at the starting point of the target protein 

should allow the subsequent purification of the native protein, without any added residues.  

The expression of His-SUMODHCR24Δn proteins was carried out as described for the pET 

derivatives. Cultures of E. coli Rosetta (DE3) cells expressing the pETSUMODHCR24 mutants 

(500 ml each) were grown at 25°C until the OD600 reached a value of 1. Then, they were transferred 

at 15°C after induction with 0.1 mM IPTG for 16 hours. Cells were harvested (4.5 g of cells per 

culture) and 0.5 g were used to analyze the expression levels and the solubility of the protein forms. 

As shown for the His-SUMOΔ26 (Figure 2.3.15 panel A), the fusion with the His-SUMO tag led to 

an increased amount of protein in cell total extracts, but, as observed for the His-tagged variants, 

most of the protein was present in the insoluble fraction. Identical results were obtained also for 

Δ26, Δ33 and Δ41. 

The cells were used to carry out an analytical affinity chromatography on Ni-NTA Sepharose, as 

described in detail for the His-Δ41 variant. His-SUMODHCR24Δ26 purification (Fig 2.3.15 panel 

B) was done eluting proteins with a discontinuous gradient of imidazole and, as observed for the 

pET derivatives, also in this case the most of the DHCR24 protein form did not bind to the resin 

and eluted in the flow-through, as confirmed by western blot (Figure 2.3.15 panel C). Similar 

results were obtained for the other DHCR24 variants. A protein species with the expected mass of 

approximately 70 kDa was present in the fractions eluted with 0.5 M imidazole, but no flavin signal 

was associated to it.  
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Screening for activity of the expressed DHCR24 forms 

It has been proposed that Seladin-1/DHCR24 catalyzes the reduction of the Δ24 double bond of the 

precursors of the cholesterol in its biosynthesis pathways. DHCR24 should convert desmosterol in 

cholesterol (Figure 2.1.3), using NADPH as reductant (Waterham et al, 2001). Attempts were done 

to measure the NADPH oxidation reaction in the presence of the crude extract from E. coli cells 

producing the His-DHCR24Δ41 variant. NADPH consumption was monitored at 340 nm in 25 mM 

sodium phosphate buffer, pH 8.0 at 25°C. No activity was detected, even at the presence of 105 μM 

desmosterol.  

Alternatively, enzymatically produced cholesterol could be coupled with the cholesterol oxidase 

reaction. Cholesterol oxidase converts cholesterol in cholest-4-ene-3-one producing H2O2 in the 

presence of O2. Thus, the DHCR24 reaction could be monitored spectrophotometrically by 

measuring the oxidation of a chromogen, such as o-dianisidine, catalyzed by the horse radish 

peroxidase (HRP), with consumption of H2O2 (Fig 2.3.16). In the set up of these assays, cholesterol 

and desmosterol solutions (420 μM stock) were prepared in 1.25% β-cyclodextrin. Assays were 

carried out using 5 μg of HRP. The o-dianisidine (0.4 mM) oxidation was monitored at 436 nm (ε = 

11.6 mM-1 cm-1; Vanoni and Curti, 2007) in 50 mM Tris/HCl buffer, pH 7.2 (Waterham et al, 

2001), at 25°C, in the presence of 44 μM H2O2. In these conditions, o-dianisidine is completely 

oxidized within 1 min (Figure 2.3.17 panel A). The effect of β-cyclodextrin and of cholesterol (105 

μM) on the HRP reaction was also monitored. Cholesterol did not affect the HRP reaction (Figure 

2.3.17 panel B), except for an initial variation in the absorbance due to β-cyclodextrin. The coupled 

cholesterol oxidase (CO) activity was monitored in the presence of HRP, o-dianisidine and 105 μM 

cholesterol and desmosterol. As shown in figure 2.3.17 also desmosterol is an excellent substrate of 

cholesterol oxidase ruling out the possibility to use this enzyme to detect the desmosterol oxidase 

activity of DHCR24. 

For this reason, the gas-chromatography detection of the enzyme-catalysed conversion of 

desmosterol to cholesterol was studied. Preliminary experiments were done by adding known 

amounts of desmosterol or cholesterol to crude extracts of E. coli Rosetta cells transformed with the 

pET vector and grown under the same conditions as those used to produce the soluble 

DHCR24Δ41. After extraction with petroleum ether, sterols were derivatised with N,O-

Bistrimethylsilyl) trifluoroacetamide (BSTFA):pyridine. The samples were analysed by GC/MS. 

Recovery (50-70%) and sensitivity (2 pmol) were satisfactory and there was no interference from 

the E. coli extracts. Conversion of desmosterol to cholesterol was assayed on homogenates and 

crude extracts of cells containing His-DHCR24Δ41 using a NADPH-regenerating system formed 

by glucose 6-phosphate and glucose 6-phosphate dehydrogenase. Control experiments were done in 
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the absence of the reducing system, and samples were analysed after 1 and 6 h of incubation. 

Essentially, no cholesterol production was observed. Due to the fact that GC analyses are very 

labour intensive, similar assays with the other DHCR24 truncated forms were not carried out. 

However, this assay will be soon performed with S. cerevisiae extracts as a starting point for new 

experiments. 
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2.4 CONCLUSIONS 
The expression in E. coli and the purification of soluble forms of the novel human antiapoptotic 

factor Seladin-1/DHCR24 were attempted in order to obtain sufficient amount of homogeneous 

protein for its biochemical characterization. The DNA fragments that encoded protein forms 

missing the N-terminal putative transmembrane domain (Figure 2.1.4) were cloned into different 

expression vectors for the production of the enzyme forms in fusion with various tags and protein 

domains known to enhance production levels, folding and solubility of the target protein (Figure 

2.3.1). 

Preliminary expression experiments were carried out in a small scale in order to rapidly identify the 

conditions for the production of soluble Seladin-1/DHCR24 forms. After an initial screening of 

different strains, E. coli Rosetta (DE3) cells were selected as the host of various constructs. E. coli 

Rosetta (DE3) cells were transformed with the plasmid of interest and growth was done at 25°C 

until OD600 reached a value of 1. 0.1 mM IPTG was added and the culture was transferred at 15°C 

for 16 or 42 h.. 

His-DHCR24Δ26 and DHCR24Δ26-His forms had a very low or even no detectable level of 

protein, thus they were abandoned. On the contrary, His-DHCR24Δ41 and DHCR24Δ41-His 

variants showed good expression levels, with a detectable amount of soluble protein, in spite of the 

fact that most of the protein present was in inclusion bodies. The analytical purification of these two 

DHCR24 forms by Ni-NTA Sepharose chromatography showed that only a small fraction of 

soluble DHCR24 bound to the resin and eluted with 100 mM imidazole, in association to a flavin 

signal. In order to increase the amount of protein able to bind the Ni-NTA resin, a pre-treatment of 

the cells by osmotic shock was attempted (Magnusdottir et al, 2009), with no substantial 

improvement of the amount of bound DHCR24. The N-terminal sequencing of the His-Δ41 variant 

confirmed the presence of the His-tag at the N-terminus of the protein produced in E. coli, 

suggesting that either the protein undergoes modifications at the N-terminus during the purification 

procedure, or that the soluble fraction of the enzyme is actually characterized by large aggregates, 

that could not be solubilized even using detergents. Similar results were obtained with small scale 

purifications on anionic and cationic exchange resins. Also in these cases the DHCR24 forms did 

not bind the resin, indicating that large aggregates are formed that cannot interact with the 

functional groups of the resins. 

The coelution of DHCR24Δ41 His-tagged forms with a flavin signal led us to produce other protein 

variants, in order to improve the solubility of the protein by identifying the boundary of the soluble 

(catalytic) domain. Expression of His-tagged forms of DHCR24Δ33 and –Δ50 were carried out 

using the same strategy as that adopted for Δ41. N-terminal His-tagged forms showed expression 
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levels similar to those observed for His-Δ41 and Δ41-His, with a detectable amount of soluble 

protein. On the contrary, plasmids encoding the protein forms with C-terminal His-tags were mildly 

toxic for E. coli cells, and the amount of protein detected in total extracts was very low. The 

purification of these DHCR24 variants was carried out as for His-DHCR24Δ41, with essentially 

identical results. In particular, we confirmed that most of the protein did not bind to the resin and 

that a flavin signal coeluted with the enzyme. A complete purification of the 50 kDa flavin-

associated protein was carried out using that had overproduced DHCR24Δ50. The purified protein 

was identified as the flavoprotein subunit of E. coli alchil-hydroperoxide reductase (AhpF, 56 kDa), 

while the DHCR24Δ50 variant was obtained as a greater than 100 kDa colourless protein. This 

result may suggest that or DHCR24 is not a flavoprotein, or, more likely, that the forms we producd 

so far do not correspond to the complete soluble catalytic domain of the holoenzyme.  

Alternative strategies for the expression of soluble DHCR24 forms were tested. The production of 

DHCR24 variants as pGEX-4T-1 and pMAL-c derivatives led to the obtainment of higher protein 

level in total cell extracts and an increase of solubility, the latter for constructs in fusion with MBP. 

Small scale affinity chromatography of extracts on glutathionyl-Sepharose showed that the GST-

DHCR24 variants did not bind to the resin. On the contrary, the MBP-DHCR24 forms were purified 

to near homogeneity by affinity chromatography on amylose column, but no flavin signal was 

associated to the native proteins that eluted from the column as a 20 MDa aggregates. The 

denaturation of MBP-DHCR24 solutions by incubation at 100°C for 15 min in the dark led to the 

realese of a small amount of flavin that was confirmed to be 80% FAD fluorimetrically. However, it 

accounted for less than 1% of the expected amount estimated from the quantity of DHCR24 present 

in the sample if DHCR24 was a properly folded protein. 

Expression of DHCR24 truncated forms in fusion with His-SUMO protein at the N-terminus was 

done in order to increase the solubility and the folding levels of the proteins, as reported in (Butt et 

al, 2005; Malakhov et al, 2004; Marblestone et al, 2006). This strategy could also facilitate the 

subsequent protein purification by mean of Nickel chelate affinity chromatography. The presence of 

a correctly folded linker (the SUMO protein) between the N-terminal His-tag and the DHCR24 

form should avoid masking of the His-tag by DHCR24 and should decrease the probability to form 

high molecular aggregates. The expression of His-SUMODHCR24Δn proteins in E. coli led to an 

increased amount of protein in cell total extracts, but, as observed for the His-tagged variants, most 

of the protein was present in the insoluble fraction. Also in this case most of the DHCR24 protein 

forms did not bind to the resin and eluted in the flow-through.  

Experiments aimed to set up activity assays for Seladin-1 and its truncated variants have been 

initiated. First of all, to test if NADPH is a substrate of DHCR24, NADPH oxidation assays on 
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crude extracts containing His-DHCR24Δ41 were carried out in 20 mM Hepes/KOH buffer, pH 7.0, 

at 25°C. In the presence of 100 μM NAPDH, the observed activity was very low, probably due to 

the E. coli background, and no effects were observed upon addition of 420 μM desmosterol. 

Attempts to set up desmosterol reduction assays have also been done. In theory, the synthesis of 

cholesterol by Seladin-1 could be monitored by coupling this reaction with that of cholesterol 

oxidase, which produces H2O2. The oxidation of H2O2 to H2O catalyzed by horse radish peroxidase 

in the presence of o-dianisidine could be monitored at 436 nm. However, we showed that it is not a 

possible assay, because desmosterol is also an excellent substrate of cholesterol oxidase. For this 

reason, the gas-chromatography detection of the enzyme-catalysed conversion of desmosterol to 

cholesterol was tested on homogenates and crude extracts of cells containing His-DHCR24Δ41 

using a NADPH-regenerating system formed by glucose 6-phosphate and glucose 6-phosphate 

dehydrogenase. However, no cholesterol production was observed. 

The results obtained for the production of human Seladin-1 highlighted the difficulties that often are 

encountered with the heterologous expression of membrane proteins in prokaryotic systems. 

Adopting strategies aimed to improve the correct folding of the protein, such as removal of 

transmembrane portions, fusion with soluble tags and circumventing the codon bias by expression 

in E. coli Rosetta (DE3) cells, led to the obtainment of low amount of soluble protein, that however 

was produced in an aggregate form. For this reason, experiments aimed at the production of 

Seladin-1/DHCR24 in a eukaryotic system, such as yeast, have been initiated in our laboratory, with 

the optimization of methods to carry out expression in different S. cerevisiae background and to 

analyze the resulting material. Furthermore, S. cerevisiae extracts will be used to perform activity 

assays to reproduce Waterham et al. results (Waterham et al, 2001). Together with this line of 

research, the study of another human medically-relevant human flavoenzyme has been initiated in 

our laboratory. The production , kinetic and spectroscopic characterization of MICAL N-terminal 

flavoprotein domain will be discussed in the next chapter. 
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Figure 2.1.1: Secretase mediate APP processing. In non-amyloidogenic pathaway, α-secretase and γ-
secretase produce the p3 soluble peptide and a membrane-bond domain (AICD). In the amyloidogenic 
pathway, the β-secretase and γ-secretase combined action leads to Aβ-amyloids formation (from 
www.ebi.ac.uk/interpro/potm/2006_7/Page2.htm). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.1.2: Subcellular localization of Seladin-1 in human neuroglioma cells. Panel A and D: 
Subcellular distribution of the Seladin-1/enhanced green fluorescent protein (EGFP) fusion protein. Panel B: 
Staining of the endoplasmic reticulum. Panel C: Overlay from A and B shows the colocalization of Seladin-1 
with the ER marker, indicated by yellow fluorescence. Panel E: Staining of the mitochondria. Panel F: 
Overlay of D and E (Greeve et al, 2000). 
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Figure 2.1.3: Cholesterol biosynthesis. After cyclization of squalene (composed of six isoprene units) 
lanosterol is synthesized. It is converted into cholesterol in a series of enzyme reactions requiring one 
demethylation at C-14, two demethylations at C-4, one isomerization of the Δ8(9) double bond to Δ7, three 
reductions of the Δ24, Δ14 and Δ7 double bonds, and one desaturation between C-5 and C-6. indicated are two 
major routes involved in cholesterol synthesis. In this segment of the pathway six inherited disorders have 
been linked to specific enzyme deficiencies (indicated by red solid bars in the scheme and indicated in 
parenthesis below). Numbering of the enzymes: 1, squalene synthase; 2, squalene epoxidase; 3, 2,3-
oxidosqualene sterol cyclase; 4, sterol Δ24-reductase (DHCR24, desmosterolosis); 5, sterol C-14 
demethylase; 6, sterol Δ14-reductase (hydrops-ectopic calcificatio-moth-eaten skeletal dysplasia, HEM); 
7, sterol C-4 demethylase complex (including 3β-hydroxysterol dehydrogenase defective in CHILD 
syndrome); 8, sterol Δ8- Δ7 isomerase (X-linked dominated chondrodyslasia punctata 2, CDPX2); 9, sterol 
Δ5-desaturase (lathosterolosis); 10, sterol Δ7-reductase (Smith-Lemli-Opitz syndrome syndrome, SLO). 
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Figure 2.1.4: Primary structure and in silico model of human Seladin-1/DHCR24. Panel A: Green, 
putative signal peptide overlapping with the first transmembrane helix (boxed); yellow and boxed, putative 
second transmembrane helix; red, N- and C-terminal parts of the putative FAD-binding domain. The 
GXGXXS motif identifying the putative adenylate-binding site is marked with dots. The sequences 
recognized by the commercial Anti-Seladin-N and –C antibodies are highlighted in grey. The arrows indicate 
the starting point of truncated mutants generated for the production in E. coli (see also figure 2.3.1). Panel B: 
Seladin-1 model built using as template the structure of cytokinine dehydrogenase (Pedretti et al, 2008). Red, 
FAD-binding domain; blue, substrate binding domain; yellow, putative transmembrane region.  
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Figure 2.1.5 Panel A: Sequence alignment of human (Hs) DHCR24 
and its orthologs in mouse (Mm), C. elegans (Ce) and A. thaliana (At). 
Only amino acids that are identical and conserved in at least three 
sequences are indicated, by black boxes and gray boxes, respectively. 
Indicated above the DHCR24 sequence are conserved domains 
predicted to encode a secretory-signal sequence (SS), and FAD-binding 
domain characteristics of the family of FAD-dependent 
oxidoreductases (FAD) and a membrane-associated helix (MAH). 
Panel B and C: Sterol/steroid biosynthesis in plant and human. Panel 
B: DIMINUTO/DWARF1 (DWF1) function in the biosynthetic 
pathway for plant sterols and steroids (brassinolide). The enzyme 
catalyzes both the isomerisation of Δ24(28) bond into a Δ24(25) bond and 
the subsequent reduction of Δ24(25) bond from plant-sterol intermediates 
24-methylenecholesterol and isofucosterol, to produce campesterol 
(plant-steroid precursor) and sitosterol (major plant sterol), 
respectively. Panel C: DHCR24 catalyzes the reduction of Δ24 bond of 
desmosterol to produce of cholesterol (Waterham, 2001). 

A B 

C 



 38 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.3.1: Summary of experiments for the expression of DHCR24 forms in E. coli. The putative transmembrane regions of DHCR24 are in red, the putative 
soluble domain in yellow. Colour code of fused peptides or domains: GST, green; Trx, light blue; His-tag, grey; MBP, orange; SUMO protein, blue. 

PROTEIN Kb AA kDa Construct Expressed Soluble  Flavin 
DHCR24 1551 516 60.1      
GST-DHCR24 2268 755 87.8  ±, mildly toxic NO abandoned  
Trx-DHCR24 1953 659 74.3  NO, toxic N/A abandoned  
His-DHCR24 1620 539 62.8  NO, toxic N/A abandoned  
DHCR24-His 1578 525 61.2  NO, toxic N/A abandoned  
DHCR24Δ21-His 1518 505 58.9  NO, very toxic N/A abandoned  
DHCR24Δ26-His 1497 498 58.2  NO N/A abandoned  
His-DHCR24Δ26 1539 512 59.5  YES - abandoned  
MBP-DHCR24Δ26 2631 878 99.4  YES ± purified on amylose resin NO 
GST-DHCR24Δ26 2181 726 84.6  YES + does not bind to GSH seph  
His-SUMO-DHCR24Δ26 1848 615 71.1  YES ++ partially purified on Ni-NTA NO 
DHCR24Δ33-His 1476 492 57.3  YES, mildly toxic ± partially purified on Ni-NTA YES 
His-DHCR24Δ33 1521 506 58.7  YES ± partially purified on Ni-NTA YES 
MBP-DHCR24Δ33 2613 870 98.6  YES + purified on amylose resin YES 
GST-DHCR24Δ33 2163 720 83.8  YES ± does not bind to GSH seph  
His-SUMO-DHCR24Δ33 1830 609 70.3  YES + partially purified on Ni-NTA NO 
DHCR24Δ41-His 1452 483 56.3  YES, mildly toxic + partially purified on Ni-NTA YES 
His-DHCR24Δ41 1494 497 57.7  YES + partially purified on Ni-NTA  YES 
MBP-DHCR24Δ41 2592 863 97.8  YES ++ purified on amylose resin YES 
GST-DHCR24Δ41 2142 713 83  YES ± does not bind to GSH seph  
His-SUMO-DHCR24Δ41 1803 600 69.3  YES ++ partially purified on Ni-NTA NO 
DHCR24Δ50-His 1425 474 55.1  YES, mildly toxic ± partially purified on Ni-NTA YES 
His-DHCR24Δ50 1467 488 56.5  YES ± partially purified on Ni-NTA YES 
MBP-DHCR24Δ50 2562 853 96.6  YES ++ purified on amylose resin YES 
GST-DHCR24Δ50 2112 703 81.8  YES + does not bind to GSH seph  
His-SUMO-DHCR24Δ50 1776 591 68.1  YES + partially purified on Ni-NTA NO 
DHCR24Δ61-His 1398 465 54  YES ± purified on Ni-NTA NO 
DHCR24Δ90-His 1311 436 50.5  YES - abandoned  
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Figure 2.3.2: SDS-PAGE of total extracts (T), soluble (S) and insoluble (P) fractions of E. coli Rosetta 
(DE3) cells transformed with: pET23b (panel A and C; -) pET28b (panel B and D; -); pET23bDHCR24Δ26 
(panel A); pET28bDHCR24Δ26 (panel B); pET23bDHCR24Δ41 (panel C); pET28bDHCR24Δ41 (panel D). 
Cells were grown at 25°C until the OD600 reached a valued of 1. IPTG (0.1 mM) was added to the cultures 
that were maintained at 25°C or shifted at 15°C. Cells were harvested after 16 h. M: markers. White dots 
indicate the expected position for the Δ26-His (58.2 kDa), His-Δ26 (59.5 kDa), Δ41-His (56.3 kDa) and His-
Δ41 (57.7 kDa) proteins. 
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Figure 2.3.3: Analytical purification of His-Δ41 on Ni-NTA Sepharose. Main panel: Absorbance spectrum of the fraction eluted with 100 mM imidazole and 
containing His-DHCR24Δ41 (Red) and absorbance spectrum of 1 μM FAD (Black). Inset: exctitation (λex, 300-500 nm; λem, 520 nm) and emission (λex 450 nm; 
λem, 470-700 nm) spectra of the sample.  
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Figure 2.3.4: Analytical purification of His-Δ41 and Δ41-His on Ni-NTA Sepharose. SDS-PAGE of total extracts (T), soluble (S, 40 µg) and insoluble 
fractions of E. coli Rosetta (DE3) cells transformed with pET28DHCR24Δ41 (panel A) and pET23DHCR24Δ41 (panel C). Cells were grown at 25°C, induced 
with 0.1 mM IPTG (-) and transferred at 15°C. After 41 hours cells were harvested. Crude extracts were loaded on a 1 ml Ni-NTA Sepharose column equilibrated 
in buffer A and the flow-through (FT) was collected. Proteins were eluted with discontinuous gradient of imidazole (0, 10, 100 and 500 mM). Numbers indicate 
the corresponding fractions (20 µl each). White dots indicate the expected position for His-Δ41 (57.7 kDa) and Δ41-His and (56.3 kDa). Western-blot with 
immunodecoration with anti Seladin N-terminal antibodies. Arrows indicate the bands corresponding to the His-Δ41 (panel B) and Δ41-His (panel D). M: 
markers. 
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Figure 2.3.5: Analytical purification of His-DHCR24Δ41 on Ni-NTA Sepharose in the presence of 
detergents. SDS-PAGE of fractions eluted with a discontinuous gradient of imidazole (0, 10, 250 mM) from 
a 1 ml Ni-NTA Sepahrose column after incubation of crude extract with no detergent, 0.2% Triton X100, 2% 
octylglucoside (OGL) and 2% CHAPS. P: insoluble fraction; S: soluble fraction (40 µg); FT: flow-through 
(40 µg); +: insoluble fraction of cells expressing the His-Δ41 used as positive control; 0, 10, 250: peak 
fractions eluted with 0, 10 and 250 mM imidazole. White dots indicate the expected position for the His-
DHCR24Δ41. 
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Figure 2.3.6: Purification of His-DHCR24Δ41 by ionic exchange chromatography. SDS-PAGE and Western-blot of fractions eluted from a 2 ml Q-Sepharose 
column (Panels A and B) and from a 2 ml SP-Sepharose column (Panel C and D) equilibrated in 20 mM phosphate, pH 8.0 and 20 mM phosphate, pH 7.0 buffers, 
respectively, and eluted with a discontinuous salt gradient. 1 gr of E. coli Rosetta (DE3) that had produced the His-DHCR24Δ41 was used for both purifications. 
Western-blots were decorated with anti-Seladin N-terminal antibodies. White dots indicate the expected position of His-Δ41; red arrow indicate the corresponding 
His-Δ41 band recognized by antibodies. +: insoluble fraction of cells expressing His-Δ41 used as a positive control; S: soluble fraction (40 μg); FT: flow-through; -: 
negative control; M: markers. 
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Figure 2.3.7: Expression of His-tagged forms of DHCR24Δ50 in E. coli Rosetta (DE3) cells and their 
analytical purification on Ni-NTA Sepharose column. SDS-PAGE of total and soluble extracts of cells 
containing pET28b (negative control, -), pET28bDHCR24Δ50 (Panel A) and pET23bDHCR24Δ50 (Panel B) 
grown at 25°C until OD600 reached a value of 1. 0.1 mM IPTG was added (T0) and cells were transferred at 
15°C. Cells aliquots were harvested at 19 (T19), 25 (T25) and 41 (T41) hours after induction. S: soluble 
fraction; P: insoluble fraction. White dots indicate the expected position of His-Δ50 (56.5 kDa) and Δ50-His 
(55.1 kDa). Panels C and D: Western blot with anti-Seladin C-terminal antibodies of fractions collected 
during the analytical purification of His-Δ50 (panel C) and Δ50-His (panel D) on a 1 ml Ni-NTA Sepharose 
column. Elution was achieved with the indicated concentration of imidazole. FT: flow-through; +: insoluble 
fraction of cells expressing His-Δ41 used as positive control. The red arrows indicate the DHCR24Δ50 band. 
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Figure 2.3.8: Purification of the flavoprotein responsible of the flavin signal associated to DHCR24Δ50-His. Affinity chromatography on Ni-NTA 
Sepharose. Crude extract from E. coli Rosetta (DE3) cells expressing the Δ50-His variant was loaded on a 20 ml Ni-NTA Sepharose column in buffer A. The 
column was developed with a 10-500 mM imidazole gradient (in 10 column volumes) (panel A). Vertical bars indicate fractions 96-104 which are associated to a 
flavin signal. Panel B: SDS-PAGE of fractions eluted from Ni-NTA Sepharose chromatography. M: markers; +: insoluble fraction of Δ50-His producing cells 
(positive control); S: crude extract. Black dots indicate the expected position of DHCR24Δ50. Panel C: Western-blot of fractions with anti-Seladin C-terminal 
antibodies. FT: flow-through; pool: pooled fractions 96-104; C:fractions 96-104 after concentration. The red arrow indicates the band corresponding to Δ50-His. 
Panel D: Absorbance spectrum of fractions 96-104 eluted from the Ni-NTA Sepharose column, pooled and concentrated by ultrafiltration. 
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Figure 2.3.9: Purification of the flavoprotein responsible of the flavin signal associated to 
DHCR24Δ50-His. Gel filtration on Superose-12. Fractions 96-104 eluted from the Ni-NTA Sepharose 
column in figure 2.3.8 were concentrated and chromatographed on a Superose-12 column, equilibrated end 
eluted with buffer A (panel A). Vertical bars indicate fractions 25-27 that show a flavin signal. These 
fractions were pooled and concentrated. Panel B: Absorbance spectrum of fractions 25-27 after 
concentration. Panel C: SDS-PAGE of fractions collected during chromatography on Superose-12. M: 
markers; +: insoluble fraction of cells producing Δ50-His (positive control). Black dots indicate the expected 
position for DHCR24Δ50. 
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Figure 2.3.11: Western-blot of samples obtained during chromatographies shown in figures 2.3.8, 
2.3.9, 2.3.10. Panel A: Ni-NTA: fractions 46-104 eluted from Ni-NTA Sepharose column, pooled and 
concentrated.. 26: fraction 26 eluted from Superose-12 column; C: samples of fractions associated to the 
flavin signal pooled and concentrated after the indicated chromatography step; 19, 20: fractions 19 and 20 
eluted from MonoQ column. Panel B: Western-blot of fractions obtained during gel filtration on Superose-
12. M: markers; +: insoluble fraction of cells producing Δ50-His (positive control). Red arrows indicate 
DHCR24Δ50-His. 
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Figure 2.3.10: Purification of the 
flavoprotein responsible of the flavin signal 
associated to DHCR24Δ50-His. Anionic 
exchange chromatography on MonoQ 
column. Fractions 25-27 collected after 
chromatography in fig 2.3.9 were pooled, 
concentrated and loaded on a MonoQ column, 
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buffer, pH 8.0 buffer. The column was 
developed with a NaCl gradient. Bars indicate 
fractions 19-20 associated to the flavin signal. 

Panel B: SDS-PAGE of some fractions eluted from MonoQ chromatography. M: markers; GF: fraction 
26 eluted from Superose-12 (positive control). Panel C: Absorbance spectrum of fractions 19-20 pooled 
and concentrated. 
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Figure 2.3.12: Expression of GST-DHCR24 variants and analytical purification attempts on a GSH-
Sepharose column. Panel A: total extracts, soluble (S) and insoluble fractions (P) of E. coli cells 
transformed with pGEXDHCR24Δ26. Cells were grown at 15°C after induction with 0.1 mM IPTG (0) and 
aliquots were harvested after 18, 24 and 42 hours. Panel B: The crude extract of cells expressing GSTΔ33 
was loaded on a 1 ml of GSH-Sepharose column equilibrated in PBS buffer (see text). Elution was carried 
out with PBS buffer containing 10 mM glutathione, with an additional wash with 1% Triton. Panel C: 
Purification of GST expressed in E. coli Rosetta cells (positive control). M: markers; FT: flow through, P: 
insoluble fraction (positive control). White dots indicate the expected position for the GSTΔ26 (84.6 kDa, 
panel A) and Δ33 (83.8 kDa, panel B) forms. 
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Figure 2.3.13: Expression and purification of MBP-DHCR24Δn. SDS-PAGE of total (T0, T16, T24, T41), 
soluble (S) and insoluble (P) extracts of E. coli Rosetta (DE3) cells transformed with pMAL-DHCR24Δ26 
(panel A) and pMAL-DHCR24Δ41 (panel B). Cells were grown at 15°C after induction with 0.1 mM. Panel 
C: Purification of MBPΔ41 variant on a 1 ml amylose column equilibrated in CB buffer (see text). Proteins 
were eluted with 10 mM maltose. An additional wash with 0.2% SDS was carried out to elute the denatured 
proteins bound to the resin. Panel D: Western-blot with anti-Seladin C terminal antibodies of total extract, 
soluble extract, flow through (FT) and fraction 7 eluted with 10 mM maltose. Panel E: DLS signal of fraction 
7 containing the MBPΔ41variant. M: markers; -: negative control; +: insoluble fraction of cells producing 
MBPΔ41 (positive control). White dots and red arrow indicate the expected position for the MBPΔ26 (99.4 
kDa, panel A) and MBPΔ41 (97.8 kDa, panel B and C). 
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Figure 2.3.14: Purification of MBP-DHCR24Δn. Excitation spectra of fraction containing MBPDHCR24Δ33 (black), of the same fraction after denaturation at 
100°C for 15 min (red) and of 1 μM FAD (orange). The comparison is only qualitative. λem = 520 nm.  
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Figure 2.3.15: Expression and purification of His-SUMODHCR24Δ26 on 
Ni-NTA Sepharose. Panel A: Total (T0 and T16), soluble (S) and insoluble (P) 
extracts of E. coli Rosetta (DE3) cells containing pETSUMODHCR24Δ26 
plasmid. After inductions with 0.1 mM IPTG (T0), cells were grown at 15°C 
for 16 hours (T16). -: crude extract of cells transformed with pETSUMO 
vector (negative control). Panel B: SDS-PAGE of fractions collected during 
the purification of His-SUMOΔ26 on Ni-NTA Sepharose. The resin was 
equilibred with buffer A and developed with a discontinuous gradient of 
imidazole (0, 10, 100, 500 mM). White dots indicate the expected position for 
His-SUMOΔ26. FT: flow-through. Panel C: Western-blot with anti-Seladin 
C-terminal antibodies. +: Insoluble fraction of cells producing His-SUMOΔ26 
(positive control). The red arrow indicates the recognized His-SUMOΔ26 in 
fractions eluted with 100 and 500 mM. 
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Figure 2.3.16: Set up of a coupled activity assay to monitor the DHCR24 catalyzed conversion of desmosterol into cholesterol. DHCR24 catalyzes the 
conversion of desmosterol in cholesterol. The latter is the substrate of cholesterol oxidase that converts the substrate in cholest-4-ene-3-one with the production of 
H2O2. The reaction of horse radish peroxidase allows to monitor the H2O2 production by measuring the oxidation of the chromogen o-dianisidine at 436 nm. 
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Figure 2.3.17: Set up of a coupled activity assay to monitor the DHCR24 catalyzed conversion of 
desmosterol into cholesterol. Assays were carried out in 100 mM Tris/HCl buffer, pH 7.5 at 25°C and the 
o-dianisidine (O) oxidation was monitored at 436 nm (ε = 11.6 mM-1cm-1). The o-dianisidine (O; 0.4 mM) 
oxidation catalyzed by horse radish peroxidase (1 mg/ml, 5 μl; HRP) was monitored in the presence of H2O2 
(44 μM; Panel A). In these conditions o-dianisidine is rapidly and quantitatively oxidized, with a ΔA436 = 
0.45 (40 μM). The addition of cholesterol (105 μM in 1.25% β-cyclodextrin) led to an initial variation of A436 
of a value of 0.1 (Panel B) that was observed also after the addition of 1.25% β-cyclodextrin (not shown). 
The cholesterol oxidase (1 mg/ml, 5 μl ; CO) activity was monitored in the absence (Panel C) and presence 
(Panel D) of cholesterol (105 μM in 1.25% β-cyclodextrin) or desmosterol (105 μM in 1.25% β-cyclodextrin, 
Panel E).  
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3. HUMAN MICAL MONOOXYGENASE, A MULTIDOMAIN 

AXON GUIDANCE FLAVOPROTEIN 
 

3.1 INTRODUCTION 

MICAL (from the Macromolecule interacting with CasL) indicates a family of multidomain 

proteins conserved from insects to mammals, which plays an essential role in the control of 

cytoskeletal rearrangements that are at the basis of fundamental phenomena such as T cell 

maturation, axon growth, cell migration, cell-to-cell contacts, intracellular vesicle transport.  

MICAL was initially identified in T cells as one of the interactors of CasL from which it derives its 

name. It was shown to be expressed in various other tissues, including thymus, lung, spleen and 

testis (Suzuki et al., 2002). At the same time, MICAL was also found in neuronal cells where it was 

shown to participate at the mechanisms that control axonal growth (Figure 3.1.1 panel A; Terman et 

al., 2002). During development of the nervous system, axonal growth cones are instructed to follow 

predetermined trajectories by heterogeneously distributed guidance molecules in their extracellular 

environment. Binding of axon guidance molecules to receptor complexes on the growth cone 

surface initiates intracellular signaling events, which in turn modulate growth cone morphology and 

directional mobility through local modifications of the neuronal cytoskeleton. Axon guidance 

molecules can act as attractants or repellents (Figure 3.1.1 panel B, Pasterkamp and Giger, 2009). In 

this process, semaphorines, a family of secreted or membrane-bound proteins, act as 

chemoattractive or chemorepulsive cues by binding to their receptors on the target cell. Semaphorin 

signaling during axon guidance is dependent on multimeric receptor complexes on the growth cone 

cell surface that contain plexin proteins as signal-transducing subunits. Upon semaphorin/plexin 

interaction, the cytosolic portion of plexin transduces the repulsive signal leading to inhibition of 

axon growth through local disassembly of the cytoskeleton structure. The details of the intracellular 

events that follow semaphorin/plexin interaction are not fully understood, but several participating 

proteins have been already identified, including members of the Rho family of small GTPases, 

collapsing response mediator proteins (CRMPs) and intracellular protein kinases (Figure 3.1.1 panel 

C). 

Genetic and cell biology studies in Drosophila and various mammalian cell lines demonstrated that 

MICAL is an essential component of the intracellular response to the plexin-mediated semaphorin 

signaling (Terman et al., 2002). One MICAL form is found in Drosophila (D-MICAL) and three 

distinct MICAL genes are found in mammals (MICAL-1, MICAL-2 and MICAL-3), each with 

several isoforms that differ for the length of poorly conserved interdomain regions (Figure 3.1.2). 



 

MICAL is formed by several conserved domains known to mediate protein-protein interaction: a 

calponin homology (CH) domain, a LIM domain, a prolin-rich region for Src homology 3 (SH3) 

domain recognition and a C-terminal region containing coiled-coiled motifs. The proline-rich region 

has been shown to mediate the interaction with the small GTPase Rab1 and with vimentin (Fischer 

et al., 2005; Suzuki et al., 2002). The C-terminal domain interacts with the cytosolic portion of 

PlexA (Terman et al., 2002). On the basis of sequence analyses, the N-terminal part of the protein 

(~ 500 residues) was proposed to be a flavoprotein of the monooxygenase or oxidase class, which 

was found to be essential for MICAL function in the cells (Figure 3.1.2 panel C; Terman et al., 

2002). Therefore, it was proposed that MICAL functions in the semaphorin/plexin pathway through 

its flavoprotein domain by (i) producing reactive oxygen species in a NAD(P)H oxidase reaction or 

during oxidation of an unknown compound, or (ii) oxidizing or hydroxylating a small molecule that 

would act in the downstream signaling pathway, or (iii) oxidizing, hydroxylating or otherwise 

modifying a protein side chain resulting in the observed downstream effects (Figure 3.1.3). 

The proposal that the MICAL N-terminal domain is related to monooxygenases was confirmed by 

structure determination of the mouse MICAL N-terminal region by two groups (Nadella et al., 

2005; Siebold et al., 2005). The purified protein contained FAD, and it was demonstrated that this 

domain is structurally related to the class of FAD-dependent monooxygenases represented by p-

hydroxybenzoate hydroxylase (PHBH) (Figure 3.1.5). The latter is the prototype of bacterial 

monooxygenases that act on aromatic compounds, which have been characterized in detail (see 

(Ballou et al., 2005; Entsch et al., 2005; Palfey and McDonald, 2010; van Berkel et al., 2006) for 

recent reviews and references therein). It was also shown that the mouse MICAL monooxygenase 

domain can oxidize NADPH with reduction of molecular oxygen to hydrogen peroxide (Nadella et 

al., 2005) with a high Km for NADPH (222 μM) and a strikingly high turnover number (77 s-1). The 

latter feature is at variance with monooxygenases of the PHBH class that exhibit a very low or even 

negligible NADPH oxidase activity in the absence of the substrate to be hydroxylated. In the 

presence of the substrate the rate of NADPH oxidation is enhanced up to 105 fold (as in PHBH) and 

the reactivity of the flavin-oxygen intermediate (initially, a 4a-hydroperoxy-FAD, Figure 3.1.4) is 

carefully controlled so that little or no hydrogen peroxide is released while one oxygen is 

transferred to the substrate undergoing hydroxylation and the other is released as part of a water 

molecule (Figure 3.1.4). This strict control of the reaction is achieved through conformational 

changes. Three stable conformations have been detected by combining site-directed mutagenesis, 

mechanistic and structural studies of PHBH and related enzymes. The striking difference among 

these conformations is the position of the FAD isoalloxazine ring that swings “in” and “out” of the 

active site during the catalytic cycle (Figure 3.1.5 panel D). Briefly, the “open” conformation allows 



 

binding of the substrate to be hydroxylated; next the “flavin out” conformation allows FAD 

reduction by hydride transfer from NAD(P)H; the “flavin in” conformation brings the reduced 

flavin in a protected environment where formation of the 4a-(hydro)peroxy-FAD intermediate is 

favored at a position that promotes transfer of one oxygen atom to the substrate that becomes 

hydroxylated leaving a 4a-hydroxy-FAD intermediate (Figure 3.1.4). Release of one water molecule 

and regeneration of the oxidized flavin completes the catalytic cycle. “Flavin in” and “flavin out” 

conformations have been observed for mouse MICAL monooxygenase domain (MICAL-MO) 

(Siebold et al., 2005). At variance with PHBH, the “flavin out” conformation is the stable state of 

the protein in the “as isolated” (oxidized) form. The “flavin out” position is stabilized by several 

electrostatic interactions and by the formation of a charge-transfer interaction between the flavin 

isoalloxazine ring and the aromatic side chain of the conserved Trp 400 (Figure 3.1.5 panel C). In 

this conformation the FAD isoalloxazine ring is at the protein surface in proximity of residues that 

in PHBH have been shown to be implicated in the binding of the adenylate/pyrophosphate moieties 

of NADPH. Thus, for flavin reduction, Trp400 should move away to allow the nicotinamide ring of 

NADPH to form a productive complex with the flavin in order to reduce it by hydride transfer. 

Incubation of the crystals with NADPH caused flavin reduction and switch to a “flavin in” 

conformation. At variance with PHBH the conformational switch from the “out” to the “in” 

conformation involves significant relative repositioning of the monooxygenase and the FAD 

binding domains with formation of a channel that leads from the protein surface to the flavin 

isoalloxazine ring. The channel opening is on the same side of the protein as a patch of conserved 

positively charged residues in the N-terminal subdomain of MICAL-MO. These observations 

support the proposal that the MICAL-MO substrate may be the side chain of a protein residue that 

can access the reduced flavin through the channel. The patch of positive potential may favor 

docking of the protein substrate. According to this hypothesis, possible candidates as MICAL-MO 

substrates could be acidic cytoskeletal proteins. Among them actin is a strong candidate because 

covalent modification of actin is known to cause cytoskeletal rearrangements (Nadella et al., 2005; 

Siebold et al., 2005). In support of this hypothesis it has been recently shown that catalytic amounts 

of MICAL-MO in the presence of NADPH inhibit actin polymerization and accelerate its 

depolymerization (Hung et al, 2010). It has also been proposed that the collapsing response 

mediator protein (CRMP) may be the MICAL-MO substrate undergoing hydroxylation: addition of 

CRMP-1 to MICAL-MO quenches the NADPH-dependent hydrogen peroxide consumption 

measured in cell extracts (Schmidt et al., 2008). Alternatively, CRMP or other proteins (as well as 

the MICAL protein-interaction domains missing from MICAL-MO) may modulate the activity of 

the MICAL-MO domain by activating/quenching its NADPH oxidase activity or by presenting the 



 

substrate undergoing hydroxylation (or oxidation) depending on the status of the cell (Nadella et al., 

2005; Schmidt et al., 2008; Siebold et al., 2005).  

Understanding the catalytic activity of the N-terminal monooxygenase-like domain of MICAL 

would significantly contribute to the understanding of the signaling pathways that lead to 

cytoskeletal rearrangements that are at the basis of fundamental processes, which underlie neuronal 

development, cell differentiation, communication and migration in health and disease (Pasterkamp 

and Giger, 2009; Zhou et al., 2008). Controlling axon growth through modulation of MICAL 

activity may be of therapeutic importance in the case of spinal chord injury (Beuchle et al., 2007; 

Pasterkamp et al., 1998; Pasterkamp et al., 1999; Pasterkamp and Kolodkin, 2003; Pasterkamp and 

Verhaagen, 2001, 2006), some forms of amyotrophic lateral sclerosis (Schmidt et al., 2009) and, 

perhaps, other neurodegenerative diseases. Modulation of MICAL activity may also be of relevance 

in some cancer forms. For example, it has been recently shown that some MICAL variants are 

associated with severe forms of prostate cancer, in particular with the tendency to metastatization 

(Ashida et al., 2006). 

Surprisingly, the publication of mouse MICAL-MO structure in 2005 (Nadella et al., 2005; Siebold 

et al., 2005) was not followed up by in vitro studies of the mechanism of action of the isolated 

MICAL-MO domain and of protein forms including the other protein domains. To contribute to fill 

this void, the monooxygenase domain of human MICAL-1 has been produced in E. coli cells in our 

laboratory in three forms (untagged and with a N-terminal or C-terminal His-tag) and the kinetic 

and spectroscopic characterization of this novel flavoenzyme was carried out, to set the basis for 

further mechanistic studies and to help the design and interpretation of studies of MICAL in the 

cells. 

 



 

3.2 METHODS 

 

Construction of plasmids for the production of MICAL-MO  

The region encoding residues 1-490 of human MICAL was amplified using Oligo-1 and Oligo 2. 

 

Oligo 1  5’- CCGAATTCCATATGGCTTCACCTCCACCAACCCAGCGCATGCCC -3’ 

 

Oligo 2  5’- GTGGATCCTCTGCTACTCGAGCTTGGCTAGCACATCATACAGGTCTCG-3’ 

 

Oligo-1 introduces a EcoRI site (italic) upstream of the translation start codon (bold) and a NdeI site 

(underlined). Oligo-2 introduces a XhoI restriction site (italic), a stop codon (bold) and a BamHI 

restriction site (underlined). The amplified fragment was inserted in the pCRII-TOPO vector, and 

the obtained plasmid was used to transform E. coli Mach T1. Transformants were selected on LB 

plates supplemented with 50 μg/ml kanamicin (Kan). The resulting plasmid pTOPO-MICAL was 

sequenced and used for the subcloning of the region encoding MICAL monooxygenase domain 

(MICAL-MO) into pET23b vector. The Nde-XhoI fragment was cloned into pET23b digested with 

the same restriction enzymes and purified by agarose gel electrophoresis, to produce 

pETMICALHis encoding a C-terminally His-tagged version of MICAL-MO (MICAL-His; 496 

residues; theoretical mass including the N-terminal Met residue: 55136; theoretical pI 9.05). The 

ligation products were transformed in E. coli DH5α cells and transformants were selected on LB 

plates containing ampicillin (Amp, 100 μg/ml).  

 

Production of human MICAL monoxygenase domain in E. coli Rosetta (DE3) cells. 

For the production of MICAL-His, pETMICALHis plasmid was transformed into E. coli Rosetta 

(DE3) cells. 10-20 colonies were used to inoculate 400 ml of LB medium supplemented with 25 

μg/ml Clm and 100 μg/ml Amp. This preculture was grown to an optical density at 600 nm of 

approximately 1. Cells were harvested under sterile conditions, resuspended in fresh medium and 

used to inoculate 12-lt fermentor, to give an initial OD600 of 0.05. The culture was incubated at 

25°C at 200 rpm until OD600 reached a value of approximately 1. The temperature was lowered to 

15°C and 0.1 mM IPTG was added. Cell were harvested after 45 h. 

 

 

 

 



 

Purification of MICAL-His. 

E. coli cells (40 g) that had produced the MICAL-His form were resuspended in 50 mM sodium 

phosphate buffer, pH 7.5 100 mM NaCl, 1 mM EDTA, 5 mM β-mercaptoethanol (β-Me), 10% 

glycerol (Buffer F) and 1 mM PMSF (2 ml buffer/g cells). Homogenization was obtained by 

sonication (ten 30 s cycles with a Branson Sonifier with temperature controlled by immersion in a 

ice-salt bath) and homogenate is diluted to 5 ml buffer/g cells. The crude extract obtained after 

centrifugation of the homogenate at 18000 rpm (39086 g) for 1 h was directly loaded on a Ni-NTA 

Sepharose column (1 ml/g cells) equilibrated in buffer F. Unbound and weakly bound proteins were 

removed by flowing buffer F (1 column volume), buffer F containing 10 mM imidazole (5 column 

volumes) and buffer F containing 50 mM imidazole (5 column volumes). The column was 

developed by applying a 50-300 mM gradient of imidazole in buffer F (10 volumes). Fractions 

containing pure MICAL-His were pooled and concentrated by ultrafiltration in a Amicon 

concentrator equipped with a YM10 membrane. The sample was dialyzed overnight against buffer 

F, pH 7.2 or 20 mM Hepes/NaOH buffer, pH 7.0, 1 mM EDTA, 1 mM DTT, 10% glycerol (buffer 

G) or buffer G, 0.1 M NaCl. The protein solution was flesh frozen in liquid nitrogen and stored at -

80°C. 

 

NADPH oxidase activity assays 

Standard NADPH oxidase activity: The initial velocity of NADPH oxidation (v) was monitored at 

340 nm (ε340 = 6.23 mM-1 cm-1) in 1 ml assays containing 100 μM NADPH in 20 mM Hepes/KOH, 

pH 7.0, at 25°C in Cary 100 (Varian) or Cary 219 (Varian) spectrophotometers. NADPH 

concentrations were varied between 10 and 300 μM to determine the steady-state kinetic parameters 

maximum velocity (V) and Km for NADPH (KNADPH) for the NADPH oxidase reaction, that was 

monitored at 340 nm for NADPH concentration up to 150 μM; for higher NADPH concentrations 

the reaction was monitored at 360 nm (ε360 = 4.32 mM-1 cm-1). 

Initial velocity data were expressed as apparent turnover numbers v/E, where v is the initial velocity 

of the reaction and E is the total enzyme concentration (s-1) and turnover number (kcat) have been 

calculated. The v/E values were fitted to the Michaelis-Menten equation (Eq 1) and double 

reciprocal plots (eq 2), or to the equation describing competitive (Eq. 3), non-competitive (Eq. 4) 

and uncompetitive inhibition (Eq. 5) using Grafit 4.0 software (Erythacus Software Ltd, UK). 

 

Eq 1 v/E = kcat*S/(Km + S) 

 

Eq 2 E/v = (Km/kcat)*1/S + 1/kcat 



 

Eq 3 v/E = kcat*S/[Km*(1+I/Kis) + S] 

 

Eq 4 v/E = kcat*S/[Km*(1+I/Kis) + S*(1+I/Kii)] 

 

Eq 5 v/E = kcat*S/[Km + S*(1+I/Kii)] 

 

In Eq 1-5, S is the varying substrate concentration and Kis and Kii are the inhibition constants 

calculated from the effect of the inhibitor (I) on the slopes and intercepts of double reciprocal plots, 

respectively. 

In some cases activities were measured in a HP8473 diode array (Agilent), recording spectra every 

10 s for the first 2 min. Later the interval between subsequent spectra was increased by 20%. 

Effect of viscosity on the NADPH oxidase reaction of MICAL-MO: The v/E values obtained by 

varying NADPH concentration in the presence of viscogens such as glycerol and sucrose were fitted 

to Eq. 6 (Eser and Fitzpatrick, 2010). The relative viscosity (ηrel) values for these two 

microviscogens have been obtained from the literature (Sheely, 1932; Caldwell, 1991). 

 

Eq. 6 v/E = kcat*S/[Km*(1+m*μ) + S*(1+ n* μ)] 

 

where μ = (ηrel
2-1); m and n are the effects of viscosity on kcat/Km and kcat, respectively. The m*μ 

and n*μ values calculated at the different relative viscosity values correspond to 

(kcat/Km)0/(kcat/Km)η and (kcat)0/(kcat)η respectively, which indicate the ratio of the value of the 

parameter in the absence of viscogens and in its presence at a given concentration. The effect of 

PEG8000, a macroviscogen, was also studied (Caldwell, 1991). 

Effect of ionic strength and of the type of ions on the NADPH oxidase reaction of MICAL-MO: The 

effect of ionic strength and type of ions on the enzyme activity was studied by measuring the initial 

velocity of assays done in the presence of varying concentrations of NADPH in the presence of 

different buffers (as indicated in the corresponding figures and tables). The effect of imidazole and 

bis-tris buffers on the slope of double reciprocal plots (KNADPH/kcat) as a function of the ionic 

strength was well fitted to the limiting case of the Debye-Hückel equation (discussed in Nørby et 

al., 1997; Eq. 7), which we modified for graphical purposes into Eq. 8. 

 

Eq. 7 Log[(kcat/KNADPH)/ (kcat/KNADPH)o ] = ze*zNADPH*√I 

 

Eq. 8 - Log(kcat/KNADPH) = ze*zNADPH*√I - Log(kcat/KNADPH)o 



 

Equilibrium titrations and anaerobic techniques 

Prior to each experiment, aliquots of the enzyme (0.5 ml) were gel filtered through a Sephadex G25 

prepacked column (PD-10, GE Healthcare) equilibrated in 20 mM Hepes/NaOH buffer, pH 7.0, 

10% glycerol, 1 mM EDTA, 1 mM DTT. The enzyme (approximately 10 μM) was transferred to 1 

ml quartz cuvette or to the cuvette of the vessel used for anaerobiosis (Williams, 1979). If needed, 

anaerobiosis was performed by applying several cycles of evacuation and equilibration with 

oxygen-free nitrogen (Williams, 1979).  

Photoreduction of MICAL was done by adding 5 mM EDTA and 2 μM 5-deaza-5-carba riboflavin 

to the enzyme solution prior the anaerobiosis in the absence or presence of 30 μM NADP+. The 

solution was then irradiated for different times with a standard slide projector lamp. After each 

irradiation period, spectra were recorded, until no further changes were observed.  

A first pilot experiment of anaerobic reduction of MICAL-His with NADPH was done in the 

presence of NADP+ (15 μM, equimolar to the enzyme) and 1 mM glucose 6-phosphate to the 

enzyme solution. Leuconostoc mesenteroides glucose 6-phospahte dehydrogenase (1 U, 10 μl) was 

then added to start the generation of NADPH. Titration with NADPH was carried out by adding up 

to 100 μl of 0.51 mM NADPH stock solution. After mixing, spectra were recorded at 17°C with the 

HP8473 diode array spectrophotometer. Spectra were corrected for dilution. For the analysis of the 

NADPH titration data, Eq. 9 was used. This equation takes into account that in the reaction the 

oxidized enzyme reacts with NADPH yielding reduced enzyme and NADP+ with a 1:1 

stoichiometry, so that the calculated equilibrium constant of the reaction (Keq) allows the 

calculation of the standard free energy of the reaction (ΔG0’, Eq. 10) and of the mid-point potential 

of the bound FADox/FADred couple (Eq. 11). A value of -0.32 V was used for the midpoint potential 

of the NADP+/NADPH couple.  

 

Eq 9 Y = [-Keq*(E+S) ± √Keq
2*(E+S)2+4*(1-Keq)*(Keq*E*S)]/2*(1-Keq) 

 

Eq 10 ΔG0’ = .RTlnKeq 

 

Eq 11 ΔE0’ = -( ΔG0’/nF) 

 

In Eq. 9 Y is the concentration of reduced enzyme, Keq is the equilibrium constant of the enzyme 

reductive half reaction, S is the total NADPH concentration and E is the total enzyme concentration. 

In Eq. 10 R is the gas constant, T is the temperature. In Eq. 11 ΔE0’ is the difference between the 



 

midpoint potential of the acceptor and that of the donor, n is the number of transferred electrons and 

F is the Faraday constant. 

 

Stopped-flow studies of the reaction of MICAL-MO with NADPH 

A Hi-Tech SF1 DX2 stopped-flow spectrophotometer was used to rapidly mix equal amounts (75 μl 

each) of the enzyme solution (approximately 10 μM in 20 mM Hepes/NaOH buffer, pH 7.0, 10 % 

glycerol, 1 mM DTT and 1 mM EDTA) and of the NADPH solution (0.1-0.88 mM) in the same 

buffer under anaerobiosis. Standard procedures for anaerobiosis, data collection and analysis were 

followed (Pennati et al, 2006). 

 

Actin polymerization assays and NADPH oxidase reaction in the presence of G- and F-actin 

Muscle actin and pyrene-modified muscle actin (Cytoskeleton, # cat AKL99 and AP05-A) were 

resuspended in cold distilled water to obtain a 10 mg/ml and 20 mg/ml solutions, respectively, in 5 

mM Tris/HCl pH 8.0, 0.2 mM CaCl2, 0.2 mM ATP, 5% (w/v) sucrose, 1% dextran. Aliquots of the 

solution were flash frozen in liquid nitrogen and stored at -80°C. Before each experiment, actin and 

pyren-actin were diluted with 5 mM Tris/HCl buffer, pH 8.0, 0.2 mM CaCl2, 0.2 mM ATP, 1 mM 

DTT (dilution buffer) to a final concentration of 0.4 mg/ml (9.2 μM) and incubated on ice for 1 h to 

depolymerize actin oligomers. Actin was then centrifuged at 55000 rpm (100000 x g) for 1 h in a 

TL 100 ultracentrifuge, using a TLA 100.3 rotor. Polymerization of actin and pyren-actin was 

achieved by adding 1/10 volume of 50 mM Tris/HCl buffer, pH 7.5, 500 mM KCl, 20 mM MgCl2, 

5 mM DTT, 10 mM ATP (Polymerization buffer 10x) at 25°C.  

Polymerization of pyrene muscle actin was monitored in a Cary Eclipse fluorescence 

spectrophotometer (Varian) (λex = 365 nm, λem = 407 nm) in 120 μl assays, in the presence of 100 

μM NADPH and 700 nM MICAL-His. Polymerization of muscle actin was monitored at the 

dynamic light scattering (DLS) apparatus (25°C, 2 acquisitions/min, 30-40 acquisitions). 

The effect of G-actin and F-actin on the NADPH oxidase reaction of MICAL-MO was studied by 

measuring the initial velocity of 120 μl assays containing G-actin (0.83, 1.65 and 3.3 μM) or F-actin 

(0.6, 1.2 and 2.4 μM) at different NADPH concentrations (43, 100 and 210 μM). The effect of the 

dilution and polymerization buffers on the enzyme activity was also studied by measuring the initial 

velocity in 1 ml assays containing the dilution and polymerization buffers and varying NADPH 

concentration as reported for the standard NADPH oxidase activity. 



 

3.3 RESULTS 

 

MICAL-MO production and purification 

E. coli Rosetta (DE3) cells transformed with pET23MICALHis plasmid were grown in LB 

supplemented with Clm and Amp to an OD600 of approximately 1 in a 12 l fermentor. The 

temperature was lowered to 15°C and 0.1 mM IPTG was added. An aliquot of cells was harvested 

after 15 h. The remaining culture was harvested after 45 h. As shown in figure 3.3.1 panel A, 

MICAL-His was produced in E. coli Rosetta strain cells; the level of soluble protein was low, but 

sufficient for its further purification. 30 g of cells that had produced MICAL-His were homogenized 

by sonication. The crude extract was directly loaded on a Ni-NTA Sepharose column (1 ml/g of 

cells) equilibrated in buffer F. Weakly bound proteins were removed flowing buffer F, buffer F 

containing 10 mM imidazole and buffer F containing 50 mM imidazole (as described in Methods). 

Bound proteins were eluted by applying a linear gradient of imidazole (Figure 3.3.1 panel B and C). 

MICALHis was purified to homogeneity (Figure 3.3.2), obtaining approximately 0.5 mg protein/g 

starting cell paste. Interestingly, the NADPH oxidase activity yield appeared to increase during the 

purification, a fact that could be ascribed to the sensitivity of the enzyme to the ionic strength and 

the composition of the medium (see below) (Table 3.3.1). The N-terminal sequencing of the 

purified protein revealed that the N-terminal Met had been posttranslationally removed and that the 

N-terminus was otherwise intact (498 residues; theoretical mass without the N-terminal Met 

residue: 55005; theoretical pI 9.05). The enzyme was stable for months in buffer F or G (regardless 

of the presence of NaCl) when flash frozen in liquid nitrogen and transferred to -80°C.  

 

Determination of the stoichiometry and of the extinction coefficient of the bound FAD 

cofactor 

The electronic absorbance spectrum of MICAL-His is indistinguishable from that of the untagged 

or N-terminally His-tagged forms. It is characterized by absorption maxima at 457 nm, 376 nm and 

278 nm with a A457/A278 ratio of 13 (Figure 3.3.3). A broad band of absorbance extending to 700 

nm was observed in the spectrum, as reported also for the Drosophila protein (Terman et al, 2002). 

This broad absorbance band is most likely due to a charge-transfer interaction between the oxidized 

flavin and Trp400 observed in the crystal structure of the oxidized mouse MICAL-MO (Nadella et 

al., 2005; Siebold et al., 2005) where the flavin is in the “out” conformation and is coplanar with 

Trp400. Protein denaturation by addition of 0.2% SDS (Aliverti et al., 1999) converted the spectrum 

to that of free FAD (Figure 3.3.3). The flavin released from MICAL-His was confirmed to be FAD 

by fluorescence spectroscopy with the protein denatured by SDS or heat treatment. Denaturation 



 

was found to bring along a 25 fold increase of fluorescence, which indicates that, as in the case of 

several other flavoenzymes, the flavin fluorescence is quenched by the protein environment (Table 

3.3.3). Addition of phosphodiesterase (PDE) brought about a 10-fold increase in flavin fluorescence 

confirming the presence of bound FAD. By using the extinction coefficient of free FAD (ε452 11.3 

mM-1 cm-1), the values of absorbance at 452 nm of the cofactor released by denaturation and the 

protein concentration, we calculated the MICAL-His contains 0.95 ± 0.12 mol FAD/mol protein 

(average of 7 determinations), indicating that 1 molecule of FAD is bound per molecule of enzyme. 

The extinction coefficient at 457 nm, which was calculated using the A452 of released FAD, is 8.1 

±0.2 mM-1 cm-1 (average of 7 determinations, Table 3.3.2) 

 

The NADPH oxidase activity of MICAL-MO 

The initial velocity of oxidation of NADPH was measured at 25°C in 20 mM Hepes/KOH buffer, 

pH 7.0, by monitoring the decrease of absorbance at 340 nm. The calculated kinetic parameters 

KNADPH and kcat were approximately 30 μM and 4 s-1 (Table 3.3.4). As found for the mouse enzyme 

(Nadella et al, 2005) NADPH is by far the best substrate of MICAL with a Km value that is almost 

20-fold lower than that measured for NADH and a 10-fold higher kcat (Table 3.3.4). However, our 

results differ significantly from those reported by (Nadella et al., 2005) in that our Km value for 

NADPH and kcat are both approximately one order of magnitude lower than the corresponding 

values published for the mouse enzyme (Km 222 μM; kcat 77s-1). The differences in the Km value for 

NADPH could be reconciled by taking into account the fact that the (Nadella et al., 2005) assays 

were carried out in buffer containing 0.1 M NaCl. Indeed, inclusion of 0.1 M NaCl in our assays 

with the human protein led to a dramatic increase of the Km value (500 μM) and a less marked 

decrease of kcat (2.6 s-1, Table 3.3.4). This observation led to a more thorough study of the 

dependence of MICAL-MO activity from the ionic strength and the type of ions. 

 

Effect of ionic strength and anions on human MICAL-MO activity 

Inclusion of NaCl (0.1 M) in the assays led to a 10-fold increase of the Km value for NADPH with 

limited effect on kcat (Table 3.3.4). In order to set the basis for further experiments on MICAL-MO, 

the effect of ionic strength and specific ions on its NADPH oxidase activity were studied. In all 

cases plots of reciprocal initial velocities as a function of the reciprocal NADPH concentrations at 

different fixed levels of salts added to the standard assay buffer (20 mM Hepes/KOH), pH 7.0) were 

linear. For each salt they yielded a set of lines converging on the Y-axis. The slopes of these plots 

exhibited a linear dependence on the ionic strength. The chloride salts yielded similar effects when 

the ionic strength was taken into account (Figure 3.3.4, panel A) indicating a specific effect of the 



 

ion. No effects of calcium or magnesium ions were observed, indicating that a regulatory role of 

these ions is unlikely. Acetate salts had a milder effect than chloride salts, while MICAL was found 

to be very sensitive to phosphate. That chloride anions have a specific effect on MICAL-MO was 

confirmed by studying the activity of MICAL in the presence of different concentration of Tris and 

imidazole buffers that had been titrated to pH 7.0 with either acetic acid and HCl (Figure 3.3.4 

panel B). The effect of ionic strength on the slope of double reciprocal plots obtained by varying 

chloride or acetate salts, Hepes, Tris, and phosphate were linear with respect to the ionic strength 

value (Figure 3.3.4 panel A and B). On the contrary, the effect of ionic strength on the slopes of the 

plots obtained with imidazolo/chloride, imidazolo/acetate and Bis-Tris/acetate could be fitted to Eq. 

8, which derives from the original Debye-Hückel equation. The –Log(V/KNADPH) versus the square 

root of the ionic strength value (√I) was linear (Figure 3.3.4 panel C, Table 3.3.5). The intercept 

allows to calculate the ionic strength independent value of the parameter and the slope the product 

of the charges of the enzyme active site (ze) and of the ligand (NADPH). Since NADPH, at pH 7.0, 

should carry 3-4 negative charges (Wijnands et al., 1984; Dawson et al, 1969), the enzyme active 

site should carry a charge of 0.1-0.13.  

 

Reactivity of the FAD cofactor bound to MICAL-MO 

Anaerobic photoreduction of the enzyme was carried out in the absence or presence of NADP+. 

During the first part of the experiments, the conversion of the bound oxidized FAD to the 2-electron 

reduced FAD hydroquinone was observed (Figure 3.3.5 panel A and C). A very small increase of 

absorbance between 550 and 700 nm was observed during the early phases of the reduction, 

indicating the possible presence of some neutral flavin semiquinone. In the presence of NADP+, 

further irradiation of the reduced enzyme led to the appearance of reduced NADPH (Figure 3.3.5 

panel D), indicating that the reaction between MICAL and NADPH is largely favoured in the 

direction leading to the Ered/NADP+ couple, but is not fully irreversible. Anaerobic reduction of 

MICAL-His with NADPH was done into two ways. In a pilot experiment, NADP+ (15 μM) and 1 

mM glucose-6-phosphate were added to the anaerobic solution of MICAL-His. Glucose-6-

phosphate dehydrogenase (1 U, 10 μl) was added to start the generation of NADPH. The enzyme 

was rapidly converted to the reduced form with an isosbestic point at 348 nm. Later the isosbestic 

point was lost and NADPH accumulated (Figure 3.3.6). Anaerobic titration with NADPH (0.51 

mM) led to the formation of the FAD hydroquinone without formation of intermediates (Figure 

3.3.7). In this experiment the first 0.5 equivalents of NADPH failed to cause any absorbance 

changes. This observation can be attributed to a small amount of residual oxygen in the solution. 

Fitting the fractional absorbance changes during the titration after the first additions to Eq. 9 led to 



 

calculating that 1 mol of NADPH is sufficient to reduce 1 mol of enzyme-bound FAD with a 

dissociation constant of 1.69 ± 0.3 μM. Since this value refers to the overall reaction leading from 

(NADPH + MICAlox) to (NADP+ + MICALred), its reciprocal (0.591*106) corresponds to the 

equilibrium constant. From the Em value of the NADP/NADPH couple of -0.32 V at pH 7.0, the Em 

value of the bound FAD/FADhq couple could be calculated to be -0.150 V using Eq. 10 and 11. 

Opening the anaerobic cuvettes to air at the end of each reductive titration led to different results. 

After photoreduction in the absence of NADP+, the spectrum of the oxidized enzyme was recovered 

without detection on intermediate species (Figure 3.3.5 panel B). When the enzyme that had been 

photoreduced in the presence of NADP+ was exposed to air, the oxidation of the NADPH still 

present was firstly observed (Figure 3.3.5). Later a species with a peak at 358 nm appeared (Figure 

3.3.5 panel E). Further mixing with oxygen led to loss of this species and recovery of the 

spectrumof the oxidized enzyme (Figure 3.3.5 panel F). Exposure to air of the enzyme after 

NADPH titration led to direct oxidation of the enzyme without detection of intermediates. 

The species responsible of the 358 nm peak may be an adduct between the bound FAD and 

molecular oxygen (Ghisla et al, 1977), which would be consistent with MICAL N-terminal 

flavoprotein domain being a monoxygenase rather than an oxidase. However, in monooxygenases 

the 4a-(hydro)peroxy-flavin intermediate is characterized by an absorbance maximum in the 370-

380 range. Therefore the precise nature of this putative flavin-oxygen adduct, which is very 

sensitive to the properties of its environment (Ghisla et al, 1977), still needs to be determined. 

 

Rapid reaction studies of the reaction between MICAL-MO and NADPH 

MICAL-His (15 μM) was mixed anaerobically with 100-880 μM NADPH at 25°C in a stopped-

flow spectrophotometer equipped with a diode-array detector. Absorbance changes were consistent 

with conversion of the oxidized enzyme to the 2-electron fully reduced species with no detectable 

intermediates (Figure 3.3.8 panel B). This observation was confirmed by the analyses of the kinetics 

of decrease of absorbance at several wavelengths that indicated that the reaction could be described 

by a simple monoexponential process at all wavelengths (Figure 3.3.8 panel A). Under the 

experimental conditions, by making the approach to equilibrium assumption, the Kd value for the 

enzyme-NADPH complex can be calculated from the dependence of the observed reduction rate 

from NADPH concentration. The calculated KM(Kd) for NADPH was 56 ± 7.3 µM and the kred was 

3 ± 0.1 s-1 (Figure 3.3.8 panel A inset). The KM(Kd) was higher and the kred lower than the KNADPH 

and kcat measured under steady-state conditions (Table 3.3.4). Since a requirement for catalytic 

competence of any reaction intermediate is that its rates of formation or decay must be both equal or 

greater than turnover, the observation of a kred smaller than kcat was puzzling. This discrepancy was 



 

easily solved by measuring the steady-state KNADPH and kcat in the same buffer as that used for the 

stopped-flow experiments. In these experiments the buffer contained 10% glycerol to stabilize the 

enzyme. The KNADPH and kcat values measured in the presence of 10% glycerol matched well the 

Km(Kd) and kred values obtained in the stopped-flow experiment (Table 3.3.4) indicating that 

enzyme reduction by NADPH is determining the rate of enzyme turnover under our experimental 

conditions. This conclusion was supported by a preliminary experiment in which we reacted 

MICAL with NADPH (20 µM) in the presence of atmospheric oxygen and varying concentrations 

of NADP+ (0, 20 µM and 200 µM). In this experiment NADPH oxidation was observed, but the 

enzyme-bound flavin remained in the oxidized state. Interestingly, in the study of MICAL reaction 

with NADPH we identified no intermediates regardless of the presence of oxygen or NADP+. The 

similar values of the steady-state Km for NADPH and the Kd for the enzyme-NADPH complex 

determined from the stopped-flow experiment further supported the validity of the approach to 

equilibrium assumption, i.e.: that the chemical step (hydride transfer from NADPH to the enzyme 

bound flavin) is much slower than both the rate of formation of the Michaelis complex and of that 

of its dissociation.  

The observation of an effect of glycerol on MICAL reaction led to the study of the viscosity effects 

on the reaction. 

 

Effect of viscosity on the reaction of MICAL-MO 

The effect of glycerol and sucrose (microviscogens) and of PEG8000 (a macroviscogen) on the 

KNADPH and kcat of the NADPH oxidase reaction of MICALHis was studied in 20 mM 

Hepes/NaOH, pH 7.0 (Figure 3.3.9 panel C and Table 3.3.6) under steady-state conditions. The kcat 

and kcat/KNADPH values were little sensitive to PEG8000 so that the study of the effect of this 

macroviscogen was abandoned. On the contrary, both kcat and kcat/KNADPH were lowered by glycerol 

(Figure 3.3.9 panel A) and sucrose (Figure 3.3.9 panel B). Interestingly, the data could not be fitted 

to the equation describing a noncompetitive inhibition pattern (Eq. 4). Rather, they were well fitted 

with Eq 6, which relates the effect of viscosity on kcat and kcat/KNADPH as a function of the relative 

viscosity of the solvent (Table 3.3.7, (Eser and Fitzpatrick, 2010)). Therefore, it appears that 

glycerol and sucrose act by increasing the solvent viscosity rather than by mimicking MICAL 

substrates or products. In the absence of an effect of a macroviscogen such as PEG8000, the effects 

of increasing solvent viscosity with microviscogens can provide information on diffusion limited 

steps and even enzyme conformational changes during the catalytic cycle. The observed effects of 

glycerol and sucrose on kcat and kcat/KNADPH were very similar to each other so that the data could be 

even fitted to the same line (Figure 3.3.9 panel D). Plots of the relative kcat (i.e.: kcat measured in the 



 

absence of glycerol over the kcat measured in the presence of a given relative viscosity value) as a 

function of the relative viscosity brought about by increasing glycerol or sucrose were linear and 

with a slope close to 1 (Figure 3.3.9 panel D). Plots of the relative kcat/KNADPH as a function of the 

relative viscosity brought about by glycerol or sucrose were also linear but the slope was 3.0 ± 0.1 

(for glycerol) and 4.2 ± 0.3 (for sucrose) (Figure 3.3.9 panel D, Table 3.3.8). A slope of 1 is 

expected when kcat is limited by diffusion of one of the enzyme substrates or products to/from the 

enzyme active site (Blacklow et al., 1988; Brouwer and Kirsch, 1982; Caldwell et al., 1991; Eser 

and Fitzpatrick, 2010). This result is in contrast with the observation that the hydride transfer step is 

fully determining kcat. In such a case a solvent viscosity effect would be expected. However, the 

observed effect may be interpreted as due to the presence of a conformational change that takes 

place during the catalytic cycle (Blacklow et al., 1988; Brouwer and Kirsch, 1982; Caldwell et al., 

1991). An absolute value of the viscosity effect greater than unity on V/K has been interpreted as 

due to a viscosity effect on a protein conformational change that takes place on binding of the 

varied substrate to the enzyme (Blacklow et al., 1988; Brouwer and Kirsch, 1982; Caldwell et al., 

1991; Eser and Fitzpatrick, 2010). Effects on kcat and kcat/KNADPH would monitor steps contributing 

to the overall turnover rate and those taking place from NADPH binding up to (and including) the 

first irreversible step. In MICAL, the effects of viscosity may be monitoring the conformational 

changes that have already been proposed to take place in MICAL on the basis of its structure 

(Nadella et al., 2005; Siebold et al., 2005), namely the movement of Trp400 to allow hydride 

transfer form the NADPH nicotinamide ring to the flavin or the subsequent flavin out/flavin in 

transition. A third conformational change may be proposed to take place on the basis of the known 

properties of PHBH. In this enzyme NADPH may bind to the enzyme regardless of its conformation 

or oxidation state. However, initial NADPH binding has been proposed to occur in a non productive 

mode. Prior to hydride transfer two events must take place: i) the flavin should move to the “out” 

conformation and (ii) the NADPH nicotinamide ring should reposition to obtain the correct 

geometry for direct hydride transfer from its C(4) position to the flavin N(5) atom. The latter event 

must be accompanied by a local conformational change a of loop (Cole et al, 2005). As a working 

hypothesis, it is attractive to propose that the viscosity effect on kcat/KNADPH may mainly monitor 

the conformational changes that bring NADPH in a position suitable for hydride transfer (that 

postulated to accompany repositioning of the nicotinamide ring and the observed movement of 

Trp400), while the effect on kcat may be monitoring the “flavin out”/”flavin in” transition after 

hydride transfer. 

 

 



 

Actin as substrate of MICAL-MO 

The MICAL-MO effect on actin polymerization was studied in vitro. G-pyrene actin was prepared 

as described in Methods. After addition of the polymerization buffer, the fluorescence intensity 

increased 20-fold and the polymerization was complete after 15 min (Figure 3.3.10 panel A). 

Interestingly, the addition of MICAL-His (45 μM, 2 μl) and of NADPH (100 μM final 

concentration) before polymerization led to different results depending on the sequence of addition. 

When MICAL-His was added first, the fluorescence signal increased of ~ 5-fold, but decreased to 

the initial level when NADPH was added. At this point, polymerization was started with an initial 

velocity similar to that of the control sample (Figure 3.3.10 panel A). However, the final intensity 

increase was only 15-fold. When NADPH was added before MICAL-His, no increase in the signal 

was observed. In this case the polymerization started more slowly and the signal increase was only 

10-fold (Figure 3.3.10 panel A). NADPH oxidase activity assays were carried out in the dilution 

and polymerization buffers in the presence of 100 μM NADPH and MICAL (45 μM, 2 μl) in order 

to measure the time-course of the NADPH oxidation reaction under the conditions used for 

fluorescence experiments. As shown in Figure 3.3.10 panel D, NADPH is completely oxidized by 

MICAL within 5 min in the presence of dilution buffer, whereas it took ~15 min to observe 

complete oxidation of NADPH in the presence of the polymerization buffer. Thus, this result 

suggest that the differences observed in the polymerization of actin in the presence of MICAL 

depending on the order of enzyme and NADPH additions (Figure 3.3.10 panel A) may be related to 

the actual presence of NADPH during the polymerization reaction. In fact, when MICAL was added 

before NADPH (Figure 3.3.10 trace (b)), NADPH was completely consumed before the 

polymerization started and no effects on the velocity of polymerization was observed. On the 

contrary, when MICAL was added after NADPH (Figure 3.3.10 trace (c)), NADPH was still present 

when the polymerization started (after ~ 2 min), suggesting that the NADPH oxidation activity of 

MICAL actually affects the polymerization rate. This results confirms the hypothesis that MICAL-

MO inhibits polymerization through its NADPH oxidase activity(Hung et al, 2010).  

The effect of MICAL-MO on the depolymerization of actin was also examined. When MICAL and 

NADPH were added to F actin (produced from pyrene-labelled G-actin), a very fast decrease in the 

fluorescence signal was observed (Figure 3.3.10 panel B). The same results were obtained in assays 

where NADPH or MICAL was added before polymerization and the second component was added 

after F actin was formed (Figure 3.3.10 panel B). In order to verify the possible effects of NADPH 

and MICAL on the fluorescence signal, polymerization assays in the absence of actin were done. 

When NADPH was added to the dilution buffer, the fluorescence intensity increased to a value of 6, 

as expected by taking into account the emission spectrum of NADPH (λex 340 nm, figure 3.3.12), 



 

and it decreased in the presence of MICAL. The calculated rate of NADPH consumption in the 

actin buffer (1.1 s-1) and in actin polymerization buffer (0.33 s-1, Figure 3.3.10) were both 

significantly lower than that observed for the depolymerization of actin (Figure 3.3.10), These 

observations confirm that MICAL stimulated actin depolymerisation (Hung et al, 2010) in the 

presence of NADPH and suggest that F actin stimulates NADPH oxidation by MICAL. 

Polymerization of muscle actin was also monitored by dynamic light scattering at 25°C. The signal 

obtained from a G-actin solution (5.7 μM) revealed the presence of a species with a calculated mass 

of 44 kDa (i.e.: the expected mass for the monomeric actin) (Figure 3.3.11 panel B). The addition of 

polymerization buffer led to a time-dependent increase of the average particle radius that was 

completed in 15 min, a time interval similar to that required to fully convert G actin into F actin as 

monitored fluorimetrically At the end of the reaction the mean radius reached a value of 130 nm 

(Figure 3.3.11 panel A). As expected from the previous fluorimentric assays, the radius did not vary 

when NADPH was added, but, surprisingly, it further increased after addition of MICALHis (Figure 

3.3.11). This result indicates that the fluorescence decrease with previously observed is not due to 

actin depolymerization as initially proposed (Hung et al, 2010). Rather, it seems to suggest that 

MICAL modifies actin causing formation of aggregates. When pyrene-acin is used , the formation 

of these aggregates may lead to the observed fluorescence quenching In order to confirm and extend 

the hypothesis that actin may actually be a substrate of MICAL, the initial velocity of oxidation of 

NADPH was measured at 25°C in the presence of G-actin (0.83, 1.65 and 3.3 μM) and F-actin (0.6, 

1.2 and 2.4 μM), or in the presence of the corresponding buffer. The rate of NADPH oxidation in 

the presence of the dilution buffer is similar to that observed in the 20 mM Hepes/KOH buffer, pH 

7.0 (kcat 3.4 s-1), but KNADPH is significantly higher (~100 μM, Table 3.3.9). The effect is more 

drastic with polymerization buffer, as expected for the higher ionic strength. When G-actin is 

present in the assay, the rate of NADPH oxidation is only a 30 % higher than the rate measured in 

the corresponding buffer (kcat 4.5 s-1). On the contrary, the presence of F-actin increased the rate of 

NADPH oxidation (kcat 12.3 s-1) with respect to the corresponding buffer (Figure 3.3.13; Table 

3.3.9). This preliminary, but highly reproducible result suggests that actin is a MICAL-MO 

substrate. At the time of writing, the identification of actin side chain that may be modified by 

MICAL-MO and the nature of such covalent modification is in progress. 

 



 

3.4 CONCLUSIONS 

Homogeneous forms of the flavoprotein domain of the human MICAL have been produced in E. 

coli with most of the experiments carried out with the most abundant form, which carries a C-

terminal His-tag. This form was indistinguishable from the untagged and the N-terminal His-tagged 

forms for the flavin content, the absorbance properties and the steady-state kinetic parameters kcat 

and Km for NADPH. NADPH oxidation catalyzed by MICAL-MO leads to stoichiometric 

production of H2O2, defining the NADPH oxidase reaction of MICAL-MO. Steady-state parameters 

kcat and Km for this reaction were approximately 4 s-1 and 30 μM in 20 mM Hepes/KOH buffer, pH 

7.0. This activity is one order of magnitude lower than that reported for the mouse protein form 

(Nadella et al, 2005), but still significantly higher than that observed with several monooxygenases 

of the PHBH class in the absence of the substrate to be hydroxylated. In previous experiments we 

attributed the high rate of the NADPH oxidase activity of the mouse MICAL-MO to artifacts due to 

the assay method. The NADPH oxidase reaction of MICAL-MO is limited by the rate of enzyme 

reduction by NADPH at atmospheric oxygen concentrations as shown by rapid reaction 

experiments of the isolated reductive half reaction. The similarity of the Km for NADPH measured 

under steady-state conditions and the corresponding value measured in the stopped-flow during the 

study of the reductive half reaction, suggest that for MICAL-MO the Km for NADPH actually 

corresponds to the dissociation constant of the enzyme-NADPH complex. 

MICAL-MO showed functional similarities with the class of monooxygenases represented by 

PHBH. It was found to be very sensitive to the ionic strength of the medium and to the nature of the 

anions present in solution. As reported for PHBH, (Entsch et al, 2005; Palfey and McDonald, 2010; 

Wijnands et al, 1984) the ionic strength effect on MICAL-MO activity is related to the strong 

sensitivity to electrostatics. The NADPH oxidase activity of MICAL-MO is also sensitive to the 

viscosity of the medium. Glycerol and sucrose (microviscogens), but not PEG8000 (a 

macroviscogen) have an effect on both  kcat and kcat/KNADPH values. The dependence of kcat on the 

relative viscosity brought about by glycerol and sucrose are linear and with slopes close to unity. 

Since kred is fully limiting turnover, the viscosity effecton kcat may be monitoring one or more of 

the conformational changes that take place during the NADPH oxidase reaction of MICAL-MO.. 

The viscosity dependence of kcat/KNADPH is much greater than unity indicating that a conformational 

change may take place following binding of NADPH to the enzyme (Blacklow et al., 1988; 

Brouwer and Kirsch, 1982; Caldwell et al., 1991; Eser and Fitzpatrick, 2010). The viscosity effects 

maybe monitoring one or more of the proposed conformational changes that accompany the enzyme 

reaction as discussed in the “results” paragraph.. 



 

In spite of the effect of glycerol on the enzyme kinetic properties, glycerol (10%) had to be included 

in the titration and rapid reaction kinetics experiments to ensure enzyme stability over several 

hours. Under our experimental conditions, no charge-transfer complexes were observed during 

photoreduction in the absence/presence of NADP+ or during the titration with NADPH. 

Furthermore, no intermediates were detected for the reaction between MICAL-MO and NADPH 

monitored at the stopped-flow. In MICAL-MO it has been proposed (Siebold et al., 2005) that 

Trp400, which stabilizes the flavin out conformation forming a charge transfer interaction with the 

FAD isoalloxazine ring in the crystal structure of mouse MICAL-MO and in solution, must move 

away to allow for the correct positioning of the NADPH nicotinamide ring prior to hydride transfer. 

Failure to observe charge-transfer complexes with pyridine nucleotides during the reductive 

titrations and the rapid reaction study would indicate that movement of Trp400 may be slow relative 

to productive positioning of the NADPH nicotinamide ring and hydride transfer, at least under the 

present experimental conditions. On the other hand, failure to observe charge-transfer complexes 

between reduced MICAL-MO and NADP+, either during titrations or rapid reaction studies, may 

simply reflect a weak binding of NADP+ to the reduced enzyme.  

Exposure to air of the enzyme that had been photoreduced in the presence of NADP+ led to the 

transient observation of a complex spectrum with a novel feature at 358 nm. The spectrum may 

indicate the presence of a covalent intermediate between the flavin and molecular oxygen during 

turnover with oxygen. With FAD-dependent monooxygenases, 4a(hydro)peroxyFAD and 4a-

hydroxyFAD have been sometimes detected during the catalytic cycle. Their stability and the 

details of their absorbance properties depend to a large extent upon the enzyme identity and the 

experimental conditions, as discussed in (Ghisla et al., 1977). Conditions to stabilize the 

intermediate(s) of MICAL-MO still need to be found. In this process the sensitivity of the enzyme 

to ionic strength, the type of salts and the viscosity of the medium will have to be taken into 

account. 

One of the key issue of MICAL is the actual catalytic activity. It has been proposed that MICAL 

flavoprotein domain acts as a NADPH oxidase producing reactive oxygen species (H2O2) and that 

its activity may be modulated by the downstream domains and by their interaction with other 

proteins (Kolk and Pasterkamp, 2007; Schmidt et al., 2008; Terman et al., 2002; Ventura and 

Pelicci, 2002; Zhou et al., 2008). high NADPH oxidase activity of the MICAL monoxygenase 

domain reported for the mouse enzyme (77 s-1) may have been overestimated (Nadella et al., 2005), 

but the 20-fold lower values we measured with the human protein still makes MICAL flavoprotein 

domain a relatively good oxidase. However, the catalytic efficiency is dramatically lowered by 

increasing ionic strength and anions so that in vivo, and in the absence of the protein additional 



 

domains, interacting proteins or the physiological substrate, the basal oxidase activity may be very 

low due to a high Km for NADPH. In this respect the sensitivity of MICAL NADPH oxidase 

activity to electrostatics may indeed provide a means to finely tune its oxidase activity in the 

absence of the physiological substrate undergoing hydroxylation (or otherwise covalent 

modification). Alternatively, it has been proposed that MICAL-MO oxidizes or hydroxylates a 

small molecule or the side chain of an interacting protein. Among the candidate protein substrates 

of MICAL are CRMP-1 (Schmidt et al., 2008) and actin (Kolk and Pasterkamp, 2007; Nadella et 

al., 2005; Siebold et al., 2005). In the latter case MICAL-MO has been recently shown to be 

sufficient to inhibit actin polymerization and to promote actin depolymerization (Hung et al, 2010). 

Here, we confirmed and extended this hypothesis, demonstrating that MICAL-MO affects actin 

polymerization through its NADPH oxidase activity. Furthermore, kcat for the NADPH oxidation in 

the presence of F-actin was 4-fold higher (12.3 s-1) than that measured under standard conditions 

and 10-fold higher than that observed in the corresponding polymerization buffer, indicating that 

actin may be a substrate of MICAL-MO.  

All these experiments set a solid basis for the further characterization of MICAL properties in 

relation to its biological activity and for the interpretation of results obtained through cell biology  

and genetic approaches. 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1.1 MICAL participates at the mechanisms that control axon growth. Panel A: Effect of 
MICAL deletion on Drosophila axon growth (Terman et al, 2002). LOF: loss of function. Panel B: Axon 
growth is guided by molecules that act as attractants or repellents. Panel C: Potential role of MICAL in 
Sema3/PlexA signalling. CRMP, collapsin response mediator protein ; RanBMP, Ran-small GTPase binding 
protein (RanBPM);FAK, focal adhesion kinase. CasL may be sequestered by MICAL preventing the 
formation of the integrin signaling complexes, thus inhibiting cell adhesion. MICAL is also known to bind 
vimentin (the main component of intermediate filaments) and their expression patterns are similar in 
nonneuronal cells. MICAL also binds rab1, a small GTPase involved in the secretory pathway and targeting 
vesicles to their target destination through interaction with the microtubule and/or actin cytoskeleton.  
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Figure 3.1.2: Molecular characterization of MICAL. Panel A: MICAL domain organization. Panel B: 
Conserved regions of MICAL in Drosophila (D-MICAL) and in vertebrates (H-MICAL). Black regions 
indicate sequences that are not well conserved among family members. Percents within domains indicate the 
homology identities in the corresponding regions. Panel C: Alignment of conserved sequences of the MICAL 
monooxygenase domain with members of the flavoproteine monooxygenase family (Terman et al, 2002). 

A 

B 

C 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1.3: Proposed role for MICAL. Modified from (Kolk and Pasterkamp, 2007) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1.4: Catalytic cycle of p-hydroxybenzoate hydroxylase (Entsch et al, 2005). 
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Figure 3.1.5: Panel A: Structure of mouse MICAL monooxygenase (MO) domain in the oxidized form. 
Green: four-helix bundle domain; cyan: the FAD-binding domain; orange: MO domain; red: linker region. 
The FAD molecule is depicted as sticks. Panel B: Structural comparison MICAL-MO (left) and PHBH 
(right). Domains are colored as in panel A. The grey-shaded area is deleted in the human splice isoform 
MICAL-1B. Panel C: Solvent accessible surface of MICAL-MO (left) and PHBH (right). Panel D: 
coordination of the isoalloxazine ring in the oxidized (left) and reduced (right) forms (Siebold et al, 2005). 
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Figure 3.3.1. Expression levels of MICALHis and purification on Ni-NTA Sepharose. Panel A) E. coli 
Rosetta (DE3) cells transformed with pET23MICAL were grown to an OD600 of approximately 1 in a 12 l 
fermentor. One aliquot was withdrawn to prepare a whole cell extract for SDS-PAGE (Total, 0). The 
temperature was lowered to 15°C. IPTG (0.1 mM) was added. An aliquot of cells (0.5 lt culture) was 
harvested after 15 h and the rest after 45 h. These cells were used to prepare total cell extracts (Total, 15 and 
45). The cells harvested at 45 h were homogenized and centrifuged to obtain the crude extract containing 
soluble proteins (S) and the pellet (P). The white dots mark the position of MICAL proteins. Panel B) 
Elution profile of the Ni-NTA Sepharose chromatography. Crude extract of cells containing MICALHis was 
loaded on Ni-NTA Sepharose. Weakly bound proteins were eluted with 50 mM imidazole. Elution of bound 
proteins was done applying a 50 to 300 mM gradient of imidazole in 50 mM sodium phosphate buffer, pH 
7.5, 100 mM NaCl, 10% glycerol. Black: A280 measured in continuum; Red: concentration of imidazole. 
Vertical bars indicate fractions analyzed in details in panel C. Panel C: Detail of the profile of absorbance at 
280 nm (●), 457 nm (o) and NADPH oxidase activity (▲) of fractions obtained after chromatography on Ni-
NTA Sepharose. Vertical bars indicate fractions containing MICALHis that were pooled and concentrated. 
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Figure 3.3.2: Purification of MICALHis on Ni-NTA Sepharose. SDS-PAGE of fractions eluted from Ni-
NTA Sepharose column. S: crude extract (40 µg); FT: flow-through; Imi: weakly bound proteins eluted with 
50 mM imidazole. Pooled: fractions pooled after Ni-NTA chromatography (5 µg); C: fractions pooled and 
concentrated (5 µg ); D: MICAL-His after dialysis (5 µg).  

 

 

Table 3.3.1: Purification of MICALHis on Ni-NTA Sepharose (from 43 g cells) 

 

 

 Volume 
(ml) 

Protein 
(mg) 

Activity 
(U) 

Specific Activity 
(U/mg) 

Crude Extract 210 2940 6.8 0.0021 
Ni-NTA Sepharose 32 18.7 32.6 1.7 
Concentration & Dialysis 4.2 11.8 37.4 3.2 

M      S    FT    Imi  16    20     32   40    44    48     M   52    56    60    64   68   75  Pooled C    D  

50          300Imidazole, mM

M      S    FT    Imi  16    20     32   40    44    48     M   52    56    60    64   68   75  Pooled C    D  

50          300Imidazole, mM

205 
116 
97.4 

66 

45 

29 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
Table 3.3.2: Determination of the stoichiometry and of the extinction coefficient of the bound FAD 
cofactor of MICALHis. Protein concentration was determined by the Bradford method. For calculation of 
flavin concentration the extinction coefficient of FAD at 450 nm (11.3 mM-1 cm-1) was used. MICALHis was 
denatured in: a 50 mM sodium phosphate buffer, pH 7.2, 10% glycerol, 0.1 M NaCl, 1 mM DTT, 0.2% SDS; 
b Hepes/NaOH pH 7.0, 10% glycerol, 0.1 M NaCl, 1 mM EDTA, 1 mM DTT; c 10 mM Tris/HCl pH 7.5 
buffer 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 3.3.3: Determination of the FAD content in MICALHis preparations 
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Figure 3.3.3. Absorption spectrum of 
human MICAL monooxygenase 
domain. The spectra of native 
MICALHis (12 µM based on the 
Bradford protein assay,) in 20 mM 
Hepes/NaOH buffer, pH 7.0, 10% 
glycerol, 1 mM EDTA, 1 mM DTT 
before (continuous line) and after 
denaturation by addition of SDS (0.2 %, 
dashed line) are shown. 

Native protein Denatured protein 

μM 
Fluorescence 

Emission   
530 nm 

Denaturation Fluorescence 
Emission 
 530 nm 

Fluorescence 
Emission   

 530 nm +PDE 

Fluorescence 
Increment [FAD] % 

0.44 0.2 SDS 2.9 23.0 7.9 97 

0.51 0.06 SDS 3.8 30.1 7.9 97 

0.61  SDS 4.6 32.31 6.6 94 

0.28 0.09 100°C 2.1 20.8 9.9 100 

0.53 0.12 100°C 3.95 40.2 10.1 100 

Native Denatured   ε 
μM λ max Abs 

Denaturation 
λ max Abs μM 

Stoichiometry 
mM-1 cm-1 

8.7a 457 0.081 SDS 450 0.107 9.5 1.1 8.5 

12.1a 457 0.088 SDS 450 0.122 10.8 0.9 8.0 

13b 457 0.0829 SDS 450 0.114 10 0.8 8.2 

14.3b 457 0.1 SDS 450 0.144 12.7 0.87 7.8 

6.7c 457 0.0467 SDS 450 0.0645 5.7 0.85 8.1 



 

Table 3.3.4. Steady-state kinetic parameters of the NAD(P)H oxidase activity of MICALHis. Assays 
were carried out at 25°C in 20 mM Hepes/KOH buffer, pH 7.0, in the presence of the indicated NAD(P)H 
concentration ranges and additions. kcat and KNAD(P)H values, and their associated errors, were determined by 
fitting the data to the Michaelis-Menten equation (Eq. 2). The error was propagated according to Bevington 
(Bevington, 1969). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.3.4. Effect of ionic strength and type of anions on MICAL-MO NADPH oxidase reaction. The 
slopes of double reciprocal plots obtained by measuring initial velocities in the presence of varying NADPH 
and different concentrations of salts or buffers are plotted as a function of the ionic strength of the assay 
mixture. Panel A: the following salts were added to the standard assay buffer (20 mM Hepes/KOH, pH 7.0): 
●, sodium acetate; , magnesium acetate; , NaCl; , KCl; , calcium chloride; , sodium phosphate. 
Panel B: assays were carried out with different concentrations of Hepes/KOH buffer ( ), Tris-chloride (  ) 
or Tris-acetate ( ). Panel C: assays were carried out with different concentrations of imidazol-chloride (  ), 
imidazol-acetate (  ) or Bis-Tris-acetate (●). In panels A and B the continuous line is the common fit of the 
data obtained with the chloride salts; the dotted line is the common fit obtained with the acetate salts; the 
dashed line is the fit to the data obtained with sodium phosphate. In the C panel the lines are the fit of the 
data to Eq.8, derived from the limiting case of the Debye-Hückel equation (Eq. 7) described in (Nørby and 
Esmann, 1997)  

NADPH, 
µM 

NADH, 
µM 

NaCl, 
M 

Glycerol, 
% 

KNAD(P)H, 
µM kcat, s-1 kcat/KNAD(P)H, 

s-1mM-1 

10-300    26±4 3.9±0.1 150 ± 23 

 80-670   580±24 0.28±0.01 0.48 ± 0.03 

40-650  0.1  499±28 2.6 ±0.1 5.2 ± 0.4 

10-300   10 93±11 2.9±0.1 31.2 ± 4 
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Table 3.3.5: Effect of the ionic strength brought about by imidazole and Bis-Tris buffers on the kcat/KNADPH values of the NADPH oxidase 
reaction of MICAL. The values of the slopes of double reciprocal plots obtained from initial velocity measurements of reactions carried out in the presence of 
different concentrations of imidazole and Bis-Tris buffers were analyzed using Eq 8, derived from the limiting case of the Debye-Hückel equation (Eq.7, (Nørby 
and Esmann, 1997), Figure 3.3.4). The slope of the lines equals -(ze*zNADPH) and the intercept equals Log(kcat/KNADPH) at zero ionic strength [(kcat/KNADPH)o]. The 
charge of NADPH (zNADPH ) at pH 7.0 is between -3 and -4 taking into account the pKa value of the 2’-phosphate group of 6.1. Therefore, the charge of the 
enzyme active site (ze) can be calculated. 
 
 

 

 

 

 

 

Buffer slope intercept ze*zs zNADPH= -3 zNADPH= -4 (kcat/KNADPH
)Imidazole/chlori

de
0.35±0.02 0.09±0.06 -0.35±0.02 0.12 0.09 1.23 

Imidazole/acetat
e

0.43±0.01 -0.52±0.04 -0.43±0.01 0.14 0.11 0.31 

Bis-Tris/acetate 0.40±0.02 -0.26±0.08 -0.34±0.02 0.13 0.10 0.55 

   Average 0.13 0.10  



 

Table 3.3.6. Effect of PEG 8000 on the kinetic parameters of the NADPH oxidase reaction of 
MICAL. Initial velocity data obtained at 25°C in 20 mM Hepes/NaOH buffer, pH 7.0, in the 
presence of varying concentrations of NADPH and different levels of PEG8000 (see Figure 3.3.9 
panel C) were fitted independently with the Michaelis-Menten equation (Eq. 2). The effects of 
increasing solvent viscosity with PEG8000 on kcat and kcat/KNADPH were calculated and fitted to a straight 
line as a function of relative viscosity. The values of the slopes and intercepts of these lines are in Table 
3.3.8.  
 

 
 
 
 
 
 
 

 
Table 3.3.7. Effect of glycerol and sucrose on the kinetic parameters of the NADPH oxidase reaction of 
MICAL. Initial velocity data obtained at 25°C in 20 mM Hepes/NaOH buffer, pH 7.0, in the presence of 
varying concentrations of NADPH and different levels of glycerol or sucrose (see Figure 3.3.9 panel A and 
B) were fitted with Eq. 6. The parameters m and n allow to calculate  the effect of viscosity on kcat and 
kcat/KNADPH, respectively (Figure 3.3.9 panel D). The calculated values as a function of the relative viscosity 
of the solvent were fitted to a straight line. The values of the slopes and intercepts (when present) are in 
Table 3.3.8. 
 
 

 
 
Table 3.3.8. Effect of solvent viscosity on kcat and kcat/KNADPH. The data shown in Figure 3.3.9 A-C were 
fitted as described in the legends of Tables 3.3.6 and 3.3.7. The effects of viscosity on kcat and kcat/KNADPH 
(expressed as the ratio of the parameter calculated in the absence of the viscogen over the value calculated in 
the presence of a given viscogen concentration) exhibited a linear dependence on the relative viscosity 
brought about by the corresponding viscogen concentration. For the effect of glycerol and sucrose on kcat, the 
best line has an intercept equal to zero. 
 
 
 
 
 
 
 
 
 
 
 
 

PEG8000 
(%, w/v) ηrel kcat, s-1

 KNADPH, μM kcat / KNADPH, s-1mM-1
 

0 1.0 2.9 ± 0.05 36.3 ± 2.5 80 ± 6 
1.7 1.6 3.0 ± 0.08 43.9 ± 4.3 68 ± 7  
3.3 2.0 2.9 ± 0.13 57.7 ± 7.3 51 ± 7 
6.7 3.6 2.7 ± 0.07 44.2 ± 3.9 61 ± 6 

Viscogen kcat, s-1
 KNADPH, μM m n 

Glycerol 2.8 ± 0.04 47.2 ± 2.5 1.09 ± 0.16 0.34 ± 0.05 
Sucrose 3.0 ± 0.07 35.6 ± 3.1 1.47 ± 0.25 0.44 ± 0.05 

 Effect of viscosity on 

 kcat kcat/KNADPH 

Viscogen slope intercept slope intercept 

Glycerol 0.97 ± 0.01 - 3.0 ± 0.1 – (2.1 ± 0.2) 

Sucrose 1.04 ± 0.03 - 4.2 ± 0.3  – (3.3 ± 0.3) 

PEG8000 0.04 ± 0.01  0.94 ± 0.03 0.1 ± 0.14 – (1.1 ± 0.3) 



 

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.3.5. Photoreduction of MICAL-MO. A solution containing MICAL-His (10 µM), EDTA (10 mM), 5-deaza, 5-carba riboflavin (1 µM) in 20 mM 
Hepes/NaOH buffer, pH 7.0, 1 mM DTT and 10% glycerol was made anaerobic in the absence (Panel A-B) and presence (Panel C-F) of NADP+ (30 µM). The 
solution was irradiated with a standard projector lamp for different times. In the first part of the experiment (Panel A and C), complete reduction of MICAL flavin 
cofactor was observed (spectrum marked as MICAlred). With further irradiation formation of NADPH was observed in the presence of NADP+ (Panel D). The 
solution was then exposed to air by opening the cuvette and gentle mixing (Panel B and E). in the absence of NADP+, the spectrum of the oxidized enzyme was 
recovered without detection on intermediate species (Panel B). In the presence of NADP+, a first, partial oxidation of the flavin was observed with oxidation of 
NADPH and appearance of an absorption peak centered at 358 nm (panel E, red line), which partially decayed. A second mixing of the solution with air (Panel F) 
led to loss of this peak of abosorbance and full oxidation of the flavin (red line). The spectrum of the MICAlox and of MICAlred (prior to accumulation of 
NADPH) is shown for reference in panels E and F. In Panel A, C and D the total irradiation times are shown; in B and F, the times after the mixing with air are 
shown. “0 s” indicates the spectrum before mixing with air the second time. 
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Figure 3.3.6: Anaerobic reduction of MICALHis in the presence of NADP+, glucose-6-phosphate and glucose-6-phosphate dehydrogenase. A solution 
containing MICALHis (10 µM), NADP+ (15 µM) and glucose-6-phosphate (1 mM) in 20 mM Hepes/NaOH buffer, pH 7.0, 1 mM DTT and 10% glycerol was 
made anaerobic (Panel A, spectrum marked as MICAL ox). Glucose-6-phosphate dehydrogenase (1 U) was added to start the generation of NADPH and spectra 
were collected at the indicate time. Panel A: first part of the reduction ,with the formation of the completely reduced flavin (MICALred). An isosbestic point at 348 
nm was observed. Panel B: accumulation of NADPH during the second part of the reduction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.3.7: Anaerobic titration of MICALHis with NADPH. A solution containing MICALHis (13 µM) in 20 mM Hepes/NaOH buffer, pH 7.0, 1 mM DTT 
and 10% glycerol was made anaerobic (Panel A, spectrum marked as MICAL ox). A NADPH solution (0.51 mM) was added at the final concentration indicated 
(Panel A) and spectra collected after each addition. Panel B) Fitting of the fractional absorbance changes at 457 nm (Y = ((Ax-Ao)/(Af-Ao)) corrected for the 
enzyme concentration to Eq 9. 
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Figure 3.3.8. Reaction of MICAL-MO with NADPH. Panel A) MICAL-MO (7.5 µM) was reacted 
anaerobically with NADPH (circles, 50 µM; squares, 105 µM; triangles, 222 µM; diamonds, 440 µM after 
mixing) in 20 mM Hepes/NaOH, pH 7.0, 10% glycerol, 1 mM DTT, 1 mM EDTA at 25°C in the stopped-
flow spectrophotometer. The observed absorbance changes at 455 nm were fitted to a single exponential 
equation (lines). The data were not corrected for baseline drifts (determined by acquiring the spectra of the 
NADPH solutions before each series of shots) to avoid overlapping of the traces. The inset shows the plot of 
the measured rate constants as a function of NADPH and their fit to a hyperbole yielding kred, 3 ± 0.1 s-1 and 
KM(Kd), 56 ± 7.3 µM. Panel B) Selected spectra observed during the reaction of MICAL (7.5 μM) with 
NADPH (222 μM) in 20 mM Hepes/NaOH buffer, pH 7.0, 10% glycerol, 1 mM DTT, 1 mM EDTA. 
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Figure 3.3.9: Effect of glycerol, sucrose and PEG8000 on the MICAL NADPH oxidase reaction. Initial 
velocity measurements were carried out at 25°C in the presence of varying NADPH concentrations and fixed 
levels of glycerol (A), sucrose (B) and PEG8000 (C). Viscogen concentrations and relative viscosity were as 
follows: Panel A, glycerol (%, ηrel) 0,1 (o); 2.5, 1.04 (●); 5, 1.13 (□); 10, 1.29 (■) and 20, 1.72 (Δ). Panel B: 
sucrose (%, ηrel) 0,1; 13.3, 1.2; 15.6, 1.4; 21.3, 1.8; Panel C: PEG 8000 (%,ηrel) 0,0 (o); 1.7, 1,6 (●); 3.3, 2 
(□) and 6.7, 3.6 (■). In panel A and B the curves are the best fit of the data to Eq 6. The calculated 
parameters are in Table 3.3.7 and they were used to calculate the effect of viscosity on kcat and kcat/KNADPH 
(see Table 3.3.8 and panel D). In Panel C only a scatter graph is presented for clarity. The kinetic parameters 
calculated by fitting independently the curves obtained at the different PEG8000 concentrations are 
summarized in Table 3.3.6. The negligible dependence of the MICAL reaction on PEG8000 was confirmed 
by the analysis of the dependence of the effects on kcat and kcat/KNADPH on the relative viscosity of the 
medium (Table 3.3.8). Panel D) Effect of viscosity brought about by glycerol (circles) and sucrose (squares) 
on kcat (open symbols) and kcat/KM for NADPH (closed circles). The initial velocity data shown in panel A 
and B were fitted as described in Table 3.3.7. The effects of viscosity on kcat and kcat/KNADPH were fitted to 
the straight lines shown here. The parameters are in Table 3.3.8.  
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Figure 3.3.10: Pyrene actin polymerization assays in the presence of MICAL-MO. G-Pyrene actin (5.7 
μM, in 5 mM Tris/HCl buffer, pH 8.0, 0.2 mM CaCl2, 0.2 mM ATP, 1 mM DTT) was polymerized by 
addition of the polymerization buffer (P) and the fluorescence signal was measured (λex 365 nm, λem 407 nm; 
Panel A and B, trace (a)). The effect of MICAL-MO (M; 0.7 μM) and NADPH (100 μM) on the 
polymerization rate was studied, by adding the enzyme before the reductant (Panel A, trace (b)) or vice versa 
(Panel A, trace (c)). Panel B: MICAL-MO (0.7 μM) enhances the depolymerization of actin in the presence 
of NADPH (100 μM; trace (d)). The same effect was observed when MICAL (trace (e)) or NADPH (trace 
(f)) were added before the polymerization buffer. Panel C: assays carried out in the dilution buffer in the 
absence of actin. Variation of the fluorescence intensity were monitored after addition of the polymerization 
buffer (P, trace (g)), MICALHis and NADPH (traces (h) and (i)). NADPH emission signal reached a value of 
6, as confirmed by the emission spectrum in figure 3.3.12. This value decreased linearly after MICAL 
addition (trace (i)) as a consequence of the NADPH consumption by MICALHis. Numbers indicate the 
variation of fluorescence/min. Panel D: NADPH oxidase activity of MICAL (0.7 μM) in the presence of 
NADPH (100 μM). Assays were carried out at 25°C in the dilution buffer (trace (m)) and in the 
polymerization buffer (trace (l)). The NADPH is completely oxidized within 5 min in the dilution buffer 
(trace (m)) and within 15 min in the polymerization buffer (trace (l)). Numbers indicate the Δ/min. Traces 
were shifted along y axis for clarity (trace (a), panel A: 220 units; trace (a) panel B: 500 units; trace (b): 110 
units; trace (d): 350 units; trace (e): 150 units; trace (g): 20 units; trace (h): 10 units; trace (l): 0.2 units). 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0

100

200

300

400

500

600

0 10 20 30 40
Time, min

Fl
uo

re
sc

en
ce

 in
te

ns
ity

P

M

NADPH
M P

NADPH P

63

75

17

9

0

150

300

450

600

750

900

0 10 20 30 40
Time, min

Fl
uo

re
sc

en
ce

 in
te

ns
ity

P

P

P

M

M

M

NADPH

P

NADPH

NADPH

63

157

18 46

240

240

130

65

0

5

10

15

20

25

0 10 20 30 40
Time, min

Fl
uo

re
sc

en
ce

 in
te

ns
ity

P

P

P

M

M

NADPH

NADPH

2

2.6 0.3

0.3

A 

B 

C 

(b)

(a)

(a)

(c)

(e)

(d) 

(f)

(g) 

(h)

(i)

0

0.2

0.4

0.6

0.8

0 10 20 30 40
Time, min

A 3
40

 0.36

 0.11

D 

(l)

(m)



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.3.11: Actin polymerization assays at the dinamic light scattering (DLS). Panel A: Mean radius values of the ultracentrifuged G actin solution (G 
actin, 5.4 μM). Polymerization buffer (P) was added to the solution in DLS cuvette. At the end of the polymerization, NADPH (100 μM) and MICALHis (0.7 
μM) were added. Panel B: Species of different radius were detected in the G actin solution (a), during polymerization (b) and after NADPH addition (c). The 
expected radius for G actin is indicated (3.2 nm, 44 kDa).  
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Figure 3.3.12: Excitation and emission and spectra of NADPH. Excitation (red; λem 407 nm) and 
emission (black; λex 340 nm) spectra of 100 μM NADPH in dilution buffer (5 mM Tris/HCl buffer, pH 8.0, 
0.2 mM CaCl2, 0.2 mM ATP, 1 mM DTT).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.3.13: NADPH oxidase activity of MICALHis in the presence of Hepes/KOH buffer pH 7.0 (o), 
dilution buffer (□), polymerization buffer (Δ), G actin (■) and F actin (▲). Assays were carried out at 
25°C in the presence of different concentration of NADPH (15-300 μM). 
 
Table 3.3.9: Kinetic parameters for the NADPH oxidase activity of MICALHis in the presence of of 
Hepes/KOH buffer pH 7.0, dilution buffer, polymerization buffer, G actin  and F actin. 
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Hepes/KOH pH 7.0 - 3.1 ± 0.1 19 ± 2 0.163 ± 0.018 
Dilution buffer  - 3.4 ± 0.1 101 ± 8 0.034 ± 0.003 
Dilution buffer G actin 4.5 ± 0.6 96 ± 28 0.047 ± 0.015 
Polymerization buffer - 2.6 ± 0.4 554 ± 118 0.005 ± 0.001 
Polymerization buffer F actin 12.3 ± 0.5 11 ± 3 1.12 ± 0.31 
 



 

4. ON THE ROLE OF S371 OF FLAVOCYTOCHROME b2 
 

4.1 INTRODUCTION 

Flavocytochrome b2 (L-lactate cytochrome c oxidoreductase, EC 1.1.2.3, Fcb2) is a homotetrameric 

yeast enzyme, which catalyzes the oxidation of L-lactate (Lac) to pyruvate (Pyr) with concomitant 

reduction of cytochrome c (Cyt c). During the catalytic cycle Lac binds to the flavodehydrogenase 

(FDH) domain and is oxidized to Pyr with transfer of the reducing equivalents to the bound flavin 

mononucleotide (FMN), yielding its hydroquinone form:  

 

L-lactate + E-FMNox → Pyruvate + E-FMNred  

 

The reduced flavin then transfers electrons one at a time to heme b2 in the N-terminal protein 

domain with the intermediacy of the flavin semiquinone species. Cyt c is the physiological acceptor 

for heme b2 (Lederer, 1991). The crystal structure of Fcb2 was solved for the wild-type enzyme and 

for several mutants. The tetramer is composed of four identical subunits (57000 Da), each formed 

of two structural domains, the hemoprotein (residues 1-100) and the flavodehydrogenase domain 

(FDH, residues 101-487). The C-terminal end of the subunit (residues 488-511) makes contacts in 

the center of the tetramer with each of the three other flavin domains (Figure 4.1.1; Xia et al, 1987). 

The L-lactate oxidation reaction occurs in the FDH domain. The hemoprotein, whose structure is 

highly reminiscent of the cytocrome b5 fold, contains a eme b2 prosthetic group located in a crevice 

(Xia et al, 1990). Contacts between the cytochrome domain and the FDH domain are favoured by 

the partial mobility of the heme-containing portion, as demonstrated by the tetramer crystal 

structure, where two hemoprotein domains were disordered (Xia et al, 1990). The 

flavodehydrogenase domain is composed of a α8β8 barrel and contains a FMN cofactor bound at the 

end of the β-barrel, corresponding to the C-terminus of the β-strands. The resolution of the structure 

in the presence of pyruvate led to the identification of residues important for the substrate binding 

and for the catalysis (see below).  

Several studies on Fcb2 have focused on the mechanism of Lac dehydrogenation catalyzed by its 

FDH domain. The latter is the structural and mechanistic prototype of a family of α-hydroxyacid 

dehydrogenases (as reviewed in, e.g., (Lederer, 1991; Fitzpatrick, 2001; Fitzpatrick, 2004; Lederer 

et al, 1996 and Lederer et al, 2005)) which includes, as well characterized members, glycolate 

oxidase (GOX) (Lindqvist, 1991), L-lactate monoxygenase (LMO) (Maeda-Yorita et al, 1995), L-

lactate oxidase (LO) (Maeda-Yorita et al, 1995), mandelate dehydrogenase (MDH) (Lehoux et al, 

1999) and long chain α-hydroxy acid oxidase (LCHAO) (Cunane et al, 2005). Components of this 



 

extended family play important roles in the metabolisms of a wide number of organisms and some 

of them are also of significant interest for industrial and medical purposes. This is the case of GOX, 

that is associated to pathologies in the metabolism of oxalate in animals and more generally to 

enzymatic deficiencies of the perixosomes, where it is located.  

These enzymes are believed to share a common mechanism for the oxidation of the α-hydroxy acid 

substrate in the enzyme reductive half reaction, which formally implies the loss of two electrons and 

two protons during the conversion to the corresponding α-keto acid. In all cases, the acceptor of the 

reducing equivalents is the bound FMN. The enzymes of the Fcb2 family differ with respect to the 

oxidative half reaction leading to dehydrogenases or oxidases. Two mechanistic hypotheses for the 

α-hydroxy acid dehydrogenation reaction have been formulated and tested over the past decades. 

The so-called “proton abstraction” (PA) or “carbanion” mechanism predicts that the bound α-

hydroxy acid undergoes abstraction of the α-hydrogen (Hα) as a proton by an active site base with 

formation of an α-carbanion intermediate. The latter would evolve, probably by two single electron 

transfer steps to yield the flavin hydroquinone and the α-keto acid product (Scheme 1A). The 

alternative “hydride transfer” (HT) mechanism predicts that the substrate Hα is directly transferred 

to the flavin N5 position as a hydride anion with elimination of the α-hydroxyl proton (Scheme 1B).  

For none of the enzymes of the Fcb2 family, the mechanism of substrate dehydrogenation has been 

definitely established, as discussed in, e.g.(Fitzpatrick, 2001; Lederer, 1996; Lederer et al, 2005).  

In support of the PA mechanism there are several observations made on Fcb2 as well as on other 

enzymes of its structural family. Among them is the reported pKa of 9 in the reduced enzyme for the 

group which abstracts the substrate Hα, which has been considered too low for being that of the 

reduced FMN N5 atom (Balme et al, 1994; Rao et al, 1998), which has been estimated to be ∼20 

for the free flavin, and the decrease of one unit of the pKa of this group induced by the D282N 

mutation (Gondry et al, 1996). Furthermore, studies of the transhydrogenation reactions between 2-
2H-lactate (or 2-3H-lactate) and bromopyruvate led to isotope effects, which could be rationalized 

only in the frame of a PA mechanism (Gondry et al, 1996; Urban et al, 1985).  

On the other hand, other results can be better interpreted as to indicate that the HT mechanism is 

operative. For example, Fcb2 can oxidize lactate when FMN is substituted by 5-deaza-5-carba-

FMN (Pompon et al, 1979), which is known to be an obligatory acceptor of hydride anions. 

Furthermore, substrate and solvent kinetic isotope effects have now been interpreted within a HT 

mechanism with asynchronous αOH proton abstraction and hydride transfer to FMN-N5 

(Fitzpatrick, 2004; Sobrado et al, 2003).  

A number of other results on Fcb2 and related enzymes could be interpreted within the framework 

of both the proposed mechanisms (Schema 1). Site-directed mutagenesis of active site residues in 



 

various family members yielded interesting information in terms of role of active site residues in 

substrate binding and/or transition state stabilization, but, unfortunately, did not provide decisive 

mechanistic evidences. H373 is the proposed active site base that abstracts Lac Hα or α-OH as a 

proton. This residue is hydrogen bonded with D282, that stabilizes the acid-base properties and the 

orientation of H373. Other conserved residues are Y143 and R376 that form interactions with the 

Pyr carboxylate group; Y254 that is hydrogen bonded with O(2) carbonyl and stabilizes the 

transition state; R289 that interacts with D292, modulating the properties of R376, proximal to the 

substrate. K349 stabilizes the negative charge of FMNH- after the reduction reaction (Gondry et al, 

1996; Cunane et al, 2002; Gondry et al, 2001; Reid et al, 1988, Xia et al, 1990; Mowat et al, 2004) 

(Figure 4.1.2). 

A key missing information is the structure of a complex between the enzyme and a true substrate 

analog defining the structure of the Michaelis complex of Fcb2. Indeed, the crystal structure of 

wild-type Fcb2 (Xia et al, 1990) had the reaction product Pyr bound to the active site, where FMN 

is believed to be in the semiquinone form. Furthermore, none of the crystal structures available to 

date for Fcb2 and the enzymes of the family provides a definitive mechanistic answer. 

Recently, to gain insight into the mechanism of Fcb2-catalysed L-lactate oxidation, minimal models 

of the enzyme active site in complex with the L-lactate substrate have been built by a fully 

quantum-mechanical approach starting from the available crystal structures. Following structural 

optimization (at 0 K) and finite temperature (300 K) molecular dynamics simulations, a stable 

complex with L-lactate poised for hydride transfer was obtained (Figure 4.1.3; Tabacchi et al 2005). 

Simulation of the lactate dehydrogenation reaction according to such a mechanism led to the 

observation of a free energy profile characterized by a single transition state and a free energy of 

activation of 12.1 kcal/mol consistent with that determined experimentally (13.5 kcal/mol). During 

the simulated reaction, transfer of the lactate αH, as a hydride anion, to FMN N(5) position was 

preceded by transfer of the α-OH proton to H373 Nε yielding a short-lived lactate alkoxide species, 

which underwent oxidation, and the positively charged H373 forming an ion pair with D282 

carboxylate (Figure 4.1.4 panel B and C).  

During the model building process it was observed that a crystallographically-detected active site 

water molecule (Wat609 in the PDB file 1fcb, Figure 4.1.4 panel A-C and Figure 4.1.5) modulated 

the proton affinity of the active site base, H373 of Fcb2 (Tabacchi et al, 2005; Tabacchi et al, 2009). 

In particular, during molecular dynamics simulations at 300 K, in an active site model not including 

Wat609 proton transfer events from the fragment mimicking H373 Nδ to that mimicking D282 

carboxylate O1 was observed, yielding a negatively charged histidinate and neutral D282 

carboxylic acid (Figure 1D, E). However, inclusion of Wat609 in the active site model led to 



 

preserving the neutral H373/negatively charged D282 carboxylate couple (Figure 4.1.4 panel A). 

Starting from the model lacking Wat609 a series of constrained molecular dynamics simulations 

were also performed to test the reactivity of the model. As expected from the molecular dynamics 

simulations at 300 K of the enzyme-lactate complex, at the very early stages of the simulated 

reaction (i.e.: as lactate αH was pulled away from lactate), a proton was transferred from lactate 

αOH group to H373 Nε, and the H373 Nδ hydrogen was transferred as a proton to D282 

carboxylate. As depicted in Figure 4.1.4 panel E, these proton transfer events led to an active site 

model containing the lactate alkoxide, neutral H373 and neutral D282. The calculated free energy 

barrier for this step was very low (0.4 kcal/mol) and the energy level of the resulting enzyme-

substrate complex was essentially unchanged with respect to the initial Michaelis complex. 

However, the simulation of the reaction beyond this initial phase failed. Increasing the value of the 

reaction coordinate led to a system that was unstable and no relative minima of the constraint force 

could be calculated. On the contrary, including Wat609 in the model led to the free energy profile 

described above in which H373 remains neutral and hydrogen bonds to D282 γ-carboxylate (with 

Nδ) and to the bound substrate (with Nε) until the lactate αOH proton is transferred to H373 Nε, 

just before the transition state (Tabacchi et al, 2005). At this stage H373 is positively charged and 

forms an ion pair with Asp282 (Figure 4.1.4 panel C). All these findings agree well with the fact 

that all evidence accumulated so far on Fcb2 supports that H373 is neutral in the oxidized active site 

(Lederer 1991; Lederer, 1992). During lactate oxidation, H373 would abstract one of the substrates 

protons (the αH or α-OH proton, depending on the postulated mechanism) undergoing a pKa 

increase (up to ~15) in the reduced enzyme (Lederer, 1992). The pH increase would mainly result 

from the mutual stabilization of the positively charged imidazolium ring and of the negatively 

charged FMN hydroquinone formed upon lactate oxidation. The pKa increase of H373 would in turn 

favor lactate oxidation by facilitating: (i) proton transfer from lactate to H373 and (ii) electron 

transfer from lactate to the oxidised flavin, yielding the negatively charged FMN hydroquinone 

form. The pKa increase of H373 in the reduced enzyme leading to a positively charged H373 has 

also been proposed to stabilize the FMN-N5-sulfite adduct, thus causing the very low dissociation 

constant of the complex (in the low µM range, Lederer, 1978).  

In the Fcb2 active site the crystallographic Wat609 belongs to a S371-Wat-D282-H373 hydrogen-

bonded chain (Figure 4.1.5), which is conserved in all the Fcb2 structures and in the structures of 

other Fcb2 family members. Interestingly, S371, which holds Wat609 in place, belongs to the 

SNHGXRQ sequence that is strictly conserved in the Fcb2 family of enzymes (Lederer et al, 2005).  

To test the prediction made by the computational work that the reactivity of the active site base 

H373 may be modulated by the water molecule held in place by S371, the latter residue has been 



 

replaced with an alanine in Fcb2. The S371A substitution should prevent the positioning of Wat609 

with important consequences on the acid-base properties of H373, and therefore, on the catalytic 

properties of the enzyme. 



 

4.2 METHODS 

 

Production of Fcb2 and Fcb2-S371A as pDS derivatives E. coli 

For the production of Fcb2-S371A as pDsb2 derivative, the BamHI-BglII 1178 bp fragment of 

pETFcb2-S371A (see paragraph 4.3) was substituted for the corresponding fragment of pDSb2 

(Black et al, 1989), available in our laboratory, yielding pDSb2-S371A. After sequencing (by 

PRIMM s.r.l., Milano), the pDSb2 and pDSb2-S371A were transformed into E. coli HB101 cells 

and the transformants were grown at 37°C in LB broth containing 100 µg/ml Ampicillin (Amp). A 

preculture was set up using freshly transformed cells. When OD600 reached a value of 

approximately 1, 0.5 ml aliquots were used to inoculate 2 l flasks containing 0.5 l LB-Amp. Cells 

were harvested after 16 h growth and stored frozen.  

 

Protein purification 

The full-length wild-type and S371A-Fcb2 were purified by adopting a procedure designed to 

minimize flavin loss. Cells (13 g) were resuspended in 30 mM (Na, K) phosphate buffer, pH 7.0, 

containing 1 mM EDTA, 20 mM DL-lactate, 0.5 mM phenylmethylsulfonyl fluoride (PMSF), 0.1 

mM FMN (5 ml/g cells). 0.2 mg of lysozyme per gram of cells was added. The suspension was 

incubated on ice for 60 min under stirring, and sonicated (two 30 s and two 1 min cycles). After 

centrifugation at 27000 x g for 15 min at 4°C, the pellet was resuspended in 50 ml homogenization 

buffer and the sonication and centrifugation steps were repeated. The combined crude extracts were 

directly loaded on a hydroxyapatite column (HTP, BioRad, 2.6 x 13 cm, 60 ml) equilibrated with 30 

mM (Na, K) phosphate buffer, pH 7.0, containing 1 mM EDTA (Buffer H). Weakly absorbed 

proteins were washed with 2 column volumes of buffer H containing 20 mM DL-lactate, 0.5 mM 

PMSF. The protein was eluted by applying a 30 to 600 mM (Na, K) phosphate gradient in buffer 

containing 20 mM DL-lactate, 0.5 mM PMSF in 800 ml. Fractions showing lactate dehydrogenase 

activity and electrophoretically homogeneous protein were pooled, concentrated by ultrafiltration in 

an Amicon cell equipped with a YM30 membrane. Aliquots were dialyzed against 100 mM (Na, K) 

phosphate buffer, pH 7.0, 1 mM EDTA, 20 mM DL-lactate and 0.1 mM FMN (Buffer I). The 

dialyzed enzyme samples were flash frozen in liquid nitrogen and stored at -80°C. Prior to each 

experiment, DL-lactate and FMN were removed by gel filtration on a Sephadex G-25 column (PD-

10, prepacked disposable columns, GE Healthcare) equilibrated with 100 mM (Na, K) phosphate 

buffer, pH 7.0, 1 mM EDTA. 

 

 



 

Activity assays and determination of the steady-state kinetic parameters. 

Activity assays were carried out by monitoring ferricyanide (FeCN) reduction at 420 nm (ε = 1.04 

mM-1 cm-1) in assays mixture containing 100 mM (K) phosphate/NaOH buffer, pH 7.5, 1 mM 

EDTA, 5 mM L-lactate and 1 mM FeCN at 25°C in Cary219 or Cary100 (Varian) 

spectrophotometers. Apparent steady-state kinetic parameters were determined by measuring initial 

velocities of reactions that contained 5 mM L-lactate in the presence of varying FeCN concentration 

(0.1-2 mM), or 1 mM FeCN in the presence of varying L-lactate concentration (0.1-15 mM). To 

measure the primary kinetic isotope effects, L-[2-2H]-lactate (lithium salt, Sigma) was used. The 

initial velocity values (v/E, expressed as µmol FeCN reduced per second per µmol FMN-containing 

enzyme) as a function of the varied substrate concentration (S) were fitted to the Michaelis-Menten 

equation (Eq. 1, paragraph 3.2) using the Grafit 4.0 software. The error associated with the 

determination of the primary kinetic isotope effects on kcat (Dkcat) and on kcat/Klac (Dkcat/Klac) was 

calculated from the values of kcat and Klac determined with the protio- and deutero-substrate 

applying the error propagation method as described in (Bevington, 1969).  

 

pH profiles 

The dependence of v/E on pH was determined by carrying out reactions in the presence of 1 mM 

FeCN and 5 mM L-lactate in the buffer system described by (Sobrado et al, 2001), namely, 50 mM 

Bis-Tris/HCl (pH 4.0-7.0), 150 mM Hepes/KOH (pH 7.0-8.5), or 50 mM ethanolamine/HCl (pH 

8.5-9.5). To determine the pH dependence of kcat and kcat/Klac in the acidic range, initial velocities of 

reactions that contained 1 mM FeCN and varying L-lactate were measured between pH 4.0 and 7.0. 

Equations 12 and 13 were used: 

 

Eq. 12: Y = Limit * 10 (pH-pKa1)/(10 (2*pKa1-pKa2) +10 (pH-pKa1) + 1) 

 

Eq.13: Y = Limit * 10 (pH-pKa)/(10 (pH-pKa) – 1) 

 

In Eq. 12 and 13, Limit is the pH independent value of the parameter (Y) being analyzed. In Eq. 12, 

pKa1 and pKa2 are the pKa values of the groups that need to be unprotonated and protonated, 

respectively, for maximal value of the parameter. In Eq. 13, pKa is that of the single group, the 

dissociation of which leads to an increase of the value of the parameter Y. 

 

 

 



 

Determination of the dissociation constant of the enzyme-sulfite complex 

The dissociation constant of the enzyme-sulfite complex was determined by titrating the enzyme (6-

15 µM in terms of bound FMN) with sulfite solutions in 100 mM (Na, K) phosphate buffer, pH 7.0, 

1 mM EDTA. After correction for dilution and calculation of the different spectra, which were 

consistent with the formation of a FMN-N(5)-sulfite adduct (Lederer, 1978), the fractional 

absorbance changes at 454 nm as a function of sulfite concentration were fitted to Eq. 14. 

 

Eq. 14:  [(Ao–Ax)/(Ao–Af)]*E = [(Kd+L+n) - √((Kd+L+n)2 – 4*L*n)]/2 

 

Where: Ao, Ax and Af are the absorbance values at 454 nm of the free enzyme, after addition of a 

given concentration of sulfite (L) and at the end of the titration, respectively; E is the total enzyme 

concentration; Kd is the dissociation constant of the enzyme-sulfite complex and n is the number of 

binding sites, which was found to be equal to 1. 

 

Protein and cofactors quantification 

The Bradford assay (Bradford, 1976) and the Bradford Reagent (Amresco) were used for protein 

quantification. A mass of 57 kDa was used to calculate the concentration of the full-length Fcb2 

from the protein assay. For the quantification of the heme content of Fcb2 preparations, the 

absorbance spectrum of lactate-reduced samples was measured and reduced heme was quantified by 

using the absorbance value at 423 nm and the published extinction coefficient at this wavelength 

(ε423, 183 mM-1 cm-1, Labeyrie et al, 1978). To quantify bound FMN, the absorbance spectrum of 

protein samples that had been gel-filtered or dialyzed to remove excess FMN and DL-lactate was 

measured. 1-3 mM sodium sulfite (final concentration) was added from a 1 M solution. The 

difference between the spectrum of the free enzyme and that of the enzyme after reaction with 

sulfite was calculated and concentration of FMN was determined by using the calculated Δε at 454 

nm of 10.5 mM-1 cm-1 (Lederer, 1978). The heme content of the enzyme solution could also be 

measured with the oxidized protein by using the published extinction coefficient at 413 nm (ε413 = 

129.5 mM-1 cm-1, Labeyrie et al, 1978).  



 

4.3 RESULTS 

 

Production of the pDS derivatives of Fcb2 and Fcb2-S371A variant and steady-state kinetic 

characterization 

Previous work, aimed to the characterization of wild-type and S371A variant of FDH domain of 

Fcb2 from pET23b derivatives, led to the production of homogeneous Fcb2-FDH, with the correct 

FMN content. On the contrary, the S371A variant of FDH was obtained as a non-reconstitutable 

apoenzyme. Thus we turned our attention to the full-length Fcb2, which were produced in the wild-

type and S371A variant from pET23b derivatives. The Fcb2 purified protein contained 0.9 mol 

FMN, but only 0.2 mol heme per mol protein. The turnover number at saturating lactate and FeCN 

was 151.5 ± 6.9 s-1, KLac was 0.1 ± 0.01 mM and KFeCN was 0.32 ± 0.005 (Table 4.3.1). Thus, the 

turnover was approximately 2-fold lower than the reported for Fcb2, while the Km values for lactate 

and, especially, FeCN are somewhat between those reported for the holoenzyme (Cénas et al, 

2007). A similar low heme content was observed upon purification of the Fcb2-S371A variant, 

however the FMN content was only 0.25 mol/mol protein. The Km value for L-lactate was increased 

approximately 6-fold with respect to the wild-type protein and that for FeCN was decreased 

approximately 4-fold. The kcat value was 6-7-fold lower that that measured with the wild-type 

enzyme even after correction for the flavin content of the preparation (Table 4.3.1). 

Thus, we turned our attention on the production of Fcb2 and Fcb2-S371A as pDSb2 derivatives. 

pDSb2 is the plasmid most commonly used for the production of full-length Fcb2 and its variants. 

pDSb2 and pDSb2-S371A were transformed into E. coli HB101. High levels of wild-type and 

S371A-Fcb2 were obtained by growing cells at 37°C for 16 h (Figure 4.3.1 panel A). 13 g of E. coli 

HB101 cells were homogenized by sonication and the crude extract was loaded on a hydroxyapatite 

column, equilibrated in buffer H. Weakly absorbed proteins were washed with 2 column volumes of 

buffer H containing 20 mM DL-lactate, 0.5 mM PMSF. The protein was eluted by applying a 30 to 

600 mM (Na, K) phosphate gradient in buffer containing 20 mM DL-lactate, 0.5 mM PMSF (see 

Methods). The pooled fractions were concentrated and dialyzed against buffer I. The wild-type 

Fcb2 could be purified near to homogeneity (Figure 4.3.1 panel B). It presented a full-complement 

of heme, essentially stoichiometric amounts of FMN and had a specific activity value similar to 

those reported in the literature (Table 4.3.1; (Gondry et al, 1996; Cénas et al, 2007; Sobrado et al, 

2001; Gondry et al, 2001; Sobrado and Fitzpatrick, 2003)). The Fcb2-S371A variant produced from 

pDSb2-S371A could also be purified by the same procedure (not shown). The resulting protein was 

similar to the wild-type with respect to heme content, but the flavin content was only 0.4 mol/mol 

enzyme. The kcat value was approximately 10-fold lower than that of the wild-type (Table 4.3.1). 



 

The Km for lactate was essentially unchanged, but that of FeCN was significantly decreased leading 

to a low value that could not be precisely measured (Table 4.3.1). Thus, it appears that the S371A 

substitution affects flavin incorporation as found for other Fcb2 mutant forms, namely the R298K- 

(Mowat et al, 2000), H373- (Gaume et al, 1995), Y254L- and D282N-Fcb2 variants (Gondry et al, 

1996; Gondry et al, 1995). For all these mutants it has been concluded that the lack of flavin 

insertion is due to an altered folding pathway during protein production in E. coli, but that the 

fraction of flavinylated enzyme is properly folded and can be studied to obtain information on the 

role of the mutated residue in Fcb2. In support of the fact that this may also be applied to Fcb2-

S371A are the fact that the position of the absorbance maxima of the oxidized and reduced enzyme 

forms are similar (Figure 4.3.2), as the absorbance changes observed during sulfite titration (see 

below). For the Fcb2-S371A form, the 10-fold decrease of kcat in the absence of significant changes 

of the Km for L-lactate suggests that the rate of the enzyme reductive half-reaction is specifically 

lowered by the amino acid substitution.  

 

Sulfite reactivity of FMN bound to Fcb2-S371A 

Sulfite forms a stable covalent adduct with the N(5) position of Fcb2 FMN coenzyme, the formation 

of which can be monitored spectrophotometrically being associated to characteristic spectral 

changes (Lederer, 1978; Massey et al, 1969; Müller et al, 1969). As expected, sulfite titration of the 

wild-type Fcb2 led to spectral changes, comparable to those observed for the pET derivative (Figure 

4.3.2 inset) and a calculated Kd (2.8 ± 0.1 μM, Table 4.3.1) similar to those found in literature 

(Lederer, 1978; Gondry et al, 1995). For the Fcb2-S371A form, the shape of the difference spectra 

(Figure 4.3.2) were also similar to those obtained with the wild-type enzyme, but the calculated Kd 

was approximately 10-fold higher (Table 4.3.1). In all these spectra, the 400-430 nm region is 

poorly defined due to the presence of the strong heme signal. This is especially troublesome with 

the S371A mutant where the heme:flavin ratio is approximately 2, with a ratio of the extinction 

coefficients of heme and flavin of at least 10 in favor of heme. 

The observed increase of the Kd value of the FMN-sulfite complex could be explained with an 

altered conformation of the active site or by making the hypothesis that S371A substitution lowers 

the proton affinity of H373 by preventing the correct positioning of Wat609. Indeed, the stability of 

the flavin-sulfite adduct in Fcb2 has been ascribed to the positively charged H373 in the reduced 

enzyme (or in the enzyme sulfite complex) due to the mutual stabilization of the negative charge of 

the flavin introduced by sulfite addition. 

 

 



 

Effect of the S371A substitution on the pH dependence of the steady-state kinetic parameters 

kcat and kcat/Klac 

The pH profile of the initial reaction velocity was firstly determined between pH 4.0 and 10 in the 

presence of fixed concentrations of L-lactate (5 mM) and FeCN (1 mM) (Figure 4.3.3 panel A and 

B, Table 4.3.2) for the wild-type and mutant forms produced from the pET and pDS-based 

plasmids. The initial velocity of the reaction of the wild-type Fcb2 forms obtained with the two 

plasmids exhibited a pH dependence similar to each other (Figure 4.3.3 panel A) and to the kcat and 

kcat/KLac profiles reported for Fcb2 under similar buffer and temperature conditions (Sobrado et al, 

2001; Sobrado and Fitzpatrick, 2003) with apparent pKa values of 5.2 ± 0.1 and 9.5 ± 0.1 (Figure 

4.3.3, Table 4.3.2). The pH dependence of the initial velocities of the reaction catalyzed by the two 

Fcb2-S371A forms were also similar to each other and to the corresponding curve obtained with the 

wild-type species (Figure 4.3.3 panel B, Table 4.3.2). The pH profiles of the apparent kcat and 

kcat/KLac values were also determined between pH 4.0 and 7.0, for the wild-type Fcb2 form obtained 

with pDSb2 and the two Fcb2-S371A enzymes (Figure 4.3.3 panel C and D, Table 4.3.2). The pKa 

governing the ascending limb of the kcat and kcat/KLac profiles of Fcb2 has been tentatively assigned 

to that of H373 (Lederer, 1991). Thus, it was of interest to test an effect of the S371A substitution 

on this part of the pH profile. For Fcb2, the kcat and kcat/KLac values increased with the dissociation 

of a group with pKa of 4.4 ± 0.1 and 4.8 ± 0.1, respectively (Figure 4.3.3 panel C). The pH profiles 

obtained with the two Fcb2-S371A variants were similar to each other and the calculated pKa values 

and the calculated pKa values from the kcat and kcat /KLac profiles were 4.7 ± 0.1 and 5.0 ± 0.2, 

respectively (Table 4.3.2). Thus, taking into account the error associated with these determinations, 

no evidence of the effect of the S371A substitution on the pKa value governing the ascending limb 

of the kcat and kcat/KLac profiles could be obtained. This lack of effect does not contradict the 

prediction made on the basis of the simulations that the water molecule held in place by S371 

modulates the proton affinity of H373. Rather, it may suggest that Wat609 may influence the 

protonation state of H373 in the reduced enzyme and/or that the pKa governing the ascending limb 

of the V and V/KLac profiles of Fcb2 is not that of H373 in the oxidized enzyme. Both these cases 

are possible. The pKa was assigned to that of H373 on the basis of the observation that H373 is the 

only ionizable group in the active site that must be dissociated for catalysis and which may have a 

pKa in the observed range in the oxidized enzyme (Lederer, 1991). However, it was not ruled out 

that the observed value is not that of a microscopic pKa (Lederer, 1991). Against the assignment of 

the observed pKa to that of H373 in the oxidized enzyme (or at least its insensitivity to the charge 

on the neighbouring D282) is the fact that the pH profile of V exhibited by the D282N-Fcb2 variant 

was similar to that of the wild-type enzyme (Cénas et al, 2007). D282 is the negatively charged 



 

residue adjacent to H373, which should stabilize the protonated, positively charged, H373 form. 

However, the D282N substitution lowered the pKa of the active site base in the reduced enzyme by 

1.5 units (Gondry et al, 1996). 

 

Effect of the S371A substitution on the deuterium primary kinetic isotope effects  

The primary kinetic isotope effects on kcat and kcat /KLac were also determined in the presence of 1 

mM FeCN at pH 7.5 (Figure 4.3.4, Table 4.3.3) for both the wild-type and the Fcb2-S371A forms 

produced with the pDS derivatives. For Fcb2, the magnitude of the kinetic isotope effects provides 

valuable information on the changes of the rate of lactate oxidation during the enzyme reductive 

half reaction.  

For Fcb2-S371A the calculated D kcat and D kcat /KLac were 6.1 ± 0.1 and 6.0 ± 0.4, respectively, thus 

greater than the corresponding values measured by us with the wild-type enzyme  (D kcat, 4.8 ± 0.1 

and Dkcat /KLac , 4.1 ± 0.3; Table 4.3.3) and found in the literature. The similarity of D kcat and Dkcat 

/KLac supports the concept that also with Fcb2-S371A the KLac value measured under steady-state 

conditions equals the dissociation constant of the enzyme-lactate complex (Gondry et al, 1996; 

Klinman and Matthews, 1985), and confirms that the mutation has no effect on lactate binding to 

the enzyme. The higher values of the primary kinetic isotope effects for the Fcb2-S371A variant as 

compared to those of the wild-type enzyme clearly indicate that the amino acid substitution has a 

specific effect on the flavin reduction rate, which becomes more limiting the overall turnover. This 

effect would be consistent with a lower stabilization of the transition state due to the destabilization 

of the positively charge on H373 in the absence of the water molecule. 



 

4.4 CONCLUSIONS 

Flavocytochrome b2 (L-lactate:cytochrome c oxidoreductase, Fcb2) is the structural and 

mechanistic prototype of a family of α-hydroxyacid dehydrogenases that are believed to share a 

common mechanism for the oxidation of the α-hydroxy acid substrate in the enzyme reductive half 

reaction. Recent first principles molecular dynamics studies on active-site models of Fcb2, in 

complex with the substrate, were carried out to contribute towards establishing the mechanism of 

the enzyme-catalyzed L-lactate oxidation, a still debated issue (Tabacchi et al, 2009). These 

simulations highlighted the relevance of an active site water molecule and suggested a role of the 

conserved S371 side chain hydroxyl group in positioning this water molecule close to the 

catalytically relevant D282-H373 couple. This residue, which belongs to the SNHGXRQ sequence 

characteristic of the Fcb2 family of enzymes, in fact is connected to H373 through a S371-Wat609-

D282-H373 hydrogen bonded chain.  

The role of S371 of Fcb2 has been studied for the first time by generating the S371A enzyme 

variant. Attempts to produce the isolated FDH domain carrying the S371A substitution led to the 

obtainment of the apoprotein form suggesting that the mutation interferes with protein folding. 

Production of wild-type Fcb2 in E. coli from a pET23b derivative led to a protein with the full FMN 

complement but only 0.2 mol heme/mol enzyme. Its kinetic properties were in between those of the 

holoenzyme and the isolated FDH domain. The S371A variant of full length Fcb2 produced from 

pET23b had a heme content as low as that of the wild-type form, but also a low FMN content 

confirming the effect of the S371A substitution on the protein folding pathway. 

The wild-type Fcb2 could also be produced in E. coli as pDS derivative. It presented a full-

complement of heme and stechiometric amounts of FMN. The Fcb2-S371A variant was similar to 

the wild-type with respect to heme content, but the flavin content was only 0.4 mol/mol enzyme. 

Thus, several lines of evidence indicate that the invariant S371 residue plays a role during enzyme 

folding. This observation finds precedents in other site directed mutants of Fcb2 (Mowat et al, 

2004; Gondry et al, 1995) where it was concluded that the flavinylated enzyme is properly folded 

and may be used to gain information on Fcb2 properties. That this is likely to be true also for the 

S371A-Fcb2 variant are: (i) the chromatographic behavior and protein stability, which are not 

significantly changed with respect to the wild-type enzyme; (ii) the similar difference absorbance 

spectra upon sulfite titration (Figure 4.3.2); (iii) the similar KM value for L-lactate (Table 4.3.1), and 

(iv) the similar pH dependence of v/E, kcat and kcat/KM (Figure 4.3.3). The S371A substitution 

appears to specifically affect: (i) kcat, which decreases by one order of magnitude, due to a lower 

rate of the enzyme reductive half reaction, as shown by the increase of the magnitude of the 

observed primary kinetic isotope effects (Table 4.3.3), and (ii) the Kd of the enzyme-sulfite adduct, 



 

which increases approximately 10-fold (Table 4.3.1). The observed changes in the properties of the 

S371A-Fcb2 may indicate an overall altered geometry of the active site that specifically affects the 

flavin reactivity by altering the tendency to form the flavin N(5)-sulfite adduct and the electron 

transfer from lactate. Among the factors that have been proposed to greatly stabilize the negatively 

charged reduced FMN and FMN-sulfite adduct is His373, which becomes readily protonated on 

flavin on flavin reduction or formation of the FMN-sulfite adduct. Therefore, these results are also 

fully consistent with the hypothesis formulated in the basis of simulations (Tabacchi et al, 2005, 

Tabacchi et al, 2007; Tabacchi et al, 2009), namely that S371 ensures the correct positioning of a 

water molecule (Wat 609 in 1fcb structure), which acts as a hydrogen bond donor to D282. This 

water molecule contributes to maintain H373 in the protonated state in the reduced enzyme by 

preventing proton transfer to D282 to yield neutral H373 and neutral D282. Therefore, the 

positively charged H373 can stabilize the transition state and the enzyme-sulfite adduct. The S371A 

substitution could prevent (or alter) lowering the proton affinity of H373. In such a case both FMN 

reduction would be lowered and the affinity of the FMN-sulfite adduct would be weakened without 

altering lactate binding as we observed. Overall, these results show the importance of S371 for the 

correct folding pathway of Fcb2 flavodehydrogenase domain, in agreement with previous studied 

that led to substitution of other active site residues. The observed effects on the reactivity of the 

flavin can be equally well explained by an overall altered geometry of the active site and by a 

specific effect of the S371A substitution as it emerged from the computational approach. In the 

latter case these results show how active site residues not in direct contact with the reaction center 

may be able to control and tune the physico-chemical properties of key catalytic residues, thus 

playing a fundamental role in enzymatic catalysis. Furthermore, these results highlight the 

importance of computational approaches to reveal potential, unexpected, functions of active site 

residues, thus guiding experiments. 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.1.1: Crystal structure of Fcb2 from S. cerevisiae in the tetrameric form in the presence of 
pyruvate (Xia et al, 1990; PDB code 1fcb). Only two N-terminal protein domain containing heme b2 (red) 
are shown. FDH domains are in contact through their C-terminal region. Cofactors and pyruvate moleculs 
are in ball-and-stick. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Schema 1: (A) The carbanion or proton abstraction (PA) mechanism. (B) The hydride transfer (HT) 
mechanism. The carbanion could evolve via either formation of a covalent intermediate at N5 or two 
consecutive single electron transfer steps. The active-site base (B) is only shown in the first part of each 
scheme.  
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Figure 4.1.2: Conserved residues for the enzymes of the Fcb2 family. LOX: L-lactate oxidase; LMO: L-
lactate monoxygenase; GLO: glicolate oxidase; HAO: long chain α-hydroxy acid oxidase; b2: 
flavocytochrome b2; MDH: mandelate dehydrogenase (Maeda-Yorita et al, 1995). 
 
  
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.1.3: L-lactate in the PA-prone orientation (panel A) and in the HT-prone orientation (panel 
B). The arrows indicate the postulated Hα to H373 transfer (panel A) or to N5 (panel B). Panel C: 
Representation of the minimum energy structure of the Fcb2 active site model in complex with the L-lactate 
obtained with computational simulations. The arrow indicates the sharing of Hα between substrate and H373 
residue sometimes observed in the simulations.
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Figure 4.1.4 Scheme of the effect of Wat609 on the acidity of H373 in Fcb2 active site model. Panels A-C depict the ionization state and hydrogen bonding 
interactions of key active site residues in the Fcb2 active site modeled in (Tabacchi et al, 2009). Panel A: the Michaelis complex; panel B: just before the 
transitions state; panel C: at the end of the reaction. Panels D-F show the ionization state and hydrogen bonding interactions of the active site residues observed 
during molecular dynamics simulations of the Fcb2 active site model omitting Wat609 (Tabacchi et al, 2005 and 2009). Panel D: starting configuration of the 
Fcb2 active site model; panel E: during molecular dynamics simulations of the Michaelis complex at 300 K, proton transfer events from H373 Nδ to D282 
carboxylate O(2) were observed leading to a negatively charged imidazolate ion and neutral D282 carboxyl group; panel F: during a series of constrained 
molecular dynamics done to test the reactivity of the Fcb2 active site model, transfer of the lactate αOH hydrogen (as a proton) to H373 Nε (forming a lactate 
alkoxide intermediate) concomitant with transfer of the H373 Nδ hydrogen (as a proton) to D282 was observed. For graphical purposes lactate is arbitrarily 
oriented, Ser371 and Wat 609 are drawn with thin lines to indicate that they are below D282. Potential hydrogen bonds are indicated with dashed lines. 
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Figure 4.1.5: S371-W609-D282-H373-pyruvate-FMN hydrogen-bonded chain. Distances are in Å. The 
arrows indicate hydrogen bonds from the donor to the acceptor atom. PYR: pyruvate 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.3.1: Fcb2 expression in E. coli HB101 cells and its purification on hydroxyapatite resin. Panel 
A: E. coli HB101 cells transformed with pDSb2 were grown in LB supplemented with 0.1 mM ampicillin at 
37°C and expression was induced with 0.1 mM IPTG at an OD600 value of approximately 1. Cells were 
harvested after 16 h. An aliquot was used to prepare the total extract (T). The cells were homogenized to 
obtain the crude extract containing soluble proteins (S, 90 and 180 μg) and the pellet (P). White dots indicate 
the position of Fcb2 (57 kDa). Panel B: Crude extract of cells containing Fcb2 (S) was loaded on a 
hydroxyapatite column equilibrated in 30 mM (Na, K) phosphate buffer, pH 7.0, containing 1 mM EDTA. 
Non bound proteins were collected with the flow-through (FT). Fractions eluted with gradient of phosphate 
containing Fcb2 were pooled (Pooled, 6.3 μg), concentrated (C, 35 μg) and dialyzed against 100 mM (Na, K) 
phosphate buffer, pH 7.0, 1 mM EDTA, 20 mM DL-lactate and 0.1 mM FMN (D; 45 μg). 
 
 
Table 4.3.1: Steady-state kinetic parameters  of the lactate dehydrogenation reaction catalysed by 
Fcb2 and S371A-Fcb2 in the presence of FeCN. Assays were carried out at 25°C in 100 mM potassium 
phosphate buffer, pH 7.5, 1 mM EDTA in the presence of the indicated substrate concentration or 
concentration range. Enzyme concentration is expressed per bound FMN. The dissociation constant of the 
enzyme-sulfite complex was determined by spectrophotometric titrations of the enzyme forms. Fcb2 and 
Fcb2-S371A were expressed as pET23b derivatives (pET plasmid) and pDS derivatives (pDS plasmid). n.d.: 
not determined. 
 
 

 

Enzyme Plasmid L-lactate, 
mM 

FeCN,  
mM 

Klac,  
mM KFeCN, mM kcat, 

s-1 
Ksulfite,  
μM 

Fcb2 pET 0.1-15 1 0.10 ± 0.01  128.0 ± 1.5 
  5 0.05-2  0.32 ± 0.005 151.5 ± 6.9 

n.d. 

 pDS 0.1-15 1 0.30 ± 0.03  394.8 ± 6.8 
  5 0.02-2  0.02 ± 0.002 364.6 ± 4.5 

2.8 ± 0.1 

S371A-Fcb2 pET 0.1-15 1 0.57 ± 0.03  22.6 ± 0.2 
  5 0.02-2  0.09 ± 0.014 22.7 ± 0.6 

17.6 ± 1.7 

 pDS 0.1-15 1 0.40 ± 0.02  29.2 ± 0.2 
  5 0.02-2  0.006 ± 0.001 26.8 ± 0.2 

25.0 ± 1.5 
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Figure 4.3.2: Spectra of Fcb2 (continuous lines) and Fcb2-S371A (dotted lines) produced from the pDS derivative in the reduced (thick lines) and oxidized 
(thin lines) forms. The wild-type and the S371A variant  spectra in the reduced and oxidized forms result very similar, with identical maxima absorption peaks (328 
nm, 424 nm, 527 nm and 557 nm for the reduced form; 359 nm, 412 nm, 447 nm, 480 nm, 531 nm and 562 nm for the oxidized one). Inset: Absorbance changes 
brought about by the formation of the FMN N(5)-sulfite adduct. The differences between the spectra of the free enzyme forms and those obtained after addition of 2 
mM sulfite have been calculated. Thick continuous line: 20 µM Fcb2 produced from the pET-derivative (heme concentration: 4 µM, calculated FMN concentration: 
17 µM); thick dotted line: 44 µM S371A-Fcb2 from the pET-derivative (heme, 9 µM; FMN, 11.2 µM); thin line: 19 µM Fcb2 from pDSb2 (heme, 15 µM; FMN, 
13.4 µM); thin dotted line: 17.4 µM S371A-Fcb2 from pDSb2/S371A (heme, 14 µM; FMN, 7 µM).  
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Figure 4.3.3: pH dependence of the L-lactate dehydrogenation reaction catalyzed by Fcb2 and Fcb2-
S371A. Panels A and B: initial velocities (v/E) were determined at 25°C in the presence of 5 mM L-lactate 
and 1 mM FeCN with the buffers system of (Sobrado et al, 2001): 50 mM Bis-Tris/HCl (triangles), 150 mM 
Hepes/KOH (circles) and 50 mM ethanolamine/HCl (squares). Panel A: Fcb2 produced from pDSb2 (open 
symbols, left axis) and from pETFcb2 (closed symbols, right axis). Panel B: Fcb2-S371A produced from 
pDSb2-S371A (open symbols, left axis) and pETFcb2-S371A (close symbols, right axis). Panel C: pH 
dependence of kcat (open circles) and kcat/KLac (closed circles) of Fcb2 produced from pDSb2. Panel D: pH 
dependence of kcat (open symbols) and kcat/KLac (closed symbols) of the Fcb2-S371A produced from pDSb2-
S371A (circles) or pETFcb2-S371A (squares). The curves show the fit of the data with Eq. 12 (Panel A and 
B) and Eq. 13 (Panel C and D) and the calculated parameters are reported in Table 4.3.2.  
 
 
Table 4.3.2: Summary of the pKa values calculated from the pH dependence of the reaction catalyzed 
by Fcb2 and the S371A variant produced from the pDS derivatives. The data shown in Figure 4.3.3 were 
fitted with Eq. 12 or Eq. 13 as described in the figure legend. 
 

Enzyme Parameter pKa1 pKa2 Limit  
(s-1 or mM-1s-1) 

Fcb2 v/E 5.2 ± 0.1 9.5 ± 0.1 320.0 ± 8.0 
 kcat 4.4 ± 0.1  279.9 ± 9.6 
 kcat/Klac 4.8 ± 0.1  756.7 ± 41.5  

Fcb2-S371A v/E 4.8 ± 0.1 9.3 ± 0.1 28.5 ± 0.7 
 kcat 4.7 ± 0.1  27.4 ± 1.3 
 kcat/Klac 5.0 ± 0.1  42.0 ± 2.9 

 

 

pH
4 5 6 7 8 9 10 11

v/
E

, s
-1

0

100

200

300

400

v/
E

, s
-1

0

20

40

60

80

100

pH
4 5 6 7 8

k c
at

, s
-1

; k
ca

t/K
, s

-1
 m

M
-1

0

200

400

600

800

pH
4 5 6 7 8

k c
at

, s
-1

; k
ca

t/K
 s

- 1
 m

M
- 1

0

10

20

30

40

50

pH
4 5 6 7 8 9 10 11

v/
E

, s
-1

0

10

20

30

v/
E

, s
-1

0

5

10

15

20

A 

B 

C

D



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.3.4: Determination of the primary kinetic isotope effect on lactate oxidation catalyzed by 
Fcb2 and Fcb2-S371A. Dependence of the initial reaction velocity of reactions catalyzed by Fcb2 (from 
pDSb2, Panel A) and by Fcb2-S371A (from pDSb2-S371A, Panel B) at 25°C in 100 mM potassium 
phosphate buffer, pH 7.5, in the presence of 1 mM FeCN and varying concentrations of L-[2-1H]-lactate 
(open symbols) or L-[2-2H]-lactate (closed symbols). The curves are the best fit of the data to the Michaelis 
Menten equations (see Table 4.3.3 for the calculated parameters). 
 
 
Table 4.3.3: Summary of the primary kinetic isotope effects exhibited by the wild-type and the S371A 
forms of Fcb2. Initial velocities were measured at 25°C in 100 mM potassium phosphate, pH 7.5, in the 
presence of 1 mM FeCN and varying L-[2-1H] or L-[2-2H]-lactate using Fcb2 and S371A-Fcb2 expressed 
from the corresponding pDS derivative (see Figure 4.3.4). 
 

Enzyme Substrate kcat, 
s-1 

KLac, 
mM 

kcat/KLac, 
mM-1 s-1 

Dkcat Dkcat/KLac

Fcb2 L-[2-1H]-lactate 360.5 ± 4.0 0.21 ± 0.01 1716.5 ± 84.0   

 L-[2-2H]-lactate 74.9 ± 1.0 0.18 ± 0.01 416.2 ± 23.8 4.8 ± 0.1 4.1 ± 0.3 

Fcb2-S371A L-[2-1H]-lactate 31.4 ± 0.5 0.42 ± 0.02 74.6 ± 3.7   

 L-[2-2H]-lactate 5.1 ± 0.1 0.41 ± 0.02 12.4 ± 0.6 6.2 ± 0.1 6.0 ± 0.4 
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