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Abstract 

 

 

 

New, fast, low cost and simple methods were developed to provide tools to detect a possible contamination of 

foodborne pathogens or environmental toxins, avoiding the diffusion of dangerous food. New biosensors were created 

using nanostructured thin films deposited on silicon wafers as substrates. In detail mesoporous materials (pores of 2-

40 nm) of SiO2, TiO2, HfO2, ZrO2 were synthesized via ―evaporation induced self assembly‖, and the behaviour of 

these materials was studied at different temperature and in PBS solution. Mesoporous titania thin films have been 

identified as the materials with  the best properties and therefore were used for the development of the final devices. 

First of all a biosensor for the detection of dioxins was developed. Titania films were functionalized with APTES, an 

organic linker, and three peptides selective for Dioxins (TCDD) were linked to the amino-terminal groups. The 

peptides were bonded to a fluorescent marker, FITC, and the fluorescence variations were studied after the absorption 

of TCDD on the films. In this way it was possible to obtain a chip able to detect pM levels of TCDD. The second part 

of the work was based on the detection of pathogens with FTIR, using mesoporous titania as substrate for the 

development of the biosensor. This time titania thin films were functionalized with specific antibodies for the 

detection of E.coli O157:H7. The absorption of antibodies was carried out directly on the substrates and on the 

substrates functionalized with APTES and GA (Glutaraldehyde) used as cross linker. With the functionalized films 

were reached detection limits of 1x10
2
 CFU/ ml of E.coli. These results obtained with our devices have been 

competitive with the existing bioassay methods but with advantages compared to the old techniques as low cost, 

simplicity, speed of analysis, and possibility to use on-field. This methods can be effective for a screening of samples 

but, for more specific analysis, a better sensibility is required. To reach lower detection limits was used another 

vibrational technique, Raman spectroscopy, complementary to FTIR, taking advantage of new properties due to the 

SERS effect. This technique is based on the detection of analytes adsorbed, or in close proximity, of a special resonant 

surface of a noble metal (Ag). Starting from our materials (mesoporous titania thin films) were grown Ag
0
 

nanoparticles into the pores of titania films  that worked as a mold for directing the size and the distribution of 

nanoparticles, avoiding  nanoparticle dispersion and aggregation. The features were monitored to obtain a material 

able to detect analytes in very low concentration and the effectiveness of these materials was studied dipping titania-

AgNPs thin films in Rhodamine B isothiocyanate (RhBITC) and Cytochrome C (CytC) solutions. The results obtained 

from raman measures revealed that films with the analyte (TiO2  films without AgNPs) showed a Raman spectrum 

visible until a concentration of 1x10
-3

M; while with our new substrates (TiO2  films with AgNPs) it was possible to 

discriminate the spectrum of RhITC and Cytocrome C until a concentration of 1x10
-16

 M, obtaining an analytical 

enhancement factor AEF of 1x10
13

. This is an excellent result that can be applied to the detection of different 

contaminants because each one has a characteristic fingerprint and can be discriminated with this technique with or 

without the use of labels. In this way will be possible to use these substrates for the detection of contaminants in very 

low concentration, until a single molecule level, opening the route to new ways of detection, simple, fast, low cost; 

achieving the objective of our work.  
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Introduction 

 

Food safety and foodborne illness 

 

Food safety is an important public health issue in developed and developing countries, for this 

reason there is a big interest in this field. In the last years there have been different problems 

related to food safety because new foodborne diseases appeared. There are different  causes that 

have exacerbated this problem as the increase in international travel and trade that helped to spread 

the local pathogens into new geographic areas, the microbial adaptation, changes in 

microorganisms and in food production systems,  changes in human population and in lifestyle, 

globalization of the food supply; all these behaviours have produced foodborne diseases. 

Foodborne illnesses are diseases derived by pathogens or  environmental toxins that enter into the 

body with the consumption of food or water and can be infectious or toxic in nature. There are 

some studies that report how only in 2005 there has been a mortality of  1.8 million people in the 

world caused by diarrhoeal diseases, even if difficult to estimate, it seems that in industrialized 

countries the 30% of the population suffers for diseases related to food consumption [1]. These 

problems are accentuated in developing countries where the hygienic standards are low and 

parasites cause a big warning for food security. Most infections are not reported because of small 

dimensions but there have been several that involved a big number of individuals. The major 

microorganisms involved in these diseases have been identified as Salmonella, Campylobacter, 

Listeria, Escherichia coli, Vibrio cholerae. In particular, infections due to enterohaemorrhagic E. 

coli, have a relatively low incidence but produce severe and sometimes fatal health consequences, 

particularly among infants, children and the elderly, resulting among the most serious foodborne 

infections. In 1982 the first infection caused by Escherichia coli serotype O157:H7 has been 

described in literature; it can be contracted with the assumption of some particular food as lettuce, 

beef, cheese curd, raw milk, game meat and unpasteurized fruit juice and has been identified as the 

major cause of acute renal failure and bloody diarrhoea. Due to this hazards nowadays there is the 

need to avoid the diffusion of contaminated food and with this purpose led to focus a part of our 

work on the development of new detection methods to prevent the diffusion of foodborne 

pathogens, in order to improve food safety. 

In addition to food diseases caused by microrganisms in the last years there have been several 

cases produced by cyanogenic glycosides, toxins contracted from poisonous mushrooms, natural 
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toxins as mycotoxins (ochratoxin A and aflatoxin), marine biotoxins, that frequently cause 

intoxications. There are also other agents that can be transmitted to humans with the consumption 

of bovine products and brain tissues as the bovine spongiform encephalopathy (BSE, or "mad cow 

disease") associated with the human variant Creutzfeldt-Jakob Disease (vCJD). Other toxic 

compounds of great hazard in food chain, and in particular in fishery, are metals, such as lead and 

mercury. As well as pathogens, metals and natural toxins, there are also other chemical agents that 

can enter in the food chain and cause diseases as the Persistent Organic Pollutants (POPs) 

compounds that can accumulate in the environment and enter into the human body as dioxins and 

polychlorinated biphenyls (PCBs) [1]. PCBs and Dioxins can be produced from waste incineration 

and as by-products of industrial processes; the chronic exposure to these agents can lead to 

dangerous effects in humans as cancer and death. These compounds and POPs contaminate food 

through pollution of air, water and soil and it is important to know their presence in food to 

prevent illnesses. For the great incidence of these compounds in our country and for the frequent 

food complaints was decided to develop a new, fast method of detection to prevent the diffusion of 

environmental toxins. On this theme will be developed another part of our work because the 

researcher has an important task: to provide the tools to detect a possible food contamination 

avoiding the development of diseases related to it.  

 

The purpose of the first and second chapter is to describe the conventional methods to detect 

pathogens and environmental toxins and study new solutions to overcome the issues that these 

techniques pose (third chapter). In particular in the next chapters will be described the state of the 

art for the detection of microorganisms, as E.coli and, environmental toxins, as Dioxins that will 

be analyzed in detail in our work. 

 

Foodborne pathogens 

 

There are different bacteria that can be involved in foodborne illness, in particular Campylobacter, 

Salmonella, Listeria monocytogenes, and Escherichia coli O157:H7 are present in the majority of 

food-borne outbreaks [2,3] and most of the food products recalls are due to these pathogens [4]. In 

particular E. coli is a typical inhabitant of the human intestinal tract and can be a causative agent of 

intestinal and extra-intestinal infections [5]. E. coli O157:H7 is a rare strain of E. coli that is 

considered to be one of the most dangerous foodborne pathogens [6,7] because it can lead to death 

producing a dangerous toxin released in the intestine that can cause the haemolytic uremic 



4 

 

syndrome or hemorrhagic colitis [8]. It is extremely important to check, during the food 

production, any presence of this strain that can be found frequently in different food as chicken, 

ground beef, raw milk. Recently new measures have been taken to check the food healthiness as 

good agricultural and manufacturing practices [9, 10, 11], hazard analysis in critical control point 

(HACCP) [12, 13] and food barcode reader devices to determine the expiry date of the products 

[14] but it is not enough. For this reason the development of new detection methods today assumes 

a big importance to prevent and identify problems related to health and safety.  

 

The purpose of the next section is to review the traditional methods employed for foodborne 

pathogen detection over the past decades to the recent year, by highlighting their strengths and 

weakness, to find a way to improve them. 

 

Conventional detection methods 

 

The conventional methods for the detection and identification of pathogens are mostly based on 

microbiological and biochemical identification; this methods are sensitive, inexpensive, can 

recognize, in a qualitative and quantitative way, the type of organism and the number of colonies, 

but they are not efficient because it is necessary a step of enrichment to detect low number of 

pathogens also in food and water samples [15].  

Conventional methods are based on:  

o culture and colony counting methods  (that involve counting of bacteria) 

o immunology - based methods (that involve antigen–antibody interactions)  

o the polymerase chain reaction (PCR) method (which involves DNA analysis).  

 

Culture and colony based methods 

 

Culture and colony based methods are accurate and reliable techniques for the detection of 

pathogens. With these techniques it is possible to amplify the signal for the detection of single 

bacteria through the growth of a cell into a colony.  All these procedures are time consuming 

because they require 72 h for the colony counts, about 18h for the growth of a colony of 10
6
 

organism and different steps of pre enrichment, selective enrichment, biochemical screening and 

serological confirmation. Also the interpretation of results takes long time and, to have a 
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confirmation, often there are required additional tests. These methods have been used for detection 

of L. monocytogenes [16], S. aureus, Salmonella, Coliforms, E. coli, [17], Campylobacter jejuni 

[18] and Yersinia enterocolitica [19], etc.  The main problem of this technique is the time involved 

in the analysis: for example the detection of L. monocytogenes requires two-steps of cultural 

enrichment that take one week only for the biochemical identification of the colonies [20]  and for 

the detection of Campylobacter are necessary 4–9 days for a negative result and 14-16 days for the 

confirmation of a positive result [21, 22]. Sometime it is possible to have an underestimation of 

pathogens because they can enter in a dormancy state, becoming non culturable and this is another 

point against this method. These techniques are not convenient in many industrial applications, in 

particular in food field; for this reason they are often combined with other methods to obtain better 

results. 

 

Immunology-based methods 

 

Immunological methods based on antigen–antibody bindings,  that include heavy chain antibodies, 

polyclonal, monoclonal or recombinant antibodies for the detection of pathogens, have been 

largely employed for the detection of toxins, spores, virus, and bacterial cells [23,24] as 

Escherichia coli, Salmonella, L. monocytogenes, Staphylococcus, Campylobacter spp. The basic 

problem of this technique is that antibodies are limited for specificity and abundance. With the 

development of monoclonal antibodies, immunological detection of pathogen contamination has 

become more sensitive, specific, reproducible and reliable, because they provide a big amount of 

single antibodies. Thanks to these advances, lately, have been developed different immunoassays 

for the detection of a wide range of bacteria and their products [24] with the disadvantage that they 

are expensive to produce and they require a skilled technician and specialized growth apparatus. 

To solve this problem there have been created recombinant antibodies that can be produced in 

reasonable quantities in short periods of time from bacterial expression systems [22], and have 

been used in different protocols.  

Between the immunological techniques for pathogen detection in food there have been reported 

different techniques: the enzyme linked immunosorbent assay (ELISA), enzyme-linked 

immunomagnetic chemiluminescence (ELIMCL), enzyme immunoassay (EIA), radio-

immunoassays (RIA), flow injection immuno-assay, enzyme-linked fluorescent assay (ELFA), 

bioluminescent enzyme immunoassay (BEIA), immunomagnetic separation, immuno-precipitation 

assay, immunochromatography (ICG) strip test, agglutination test, western blot test, and 
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technically modified western blot that includes the line immunoassay (LIA) and the recombinant 

immunoblot assay (RIBA). All these techniques are due to the fact that antibody-based detection 

technique requires less assay time compared to traditional culture techniques, permitting to detect 

microorganisms in ―real-time‖. These methods are not as specific and sensitive as nucleic acid-

based detection, but they are more robust, faster and able to detect not only contaminating 

organisms but also their biotoxins that may not be expressed in the genome of the organisms [23]. 

The problems associated are the potential interference of contaminants, low sensitivity of the 

assays and low affinity between antibody and pathogen or with other analytes measured [25].  

 

Polymerase chain reaction (PCR) 

 

The polymerase chain reaction (PCR) is a technique realized about 20 years ago that can be used 

to amplify small quantities of genetic material to determine the presence of bacteria. The PCR 

method is extremely sensitive, in fact it is possible to detect a single pathogenic bacterium in food 

because a target sequence of DNA can be amplified 1-million-fold in less than an hour. This 

method is widely used because it has a low percentage of false-positives and can be used to 

enhance the sensitivity of nucleic acid-based assays. PCR has an advantage in relation to other 

methods because it is a sensitive, specific, rapid technique, with high accuracy and it is able to 

detect small amounts of target nucleic acid in a sample. Sometimes it is possible to have false-

positives for the interference with target-cell lysis, necessary for nucleic acid extraction, nucleic 

acid degradation and/or direct inhibition of the PCR, and for this reason it is necessary to use 

appropriate controls [26]. This technique has been used for the detection of different pathogens 

like S. aureus, L. monocytogenes, Salmonella, Bacillus cereus, Escherichia coli O157: H7,  

Yersinia enterocolitica, C. jejuni. There are different PCR based methods for pathogen detection: 

real-time PCR, multiplex PCR and reverse transcriptase PCR (RT-PCR). In the last years there has 

been a development in PCR techniques, as reported in literature with multiplex PCR that permitted 

to detect simultaneously several pathogens with different primers that amplify DNA regions 

coding for specific genes of each bacterial strain targeted [27]. PCR is a valuable alternative to 

traditional detection methods for its speed, good detection limit, selectivity, specificity, sensitivity, 

potential for automation, quick results with low manipulation, but it is not able to distinguish 

between viable and non-viable cells, since DNA is always present in the cell dead or alive; this 

limitation can be overcome with  Reverse Transcriptase PCR (RT-PCR). The principal issue for 
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the detection of microbes using PCR is that it is expensive, complicated to use, and requires pure 

samples, time for processing, expertise in molecular biology and skilled workers.  

 

From all these assays we can deduct how today there is the need of a new device for an in situ, 

simple, inexpensive and quick detection, that does not require skilled workers, with high 

sensitivity, for a fast screening of different samples and that gives an immediate response. 

 

Dioxins 

 

The term ―dioxins‖ includes a family of chlorinated aromatic hydrocarbons  [28] polychlorinated 

dibenzo para dioxins (PCDDs), polychlorinated biphenyls (PCBs) and polychlorinated 

dibenzofurans (PCDFs) that are chemically and structurally related (Fig. 1). The group includes 

210 theoretically possible congeners with 75 polychlorinated dibenzo-p-dioxins (PCDDs) and 135 

polychlorinated dibenzofurans (PCDFs). Certain dioxin-like polychlorinated biphenyls (PCBs) 

with similar toxic properties are also included under the term ―dioxins‖ even if they have a 

different molecular structure and can be divided into different groups according to their 

biochemical and toxicological properties. The most widely known and most toxic congener of 

dioxins is 2,3,7,8- tetrachlorodibenzo-para-dioxin (TCDD). 

 

     

                     TCDD                                  PCB                                    PCDD                                    PCDF              

Fig.1 Dioxins and dioxin like molecules 

 

Dioxins and dioxin-like PCBs have dangerous effects on human health as endocrine disrupting 

effects, reproductive system effects, immunotoxicity, dermal toxicity, teratogenicity, and 

carcinogenicity [29].  
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Sources of dioxins 

 

Dioxins and PCB are by-products of industrial processes but can also result from volcanic 

eruptions or forest fires and can be produced also in different activities as manufacturing of certain 

chemicals, incineration of municipal waste, bleaching of wood pulp [30-33]. In terms of release 

the worst production is due to incomplete burning of uncontrolled waste incinerators from solid 

and hospital waste. Dioxins are very stable against chemical and microbiological degradation and 

therefore persistent in the environment. Polychlorinated biphenyls (PCBs) have been largely used 

in different industrial and commercial applications for their physical and chemical properties, as 

chemical stability, high boiling point, non-flammability, low heat conductivity and high dielectric 

constants [34]. They are called ―dioxin-like PCBs‖ because some substituted compounds show 

toxicological properties that are similar to dioxins. Other PCBs termed ―non-dioxin-like PCBs‖ do 

not have a toxicological behaviour similar to dioxins. In 1985 these toxic products have been 

banned from the market but it is possible to find large amounts in plastic products, electrical 

equipment, and buildings (e.g. plastic carpeting and sealing materials). The most dangerous 

dioxin-like compounds have in common some chlorine substitutions and a high number of 

chlorine atoms in the molecule that, if assumed, presents a high stability in the body and a slow 

metabolism, for this reason once entered it accumulates in the organisms. Dioxins were found in  

some soils, air, sediments and water through which they enter in the food chain; therefore large 

quantities were found in food, especially dairy products, fish and shellfish, meat and plants [35, 

36]. Although the formation of dioxins is local, the environmental distribution is global, for this 

reason dioxins are found throughout the world in the environment.  

Dioxin contamination incidents 

 

The World Health Organization set 1-4 pg ITEQ/kg/day as the tolerable daily intake TDI of 

dioxins in the diet of European population that has been noted usually to exceed this value if we 

consider also PCBs. There are different examples in the last decade of declared food 

contaminations due to too high levels of dioxins for an uncontrolled production of animal feed and 

contamination of clays, citrus pulp pellets, fats or tainted ingredients, with dioxins used for their 

production. A serious accident happened in our country in 1976 in a chemical factory in Seveso, 

Italy, when large amounts of dioxins were released. A cloud of toxic chemicals, including 2,3,7,8-
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Tetrachlorodibenzo-p-dioxin TCDD, was released into the air and contaminated an area of 15 

square kilometres where 37 000 people lived. A recent contamination event that has been more 

significant was in 2008 in Ireland where many tons of pork meat and pork products were recalled. 

In this case up to 200 times more dioxins than the safe limit were detected in samples of pork. This 

finding led to one of the largest food recalls related to a chemical contamination. Extensive studies 

in the affected population are continuing to determine the long-term human health effects from this 

incident [35]. In July 2007, the European Commission issued a health warning to its member 

States after high levels of dioxins were detected in a food additive, guar gum, used largely in meat, 

dairy and dessert products. Other incidents of food contamination have been reported in other parts 

of the world and frequent is the alarm-dioxin for the production of mozzarella cheese in the Naples 

area. Although all countries can be affected, most contamination cases have been reported in 

industrialized countries where adequate food contamination monitoring is available and where a 

greater awareness of the hazard and better regulatory controls for the detection of dioxin problems 

exist. 

Toxicity of dioxins 

The toxicity of dioxins and dioxin-like PCBs is related to the binding to the aryl hydrocarbon (Ah) 

receptor thereby inducing protein synthesis. The toxicity of all the dioxin classes that includes 

dibenzodioxin, dibenzofuran and PCB congeners differs considerably. Considering the 210 

possible congeners of dioxin and furan, only those substituted in each of the 2-, 3-, 7- and 8-

positions of the two aromatic rings are of toxicological concern. These 17 congeners exhibit a 

similar toxicological profile, with 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) the most 

toxic congener [37, 38]. Also considering the 209 possible PCB congeners, only 12 can easily 

adopt a coplanar structure that allows binding to the Ah receptor, showing dioxin-like toxicity [39, 

40]. In general dioxins are more toxic than the PCBs, but the quantities of PCBs released to the 

environment are several times higher, and for this reason often there are much higher levels in 

food and feed than dioxins. The toxicity of these compounds is due to the property of ―dioxins‖ to 

be fat soluble and to accumulate in organs and systems, once entered into the body, in fact their 

half-life in the body is estimated to be seven to eleven years. Their chemical stability and the 

absorption in fat tissues permits to endure a long time into the body of human and animals, 

biomagnifying through the food chain. They are generally not absorbed by plants,  but can stay on 

the surfaces of the leaves, except some members of the cucurbit family [41]. Recent international 

studies show how around 95% of human exposure comes from the  consumption of food of animal 

origin [36]; other ways of contamination are through breathing in air contaminated by dioxins and 
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dioxin-like PCBs from smoke, factory or incinerator emissions or from uncontrolled hazardous 

waste sites. Dioxins are reputed to be among the most toxic of organic compounds. Short-term 

exposure may result in skin lesions (chloracne and patchy darkening of the skin) and altered liver 

function, while long-term exposure is linked to impairment of the immune system, problems to the 

nervous system, the endocrine system and reproductive functions. Chronic exposure of animals to 

dioxins has resulted in several types of cancer. Based on both animal studies and epidemiologic 

evidence 2,3,7,8-TCDD was classified as a ―known human carcinogen‖ (class 1) by the World 

Health Organisation (WHO) and  International Agency for Research on Cancer (IARC). However, 

2,3,7,8-TCDD does not directly affect genetic material and there is a level of exposure below 

which cancer risk would be negligible. Dioxins and dioxin-like PCBs in general contain complex 

mixtures of different PCDD, PCDF and PCB congeners and to describe the cumulative toxicity of 

these mixtures and establish the risk it has been introduced the concept of toxic equivalency (TEQ) 

[37]. Individual toxicity equivalency factors (TEFs) have been assigned to the PCDD, PCDF, and 

PCB congeners for their relative toxicity compared to 2,3,7,8-TCDD, which is considered as the 

reference congener (TEF=1).  

Mechanism of action of dioxins  

 

All the bioassays used for TCDD and related halogenated aromatic hydrocarbons (HAHs) are 

based on the molecular mechanism by which these chemicals produce their biological and toxic 

effects and focus on the ability of these chemicals to activate the Ah receptor (AhR) and AhR 

signal transduction pathway. The AhR is an intracellular transcription factor ligand-dependent that 

is responsible for mediating the effects of TCDD, TCDD-like HAHs and other ligands in a 

different range of species [42-44]. The current reported mechanism model of AhR action is 

presented in figure 2. TCDD and related HAHs enter into the responsive cell and bind with high 

affinity to the cytosolic AhR which exists as a multi-protein complex containing the chaperone 

protein hsp90 [45, 46], XAP2 [47], and the co-chaperone protein p23 [48]. After the ligand 

binding, the AhR seems to have a conformational change that results in its accumulation in the 

nucleus, release of the ligand AhR from its associated proteins and dimerization of the AhR with a 

related nuclear protein called Ah receptor nuclear translocator (Arnt). AhR-Arnt complex converts 

the AhR into its high affinity DNA binding form. Binding of the heteromeric ligand AhR-Arnt 

complex to its specific DNA recognition site, the dioxin responsive element (DRE), upstream of a 

responsive gene (such as cytochrome P4501A1 (CYP1A1)), stimulates its transcription and leads 

to an increase in production and accumulation of CYP1A1 [49]. Not only the AhR is important to 
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regulate gene expression, but it is also responsible for mediating the toxicity of TCDD and related 

HAHs. The good correlation between the toxic potency of a HAH congener and its ability to 

activate the AhR and AhR-dependent gene expression led to the development and utilization of 

AhR-based bioassay systems for the detection of dioxin and related HAHs [50]. 

 

 

Fig. 2 Molecular mechanism of induction of gene expression by TCDD and related AhR agonists. Reproduced by [50] 

 

Conventional detection methods  

 

TCDD and its related compounds induce dangerous effects, as previously described; this has 

generated considerable concern worldwide. In the last years many analytical techniques have been 

developed for the detection and quantification of HAHs in environmental, biological, and food 

samples, but, the ‗‗golden standard‘‘ for HAHs analysis uses high-resolution gas chromatography / 

mass spectrometry (HRGC/MS).   

 

Classical chemical analysis 

These methods are based on the separation and quantification of dioxin-like compounds from 

matrices for their difference in molecular size, charge, mass, polarities, and redox potentials. The 
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advantages are the accurate measurement of the known isomers and congeners in sample extracts,  

the possibility to know the conformation of the structure, the congener and the pattern specificity, 

the calculation of the TEQ and the international standardization. Possible disadvantages include 

potential loss in specificity, not all the standards of interest are available, high cost, a long time for 

analysis, the limited information of the biological potency and potential interactions in complex 

mixture of dioxin-like compounds, complicated  separating process and expensive equipments for 

the analysis. This technique is not suitable for a rapid screening  and for the analysis of a big 

number of samples because the cost of dioxin analysis is much higher than any other analytical 

methods; for this reason low cost  immuno- and bio-assay methods were developed. These 

methods can reduce the cost of 50% or more and can be used to analyze food samples where an 

analysis is necessary.   

 

Cell culture-based bioassays  

 There is a good correlation between the affinity that HAHs have to bind to the AhR and their 

potency to induce toxicity, for this reason most assays are based on the AhR-dependent 

mechanism of actions [51]. Cell bioassay systems, in particular, for the detection and 

quantification of TCDD and other AhR ligands, measure AhR-dependent gene expression 

occurring in eukaryotic cells, each at the desired endpoint. Also a recombinant yeast cell bioassay 

system and a variety of mammalian cell culture bioassays that use endogenous and/or transfected 

reporter genes have been described [44]. The AhR-based bioassays integrate the possible 

interactions of all congeners in a complex mixture. This is the major advantage of the bioassays 

because the results give directly a measure of the total sum of dioxin toxic equivalency (TEQ) 

[52]. With in vitro bioassays it is possible to select between easily biodegradable compounds and 

more persistent AhR agonists, by different sample incubation times (in vitro luciferase bioassays: 

4–48 h; possible test strategy: 4–6 h; EROD bioassays: 24–72 h), while the more persistent dioxin-

like compounds are responsible for effects at 24–48 h incubation time [53, 54]. Cell culture-based 

bioassays with recombinant cell lines that stably transfected the firefly luciferase gene, such as the 

chemically activated luciferase expression (CALUX) [55] and the green fluorescent protein-based 

cell bioassay [56], are extremely sensitive and suitable as screening methods for the estimation of 

AhR-dependent potential of pure compounds and extracts from environmental and biological 

matrices. However, these assays require equipments for cell cultures and a luminometer/ 

fluorometer for a multiple-well microtiter plate. Furthermore, it has been described that there is no 

applicability to tissues or primary cultured cells isolated from experimental animals. For these 
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reasons a chemical separation of HAHs and dioxins is the most useful, easiest and quickest 

strategy. 

 

Immunoassays 

The enzyme-linked immunoassay has been used for dioxin detection; it is a receptor immuno-

chemical assay that analyzes the total toxicity potential of dioxin and dioxin-like compounds. The 

analysis of toxicity is possible by measuring the capability of these compounds to bind to a 

cytosolic aryl-hydrocarbon receptor protein (AhR). The mechanism of action is based on an 

activated AhR protein that binds an exogenous ARNT protein to form an activated protein 

complex, which is able to bind an ELISA plate-bound oligonucleotide ―dioxin responsive element 

(DRE)‖ and is then detected by an immunoassay-based colour reaction or fluorometry [57, 58]. In 

this way it is possible to measure dioxins and dioxin-like compounds in an inexpensive and 

simple-to-use way and it is not necessary cell culture or radioactivity. The lower detection limit of 

1.0 pg and the high sensitivity permits to use these assays for the screening of large samples and 

also for quantitative analysis. The fact that the cross-reactivity of Ah-Immunoassay is very similar 

to TEFs indicates theoretical basis for a good relationship with WHO-TEQ [59, 60]. This method 

has some advantages as high selectivity, high sensitivity, and low cost, but the procedure is 

complicated and several hours are required for a single measurement. 

 

DNA-binding assay in vitro 

These technologies are based on DNA binding of the AhR when the receptor is in presence of 

suitable ligands. This system is used for studying important biological effects of active compounds 

at the AhR level because it represents one of the excellent methods for measuring the ability of a 

compound or extracts to stimulate AhR transformation. But it may be not suitable for the detection 

of synergistic effects of natural and environmental dioxin-like compounds [61]. For example the 

GRAB bioassay has been used for the detection of pharmacological agents that activate the AhR 

signalling system [62-64]. But all the quality control problems related to this technique did not 

permit to use this as a screening method for dioxin-like compounds.  

 

For the detection of dioxins emerges also the need of new analytical, specific and low cost 

methods, that require short time for analysis and inexpensive equipments: a technique suitable for 
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rapid screening  and for the analysis of a big number of samples. These are the objectives that were 

tried to reach in our research work with the development of nanobiosensors. 

 

Biosensors for environmental toxins and foodborne pathogen 

detection 

 

Introduction to biosensors 

 

The methods commonly used for the detection of foodborne pathogens and environmental toxins 

are often time-consuming and complicated, for this reason it is useful to develop a new, reliable, 

sensitive, rapid, specific, simple, low cost technology that can be used for in situ real-time 

monitoring. In recent years, there have been many research activities in the area of biosensor 

development because it could be a promising method to conventional analytical techniques that 

combines the specificity and sensitivity of biological systems in small low cost devices. The 

design of a biosensor is a fusion between molecular biology and information technology that 

together give information about the interaction biomolecule-analyte. There are different reports 

about the development of biosensors for medical devices but there are not many real applications 

to monitor the food quality, for this reason our research was addressed towards this new field. 

 The purpose in the construction of our sensor is to have a device that recognises an event and 

responds to it by a signal that gives information about the food quality; the intention was to create 

a field-portable biosensor that can be used in real time for the identification of possible 

environmental toxins, microorganisms and food contaminants. The expected results provide to 

reduce the time required for food safety testing, to find a possible contamination, limiting 

foodborne illness and thus reducing the health risks and the medical costs.  

 

Biosensors for food quality / safety control 

 

Food quality control is essential in the food industry and an efficient quality assurance is becoming 

increasingly important. Consumers want an adequate quality of food product at a fair price, long 

shelf-life, and high product safety, while food inspectors require safe manufacturing practices, 
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adequate product labelling and compliance with the FDA regulations. Further, food producers are 

increasingly demanding efficient control methods particularly through on-line quality sensors to 

satisfy consumers and regulatory requirements and  also to improve the feasibility of automatic 

food processing, product quality, and to reduce the production time and the final product cost. 

Also the wave of terrorist acts and foodborne disease outbreaks has stressed the importance of the 

food traceability and authentication [65]. Therefore a development of biosensors for food safety 

and quality control was encouraged by acquiring several new food safety and quality requirements: 

Hazard Analysis Critical Control Points (HACCP), Total Quality Management (TQM), ISO 9000 

Certifications. Safety problems require intensive control, data logging, and data treatments and can 

be effectively controlled only with new generations of biodetection systems. All this tasks require 

in-time and on-line sensors for data analysis systems, warning systems, and check point for 

automated processing. To obtain these results, functionalized chips were constructed that can be 

immersed into food samples (e.g. Milk) at specific control points to detect and identify  pathogenic 

microorganisms and environmental toxins, all in a continuous, real-time, field-portable instrument.  

 

The next sections describe the structure of a biosensor focusing on the specific bioreceptors and 

transducer used in our work to understand the design of our devices. 

 

Biosensor components and classification 

 

A biosensor is an analytical device with two components: biological and electronic. The 

conversion of a biological response into an electrical signal is possible thanks to the presence of 

two main elements: a bioreceptor which recognizes the target compound and a transducer that 

converts the recognition in an electrical signal (Fig. 3).  

 

 

 

Fig.3 Schematic diagram of a biosensor. Reproduced by [22] 
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The bioreceptor used for molecular detection is composed of highly specialized macromolecules 

or complex systems with an appropriate selectivity and sensitivity. The transducer, which is in 

intimate contact with the bioreceptor can measure different properties or the optical activity of the 

substance. Since it is essential that the response of the sensor is detected, it is necessary to use an 

appropriate transduction mode that detects for example changes in fluorescence or  absorbance 

after the interaction. In any case the signal is then transduced by passing into a circuit where it is 

digitized. The obtained digital information can be stored in a memory, displayed on a monitor, or 

made accessible via digital communication ports. 

Biosensors can be classified by their bioreceptor or their transducer type (Fig. 4). 

 

 

 

 

Fig. 4  Classification of biosensors. Reproduced by [22]. 

 

Bioreceptors 

Bioreceptors are the elements that give specificity to the biosensor through a biochemical 

mechanism. Binding the analyte under investigation produces a physicochemical effect that can be 

detected by the transducer. The classification of bioreceptors includes five categories: enzymes, 

proteins, peptides, biomimetics and bacteriophages, antibody/antigen, cells, nucleic acids [22]. The 

most used bioreceptors are nucleic acids and enzymes. In particular, in our work, antibodies and 

peptides were used as bioreceptors and will be analyzed in detail. 
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Antibodies as bioreceptors 

 

Antibodies are biological molecules made up of hundreds of individual aminoacids arranged in a 

highly ordered sequence that exibits selective binding capabilities for specific structures; they may 

be polyclonal, monoclonal or recombinant, depending on their properties and the way they are 

synthesized. Generally they are immobilized on a substrate, which can function as detector surface 

or a carrier [66]. The way in which antigen-specific antibodies interact is similar to a lock and key 

fit [67]. An antibody fits its unique antigen in a highly specific manner, so that the three-

dimensional structures of antigen and antibody molecules match. The basic structure of an 

antibody and antigen–antibody lock and key fit is illustrated in figure 5. Immunosensors, for these 

properties, can be  estimated a powerful tool for analyte recognition through the development of 

antibodies that can bind selectively different molecular species as biomolecules, microorganisms, 

toxins and chemicals. In this way an antibody works as a probe that binds the analyte of interest, 

also in small concentration.  

 

 

 

Fig. 5 The basic structure of an antibody with antigen–antibody lock and key fit. 

 

 

Antibodies can be created for different purposes and there are recent reports that describe their use 

in foodborne pathogen detection for the construction of different types of biosensors: evanescent 

wave fiber-optic biosensors [68], surface plasmon resonance (SPR) [69, 70], self-excited PZT-

glass micro cantilevers [71], nanowire labelled direct-charge transfer biosensor [72], 

magnetoelastic resonance sensors [73], and immunosensors [74]. Many of these methods use 

labelled antibodies with biotin, fluorophores, enzymes, and radioactive isotopes that give a clear 

signal in biological assays; in this way it is possible to combine the specificity of the antibody with 

a sensitive label useful for the detection [75, 76]. In our work, that provided the linking of the 

pathogen (E.coli) with the respective antibody, no labels were used, because we tried to have a 
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quick analysis and a direct fingerprint of the pathogen linked to the sensor without the use of any 

probe.  

 

Polypeptides as bioreceptors 

 

Polypeptides are structures that can be assembled artificially and can be used as receptors for the 

recognition of analytes, in biosensing and in systems for the screening of chemicals or 

microorganisms. In our case we used a synthetic pentapeptide for the recognition of environmental 

toxins (TCDD), that is a better bioelement then a natural antibody, for different reasons: the 

problems of denaturation in organic solvents that happens with the use of antibodies or natural 

peptides are avoided, better quality control procedures are possible, these bioreceptors can be 

regenerated and reused. These properties are very important because to extract dioxins by food 

samples and solubilise these lipophilic molecules are necessary big amounts of organic solvents 

that could destroy the antibodies. Polypeptides can be synthesized with well studied methods and 

can be created in short time with low cost and little effort. The amino acid sequence can be 

changed in relation to the binding domain structure to permit a specific site for recognition. 

Fluorophores, chromophores, or other biomolecules can also be linked to improve the interaction 

with the specific analyte. In detail, in our work, peptides have been linked to Fluorescein 

isothiocyanate (FITC) molecules, a fluorochrome commonly used for the high interaction with 

nucleophiles, including amino and sulfhydryl groups present in peptides and proteins, that has 

been used to monitor the presence of TCDD in solution and their quantification. 

 

Immobilization of bioreceptors 

 

To explain its function the bioelement have to be immobilized on a support in order to stabilize its 

structure ensuring a possible use for different time. The methods used in our work consider the 

physical and chemical entrapment of bioreceptors. The physical method is used to trap proteins, 

peptides or antibodies with big sizes or high molecular weights but it is not a technique that 

permits a long activity and stability, in opposite of chemical methods. In particular the chemical 

immobilization has used cross linkings to immobilize the bioelement, increasing the molecular 

weight of the immobilized species and ensuring their insolubility. In detail in our work linkers as 

http://en.wikipedia.org/wiki/Amine
http://en.wikipedia.org/wiki/Sulfhydryl
http://en.wikipedia.org/wiki/Protein
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APTES (3-aminopropyltriethoxysilane) were used to create an amino-functionalized substrate and 

glutaraldehyde as cross-linking agent for its properties of bifunctional agent. GA (Glutaraldehyde) 

in fact has two terminal aldehydic groups that can react with the amino group of the peptide or 

antibody, and with the amino-group of the functionalized substrate, forming derivatives that are 

analogues of Shiff bases. In this way it should be possible to anchor antibodies and peptides to the 

substrates for the last detection step. 

Transducers 

 

Transducer plays an important role in the detection process because they prove that the reaction of 

the bioreceptor has occurred. Transduction can be accomplished with a great variety of methods. 

The choice of the transducer depends on the reaction type, on the substances liberated or 

consumed and on the application of the biosensor. If it has to be used in vivo, its size should be 

reduced and the form has to be studied to avoid any damage to the living tissues; while if it has to 

be used in a biological environment it has to be biocompatible, in particular with regard to the 

deposition of proteins, lipids or cells on its surface.  Furthermore the possible release of toxic 

components should be considered when it works. Actually there is a big variety of transduction 

methods and the most common and popular are: 

o optical 

o electrochemical 

o mass based  

 

These classes include different subclasses and they can also be divided in label and non-labelled 

methods. The labelled methods are correlated with the detection of a label, while the label-free 

detection measures directly what is happening during the biochemical reaction on the transducer 

surface. In particular in our work optical based transducers were used and will be analysed in 

detail. 

 

Optical-based transducers 

 

Optical biosensors have been considered really interesting, for pathogen and environmental toxins 

detection, for their high selectivity and sensitivity. Optical- based methods include different 

subclasses that use various types of spectroscopy (infrared, Raman, SERS, reflection, refraction, 
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dispersion, absorption, fluorescence, chemiluminescence, and phosphorescence) and the 

spectrometer records different properties of the analyte. The most commonly employed techniques 

of optical detection are surface plasmon resonance and fluorescence due to their sensitivity but 

there are other interesting techniques that must be developed. In particular Raman or infrared 

adsorption spectroscopies measure the energy of the electromagnetic radiation, giving information 

about the local changes around the analyte as the formation of new energy levels or intermolecular 

atomic vibrations; these techniques are very useful for the detection and quantification of the 

analyte, for this reason we choose these new types of transducer for the construction of our 

biosensor together with fluorescence methods.  

 

Raman, FTIR and Fluorescence transducers  

 

Raman spectroscopy is a non-destructive analytical technique that provides spectra with spatial 

resolution of an optical microscope with almost no sample preparation. Raman spectroscopy is 

based on the measurement of the vibrational energy levels of chemical bonds by measuring the 

inelastically scattered light following excitation. Biologically associated molecules such as nucleic 

acids, protein, lipids, and carbohydrates all generate strong signals in Raman spectra. Therefore, 

the Raman spectroscopic method can be used to generate ―whole-organism fingerprints‖ for the 

differentiation of biological samples or in analyzing the effect of nanoparticles interactions with 

biological cells or chemicals. Raman scattering techniques have elicited significant interest for 

biomolecule detection as they provide several advantages over other spectroscopic techniques.  

Unlike IR and NMR, Raman signals are not affected by the presence of water and Raman bands 

are much narrower than fluorescence bands. Raman-active molecules exhibit characteristic 

―fingerprint‖ spectra that can be used to definitively identify a molecule. Additionally, Raman 

responses are less susceptible to photobleaching than fluorescence responses, thus allowing longer 

signal collection times and improved signal averaging. Normal Raman signals are too weak to be 

of use in ultrasensitive detection methods, but surface-enhanced Raman spectroscopy (SERS) 

results in Raman signal enhancement factors as high as 10
14 

[77].  SERS is observed for molecules 

on or nearby the surface of metallic nanostructures, with a diameter of typically 20–100 nm, which 

can support localized surface Plasmon resonances (SERS substrate). SERS can tolerate water 

molecules and can generate more sharp and distinguishable bands of specific molecules. The 

surface enhancement effect allows the observation of Raman spectra of single molecules or cells 

excited at low incident powers and short data acquisition times [78, 79]. The high sensitivity of 
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SERS can be exploited either for the label-free detection of analytes or in targeted research with 

SERS labels. Currently, the label-free detection of an analyte is the most widely used approach: 

the identification is based on the characteristic SERS spectrum of the analyte when it is adsorbed 

onto the surface of the colloidal particle. In the second approach metallic nanoparticles are used in 

combination with Raman labels: the organic Raman reporter molecules are adsorbed on the 

surface, giving rise to the characteristic SERS signature which is necessary for the indirect 

identification of the target molecule. Enzymes, dyes (Rhodamine), molecular fluorophores and 

quantum dots are well known labelling agents for the selective detection of biomolecules [80, 81]. 

Advantages of SERS over existing labelling approaches include: the tremendous multiplexing 

capacity for simultaneous target detection due to the small line width of vibrational Raman bands; 

quantification using the characteristic SERS spectrum of the corresponding label; the need for only 

a single laser excitation wavelength; high photostability and optimal contrast by using red to near-

infrared excitation in order to minimize the disturbing auto fluorescence of cells and tissues. 

In our work this new technique was used in addition to new materials to try to reach better results 

in this field. A recent development of this technique allowed to detect pathogens of interest with 

specific biomolecules, as antibodies, absorbed on the device and a few label free techniques were 

developed [82-85]. It is clear as there is a great interest for the development of this technique that 

can lead to interesting results [86-99]; for this reason a part of our work was focused on these 

transduction methods. The other methods of transduction used are well known and for this reason 

they will be mentioned only briefly. 

 

 The other optical technique used in our work is the Fourier transform infrared (FT-IR) 

spectroscopy. It is a well known, low cost, simple and non-destructive technique. Actually the 

instruments are largely available and there are also some portable instruments that can be used for 

on-field analysis. Today there are only few applications on food pathogen detection because the 

previous instruments did not ensure a good signal to noise ratio to discriminate different 

pathogens. The first studies found in literature, using this technique, were about the quantification 

of eight different microorganisms including Salmonella [100-103]; this study allowed 

differentiating the microorganisms at a concentration of 10
3
 colony-forming units (CFU)/ ml in 

apple juice. Other studies were reported but with worst detection limits [105-108]. Our purpose is 

to use new materials associated to this techniques to improve the simple detection of pathogens 

and food contaminants at lower concentrations.  
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The last technique is fluorescence that is a type of spectroscopy that can be used as transduction 

method for sample analysis. In general the biological sample with the fluorescent probe is excited 

by a beam of light which leads to the emission of light of a lower energy resulting in an emission 

spectrum which is used to interpret the reactions that happened [109]. In particular this 

transduction method was used in our work for the final detection of TCDD which proved to be a 

good optical technique with fast and rapid detection ability, high sensitivity and specificity.  

 

Future perspectives 

 

Although conventional detection methods are sensitive, they require long time for the analysis. 

However, the analytical techniques, like optical and electrochemical biosensors, have some 

disadvantages as sensitivity and cost; therefore, new rapid methods are necessary for better 

performances. Since foodborne pathogens and environmental toxins are mostly present in very low 

concentrations it is very difficult to detect them. In this way there are more chances for these 

contaminants to get lost during the detection. For this reason the new device should be able to 

detect contaminants in very low concentration and should be suitable for in situ real-time 

monitoring, obtaining a detection technique which would be reliable, rapid, accurate, simple, 

sensitive, selective and cost effective. Furthermore it should be able to detect different analytes, 

and capable of on-line analysis on real samples; the device should be simple and inexpensive to 

design and manufacture. Nanobiotechnology is claimed to satisfy these requirements. 

  

Nanomaterials in biosensing 

 

Nanotechnologies in agro-food field  

 

Nanotechnology has the potential to be applied at the different parts of the food and agricultural 

system for example: 

 Food security 

 New tools for molecular and cellular biology 

 New materials for pathogen detection 

 Protection of the environment 
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Nanotechnology application in the food industry is also contributing to increase the consumer 

awareness of food safety. In recent years there have been some studies for the development of 

sensors for the detection of pathogenic microorganisms and environmental toxins. The need for 

rapid and sensitive assay methods to detect foodborne pathogens and environmental toxins has led 

to the incorporation of biosensor technology into microarray and other platforms (mimetics and 

aptamers). To improve the detection methods it has been necessary to follow new routes as 

nanotechnologies, to develop nanosensors placed in food production, food distribution facilities 

and in packaging, leading to the detection of any kind of traces of contaminants. Actually 

researchers are studying nanobiosensors to detect water contamination, food materials, agricultural 

pesticides, changes in food and crops genetically modified. For example, quantum dots have been 

used for the detection of E. coli and other pathogens [110], nanobarcodes for food traceability 

[111] and nanodevices to monitor parameters, as temperature, to which the food can be exposed, 

from the plant to the consumer. The possibility of combining biology and nanoscale technology 

into sensors and the incorporation of nanoelements in various procedures decreases the dimensions 

of the instruments and increases the automation, the sensitivity, and rapidity of results.  

 

Introduction to nanoporous materials 

 

In the last years, nanomaterials have been considered really interesting in the field of nanoscience, 

a new sector that is attracting investments and expectations. Various nanostructures have been 

studied as nanorods, nanotubes, nanoparticles, nanofibers, and thin films and used for different 

applications. Nanoporous materials, in particular, have unique properties for their capacity to 

adsorb or interact with molecules thanks to their large surface area enhanced by the pore surface. 

They are interesting because they have similar dimensions to biostructrures and for this reason a 

size-dependent interaction is possible. The fields of nanoporous materials as microelectronics, 

manufacturing, medicine, clean energy, environment are different; and various are the applications 

(separation, ion exchange, sensors, catalysis, e.g.). Constructing new structures at molecular level, 

as building blocks, leads to control the dimensions in the range between 1 and 100 nm, according 

to the properties and functionalities wanted. In particular molecular self-assembly, that mimics 

structures present in nature can be used to create porous materials. All the self-assembled 

structures and porous thin films are interesting for their use as substrates for the development of 

sensors because they can self assemble and organize in structures that can be useful for the 

entrapment of biomolecules as cells, proteins, tissues, enzymes, receptors, etc. The presence of 
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pores (holes) in a material can give properties missing in bulk materials. Pores can be connected 

with the surface or can not be connected, but this type is not useful for the absorption of 

biomolecules.  Pores can have different shapes as cylindrical, spherical, hexagonal, cubic, etc. and 

can be straight, curved or tortuous [112]. To clarify the definition of nanopores size IUPAC refers 

to micropores if they are smaller than 2 nm in diameter, mesopores between 2 and 50 nm and 

macropores larger than 50 nm but normally there have not been found pores bigger than 100 nm 

for functional applications (Fig. 6). 

 

  

 

 

 

Fig.6 Typical length scales of three-dimensional porous structures. Reproduced by [113] 

 

 

The composition of nanoporous materials often is based on oxides because they are chemically 

and thermally stable, inert and non toxic and due to these properties they find a good application in 

the biological world. Microporous zeolites have been the first materials with nanopores built but 

the too small dimensions (0.2 – 1.0 nm) have limited their applications; for this reason there has 

been a big interest to expand the pore dimensions to mesoporous range. Other traditional materials 

used have been silica gels, alumina, and activated carbons but having a broad pore size they did 

not guarantee selectivity. The invention in the early 1990‘s of MCM-41 and M41S by Mobil 

scientists has been advantageous for their use in separation, catalysis and biological applications. 

Mesoporous molecular sieves (M41S) (pore size 2-10 nm), were synthesized using long chain 

cationic surfactants as template and pore forming agents during the hydrothermal sol-gel process.  
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They have been created with a new approach using as templates self assembled aggregates instead 

of single molecules (as for zeolites). Depending on the starting materials and changing the 

synthesis conditions, different mesoporous silica oxide with ordered structure in the form of 

hexagonal (MCM-41) cubic (MCM-48) and lamellar (MCM-50) have been created. These 

mesoporous silicate materials, with well-defined pore sizes of 15-100 nm, have broken the past 

pore-size constraint <15 nm of microporous zeolites. The extremely high surface areas (>1000 

m
2
/g) and the precise tuning of pore sizes are among the many desirable properties that have made 

such materials the focus of great interest. For this reason we took these silica materials as reference 

for the construction of new one with better characteristics. Liquid-crystal templating (LCT) 

mechanism was proposed [114] as the common mechanism for their construction in which 

surfactant liquid crystal structure is used as organic template. The templating way to assemble 

nanoporous materials influences the final material. Today there are many pathways but the 

research is always advancing to improve the composition, the pores size, the chemical and thermal 

stability of each material. There are different models to describe the formation of mesoporous 

materials but all the synthesis routes have in common the presence of surfactants that, from the 

inorganic precursors, cooperate to the formation of the mesostructure. Surfactants have two 

extremities: a hydrophilic head and a hydrophobic tail that self-organize to minimize the contact 

between head and tail and the respective solvent. The different synthesis routes diverge on the 

mechanism of interaction between the inorganic precursor and the surfactant. Generally surfactants 

self-assemble in micelles to form an hexagonal array that is covered in solution by inorganic 

molecules (silicate in the first experiments) with an EISA process, then, after stabilization 

processes and thermal treatments is applied the final calcination step that removes completely the 

surfactant molecules, leaving pores in their place and produces an inorganic structure that reflects 

the previous hexagonal micellar array (Fig. 7).  

 

 

 

Fig. 7 Possible pathway for the formation of MCM-4.  Reproduced by [114] 
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EISA Theory 

 

The evaporation-induced self assembly (EISA) describes the formation of an ordered mesophase 

organic-inorganic after the evaporation of the solvent from a dilute solution, as described by 

Brinker et al [115], obtaining a Liquid Crystal phase.  

In particular, mesoporous materials prepared by EISA require a definite composition of the initial 

solution (inorganic precursors, templating agents, and volatile media); the shape can be decided by 

selecting an evaporation method and the physicochemical and functional properties can be created 

by a thermal or chemical post-synthesis modification. For this reason a reproducible synthesis of 

mesoporous materials with EISA requires to control the chemical composition of the precursor 

solution, the deposition process and the post -treatments performed on the film. The EISA method 

for the formation of mesoporous materials has met a great interest for the possibility of obtaining 

porous arrays interconnected and with a definite size that can be used as nanoreactors, selective 

membranes or sensors. This route has been chosen in our work for the formation of mesoporous 

materials combining   

o sol-gel chemistry  

o self-assembly of an organic surfactant template 

 

Sol-gel chemistry 

 

A sol is a colloidal suspension of solid particles in a liquid in which the dispersed phase is very 

small (1-1000 nm). In a colloid the interactions are conducted by short range forces as surface 

charges and van der Waals attraction. The colloids include: sol (solid particles in a liquid), aerosol 

(solid particles in a gas), and emulsion (liquid droplets in another liquid). All of these can generate 

polymers or particles for the constitution of ceramic materials. In the sol-gel process the precursors 

are metal or metalloid elements surrounded by various ligands for the final preparation of a 

colloid. The latter is an alkoxide commonly used as precursor in sol-gel chemistry and, in metal 

alkoxides, the metal atom is linked to an organic ligand.  Metal alkoxides have metal-oxygen-

carbon linkages and the most studied is tetraethoxysilane (TEOS) Si(OC2H5)4. The sol-gel process 

consists on different steps: Hydrolysis, condensation, gelation, ageing, drying, densification (Fig. 

8) and according to the followed route are formed different materials with different properties. 
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Fig.8 Sol-gel process. Reproduced by [116] 

 

Sol-gel materials are very interesting for different reasons: 

 The temperatures required for the process are low and frequently at room temperature, except 

for thermal treatments necessary in some cases for the removal of template; in this way the 

degradation of biological species entrapped is slight. 

 Precursors such as metal alkoxides are frequently volatile and well purified leading to high-

purity final products; they are also miscible and it is possible to control the doping. 

 The chemical conditions used for the synthesis are mild, in fact, usually extreme pH 

conditions are avoided, especially when the two step method is used, in which acid catalysed 

hydrolysis is followed by rapid neutralisation of buffering. In this way pH sensitive organic 

species (e.g. dyes) and even biological species, including enzymes and whole cells, may be 

entrapped and can retain their functions. 

 Porous and nanocrystalline materials can be prepared with this route. 

 Controlling the reaction it is possible to monitor the speed of hydrolysis and condensation, 

the particle and pore size of the desired material. 

 Using functionalized precursors it is possible to link organic and biological species with a 

covalent attachment to porous silicate structures.  

 By controlling the ageing and drying conditions a control of pore size and mechanical 

strength may be achieved. 
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 The combination of organometallics with organic ligands leads to hybrid materials with an 

inorganic-organic polymer network. 

 Entrapped organic species can be used as templates for creation of pores with controlled size 

and shape. Subsequent removal of these species (by heat or strong acid treatment) leaves 

molecular footprints with potential as catalytic sites. 

 Since liquid precursors are used it is possible to cast ceramic materials in a range of complex 

shapes and produce thin films or fibres as monoliths, without the need for machining or 

melting. 

 The optical quality of the materials is often good, leading to applications for optics. 

 The low temperature of sol-gel processes is generally below the crystallization temperature 

for oxide materials and this allows the production of unusual amorphous materials [117]. 

 

The preparation of thin films is the most important use of sol-gel method that we developed in our 

work. 

 

Self assembly of an organic surfactant template 

 

To control the constitution of nanomaterials the physical chemistry of organized matter, that 

confide on the successful combination of sol–gel chemistry and self-assembly procedures, is 

fundamental. Self-assembly is based on the organization of building blocks in bigger structures 

with a ―bottom up‖ approach that is possible with no covalent interactions as electrostatic, 

hydrophobic and hydrogen bonding [118, 119]. Self-assembly of nanomaterials is proving as one 

of the most interesting field of nanoscience because, through the manipulation of atoms, 

molecules, or clusters in nanostructures, it is possible to create new technologies and materials 

with different properties. In this way it is possible a fusion between materials science, that comes 

from the micrometer range, and biochemistry/chemistry that combines individual molecules, 

reaching unique physical and chemical properties as the quantum size effect, mini size effect, 

surface effect and macro quantum tunnel effect [120]. These features can reflect on sensitivity and 

on other analytical properties that are essential for the development of biosensors. For these 

reasons nanomaterials are a large promise for new biosensing and bio analytical systems through 

several biochemical modifications.  

In particular it is possible to obtain these materials starting by hybrid networks template with 

surfactant (structure directing agents) [121-146]. The combination of inorganic materials with 
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organic templates has been estimated as the next generation of functional materials [147]. This 

mechanism is possible with the use of appropriate surfactants and among the most interesting there 

are block copolymers. 

 

Block copolymers as templates 

 

The first studies on the synthesis of mesoporous oxides have described the use of different types of 

ionic surfactants as the cationic alkyltrimethylammonium, anionic n-alkylsulfonates or alkyl 

phosphates as templates. For these synthesis the pH of the solutions to control the pore size, that 

unfortunately were too small to be used for different applications, was fundamental. To overcome 

this problem amphiphilic block copolymers has been proposed as templates for their properties of 

self-assembling in different solvents to give robust and regular structures on the nanometer scale 

as spherical, cylindrical or lamellar structures. The block copolymer self-assembly is probably the 

best mode to obtain new organized materials thanks to their characteristics of soluble-insoluble 

molecules, depending on the solvent used (―amphiphilic‖ polymers). 

 

In our case, mesoporous thin films were synthesized using  PEO–PPO–PEO  (Polyethylene oxide-

Polypropylene oxide- Polyethylene oxide, trade name Pluronic, BASF Corp. USA) as template 

(Scheme 1). 

 

Scheme 1. Pluronic molecular structure 

 

These amphiphilic polymers consist of an hydrophobic polypropylene oxide block (PPO) 

surrounded by two hydrophilic polyethylene oxide blocks (PEO), and can schematically be written 

(PEO)x–(PPO)y– (PEO)x. There are different Pluronics available, with different molecular 

weights and variations in the PEO/PPO ratio that can lead to different porous structures as 

hexagonal form, SBA-15 (p6mm), cubic (Im3m) form called SBA-16, and several other structures 

[148]. The broad variety of self-organizing structures of surfactants and block copolymers is 

shown in Fig. 9. As shown, it is possible to control the formation of different structures as 

spherical micelles with cubic packing (FCC, BCC), hexagonally packed cylindrical micelles 

(HEX), lamellar phases (LAM), and other phases as cubic bicontinuous structures such as the 
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gyroid. With the phase diagrams it is possible to choose the morphology of the materials wanted, 

choosing the block lengths and polymer concentration to prepare different nanostructured 

materials. 

 

 

 

 

Fig. 9 Organization of block copolymers. Reproduced by [113] 

 

 

The formation of micelles, in a block copolymer templating procedure (Fig. 10), occurs for the 

interaction of inorganic compounds with the organic micelles. This is possible with a replacement 

of the majority of the solvent with a metal or metal oxide precursor with similar polarity and the 

final condensation around the micelles.  The final calcination process at high temperature removes 

the organic phase and the template, leaving the pores surrounded by the inorganic phase. A typical 

precursor used is hydrated silicic acid but it is also possible to use hydrolysable metal species or 

metal salts (metal chlorides, as in our case) to obtain different materials as metal oxides, metal 

chalcogenides, or even elemental metals [149-156].  
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Fig. 10 Schematic view of the steps leading from a solution to a mesoporous oxide network. Reproduced by [150]. 
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Aims of the research work 

 

The aim of the present research work is to develop new detection methods to prevent the diffusion 

of contaminated food with, in particular, environmental toxins (e.g. dioxins) and pathogens (e.g. 

E.coli). These compounds were chosen for the frequent food complaints related to these 

contaminants that produce huge problems related to human health and safety. In fact these 

compounds are mostly present in very low concentration and it is very difficult to detect them 

because they may get lost during the detection. 

Today there are several conventional methods for the detection and identification of contaminants 

based on chemical, microbiological and biochemical identification, but they are mostly time-

consuming, expensive, complicated, require expertise in molecular biology and they require 

skilled workers to use them.  

For this reason our idea was to create new devices able to detect contaminants in very low 

concentration, suitable for in situ real-time monitoring, obtaining a detection technique which 

would be reliable, rapid, accurate, simple, sensitive, selective, cost effective and that does not 

require skilled workers. Furthermore it should be able to detect different analytes, capable of on-

line analysis on real samples. 

To meet these needs the aim was to create field-portable biosensors that can be used in real time 

for the identification of possible environmental toxins, microorganisms and food contaminants. 

The expected results provided to reduce the time required for food safety testing to find a possible 

contamination, limiting foodborne illness and thus reducing the health risks and the medical costs.  

To obtain these results simple, low cost, functionalized chips were constructed, that can be 

immersed into the samples (e.g. Milk) at specific control points, able to detect and identify 

microorganisms and environmental toxins that might be present, with a continuous, real-time, 

field-portable instrument, preventing the diffusion of dangerous food. In this way the analysis of a 

big number of samples for a fast screening should be possible, giving an immediate response, and, 

in case of contamination, the on-time production process could be stopped. 

In detail peptides and antibodies can be used as recognising bio-elements to link to a silicon chip. 

With this transparent material in fact it is possible to use optical techniques as Fluorescence, FTIR 

and Raman as detection methods. These transduction techniques were chosen for the possible 
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availability, in a laboratory of a food factory, between simple, low cost, portable instruments that 

do not require skilled workers.   

To immobilize the bioelement on the surface of silicon wafers the aim was to deposit a thin film 

on this substrate and, new ways to improve the features of the recognition and transduction were 

considered. The purpose has been to develop elements with higher sensitivity or selectivity, with 

more rapid response characteristics, broader working ranges, and improved reusability. To achieve 

these desirable traits it could be useful to improve the interface between the material and the target. 

To join this objective mesoporous thin films were developed, in fact with these materials there is 

the possibility to immobilize probes or nanoparticles into the pores or the materials can be used 

directly to stabilize the bioelement.  

 

Another objective was to study if it was possible to have an enhanced concentration of the probe 

immobilized on these materials. In fact, thanks to a large surface area, in theory it should be 

possible to have the diffusion of the analyte into the pores, reducing the time to have a response. 

The pores should be used also as selective membranes that choose the analytes based on different 

sizes and solubility. 

 

Final objective was to try new porous materials, (instead of silica synthesized and used in this 

work only as reference) for the construction of the substrate, to optimize the synthesis process, to 

study the stability of these materials in biological solutions, to select the most efficient 

functionalization techniques and the most suitable nanostructured material to obtain a biosensor 

with the desired features.  

 

The possibility of combining biology and nanoscale technology into sensors and the incorporation 

of nanoelements in various procedures should decrease the dimension of the instrument and 

increase the automation, sensitivity, and rapidity of results. This is what we have tried to obtain. 
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Experimental Section 

 

 Materials and Methods  

 

Chemicals. All commercially available solvents and reagents were used without further 

purification. TiCl4 (reagent grade >98%), anhydrous ethanol ( EtOH, reagent grade >99,9%), 

bidistilled water, acetone (reagent grade >99,8%), hydrofluoric acid (reagent grade 50%) and 

toluene (reagent grade >99,5%), were purchased from Carlo Erba. ZrCl4 (reagent grade >99.5%), 

HfCl4 (reagent grade 98%), triethoxysilane (TEOS, reagent grade 95%) pluronic F-127 (cell 

culture test), phosphate buffered saline (PBS powder, pH 7.4), 3-(aminopropyl)trimethoxysilane 

(APTMS, reagent grade 97%),  3-(aminopropyl) triethoxysilane (APTES, reagent grade > 98%), 

silver nitrate (reagent grade > 99%), glutaraldehyde (GA Grade I, 50% in H2O, specially purified 

for use as an electron microscopy fixative or other sophisticated use), 2,3,7,8-Tetrachlorodibenzo-

p-dioxin (TCDD, solution 10 μg/ml in toluene, ampoule of 1 ml Supelco), cytochrome c (from 

bovine heart), rhodamine B isothiocyanate (mixed isomers, BioReagent, suitable for protein 

labelling), dimethyl sulfoxide (reagent grade ≥ 99.5% GC, plant cell culture tested), N,N´-

Dimethylformamide (DMF pure p.a., > 99.8%), 1-methyl-2- pyrrolidone (NMP for peptide 

synthesis > 99.8%), dichloromethane (DCM, reagent grade > 99.5%), 2-propanol (reagent grade > 

99.5%), trifluoroacetic acid (TFA, reagent grade > 98%), piperidine (reagent grade > 98%), 

triisopropylsilane (TIS, 99%), N-Ethyldiisopropylamine (DIPEA 99%) and N,N,N′,N′-

Tetramethyl-O-(7-azabenzotriazol-1-yl)uranium hexafluorophosphate (HATU, 99%) were 

purchased from Sigma Aldrich. Fmoc-Pal-Peg resin (substitution 0.21 mmol·g
-1

) was obtained 

from Applied Biosystems (Applied Biosystems Inc, USA). The Fmoc-amino acids and 1-

hydroxybenzotriazole hydrate (HOBt) were purchased from Novabiochem (Novabiochem, 

Switzerland), α-cyano-4-hydroxycynnamic acid from Fluka was used as matrix for MALDI TOF 

experiments. All solvents used in the chromatography section were of the gradient grade for HPLC 

and were purchased from Merck-VWR (D-Darmstadt, Germany). Fluorescein isothiocyanate 

(FITC), isomer I (90 % purity) was purchased from ACROS organics and used without further 

purification. E. coli O157:H7 and E. coli K12 were obtained from Purdue University (Bindley 

Discovery Park, IN). BHI agar and LB were purchased from Teknova, Hollister, CA. Bac-trace 

Affinity purified antibodies goat anti-E.coli O157:H7 were purchased from Kirkegaard and Perry 

laboratories. Silicon Wafer (Test grade, P-type boron doped, diameter 4‖,  thickness 475-575 

micron, 100 oriented, one side polished and on side etched were obtained from Jocam. 
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Synthesis of mesoporous hybrid thin films 

 

Solution preparation of transition metal oxides (TiO2, HfO2 and ZrO2) 

TiO2, HfO2 and ZrO2 solutions were prepared with the following procedure and using three 

different flasks. 1.34 g Pluronic were dissolved in 46.64 ml of EtOH with the aid of the sonicator. 

The solutions were stirred for two hours at 25°C in a closed vessel. After the immersion of the 

flasks in an ice bath 2.2 ml of TiCl4 (yellow liquid) were added to the first solution, 6.4 g HfCl4 to 

the second and 1.66 ml ZrCl4 to the third. After 20 minutes of stirring at room temperature 3.6 ml 

of H2O were added to the TiCl4 solution and 7.2 ml to the solutions containing HfCl4 and ZrCl4. 

These solutions were left to react for 3 hours at 25°C under stirring in a closed vessel. The addition 

of water caused the hydrolysis of MCl4 (M=Ti, Hf, Zr) producing EtOH and HCl, responsible of 

the high stability of the sols that, for their high acidity are stable for several months at 25°C (Fig. 

11). The molar ratios in solution were TiCl4 : Pluronic F127 : H2O : EtOH = 1 : 0.005 : 10 : 40 for 

the first solution and HfCl4/ ZrCl4 : Pluronic F127 : H2O : EtOH = 1 : 0.005 : 20 : 40 for the 

second and third solution. 

 

 

 

 

 

Fig. 11 Solution preparation of transition metal oxides (TMO) 
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Solution preparation of SiO2 

This solution was prepared in two steps: in the first one were mixed 3.08 ml of EtOH with 4.26 ml 

of tetraethoxysilane (TEOS) and water and, after the addition of 0.355 ml of HCl 0.768 M, the 

solution was left under stirring for 60 minutes. The second step provided the addition of the 

templating solution obtained by mixing 15 ml of EtOH with 1.3 g of Pluronic F127 and 1.5 ml of 

HCl 0.057 M (Fig. 12). The final molar ratios were TEOS : Pluronic F127 : H2O : HCl : EtOH  1: 

0.005 : 5.4 : 0.02 : 16.4 

 

 

Fig. 12 Solution preparation of silica 

 

Film deposition  

Thin films were deposited dipping the wafers into the solutions described above. Before the 

deposition with the dip-coater, silicon wafers were washed with acetone and ethanol while quartz 

wafers were activated with HF and washed with water, EtOH and acetone. There were different 

parameters that have been important to consider and to change in the deposition steps during all 

the experiments. The first experiments were carried out in this way: thin films were deposited with 

a RH (relative humidity) 18-21% within the dip-coater and with a RH 33% outside the dip coater, 

the speed deposition was 15cm·min
-1

. HfO2 and ZrO2 films as deposited became opaque outside 
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the chamber of deposition, for this reason they were exposed to water vapour for 5 sec that made 

them transparent. This treatment was not necessary for SiO2 and TiO2 films that, after the 

deposition, had a good optical quality. Then the films were placed in a chamber with controlled 

humidity (saturated solution Ca(NO3)2 98% RH) and left there for 24h. Thermal treatments were 

carried out heating the films in an oven at 100°C for 24 hours, after that the back of the films was 

removed with a solution of HF (2%), acetone and EtOH; finally the films were put for 60 hours 

into a furnace at 350°C where the calcination (removal of the template) was performed. 

 

During different trials the deposition conditions were changed to improve the film quality. The 

deposition was carried out by dip-coating silicon wafers into the precursor solution at 25°C and at 

a withdrawal rate of 15cm·min
-1

. The relative humidity (RH) inside the dip-coater chamber was 

maintained between 18-25% to obtain good optical quality and a high structural order of the films. 

Such deposited films were aged at room temperature RH 50% for 24 hours. To increase the 

inorganic polycondensation and stabilize the mesophase the films were submitted to different 

firing steps at 60°C, 120°C and 200°C for 24 hours at each temperature in an oven with heating 

rate of 10°C·min
-1

. This treatment has been important to allow the formation of highly organised 

and high surface area mesoporous coatings, exhibiting crystalline frameworks. The final 

calcination process to remove the organic template of these stabilized coatings was done at 350°C 

for 3.5 h in air under static conditions with a heating rate of 10°C·min
-1

. The final thin films were 

characterized with FT-IR measures. 

 

 

Stability of mesoporous thin films in PBS (1x) 

The stability of mesoporous thin films of TiO2, HfO2, ZrO2, SiO2 was studied in a buffer solution 

of Phosphate buffered saline (PBS) 1x. Two types of experiments were carried out; in the first one 

different films of the same material were immersed in a PBS solution 1x under stirring for  6, 12, 

18, 24, 36 and 48 hours and the changes in thickness, refractive index and in Fourier Transform 

Infrared (FT-IR)  spectra were studied. In the other experiment a mesoporous film of each type 

was taken and dipped in a PBS solution, under stirring, for the first step of 2h; after that the film 

was dried in an oven at 100°C for 30 min and FTIR and ellipsometric measures of thickness and 

refractive index were carried out. Finally the film was incubated in PBS solution for the following 

steps of 4, 6, 8, 10, 12, 18, 24, 36, 48h, and for each step the measures were done as previously 

described for each film type. 
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Functionalization of mesoporous materials  

 

One pot synthesis of TiO2 thin films with APTES 

0.67g of Pluronic (F127) were dissolved and sonicated in a flask containing 23.32 ml of EtOH and 

were left under stirring for 2h. After placing the flask in an ice bath, 0.86 ml of TiCl4 were added 

to the solution. After about 20 minutes, 1.8 ml of water and 0.47 ml of 3–Aminopropyl 

triethoxysilane (APTES) were added to the mixture at room temperature. After 3 h of stirring, the 

solution was used for the deposition on silicon wafers. The deposition conditions were RH 18-21% 

into the deposition chamber and 33% outdoor, and the temperature of deposition was of 22°C with 

a deposition rate of 15cm·min
-1

. The molar ratios were TiCl4 : APTES : Pluronic F127 : H2O : 

EtOH = 0.8 : 0.2 : 0.005 : 10 : 40. 

 

After the deposition, the films were placed in a chamber  with a RH = 99% (Magnesium Acetate) 

for 24h and then were treated at 60°C for 24h and 100°C for additional 24 h. Then the films were 

cleaned one-side with a solution of acetone-ethanol 1:2 and FTIR measurements were carried out. 

Finally, the films were put into the oven at 150°C for 65h, to remove as much as possible template 

without destroy the APTES, and FTIR and ellipsometric measures were carried out.  

 

To assess the stability in biological solutions of mesoporous TiO2 films functionalized with one-

pot methods, a sample was immersed in a PBS (1x) solution at room temperature for different 

times (2, 4, 6, 8, 10, 12, 18, 24, 36 and 48 hours). The variations in thickness and refractive index 

were studied and FTIR measurements were performed. 

 

One pot synthesis of SiO2 thin films with APTES 

In a flask were added 8.3 ml of EtOH at 3.38 ml of TEOS and 0.355 ml of HCl 0.768M. The 

solution was stirred for 60 minutes to facilitate the hydrolysis. At the same time was prepared 

another solution with 15 ml of EtOH, 1.3 g of Pluronic F127 and 1.5 ml of HCl 0.05M and was 

left under stirring for 1h. Then the two solutions were mixed and left under stirring for another 

hour. Finally 0.33 ml of HCl 11.37M (37%) and 0.886 ml of APTES were added dropwise to this 

solution and, after a few minutes the mixture was used for film preparation. The deposition 

conditions were RH 18% in the deposition chamber, RH 31% outdoor, the deposition temperature 
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in the chamber was 22°C with a deposition rate of 15cm·min
-1

. The molar ratios were TEOS : 

APTES : Pluronic F127 : H2O : HCl : EtOH  0.8 : 0.2 : 0.005: 6 : 0.02 : 16.4 

 

After the deposition process the samples were stabilized at 60°C for about 18h and 100°C for 24h. 

To remove the template, thin films were put in a flask with EtOH under reflux for 6 hours. Finally 

the films were washed with fresh EtOH and dried in an oven at 100°C before FTIR and 

ellipsometric characterization. 

 

To assess the stability in biological solutions of mesoporous SiO2 films synthesized with the one-

pot method, a sample was immersed in a solution of PBS (1x) at room temperature for different 

times (2, 4 , 6, 12, 18, 24, 36 and 48 h). Film variations in thickness and refractive index were 

studied and FTIR measurements were performed. 

 

Post grafting synthesis of TiO2 thin films with APTES 

The precursor solution was prepared as previously described. Pluronic F127 was dissolved in 

ethanol; the solution was stirred for two hours at 25°C in a closed vessel.  TiCl4 was slowly added 

to the ethanolic solution of Pluronic F127, under stirring for 20 min in an ice bath. Finally water 

was added to this mixture that was left to react under stirring for 3 hours at 25°C in a closed 

vessel. The addition of water causes the hydrolysis of TiCl4 producing EtOH and HCl, responsible 

of the high stability of the sol that is stable for several months at 25°C. The molar ratios in solution 

were: TiCl4 : Pluronic F127 : H2O : EtOH = 1 : 0.005 : 10 : 40.  

Titania thin films were deposited by dip-coating silicon wafers into the precursor solution at 25°C 

and at a withdrawal rate of 15 cm·min
-1

. The relative humidity (RH) inside the dip-coater chamber 

was maintained between 18-25%. The as deposited films were aged at room temperature (RH = 

50%) for 24 hours. Then the films were submitted to different firing steps: 60, 120 and 200°C for 

24 hours at each temperature in an oven with a heating rate of 10°C·min
-1

. The final calcination 

process was carried out at 350°C for 3.5h in an oven with a heating rate of 10°C· min
-1

. 

The functionalization process was studied in different solvents (EtOH, toluene), at different 

temperatures (20-80°C), under reflux, for different concentration of APTES (0.002-0.2M) and for 

different times (1-24 h), to avoid the formation of an opacity on the film surface. The optimization 

of the functionalization with amino-groups was obtained by immersing the calcined film in a 

solution 0.2 M of APTES in toluene for 24h, under stirring at 25°C. The amino grafted films were 
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carefully washed with toluene for several washing cycles and finally dried in air.  Titania thin 

films were characterized with spectroscopic ellipsometry and FT-IR. 

 

Post grafting synthesis of SiO2, TiO2, HfO2, ZrO2 thin films with APTMS 

Mesoporous thin films of SiO2, TiO2, HfO2, and ZrO2 were  synthesized as previously described in 

the section ―Synthesis of mesoporous hybrid thin films‖. Mesoporous thin films were immersed in 

10 ml of a solution 20 mM of 3-Aminopropyltrimethoxysilane (APTMS) in toluene and left 24h. 

Subsequently, the samples were washed with EtOH and dried at room temperature. The film 

surface, after functionalization, appeared highly opaque also after a long treatment in EtOH. The 

films obtained were characterized with ellipsometry and FT-IR techniques. 

To assess the stability in biological solutions of mesoporous thin films synthesized with post 

grafting methods, a sample was immersed in a solution of PBS (1x) at room temperature for 2h, 

washed with water and dried in a oven, then the same sample was put into the solution for 

increasing times (4, 6, 8, 10, 12, 18, 24, 36 and 48 hours). Finally the film variation in thickness 

and refractive index were studied and FTIR measures were performed. 

 

Synthesis of titania dense films 

To compare the different films, TiO2 dense films (non porous) were synthesized with the same 

materials and methods, and variations in stability and in the functionalization process were 

studied. 

TiO2 one pot dense films 

These films were synthesized following the previous method used for one-pot mesoporous films 

with the only difference that, in this case, the template (Pluronic) was not used. The molar ratios 

were TiCl4: APTES: EtOH: H2O 0.8 : 0.2 : 40 : 10. The applied treatment was the same of 

mesoporous films with the only difference that once deposited the film was not subjected to water 

vapour and was not put in a chamber with high humidity because organic – inorganic phases were 

not present. After the conclusion of the thermal treatments ellipsometric  and FT-IR measurements 

were carried out. 
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TiO2 post grafting dense films 

These films were synthesized following the previous method used for mesoporous thin films with 

the only difference that in this case it was not used Pluronic as template. The molar ratios used 

were TiCl4 : EtOH : H2O 1 : 40 : 10. The applied treatments were the same of mesoporous films 

with the only difference that once deposited the films were not exposed to water vapour and were 

not put in a chamber with high humidity. The functionalization with APTES was carried out 

immersing the films in a solution 0.2M of APTES for 24h, under stirring, at room temperature and 

followed by washing in toluene and drying at RT. 

TiO2 dense films synthesized with one-pot and post grafting methods were immersed in PBS 1x 

for 2, 4, 6, 8, 10, 12, 18, 24, 36 and 48 hours and the variations in thickness, refractive index and 

in FTIR spectra were studied. 

 

Part 1 Detection of dioxins using mesoporous titania thin films and pentapentides  

 

For the detection of dioxins three pentapeptides were synthesized, that, as reported in recent 

literature [157, 158], were chosen from a combinatorial pentapeptide library and were found to be 

able to bind dioxin molecules and in particular  2,3,7,8-tetrachlorodibenzodioxin (TCDD).  

 

Optimized Microwave-Assisted Solid-Phase Peptide Synthesis 

The peptide synthesis and characterization was carried out thanks to a collaboration with Dr. A.M. 

Roggio and Porto Conte Ricerche. Three different linear pentapeptides were synthesized in our 

laboratories H-Ile-Gln-Asp-Leu-Phe-COOH, H-Val-Gln-Asp-Leu-Phe-COOH and Fmoc-Phg-

Gln-Asp-Leu-Phe-COOH with the following procedure. 0.1 mmol (500 mg, loading 0.21 mmol/ g) 

of Fmoc-PAL-PEG resin was transferred to a 10 ml bottom-filtration reaction vessel, which was 

swollen in 4 ml of DCM/ DMF (1:1) for 30 min. After that, 2 ml of piperidine 30% in DMF was 

added to the resin. The reaction vessel was placed into the microwave cavity and irradiated for 30s 

at 75°C (SPS mode, maximum power 20W, ΔT 3 °C). The resin was subsequently washed with 4 

ml of DMF and 2 ml of piperidine 30% in DMF were added to the sample and irradiated for 

additional 2.5 min at 75 °C (SPS mode, maximum power 20W, ΔT  3°C). The suspension was 

then washed for five times with DMF and DCM (4 ml each). In separate vials the corresponding 
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Fmoc-amino acid (0.2 mmol), HATU (0.5 mmol), DIPEA (0.5 mmol) and HOBt (0.2 mmol) were 

prepared and were sequentially added to the reaction vessel.  The coupling cocktail was added to 

the resin after 2 min and the reaction mixture was irradiated at 75°C for 10 min using the SPS 

program (maximum power 10W, ΔT 3°C). After the last deprotection step, the peptidyl resin was 

dried under reduced pressure. 

Final Cleavage from the Resin. The peptide was cleaved from the solid support with a cleavage 

cocktail (5 ml) of TFA / triisopropylsilane / water (95 : 2.5 : 2.5 v/v) at room temperature for 3 h. 

The resin was filtered and washed with a small amount of cleavage cocktail. The residual product 

was precipitated with ice-cold diethyl ether and the peptide was collected by filtration, dissolved in 

deionised water, and lyophilized. 

Peptide Purification. The linear pentapeptide H-Ile-Gln-Asp-Leu-Phe-COOH was purified by 

semi preparative Jupiter column (RP C18-5 ím , 250 mm-10 mm) using acetonitrile 95% (0.07% 

TFA) in H2O (0.1% TFA), with a 20% - 95% linear gradient over 25 min. A flow rate of 4.0 

ml·min
-1

 was used, and the detection was at 220 nm. The purity of the final peptide was checked 

with analytical HPLC (Discovery C18-10 ím column, 250 mm-4.6 mm) using the same gradient 

program.  

 

Peptide immobilization 

There have been different trials to immobilize the pentapeptides on the surface of functionalized 

mesoporous TiO2, directly on the film, on the film with APTES, on the film with APTES and 

Glutharaldheyde and with the method used for the peptide synthesis. The linking was followed 

with FTIR, AFM and spectroscopic ellipsometry to study the best method, solvent and 

concentration to link the pentapeptides to TiO2-APTES thin films.  

Reaction with HATU and DIPEA. The usual method for peptide synthesis was tried to attach the 

pentapeptides to the amino- groups of the substrates. In particular 1eq of peptide was solubilised in 

2ml of DMF with 2eq HATU under stirring for 10 minutes, after that 3.5eq DIPEA and 3ml of 

DMF were added and left under stirring for 3h. Then a TiO2 mesoporous thin film functionalized 

with APTES was immersed in this solution and left under stirring for 48h. The sample was washed 

with water and dried at room temperature.  
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Optimized procedure. TiO2 thin films were immersed in a solution 0.1 mg·ml
-1 

of peptides in 

toluene and left under stirring for 24h at 25°C. After that thin films were washed different times 

with toluene, dried at room temperature and the linking was monitored with FTIR measures. For 

the detection of dioxins some fluorophore was linked to the peptides, that could be sensitive to the 

presence of TCDD. For this reason a study of the best fluorophore has been essential. 

 

Identification of the fluorescent probe that is sensitive to dioxins 

Stock solutions of Fluorescein and Rhodamine were prepared dissolving these probes (1 mg) in 

100 μl of DMF. From these stock solutions progressive dilution (1:500, 1:250, 1: 125 etc.) were 

prepared starting from 1 ml of stock and adding 500 μl of buffer (Tris-HCl pH8). At this point UV 

measurements (λ = 200-800 nm using the buffer solution as a blank) were carried out and the 

solution concentration was studied in order to have an absorbance maximum of 0.1. For the 

following measures were chosen the solutions that presented an absorbance A = 0.09 and a λmax = 

490 nm for Fluorescein and an absorbance A = 0.11 with a λmax = 550 nm for Rhodamine. The 

experiment was tried also with another fluorophore, the ANS (1-anilino-naphthalene-8-sulfonic 

acid) preparing the stock solution by dissolving about 1 mg of ANS in 200 μl of DMF. Then 10 μl 

were taken from this solution and solutions with progressive dilutions were prepared by adding 

different rates of DMF. From UV-vis measures appeared that the ANS probe had an A=0.1 at a 

λmax = 370 nm.   

Then the fluorescence measurements were performed using for Fluorescein a λ (wavelength) 

excitation of 490nm and an emission λ between 500-700 nm with a 20V lamp and a slight = 1, 

obtaining a λmax of emission at 520nm. The measures were repeated several times in order to 

exclude the phenomenon of photobleaching. The same conditions for the measurement of 

rhodamine were used varying only the slight (equal to 2) and recording the emission spectrum 

with a λ range 550-700 nm for rhodamine and an emission with a λmax at 470 nm for ANS.  

To monitor the possible changes in fluorescence due to the presence of dioxin in solution and their 

interaction with the probes 1 μl of a solution of dioxin ((TCDD 10 μg/1ml of toluene) was added 

to the solutions of fluorescein, rhodamine and ANS and UV-vis and fluorescence measures were 

carried out. It was noted that only with the fluorescein there was a considerable variation in the 

emission peak due to the addition of dioxin, for this reason this probe was chosen for the following 

detection steps. 
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Detection of TCDD 

For the final detection of TCDD it was tried to link fluorescein directly to mesoporous titania thin 

films obtaining a low fluorescence; for this reason it was tried to link FITC to peptides. This 

linking was tried after the immobilization of peptides on the films but this procedure was difficult; 

for this reason the following procedure was tried for the reaction FITC-peptide and the subsequent 

linking with TiO2-APTES mesoporous films. 

A solution of fluorescein isothiocyanate (FITC) in dimethyl sulfoxide (DMSO) was prepared at 

the concentration of 5 mg·ml
-1

. Then 1 mg of peptide were dissolved in 1 ml of toluene and 20 µL 

of FITC in DMSO were added to this solution. The Peptide-FITC solution was left under stirring 

for 3 hours, then diluted by adding 20 ml of toluene and used to immerse the titania films 

functionalized with APTES. Different measures were also tried on these solutions before 

immersing the films, to study the variation of fluorescence due to solvent, peptide and FITC. Then 

the samples were immersed and left into the solution, under stirring, for 24 hours in the dark. 

Finally the films were washed with toluene, dried in air and the fluorescence measures were 

carried out. Carbonate buffer 0.1 M and sodium carbonate 0.1 M solutions were also tested as 

possible solvents instead of toluene but the samples immersed in these solutions were not able to 

give fluorescence and were not further used. The same experiment was also carried out linking GA 

glutaraldehyde to the titania films functionalized with APTES. This step was possible by dipping 

the films in a solution of GA 50% in water for 15h followed by washing with water. Then the 

films were dipped in a solution of Peptide-FITC in toluene for 24h in the dark, washed with 

toluene, dried and, finally, fluorescence measures were made.  

For the final detection of TCDD titania, films functionalized with APTES-Peptide-FITC and 

APTES-GA-Peptide-FITC were dipped in different solutions of TCDD in toluene at a 

concentration 3·10
-6 

M, 3·10
-8 

M, 3·10
-10 

M, 3·10
-12 

M for 1h, after that the samples were washed 

with toluene, dried at room temperature and the fluorescence measures were carried out. 

 

Part 2 Detection of E.coli using mesoporous titania thin films and antibodies 

Linking of antibodies to titania thin films 

The second part of the work was based on the detection of pathogens and in particular E.coli using 

antibodies linked to titania thin films alone or functionalized with APTES and GA. The 

functionalization of TiO2-APTES films with GA was obtained immersing the films in GA 50% in 
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water for 24h, washing with water and EtOH and drying at room temperature. Different 

experiments were carried out for the immobilization of antibodies on titania thin films directly on 

the films, on the films functionalized with APTES and on the films functionalized with APTES 

and GA. Antibodies solutions were prepared dissolving 200μl of anti E.coli O157:H7 in 800µl 

PBS with a final concentration of 50 μg/ml, then the films were covered with this solution for 15h 

at 4°C. Finally the films were washed with PBS and water, dried at room temperature and FTIR 

measures were done to monitor the presence of antibodies on the films. The detector was cooled 

with liquid nitrogen for 60min before data collection and also during the measures. 

Bacteria preparation 

E. coli O157:H7 and E. coli K12 were cultured on agar plates for 24 h, then a single colony of 

each species was transferred into 10 culture tubes containing 5 ml each of LB (Luria-Bertani 

Medium) and put into the incubator at 37 °C, under shaking for 18 h at 120 rpm. After that the 

tubes were centrifuged at 3500 rpm for 10 min, obtaining a pellet. Then the LB was removed from 

the tube and the cells were first washed three times with sterile PBS to remove residual medium 

and resuspended in 3ml PBS for binding experiments. Serial dilutions of bacteria were prepared 

for the detection step. 

Determination of the Detection Limits of E.coli O157:H7 

Titania thin films alone or functionalized were incubated with anti-E.coli O157:H7 antibodies 

covering the films with 1 ml of E.coli O157:H7 at concentrations ranging between 10
8
 and 10 

CFU/ ml for 90 min to allow the binding. Then these films were washed and left 15min in PBS 

solution, washed with PBS and water, dried in air at room temperature and finally analyzed by FT-

IR spectrometry to determine the sensitivity of the methodology. Some trials with E.coli K12 were 

also carried out to study the selectivity of the method. 

 

Part 3 Development of SERS substrates with mesoporous titania thin films 

 

To create devices able to detect analytes in very low concentration, mesoporous TiO2 thin films 

were modified to obtain new substrate for SERS, using them as host matrix for the grown of Ag 

nanoparticles. TiO2 films were synthesized as described in the section ―synthesis of mesoporous 

hybrid thin films‖. 
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Grown of silver nanoparticles 

Titania thin films were immersed in a solution 1M AgNO3 in H2O : EtOH = 1 : 1 (v/v) and left in 

the dark, under stirring, to optimize the impregnation process. Different times were tried for this 

step, from 20 minutes to 24 h. The films were then placed in a petri dish and were completely 

covered by the AgNO3 solution. Finally the Petri with the films was placed under a UV lamp 

(Spectroline, 4W, at a wavelength of 356 nm) and exposed for different times (10 minutes, 1, 3, 5 

and 6 hours) to UV light. After the exposition the samples were washed with ethanol and water 

and dried at room temperature.  

Detection of Rhodamine B isothiocyanate and  Cytochrome C with Raman 

spectroscopy 

To evaluate the SERS effect of the titania mesoporous films containing the silver nanoparticles, 

different samples were impregnated with solutions of Rhodamine B isothiocyanate or Cytochrome 

C. The films were dipped into an aqueous solution of rhodamine B isothiocyanate (RhBITC) or 

cytochrome C (Cyt C) at different concentrations  (1·10
-3

, 1·10
-6

, 1·10
-8

, 1·10
-10

, 1·10
-12

, 1·10
-14

, 

1·10
-16 

M for RhBITC and 1·10
-4

, 1·10
-6

, 1·10
-8

, 1·10
-10

, 1·10
-12

, 1·10
-14

, 1·10
-16

 M for CytC) and 

left at 25°C for 1 hour; after that the films were washed with water and dried in an oven at a 

temperature of 37°C. Finally the Raman measures were carried out for the detection of RhBITC 

and CytC. 

 

Characterization techniques 

 

Film characterization 

Fourier Transform Infrared (FTIR) analysis was performed using a Bruker Vertex 70v 

spectrophotometer. The optical bench and the sample compartment were kept in vacuum during 

the measurement at pressure lower than 0.5 hPa. The measurements in the middle infrared (MIR) 

region were performed using a Globar source, a KBr beamsplitter, and a RT-DLaTGS detector 

averaging 256 scans with 4 cm
-1

 of resolution. The measurements in the far infrared range were 

done using a Globar source, a Si beamsplitter, and a RT-DTGS-FIR detector.  The spectra were 

recorded in transmission, in the 600-100 cm
-1

 range by averaging 32 scans with 4 cm
-1

 of 

resolution. A silicon wafer was used as the substrate to measure the background; the baseline was 

calculated by a rubber band algorithm (OPUS 7 software). 
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The organization of the porous structure was investigated by 2D grazing incidence small angle X-

ray scattering (GISAXS) at the Austrian SAXS beam line of ELETTRA synchrotron facility 

(Trieste, Italy). An incident energy of 8 keV (wavelength 1.54 Å) was used; the instrumental 

glancing angle between the incident radiation and the sample was set slightly above the critical 

angle (grazing incidence). A two-dimensional CCD detector (Photonic Science, U.K.) was used to 

acquire the scattering patterns; each measurement consisted typically on the average of 10 

acquisitions with integration time of 6 s. 

Pore arrangements were also studied by transmission electron microscopy (TEM). TEM 

micrographs were obtained in bright field mode on a JEOL 200CX microscope equipped with a 

tungsten cathode operating at 200 kV. Finely ground films scratched from the substrate were 

dispersed in n-octane by sonication, and then they were dropped on a carbon-coated copper grid 

and dried for TEM observations. Centre-to-centre interpore distance was evaluated by line profile 

analysis on a set of representative TEM images as the average FWHM of the intensity distribution 

along a line passing through the pore centres. 

Film thicknesses and refractive indexes were measured by spectroscopic ellipsometry using a α-

SE
TM

 instrument (J.A.Woollam, U.S.A.) working in the 400-850 nm range. 

 For the characterization of functionalized films with peptides of the Part 1 was used the FTIR and 

spectroscopic ellipsometry described above. 

 Fluorescence analysis was done using a FluoroMax-3 Horiba Jobin Yvon spectrofluorometer. The 

probing beam was set to impinge on one side of the sample (silicon substrate, incidence angle of 2-

3°) so that the sample acted as a waveguide for the incident light wave, while the luminescence 

was collected at 90° with respect to the incident beam. This configuration enhanced the signal-to-

noise ratio and avoided reflection effects. Each acquisition is the average of 3 different 

accumulations. An excitation wavelength of λex= 490 nm was used for acquiring the emission 

spectra. 

Atomic force microscopy (AFM) images were taken using a NT-MDT Ntegra AFM; surfaces were 

measured at 0.5–1 Hz scan speed in semi-contact mode, using a silicon tip with nominal resonance 

frequency of 150 kHz, 5 N·m
-1

 force constant, and 10 nm typical curvature radius. 

For the second part of the work mesoporous titania thin films were characterized with a FTIR 

Nicolet Nexus spectrophotometer equipped with a KBr-DTGS detector and a KBr beam splitter. 

The measure was carried out in the range 4000-700 cm
-1

 with 256 scans and 4cm
-1

 of resolution. 
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The spectra were recorded in transmission, under an N2 flow, on films deposited on silicon wafers. 

The background was recorded using a silicon substrate. 

For the third part of the work titania thin films with silver NPs were characterized as follows.  

UV-visible absorption spectra were obtained using a Nicolet Evolution 300 spectrophotometer. 

The measures of mesoporous titania thin films on silica slides, with or without AgNPs, were done 

from 200 to 800 nm; a silica glass slide was used for the background.  

 

Fourier Transform Infrared (FTIR) analysis was performed using a Bruker Vertex 70 

spectrophotometer. The spectra were recorded in transmission, in the 4000-400 cm
-1

 range by 

averaging 128 scans with 4 cm
-1

 of resolution. A silicon wafer was used as substrate to measure 

the background; the baseline was calculated by a rubber band algorithm (OPUS 7 software).  

 

X-ray diffraction (XRD) patterns were collected  in the angular range 10<2θ<80, using a Bruker 

Discovery 8 instrument with a copper tube CuKα (λ = 1.54056 Å); the X-ray generator worked at a 

power of 40 kV and 40 mA. The scan type used was the Detector scan, starting at 10° and ending 

at 80°. The step size was 0.02° and the time per step was of 0.5s repeated until a good signal to 

noise ratio was obtained. 

 

Atomic force microscopy (AFM) measures were taken with an Asylum Research 3-D AFM in 

contact mode. 

 

Raman measures were taken using a Bruker Senterra confocal Raman microscope using two 

excitation wavelengths at 532 and 633 nm, an objective of 50X, with a power of 0.2 mW for 

RhITC and a power of 2 mW for CytC. The integration time for the RhITC was varied from 0.2 

sec for the measures at 532 nm and two acquisitions of 1 sec for the measures at 633 nm, while for 

the measures of CytC an integration time of 10 s was used for the measures at 532 nm and two 

acquisitions of 1s for the measures at 633 nm. The Raman measurements were performed to assess 

any SERS effect of the Ag-doped titania mesoporous films with the dye. The measures were done 

on the titania mesoporous film, on the titania mesoporous film with AgNPs and on the titania 

mesoporous film impregnated with RhBITC or CytC.  
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Results and Discussion 

 

Preparation of mesoporous hybrid thin films, functionalization and choice of the 

best material for biosensor development 

 

Solution preparation  

Different chemical and physical conditions were essential to obtain organized mesoporous thin 

films as the type of inorganic material used, the type of precursors, the hydrolysis-condensation 

kinetics, the type and concentration of surfactants, pH, additives, solvents, temperature, synthesis 

time and order of introduction of the compounds. In particular with our synthesis method 

mesoporous hybrid thin films were produced starting from a solution containing an alkoxide 

(TEOS) or metal chlorides (TiCl4, HfCl4, ZrCl4) as inorganic precursors, an organic template 

(Pluronic) and additives as HCl to control the pH (except when metal chlorides were used as 

inorganic precursors) all in a volatile solvent (EtOH). 

The reactions that occurred were the following: 

 

Si(OR)4 + H2O (RO)3Si-OH + ROH (1) 

(RO)3Si-OH + HO-Si(OR)3  (RO)3Si-O-Si(OR)3 + H2O (2) 

(RO)3Si-OR + HO-Si(OR)3  (RO)3Si-O-Si(OR)3 + ROH (3) 

R=CH3CH2 with Si(OR)4 =TEOS 

 

For silica preparation the hydrolysis reaction (eq.1) started with the addition of water that replaced 

the alkoxide groups (RO) with the formation of hydroxyl (OH) groups and alcohol. Then the 

condensation reactions started (eq. 2 and 3) involving the silanol groups (Si-OH) and creating 

siloxane bonds (Si-O-Si) and water or alcohol. Usually the condensation process starts before the 

hydrolysis is complete, for this reason it was very important to control the pH and the molar ratio 

H2O/Si to complete the hydrolysis before condensation begins. The reagents used for this reaction 

were water, ethanol and HCl. Water was essential for the hydrolysis process, while EtOH was used 

because water and alkoxides are immiscible and in this way the hydrolysis is facilitated; finally 

HCl was added, because under acidic conditions the alkoxide group is protonated quickly making 

it more electrophilic and more available for water attack. In the final condensation process, the 
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increasing number of siloxane bonds lead to the aggregation of the molecules in the sol that 

became gel.  

 

For the preparation of transition metal oxides the reaction of hydrolysis and condensation were the 

same but in this case HCl was not added because it was developed in the reaction as shown below: 

 

MCl4 + 2ROH MCl2(OR)2 + 2 HCl 

MCl2(OR)2  
mH

2
O
 [ M(OH)2(H2O)n(Z)x] 

(2-x)
 + (2-xHCl) + (2-xEtOH) 

Z=OH, Cl, OEt; m>4; x<2 

M=Ti, Hf, Zr R= CH3CH2 

 

Different parameters have been considered in the synthesis step as the aging of the sol before the 

deposition, in fact with a short aging time cubic mesostructured films were obtained (Fig. 13). 

Also the ratio between water and ethanol was important to obtain a well-aligned phase avoiding 

that the condensation of the inorganic precursors disturbed the organization of the amphiphilic 

molecules. The presence of water and acid (added or developed) helped the folding of the template 

giving more ordered phases. 

 

 

 

 

Fig. 13 Formation of the hybrid organic-inorganic structure. Reproduced by [125] 
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Film deposition 

For the deposition of the sols on the substrates it was used the dip coating method (Fig. 14, 15). 

 

Fig. 14 Dip coating process. Reproduced by [136]. 

 

 Dip coating was realized dipping silicon and quartz wafer of size 1cm x 3cm into the precursor 

solution and extracting the substrate with a well-defined speed, under controlled humidity, 

temperature and atmospheric conditions. The final film thickness, in the deposition step, was 

influenced by the withdrawal speed, the solvent used and the viscosity of the solution. 

 

  

 

Fig. 15 Picture of the home made dip-coater used in the present work (left), and the deposited thin film on Si (right) . 
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Evaporation process 

After the immersion and extraction of the silicon or quartz wafer into the micellar solution, the 

evaporation process of the volatile species (EtOH and HCl) started leading to the self assembly of 

the surfactant (Pluronic) with the inorganic species, according to a process called EISA 

(Evaporation induced self assembly). To obtain the self organization it was important to use a 

definite molar ratio between the template and the inorganic compounds allowing the electrostatic 

interactions among the surfactant head groups and the inorganic molecules.  

 

 

 

 

 

 

  

 

 

 

 

 

Fig. 16 Evaporation induced self assembly process. Reproduced by [139]. 

 

As shown in Fig. 16 the evaporation of water and ethanol produced an increase in the 

concentration of the surfactant, of the acid and of the inorganic precursor, starting the evaporation 

from a micellar concentration C0 (C0 << Cmc) and arriving to a surfactant concentration that 

exceeds the critical micelle concentration (Cmc), leading to the development of the mesophase. In 

this step to obtain ordered structures it was indispensable to control the temperature and RH that 

influenced the evaporation of the solvent and the reactions occurring in the sol.  

 

Post treatments 

To assembly the network in the desired mesostructure, it was necessary to age the film for at least 

24 h at high humidity, after that, it was stable enough to be calcined. Different values of humidity 

were tried because this parameter affected the final aspect of the film. In fact films deposited at 
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high RH were transparent, but with an inhomogeneous thickness for the slow drying process due 

to the absorption of water during the formation of the layer, while films deposited with RH < 45% 

were homogeneous but became opaque when exposed to the external humidity. To obtain films 

with high optical quality and excellent organization it was carried out the deposition at low RH 

and a post-processing at high RH. This post-treatment has been more efficient if applied quickly, 

to avoid the condensation of the inorganic framework that could stop the intermediate disordered 

structure. The film thickness was also influenced by the temperature because the increasement of 

temperature led to a fast evaporation and condensation rate that is negative for the formation of 

organized films. The best results were obtained using temperature from 20 to 30 °C during the dip 

coating process for combining good optical qualities and film organization. Also the post 

deposition treatments have been considered because they were determinant for organization, 

degree of contraction, and thermal stability of the final film. The thermal treatments were used to 

eliminate the volatile species, to increase the condensation of the inorganic species and to remove 

the template. It was found that to obtain highly organized films with high surface area it was better 

to use a set of aging treatments (from 60 to 120 °C and 200°C) under controlled RH and a slow 

heating process (10°C/ min) then a quick step at high temperatures. The template removal was 

obtained with a calcinations process at 350 °C.  The final heating led to a further condensation, 

which stabilized the structure and caused a contraction.  

Film formation and template removal were followed by FTIR measures, as shown in the next 

section. 

 

Characterization of mesoporous SiO2 thin films with FTIR 

 

FTIR spectra of silica thin films were carried out in the 4000- 450 cm
-1

 range (Fig. 17). As shown 

in the spectrum there are two regions corresponding to different vibration modes attributed to 

hydroxyl species (3800 - 3000 cm
-1

) and silica species (1800 - 400 cm
-1

). 
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Fig. 17 FTIR of mesoporous silica films in the range 4000-450 cm
-1

 

 

In the region related to hydroxyl species (3800 - 3000 cm
-1

) can be observed (Fig.18A) different 

vibration modes. 
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Fig. 18 A FTIR of mesoporous silica films in the range 3800-3000 cm
-1

 

 

In the region ~3800-3650 cm
-1

 can be seen the stretching modes of OH groups not involved or 

slightly involved in H-bonds, while in the region ~3650-3200 cm
-1 

can be observed the stretching 

modes due to H-bonds. In the region around ~3740 cm
-1

 can be noted a sharp narrow peak that is 

assigned to isolated silanol groups and, in the same region (~3700-3600 cm
-1

) can be observed 

other peaks due to terminal silanols. Also a broad band in the ~3700- 3200 cm
-1

 region can be 
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observed for the H-bonds of silanol groups (Si-OH stretching). Finally the adsorbed water shows 

an intense band around 3300 - 3500 cm
-1

 due to O-H stretching and H-bonds.  
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Fig. 18 B FTIR of mesoporous silica films in the range 1800-400 cm
-1

 

 

 In the part of the spectrum (1800 - 400 cm
-1

) related to silica species (Fig. 18B) can be noted a 

low band at 1645 cm
-1

 due to the bending H-O-H vibrations of water.  Other significant bands can 

be observed in the region around 1070 cm
-1 

(Si-O-Si asymmetric stretching), 800 cm
-1 

(Si-O-Si 

symmetric stretching), and 460 cm
-1 

(Si-O-Si rocking), due to Si-O-Si vibrational modes. The 

attribution of these bands is well known and represents the silica fingerprint. 

 

Characterization of TiO2, HfO2, ZrO2 mesoporous thin films with FTIR 

FTIR spectra of thin films of TiO2, HfO2, ZrO2 were collected. These spectra show a broad band in 

the range 3800-3000 cm
-1

, region of hydroxyl groups. It was observed a shift in the absorption 

maximum of the OH group that was induced by the thermal treatment. In fact, after thermal 

treatment at 100°C (Fig. 19), a broad main peak was noted around 3400 cm
-1

 for HfO2 and ZrO2 

thin film  due to M-OH stretching (M=Zr ,Hf); instead for TiO2 thin films the band centred around 

3300 cm
-1

 was observed. 
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Fig. 19 FTIR of HfO2, TiO2, ZrO2 films after treatment at 100°C in the range 4000-400 cm
-1

 

 

 Furthermore the spectra changes due to the thermal treatment and the consequent template 

removal (Pluronic) due to the calcination process were studied. To simplify the exposure only the 

titania spectra were reported because the behaviour of ZrO2 and HfO2 thin film was the same. 

 The elimination of template (Pluronic) and of all the organic molecules with FTIR spectra was 

evaluated (Fig. 20).  
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Fig. 20 FTIR of TiO2  thin films after different thermal treatments  in the range 3800-2700 cm
-1

 

 

It was noted that with the thermal treatments the band related to Pluronic, two intense peaks at 

2930-2850 cm
-1

, due to C-H stretching,
 

decreased and, with the calcination process, they 
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disappeared; the same happened for the band around 3600-3200 cm
-1

 due to O-H stretching. The 

progressive removal of template can also be observed in the range 1500-1200 cm
-1

  (Fig.21); in 

fact the peaks due to methylene wagging  around 1300 cm
-1

, twisting at 1250 cm
-1

 and stretching 

of C-O-C around 1100 cm
-1 

disappeared. 
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Fig. 21 FTIR of TiO2  thin films after different thermal treatments  in the range 1500-1200 cm
-1

 

 

For this reason, it can be concluded, that the desired films with the characteristic peaks were 

obtained and that all the organic compounds were removed from TiO2, ZrO2, HfO2, SiO2 thin films 

with a calcination process at 350 °C, producing mesoporous inorganic materials ready for the 

subsequent functionalization process.  

Study of stability in PBS 

The stability of mesoporous thin films was studied at 25°C after their immersion in PBS 

(phosphate buffer solution) pH 7.4 used to mimic biological environments. After the film 

immersion in this solution for different times (2, 4, 6, 8, 10, 12, 24, and 48 h), FTIR measures 

were carried out but without significant changes (not reported for this reason). Ellipsometric 

analysis were also carried out to study thickness and refractive index variations of these films after 

immersion, to obtain qualitative information about their possible dissolution.  

In the next figures (Fig. 22, 23, 24, 25) are shown the results obtained for TiO2, HfO2, ZrO2 and 

SiO2 mesoporous thin films. For all the samples an increase in refractive index (1.79 to 1.83 for 

TiO2, 1.57 to 1.64 for HfO2, 1.67 to 1.79 for ZrO2, 1.30 to 1.52 for SiO2) can be noted after 48 h in 

buffer solution that can be due to water adsorption into the pores. A minimum increase in 

thickness was observed after 48 h of immersion of TiO2 (213-216 nm) and HfO2 (184-187 nm) 
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films, instead a decrease in thickness was observed for ZrO2 (198-191 nm) and a strong one for 

SiO2 (445-10 nm).  
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 Fig. 22 Ellipsometric measures of TiO2 thin films after immersion in PBS 

for 2-48h. Changes in thickness and refractive index were reported. 
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 Fig. 23 Ellipsometric measures of HfO2  thin films after immersion in PBS 

for 2-48h. Changes in thickness and refractive index were reported. 

 

Time 

(hours) 

Thickness 

(nm) 

n(refractive 

index) 

MSE(mean 

square error) 

0 213.84 1.795 61.58 

2 215.23 1.806 61.52 

4 215.64 1.81 62.53 

6 216.03 1.814 62.53 

8 216.08 1.814 62.16 

10 217.93 1.819 62.34 

12 217.43 1.826 61.20 

18 217.43 1.825 61.12 

24 216.41 1.877 60.74 

36 217.01 1.833 63.32 

48 216.80 1.834 62.9 

Time 

(hours) 

Thickness 

(nm) 

n(Refractive 

index) 

MSE(mean 

square error) 

0 184.62 1.579 14.28 

2 185.24 1.607 12.6 

4 184.85 1.62 15.17 

6 185.44 1.625 15.09 

8 186.36 1.625 14.97 

10 186.66 1.628 15.06 

12 186.62 1.682 14.99 

18 187.08 1.632 15.89 

24 186.58 1.673 12.47 

36 187.20 1.647 16.18 

48 187.69 1.646 15.92 
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 Fig. 24 Ellipsometric measures of ZrO2  thin films after immersion in PBS 

for 2-48h. Changes in thickness and refractive index were reported. 
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 Fig. 25 Ellipsometric measures of SiO2  thin films after immersion in PBS 

for 2-48h. Changes in thickness and refractive index were reported. 

 

  

Time 

(hours) 

Thickness 

(nm) 

n(Refractive 

index) 

MSE(mean 

square error) 

0 198.96 1.677 35.7 

2 196.41 1.71 34.9 

4 191.45 1.743 37.06 

6 192.6 1.752 35.36 

8 192.73 1.751 35.63 

10 192.21 1.782 31.17 

12 192.03 1.781 32.3 

18 192.79 1.778 32.77 

24 189.85 1.818 30.45 

36 190.14 1.799 34.19 

48 191.93 1.795 32.25 

Time 

(hours) 

Thickness 

(nm) 

n(Refractive 

index) 

MSE(mean 

square error) 

0 445.72 1.301 60.29 

2 230.99 1.298 105.60 

4 213.3 1.269 196.26 

6 113.58 1.254 43.09 

8 97.82 1.212 27.93 

10 97.08 1.212 47.6 

12 60.46 1.248 39.58 

18 13.40 1.445 1.79 

24 11.47 1.473 1.87 

36 10.28 1.518 2.02 

48 10.21 1.529 2.67 
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In the case of SiO2 thin films it was observed that only after 2h the film thickness halved and, after 

18h, the hydrolysis was complete.  At the same time it was observed a decrease of refractive index 

until 10h of treatment; after that the film was so thin that the refractive index value was due only to  

Si wafer. It is clear as SiO2 thin films are not appropriate substrates for the development of 

biosensors because of their low stability in solution.  

 

Comparing the other films (Fig. 26) it was observed a similar trend for TiO2 and HfO2 thin films 

that presented an increase in thickness of 3 nm after 48h of treatment. These values can be due to 

the measure that is not so sensitive to distinguish between few nanometres of difference. In 

conclusion we can confirm that there was no variation in film thickness for TiO2 and HfO2 thin 

films after 48h of treatment. In the case of ZrO2 a decrease in thickness (around 10 nm) can be 

noted during the treatments with a partial hydrolysis that is not desirable for the construction of the 

final device. 

 

In conclusion the following order of stability was found for the mesoporous thin film synthesized: 

HfO2 ~ TiO2 > ZrO2 >>>> SiO2. 
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Fig. 26 Thickness measures of ZrO2, HfO2, TiO2  thin films after immersion in PBS for 2-48h. 
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Functionalization process 

 

Mesoporous thin films, obtained as previously described, presented large surface area and were 

rich in Si-OH or other M-OH (M= Ti, Hf Zr) groups that were available for a possible 

functionalization. The basic idea to link organic and inorganic chemistry with biological species 

led us to include appropriate molecules into the mesoporous thin films to obtain multifunctional 

materials. In this way it was possible to immobilize a molecule into the pores in an inorganic 

framework able to protect the immobilized species. Combining mesoporous thin films of SiO2 or 

transition metal oxides (TiO2, HfO2, ZrO2) with organosilica precursors it was possible to create 

inorganic films with an organic function. The organic functions (organosilanes as APTMS or 

APTES) were included in the precursor solution with the templates (“one-pot” method) or added 

after the calcination process of the films with a post synthesis treatment (“post grafting” method) 

as shown in figure 27.  

 

 

 

 

 

Fig.27  The main routes towards functionalized mesoporous hybrid thin films.  Reproduced by [139]. 

 

With the ―One pot‖ technique the final films have the organic molecule included inside the 

material and on the pore surface, with the disadvantage that during the thermal treatments it is not 

possible to use high temperatures to remove the template completely because it can destroy the 

functionalizing organic molecule. At the same time, with this method, the homogeneity of the 

organic function incorporation can be highly controlled and the pore blockage that can happen 

with the post grafting process can be avoided.  
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On the other hand, with the post-functionalisation method, the functional organic molecules on the 

pore surface can be grafted. With this route the template can be removed in a previous step, 

allowing linking a new function on the pores surface.  

In detail using the one pot  method TiO2 and SiO2 mesoporous thin films were functionalized, 

while the second method was used for TiO2, HfO2, ZrO2 and SiO2 films. 

One Pot  

SiO2 One pot  

SiO2-APTES mesoporous thin films were synthesized with the one pot method and on these films 

FTIR and ellipsometric measures were carried out before and after the exposition to a PBS 

solution for different time. 
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Fig.28 FTIR of SiO2 mesoporous films synthesized with one pot method (black spectrum) and of silica films without 

APTES (red spectrum). As reference on the right was reported the APTES spectrum. 

 

In particular in figure 28 it was reported the FTIR spectrum of SiO2 mesoporous thin film with the 

spectrum of the same film with APTES obtained with one pot method. The reference spectrum of 

APTES in toluene was shown with the characteristic peaks: N-H stretching at 3300 cm
-1

, N-CH2 

stretching around 2800 cm
-1

, NH2 scissoring and N-H bending at 1615 cm
-1

, aliphatic C-N 

stretching at 1020-1220 cm
-1

, NH2 wagging and twisting at 850-750 cm
-1

 and N-H wagging at 715 

cm
-1

. From the comparison of these peaks with the SiO2 – APTES spectrum it can be concluded 

that the functionalization occurred. It was also noted the presence of the bands related to Pluronic 

(2930-2850 cm
-1 

C-H stretching, 1300 cm
-1 

methylene wagging, 1250 cm
-1

 
 
 twisting and stretching 

of C-O-C at 1100 cm
-1

) due to the incomplete removal of template. 

The stability of these functionalized films was also studied in PBS as shown in the following fig. 

29.  
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Fig. 29 FTIR of SiO2-APTES mesoporous films synthesized with one pot method after immersion in PBS for 2-48h.  

 

The FTIR spectra show how during the immersion of the films in PBS solution there was a 

proportional decrease of the peaks related to SiO2 and APTES. This was evident in particular in 

the range 1300-1000 cm
-1 

related to C-N stretching and Si-CH2 stretching of the aminopropyl 

chain and at 1070 cm
-1 

related to Si-O-Si bonds
 
. 

 

This behaviour was confirmed by ellipsometric measures (Fig. 30) that reported a strong decrease 

of film thickness from 550 to 100 nm after immersion due to the hydrolysis of the framework.  
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Fig. 30 Ellipsometric measures of SiO2-APTES  thin films after immersion in PBS for 2-48h. Changes in thickness and 

refractive index were reported. 
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TiO2 one pot 

 

TiO2 mesoporous thin films with APTES, using the one pot method, were synthesized. To 

characterize the films was used the FTIR. In particular in fig. 31 it can be noted the TiO2 spectra of 

mesoporous films and of TiO2 films with APTES. Also in this case the functionalization was 

carried out as shown by the peaks related to APTES (N-H stretching at 3300 cm-1, N-CH
2
 

stretching around 2800 cm-1, NH2 scissoring and N-H bending at 1615 cm-1, aliphatic C-N 

stretching at 1020-1220 cm
-1

, NH2 wagging and twisting at 850-750 cm
-1

 and N-H wagging at 715 

cm
-1

). It could be also noted the presence of the bands related to Pluronic (2930-2850 cm
-1 

C-H 

stretching, 1300 cm
-1 

methylene wagging, 1250 cm
-1

 
 
 twisting and stretching of C-O-C at 1100 

cm
-1

) due to the incomplete removal of template.  
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Fig.31 FTIR of TiO2 mesoporous films synthesized with one pot method (black spectrum) and of titania films without 

APTES (red spectrum). As reference, on the right, the APTES spectrum is shown. 

 

The stability of these functionalized films in PBS was also studied. In particular FTIR measures 

(not reported) were carried out;  they did not show a consistent modification in the spectra before 

and after the immersion of the films in PBS solutions. While,  from ellipsometric measures (Fig. 

32), a decrease in film thickness was noted after 48h of immersion for totals 50 nm.  

In this experiment a strong increase of refractive index can also be noted with the time, probably 

due to the pores filling with water or phosphate groups that remained trapped inside the pores. 
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Fig. 32 Ellipsometric measures of TiO2-APTES  thin films after immersion in PBS for 2-48h. Changes in thickness and 

refractive index were reported. 

 

The results obtained with the one pot method revealed that the functionalization occurred for both 

SiO2 and TiO2 thin films and that in both cases were present all the organic molecules: Pluronic 

and APTES. In the case of silica there was a considerable decrease in thickness, also if minor than 

in not functionalized films. Also in the case of titania films there was a decrease in thickness after 

only 6h of immersion. This low stability did not allow using these materials as substrates for the 

following steps. 

Post grafting 

 

Post grafting with APTMS of TiO2, HfO2, ZrO2, SiO2 mesoporous thin films 

 

Post grafting method was carried out linking APTMS (3-Aminoprpyltrimethoxysilane) to TiO2, 

HfO2, ZrO2 and SiO2 mesoporous thin films. The monitoring of the quality of post grafting was 

very important because it was necessary for the following linking of biological molecules and for 

the construction of the final biosensor. This step was evaluated by FTIR analysis (Fig. 33). 
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Fig.33 FTIR of TiO2, HfO2, ZrO2, SiO2  mesoporous films synthesized with post grafting method before (red spectrum) 

and after the functionalization with APTMS (blue spectrum).  

 

In FTIR spectra the peaks related to amino groups on the mesoporous surface were identified. The 

spectra before the functionalization (red spectra) were compared with the spectra after the 

functionalization (blue spectra) and a new peak was seen around 3400 cm
-1

, due to symmetric 

stretching of N-H (seen as a doublet for primary amines) that is partially covered with the –OH 

peaks. In the region between 3000-2700 cm
-1

 the presence of the propyl chain of APTMS was 

evident. Around 1600 cm
-1

 the peak due to N-H bending and NH2 scissoring was present. In the 

range 1000-1200 cm
-1

 there could be observed the C-N stretching vibrations. In the same region 

the peaks can be overlapped with other Si-O-Si peaks due to the linking between APTMS 

molecules; but the peak due to amino group was clearly distinguishable. Finally in the range 700-

850 cm
-1

 the peaks due to NH2 wagging and twisting and N-H wagging were clear. As clearly 

shown by the spectra above, all these characteristic peaks were present in TiO2, HfO2, ZrO2 films 

that confirmed the occurred functionalization, while in the SiO2 films it did not occur a good 

functionalization. In fact, to functionalize thin films was not simple, because there are different 

parameters to consider such as the variety of ways that the primary amines can interact with the 

environment.  



67 

 

The stability of these functionalized films was also studied in PBS and the same results seen 

previously with the films not functionalized were obtained. In particular TiO2 films were the most 

stable after 24h of immersion in PBS solution and for this reason this material was chosen for the 

final construction of the biosensor. 

 

Results 

 

Mesoporous thin films were synthesized and two methods were used to functionalize the films. 

The functionalization was carried out with a ―One- pot‖ and ―Post grafting‖ method with different 

results for each material. The strength of the bond was studied immersing the films in PBS 

solutions for different time and the result was that titania films are the most stable in both methods. 

In fact it should be stressed that in silica films it was not simple to control the surface silanols that 

can form different species reacting in several ways. Comparing with silicon oxides, the transition 

metal oxides were preferred for their properties of higher reactivity toward the hydrolysis and 

condensation step, for the possibility to functionalize the surface in a homogeneous way and for 

their feature to crystallize when heated, forming an ordered network. 

For materials composed of metal oxides the one pot method was less effective because the 

alkoxides in solution can react in different ways and the self assembly method can modify the 

formation of pores. Furthermore there were not applied high temperatures to remove the template 

because it was taken into account the thermal degradation of the organic groups, obtaining in those 

way only a partial porous material. As shown in figure 34 the post grafting method was more 

effective to provide more functional groups available on the pores surface, than in the oxide 

framework, essential for the next grafting step and, for this reason, it was chosen as the most 

appropriate  method.  
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Fig. 34 Simplified model of pores in films synthesized by post-grafting (A) and by co-condensation (B) methods after 

thermal treatment. The empty circles represent the amine function. Reproduced by [161]  

 

Titania thin films as synthesized were chosen as the best material because of their high hydrolytic 

stability in comparison with mesoporous silica samples and the other transition metal oxides which 

have a severe limit for applications in biosensors technologies due to their very low stability in 

water and physiological solutions.  

Once chosen, it was carried out the detailed characterization of the material. 

 

 

 

Characterization of mesoporous titania thin film 

 

Mesoporous titania thin films were synthesized obtaining organized mesostructures after the 

removal of the templating micelles via thermal calcination; after firing, the films still presented 

high organization, excellent optical quality and hydrolytic stability.  
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The organization of the porous structures on films was studied by GISAXS (Fig. 35) showing the 

typical pattern of an ordered mesoporous titania film after thermal treatment at 350°C. 

 

 

 

 

 

 

 

 

 

Fig. 35 GISAXS pattern of an ordered mesoporous titania film treated at 350°C. 

 

The pattern appears composed of three peaks that can be indexed as (110), (101), and (110) 

reflections of a body centred cubic (Im 3 m in the space group) structure with domains 

preferentially oriented with the [110] direction normal to the surface, and allowed by the circular 

permutation. The lower intensity of the (110) peak is due to the incident angle that reduces the 

quantity of domains having their in-plane diffraction in the Bragg conditions. As a consequence of 

the thermal treatment, the cubic unit cell is contracted in the out-of-plane [110] direction (normal 

to the substrate), which will be referred to as d110, whereas the in-plane (parallel to the substrate) 

cell constant will be referred to as d110. Following this attribution, the lattice parameters were 

calculated to be d110 = 7.0 ± 0.1 nm and d110 = 3.1 ± 0.1 nm. The synthesis protocol has shown to 

be very robust and highly reproducible; in fact systematic GISAXS analysis were performed on 

different batches of samples (more than 20 samples have been analyzed by GISAXS) prepared in 

various times and it was always observed a cubic organization of the porous structure. 
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A direct observation of the pore arrangement was obtained by transmission electron microscopy to 

support the information provided by SAXS data. Bright field TEM images were collected for 

samples fired at 350°C. Figure 36 shows representative direct images of the deposited films 

showing some projections of a slightly distorted cubic structure.  

 

 

 

 

Fig. 36 Bright-field TEM images of  mesoporous titania films treated at 350 °C 

Even if an unambiguous identification would require cross-sectional TEM, according to the 

literature, we have attributed this images to the (110) projection. Under these conditions, in fact, 

the {110} face appears as a sequence of channels because the depth of field of the electron 

microscopy merges several spherical pore planes. Starting from this consideration, the distance 

among pores was calculated by a line profile analysis on representative TEM images. The centre-

to-centre interpore distance was estimated to be 8.5 ± 1 nm.  

Fig. 37 shows the FTIR absorption spectra in the 4000–2500 cm
-1

 interval of as deposited (black 

line) and calcined (blue line) mesostructured titania films; calcination was done in air at 350°C. 
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Fig. 37 FTIR absorption spectra in the 4000 – 2500 cm
-1

 interval of as deposited (black line) and calcined (blue line) 

mesostructured titania films; calcination was done in air at 350°C. 
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The spectra of the as deposited film show the presence of a wide intense band peaking around 

3250 cm
-1

, which was assigned to O-H stretching mode, due to Ti-OH species and absorbed water 

(overlapped band around 3200 cm
-1

). The presence of the organic template in the as deposited film 

was indicated by the C-H stretching bands in the 3000-2800 cm
-1

 interval. After calcination of the 

film at 350°C the spectrum appears as a flat curve with only a very small signal around 2900 cm
-1

; 

this indicates that the thermal treatment removed almost completely the surfactant and at the same 

time promoted the densification of the titania network, through condensation reactions of  Ti-OH 

species. 

The effect of the thermal treatment was also checked on the structure of the titania pore walls; in 

the as deposited films the titania was in the amorphous state and the analysis performed by 

glancing incidence XRD did not show the formation of titania crystalline phase even after 

calcination. However a more sensitive analysis by FT-FIR absorption spectroscopy was done on 

the 350°C calcined titania films. Fig. 38 shows the absorption spectra in the 600-100 cm
-1

 interval 

of a titania mesostructured film after calcination at 350°C.  
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Fig. 38 FT-FIR absorption spectra in the 600-100 cm
-1

 interval of a titania mesostructured film after calcination at 

350°C. 

The spectrum shows two intense and well defined absorption bands peaking around 442 and 272 

cm
-1

. These bands were assigned to transverse optical (TO) Eu phonons in tetragonal anatase with 

two TiO2 units per primitive cell. The spectrum indicates, therefore, that the titania is partially 

crystallized into the anatase phase, as small crystallites in an amorphous matrix; the dimension of 

the crystallites is likely very small because it is under the detection limit by X-ray diffraction. 
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Characterization of functionalized films with APTES 

The calcined mesoporous titania films were modified with APTES in order to introduce the amino- 

function on the titania walls. 3-aminopropyltriethoxysilane (APTES) is a coupling agent that was 

commonly used for the modification of silica surfaces to promote protein adhesion, cell growth, to 

attach metal nanoparticles to silica substrates, for biological implants and in lab on chip 

applications. In our work the objective was to link to this agent peptides and antibodies. The 

reaction that occurs is a hydrolysis and condensation of silanes that drives the bonding of APTES 

to the substrate with the formation of siloxane bonds on the surface. In particular in titania 

materials the functionalization via APTES was realized by condensation of Ti-OH with Si-OH to 

form mixed Ti–O–Si bonds (Fig. 39). 

 

 

Fig. 39 APTES hydrolysis followed by condensation at hydrated titania surface. Reproduced by [162]. 

 

The initial hydrolysis step can occur either in solution or at the substrate surface depending on the 

amount of water present in the system. An overabundance of water will result in excessive 

polycondensation in the solvent phase (Fig. 40), while a deficiency of water will result in the 

formation of an incomplete monolayer. Solvent, concentration, reaction time, and reaction 

temperature are other parameters that affect the grafting kinetics. 
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Fig. 40 APTES hydrolysis followed by condensation reaction in solution. Reproduced by [162] 

 

In fact a control of all these parameters was of paramount importance to avoid the uncontrolled 

formation of multilayers.  

In our research all these conditions were monitored and in particular the functionalization was 

tried with different methods, temperatures (25°C under stirring, at 80°C in a oven, at 80°C under 

reflux) and in different solvents (EtOH and toluene) but the best results, reported below, were 

found at room temperature and in toluene solution. In fact it was concluded that the toluene had 

the potential to extract water absorbed from the titania surface into the solution improving the 

silane deposition. Furthermore it was noted that at high temperature the kinetics of the APTES was 

accelerated, for an increased mobility of APTES in toluene that produced a quick reaction of 

silanization, forming thick layers and opacities; for this reason room temperature was preferred. 

 

To monitor also the loading of APTES were synthesized and functionalized, as reference, dense 

films (non porous) (Fig. 41). As shown below the best functionalization was obtained with 

mesoporous thin films that allowed a major amino loading.  
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Fig. 41 FTIR spectra of (at the top) TiO2 thin films before (black) and after (red) the thermal treatment at 350°C for 

mesoporous (left) and dense (right) films. Below the titania films were represented before (black) and after (red) the 

functionalization process with APTES for mesoporous (left) and dense (right) films. 

 

It was also considered that an incomplete coverage of the films can be problematic and for this 

reason the functionalization to obtain a homogenous layer was monitored with FTIR (Fig.42) and 

AFM (Fig.43).  
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From FTIR measures was evident how with the time exposition to APTES there was an increase of 

the characteristic peaks until 24h of reaction. 
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Fig. 42 FTIR spectra in the range 1800-600cm
-1

 of mesoporous titania calcined at 350°C and after the reaction in 

APTES solution for different time (1, 3, 6, 12, 24h). 

 

 In particular the best amino loading was reached after 24h of exposition. After this time, films left 

in solution for more than 24 h presented an opacity due to the formation of multilayers visible 

from AFM (Fig. 43 right). The presence of APTES with dimensions around 200 nm was noted in 

the top part of the figure, but increasing the time of exposition it could be noted the formation of 

aggregates and multilayers (Fig.44) until the dimension of 1μm and more. 

 

 

2.0µm

 

 

Fig. 43 AFM images of mesoporous titania thin films before (left) and after (right) the functionalization with APTES 
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Fig. 44 Reproduction of the formation of APTES multilayer on titania surface 

 

In this way the best conditions (solvent and time) for an efficient functionalization were found and, 

the final spectrum of the best functionalized mesoporous titania thin film was reported in fig. 45. It 

shows the FTIR absorption spectra of the film in the 1800-600 cm
-1

 range after calcination at 

350°C (black line, a) and after functionalization with APTES (red line, b); the reference spectrum 

of APTES (liquid film) is represented by the blue curve c. The full spectra (right) were also 

reported. 
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Fig. 45 FTIR absorption spectra of a mesoporous titania film in the 1800-600 cm
-1

 range, after firing at 350°C (black, 

a) and functionalization with APTES (red line, b). The reference spectrum of APTES is the blue line, c. 

 

The spectrum of the functionalized titania film clearly shows the signature of APTES, which can 

be easily detected because the spectrum of calcined titania film has no absorption bands in the 

middle infrared range.  

This material was then used as the host matrix for a further grafting step to bond specific peptides 

and antibodies. 
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Part 1 Detection of dioxins using mesoporous titania thin films and pentapentides  

 

 In this part of our work mesoporous titania thin films were used for the incorporation of selective 

pentapeptides for the detection of dioxins to create a biosensor. These materials were interesting 

for the incorporation of biomolecules because a good interaction between peptides and mesopores 

was possible thanks to an interaction of the amino groups of the functionalized titania with the 

different parts of the peptides. But the main advantage was to use these materials because of their 

large surface area that leads to immobilize a bigger amount of peptides into their internal channels 

and on their surfaces, in comparison with non porous materials. This linking was effective if the 

dimension of the peptides or of the linking part was minor than the pore diameter. The linking of 

peptides with the support was studied with FTIR, spectroscopic ellipsometry, AFM and 

fluorescence spectroscopy. In particular different routes were tried for peptide immobilization, by 

physical and chemical methods (using ligands as APTES and GA).  

The first immobilization method followed different steps: peptide diffusion into the pores and on 

the surface of materials, absorption on the surface, structural rearrangement. But to have a stronger 

linking and avoid the leaching process it was necessary to use the covalent method for the 

interaction of peptides with the amino terminal groups (APTES) or aldheyde groups (GA) of the 

linking agents. All these methods of immobilization were tried and the best one was chosen to 

obtain stable chips with the immobilized peptides.  

 

Peptide Synthesis 

The purpose of this part of work was to develop a new detection method using a short peptide 

instead of an immunoantibody (method actually applied as screening). In fact the use of antibodies 

is not suitable because of their easy denaturation in organic solvents that are necessary to dissolve 

and extract dioxins from food samples, while using a lower concentration of organic solvents leads 

to an incomplete extraction of dioxins with a wrong detection of the quantity of dioxin present in a 

sample. For this reason oligopeptides were synthesized instead of antibodies to overcome the 

problem of denaturation in organic solvents. In this way, in fact, quality control procedures that are 

easier than for natural biomolecules, and a regeneration and reuse of the device, are possible. From 

recent literature [157, 158] three peptides that have a high affinity for the detection of dioxins were 

discovered. In particular they have the major affinity for TCDD. Their design was screened by a 

combinatorial library that led to the choice of three pentapeptides that have four amminoacids in 
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common (Gln-Asp-Leu-Phe) and differ for the N terminal amino acid (Ile, Val or Phg). It seems 

that the central aminoacids (Gln-Asp-Leu) are essential to recognize the dioxins but for the correct 

linking at least other two amminoacids are necessary. 

 This design was based for the similarity of sequence that is present in the binding pocket of aryl 

hydrocarbon receptor (the cytosolic cellular receptor responsible of the linking of dioxins) and of 

specific CDR domains (complementarity determining region) present in monoclonal anti-dioxin 

antibody. The sequence (Gln-Asp-Leu) was thought to contribute to the binding to dioxins thanks 

to their acidic (Asp) and amidic (Gln) residues and, in particular, the Gln could form H bonds 

between side chain and ligand, or side chain and main chain of peptides. Furthermore it was 

thought that the amine of the side chain (Gln) can form an H-bond with the chlorine atom or with 

the oxygen of dioxins. 

Following these studies three pentapentides represented in Fig. 46 were synthesized, that, as 

shown in literature, have an high affinity to dioxins and in particular for TCDD.  

 

Fig. 46 Molecular structures of the synthesized pentapeptides. 

To assemble the targeted three component collection of pentapeptides 1-3 it was planned to realize 

linear peptides. The synthesis was performed on a CEM Liberty microwave peptide synthesiser on 

a 0.1 mmol scale. Three pentapeptides of general formula H-X-Gln-Asp-Leu-Phe-OH were 

synthesized on solid phase, utilizing a conventional polystyrene-based PAL-PEG resin (Scheme 

2). 
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a, b
Fmoc-Phe Fmoc-Leu-Phe

Fmoc-Asp(Bu)-Leu-Phe

resina PAL-PEG

Fmoc PAL-PEG

Fmoc-Gln(Trt)-Asp(Bu)-Leu-Phe

Fmoc-X-Gln(Trt)-Asp(Bu)-Leu-Phe

a Reagents:(a) piperidine/DMF 20%; (b) Fmoc-Phe-OH, TBTU/HOBt, DIEA, NMP; (c) Fmoc-Leu-

OH, TBTU/HOBt, DIEA, NMP; (d) Fmoc-Asp(But)-OH, TBTU/HOBt, DIEA, NMP; (e) Fmoc-Gln(Trt)-OH,

TBTU/HOBt, DIEA, NMP; (f ) Fmoc-X-OH (X=Ile (1); Val (2); Phg (3)), TBTU/HOBt, DIEA, NMP; (g) TFA, TIS/H2O

(95:2:5:2.5) (53-76%, five steps).

a, c

a, d a, e

a, f a, g

1-3

H2N-X-Gln-Asp-Leu-Phe-OH

 

Scheme 2 Synthesis of Pentapeptides 1-3 

 

Although this type of linker is  acid labile, its stability towards bases makes it ideal for the various 

coupling base promoters, as well as for the resident Gln and Asp protecting groups using the Fmoc 

strategy.  After deprotection of the resin (20% piperidine in DMF), the condensation of the Fmoc-

Phe-OH residue was attained using the TBTU-HOBt system in the presence of DIPEA. Next, the 

second aminogroup within the resin-bound amino acid Fmoc-Phe-Pal-Peg was liberated, as 

described in the experimental section, and the Fmoc-Leu-OH residue, Fmoc-Asp(tBu)-OH and 

Fmoc-Gln(Trt)-OH were then connected and the amino group liberated to afford a resin-bound 

tetrapeptide, which was connected with an X platform chosen among the three amino acids of this 

study (Fig. 47). The as synthesized pentapeptides finally had a common part (Gln-Asp-Leu-Phe) 

and a different amino acid X that gives them different properties. 

RNH CO2H

Ile Val Phg

RNH CO2H RNH CO2H

 

 

Fig. 47 Amino Acid Building Blocks X 
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The cleavage of the targeted products from the resin and the side-chain deprotection was carried 

out under acidic conditions in the presence of scavengers, with the reagent system TFA, TIS, H2O. 

The crude linear peptides were thus obtained in yields ranging from 53% to 76% for the entire 

solid-phase sequence. Only the resulting compound 1 was first purified by preparative reversed-

phase HPLC and finally his purity was checked by RP-HPLC analyses and judged to be 99.8%. 

All linear pentapeptides were characterized by MALDI-TOF mass spectrometry. 

 

Characterization of peptide 1 H-Ile-Gln-Asp-Leu-Phe-OH 

 

HPLC and MS analysis (Fig. 48 and 49) 

Resin Loading: 0.21 mmol/g. Overall yield: 76.3%. A white solid. HPLC purity: 99.8% ; HPLC 

tR= 13.9 min;  [M+H]
+
= 635.55     [M+Na]

+
=657.40     [M+K]

+
=673.28. 

 

 

 

Fig. 48 Peptide purity (HPLC chromatogram, UV absorbance at 220 nm) of Ile-Gln-Asp-Leu-Phe-OH. 
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Fig. 49 Identification of Ile-Gln-Asp-Leu-Phe via MALDI-TOF MS. 

The peptide 1 was synthesized (visible from the mass characteristic peaks) and purified, obtaining a purity 

of 99.8%. 

Characterization of peptide 2  H-Val-Gln-Asp-Leu-Phe-OH 

HPLC and MS analysis (Fig. 50, 51) 

Resin Loading:0.21 mmol/g. Overall yield: 70.6%. A white solid. HPLC purity: 51,8% ; HPLC 

tR= 36.8 min; HRMS:  [M+H]
+
= 621.58    [M+Na]

+
= 643.43     [M+K]

+
= 659.32. 

 

Fig. 50 Peptide purity (HPLC chromatogram, UV absorbance at 220 nm) of Val-Gln-Asp-Leu-Phe-OH. 
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Fig. 51 Identification of Val-Gln-Asp-Leu-Phe and deletion sequences via MALDI-TOF MS. 

The peptide 2 was synthesized (visible from the mass characteristic peaks) and purified, obtaining 

a purity of 70.6%. 

Characterization of peptide 3 Fmoc-Phg-Gln-Asp-Leu-Phe-OH  

 

HPLC and MS analysis (Fig. 52, 53). 

Resin Loading:0.21 mmol/g. Overall yield: 81.8%. A white solid. HPLC purity: 53.5% ; HPLC 

tR= 56.4 min; HRMS:  [M+H]
+
= 898.58,  [M+K]

+
=936.48. 

 

Fig. 52 Peptide purity (HPLC chromatogram, UV absorbance at 220 nm) of FmocPhg-Gln-Asp-Leu-Phe-OH. 
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Fig. 53 Identification of FmocPhg-Gln-Asp-Leu-Phe  via MALDI-TOF MS. 

The peptide 3 was synthesized (visible from the mass characteristic peaks) and purified, obtaining 

a purity of 81.8%. 

 

Peptide immobilization 

Different ways to immobilize the peptides were tried, as previously described, on titania thin films. 

First of all it was tried to adsorb the peptides in PBS solutions directly on the films with a physical 

method but without positive results.  

For the chemical absorption a similar method was tried using for the peptide synthesis DIPEA and 

HATU but even this time without positive results. Then it was tried to link a cross linker, 

glutharaldehyde (GA), to the TiO2-APTES mesoporous films, that is commonly used as 

bifunctional cross-linking reagent, to covalently couple proteins with various surfaces. In 

particular it was tried to link, with the formation of imines, the titania- APTES film to GA and the 

terminal free aldehydic group of GA to the amino terminal group of peptide Fig. 54. 
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Fig. 54 Linking film-APTES-GA-Peptide 

 

 Different reactions, concentration of GA and different pH were tried. The GA was linked to TiO2-

APTES films but a good linking between GA-Peptides did not occur (Fig.55). 

 

 

 

 

 

 

 

Fig.55 FTIR spectrum that shows the functionalization of titania films with APTES (red spectrum) and GA (blue 

spectrum) followed by the linking of peptide (light blue spectrum). 

 

The best results were obtained immobilizing the peptides with a more simple method also used to 

attach proteins to surfaces without multiple steps. Different times (1-60h) solvents (PBS, toluene, 

ethanol) and methods of linking (for the reaction of the group APTES-Peptide with TiO2 films or 

TiO2-APTES films and after linking with Peptides) were tried. The best linking of peptides was 

obtained immersing the peptides dissolved in toluene for 24h, under shaking at room temperature. 
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The binding was followed by different washing steps with toluene and drying in air. It was thought 

that APTES reacted with the hydroxyl groups of the peptide supporting the formation of a 

monolayer of peptide under controlled conditions.  

The best result was obtained with the peptide purified H-Ile-Gln-Asp-Leu-Phe-COOH and with 

the peptide H-Val-Gln-Asp-Leu-Phe-COOH (Fig. 56); while with the peptide Fmoc-Phg-Gln-Asp-

Leu-Phe-COOH the solubilization was inefficient and the linking of the peptide to the substrate 

was limited (perhaps for the great molecular weight of the protector group FMOC it was 

impossible for this peptide to penetrate into the mesopores). Because of the small amount of the 

Peptide 1 available, the major part of the experiments was carried out with the peptide 2. 

 

 

 

 

 

 

 

 

 

Fig. 56 FTIR absorption spectra of a mesoporous titania film: a) after calcination at 350°C and functionalization by 

APTES (red line) and after binding with the peptide (black line). The reference spectrum of the H-Val-Gln-Asp-Leu-

Phe-COOH peptide is reported in the graph b). 

 

The FTIR spectra show that the absorption of the peptide at the end of the grafting process is very 

effective; the signature of the peptide can be clearly observed in the titania-APTES mesoporous 

films even after a careful washing of the sample. 

To monitor if there was an advantage to use mesoporous films the same experiment was carried 

out also on titania dense films as reported in fig. 57. 
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Fig. 57 FTIR absorption spectra, at the top of a mesoporous titania film after calcination at 350°C and 

functionalization by APTES (black line) and after binding with the peptide (red line) . At the centre titania dense film 

functionalized with APTES (black line) and after binding with the peptide (red line). The reference spectrum of the H-

Val-Gln-Asp-Leu-Phe-COOH peptide is reported in the graph at the bottom. 

 

This experiment proofs that films synthesized in the same way and with the same material had 

different filling properties depending on their porosity. In fact it was clear that mesoporous 

materials with incorporated peptides had much more intense peaks than non porous (dense) 

materials. In particular the intensity of the peaks due to the peptide was almost double. The 

presence of immobilized peptides was evident also from AFM measures (Fig. 58) in which was 
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noted the immobilization of peptides with dimensions around 300-400 nm but also bigger 

aggregates with dimension around 1μm. For this reason in the following measures of fluorescence 

a careful dissolution of the peptide was necessary to obtain homogeneous film coverage. 

2.0µm

 

Fig. 58 AFM image of a TiO2 mesoporous thin film functionalized with APTES and with the immobilized Peptide 2. 

 

The effect of the film functionalization was also followed by spectroscopic ellipsometry (Tab 1). 

Data were obtained assuming a fitting model based on the assumption of transparent films on 

silicon (Cauchy dispersion relation). After calcination at 350 °C in air the titania films show an 

average thickness of 180 ± 5 nm with a refractive index of 1.72 measured at λ = 632.8 nm. After 

functionalization with APTES the film thickness increases to a value of around 270 ± 37 nm with 

significant changes of the refractive index to a value of 1.90. Finally, after peptide binding, the 

films reach a thickness of around 350 ± 30 nm with an average refractive index of 1.79. This 

value, which is lower than that measured on the amino-functionalized films, can be attributed to 

the formation of over layers with a low refractive index made of peptides bonded to mesoporous 

film surface. 

Sample Thickness / nm Refractive index 

TiO2 180 1.72 

TiO2 +APTES 270 1.90 

TiO2 +APTES+ Peptide 350 1.79 

 

Tab. 1 Ellipsometric measures of TiO2 mesoporous films, of TiO2 functionalized with APTES and of TiO2 with 

APTES and Peptide 2. 
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Detection of TCDD 

Fluorescence spectroscopy was used to get a better insight of the functionalization process and of 

dioxins detection. This approach was based on using a fluorescent marker, such as fluorescein 

isothiocyanate (FITC), which after reacting with amines shows an intense fluorescent emission 

revealing the presence of the peptides. Figure 59 shows the emission fluorescence spectra (λex = 

490 nm) of solutions of toluene (black line), toluene - H-Val-Gln-Asp-Leu-Phe-COOH peptide 

(red line), toluene – FITC (blue line), toluene – FITC - Val-Gln-Asp-Leu-Phe-COOH peptide 

(green line). The fluorescence of toluene and H-Val-Gln-Asp-Leu-Phe-COOH peptide in toluene 

is zero with the exception of a small band of very weak intensity peaking around 570 nm; the two 

spectra are completely overlapped which reveals that H-Val-Gln-Asp-Leu-Phe-COOH peptide in 

toluene is not fluorescent. The fluorescence spectrum of FITC in toluene shows a wide band of 

low intensity around 530 nm; after binding with the peptide the intensity of this band is highly 

enhanced, an intense emission band peaking around 530 is, in fact, detected (green line). 

 

 

 

 

 

  

 

 

 

Fig. 59 Fluorescence emission spectra (λex= 490 nm) of toluene (black line), toluene - H-Val-Gln-Asp-Leu-Phe-

COOH peptide (red line), toluene – FITC (blue line), toluene –FITC - Val-Gln-Asp-Leu-Phe-COOH peptide (green 

line). 

The increased fluorescence in the Toluene-FITC-Peptide solution was attributed to the reaction of 

fluorescein isotiocyanate with the peptide because the other solutions were not fluorescent. 

Fluorescein isothiocyanate is commonly used as a fluorescent marker attached to proteins for the 

reaction of isothiocyanate with the primary and terminal amines in proteins. 
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 In our work, therefore, FITC was used for post-functionalization of the titania mesoporous film 

and as a marker of the process. On the other hand it was also tried to link the fluorescent marker 

FITC directly to the peptide that had been previously immobilized on the film but this process was 

not effective and fluorescence emission was not observed. 

For this reason it was tried another route and in particular to link first the peptide with the FITC 

and, afterwards, trying the immobilization process on the film functionalized with APTES. 

Mesoporous titania with APTES was immersed in the FITC-peptide solution and the behaviour 

was studied (Fig. 60).  
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Fig. 60 Fluorescence emission spectra (λex = 490 nm) of the mesoporous APTES - titania film after immersion in a 

solution of toluene–FITC (black line), and toluene–FITC-Val-Gln-Asp-Leu-Phe-COOH peptide (red line). The 

spectrum of APTES - titania films before immersion (blue line) is also reported as the reference. 

 

After immersion of the films in the different solutions the samples were analyzed by fluorescence 

spectroscopy; the titania-APTES films immersed in the FITC-peptide solution showed a strong 

fluorescence with an intense band peaking around 530 nm (red curve), while the samples 

immersed in the toluene FITC solution did not show any emission band (blue curve) and their 

spectrum was very similar to that obtained for titania-APTES mesoporous films before immersion 

(black curve). From the spectra of Fig. 60 it is clear that the APTES amino groups are not effective 

to bind FITC, while a chemical bond between functionalized film surface and fluorescent dye is 

only obtained via chemical reaction with the peptide. As a matter of fact, only the samples formed 

by TiO2-APTES-Peptide-FITC show a strong increase of the emission properties.  
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The FTIR and fluorescence data well support, therefore, the successful binding of the peptide to 

the titania mesoporous films. This process is robust and the samples even after washing in 

different solvents still show evidence of the presence of the peptide that is not affected by the 

washing cycle. 

 

The device as created was tested measuring the fluorescence of the titania chip with FITC and 

Peptide before the linking with TCDD and after the linking of different concentration of TCDD on 

the film surface. Several trials were carried out on different samples. As reported in Fig.61 it was 

noted an improvement of the fluorescence emission with the increased concentration of TCDD. A 

difference between the spectrum without and with TCDD can be distinguishable until a TCDD 

concentration of 10
-12

M. 

 

520 540 560 580 600 620 640 660 680 700
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

 

 

Wavelength / nm

In
te

n
s
it
y

 TiO
2
+Pep+FITC+TCDD 3x10

-6
M

 TiO
2
+Pep+FITC+TCDD 3x10

-8
M

 TiO
2
+Pep+FITC+TCDD 3x10

-10
M

 TiO
2
+Pep+FITC+TCDD 3x10

-12
M

 TiO
2
+Pep+FITC

 

 

Fig. 61 Fluorescence emission spectra collected at a wavelength of 506-700nm on titania films with peptide and FITC 

(spectrum pink at the bottom) and after the linking of TCDD to the chip at different concentration increasing from the 

bottom to the top. 
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Results 

 

Three pentapeptides that were specific for dioxins detection and in particular for TCDD were 

synthesized and characterized. The best method to link the peptides to the substrate composed of 

mesoporous titania film functionalized with APTES was obtained and the peptide with the best 

binding capacity (the peptide with the Val terminal amino acid) was chosen. A good linking 

between titania-APTES-peptide was obtained and was demonstrated as this linking was more 

effective for mesoporous films than for dense films for the major incorporation capacity of porous 

materials. All these properties were analyzed with FTIR, AFM, spectroscopic ellipsometry and 

fluorescence. Finally it was demonstrated that the chip was sensitive to the presence of dioxins. In 

particular the TCDD was tested and it was discovered that after the linking between peptide-

TCDD on the film surface there was an increase in the fluorescence spectra proportional to the 

concentration of dioxins. A limit of detection was obtained at pM level. It was a good result 

compared to the other methods used so far. In this way it was possible to construct a chip with 

properties like simplicity, low cost, and sensitivity; furthermore it requests very short time for 

analysis and it is selective for the presence of peptides. This technique in fact could be used for 

simple and extensive pre-screening of samples preceding an accurate analysis using HRGC/MS of 

contaminated samples, reducing in this way time and costs required for analysis.   
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Part 2 Detection of E.coli using mesoporous titania thin films and antibodies 

 

In the second part of the research work a biosensor for the detection of the pathogen E.coli was 

developed using FTIR. FTIR spectroscopy was used to provide fingerprints of pathogens 

eventually present in solution. In fact pathogens differ each other for various functional groups 

and, their MIR spectra, can be used for the identification and structural characterization of 

different pathogens but also of different subspecies. The MIR spectra were additive and sensitive 

and allowed the quantification of the pathogen of interest, transforming the traditional devices to 

biosensing systems with high sensitivity. In particular mesoporous titania thin films synthesized 

with the sol-gel method, previously described, were used to encapsulate biomolecules (antibodies 

and pathogens). This was possible with a high control of the gelation process for the synthesis of 

titania films and subsequent thermal treatments to avoid the denaturation of biomolecules in 

environments that have a high alcohol concentration and extreme pH values. For this reason great 

attention was given to the thermal treatments of mesoporous titania thin films to remove 

completely EtOH and HCl. Titania was used as substrate for the features described in the synthesis 

section but also because it has a good biocompatibility and can interact with biological molecules 

thanks to the formation of coordination linking between titania films and amino or carboxyl groups 

of the antibodies or of the bacteria. In fact the linking of bacteria was studied directly on titania 

films, on titania functionalized with APTES and in titania films functionalized with APTES and 

GA with the antibodies and the best method and the limit of detection of this technique was 

chosen. 

 

Construction of the devices 

 

Detection of E.coli with TiO2-APTES-GA-anti E.coli O157:H7 Ab 

 

The first method used provided the detection of E.coli with the immobilization of the antibody on 

titania films functionalized with APTES and GA as reported in figure 62. 
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Fig. 62 Design of the biosensor composed of titania mesoporous thin films deposited on a Si wafer and functionalized 

with APTES, GA, Ab for the final linking of the pathogen. 

In the first step titania thin film were functionalized with APTES.  

In fig. 63 can be noted the spectra of the films before and after the functionalization process and 

the corresponding peaks due to APTES:  N-H stretching at 3300 cm
-1

, N-CH2 stretching around 

2800 cm
-1

, NH2 scissoring and N-H bending at 1615 cm
-1

, aliphatic C-N stretching at 1020-1220 

cm
-1

, NH2 wagging and twisting at 850-750 cm
-1

 and N-H wagging at 715 cm
-1

. 
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Fig.63 FTIR spectra of mesoporous titania thin films (black) and of the same film after functionalization with APTES 

(red). 

 

The second step was based on the reaction between APTES and GA that was used to crosslink the 

APTES with the antibodies thanks to the formation of imide bonds (Fig. 64).  
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Fig.64 Functionalization of titania films with APTES and GA 

 

In this way the terminal amino groups (APTES) were changed in aldheydic groups that, in the 

following step, were covalently coupled with the antibody amino groups. The APTES-GA linking 

is evident in  fig.65 in which the bands due to the formation of imines  in the area between 1900 

and 1600 cm
-1

, and the bands related to different stretching of the groups C-N, C-O, C-C in the 

range 1500-1200 cm
-1

 are visible. The GA spectrum was put as reference. 
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Fig. 65 FTIR spectra of titania films functionalized with APTES (black) and after the linking of Glutharaldheyde (red 

spectrum). The spectrum of Glutharaldheyde (GA) was reported in the small spectrum on the right as reference. 
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This linking was also visible with the change of colour of the films as reported in the pictures 

below (Fig. 66). Starting on the left from mesoporous titania films (yellow), after the 

functionalization with APTES it was noted a change of colour (pink) and after the linking with GA 

the final film was blue. 

 

 

Fig. 66 Titania films before the functionalization (yellow), after the APTES (pink) and after the linking with GA 

(blue) 

 

To complete the sensor the antibody anti E.coli O157:H7 was linked to the substrate as reported in 

fig. 67. In this way it was possible a selective detection of the desired pathogen and also of the 

particular sub-species. 

 

 

 

 

 

 

 

 

Fig. 67 Linking TiO2-APTES-GA-Antibody 

 

This linking was followed with FTIR measures as reported in Fig.68.  
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Fig.68 FTIR spectrum of functionalized titania with APTES and GA (red spectrum) and after the linking of the 

antibody (Ab anti E.coli O157:H7) black spectrum. 

 

Once built the biosensor described above, the method for the final detection of E.coli O157: H7 

was developed. The chip was immersed in a buffer with E.coli O157:H7 and was left to react 30 

min, washed and analyzed. The reported spectrum (Fig.69) shows for the film with the pathogen 

very similar peaks to the films without the pathogen but also new peaks appeared and in particular 

in the region 1300-2000 cm
-1

 (proteic peaks of the bacterium), in the region 3700-4000 cm
-1 

and 

different peaks intensity in the region 1200-800 cm
-1

 (signals of nucleic acids of the bacterium) 

that unfortunately in this region overlapped with the spectrum of the Ab and of functionalized 

titania. In fact the peaks in the 1630-1697 cm
-1

 region are due to the amide I bands of the proteins 

in the cell and in particular to their secondary structure. While in the region 1402-1457 cm
-1

 the 

bands due to carbohydrates, glycoproteins and lipids and their characteristic C-O-H in plane 

bending peaks and C(CH3)2 symmetric stretching were present. Finally in the range 900-1100 cm
-1

 

peaks due to DNA/RNA backbone and phosphate groups of nucleic acids due to the symmetric 

and asymmetric stretching of P=O and P-O-C groups were present. The spectrum of E.coli 

deposited on Si, was reported as reference (Fig. 70). 
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Fig.69 FTIR spectra of titania film functionalized with APTES-GA-Ab (black) and after the linking of E.coli 

O157:H7. 
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Fig. 70 FTIR spectrum of E.coli O157:H7 on Si wafer. 

 

Detection of E.coli with TiO2-APTES-anti E.coli O157:H7 Ab 

 

To determine whether this was the best method for the immobilization and detection of E. Coli 

other routes were tried as the direct link TiO2-APTES-Ab (without GA). The modification of 
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titania films using aminosilanes was adopted for the simple immobilization of biomolecules to 

produce a biosensor. In this case APTES was used as a layer between mesoporous titania films and 

biomolecules (antibodies in this case and pathogens in the next section). The figure below (Fig. 

71) shows the spectra of the films before and after the immobilization of E.coli and it confirms that 

the peaks due to pathogen were present in the same region of the film with the GA. 
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Fig.71 FTIR spectra of titania films with APTES and antibody (black) and after the linking of E.coli (red spectrum). 

 

 

Detection of E.coli with TiO2-anti E.coli O157:H7 Ab and with titania thin films 

 

The path of the direct immobilization of the Ab on the film (without APTES and GA) and directly 

on titania thin film was also tried. In both cases the Ab and the pathogen was adsorbed by 

electrostatic interactions.  

The presence of the pathogen produced a clear spectrum (Fig. 72 and 73). 
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Fig. 72 FTIR spectrum of mesoporous titania films with the antibody anti E.coli (black) and after the immobilization 

of the pathogen (red spectrum). 
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Fig. 73 FTIR spectrum of mesoporous titania films before (black) and after the immobilization of pathogens (red 

spectrum).  

It was also tried to immobilize another subspecies of E.coli (K12) on the same devices but without 

positive results when the antibody was present in the chip, while the pathogen was immobilized 
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directly on titania film because in this case there was not a selective molecule for the interaction 

with the chip. 

 

Comparing the different immobilization techniques of detection, the best result was obtained with 

the method that provided the covalent binding of the Ab on the film with APTES and GA (black 

spectrum Fig. 74). The other methods allowed the immobilization of the bacterium, but probably a 

certain amount of this was lost, leading to a decrease in the relative peaks of the bacterium and 

thus a lower sensitivity of the device (blue and red spectrum). Finally the direct linking of the 

pathogen allowed a good immobilization (light blue spectrum) but this was not a selective method. 
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Fig. 74 FTIR spectra of the different devices with the immobilized pathogen O157:H7. 

 

Determination of the Detection Limits of E.coli O157:H7 

 

Tests to establish the detection limit of the devices were carried out starting from the 

immobilization of E. coli at concentration of 1x10
8
 CFU/ml to a concentration 1x10

2 
CFU/ml. 

These measures were done directly on mesoporous titania films with the absorbed bacterium (the 

lower left spectra) or on the films functionalized with APTES, GA, Ab anti E.coli with the 
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bacterium. In both experiments it was reached a detection limit of 1x10
2
 CFU / ml (Fig. 75 and 76) 

even if in the films functionalized with APTES-GA-Ab the signal at low concentration was 

clearer. 
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Fig. 75 FTIR of titania films after the exposition to different concentrations of E.coli.  
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Fig. 76 FTIR of titania film functionalized with APTES, GA and Ab after the exposition to different concentrations of 

E.coli.   
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 Results 

 

In this work pathogens were detected using their FTIR fingerprints with a label-free method. In 

particular mesoporous films were functionalized in different ways and new methods were 

developed to detect and analyse samples in a fast way, reaching low limit of detection. In 

particular the linking of bacteria was studied directly on titania films, on titania functionalized with 

APTES and in titania films functionalized with APTES and GA with the antibodies and the last 

one was chosen as the best method. The reached limit of detection of this technique was 10
2
 

CFU/ml. Using anti-E. coli O157: H7 immobilized on functionalized mesoporous materials of 

titania a more effective method was found compared to the traditional. In fact a simple method was 

realized that requires only a quick sample preparation. Pathogens were identified and classified 

according to their infrared signatures that can distinguish the species and the strain. Benefits were 

obtained through the use of nano materials for the immobilization and the detection of pathogens; 

in fact, thanks to their features it was possible to capture E. coli in less than 30 minutes because of 

their high surface to volume ratio that provided more surface contact resulting in greater efficiency 

for the capture. This approach provided specificity due to the characteristic fingerprint and 

selectivity thanks to the use of species-specific antibodies. It could also be adapted to in-field 

analysis with portable instruments and, memorizing the spectra for each pathogen and species, it 

could be created a software that recognises directly the contaminant with a simple method that 

does not require skilled workers. In this way, changing the recognising molecule, it can be created 

a rapid, simple, on-site technique for pathogen detection that avoids the distribution of 

contaminated food, using functionalized chips for in-field use. 
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Part 3  Development of SERS substrates with mesoporous titania thin films 

 

This part of the work was based on the development of materials that can give a SERS effect for 

the final detection of food contaminants. In particular it was thought that the previously described 

mesoporous titania films could be appropriate materials for the development of substrates that can 

produce a SERS effect. In fact mesoporous films can include molecules into a matrix giving an 

uniform orientation respect to the surface, as analyzed in the previous parts of the work, and, to 

achieve this goal, mesoporous titania thin films were modified with nanoparticles to produce 

nanostructures in a reproducible and not expensive way. In particular films of nanoparticles were 

created through a bottom-up approach with the growth of nanoparticles into the pores of 

mesoporous titania, choosing silver among the noble metals, because it produces more intense 

resonance effects. The grown of silver nanoparticle was followed to obtain a diameter between 20 

and 100 nm that is indicated to have a good SERS effect.  

 

The first step in the design of SERS labels was to choose and prepare a suitable SERS substrate 

because the metallic nanoparticles should possess certain optical properties. In order to achieve 

SERS signal enhancement required for sensitivity, the analyte must be attached (adsorbed) or in 

close proximity to a specially prepared surface of a noble metal, as silver (Ag) in our case.  

 

The method used for the preparation was based on impregnation with AgNO3, followed by photo 

reduction of Ag
+ 

ions by exposure to UV radiation for different time. Titania, thanks to its photo 

catalytic properties, produced the reduction of Ag
+
 ions to Ag

0
 directly on the film without the 

introduction of a reducing agent, and this property was applied for depositing AgNPs on the 

surface of nanostructured titania films. Titania films are essential for this process and the photo 

catalytic activity depends on the titania crystallinity. In our case after the thermal treatment titania 

is amorphous but it has a minor fraction of anatase that confers the photoactive properties. 

The successful reduction was evident on titania films, that only after a few hours of exposure 

present a change of colour, due to the progressive loading of silver. The film was shown before 

(film left) and after impregnation with AgNO3 and UV exposure for 6h (Fig. 77), and a metal 

mirror of silver can be noted only on the film and not on silicon. 
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Fig. 77 Picture of titania thin films before (left) and after (right) UV exposure for 6h 

 

Characterization of mesoporous titania films with included silver nanoparticles 

The grown of silver nanoparticles on titania surface was followed in different ways. The control of 

this reduction required a long process in order to obtain Ag nanoparticles (NPs) of the desired size 

and distribution on the film surface.  

For the characterization of  mesoporous titania films exposed for different time to UV light, 

various measures were carried out. First of all, for microscopic investigations the nanoparticles 

growth were observed by atomic force microscopy (AFM). The changes of conformation were 

observed before and after AgNPs deposition. In detail in fig. 78 titania films were shown before 

the inclusion of AgNPs and can be noted as they are porous, highly ordered and have a cubic pore 

structure with a diameter of about 20 nm. 

200nm

 

 

Fig. 78 AFM image of  mesoporous titania thin film 

 

The initial growth of Ag NPs inside the pores was followed, after 1h of exposure to UV radiation, 

by AFM measures. In the image (Fig. 79) NPs of around 20 nm in diameter were visible, forming 

a continuous and homogeneous layer thanks to the tiania support that acts as a mold within which 

the nanoparticles grow.  
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200nm

 

 

Fig. 79 AFM images of  titania thin film with AgNPs after 1h of exposure to UV light 

 

Continuing the exposure to UV radiation after 3h it was observed the growth of nanoparticles and 

the formation of several layers (Fig. 80). In fact the NPs were primarily formed in the mesopores 

(1h) and not on the surface, then with a longer UV exposure it was noted the formation of a 

continuous silver film on the surface. The dimension of NPs at this point were between 50 and 100 

nm which were the best size in order to have the SERS effect. 

 

400nm

 

 

Fig. 80 AFM images of  titania thin film with AgNPs after 3h of exposure to UV light 

 

Proceeding further with the exposure to UV, after 6h it was visible the formation of aggregates of 

nanoparticles of about 100-200 nm in diameter, composed of NPs with size of about 20-50nm 

(Fig. 81). This proximity was found to be optimal to obtain a significant signal amplification. 
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200nm

 

 

Fig. 81 AFM images of  titania thin film with AgNPs after 6h of exposure to UV light 

 

UV-vis measures were also carried out to monitor the changes of spectra after the irradiation with 

UV light for different time. When AgNPs were included into the film, a very broad band appeared 

from the near UV to the near infrared regions (300-600 nm), due to the  localized surface plasmon 

resonance peak of spatially confined electrons in Ag
0
 deposited on the titania surface (Fig. 82); 

this confirms the reduction of M
+
 ions to M

0
. 
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Fig. 82 shows the UV/vis spectrum of the titania mesoporous thin film (Black) and of titania film with AgNPs after 

the exposure to UV radiation for different times (red 1h, blue 3h, light blue 6h).  
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Differences in the spectra exposed 1h and 3h with the spectrum after 6h were noted. This 

difference in the bands of UV was due to the absorption of AgNPs of different sizes. In fact 

nanoparticles smaller than 20 nm showed an absorption band around 390 nm; this band was 

present in films exposed for 1h and 3h to UV (similar sizes), while for Ag nanoparticles bigger 

than 20 nm it could be observed an absorption peak around 530-600 nm, visible in films exposed 

for  6h. These data confirmed the AFM measures. 

 

FTIR measures were also carried out to monitor changes of spectra after AgNPs deposition. It was 

noted that in presence of AgNPs there was an increase of the peak around 3200 cm
-1

 and 500 cm
-1

 

and also new peaks appeared around 1200-1500 cm
-1

 (Fig. 83). The other peaks were due to Ti-

OH stretching at 3250 cm
-1

, H-O-H bonds of the physisorbed water at 1625 cm
-1

, moreover the 

peaks at 2920-2840 cm
-1

 are due to –CH and –COH groups of EtOH adsorbed on the titania 

surface. 
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Fig. 83 FTIR spectra of mesoporous titania thin film before (black spectrum) and after the exposition to UV light for 

different time: 1h (red spectrum), 3h (blue spectrum) and 6h (light blue spectrum).  

 

 

Finally XRD measures were carried out to monitor which phases and crystallites were present on 

the film surface and to calculate their dimension.  
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XRD measures of TiO2 films with AgNPs left 1h, 3h and 6h under UV light were carried out and, 

in the spectra, were found the characteristic peaks for the (111), (200), (220), and (311) planes of 

face centered cubic (fcc) Ag at 2θ= 38°, 44°, 64°, and 77° that confirmed the presence of 

entrapped silver in the nanocomposite TiO2-Ag. Peaks due to the formation of oxides were not 

observed revealing that Ag
0
 was not oxidized after grown into TiO2 films. Small peaks due to the 

formation of small quantities of anatase were also observed during the calcination process.  These 

characteristic peaks due to anatase TiO2 nanocrystal were at 2θ= 25.3°, 37.8°, 48.1°, 53.9°, and 

62.7°. It was also observed for the sample left 1h and 3h under UV a peak at 2θ around 30° due to 

AgNO3 unreacted for a total 1% (Fig. 84) that confirmed the UV and AFM spectra that showed for 

that time an incomplete reaction. While after 6h the peak at 2θ= 30° disappeared for the complete 

transformation of Ag
+
 ion in Ag

0
 metal (Fig. 85). Furthermore after 6h two new peaks appeared: a 

shoulder around 37° and a peak around 50°. The shoulder could be attributed to a small amount of 

Ag with a hexagonal disposition. 
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Fig.84 XRD spectra of mesoporous titania films with AgNPs after 1h (black) , 3h (red) and 6h (blue) of UV exposure. 
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Fig. 85 XRD spectrum of mesoporous titania films with AgNPs after 6h of UV exposure. 

 

Finally the size of crystallites was calculated from XRD spectra in two ways: 

A) with Rietveld analysis using the program Maud. The values obtained showed a dimension of 

crystallites of 12nm for the samples left under UV light for 1h and 3h, while the samples left under 

UV for 6h showed a dimension of 32-36 nm.  

 

B) The crystallites dimensions were calculated also in a manual way taking from the XRD spectra 

the FWHM (full width at half maximum ) and calculating the dimensions from the Scherrer 

Equation (t = λ / B · cosθ) with λ=1,54056Ǻ,  B that is the full width at half maximum FWHM, 

and θ the half angle. For this calculation the degrees were converted in radians and it was 

calculated a mean from the values obtained from the peaks at 25.40°, 38.13°, 44.28°, 64.48°and 

77.45°. 

The results obtained show a dimension of crystallites comparable with the results obtained with 

Maud. 
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Application of titania films with AgNPs for SERS (Surface Enhanced Raman 

Spectroscopy) 

 

After the creation and characterization of mesoporous titania films with AgNPs the detection of a 

label was followed with a characteristic Raman vibrational signature, Rhodamine B isothiocyanate 

(RhBITC) that was used as a probe molecule to characterize the SERS activity. This label was 

chosen because it can be used in future for the binding of biomolecules and pathogens. Raman 

spectra of RhBITC were collected and the SERS effect was followed to monitor until which 

concentration the Rhodamine was discernible. These measures were tried on the films exposed to 

UV for 1h, 3h and 6h and the best time (6h) and the best conditions for the measures were chosen 

for the inclusion of the dye and for the setting of the instrument. The measures were carried out 

and it was reached a limit of detection almost under the femto molar level. The measures were 

carried out with the laser at 532nm (fig. 86) and with the laser at 633nm (Fig.87). 
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Fig. 86 Raman spectra of RhITC at different concentrations in the range 800-1800 cm
-1

 acquired with the laser at 

532nm. 

Fig. 86 shows Raman spectra of RhBITC. In detail, observing the spectra from the bottom to the 

top we can see that the Si raman spectrum (black) does not have significant peaks, the red 

spectrum of the substrate alone of titania with AgNPs has two main peaks around 1390 cm
-1

 and 

1620cm
-1

. From the blue to the pink spectrum are visible the SERS spectra of the substrates 

(TiO2+AgNPs) with different concentration of RhBITC from 10
-3

 to 10
-6

. The blue spectrum is the 

typical Raman spectrum for rhodamine that can be observed with a big SERS effect for 

concentration 10
-6 

M. Further decreasing the concentration (10
-10 

M, 10
-12 

M), the peaks were 

always observed related to RhBITC but the peaks appeared also due to AgNPs (1390 cm
-1

 and 

1620cm
-1

) that can be found also in FTIR spectra. By reaching the concentration of 10
-14 

M the 

contribution due to AgNPs decreased until it disappeared for concentration of 10
-16 

M. This last 

spectrum was a perfect RhBITC SERS spectrum that was possible to measure only on the titania 

films with silver nanoparticles. The last spectrum (the green spectrum above) was put as reference. 

It was acquired on titania films (without AgNPs). As shown above the green and the pink spectra 

are highly comparable with the difference that one (green) was the Raman spectrum obtained for a 

RhBITC concentration of 10
-3

M and decreasing the dye concentration it was not possible to see 
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any rhodamine spectrum on titania films alone, while with SERS substrates (TiO2+AgNPs) it was 

possible to obtain a spectrum (pink) for rhodamine concentration until 10
-16

M, under fM level. To 

try to not have interference due to AgNPs measures of RhBITC were carried out with the laser at 

633nm (Fig. 87). 
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Fig. 87 Raman spectra of RhITC at different concentration in the range 800-1800 cm
-1

 acquired with the laser at 

633nm. 

These measures showed how the Raman spectrum acquired at concentration 10
-3

M on titania 

(pink) had a very low signal and the same was observed for the spectrum of AgNPs alone 

(brown spectrum). The other spectra are highly clear, reproducible and comparable with the 

raman spectra present in literature for RhBITC at 633nm, in particular the  black spectrum at 

10
-3 

M is the clear fingerprint of RhBITC, but it is very intense thanks to the substrate 

(TiO2+AgNPs). Decreasing the RhBITC concentration (from 10
-6

 M to 10
-16

 M) it was 

observed a change in the SERS spectra but the significant peaks were preserved for the 

detection of rhodamine and also the intensities are highly comparable. Also in this case very 

low concentrations of RhBITC were detected, confirming the results obtained with the other 

laser. 
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To compare the Raman with the SERS spectra and calculate the Analytical enhancement factor 

the spectra acquired at 532 nm were considered because in this case a good raman spectrum 

was obtained. In fact ten measures on the films (TiO2+AgNPs) were carried out with a 

RhBITC concentration of 10
-16

 M to study the homogeneity of the film and the reproducibility 

of the measures and those were compared with the spectrum collected on titania with 

rhodamine 10
-3

 M (Fig.88).   
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Fig. 88 Raman spectrum of RhBITC at a concentration 10
-3

M  compared with ten SERS measures acquired for 

rhodamine concentration 10
-16

M. 

 

As can be seen as follows, making a number of measures within the same sample at concentrations 

of RhBITC 1x10
-16

 M, the results were consistent and reproducible (Tab. 2), indicating a 

homogeneity of the sample.  
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 TiO2+ 
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TiO2+Ag

+ 
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1x10-16 M 

 

TiO2+Ag

+ 

Rhod 

1x10-16 M 

 

Intensity 

at 

1270cm-1  

689.02  297,33 663,70 749,43 447,37 369,52 687,61 540,98 432,46 632,71 457,64 

AEF  - 0.43x 

1013  

0.96x 

1013 

1.08x 

1013  

0.64x 

1013  

0.54x 

1013  

0.99x 

1013  

0.78x 

1013  

0.63x 

1013  

0.92x 

1013  

0.66x 

1013  

 

Tab. 2 Intensity of the peak at 1270cm
-1

 for Raman measures of RhBITC and AEF 

To know the ―magnitude‘‘ of the enhancement in surface enhanced Raman scattering (SERS) is a 

really important issue. For many applications it is important to know how much more signal can 

be expected from SERS as compared to normal Raman under given experimental conditions if we 

consider an analyte solution with concentration cRS, which produces a Raman signal IRS under non-

SERS conditions. Under identical experimental conditions (laser wavelength, laser power, 

microscope objective or lenses, spectrometer, etc.), and for the same preparation conditions, the 

same analyte on a SERS substrate, with possibly different concentration (cSERS), now gives a 

SERS signal ISERS. The analytical enhancement factor (AEF) can then be defined as  

 

It was calculated doing the average of ten measures at 1270 cm
-1 

considering one of the 

characteristic peaks of RhBITC.  

Average AEF=0.77x10
13

  

 

It was found that the enhancement factor of the signal was of 10
13

 times thanks to the SERS effect 

compared to samples that do not have AgNPs (Fig. 89).  
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Fig.89 Raman measures of the maximum concentration visible of RhBITC deposited on TiO2 (black) and on SERS 

substrates (red spectrum). 

The same experiment was carried out, with a label-free technique, for the detection of Cytochrome 

C, a little protein. It was tried to define also this time the detection limit (Fig. 90). 
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Fig. 90 Raman spectra of CytC at different concentration in the range 1000-2000 cm
-1

 acquired with the laser at 

532 nm. 
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Also this time the Raman spectrum of CytC was measured on titania as reference (red) and it 

was noted that at this concentration the peaks were low; further decreasing the concentration of 

CytC the spectra were not visible. The spectrum of AgNPs alone (blue) and all the SERS 

spectra from a concentration of CytC 10
-4

 M arriving to a concentration 10
-16

 M were also 

measured. In particular it can be observed the SERS signal of three vibrational fingerprints for 

CytC at 1130cm
-1

 assigned to in plane vibration of pyrrole half ring, 1310 cm
-1

 due to bending 

out of plane of CH bonds and 1408 cm
-1

 due to in plane vibrational mode of pyrrole quarter 

ring and the other typical bends at 1370, 1564, 1585, 1637 cm
-1

. 

SERS spectra were observed for CytC adsorbed on Ag-TiO2 substrates not only with the 532 

nm radiation but also with the 633 nm laser, also if in this case the measures were less good 

and for this reason not reported.  Ten measures were repeated on the same sample at the lower 

concentration of CytC visible (Fig.91), and also in this case the AEF (Tab.3) was calculated 

obtaining an enhancement of 10
13

 times (Fig. 92). 
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 Fig. 91 Raman spectrum of CytC at a concentration 10
-4

M  compared with ten SERS measures acquired for CytC 

at concentration 10
-16

M. 
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Intensity 
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284.26  2647.26  2710.63  6161.16  8694.03  2207.08  3019.55  418.37  1500.62  1355.81  2393.40  

AEF  - 9.31  

x10
12 

 

9.54 

x10
12

  

21.67 

x10
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30.58 

x10
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7.76 

x10
12

  

10.62 

x10
12

  

1.47 

x10
12

  

5.28 

x10
12

  

4.77 

x10
12

  

8.42 

x10
12

  

 

Tab. 3  Intensity of the peak at 1585 cm
-1

 for Raman measures of CytC and AEF 

 

Average AEF=1.09 x10
13

 . 
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Fig. 92 Raman measures of the maximum concentration visible of CytC deposited on TiO2 (black) and on SERS 

substrates (red spectrum). 
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Results 

 

New mesoporous films were developed as starting materials for the inclusion of nanoparticles in 

order to obtain the size (20-100 nm) and the distance between nanoparticles useful for a SERS 

effect. The mesoporous structure acted as a mold in which NPs were grown in an orderly and 

reproducible way. The uniform distribution of silver nanoparticles deposited into the pores and on 

the titania surface was confirmed by AFM measures. Different trials were done for the 

characterization of these substrates and the best results were obtained with 6h of UV exposure 

leading to the formation of NPs of dimension about 30nm, that formed cluster on the film surface. 

A self-assembled layer of AgNPs, in fact, provided several advantages in terms of sensitivity, 

quantification and multiplexing, getting a good signal and improving significantly the limit of 

detection of analytes deposited on them, leading to a good EF (enhancement factor) of the signal. 

Thanks to nanofabrication using mesoporous materials it was possible to obtain a greater control 

over geometry, shapes and distances between the metal nanoparticles avoiding the problems of 

precipitation and aggregation, present in solution. In this way, substrates prepared with bottom-up 

approach allowed good phenomena of SERS enhancement. The use of silver as noble metals in the 

form of nanostructured substrates led to a Raman amplification of analytes up to 13 orders of 

magnitude. This result was important for the detection of RhBITC and CytC but also because it 

can be applied to biological analysis providing information at high spectral resolution, at room 

temperature, without water interference and not suffering from rapid photobleaching commonly 

observed in fluorescence spectroscopy. The advantages of SERS reached with this project, 

compared to the current labelling approaches, included: low-cost and fast analysis of samples, the 

excellent ability to amplify the signal arriving to a single molecule level, the quantification of 

analytes using the characteristic SERS spectra and the high photostability. Additionally, this is a 

highly innovative technique that can be applied for the detection of pathogens or food 

contaminants in a very fast way. 
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Conclusions  

 

For the construction of biosensors were synthesized, with a sol-gel method, mesoporous thin films 

of transition metal oxides and silica, using the evaporation induced self-assembly approach. The 

best conditions for the synthesis, deposition and post treatments have been found. To use these 

substrates for the construction of biosensors it was necessary to study their stability in PBS 

solutions to simulate the biological environment. Different trials were carried out to monitor the 

thickness of the films after immersion in solution from 1 to 48h and the result obtained was that 

zirconia and especially silica films were not stable, instead titania and hafnia were stable also after 

a long immersion in solution. Mesoporous titania was chosen as the adequate material for the final 

construction of the devices thanks to its hydrolytic stability in water and in physiological solutions 

and for the simplicity of the synthesis. These materials were characterized with FTIR measures to 

obtain the complete template removal allowing the maximum surface area for the following step of 

functionalization. From TEM measures the films resulted porous and ordered with a pore distance 

of 8.5nm, data that was confirmed by GISAXS measures that attributed to the porous titania a 

cubic disposition, contracted for the thermal treatment, to form a unit cell of 7 x 3 nm. To 

understand the morphology of the material were carried out FIR measures that showed as the 

material was composed of small crystallites of anatase in an amorphous matrix, that for its very 

small size was not visible by GISAXS. For the incorporation of biomolecules on the film surface it 

was necessary to functionalize the surface with a linker, in particular APTES and APTMS were 

used to obtain a film with exposed amino groups. Two routes were followed to functionalize the 

mesoporous surface: the ―one pot‖ synthesis with organosilane molecules and the ―post-synthesis‖ 

process with grafting groups. The first method did not allow to remove completely the template 

because the film was synthesized together with the organic functional group that would be 

destroyed if treated at 350°C. For this reason the films without all the thermal treatments were less 

stable and dissolved in solution; it was visible by ellipsometric measures that showed a consistent 

thickness reduction of the one pot films if immersed in solution. Furthermore with this method the 

organic functions were incorporated not only on the pore surface but also into the material 

framework, not allowing a big amount of functionalities available for the linking. For all these 

reasons the post-synthesis method was chosen to anchor organic groups to the pore wall of 

mesoporous titania film. This was possible with a hydrolysis-condensation reaction that was 

monitored with FTIR, AFM, and ellipsometry measures. The functionalization process of non 

porous (dense) with porous materials was compared, obtaining dramatic differences in FTIR 

spectra due to the different amount of organic functions incorporated only on the surface or on the 
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surface and inside the pore system. Once obtained the functionalized materials the films were used 

as substrates for the coupling and detection of additional molecules (first and second part of the 

work) or as building units for the assembly of nanoscaled structures (third part of the work). 

In the first part of the work new devices for the detection of dioxins and in particular the most 

dangerous molecule TCDD, were developed. Three peptides were used as recognising element of 

the device. They were synthesized, purified and characterized with HPLC and MALDI-TOF MS. 

After that the peptides were immobilized on titania films functionalized with APTES and the best 

linking was found for the peptide with the terminal Valine, while the other peptides did not furnish 

positive results. The presence of peptides was monitored with FTIR measures and the linking for 

porous and dense titania was analyzed obtaining a good amount of peptide only in porous films. 

This revealed the excellent possibility to immobilize biomolecules on these porous materials 

thanks to their high surface area and pore volume. This linking was evident also by ellipsometric 

measures that showed a film thickness for calcined mesoporous titania of 180nm, after the linking 

with APTES of 270nm and after the peptide immobilization of 350nm. The linking of APTES and 

peptide was also monitored by AFM, to avoid the formation of aggregates on the film surface that 

do not guarantee the film homogeneity. The linking of the peptide to the film was also followed by 

fluorescence measures. These measures were first done in solution where FITC was identified as a 

good probe for the linking of peptides and for the TCDD detection. Finally the peptide was 

labelled with FITC, and the linking to the substrate was followed by florescence. The variation of 

fluorescence wad also detected after the linking of the TCDD on the device. With the created 

biosensor were read different concentrations of TCDD and the detection limit that produced an 

increase of fluorescence after the dioxins binding was at pM concentrations. This device can be a 

detection technique for simple and extensive pre-screening method, to monitor, by fluorescence 

measures, if a sample was contaminated or not. This detection limit can discriminate many 

samples, but for a more accurate analysis they can be submitted to HRGC/MS. The final device 

can be useful for the short time required for the analysis (less than 1 min), for the low cost, for the 

simplicity of use (the chip can just be immersed into the samples for a few minutes, washed, dried 

and analyzed), for the sensitivity (detection at pM level) and specificity (for the presence of 

peptides that bind only dioxins molecules). 

The second part of the work was based on the detection of pathogens and in particular E.coli 

O157:H7 with FTIR, through the encapsulation of biological molecules in sol-gel materials and in 

particular in mesoporous titania thin films. Titania, in fact, in addition to the properties due to the 

pores (surface area and volume) is also a biocompatible material that can coordinate with the 
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biomolecules and keep their bioactivity. This is what was tried to obtain with our device for the 

direct linking of pathogens on titania surface and on a functionalized device. In detail different 

routes were tried and the linking TiO2-APTES-GA-Ab-E.coli led to the best results. In fact thanks 

to a cross linker, the GA, was possible to link the functionalized titania to the specific antibody for 

the final step of detection. It was possible to link directly the pathogen on titania film but in this 

way it was not possible to obtain a selective device for the detection of a pathogen. With the 

functionalized device a detection limit of 10
2
 CFU/ml was reached and it was possible to 

discriminate not only the pathogen (with the specific antibody) but also the subspecies. In future it 

could be created chips divided in different sections that contain different antibodies for the 

simultaneous detection of different pathogens; in fact thanks to the recent development in the 

FTIR instruments is possible to have a clear fingerprint of the pathogen and also of the subspecies 

that could be memorized in software to have a direct identification of the pathogen after the 

measure. In this way a device that required a quick sample preparation was obtained; in fact the 

pathogen was linked to the substrate in less than 30 minutes, thanks to the nanostructured substrate 

that provided a big surface coverage, leading to a greater efficiency for the capture. These chips 

could be used in field with portable instruments; they would be low cost, quick, highly specific 

and with a good sensibility and would not require skilled workers (a software could directly 

recognize the pathogen spectra). 

In the third part of the work the aim was to overcome the limitations encountered in the other parts 

of the work and in particular the detection limit. In fact mesoporous materials for the construction 

of substrates were applied because their properties give a relevant enhancement of the Raman 

signal for the detection of molecules that are absorbed on them. In particular, for the development 

of these SERS substrates AgNPs were grown on mesoporous titania films with a bottom up 

approach. In this way it was possible to control the geometry, the shapes and the distance of 

nanoparticles that started growing into the pores with cubic geometry at definite distance and 

continued growing in the same way on the film surface until forming clusters of nanoparticles with 

the same dimension. All this process was followed with AFM measures. The UV-vis measures 

confirmed the reduction of Ag
+
 to Ag

0
 leading to AgNPs of dimension bigger than 20nm and 

through XRD analysis the formation of face centred cubic Ag with the same cubic disposition of 

titania, in anatase form, was revealed. After 6h of UV reaction the peak due to AgNO3 disappeared 

due the complete reduction of silver ion. After that were calculated the crystallites dimension that 

were around 32-36nm; result that agrees with the previous UV and AFM measures. After the 

characterization of the material, SERS measures were tried, and in particular for the first trial 

RhBITC was used as a prototype dye, because when it is absorbed on a SERS substrate it produces 
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a very intense SERS spectrum not only at 532nm but also at 633nm. In this way, covering the film 

with this dye, a level of detection under the femtomolar (concentration of 10
-16

 M) was reached. 

The reproducibility, homogeneity of distribution and consistency of the results was also 

confirmed, by repeating the measures different times on the same sample, obtaining a final 

enhancement factor compared to non SERS substrate bigger of 10
13

 order of magnitude. The same 

experiment was also tried without a dye for the detection of a protein (CytC) and the same 

detection limit and enhancement factor were reached. The results showed that TiO2 with AgNPs 

synthesized in this way is an excellent SERS substrate, that allows to obtain a new detection 

method in a fast way (the measure requires less than 2 min), that does not need sample preparation 

(the sample is just deposited on the substrate), that does not have signal by water molecules 

(important for biological sample rich in water) and furthermore it is highly photostable, low cost, 

reproducible, homogeneous and gives an immense amplification of the signal. In this way, this 

device can be applied for the detection of molecules with or without a SERS enhancer 

(rhodamine), and in particular for the detection of environmental toxins or biomolecules. Thanks 

to their properties of high spectral resolution, high sensibility (it can detect analytes at single 

molecule levels), simple analysis at room temperature, capability of avoiding different problems, 

as the photobleaching (that can be found e.g. in fluorescence measures), it can be a valuable tool. 

In this way, with these substrates very low detection limits were reached in a simple way and the 

next research will be based on the detection of food pathogen and contaminants with the 

construction of new devices. 
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List of symbols and abbreviations  

 

AFM Atomic force microscopy 

Ah aryl hydrocarbon  

AhR Ah receptor  

ANS 1-anilino-naphthalene-8-sulfonic acid 

APTES 3-aminopropyltriethoxysilane 

APTMS  3-aminopropyltrimethoxysilane  

Arnt Ah receptor nuclear translocator  

BEIA bioluminescent enzyme immunoassay  

BSE bovine spongiform encephalopathy  

CALUX chemically activated luciferase expression  

CDR complementarity determining region 

CFU colony-forming units  

Cmc  critical micelle concentration  

CYP1A1 cytochrome P4501A1 

CytC cytochrome c 

DCM dichloromethane 

DIPEA N-Ethyldiisopropylamine 

DMF Dimethylformamide 

DMSO dimethyl sulfoxide 

DRE dioxin responsive element  

EIA enzyme immunoassay  

EISA evaporation-induced self assembly  
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ELFA enzyme-linked fluorescent assay  

 ELIMCL enzyme-linked immunomagnetic chemiluminescence  

ELISA enzyme linked immunosorbent assay  

EROD  7-ethoxyresorufin O-deethylase  

FDA Food and drug administration 

FIR far infrared 

FITC  Fluorescein isothiocyanate  

FT-IR Fourier Transform Infrared 

FWHM full width at half maximum 

GA Glutaraldehyde 

GISAXS grazing incidence small angle X-ray scattering 

HACCP hazard analysis in critical control point  

HAHs  halogenated aromatic hydrocarbons  

HATU N,N,N′,N′-Tetramethyl-O-(7-azabenzotriazol-1-yl)uronium hexafluorophosphate 

HOBt 1-hydroxybenzotriazole hydrate 

HRGC/MS high-resolution gas chromatography / mass spectrometry  

Hsp heat shock protein 

IARC International Agency for Research on Cancer  

ICG  immunochromatography strip test,  

ISO International Organization for Standardization 

ITEQ International Toxic Equivalent 

IUPAC International Union of Pure and Applied Chemistry 

LIA line immunoassay  

MIR middle infrared  
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MSE mean square error 

n Refractive index 

NMP 1-methyl-2- pyrrolidone 

NPs nanoparticles 

PBS phosphate buffered saline  

PCBs Polychlorinated biphenyls  

PCDDs  polychlorinated dibenzo para dioxins  

PCDFs  polychlorinated dibenzofurans  

PCR polymerase chain reaction 

PEO polyethylene oxide 

POPs Persistent Organic Pollutants  

PPO polypropylene oxide 

PZT Piezoelectric Transducer 

RH relative humidity 

RhBITC rhodamine B isothiocyanate 

RIA radio-immunoassays  

RIBA recombinant immunoblot assay  

RT-PCR  reverse transcriptase PCR  

SERS surface-enhanced Raman spectroscopy  

SPR surface plasmon resonance  

TCDD 2,3,7,8- tetrachlorodibenzo-para-dioxin  

TDI tolerable daily intake  

TEFs toxicity equivalency factors  

TEM transmission electron microscopy 
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TEOS  tetraethoxysilane  

TEQ toxic equivalency  

TFA trifluoroacetic acid 

TIS triisopropylsilane 

TMO transition metal oxides 

TO transverse optical  

TQM Total Quality Management   

vCJD  human variant Creutzfeldt-Jakob Disease  

WHO World Health Organisation 

XAP X-associated cellular protein 

XRD X-ray diffraction 

λ (wavelength) 
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