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Abstract 

 
Introduction 

MiRNAs are small non coding RNAs that play an important role in the regulation of 

multiple cell events. They inhibit gene expression at post transcriptional level by binding 

mRNA targets that are degraded or squestred from translation.  

Vitis vinifera is the first whole genome sequenced for a commercially important fruit 

species. Here we present the development and implementation of diverse strategies for the 

identification and validation of miRNAs of the grapevine.  Many putative conserved 

microRNA precursors were identified by comparative methods and subsequently validated 

through high throughput smallRNA sequencing and oligonucleotide array technology. 

Additional bioinformatics tools were implemented for the ab-initio prediction of miRNAs 

and for the identification of lineage-specific miRNAs from smallRNA deep sequence data.   

 

Materials and methods 

Software to assist in the design of oligonucleotide arrays for the validation of miRNA 

expression in grape was developed and oligonucleotide array and deep sequencing 

experiments were used to confirm the expression of conserved mature miRNAs from most 

of these loci in at least one tissue or developmental stage.  

Support Vector Machine - based software to predict novel miRNAs and to study their 

evolution was developed and shown to outperform similar published methods. This classifier 

was also incorporated into a novel approach to the analysis of smallRNA deep sequence 

utilizing patterns of mapping of reads on the genome. Our method performs well in the 

identification novel miRNAs and non-canonical miRNA-like loci.  

 

Results 

Many conserved miRNAs were identified and show strong patterns of tissue specific 

expression. We have shown that for many, but by no means all known miRNA precursors, 

evidence for primary transcript expression can be obtained from high throughput transc-

riptome analysis, classically performed to follow expression levels of protein coding genes. 

We estimated patterns of splicing and alternative splicing of known pri-miRNA transcripts 

The method developed for the identification of plant miRNA precursors from smallRNA 

NGS data recovers many novel, canonical miRNAs from Vitis and is capable of identifying 
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loci producing miRNA-like smallRNAs with characteristics that are atypical of most 

conserved miRNAs. 

The patterns of smallRNA generated from putatively lineage specific loci have been 

considered in the context of a current model of miRNA gene evolution. 
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Preface 

 

 

This thesis contains work performed as part of a large collaborative effort aimed principally 

at the characterization of the genome of the grapevine, Vitis vinifera L., which was 

sequenced, assembled and annotated by the French Italian Public Consortium for Grapevine 

Genome Characterization (Jaillon, Aury et al. 2007).  

In particular, the work presented here focuses on the implementation of different 

bioinformatics strategies for the identification of both conserved and novel miRNAs in this 

species.  

The first chapter introduces the topics of the thesis, while the following chapters 

describe the results obtained during these three years of my Ph.D. 

The first results chapter describes comparative prediction of conserved miRNAs in 

Vitis and the use of high throughput methods to validate their expression. This work was 

pubblished in BMC Genomics (Mica, Piccolo et al. 2010).  

The following chapter concerns the implementation of an ab-initio pre-miRNA 

prediction tool, while the final chapter outlines novel strategies for the interpretation of 

smallRNA deep sequence data and their application to the discovery of miRNAs in the 

grapevine genome.  
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Chapter 1 
 

 

1.1 Discovery of microRNAs 

In 1993, it was discovered that lin-4, a gene known to control the timing of Caenorhabditis 

elegans larval development, did not code for a protein, but, instead, generated two small 

RNAs of different size (one of 22 nt and the other of about 61 nt) (Lee, Feinbaum et al. 

1993). The longer RNA was predicted to fold into a stem loop structure and was proposed to 

be the precursor of the shorter one. These lin-4 RNAs had antisense complementarity to 

multiple sites in the 3’UTR of the lin-14 gene (Lee, Feinbaum et al. 1993; Wightman, Ha et 

al. 1993) . A short region in the 3’ UTR of lin-14 was required for the repression of lin-14 by 

the lin-4 gene product (Lee, Feinbaum et al. 1993). In 1993 was noted a reduction of the 

amount of LIN-14 protein without noticeable change in levels of lin-14 mRNA. This 

observation has created the model of action whereby substantially lin-4 RNAs (non gene 

product) pairs to the lin-14 3’UTR to specify the translational repression of the lin-14 

message. This negative regulation triggers the transition from cell divisions of the first larval 

stage to those of the second (Lee, Feinbaum et al. 1993; Wightman, Ha et al. 1993). In C. 

elegans, cell lineages have distinct characteristics during 4 different larval stages (L1–L4) 

(Fig.1.1) and mutations in lin-4 disrupt the temporal regulation of larval development, 

causing L1 (the first larval stage)-specific cell-division patterns to reiterate at later 

developmental stages. Instead, in worms deficient for lin-14 was oserved the opposite 

developmental phenotypes (the omission of the L1 cell fates and the premature development 

into the L2 stage). 

Subsequently another non-coding RNA was discovered: let-7 RNA, that is involved 

in the regulation of larval development.  let-7 RNA promotes the transition from late-larval 

to adult cell fates in the same way that the lin-4 RNA acts to activates the progression from 

the first larval stage to the second (Reinhart, Slack et al. 2000; Slack, Basson et al. 2000). 

Furthermore homologs of the let-7 gene were soon identified in the human and fly genomes, 

and let-7 RNA itself was detected in human, Drosophila, and eleven other bilateral animals 

(Pasquinelli, Reinhart et al. 2000). 

Because of their common roles in controlling the timing of developmental transitions, 

initially the lin-4 and let-7 RNAs were called small temporal RNAs (stRNAs) (Pasquinelli, 

Reinhart et al. 2000) and only later was identified as members of new class of tiny (20-25 nt) 
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regulatory RNAs (Lagos-Quintana, Rauhut et al. 2001; Lau, Lim et al. 2001; Lee and 

Ambros 2001). The term microRNA was subsequently used to refer to these stRNAs and to 

all the other tiny RNAs with similar features but unknown functions (Lagos-Quintana, 

Rauhut et al. 2001; Lau, Lim et al. 2001; Lee and Ambros 2001). Small RNA cloning efforts 

from flies, worms, human, plants cells revealed numerous additional miRNAs (Lagos-

Quintana, Rauhut et al. 2001; Mourelatos, Dostie et al. 2002; Ambros 2003; Aravin, Lagos-

Quintana et al. 2003; Dostie, Mourelatos et al. 2003; Houbaviy, Murray et al. 2003; Lim, 

Lau et al. 2003). 

 

 

 
 
Fig.1.1 - A model of successive regulation of heterochronic gene activities by lin-4 and let-7 RNAs 
LIN-14 and LIN-28 expression levels are reduced by lin-4 RNA expression at end of 1st larval stage, allowing 
progression to late larval stages.  
In late larval stages, expression of LIN-41 and other genes may be similarly downregulated by let-7 RNA, 
relieving their repression of LIN-29 protein expression, allowing progression to adult stage.  
Because the lin-29 mRNA does not contain sites complementary to the let-7 RNA, lin-29 is not likely to be a 
direct target of let-7. 
 

 

The spread and importance of miRNA-directed gene regulation are coming into focus 

as more miRNAs and their regulatory targets and functions are discovered. MiRNA 

functions include control of cell proliferation, cell death, and fat metabolism in flies 

(Brennecke and Cohen 2003; Xu, Vernooy et al. 2003) neuronal patterning in nematodes 

(Johnston and Hobert 2003) modulation of hematopoietic lineage differentiation in mammals 

(Chen, Li et al. 2004) and control of leaf and flower development in plants (Aukerman and 

Sakai 2003; Emery, Floyd et al. 2003; Palatnik, Allen et al. 2003; Chen, Li et al. 2004) 
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A registry has been set up to catalog the miRNAs and facilitate the naming of newly 

identified miRNA genes (Griffiths-Jones 2006). Apart from in animals, miRNAs have been 

identified in plants, algae and many protist species, although to date there is no evidence for 

their occurrence in fungi. At the time of writing,  over 1000 (1048) miRNAs have been 

described in humans, 176 in Drosophila melanogaster, 175 in Caenorhabditis elegans, 213 

in Arabidopsis thaliana, 462 in Oryza sativa and 229 in the basal land plant Physcomitrella 

patens (as well as numerous others in other species). It is thus clear that miRNAs are a 

diffuse and important gene regulatory mechanism in eukaryotic organisms. 

 

 

1.2 General introduction to microRNAs 

MicroRNAs (miRNAs) are small single-stranded RNAs (~19-25 nt) generated from 

endogenous transcripts that can form local hairpin structures named miRNA precursors 

(Ambros 2003). 

The majority of miRNA genes are located in intergenic regions or in antisense 

orientation to annotated genes (Lagos-Quintana, Rauhut et al. 2001; Lau, Lim et al. 2001; 

Lee and Ambros 2001; Mourelatos, Dostie et al. 2002) (Fig.1.2). 

The fact that many miRNA genes come from regions of the genome quite distant from 

previously annotated genes, implies that they derive from independent transcription units 

(Lagos-Quintana, Rauhut et al. 2001; Lau, Lim et al. 2001; Lee and Ambros 2001). 

Nonetheless, a sizable minority, particularly in animals, are in the introns of pre-mRNAs 

(Lin, Miller et al. 2006; Li, Tang et al. 2007; Ruby, Jan et al. 2007; Barik 2008; Golan, Levy 

et al. 2010; Hsu, Lin et al. 2010). These are preferentially in the same orientation as the 

predicted mRNAs, suggesting that most of these miRNAs are not transcribed from their own 

promoters but are instead processed from the introns, as seen also for many snoRNAs 

(Aravin, Lagos-Quintana et al. 2003; Lagos-Quintana, Rauhut et al. 2003; Lai, Tomancak et 

al. 2003; Lim, Glasner et al. 2003; Li, Tang et al. 2007). 

This arrangement provides a convenient mechanism for the coordinated expression of a 

miRNA and a protein. Regulatory scenarios are easy to imagine in which such coordinate 

expression could be useful, which would explain the conserved relationships between 

miRNAs and host mRNAs. A striking example of this conservation involves mir-7, found in 

the intron of hnRNP K in both insects and mammals (Aravin, Lagos-Quintana et al. 2003). 
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Other miRNA genes are clustered in the genome with an arrangement and expression pattern 

implying transcription as a multi-cistronic primary transcript (Lagos-Quintana, Rauhut et al. 

2001; Lau, Lim et al. 2001) (Fig.1.2 and Fig.1.3) 

 

 

 
Fig.1.2 - MiRNA genomic position 
miRNAs can be categorized into three groups according to their genomic locations relative to their positions in 
an exon or intron.  
(a) Exonic miRNAs in non-coding transcripts such as an miR-23a~27a 24-2 cluster, miR-21 and miR-155. 
miR-155 was found in a previously defined non-coding RNA (ncRNA) gene, bic (Tam 2001). 
(b) Intronic miRNAs in non-coding transcripts. For example, an miR-15a~16-1 cluster was found in the fourth 
intron of a previously defined non-coding RNA gene, DLEU2 (Calin, Dumitru et al. 2002) 
(b) Intronic miRNAs in protein-coding transcripts. For example, an miR-106b~93~25 cluster is embedded in 
the thirteenth intron of DNA replication licensing factor MCM7 transcript (variant 1, which encodes isoform 
1). The mouse miR-106b~93~25 homologue is also found in the thirteenth intron of the mouse MCM7 
homologue gene. (Rodriguez, Griffiths-Jones et al. 2004) The hairpins indicate the miRNA stem-loops. Orange 
boxes indicate the protein-coding region. This figure is not to scale. From (Kim 2005) 
 

 

Although the majority of worm and human miRNA genes are isolated and not 

clustered (Lim, Glasner et al. 2003; Lim, Lau et al. 2003) over half of the known Drosophila 

miRNAs are clustered (Aravin, Lagos-Quintana et al. 2003). MiRNAs within a genomic 

cluster are often, though not always, related to each other; and related miRNAs are 

sometimes, but not always, clustered (Lagos-Quintana, Rauhut et al. 2001; Lau, Lim et al. 

2001). Orthologs of C. elegans lin-4 and let-7 are clustered in the fly and human genomes 

and are coexpressed, sometimes from the same primary transcript, leading to the idea that 
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the genomic separation of lin-4 from let-7 in nematodes might be unique to the worm lineage 

(for let-7 see Fig.1.3B) (Aravin, Lagos-Quintana et al. 2003; Bashirullah, Pasquinelli et al. 

2003; Sempere, Sokol et al. 2003). 

 

 

 
Fig.1. 3  - Genomic organization of miRNA gene clusters.  
The precursor structure is indicated as a box, and the location of the miRNA within the precursor is shown in 
black; the chromosomal location is also indicated to the right.  
(A) D. melanogaster miRNA gene clusters.  
(B) Human miRNA gene clusters. The cluster of let-7a-1 and let-7f-1 is separated by 26,500 nt from a copy 
of let-7d on chromosomes 9 and 17. A cluster of let-7a-3 andlet-7b, separated by 938 nt on chromosome 22, is 
not illustrated. From Lagos-Quintana, 2001 modified 
 

 

1.3 Other classes of smallRNAs. 

The intense scientific interest in microRNAs quickly lead to the realization that miRNAs 

constitute only a fraction of the physiologically relevant smallRNAs produced in animal and 

plant cells. In animals, other classes of smallRNAs, such as endogenous-siRNA  and PIWI-

associated siRNAs are involved in the suppression of transposon mobility (Kim, Han et al. 

2009) while smallRNAs are often produced specifically from snoRNAs (Bachellerie, 

Cavaille et al. 2002; Ender, Krek et al. 2008; Saraiya and Wang 2008; Taft, Glazov et al. 

2009) and tRNAs (Taft, Glazov et al. 2009; Brameier, Herwig et al. 2010). In addition, 

smallRNAs are produced from promoter regions of actively transcribed genes (Taft, Kaplan 

et al. 2009). The function and biogenetic mechanisms of these molecules remain poorly 

understood and other classes of smallRNA will likely be characterized in the future. 

However, it should be noted that a large fraction of small RNAs are not microRNAs, a 

consideration that complicated the annotation of real miRNAs.  

In plants, the situation seems to be even more complicated. The majority of small RNA 

molecules observed to date are derived from transposons and other repetitive elements in the 

genome. These smallRNAs do not derive from hairpin precursors, but from transcripts which 
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have been converted to dsRNA by RNA-dependent RNA polymerases. These smallRNAs 

are thought to direct genome methylation in cis and to repress transcription of repetitive 

elements (Xie and Qi 2008). SmallRNAs (nat-siRNAs) can also be derived from 

complementary antisense transcripts (Borsani, Zhu et al. 2005; Wang, Chua et al. 2006), 

while promoter derived and snoRNA derived smallRNAs are also observed. Trans-Acting 

siRNAs (ta-siRNAs) are produced through a complicated mechanism involving miRNA 

targeting of specialized non-coding primary transcripts and RNA-dependent RNA 

polymerase activities (Allen, Xie et al. 2005; Allen and Howell 2010). These small RNAs 

behave rather like miRNAs and go on to target other mRNAs. Additionally, in all systems 

studied to date, a significant proportion of the smallRNA molecules characterized by 

sequencing-based strategies are derived from degradation of ribosomal RNA and even of 

mRNA molecules. Recent studies also suggest that significant overlap between biogenetic 

pathways of smallRNAs can occur, meaning that some loci produce molecules with 

characteristics of more than one class of smallRNA (Vazquez, Legrand et al. 2010). 

 

 

1.4 Biogenesis of miRNAs 

1.4.1 Transcription 

Our knowledge of miRNA biogenesis has significantly advanced in recent years. 

However, little is known about transcription of miRNA genes although it is likely to be the 

key regulatory step in miRNA biogenesis.  

The biogenesis of miRNAs begins with the transcription of a primary transcript (pri-

miRNA), an hairpin which can be up to several kilobases in length (Lee, Kim et al. 2004) 

(Fig.1.4). 

MiRNAs genes might either be transcribed by RNA pol-II or pol-III. In general, Pol 

II produces the mRNAs and some noncoding RNAs, including the small nuclear RNAs 

(snoRNAs) and four of the small nuclear RNAs (snRNAs) of the spliceosome, whereas Pol 

III produces some of the shorter noncoding RNAs, including tRNAs, 5S ribosomal RNA, 

and the U6 snRNA. The miRNAs processed from the introns of protein-coding host genes 

are undoubtedly transcribed by Pol II (Zeng, Wagner et al. 2002; Zeng and Cullen 2003; 

Borchert, Lanier et al. 2006). 
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Fig.1.4  -  A model for miRNA biogenesis. 
MiRNA genes are transcribed by an unidentified polymerase to generate the primary transcripts, referred to as 
pri-miRNAs. Illustrated in the upper left is the clustered miRNA, such as miR-23~27~24-2, of which the pri-
miRNA is polycistronic. Illustrated in the upper right is the miRNA, such as miR-30a, of which the pri-miRNA 
is monocistronic. The first-step processing (STEP 1) by a RNA pol-II or pol-III results in pre-miRNAs of ~70 
nt From (Lee, Jeon et al. 2002) modified 
 

 

The following observations provide indirect evidence that many of the other miRNAs 

are pol II products, even though most of metazoan miRNA genes do not have the classical 

signals for polyadenylation (Ohler, Yekta et al. 2004): 

(1) the pri-miRNAs can be quite long, more than one 1 kb, which is longer than typical pol 

III transcripts; 

(2) these presumed pri-miRNAs often have internal runs of uridine residues, which would be 

expected to prematurely terminate pol III transcription;  

(3) many miRNAs are differentially expressed during development, as is observed often for 

pol II but not pol III products; 

(4) fusions that place the open reading frame of a reporter protein downstream from the 5’ 

portion of miRNA genes lead to robust reporter protein expression, suggesting that miRNA 

primary transcripts are capped pol II transcripts. Examples of such fusions include artificial 

reporter constructs designed to investigate the regulation of miRNA expression (Johnson, 

Lin et al. 2003; Johnston and Hobert 2003) and a natural chromosome translocation linked to 

an aggressive B cell leukemia, in which a truncated MYC gene is fused to the 5’ portion of 

miR-142  (Gauwerky, Huebner et al. 1989; Lagos-Quintana, Rauhut et al. 2002). 

Although these observations indicate that many miRNAs are pol II transcripts, others might 

still be pol III transcripts, just as most but not all snRNAs are pol II products.  
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Ectopic expression of miR-142 and other miRNAs from a pol III promoter produces 

efficiently and precisely processed miRNAs that function in vivo (Chen, Li et al. 2004), 

indicating that there is no obligate link between the identity of the polymerase and 

downstream miRNA processing or function. 

 

1.4.2 Pri-miRNA processing 

Pri-miRNA processing is a critical step in miRNA biogenesis. This initial processing 

event predetermines mature miRNA sequences by generating one end of mature miRNA 

(Lee, Ahn et al. 2003; Lund, Guttinger et al. 2004) and releasing the characteristic hairpin 

precursor (pre-miRNA) from the primary transcript.  

Both in pants and in animals pri-miRNA processing is mediated by RNase III type 

enzymes. In animals the protein is called Drosha, while in plants DCL1. 

In general, RNase III proteins are grouped into three classes based on their domain 

organization: 

(a) class I proteins include RNase III proteins that are present in bacteria and yeasts. Each 

proteins contains one RNase III domain (RIIID) and one double stranded RNA (dsRNA)-

binding domain (dsRBD); 

(b) class II proteins such as Drosha possess two RIIIDs and a dsRBD. Drosha homologs are 

present only in animals. These proteins are large (130–160 kDa) and possess extended N-

termini whose functions are unknown. The N-terminal portion of Drosha contains a proline-

rich region as well as a serine/arginine-rich region; 

(c) class III (Fig.1.5) includes Dicer homologs that are conserved in Schizosaccharomyces 

pombe, plants, and animals. DICER homologs are  more or less 200 kDa and contain 

multiple domains. Apart from two RIIIDs and a dsRBD, DICER has a long N-terminus 

containing a DExH RNA helicase/ATPase domain, as well as DUF283 and the PAZ domain. 

The PAZ domain is also found in a group of highly conserved proteins, referred to as 

Argonaute proteins (also known as PPD proteins). Structural and biochemical studies of the 

PAZ domain from Drosophila Ago1 and Ago2 suggest that the PAZ domain binds to the 3’ 

protruding end of small RNAs (Lingel, Simon et al. 2003; Song, Liu et al. 2003; Yan, Yan et 

al. 2003). The function of the other domains in DICER are not yet clear. Although DICER 

associates with several other proteins (Argonaute proteins in various organisms, RDE-4 in 

Caenorhabditis elegans, R2D2 in Drosophila, and dFMR1 in Drosophila)  (Hammond, 

Boettcher et al. 2001; Ishizuka, Siomi et al. 2002; Tabara, Yigit et al. 2002), these interacting 
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proteins do not seem to be required for the cleavage reaction itself because purified human 

DICER and Drosophila DICER-2 can catalyze the cleavage reaction . 

 
 

 
Fig.1.5  -  RNase III type enzymes domains  
(a) The RNase III domain (RIIID) is the catalytic domain that is responsible for the endonucleolytic reaction of 
RNase III enzymes such as DICER and Drosha. The RIIIDs (shown as RIIIDa and RIIIDb) are well conserved 
motifs found in RNase-III-type proteins of eubacterial, archaeal and eukaryotic origin. The double-stranded 
RNA-binding domain (dsRBD) is also a well conserved motif in many double-stranded RNA (dsRNA)-binding 
proteins of diverse functions, including Drosha and DICER. The biological significance of the proline-rich (P-
rich) region is unknown. The RS-rich region is abundant in arginine and serine residues. The function of this 
region is also unclear, although the C terminus of this region was shown to be important for the activity of 
Drosha (Han, Lee et al. 2004). The PAZ domain binds to the 3' end of small RNAs (Lingel, Simon et al. 2004; 
Ma, Ye et al. 2004). The DEAD-box RNA helicase domain is typical of enzymes that hydrolyse ATP and 
unwind an RNA duplex. The DUF283 domain has no known function.  
(b) The WW motif is known as a protein interaction module that binds to the P-rich domain, although the role 
of this domain in DGCR8 remains unclear.  
(c) The nuclear transport receptor (NTR) domain is found in many Ran-dependent nuclear transport factors aa, 
amino acids (Nakielny and Dreyfuss 1999). From (Kim 2005) modified 
 

 
1.4.2.1 Pri-miRNA processing in animals 

Human Drosha fractionates more or less at 650 kDa, indicating that Drosha functions 

as part of a large complex. This complex is called Microprocessor and cuts the stem loop 

containing the future miRNA out of the pri-miRNA (Han, Lee et al. 2004) (Fig.1.6 and 

Fig1.7). In the Microprocessor complex, Drosha interacts with DGCR8 (Fig.1.6), that is a 

protein of unknown function which contains two dsRBDs and a putative WWdomain (Lee, 

Ahn et al. 2003; Han, Lee et al. 2004; Zeng, Yi et al. 2005). 
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As in the class III enzyme human DICER, the two RIIIDs of human Drosha form an 

intramolecular dimer where the two domains are distinct in their roles. The RIIIDa cuts the 

3′ strand, while the RIIIDb cleaves the 5′ strand, independently of each other. This result 

suggests that the Drosha protein is capable of orienting itself on pri-miRNA in a way that 

each RIIID is positioned on the correct strand (Lee, Ahn et al. 2003; Han, Lee et al. 2004; 

Zeng, Yi et al. 2005; Han, Lee et al. 2006) (Fig1.6). 

DGCR8 may help Drosha to be correctly positioned on pri-miRNA (Kim 2005). 

DGCR8 may provide such an RNA-binding module and thereby may serve as an essential 

component of the Drosha complex.  

 

 
Fig1.6  -  Pri-miRNA nuclear processing: Drosha.  
The double-stranded RNA (dsRNA) substrate is laid on the cleft between RIIIDa (light orange) and RIIIDb 
(dark orange). The catalytic site on the RIIIDa side cleaves the 3' strand, whereas another catalytic site on the 
RIIIDb cleaves the 5' strand. 
Drosha binds to a primary transcript (pri-miRNA) and introduces a cut at approximately two helical turns, ~22 
nucleotides (nt), from the terminal loop. For simplicity, the domains of Drosha other than the RIIIDs are not 
shown. It was proposed that DGCR8/Pasha might help the binding of the complex to RNA and/or orienting the 
complex on pri-miRNA. From (Kim 2005) modified 

 

 
The DGCR8 gene was originally identified in the “DiGeorge syndrome chromosomal 

region (DGCR)” at human chromosome 22q11 (Shiohama, Sasaki et al. 2003). Monoallelic 

deletion of this region is associated with a complicated clinical phenotype, including 

DiGeorge syndrome/conotruncal anomaly face syndrome/velocardiofacial syndrome, 

although it remains unknown whether DGCR8 is involved in this genetic disorder. 
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Experiments suggest that Drosha and DGCR8 may be the only essential components 

of the pri-miRNA processing complex; however, the active complex is more or less 650 

kDa, which may accommodate multiple subunits (Lee, Ahn et al. 2003; Han, Lee et al. 2004; 

Zeng, Yi et al. 2005; Han, Lee et al. 2006). 

The precision of Drosha-DGCR8 cleavage is crucial for the fidelity of miRNA 

maturation: if the position of the Drosha cut is shifted by a single nucleotide on the pri-

miRNA, then DICER cleavage, too, will be shifted, and the final miRNA will have different 

5´ and 3´ ends (and potentially not be functional). 

Initially, Drosha was thought to cut the stem by measuring two helical turns from the loop 

(Zeng et al., 2005), but other studies shown that the cut is more or less at position 11 bp from 

the basal segment and not from the terminal loop (Fig.1.7) (Han, Lee et al. 2004; Seitz and 

Zamore 2006).  

 

 

 
 
Fig. 1.7 - Pri-miRNA Processing by Drosha and DGCR8, Components of the Microprocessor 
Structural features of pri-miRNAs promote their accurate processing into pre-miRNAs by the RNase III 
enzyme Drosha and its double-stranded RNA binding protein partner, DGCR8 (Pasha in invertebrates). 
DGCR8 is thought to bind more favorably to the junction between the rigid double-stranded stem and the 5´ 
and 3´ flexible, single-stranded segments of the pri-miRNA than to the junction between the stem and the 
considerably more constrained loop. Correct binding of DGCR8 to the base of the stem is proposed to position 
the processing center of Drosha ~11 bp up along the stem, where it makes a staggered pair of breaks in the 
RNA to create the ~65 nucleotide-long pre-miRNA. Binding of DGCR8 at the loop end of the stem positions 
Drosha inappropriately. Unpaired or weakly paired nucleotides at this site serve to discourage such 
unproductive leavage, reducing the number of abortive Drosha products and favoring accurate re-miRNA 
production. Taken from (Seitz and Zamore 2006) modified 
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The nature of the terminal loop seems not to be is particularly relevant to pri-miRNA 

processing, although both processing and DGCR8 binding were slightly impaired in a 

mutant with a small loop, suggesting that the presence of a large loop may be beneficial to 

some extent (Han, Lee et al. 2004). It is possible that a terminal loop that is too small in size 

may impose structural constrains upon the stem and affect processing (Han, Lee et al. 2004; 

Han, Lee et al. 2006). 

Other studies demonstrated that the terminal loop can be replaced by single-stranded RNA 

with no major effect on pri-miRNA processing, but the single-stranded RNA segments 

flanking the base of the stem are indispensable for Drosha cleavage. In fact deleting these 

single-stranded regions or converting them to double-stranded RNA by annealing a synthetic 

oligonucleotide to them greatly impairs the conversion of pri-miRNA to pre-miRNA (Han, 

Lee et al. 2004; Zeng, Yi et al. 2005). 

Modifying the length of the base of the stem also shifts the cleavage site. So it seems that the 

molecular ruler is anchored by the junction between the 5´ and 3´ single-stranded segments 

and the base of the double-stranded stem.  

 

1.4.2.2 Pri-miRNA processing in plants 

Processing of miRNA precursors in plants is not yet understood in the same level of 

detail as in animals, but cleavage of the primary transcript to the mature miRNA duplex is 

thought to be carried out by DCLs (DCER like proteins) (Chen 2005; Jones-Rhoades, Bartel 

et al. 2006).  

In Giardia intestinalis, DICER (Fig.1.8) was shown to interact with 2-nt 3’-overhangs of 

dsRNAs through its PAZ domain (PIWI/AGO/ZWILLE), a highly-conserved RNA binding 

domain (RBD) also found in AGO proteins.  

Both in animals and plants, the function of DICERs and DCLs on dsRNAs generally 

depends on interaction with DRB proteins which are thought to select the substrates 

(Jacobsen, Running et al. 1999; Golden, Schauer et al. 2002; Schauer, Jacobsen et al. 2002; 

Xie, Johansen et al. 2004) (Fig.1.9). 

The positively charged flat helix which connects the PAZ domain to the catalytic center 

further stabilizes the dsRNA through electrostatic interactions.  

The catalytic residues (*) of the two RNAse III domains (RIII) are shifted and cut one strand 

of the dsRNA each to release the 25-nt-long duplex with 2-nt overhangs (MacRae, Zhou et 

al. 2007).  
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Fig.1.8  -  Mechanism of action of DICER in Giardia intestinalis  
The positively charged flat helix which connects the PAZ domain to the catalytic center further stabilizes the 
dsRNA through electrostatic interactions. The catalytic residues (*) of the two RNAse III domains (RIII) are 
shifted and cut one strand of the dsRNA each to release the 25-nt-long duplex with 2-nt overhangs (MacRae, 
Zhou et al. 2007). From (Vazquez, Legrand et al. 2010) modified 
 

 

Plant DCLs probably function similarly. However, whether they generate an initial overhang 

for primo-interaction or whether they also interact with other types of free ends is unknown. 

Moreover, whether DRBs contribute to the primo-interaction remains to be determined. The 

physical distance between the PAZ domain and processing center forms a molecular ruler 

which determines the size of the sRNA generated (MacRae, Zhou et al. 2007). This feature 

explains that all four Arabidopsis DCLs generate sRNAs of determined and DCL-specific 

size: 21-nt for AtDCL1 and AtDCL4, 22-nt for AtDCL2, and 24-nt for AtDCL3 (Jacobsen, 

Running et al. 1999; Golden, Schauer et al. 2002; Schauer, Jacobsen et al. 2002; Xie, 

Johansen et al. 2004) (Fig.1.9). 

 

 

 
Fig.1.9  -  DCLs domains in Arabidopsis thaliana 
From (Hiraguri, Itoh et al. 2005) modified 



 - 22 -

In plants the cleavage of the primary transcript to the mature miRNA duplex is thought to be 

carried out in the nucleus DCL1 (DICER-like protein) (Chen 2005; Jones-Rhoades, Bartel et 

al. 2006). DCL1 is required for miRNA accumulation, yet processing intermediates do not 

appear to overacumulate in DCL1 mutants, suggesting that DCL1 has the Drosha like 

activity responsible for the first set of cuts (Kurihara and Watanabe 2004). 

In plants the RNA-binding protein Hyponastic Leaves1 (HYL1) is necessary for pri-

miRNA processing (Kurihara, Takashi et al. 2006; Wu, Yu et al. 2007) (Fig.1.10), but may 

not be the only additional protein involved in processing. In fact, although both HYL1 and 

DCL1 are required for pri-miR171a processing, they have been identified in protein 

complexes of significantly different sizes. The HYL1 complex is more or less of 300 kDa 

(Han, Goud et al. 2004), whereas DCL1 has been identified in a complex of >660 kDa (Qi, 

Denli et al. 2005). 

DCL1 and HYL1 colocalize and are often concentrated in nuclear bodies similar to Cajal 

bodies (Shaw and Brown 2004; Collier, Pendle et al. 2006; Fang and Spector 2007). The 

most straightforward interpretation of these observations is that the HYL1 and DCL1 

complexes, although not tightly associated, function together in pri-miRNA processing in a 

distinct nuclear organelle. However, there is not direct evidence that the HYL1-bound 

miRNA precursors are in the HYL1/DCL1 bodies, maybe because that these nuclear bodies 

are assembly and storage sites for miRNA processing components, which then function in 

closer proximity to miRNA gene (Song, Han et al. 2007) 

 

 

 
Fig.1.10  -  Pri-miRNA processing in plants.  
Primary miRNA transcript is processed by the RNaseIII enzyme DCL1 (containing two double-stranded RNA-
binding domains) and its associated RNA-binding cofactors HYL1 (containing two double-stranded RNA-
binding domains) and SE (a C2H2-type zinc finger) to generate a pre-miRNA. Fom (Zhu 2008) modified. 
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Several years ago, it was discovered that SERRATE, a C2H2-type zinc finger, is also 

required for processing pri-miRNAs and for accumulation of mature miRNAs (Grigg, 

Canales et al. 2005; Yang, Liu et al. 2006) (Fig.1.10). 

The Arabidopsis gene SERRATE (SE) controls leaf development, meristem activity, 

inflorescence architecture and developmental phase transition (Prigge and Wagner 2001; 

Grigg, Canales et al. 2005). SE has also been shown to regulate specific microRNAs 

(miRNAs), miR165/166, and thus control shoot meristem function and leaf polarity (Grigg, 

Canales et al. 2005) . 

Recently, it was discovered that SE and HYL1 probably act with DCL1 in processing pri-

miRNAs before HEN1 in miRNA biogenesis (Yang, Liu et al. 2006) (Fig1.10). 

 

Previous studies have shown that plant miRNAs are processed by DCL1 in a manner 

similar to animal precursors: a first cut at the base separates the hairpin from the rest of the 

transcript (Bernstein, Caudy et al. 2001; Kurihara and Watanabe 2004; Vermeulen, Behlen et 

al. 2005), while a second cleavage releases the mature miRNA (Bologna, Mateos et al. 2009; 

Schwab and Voinnet 2009) 

Recently some miRNAs (ath-miR159 and ath-miR319) were shown to be first processed 

near the loop, and several ‘phased’ cuts occur down the stem (Fig.1.11). Mutations and 

deletions in the upper part of the stem region were shown to abolish processing of these 

precursors in Arabidopsis  (Bologna, Mateos et al. 2009; Schwab and Voinnet 2009), while 

such changes had no effect on the processing of other miRNAs (Mateos, Bologna et al. 

2010). 

 

 

 
Fig.1.11  -  Model of the maturation of Arabidopsis miR319 and 159.   
From (Bologna, Mateos et al. 2009) 
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1.4.3 Pre-miRNA processing  

Processing is completed by a RNAse III type enzyme the cleaves the pre-miRNA hairpin 

into the so called miRNA/miRNA* duplex. 

In animals the protein responsible for the second cleavage of the precursor miRNA 

belongs to DICER family and performs the cleavage in the cytoplasm. Instead in plants the 

cleavege is mediated by the same DCL-1 that processed pri-miRNA into pre-miRNA. 

Supporting the idea that in plants DCL1 has both Drosha and DICER functions in plant 

miRNA maturation is the observation that in plants the two sets of cuts that liberate the 

miRNA/miRNA∗ duplex both occur in the nucleus, which is the predominant location of 

DCL1. 

 

1.4.3.1 Pre-miRNA processing in animals 

As mentioned previously, DICER proteins contain: an aminoterminal helicase 

domain, dual RNAse III motif (RIIIDa that is responsible for the formation of 3’-OH ends of 

the product and RIIDb that generates the 5’ ends), a dsRNA binding domain and a PAZ 

domain (a 110-amino-acid domain present in proteins like Piwi, Argo and Zwille/Pinheads) 

(Fig.1.8) 

To process pre-miRNA DICER requires partner proteins, such as Loqs in Drosophila 

(Forstemann, Tomari et al. 2005; Saito, Ishizuka et al. 2005), the TAR RNA-binding protein 

(TRBP) in humans (Chendrimada, Gregory et al. 2005). 

This RNAse III type enzyme is among the few nucleases that show specificity for dsRNAs 

and cleave them with 3’ overhangs of 2 to 3 nucleotides and 5’-phosphatate and 3’-hydroxyl 

terminal. DICER does not recognize just a dsRNA end, but requires its specific structure 

with a 2-nt 3'-overhang and a 5'-phosphate group. This structure is recognized by the PAZ 

(Piwi/Argonaute/Zwille) domain which occurs in most DICER proteins. The arrangement of 

the PAZ domain and RIIID in DICER determines the dsRNA cleavage site (Fig.1.8). The 

distance between the active center of RIIID and the PAZ pocket accommodating the dsRNA 

end exactly matches the size of a 25-bp region in an RNA duplex. Bound dsRNA is 

stretched between the PAZ domain and RIIID of DICER along its flat surface enriched in 

basic amino acid residues, which interact with the sugar-phosphate backbone of dsRNA. 

Thus, the size of the resulting miRNA is determined by the distance between the PAZ 

domain and RIIID (Lee, Ahn et al. 2003; Gregory, Yan et al. 2004; Han, Lee et al. 2004). 
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The RNase III type enzyme acts as a dimer and thus digests dsRNA with the help of two 

compound catalytic center domains, with one of them deviating from the consensus catalytic 

sequence. The crystal structure of the RNAse III catalytic domain was solved and this led to 

the model for generation of 23 to 28-mer diced miRNA products (Blaszczyk, Tropea et al. 

2001). In this model the dimeric DICER folds on the dsRNA substrate to produce four 

compound catalytic sites so that the two terminal sites bearing partial homology lose 

functional significance. Thus the DICER product appears to be near the length limit for 

digestion products of RNAse III enzymes and are double the size of the normal 12- to 15 

mer fragments of RNAaseIII enzymes (Yang, Buchholz et al. 2002). 

 

 

1.4.3.2 Pre-miRNA processing in plants 

In plants, HYL1 and SE participate in both steps of miRNA biogenesis: from pri-

miRNA to premiRNA (see §1.4.2.2) and from pre-miRNA to miRNA, although this is 

difficult to test vigorously, because the pre-miRNA intermediate does not appear to 

accumulate and is quickly processed to release mature miRNA. Unlike animal pri-miRNAs, 

which have an ≈70-nt stem–loop structure where the miRNA is always located ≈11 nt from 

the base of the stem–loop (Han, Lee et al. 2006), the stem–loop structures of plant pri-

miRNAs vary greatly in length (from ≈100 to >1,000 nt) (Sunkar, Girke et al. 2005; Jones-

Rhoades, Bartel et al. 2006). 

 

 

 
Fig.1.12  -  Pre-miRNA processing in plants.  
Primary miRNA transcript is processed by the RNaseIII enzyme DCL1 (containing two double-stranded RNA-
binding domains) and its associated RNA-binding cofactors HYL1 (containing two double-stranded RNA-
binding domains) and SE (a C2H2-type zinc finger) to generate a miRNA/miRNA* duplex.  
From (Zhu 2008) modified 
 

 

In 2008, gel mobility-shift assays performed by Dong et al. (Dong, Han et al. 2008) suggest 

that each of the proteins of the DCL1-HYL1-SE trimeric complex is capable of binding both 
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pri-miRNAs and pre-miRNAs. In fact it was shown that recombinant HYL1 and SE proteins 

accelerate the rate of DCL1-mediated cleavage of pre- and pri-miR167b substrates and 

promote accurate processing (Dong, Han et al. 2008). However, where each protein binds 

and which sequence and/or structural features they recognize are not known. Crystal 

structures of each of the proteins bound to a pri-miRNA, and eventually the structures of the 

trimeric complex with bound pri-miRNA and pre-miRNA will be needed to understand the 

precise mechanism of accurate miRNA production (Zhu 2008). 

In plants, after the cleavage of DCL-1 in the nucleous, the 3’ terminal nucleotides of 

endogenous miRNAs are methylated on their 2’ hydroxyl groups by HUA ENHANCER1 

(HEN1) (Yu, Yang et al. 2005). Mutations in HEN1 result in 3’ end uridylation of miRNAs 

which apparently leads to reduced miRNA accumulation and function (Yu, Yang et al. 2005; 

Yu, Bi et al. 2010). HEN1 contains a methyltransferase domain, and can methylate 

miRNA/miRNA* duplexes in vitro. The 3’ terminal nucleotides of endogenous miRNAs are 

methylated on their 2’ hydroxyl groups in wild-type plants, but not in hen1 mutants or in 

animals (Yu, Yang et al. 2005). End-methylation of miRNAs does not enhance silencing 

activity in vitro and instead appears to protect the 3’ ends of silencing RNAs from 

uridylation and associated destabilization. After DCL1-mediated cleavage and HEN1 

mediated methylation, most miRNA molecules exit the nucleus and enter the cytoplasm. 

This export into the cytoplasm is facilitated by HASTY (HST), a member of the importin β 

family of nucleocytoplasmic transporters (Bohnsack, Czaplinski et al. 2004). 

 

 

 
Fig.1.13  -  A schematic diagram of miRNA biogenesis in Arabidopsis.  
The precursor-miRNA (pre-miRNA) is processed by DCL1 to a duplex of the miRNA and its antisense strand 
miRNA*. HEN1 methylates the 3' terminal nucleotide in each strand of the duplex. The methylation occurs on 
the ribose of the terminal nucleotide.  
Modified from (Yu, Yang et al. 2005) 
 

 

 



 - 27 -

1.4.4 RISC assembly 

Both in animal and in plants, in the cytoplasm, the miRNA/miRNA* duplex is 

incorporated into a ribonucleoprotein complex, known as the RNA-induced silencing 

complex (RISC) (Elbashir, Harborth et al. 2001; Hammond, Boettcher et al. 2001) 

The RISC has been purified from fly and human cells and in both cases contains a member 

of the Argonaute protein family, which is thought to be a core component of the complex 

(Hammond, Boettcher et al. 2001). Argonaute proteins are crucial for RNAi and analogous 

processes in worms, fungi, and plants, respectively. Argonaute and its homologs are 

approximately 100 kDa proteins that are sometimes called PPD proteins because they all 

share the PAZ and PIWI domains (Cerutti, Mian et al. 2000). The PAZ domain (first 

recognized in Piwi, Argonaute, and Zwille/Pinhead proteins) has a stable fold when isolated 

from the rest of the protein, which has a barrel core that together with a side appendage 

appears to bind weakly to single-stranded RNAs at least 5 nt in length and also to double 

stranded RNA (Lingel, Simon et al. 2003; Song, Liu et al. 2003; Yan, Yan et al. 2003). This 

dual binding ability suggests that the Argonaute protein could be directly associated with the 

miRNA before and after it recognizes the mRNA target. When the miRNA strand of the 

miRNA/miRNA* duplex is loaded into the RISC, the miRNA* appears to be peeled away 

and degraded. 

 

 
Fig.1.14  -  Argonaute domains: MID domain, PIWI, PAZ. 
From (Vazquez, Legrand et al. 2010) modified 

 

 

Loading sRNAs into AGO effectors involves selecting one strand as the guide for target 

identification and removing the passenger strand (or star strand noted miRNA* or siRNA*).  

In animals, the strand with the least stable 5’-end is selected as the guide (Hutvagner 2005). 

Although a contribution of the 5’ stability is still debated for plant sRNAs, some AGOs have 

been shown to select the guide strand depending, at least in part, on the identity of its first 

5’-nucleotide through interaction with a nucleotide-specific binding pocket located in the 

MID (MIDDLE) domain (Rajagopalan, Vaucheret et al. 2006; Mi, Cai et al. 2008; 
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Montgomery, Howell et al. 2008; Takeda, Iwasaki et al. 2008; Vaucheret 2008; Eamens, 

Smith et al. 2009). The 2-nt 3’-overhang of the selected strand might then be stabilized by 

anchoring to the PAZ domain, as suggested for Drosophila AGO2 (Song, Liu et al. 2003). It 

is unknown how plant AGOs remove the passenger strands to allow guide-strand pairing 

with the target, i.e. whether this occurs as for mice AGO2 by cleavage through the ‘slicer’ 

activity (Song, Liu et al. 2003; Chendrimada, Gregory et al. 2005; Vaucheret 2008) located 

in the PIWI domain or like for Drosophila AGO1 by passive unwinding (Rand, Petersen et 

al. 2005; Kawamata, Seitz et al. 2009). 

 

 

1.5 MiRNA targets 

The importance of complementarity to the 5′ terminal of metazoan miRNAs has been 

suspected since the observation that the lin-14 UTR has “core elements” of complementarity 

to the 5′ region of the lin-4 miRNA (Wightman, Ha et al. 1993).  

 

 
Fig.1.15   -  Typical pattern of base pairing between miRNAs and target. 
A= miRNA/mRNA duplex region; B=central region of base pairing;C= 5’ end of the miRNA (seed). 
According to thermodynamic analysis some degree of complex formation occurs along the entire miRNA—
mRNA region.Usually the interaction is weak in B and strong in C.  
 

 

More recent observations support this idea:  

(1) Residues 2–8 of several invertebrate miRNAs are perfectly complementary to 3′ UTR 

elements previously shown to mediate posttranscriptional repression. (Lai 2002)This region 

of perfect complementarity is called the “seed” region in animal miRNAs. In plants there is 

not the seed, because the complementarity with the target is perfect or near perfect for the 

length of the miRNA.  

(2) Residues that pair to residues 2–8 of the miRNA of invertebrates are usually perfectly 

conserved in orthologous transcripts of other species (Stark, Brennecke et al. 2003). 
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(3) Residues 2–8 of the miRNA are the most conserved among homologous metazoan 

miRNAs  (Lewis, Shih et al. 2003; Lim, Lau et al. 2003). 

(4) The perfect pairing of mRNA to the residues 2–8 of the miRNA (seed region) (Fig.1.15). 

is much more productive than pairings to any casual heptamer of the miRNA (Lewis, Shih et 

al. 2003). Pairing to this 5′ core region also appears to disproportionally regulate the 

specificity of siRNA-mediated mRNA cleavage (Jackson, Bartz et al. 2003; Pusch, Boden et 

al. 2003) and the same happens in plant miRNAs that generally mediate transcript cleavage. 

 

 

1.5.1 Approaches for prediction and validation of miRNA targets in animals 

Significant problems beset bioinformatics approaches to target identification in animals: the 

complementarity between miRNAs and target mRNAs is usually imperfect: only the short 

region the ‘core’ (seed) at the 5′ side of the miRNA is perfectly base-paired to the transcript 

(Fig.1.15). Consequently, a search for sequence complementarity will produce many results 

and many false-positive predictions. Moreover, most miRNAs have several targets, some of 

which will be targeted more strongly than others. Ideally, one should therefore predict not 

just targets, but also the expected degree of translational suppression. To overcome this 

problem, was developed software, such as PicTar (Grun, Wang et al. 2005) and TargetScan 

(Lewis, Burge et al. 2005), that take into account the evolutionary conservation of the target 

site. Although conservation is a powerful way to improve the detection signal, it is clearly 

not useful for the lineage-specific miRNAs (Bentwich, Avniel et al. 2005). 

A limitation of these approaches is that they assign the same score to all targets with the 

same sequence and cannot explain the variability that arises from differences in accessibility 

imposed by the sequence surrounding the target. Target accessibility is a critical factor in 

microRNA function and several studies have shown that miRNA target sequences tend not 

to be involved in energetically stable cis-secondary structure elements (Kertesz, Iovino et al. 

2007; Long, Chan et al. 2008). In fact recent study about the conformational modification of 

mRNA for allowing the interaction with the miRNAs pairing suggested to Kertesz (Kertesz, 

Iovino et al. 2007)to account for the effect of accessibility on the strength of microRNA 

repression. In this study, an energy-based score for microRNA-target interactions, DDG, 

equal to the difference between the free energy gained by the binding of the microRNA to 

the Target (DGduplex) and the free energy lost by unpairing the target-site nucleotides was 

calculated (DGopen) (Kertesz, Iovino et al. 2007). 
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Other target prediction algorithms have been proposed for animals (eg: (Wang 2006; 

Sturm, Hackenberg et al. 2010)). Due to the nature of animal miRNA/target interactions, it is 

generally considered that these methods are likely to be able to identify most real targets, but 

might tend to also yield a large proportion of false positive target predictions. 

Experimental validation of target mRNAs in animals is hard because interaction of an 

mRNA with a target (and sequestration from the transcriptional apparatus) does not 

necessarily affect steady state mRNA levels, protein expression must therefore be followed, 

preferably in conjunction with approaches to show inverse correlation with miRNA 

expression. 

 

 

1.5.2 Approaches for the prediction and validation of miRNA targets in plants  

The fact that most plant microRNAs are thought to form almost perfect hybrids with their 

target sequences (which are typically situated in coding regions) significantly aids target 

prediction. Most approaches are therefore based on the search for sequences showing 

extensive complementarity to a known miRNA. However, experimental studies have 

suggested that certain types of mismatch at certain positions in a miRNA/target hybrid are 

unlikely to be compatible with target cleavage. Accordingly, a widely used scoring system 

for mismatches was developed by Allen et al (Allen, Xie et al. 2005). Additionally, recent 

studies strongly indicate that a significant proportion of plant miRNAs are likely to form 

target interactions that resemble those in animals and might lead to translational 

sequestration rather than message degadation (Lanet, Delannoy et al. 2009) 

At present, the most widespread method to confirm functional miRNA-mRNA targets in 

plants, where such interactions typically result in target mRNA cleavage is the 5′ RACE 

procedure (Random Amplification of cDNA Ends).  

5′ RACE has been used by many researchers to identify miRNA targets in plants (Palatnik, 

Allen et al. 2003; Mallory, Reinhart et al. 2004; Mallory, Bartel et al. 2005; Sunkar, Girke et 

al. 2005). Cleaved mRNA products in plants have two properties: 

- the 5′ phosphate of a cleaved mRNA product can be ligated to an RNA adaptor with 

T4 RNA ligase; 

- the precise target cleavage position is the mRNA target nucleotide pairing with the 

tenth nucleotide of miRNA (Sunkar, Girke et al. 2005); 
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- mRNA cleavage products of miRNA guided activity can be amplified with ligation 

of an oligo-nucleotide adaptor to the 5′ end, followed by reverse transcription and 

PCR amplification with a gene specific primer.  

A modified 5′ RACE procedure can be applied as follows. Total RNA is isolated and polyA 

mRNA is prepared and directly ligated to an RNA oligo adaptor. Oligo dT is used to 

synthesize the first strand of cDNA with reverse transcriptase. This first cDNA strand is 

amplified non-specifically. Then the 5′ RACE PCR and 5′ nested PCR are performed using 

primers specific to the adapter sequence and to the gene predicted to be targeted by a given 

miRNA. RACE products are gel purified, cloned, and sequenced. 

More recently, several groups have proposed a high throughput approach known as 

Degradome (Addo-Quaye, Eshoo et al. 2008) or Parallel Analysis of RNA Ends (PARE) 

(German, Pillay et al. 2008), whereby the 5’ 20 bases of the downstream fragment of RNAs 

degraded by RISC can be sequenced in a massively parallel manner, effectively giving a 

snapshot of all degraded mRNAs in a cell or tissue. Bioinformatics analysis allows 

identification of which messages are represented and at which positions they are cleaved. 

Correspondence between over-represented cleavage sites and predicted miRNA targets can 

allow the large scale validation of miRNA targets.  This method can be simply visualized as 

a manifestation of the 5’-RACE approach where all - or at least most - target genes are 

studied simultaneously. 

 

 

1.6 MiRNA prediction, validation and quantification 

1.6.1 Conservation and evolutionary aspects – comparative prediction 

Many, but by no means all mature microRNAs are conserved exactly or closely 

between groups of phylogenetically related organisms (and can be produced from more than 

one locus in the same organism). Where detailed experimental characterizations of miRNA 

target interactions have been performed, it is clear that interactions between such miRNAs 

and their targets are also conserved. Such groups of related miRNAs are considered to be 

part of the same miRNA family. Indeed, while the degree of sequence conservation is 

highest between the mature miRNAs within families, in many cases, sequence similarity 

between precursor loci confirms homology of such loci. Around 28 families of miRNAs are 

known to be deeply conserved within plants (present in at least 2 monocot organisms and at 

least 2 dicots). Many other families are conserved within monocots or within dicots. A 
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similar situation exists within animals although conclusive evidence of conservation of 

miRNA families between plants and animals is elusive.  

In any case, the principle of conservation of miRNA families has been used as the 

basis for a series of so called “comparative genomic miRNA prediction tools”. The main 

idea behind this approach is finding potential homologs of known mature miRNAs or pre-

miRNA sequences either within a single genome or between genomes of related organisms 

(Lagos-Quintana, Rauhut et al. 2001; Lee and Ambros 2001). Regions of showing similarity 

to known miRNAs are either scanned for pre-miRNA-like structures, or alignments are 

examined for traces of selective constraints favouring conservation of miRNA-like traits.  

The softwares miRscan (Lim, Lau et al. 2003), miRseeker (Lai, Tomancak et al. 2003) and 

miralign2  (Wang, Zhang et al. 2005)contributed to the prediction of many novel 

microRNAs in nematodes (Lim, Lau et al. 2003), insects (Lai, Tomancak et al. 2003; Wang, 

Zhang et al. 2005)and vertebrates(Lim, Glasner et al. 2003). In 2003, Grad developed a 

method for predicting miRNAs in the nematode genome of C. elegans using both sequence 

and structure homology and comparing it with known miRNAs (Grad, Aach et al. 2003). A 

similar approach was employed by  Dezulian  for plant miRNAs prediction (Dezulian, 

Remmert et al. 2006) and Jones-Rhoades and Bartel(Jones-Rhoades and Bartel 2004).  In 

2005, Berezikov used phylogenetic shadowing to find regions that are under stabilizing 

selection and exhibit the characteristic variations in sequence conservation between loop, 

stem and mature miRNA(Berezikov, Guryev et al. 2005). In this case, secondary structure is 

used in a later filtering step.  

Genomic context also can give additional information: Mirscan-II, for example, takes 

conservation of surrounding genes into account (Ohler, Yekta et al. 2004)  In 2005 Altuvia 

utilize the propensity of miRNAs to appear in genomic clusters (often in the form of 

polycistronic transcripts) as an additional selection criterion(Altuvia, Landgraf et al. 2005).  

 

Work presented in chapter 2 of this thesis concerns comparative prediction and validation of 

miRNAs in the grapevine, Vitis vinifera. 

 

 

1.6.2 Ab-initio prediction of miRNAs 

While many of the aforementioned approaches rely on knowledge of a candidate 

mature miRNA sequence conserved between genomes, others – principally those that  focus 
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on structural aspects of entire hairpins rather than the candidate miRNA/miRNA* region - 

can be used to seek novel pre-miRNA sequences, often in regions showing conservation 

between related genomes (eg, (Berezikov, Guryev et al. 2005)). The bioinformatics search 

for novel miRNAs which are not part of previously known families is known as ab-initio 

miRNA prediction. Such methods, in the absence of a-priori information on the sequence of 

the mature miRNA, must consider general characteristics of hairpins to discriminate between 

real pre-miRNAs and non-miRNA hairpins. For genome-wide predictions, all 

thermodynamically stable potential hairpins are predicted from RNA structure modelling 

approaches and submitted to an algorithm to evaluate the probability that structures could 

correspond to real pre-miRNAs. To avoid large numbers of false positive predictions, such 

ab-initio methods must have very high specificity of prediction as large genomes can contain 

many millions of potential hairpin structures. 

The miR-abela3 approach first searches for hairpins that are very stable against 

changes in the folding windows and then uses a support vector machine (SVM) to identify 

microRNAs among these candidates (Sewer, Paul et al. 2005). A related technique is 

described by Xue et al. (2005) that use as input for the SVM features related to the frequency 

of triplet of nucleotides(Xue, Li et al. 2005). The program PalGrade scores hairpins in a 

similar way (Bentwich, Avniel et al. 2005). 

A quite different approach starts with the analysis of overrepresented patterns in 

phylogenetic footprints located in the 3’UTRs of mRNAs. These motifs constitute putative 

microRNA target sites and are used to guide the search for corresponding pre-miRNA 

candidates (Xie, Allen et al. 2005). Other ab-initio predictors have utilized Context Specific 

Hidden Markov Models (Agarwal, Vaz et al. 2010), Genetic Programming, (Brameier and 

Wiuf 2007) the identification of context robust hairpins physically close to known animal 

pre-miRNAs (Sewer, Paul et al. 2005). 

 

Work presented in chapter 3 of this thesis concerns the development of ab-initio pre-miRNA 

prediction methods 

 

 

1.6.3 Validation/quantification of miRNA predictions 

In principle, it might be possible to experimentally validate the in vivo presence of 

any of the three main stages of miRNA biogenesis: pri-miRNA transcripts, precursor 
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hairpins or mature miRNA sequences. In practice, the physiological half life of pri-miRNAs 

and pre-miRNAs is generally rather short. Several studies have identified some pri-miRNA 

transcripts either in EST/cDNA collections (Hubbard, Grafham et al. 2005; Mica, Piccolo et 

al. 2010), or, where primary microRNA transcripts are poly adenylated, through 

conventional RACE strategies(Szarzynska, Sobkowiak et al. 2009). This strategy is 

especially effective if mutants in genes essential for miRNA processing are available as they 

can lead to the accumulation of primary transcripts.  

However, the vast majority of experimental validations of miRNAs are performed by 

testing for the presence of the mature miRNA through RT-PCR (Bandres, Cubedo et al. 

2006; Liu, Fan et al. 2009), northern blotting (He, Nie et al. 2008; Zhao, Yang et al. 2009), 

or oligonucleotide array experiments (He, Nie et al. 2008; Zhao, Yang et al. 2009; Mica, 

Piccolo et al. 2010). In the same spirit, quantification of differential expression of miRNAs 

between tissues, developmental stages or experimental conditions is routinely performed by 

real-time PCR, northern blotting, oligonucleotide array or, more recently, by quantitative 

analysis of smallRNA deep-sequencing data (Liang, Zhang et al. 2010; Mica, Piccolo et al. 

2010; Zhao, Xia et al. 2010). 

 

 

1.6.4 Deep sequencing and bioinformatics 

A more direct approach to the discovery of miRNAs is to isolate and sequence 

smallRNAs themselves (mature miRNAs and other smallRNAs), and to then map them to 

the genome of origin, checking that they fall in stem regions or hairpins. Usually, 

bioinformatics tools, similar to those used in comparative or ab-initio miRNA discovery are 

used to evaluate the possibility that any given locus that generates smallRNAs is a 

microRNA precursor, rather than the smallRNA being produced by other biogenesis 

methods. 

Initially, such experiments were performed using conventional Sanger di-deoxy 

sequencing, often of concatenated series of smallRNAs. More recently the advent of so-

called Next Generation Sequencing strategies such as the Roche 454 (Margulies, Egholm et 

al. 2005; Berezikov, Thuemmler et al. 2006), ABI SOLiD (Ribeiro-dos-Santos, Khayat et al. 

2010) and Illumina Genome Analyser platforms (Berezikov, Thuemmler et al. 2006; 

Denoeud, Aury et al. 2008), has revolutionized discovery of miRNAs by sequencing. These 

technologies are capable of reading tens of millions of complete smallRNA sequences in a 
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single reaction, and thus, relatively deep coverage of expressed smallRNAs can be easily 

obtained. These methods are essentially quantitative in their coverage, meaning that relative 

expression levels of different miRNAs can be estimated from the frequency with which 

different sequences are observed.  Reactions are often performed for different tissues, 

developmental stages or experimental conditions.  

In fact, the main difficulty in the analysis of such data is that they require dedicated 

bioinformatics tools to efficiently map the loci of origin of reads on the genome sequence, 

and to perform extremely high thoughput analysis of secondary structures predicted. Such 

methods have recently become the main strategy for miRNA discovery and quantification in 

both animal and plant systems (Batuwita and Palade 2009; Legeai, Rizk et al. 2010; Liang, 

Zhang et al. 2010; Mica, Piccolo et al. 2010). 

 

Work presented in chapter 4 of this thesis concerns the use of deep sequencing of smallRNA 

to identify novel miRNAs in the grapevine, Vitis vinifera 

 

 

1.7 Thesis background and structure  

This thesis contains work performed as part of a large collaborative effort aimed principally 

at the characterization of the genome of the grapevine, Vitis vinifera, which was sequenced, 

assembled and annotated by the French Italian Public Consortium for Grapevine Genome 

Characterization (Jaillon, Aury et al. 2007). In particular, the work presented here focuses on 

the implementation of different bioinformatics strategies for the identification of both 

conserved and novel miRNAs in this species. The first results chapter describes comparative 

prediction of conserved miRNAs in Vitis and the use of high throughput methods to validate 

their expression. The following chapter concerns the implementation of an ab-initio pre-

miRNA prediction tool, while the final chapter outlines novel strategies for the interpretation 

of smallRNA deep sequence data and their application to the discovery of miRNAs in the 

grapevine genome.  
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Chapter 2 
 
An edited version of this chapter was published as: 
 
Mica E, Piccolo V, Delledonne M, Ferrarini A, Pezzotti M, Casati C, Del Fabbro C, Valle G, Policriti 
A, Morgante M, Pesole G, Pè ME, Horner DS (2010). High throughput approaches reveal splicing of 
primary microRNA transcripts and tissue specific expression of mature microRNAs in Vitis vinifera. 
BMC Genomics, 11:109  
 

2. Comparative prediction of grapevine miRNAs 

2.1 Introduction 

In august 2007, the French-Italian sequencing project released the first high quality draft of 

the Vitis vinifera genome sequence (Jaillon, Aury et al. 2007). 

Our contribution to the project was the prediction of small RNAs in grapevine genome 

(tRNAs, snoRNAs, miRNAs, srpRNAs, rRNAs). Non miRNA predictions were performed 

with standard tools and the results and discussion of these data lies outside the scope of this 

thesis. 

As discussed previously, homologs of members of conserved miRNA families are 

often annotated in newly sequenced genomes through comparative methods. Essentially, 

such methods search for short regions showing sequence similarity to known mature 

miRNAs and then examine the potential of the flanking regions to assume secondary 

structures compatible with their being miRNA precursors. Such approaches have been 

demonstrated to be remarkably effective even if they are unable to identify novel or lineage 

specific miRNAs.  

For the initial predictions we chose a comparative approach able to detect homologs 

of known miRNAs in  a newly sequenced genome. The computational tool we used was 

MicroHARVESTER software (Dezulian, Remmert et al. 2006) that searches for miRNA 

homologs in one or more query sequences.  

 

2.2 Comparative prediction of miRNAs in grapevine using microHARVESTER 

Given a known miRNA (miRNA precursor sequence plus mature miRNA sequence) as 

input, microHARVESTER uses the precursor as a query for a sequence similarity search 

against a set of sequences the genome under study to generate a set of candidate homologs. 

Since mature miRNAs are often highly conserved (Axtell and Bartel 2005) using BLAST 

(Altschul, Gish et al. 1990) with a very high E-value cutoff and minimal word size of 7, 



 - 37 -

generates hits for almost all miRNA homologs at the price of many false positives. 

MicroHARVESTER then applies a series of filters to remove poor candidates. First, 

candidates whose aligned segments do not span most of the mature miRNA part of the query 

are discarded. In a second filter step, a modified Smith–Waterman pairwise alignment 

algorithm (Smith and Waterman 1981) is used to precisely determine the mature sequence in 

the candidate precursor from the optimal alignment of the query mature sequence against the 

corresponding segment of the BLAST hit. Candidates where the length of the mature 

sequences differs by >2 nt from the expected length are discarded. In a third filter step, the 

minimal free energy structure of the candidate sequence is predicted using RNAfold  

(Hofacker, Fontana et al. 1994; Hofacker 2003; Hofacker, Bernhart et al. 2004) and the 

putative miRNA* sequence is determined. Candidates are discarded if more than six 

nucleotides of its miRNA* are not predicted to form bonds with its mature miRNA. We 

created a database of all plant miRNAs present in the present in release 9.1 of miRBase 

(Griffiths-Jones, Saini et al. 2008) and then we searched for homologs in the entire 

grapevine genome.  140 high confidence predictions were generated (Jaillon, Aury et al. 

2007). 

In late 2009, a second draft of the grapevine genome, based on 12x sequencing 

coverage was released. Repetition of the microHARVESTER analysis revealed that 2 loci 

originally included in the 8x genome were no longer present in the new assembly and 

probably represented fragments that had been included twice in the intitial draft. However, 

10 new loci corresponding both to additional loci from known families and members of 

families not previously identified in Vitis were identified. 

In our analysis we confirm existing patterns of miRNA family conservation with 

respect phylogenetic distribution of miRNAs annotated in miRBase.  

Of the 30 families for which we identified putative precursor sequences in Vitis vinifera: 

- 26 are known to be deeply conserved (present in monocots and dicots) ; 

- 3 are families thought to be specific to dicots (miR403, 477, 479) 

In fact, we detected members of 26 of the 27 families that are known to be deeply conserved 

(miRBase contains 36 families proposed to be deeply conserved, although 9 of these are 

poor predictions and annotated as dubious in the database). We did not find putative 

homologs of any of these 9 (miR413, 414, 415, 416, 417, 418, 419, 420, 426). The sole 

confirmed deeply conserved family for which microHARVESTER did not find a locus in 

Vitis is miR2118, which was not known at the time the analyses was performed and which 

we subsequently identified through an alternative approach (see Chapter 4). 
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Given that representatives of all expected families and some additional families, previously 

identified in at least one dicot) were found lead us to conclude that the microHARVESTER 

analysis generated adequate results in the identification of conserved miRNA families. 

We mapped all miRNAs precursor with respect to the reference annotation of protein coding 

genes in the grape genome: 

- 134 pre-miRNAs were intergenic in location. In particular 17 precursors overlapped 

with annotated genes but on the non-coding strand (opposite strand respect to the 

gene). 

- 4 precursor predictions fell within or overlapped annotated coding or UTR exons 

although homology searches and transcriptomics data generated subsequently to the 

initial annotations call into question the validity of all but two of these exon 

annotations. We noted that miRNA 156 h is probably an incorrect prediction derived 

from a coincidentally plausible hairpin structure formed by the opposite strand to the 

presumed target (a Squamosa-promoter Binding Protein (SBP) box gene). A similar 

situation is observed for miR171g which falls on the opposite strand to a GRAS 

domain transcription factor gene. These predictions were removed from our 

candidate set. 

- 9 precursor were apparently intronic in location. We controlled them manually and 

noted that all of the introns putatively containing pre-miRNAs were likely to be 

erroneous predictions, being atypically long (over 13 kb) and interrupting putative 

retroelement derived genes or obvious fusion gene predictions (not shown). 

These patterns conform to those expected for plant miRNAs in that very few such sequences 

have been shown to be intronic in location. 

The coordinates, mature mirRNA sequences and other information regarding subsequent 

analyses of the 146 conserved miRNA loci identified on the 12x assembly and retained in 

our final prediction set are presented in Tab.2.1.  

 

2.3  Validation of expression pattern of mature miRNAs using oligonucleotide arrays 
 
2.3.1 Evaluation of Vitis vinifera conserved miRNAs using oligonucleotide array 

technology  

Expression patterns and levels of miRNAs for which the sequence is known can be 

evaluated using experimental approaches such as northern blot or real-time PCR. However, 
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these methods are laborious and time consuming when applied to large numbers of 

candidates. 

Currently, one of the preferred high throughput technologies to check tissue 

expression specificity is the oligonucleotide array, where an arrayed series of thousands of 

microscopic spots of DNA oligonucleotides, complementary to the expected miRNAs, are 

anchored to a slide and hybridized to labelled smallRNA isolated from tissue samples. 

Intensity of labelled RNA hybridized to individual probes are measured with high precision 

optical instruments and reflect expression levels of individual miRNAs (Davison, Johnson et 

al. 2006; Liu, Calin et al. 2008; Liu, Spizzo et al. 2008; Yin, Zhao et al. 2008). As with 

conventional protein-coding genes, it is of interest to profile the expression patterns of 

microRNAs in many tissues during different conditions (e.j. development, stress, disease).  

In 2008 in collaboration with Erica Mica and Prof. Enrico Pè (of the University of 

Milan and more recently the Scuola Superiore Sant’Anna, Pisa) and  Prof. Mario Pezzotti 

and Prof. Massimo Delledonne (University of Verona) we studied the expression profile of 

the predicted microRNAs using a CombiMatrix 12 K CustomArray platform (Mica, Piccolo 

et al. 2010). Advantages of this platform with respect to some others include the possibility 

to quickly and cheaply generate custom oligonucleotide arrays and to analyse simultaneously 

expression patterns in more than one tissue (the array is divided into different compartments 

that can be hybridized simultaneously to different RNA samples). In this way was possible 

to check if the conserved microRNAs, that we predicted in grapevine  show differential 

expression patterns between tissues and during the maturation of fruit (Mica, Piccolo et al. 

2010) We used as tissues three stages of ripening berries (immature berry, veraison, mature 

berry ), roots, leaves and young inflorescences. 

In order to demonstrate specificity of hybridization and to show that resulting signals 

indeed derived from mature miRNAs and not from precursor sequences or non-specific 

interactions, it is necessary, for each miRNA, tested to include probes complementary to the 

mature miRNA sequence and also probes to regions of the precursor that are not expected to 

be present after pre-miRNA processing (sequences derived from the loop region). Small 

amounts of miRNA* sequences are expected to be present and so probes to these sequences 

are included. In order to confirm that smallRNAs detected are produced in a strand specific 

manner, it is also desirable to include reverse complementary probes to the miRNA and 

miRNA* sequences. Furthermore, to probes shifted by a few bases with respect to the 

expected mature miRNA and miRNA* sequences can assist in the statistical analysis of 

hybridization specificity as can probes where several destabilizing substitutions are 
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introduced into the sequences. Of course positive and negative controls are also included in 

such strategies. 

Our task in this collaboration was the design of the microarray chip 

 

 

2.3.2  Bioinformatics approach to oligonucleotide array design. 

The genomic sequence of a putative pre-miRNA structure was extracted and the global most 

stable secondary structure was estimated using RNAFold (Mccaskill 1990; Hofacker, 

Fontana et al. 1994; Hofacker and Stadler 2006; Mica, Piccolo et al. 2010). RNAfold exports 

a textual representation of the predicted secondary structure where each bracket corresponds 

to a base-pairing, in particular “(“ pairs with “)”, while each dot “.” corresponds to a base not 

paired (it could be mismatch or a base in excess). For example loops are represented 

uniquely by dots, while stems contain a variety of base parings, bubbles, mismatches 

(Fig.2.1). 
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Fig. 2.1 - Textual rapresentation of secondary structure, according to RNAfold. 
Each bracket corresponds to a base-pairing, in particular “(“ pairs with “)”, while each dot “.” corresponds to a 
base not paired (it could be  mismatch or a base in excess). 
 

 

In order to allow rapid evaluation of predicted secondary structures, we developed a script in 

PERL (http://www.perl.org/) able to scan all base pairing possibilities using the textual 

representation of secondary structure and to accurately identify the expected miRNA* 

sequence for any specified mature miRNA. 

The script we developed is articulated and complex. It scans the hairpins starting 

simultaneously from the 5’ and from the 3’ termini, finding all correct base pairings (defined 
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as “(“ and “)” ), and all mismatches (represented as positionally corresponding pairs of  “.”) 

or all bubbles (defined as one or more dot “.” without corresponding bases in the opposite 

arm). If we know the mature miRNA sequence and want to detect its correspondent 

miRNA*, we first should map the sequence of mature into the secondary structure and then 

shift two nucleotides in order to find the start position of the miRNA* according to the 

known patterns of dsRNA cutting performed by enzymes of the DICER family (Fig.2.2)  

(Bernstein, Caudy et al. 2001; Lee, Kim et al. 2004). 

 

 

 
Fig. 2.2  -  Example of overhangs on the 3' end of the pre-miRNA sequence 
We use the characteristic of 2-nucleotide 3' overhang in order to detect the miRNA* sequence of each mature 
miRNA 
 

 
For each grapevine miRNA precursor, we designed a set of 20-22 nt probes specific for: 

- the mature miRNA; 

- the correspondent miRNA*; 

- mature miRNA and miRNA* complementary sequences; 

- probes shifted 5 or 10 bases 3' or 5' with respect to the central base of the 

corresponding mature miRNAs; 

- probes derived from regions of the stem (not predicted to overlap with the mature 

miRNA sequence) and from the loop. 

 

 

 
 

Fig.2.3  -  Oligonucleotide design strategy for Combimatrix custom oligonucleotide array.  
Probes were designed complementary to the predicted mature miRNA (green line) and miRNA* (thick black 
line) sequences. Additional probes were designed to the loop region (thin black line) as well as probes shifted 5 
nucleotides (red lines) and 10 nucleotides (blue lines) with respect to the miRNA and miRNA* sequences. 
From (Mica, Piccolo et al. 2010) 
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As positive controls we used snRNA U6 and four grapevine tRNA. In addition, we 

added other fourteen distinct negative and mRNA degradation control probes. Additionally, 

for each specific probe, a mismatch control with 2 maximally destabilizing substitutions was 

included. Each probe was present on the final array in three replicates. 

Slides were hybridized with 3 micrograms of LMW RNA labeled with Cy5 (Mirus LabelIT 

miRNA labeling Kit (Mirus Bio Corp.)). Hybridization and washing were performed as 

indicated by CombiMatrix. Slides were scanned with a Perkin Elmer Scanarray 4000 XL 

raw data was extracted with Scanarray Express 4.0 and Microarray Imager (CombiMatrix) 

software. After each hybridization, slides were stripped according to manufacturer's 

instructions and re-used 5 to 6 times. 

Two hybridizations were performed with independently extracted LMW RNAs, for each 

sample. Background level was defined as the average signal of the negative and degradation 

controls plus two times their standard deviation. The ratio between intensities of the perfect 

match probe and its mismatch probe (referred to as PM/MM) was also used to estimate the 

reliability of each signal. Probes with a median signal higher than background and with 

PM/MM value higher than 1.2 were called as present. The normalization between arrays was 

performed using the quantile normalization method (Bolstad, Irizarry et al. 2003) using the 

BLIST software, provided by Combimatrix.Normalized signals were Log2 transformed and 

probes with a low PM/MM ratio (<1.2) were discarded. Differentially expressed genes in 

various tissues were identified with a one-way ANOVA test (p-value < 0.05). Significant 

results were further investigated with Scheffè test, a post hoc test to define which tissues 

showed significant differences. 

RNA extractions were performed by Dot.ssa Erica Mica and array synthesis, hybridizations 

and signal analysis were performed in the labs of Prof. Mario Pezzotti and Prof. Massimo 

Delledonne of the University of Verona. The majority of statistical analyses of data 

generated were performed by Dot.ssa Erica Mica. 

 

2.3.3 Results of oligonucleotide array analyses. 

Of the mature miRNA sequences considered, 56 (corresponding to 23 different families), 

showed significant expression in at least one tissue tested (Tab.2.1) and another 6 showed a 

borderline signal. Specifically, 41 different miRNAs showed significant signal in roots, 47 in 

leaves, 49 in young inflorescences, 53 in green berries, 42 in berries at veraison (the point 

where growth ends and maturation begins) and 40 in mature berries. 
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We didn’t find a significant hybridization for mismatch and shifted probes, except for 

probes shifted 5 nucleotides towards the 5' end of the miRNA precursor. In fact for more 

than 90% of the probes a signal drop-off greater than 90% was observed between the 

miRNA probe and shifted probes. 

For probes shifted 5 nucleotides towards the 5' end of the miRNA precursor the lack of 

signal drop-off might be due to the fact that probes were synthesized with their 3' termini 

towards the slide, and that no "spacer" oligonucleotide was used (according to CombiMatrix 

protocols). As a consequence, steric effects might reduce the specificity determined by the 

3'-most five bases of the probes. 

 Other than for 26 out of 140 pre-miRNAs, no detectable signals were recorded for 

the probes designed on the precursor loop regions - likely due to size fractionation of RNA 

samples and the relatively short half-life of pre-miRNAs. We can conclude that our miRNA 

expression data are principally derived from mature miRNAs molecules, without appreciable 

pre-miRNA contamination. 

 Finally, it should be noted that recent studies have demonstrated appreciable levels of 

cross-hybridization between closely related miRNAs and probes differing by only one or 

two bases (Barad, Meiri et al. 2004). It is therefore difficult to exclude the possibility that 

cross-hybridization within miRNA families causes a distortion of quantitative estimates of 

expression levels of some individual mature miRNA sequences. 

Of the mature miRNA sequences considered, 56 (corresponding to 23 different 

families), showed significant expression in at least one tissue tested, and another 6 showed a 

borderline signal. Specifically, 41 different miRNAs showed significant signal in roots, 47 in 

leaves, 49 in young inflorescences, 53 in green berries, 42 in berries at veraison (the point 

where growth ends and maturation begins) and 40 in mature berries. 

To evaluate the statistical significance of the differential expression of mature miRNAs in 

the six tissues considered, we set up two distinct comparisons: one among the three 

developmental stages of the ripening berries and the other one among leaves, roots and 

inflorescences. ANOVA analyses were performed with a P-value threshold of 0.05 and 

subsequently a Scheffè test was used to assess which of the three tissues showed significant 

differences. Thirteen different mature miRNAs showed a statistically significant change in 

signal between the ripening stages of the berry (Fig. 2A-C), and 27 miRNAs showed 

significant changes in their expression when comparing three different tissues (leaves, roots 

and inflorescences)( Fig.2.4.D-H). miR395a and miR171h show a distinctive pattern of 

expression - being highly expressed at veraison with respect to the other two stages (4.4 and 
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2.3 fold changes of expression level respectively) (Fig.2.4.A). Seven miRNAs (miR156f, 

miR169a, miR169f, miR169r, miR169x, miR319b and miR535a) are more expressed in 

mature berries than in green berries (Fig.2.4.B). Four miRNAs (miR171c, miR172c, 

miR396c, miR403a) are, on the contrary, more expressed in green berries, their expression 

decreasing during ripening (Fig.2.4.C).  

Clear patterns also emerge from analyses of differential expression between roots, 

leaves and young inflorescences. Thirteen miRNAs are significantly differentially expressed 

in roots, showing a similar expression in the other tissues. In particular miR397a, miR398b 

and miR408 all show at least 100 fold higher expression in root than either leaf or early 

inflorescences, while miR159a, miR160a, miR399a, miR399b, miR403a and miR535 show 

more modest, but still significant, changes in the same comparisons (Fig.2.4.D). On the 

contrary miR164a, miR164b, miR171c and miR172c show a significantly lower level of 

expression in roots ( Fig.2.4F). 

Five miRNAs (miR169v, miR169y, miR171f, miR171h and miR319b) yield significantly 

higher signals in young inflorescences than both leaves and roots (between 2 and 7.2 fold 

higher levels in this tissue) ( Fig.2.4E). Only one miRNA, miR160c, shows a leaf-specific 

expression profile (2.5 fold lower level in leaves with respect to other tissues) ( Fig.2.4G). 

Finally, six miRNAs (miR169a, miR169e, miR169f, miR169x, miR171e and miR395a) 

exhibit significant differences in expression levels in all comparisons between leaf, root and 

inflorescences ( Fig.2.4H). Five of these miRNAs (169a, 169e, 169f, 169x and 171e) show 

the highest expression in young inflorescences and the lowest in roots. 

Following the widespread assumption that many miRNA/target interactions are 

conserved between related species (Bartel 2004; Jones-Rhoades, Bartel et al. 2006) our data 

regarding differential expression of mature miRNA sequences raise some intriguing 

possibilities particularly with respect to the potential importance of miRNA in the regulation 

of fruit maturation. 

Li et al. (Li, Oono et al. 2008) recently showed that the transcription factor NFYA5 is 

targeted by miR169 and that overexpression of miR169 leads to excessive water loss 

through leaves and hypersensitivity to drought stress in Arabidopsis. thaliana. In this light, 

the preponderance of miR169 family members in the group of miRNAs upregulated in 

mature berries is striking and might reflect a mechanism to protect maturing fruit from 

dehydration. 

We also note that miR535 family, identified so far only in O. sativa and P. patens  

(Arazi, Talmor-Neiman et al. 2005) is upregulated during berry maturation. This is a first 
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indication of a possible function of miR535 for which no information was previously 

available. 

 
 

Fig 2.4 - -Differential expression of mature miRNAs by tissue. miRNAs showing significant changes in 
expression by tissue are reported. Panels A-C: miRNAs differentially expressed in one stage of berry ripening 
A: at veraison, B: in green berries, C: in mature berries. Panel D: miRNAs more highly expressed in roots, 
Panel E: miRNAs more highly expressed in inflorescences, Panel F: miRNAs less expressed in roots, Panel G: 
miRNAs less expressed in leaves, Panel H: miRNAs showing significant differences in all tissues tested. Error 
bars indicate confidence intervals. For all panels, the Y axis shows Log2 of the normalized median of spot 
intensities. From (Mica, Piccolo et al. 2010). 
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MiR396c shows 6 fold decrease in expression during ripening. The mir396 family 

targets seven Growth Regulating Factor (GRF) genes in Arabidopsis (Jones-Rhoades and 

Bartel 2004). GRF genes encode putative transcription factors associated with cell expansion 

in leaf and other tissues in A. thaliana and O. sativa (Kim, Choi et al. 2003; Choi, Kim et al. 

2004). A potential role for miR396 in the regulation of cell expansion during fruit 

maturation is an intriguing hypothesis. In addition, recent data also link miR396 to responses 

to abiotic stresses including drought (Liu, Spizzo et al. 2008), again suggesting the 

importance of water homeostasis during berry ripening. miR172, downregulated during 

berry maturation, targets Apetala 2 (AP2) -like transcription factors, regulators of flowering 

time, organ identity and of vegetative phase change (Lauter, Kampani et al. 2005). In 

grapevine, genes related to AP2 are upregulated at veraison, being involved in berry 

maturation (Terrier, Glissant et al. 2005) and putatively connected with abiotic and biotic 

stress resistance. This evidence fits well with our findings. The sharp up-regulation of 

miR395 at veraison suggests a further role for miRNAs in an agronomically important 

aspect of grape maturation. miR395 is known to contribute to the regulation of sulfur 

metabolism, targeting both sulfate transporters and ATP sulphurylase genes. A direct 

connection between ATP sulfurylases and berry maturation has not been demonstrated, but it 

is known that a Glutathione S-transferase is strongly connected with berry ripening and in 

particular with coloration during berry development (Terrier, Glissant et al. 2005). 

MiR397a, miR398b and miR408 which are extremely highly expressed in root 

tissues target various copper proteins: plantacyanin, laccases and a superoxide dismutase, all 

putatively involved in stress responses and lignification (Jones-Rhoades and Bartel 2004; 

Sunkar and Zhu 2004; Lu, Sun et al. 2005; Sunkar, Kapoor et al. 2006). These miRNAs have 

also been shown to be coexpressed in Arabidopsis under conditions of copper deprivation 

(Abdel-Ghany and Pilon 2008). Moreover some laccase genes in Arabidopsis are root 

specific (for example AtLAC15) or mostly expressed in roots (McCaig, Meagher et al. 2005) 

and are involved in root elongation and lignification (Liang, Davis et al. 2006). Given that 

grapevine roots are much more lignified than those of Arabidopsis, it is plausible that 

regulation of laccase expression is vital in the grapevine. It is interesting to note that the 

laccase family is, along with other polyphenol oxidase gene families, massively expanded in 

grapevine with respect to Arabidopsis (>60 genes in V. vinifera, 17 in Arabidopsis). 
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Tab.2.1 – Oligoarray and deep sequencing results for miRNAs in grape 
For each predicted pre-miRNA the table reports: miRNA=miRNA name; Mature Sequence=the mature sequence; Leaf small=the presence of perfect matching or 
oligoadenylated short RNA reads observed in leaf; Illumina= the presence of significant expression of the precursor observed by Illumina whole transcriptome sequencing; 454= 
the presence of 454 reads including the precursor sequence in leaf; Combimatrix=Combimatrix oligoarray expression of mature sequence in at least one tissue. Mature miRNAs 
are ordered to reflect expected cases of crosshybridization for oligonucleotide arrays. For all microRNAs, chromosome (Chr) and  strand (Strand), coordinates of the mature 
miRNA (Start_M=start, Stop_M=stop) and of the precursor miRNA (Start_P=start and Stop_P= stop) are provided into the 12× genome assembly of Vitis vinifera 
At the end of the table are shown deep sequencing results for members of a new loci or family in 12x genome assembly (miRNA oligoarray was performed only on 8x genome 
assembly) 
 

                        
miRNA Mature Sequence Leaf small Illumina 454 Combimatrix Chr Strand Start_M Stop_M Start_P Stop_P 

                        
              

VVI-MIR156A  TGACAGAAGAGAGGGAGCAC no no no yes chr19 - 8708987 8709006 8708913 8709016 
VVI-MIR156B  TGACAGAAGAGAGTGAGCAC yes yes no no chr4 - 5357071 5357090 5356999 5357100 
VVI-MIR156C  TGACAGAAGAGAGTGAGCAC yes no no no chr4 - 848278 848297 848204 848307 
VVI-MIR156D  TGACAGAAGAGAGTGAGCAC yes yes no no chr11 - 7623290 7623309 7623217 7623319 
VVI-MIR156E  TGACAGAGGAGAGTGAGCAC no no no no chr11 - 1504272 1504291 1504194 1504301 
VVI-MIR156F TTGACAGAAGATAGAGAGCAC yes yes no yes chr14 + 26463681 26463701 26463671 26463775 
VVI-MIR156G TTGACAGAAGATAGAGAGCAC yes yes no yes chr17 - 3046396 3046416 3046324 3046426 
VVI-MIR156I TTGACAGAAGATAGAGAGCAC yes yes no yes chr14 - 19727149 19727169 19727077 19727179 
VVI-MIR156H  TGACAGAAGAGAGAGAGCAT no yes yes no chr12 + 4108581 4108600 4108571 4108798 
VVI-MIR159A CTTGGAGTGAAGGGAGCTCTC no no no yes chr15 - 18469183 18469203 18469173 18469366 
VVI-MIR159B CTTGGAGTGAAGGGAGCTCTC no no no yes chr15 - 18471885 18471905 18471875 18472059 
VVI-MIR159C TTTGGATTGAAGGGAGCTCTA yes yes no yes chr17 - 2609215 2609235 2609205 2609394 
VVI-MIR160A TGCCTGGCTCCCTGAATGCCAUC yes no no yes chr12 - 10147229 10147249 10147157 10147259 
VVI-MIR160B TGCCTGGCTCCCTGAATGCCAUC yes no yes yes chr10 + 1222389 1222409 1222379 1222482 
VVI-MIR160C TGCCTGGCTCCCTGTATGCCA yes yes no yes chr10 + 11745671 11745691 11745661 11745766 
VVI-MIR160D TGCCTGGCTCCCTGTATGCCA yes no no yes chr8 + 13017031 13017051 13017021 13017122 
VVI-MIR160F TGCCTGGCTCCCTGTATGCCA yes no no yes chr13 + 5447926 5447946 5447916 5448017 
VVI-MIR162 TCGATAAACCTCTGCATCCAG yes yes yes yes chr17 + 4716591 4716611 4716519 4716621 

VVI-MIR164A TGGAGAAGCAGGGCACGTGCA yes no no yes chr7 - 3287560 3287580 3287470 3287590 
VVI-MIR164C TGGAGAAGCAGGGCACGTGCA yes yes no yes chr8 + 10080470 10080490 10080460 10080556 
VVI-MIR164D TGGAGAAGCAGGGCACGTGCA yes no no yes chr14 - 1414652 1414672 1414565 1414682 
VVI-MIR164B TGGAGAAGCAGGGCACATGCT no no no yes chr9 - 514820 514840 514758 514850 
VVI-MIR166A TCGGACCAGGCTTCATTCC yes yes yes yes chr8 - 3302808 3302827 3302797 3302926 
VVI-MIR166B TCGGACCAGGCTTCATTCC yes yes no yes chr12 + 17937465 17937484 17937398 17937496 
VVI-MIR166C TCGGACCAGGCTTCATTCCCC yes yes no yes chr15 - 16978583 16978603 16978572 16978731 
VVI-MIR166D TCGGACCAGGCTTCATTCCCC yes yes no yes chr16 - 21405227 21405247 21405216 21405375 
VVI-MIR166E TCGGACCAGGCTTCATTCCCC yes yes no yes chr2 + 2255856 2255876 2255722 2255887 
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VVI-MIR166F TCGGACCAGGCTTCATTCCCC yes no no yes chr7 + 19450082 19450102 19450014 19450113 
VVI-MIR166G TCGGACCAGGCTTCATTCCCC yes no no yes chr7 - 453869 453889 453858 453957 
VVI-MIR166H TCGGACCAGGCTTCATTCCCC yes yes no yes chr5 - 6741199 6741219 6741188 6741287 
VVI-MIR167A TGAAGCTGCCAGCATGATCTG no yes no yes chr1 + 1618514 1618534 1618504 1618854 
VVI-MIR167B TGAAGCTGCCAGCATGATCTA yes yes yes yes chr14 + 7137398 7137418 7137388 7137486 
VVI-MIR167C TGAAGCTGCCAGCATGATCT no no no yes chrUn + 7495696 7495715 7495686 7495776 
VVI-MIR167D TGAAGCTGCCAGCATGATCTA yes yes no yes chrUn + 7490503 7490523 7490493 7490607 
VVI-MIR167E TGAAGCTGCCAGCATGATCTA yes no no yes chr5 + 5845395 5845415 5845385 5845474 
VVI-MIR168 TCGCTTGGTGCAGGTCGGGAA yes yes yes yes chr2 - 17944902 17944922 17944801 17944932 

VVI-MIR169B TGAGCCAAGGATGGCTTGCCG no no no yes chr11 + 16265447 16265467 16265437 16265541 
VVI-MIR169H TGAGCCAAGGATGGCTTGCCG no no no yes chr11 + 16151661 16151681 16151651 16151751 
VVI-MIR169A  CAGCCAAGGATGACTTGCCGG no no no yes chr11 + 16112984 16113004 16112972 16113095 
VVI-MIR169C  CAGCCAAGGATGACTTGCCGG no no no yes chr4 - 2265982 2266002 2265925 2266014 
VVI-MIR169J  CAGCCAAGGATGACTTGCCGG no no no yes chr11 + 16101929 16101949 16101917 16102038 
VVI-MIR169K  CAGCCAAGGATGACTTGCCGG no no no yes chr11 + 16108551 16108571 16108539 16108660 
VVI-MIR169S  CAGCCAAGGATGACTTGCCGG no no no yes chr11 + 16439724 16439744 16439712 16439810 
VVI-MIR169W  CAGCCAAGGATGACTTGCCGG no no no yes chr14 + 29685626 29685646 29685614 29685756 
VVI-MIR169L  GAGCCAAGGATGACTTGCCGT no no no yes chr11 + 16185301 16185321 16185290 16185392 
VVI-MIR169M   AGCCAAGGATGACTTGCCGG no no no yes chr11 + 16361248 16361268 16361236 16361337 
VVI-MIR169N  AGCCAAGGATGACTTGCCGGC no no no yes chr11 + 16380252 16380272 16380240 16380340 
VVI-MIR169O GAGCCAAGGATGACTTGCCGC no no no yes chr11 + 16190341 16190361 16190330 16190432 
VVI-MIR169P  AGCCAAGGATGACTTGCCGGC no no no yes chr11 + 16347822 16347842 16347810 16347911 
VVI-MIR169Q  AGCCAAGGATGACTTGCCGGC no no no yes chr11 + 16384496 16384516 16384484 16384580 
VVI-MIR169E TAGCCAAGGATGACTTGCCTGC yes yes no yes chr14 - 25082834 25082854 25082717 25082865 
VVI-MIR169F  CAGCCAAGGATGACTTGCCGA no yes no yes chr1 + 12404220 12404240 12404208 12404391 
VVI-MIR169G  CAGCCAAGGATGACTTGCCGA no yes no yes chr8 + 21104463 21104483 21104451 21104571 
VVI-MIR169R TGAGTCAAGGATGACTTGCCG no no no yes chr11 + 16415141 16415161 16415131 16415239 
VVI-MIR169T CGAGTCAAGGATGACTTGCCG no no no yes chr11 + 16399577 16399597 16399567 16399676 
VVI-MIR169U TGAGTCAAGGATGACTTGCCG no no no yes chr11 + 16409411 16409431 16409401 16409510 
VVI-MIR169V  AAGCCAAGGATGAATTGCCGG no no no yes chr11 + 16468036 16468056 16468025 16468120 
VVI-MIR169X  TAGCCAAGGATGACTTGCCTA no no yes yes chr17 - 355806 355826 355713 355837 
VVI-MIR169Y  TAGCGAAGGATGACTTGCCTA no no no yes chr1 + 22233583 22233603 22233573 22233820 
VVI-MIR169I  GAGCCAAGGATGACTGGCCGT no no no yes chr11 + 16158025 16158045 16158014 16158118 
VVI-MIR169D  CAGCCAAGAATGATTTGCCGG no no no no chr11 + 16106496 16106516 16106486 16106605 
VVI-MIR171B TGATTGAGCCGCGTCAATATC no no no yes chr12 - 5542409 5542429 5542399 5542497 
VVI-MIR171C TGATTGAGCCGTGCCAATATC yes no no yes chr12 - 5487760 5487780 5487747 5487849 
VVI-MIR171D TGATTGAGCCGTGCCAATATC yes no no yes chrUn - 40892395 40892415 40892382 40892481 
VVI-MIR171A TGATTGAGCCGTGCCAATATC yes yes yes yes chr14 - 25491212 25491232 25491201 25491299 
VVI-MIR171I TGATTGAGCCGTGCCAATATC yes no no yes chr17 + 893602 893622 893534 893636 
VVI-MIR171E TGATTGAGCCGCGCCAATATC no yes no yes chr11 + 5203387 5203407 5203318 5203420 
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VVI-MIR171H TGGTTGAGCCGCGCCAATATC no no no yes chr17 - 1828663 1828683 1828653 1828748 
VVI-MIR171F    TTGAGCCGCGCCAATATCACT no yes no yes chr9 + 7012570 7012590 7012498 7012600 
VVI-MIR171G    TTGAGCCGAACCAATATCACC no yes no yes chr18 + 3255670 3255690 3255625 3255700 
VVI-MIR172A TGAGAATCTTGATGATGCTGCATC yes yes no no chr6 - 17652420 17652440 17652412 17652521 
VVI-MIR172B TGAGAATCTTGATGATGCTGCATC yes no no no chr13 - 6181378 6181398 6181370 6181487 
VVI-MIR172D AGAATCTTGATGATGCTGCAT no no no yes chr8 + 12667251 12667271 12667173 12667281 
VVI-MIR172C GGAATCTTGATGATGCTGCAG no no no yes chr13 + 3217614 3217634 3217507 3217644 
VVI-MIR319B  TTGGACTGAAGGGAGCTCCCT yes no no yes chr1 + 4189724 4189744 4189562 4189755 
VVI-MIR319C  TTGGACTGAAGGGAGCTCCCT yes yes no yes chr2 - 855572 855592 855561 855742 
VVI-MIR319E TTTGGACTGAAGGGAGCTCCT no yes yes yes chr11 + 4317299 4317316 4317224 4317330 
VVI-MIR319G ATTGGACTGAAGGGAGCTCCC yes yes no yes chr17 - 3675989 3676009 3675978 3676199 
VVI-MIR319F TTGGACTGAAGGGAGCTCCCT yes yes no yes chr6 + 9137416 9137436 9137255 9137447 
VVI-MIR390 AAGCTCAGGAGGGATAGCGCC yes yes no yes chr6 + 8159529 8159549 8159519 8159658 

VVI-MIR393A TCCAAAGGGATCGCATTGATC yes no yes yes chr16 - 17247283 17247303 17247187 17247312 
VVI-MIR393B TCCAAAGGGATCGCATTGATC yes yes yes yes chr13 + 4265142 4265162 4265132 4265214 
VVI-MIR394A TTGGCATTCTGTCCACCTCCAT yes yes no no chr12 - 17122063 17122082 17122004 17122092 
VVI-MIR394B TTGGCATTCTGTCCACCTCC no yes no no chr18 - 1413101 1413120 1413038 1413130 
VVI-MIR394C TTGGCATTCTGTCCACCTCCT yes no no no chr18 - 3551332 3551351 3551260 3551361 
VVI-MIR395A  TGAAGTGTTTGGGGGAACTC no no no yes chr1 + 6527990 6528009 6527928 6528019 
VVI-MIR395B  TGAAGTGTTTGGGGGAACTC no no no yes chr1 + 6502724 6502743 6502664 6502753 
VVI-MIR395C  TGAAGTGTTTGGGGGAACTC no no no yes chr1 - 6499924 6499943 6499914 6500005 
VVI-MIR395D  TGAAGTGTTTGGGGGAACTC no no no yes chr1 + 6512819 6512838 6512763 6512848 
VVI-MIR395E  TGAAGTGTTTGGGGGAACTC no no no yes chr1 + 6505310 6505329 6505248 6505339 
VVI-MIR395F  TGAAGTGTTTGGGGGAACTC no no no yes chr1 + 6489598 6489617 6489542 6489627 
VVI-MIR395L  TGAAGTGTTTGGGGGAACTC no no no yes chr1 + 6559155 6559174 6559098 6559184 
VVI-MIR395M  TGAAGTGTTTGGGGGAACTC no no no yes chr1 + 6557873 6557892 6557811 6557902 
VVI-MIR395G  TGAAGTGTTTGGGGGAACTC no no no yes chr1 + 6482169 6482188 6482113 6482198 
VVI-MIR395H  TGAAGTGTTTGGGGGAACTC no no no yes chr1 + 6566714 6566733 6566652 6566743 
VVI-MIR395I  TGAAGTGTTTGGGGGAACTC no no no yes chr1 + 6562698 6562717 6562642 6562727 
VVI-MIR395J  TGAAGTGTTTGGGGGAACTC no yes no yes chr1 + 6553082 6553101 6553026 6553111 
VVI-MIR395K  TGAAGTGTTTGGGGGAACTC no no no yes chr1 + 6536841 6536860 6536780 6536871 
VVI-MIR395N CTGAAGAGTCTGGAGGAACTC no no no yes chr17 - 6409005 6409025 6408995 6409131 
VVI-MIR396B TTCCACAGCTTTCTTGAACT no yes no yes chr11 + 5246803 5246823 5246790 5246897 
VVI-MIR396A TTCCACAGCTTTCTTGAACTA no yes no yes chr9 - 7372606 7372624 7372522 7372637 
VVI-MIR396C TTCCACAGCTTTCTTGAACTG no no no yes chr4 - 5119670 5119688 5119591 5119698 
VVI-MIR396D TTCCACAGCTTTCTTGAACTG no yes no yes chr11 - 5253201 5253219 5253110 5253229 
VVI-MIR397A TCATTGAGTGCAGCGTTGATG yes yes no yes chrUn - 11971983 11972003 11971898 11972015 
VVI-MIR398A TGTGTTCTCAGGTCACCCCTT yes yes no yes chr1 + 731684 731704 731608 731710 
VVI-MIR398B TGTGTTCTCAGGTCGCCCCTG yes yes no yes chr6 - 16503558 16503578 16503544 16503631 
VVI-MIR398C TGTGTTCTCAGGTCGCCCCTG yes yes no yes chr6 + 15575634 15575654 15575581 15575668 
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VVI-MIR399A TGCCAAAGGAGAATTGCCCTG no yes no yes chr10 + 2989516 2989536 2989450 2989546 
VVI-MIR399H TGCCAAAGGAGAATTGCCCTG no yes no yes chr10 + 2983604 2983624 2983545 2983634 
VVI-MIR399B TGCCAAAGGAGAGTTGCCCTG no no no yes chr16 - 15618718 15618738 15618708 15618824 
VVI-MIR399C TGCCAAAGGAGAGTTGCCCTG no no no yes chr15 + 15232251 15232271 15232200 15232281 
VVI-MIR399I CGCCAAAGGAGAGTTGCCCTG yes yes no yes chr2 + 4101895 4101912 4101801 4101922 
VVI-MIR399D TGCCAAAGGAGATTTGCTCGT no no no no chr10 - 2988031 2988051 2988021 2988125 
VVI-MIR399E TGCCAAAGGAGATTTGCCCGG no yes no no chr10 - 2992230 2992250 2992220 2992331 
VVI-MIR399F TGCCGAAGGAGATTTGTCCTG no no no no chr10 - 2995818 2995838 2995807 2995913 
VVI-MIR399G TGCCAAAGGAGATTTGCCCCT no no no yes chr10 - 2981257 2981277 2981247 2981359 
VVI-MIR403A TTAGATTCACGCACAAACTCG yes no no yes chr5 + 65331 65351 65247 65361 
VVI-MIR403B TTAGATTCACGCACAAACTCG yes no no yes chr5 + 600236 600256 600181 600266 
VVI-MIR403C TTAGATTCACGCACAAACTCG yes yes no yes chr5 + 602695 602715 602611 602725 
VVI-MIR403D TTAGATTCACGCACAAACTCG yes no no yes chr5 + 166537 166557 166482 166567 
VVI-MIR403E TTAGATTCACGCACAAACTCG yes no no yes chr5 + 168183 168203 168099 168213 
VVI-MIR403F TTAGATTCACGCACAAACTCG yes yes no yes chr7 - 4179683 4179703 4179673 4179780 
VVI-MIR408 ATGCACTGCCTCTTCCCTGGC yes yes yes yes chr7 + 5012012 5012031 5011935 5012041 
VVI-MIR477 ATCTCCCTCAAAGGCTTCCAA no no no yes chr1 + 22740271 22740291 22740261 22740354 
VVI-MIR479 TGTGGTATTGGTTCGGCTCATC yes no no no chr16 + 21573769 21573790 21573759 21573852 
VVI-MIR482 TCTTTCCTACTCCTCCCATTCC yes yes yes no chr17_random + 5523114 5523130 5523024 5523140 

VVI-MIR535A TGACAACGAGAGAGAGCACGC yes no yes yes chr7_random - 1392322 1392343 1392253 1392353 
VVI-MIR535B TGACAACGAGAGAGAGCACGC yes no yes yes chrUn - 25369772 25369793 25369703 25369803 
VVI-MIR535D TGACAACGAGAGAGAGCACGC yes no yes yes chr7_random - 1346437 1346458 1346368 1346468 
VVI-MIR828A TCTTGCTCAAATGAGTATTCCA no no no no chr16 + 21724317 21724338 21724308 21724429 
VVI-MIR828B TCTTGCTCAAATGAGTGTTCCA no no no no chr1 + 2961655 2961676 2961645 2961716 
VVI-MIR845A TAGCTCTGATACCAATTGATA no no no no chr16 + 20505160 20505180 20504749 20505190 
VVI-MIR845B TAGCTCTGATACCAATTGATA no no no no chr2 + 12265254 12265274 12264843 12265284 
VVI-MIR845C AGGCTCTGATACCAATTGATG no no no no chr7 - 207788 207808 207778 207867 
VVI-MIR845D TGGCTCTGATACCAATTGATG no no no no chr4 - 9870414 9870434 9870404 9870534 
VVI-MIR845E TGGCTCTGATACCAATTGATG no no no no chr5 + 13374777 13374797 13374677 13374807 

           
VVI-MIR171J_new_locus TGATTGAGCCGTGCCAATATC yes no no nd chr18 + 1502398 1502418 1502310 1502425 
VVI-MIR159D_new_locus TTTGGTTTGAAGGGAGCTCTG no no no nd chr15 - 18466307 18466327 18466309 18466475 
VVI-MIR166I_new_locus TCGGACCAGGCTTCATTCCCC no no no nd chr7 + 19450307 19450327 19450174 19450334 
VVI-MIR396E_new_locus TTCCACGGCTTTCTTGAACTT yes yes no nd chr1 + 1997823 1997843 1997815 1997984 
VVI-MIR399J_new_locus TGCCAAAGGAGATTTGCCCCG no no no nd chr10 - 2978909 2978929 2978909 2979003 
VVI-MIR172E_new_locus GGAATCTTGATGATGCTGCAT no no no nd chr6 + 6003709 6003729 6003613 6003731 

VVI-MIR395O/P_new_locus TGAAGTGTTTGGGGGAACTC no no no nd chr1 + 6517117 6517136 6516957 6517141 
VVI-MIR390B_new_locus AAGCTCAGGAGGGATAGCGCC yes no no nd chr8 + 9571422 9571442 9571421 9571519 
VVI-MIR530_new_family TGCATTTGCACCTGCACCTT yes no no nd chr8 - 18999858 18999877 18999728 18999886 
VVI-MIR827_new_family TTAGATGATCATCAACAAACA yes yes no nd chr5 - 24742138 24742158 24742131 24742224 
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2.4 MiRNA expression and deep sequencing data 

2.4.1 The smallRNA deep sequencing approach 

The first and still most common approach to the discovery of novel small RNAs has 

been to clone and sequence individual small RNAs using traditional molecular methods. The 

majority of known miRNAs were identified by this approach. In fact it was first used to 

identify miRNAs and siRNAs in mammals, Caenorhabditis elegans, Drosophila and 

Arabidopsis (Lagos-Quintana, Rauhut et al. 2001; Lau, Lim et al. 2001; Lee and Ambros 

2001; Llave, Kasschau et al. 2002; Park, Li et al. 2002). 

This approach is based on the property that during microRNAs biogenesis both strands of 

microRNA precursors are processed by RNase III into small RNA segments (20~24 nt) that 

have 5′ phosphateand 3′ hydroxyl termini, in contrast to most RNA turnover products that 

have a 5′ hydroxyl terminus (Zamore, Tuschl et al. 2000). For cloning are used protocols that 

require the presence of 5′phosphateand free 3′ hydroxyl group on the small RNAs for adapter 

ligation. In particular, after reverse transcription, the cDNA is PCR-amplified using primers 

corresponding to the adapter sequences. PCR products are cloned and then sequenced. It is 

known that about 30–50% of the clones represent RNA turnover products of the abundant 

rRNAs, tRNAs, snRNAs (Llave, Kasschau et al. 2002; Sunkar, Girke et al. 2005). The 

cloning frequency of an individual small RNA generally reflects its relative abundance in the 

sample, providing a quantitative expression measurement. 

Despite the early success of this approach, it is unlikely that these efforts are saturating for 

rare or tissue-specific small RNAs.  

 

The recent introduction of deep sequencing technology, enabling the simultaneous 

sequencing of up to millions of DNA or RNA molecules, has provided another option for 

profiling microRNAs (Creighton, Reid et al. 2009). 

Compared to microarrays, deep sequencing technology for profiling mRNA expression 

remains rather expensive. Currently it is trying to meet the goal of generating complete 

human genome sequences for less than $100 000 (Schloss 2008). However, deep sequencing 

overcomes many of the disadvantages of microarrays, which suffer from background and 

cross-hybridization problems and measure only the relative abundances of previously 

discovered microRNAs. In addiction, profiling the small RNA fraction that contains 

microRNAs is much more feasible; deep sequencing measures absolute abundance and is not 
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limited by array content. In this way allows the discovery of novel microRNAs or, maybe 

other small RNA species (Creighton, Reid et al. 2009). 

 

The detection and quantification of small RNAs using deep sequencing methods was 

first attained in Arabidopsis by Meyers lab (Lu, Meyers et al. 2007). More than 2,000,000 

small RNAs were sequenced by Massively Parallel Signature Sequencing (MPSS) (Brenner, 

Johnson et al. 2000) from Arabidopsis flowers and seedlings, yielding more than 70,000 

genome-matching distinct sequences. This symbolizes a significant advance over more 

traditional methods for small RNA identification. One of MPSS limitations is that it is only 

able of sequencing the 5′ 17 nucleotides of small RNAs.  

 

Solexa, Inc. has developed a four-color DNA sequencing-by-synthesis (SBS) method as a 

replacement for MPSS based on a novel, reversible, dye-termination chemistry 

(http://www.solexa.com). This approach can generate more than 10,000,000 tags (5 times 

more than MPSS approach!) with high accuracy.  

Another approach, the Supported Oligo Ligation Detection or SOLiD, uses an array of 

microbeads each coated with a single DNA or cDNA fragment; a pool of fluorescent oligos is 

used to “read” the sequences by complementary binding using a repeated process of ligation, 

detection, and cleavage. This determines up to 50 nucleotides of sequence for bead, for 

>10 million beads.  

These novel, highly parallel methods have the potential to dramatically reduce the cost of 

sequencing and offer a much richer source of sequence information.  

 

2.4.2 Illumina Sequencing 

The Illumina Genome Analyzer sequencing system is a ground breaking platform for genetic 

analysis and functional genomics. It dramatically improves speed and reduces costs, 

transforming the way many experiments are devised and carried out. 

 

Step 1: Sample Preparation 

For smallRNA sequencing, total RNA is ligated to specific 3’ and 5’ adapter 

sequences and reverse transcribed. Size selection is performed to isolate ligation products that 

should contain inserts in the 20-30 base size range.  
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Steps 2-6: Cluster Generation by Bridge Amplification 

Illumina utilizes a unique "bridged" amplification reaction that occurs on the surface 

of the flow cell.  

The flow cell surface is coated with single stranded oligonucleotides that correspond to the 

sequences of the adapters ligated during the sample preparation stage. Single-stranded, 

adapter-ligated fragments are bound to the surface of the flow cell exposed to reagents for 

polyermase-based extension. Priming occurs as the free/distal end of a ligated fragment 

"bridges" to a complementary oligo on the surface (Bentley, Balasubramanian et al. 2008). 

Repeated denaturation and extension results in localized amplification of single molecules in 

millions of unique locations across the flow cell surface. This process occurs in what is 

referred to as Illumina's "cluster station", an automated flow cell processor. 

 

Steps 7-12: Sequencing-by-synthesis (SBS)  

A flow cell containing millions of unique clusters is now loaded into the sequencer for 

automated cycles of extension and imaging.  

The first cycle of sequencing consists first of the incorporation of a single fluorescent 

nucleotide, followed by high resolution imaging of the entire flow cell. These images 

represent the data collected for the first base. Any signal above background identifies the 

physical location of a cluster (or polony), and the fluorescent emission identifies which of the 

four bases was incorporated at that position (Bentley, Balasubramanian et al. 2008; Morozova 

and Marra 2008). 

This cycle is repeated, one base at a time, generating a series of images each representing a 

single base extension at a specific cluster. Base calls are derived with an algorithm that 

identifies the emission colour over time. At this time reports of useful Illumina reads range 

from 26-100 bases. 

The use of physical location to identify unique reads is a critical concept for all next 

generation sequencing systems. The density of the reads and the ability to image them without 

interfering noise is vital to the throughput of a given instrument. Each platform has its own 

unique issues that determine this number, 454 is limited by the number of wells in their 

PicoTiterPlate, Illumina is limited by fragment length that can effectively "bridge", and all 

providers are limited by flow cell real estate. 
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Fig.2.5  -  The Illumina Genome Analyzer sequencing system  
Sample Preparatio (step 1) and Cluster Generation by Bridge Amplification (steps 2-6) 
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Fig.2.6 - The Illumina Genome Analyzer sequencing system  
Sequencing-by-synthesis (SBS) (steps 7-12) 
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2.4.3 Results and discussion - Deep sequencing of small RNAs from grapevine leaf tissue 

We generated 13,078,222 reads with Illumina sequencing of small RNA isolated from Vitis 

vinifera L. clone PN40024 leaves.  

 

The Illumina sequence reads are 35 bases long, although the insert size range of interest is 

from 19-28 bases. Accordingly, sequence reads are expected to contain the first few bases of 

the 3’ adapter sequence used in sample preparation (Fig.2.7). We used a custom script to 

identify and remove adapter sequences from the sequence reads. This script allows up to 2 

mismatches in the adapter sequence to accommodate erroneous base calls in the extreme 3’ 

end of the reads. 

 

5’ adapter

Small RNA
18-30 bases

3’ adapter

Sequencing
primer

Region sequenced

5’ adapter

Small RNA
18-30 bases

3’ adapter

Sequencing
primer

Region sequenced

 
Fig.2.7  -  Removal of adapter sequences from the sequence reads 
Reads are typically at least 35 bases in length, but the small RNAs are 18- 30 bases. We must trim the 5’ end of 
the 3’ adapter . Sequence errors tend to be more frequent in the 3’ part of the read, so it is a good idea to use a 
method that will accept at least one mismatch with the adapter sequence (potentially considering quality scores) 
 
 

2,585,821 individual small RNA reads of 18-27 bases (19.8% of the total reads generated) 

yielded at least one perfect match to the draft genome after removal of adapter sequences and 

allowing for post transcriptional oligoadenylation of reads.  

We mapped tags with the software SOAP (short oligonucleotide alignment) because respect 

to other short oligonucleotide alignment programs the comparison between the performance 

(time consumed) and sensitivity (reads aligned) is the best (Li, Li et al. 2008).  

After exclusion of reads mapping on annotated structural RNAs, over 7% of the total mapped 

sequences were of length 21 bases and accounted for 7.8% of the genomic loci represented by 

the mapped data (mean redundancy of 4.38 reads/locus). 

15% of loci represented were of length 24 (10.7% of tags sequenced) with a mean redundancy 

of 3.08 reads/locus, suggesting, in accord with other studies (Vaucheret 2006; Moxon, Jing et 

al. 2008), that miRNAs in our sample tend to be expressed at higher levels or processed more 

specifically than the more heterogeneous 24 base small RNAs. 
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After mapping of reads to the Vitis genome, custom scripts were used to count which 

proposed mature miRNA loci produced perfectly matching Illumina smallRNA reads.  

In table Tab.2.1, the column entitled “Leaf small” shows the results of this analysis. Mapping 

of the short tags onto the genome sequence revealed that of the 30 families predicted by our 

comparative analysis, 26 showed at least one sequence tag either in exact or very close 

correspondence to the position of one of the predicted mature sequences (the exceptions being 

miR395, miR477, miR828 and miR845) 

 

2.5  Whole transcriptome sequencing and differential expression of precursors 

In plants, the majority of pri-miRNA transcripts are polyadenylated as they are transcribed by 

RNA polymerase II (Xie, Lu et al. 2005). However, the physiological half life of primary 

miRNA transcripts is expected to be short. Notwithstanding this limitation, we hypothesize 

that sequences derived from highly expressed pri-miRNA transcripts should be represented in 

whole transcriptome "deep sequencing" experiments as well as, potentially, in EST 

collections.  

We have analyzed whole polyA+ transcriptome data generated by the French Italian public 

Consortium for Grapevine Genome Characterization with the Illumina Solexa technology 

(Denoeud, Aury et al. 2008) and Roche 454 next generation sequencing platforms 

(unpublished data). 

 

2.5.1  Illumina Solexa technology: polyA+ RNA 

Tanscriptome data, prepared with a similar strategy to the leaf smallRNA data, but 

commencing with polyA+ RNA and excluding the size fractionation step was generated from 

in vitro cultivated Vitis vinifera pn40024 plants (juvenile leaf, juvenile stem, juvenile root and 

embryonic callus) (Denoeud, Aury et al. 2008). 

A total of 135,047,735 Illumina sequences (33-35 bases in length) derived from 

polyA+ RNA isolated from 4 tissues were considered. The number of sequences detected for 

each tissues are in Tab.2.2. 

Tags were mapped to the grapevine genome using the SOAP software (Li, Li et al. 2008)  and 

coordinates were compared to those for predicted pre-miRNAs by microHARVESTER 

software (Dezulian, Remmert et al. 2006). For a limited number of precursor loci, as we 

expected, tags are spread more or less all the precursor length. 
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The statistical significance of the number of reads mapping within a predicted pre-miRNA 

was evaluated. 

We estimate the probability that at least the observed number of reads should be clustered in 

the genomic interval defined by the precursor using the Poisson distribution. Thus, we 

exclude all reads mapping to predicted genes, and search for significant violations (at the 1% 

confidence interval) of the null-hypothesis that remaining reads should be distributed 

randomly among intergenic regions. We consider only reads mapping uniquely to a single 

genomic locus. Given the expected short half-life of most primary miRNA transcripts, we 

believe that these criteria constitute an extremely conservative test of precursor expression. 

 

 

Tissue Number of detected sequences 

juvenile leaf 29,829,113 

juvenile stem 30,785,175 

juvenile root 29,254,635 

embryonic callus 45,178,812 

 
Tab.2.2 - Number of detected sequence for each tissue. 
From a total of 135,047,735 Illumina sequences (33-35 bases in length) derived from polyA+ RNA 
isolated from juvenile leaf, juvenile stem, juvenile root and embryonic callus. 
RNA-Seq data are available from http://www.genoscope.cns.fr/externe/gmorse/raw_data/. 

  

 

 

52 predicted precursors show significant expression in at least one tissue (25 in leaf, 38 in 

stem, 17 in root, 33 in callus).  

The column correspondent to the attribute “Illumina” of Tab.2.1 show the results of 

polyA+ transcriptome data analysis with Illumina transcriptome data are summarized. The 

entry “yes” signifies significant levels of expression in at least one tissue. 

 

Many predicted precursors show a wide expression (miR156d, miR159c, miR166a and c, 

miR168, miR171a, miR398a, miR398b and c, miR408, miR482). In some families, when 

expressed, precursors show overlapping patterns. For example, miR319c, miR319e and 

miR319f are all expressed in stem, while miR319c and miR319g are expressed in callus, no 

expression of miR319 was detected in leaf or root. A similar situation is observed for the 
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miR396 family. In other cases, different precursors seem to be predominantly expressed in 

different tissues. For example miR171e transcripts are detected only in callus, miR171f is 

only transcribed in stem while miR171g is observed in callus and root - a similar situation can 

be observed for several families including miR166, miR167 and miR169). These data suggest 

that tissue specific expression of different precursors within single families is widespread in 

the grapevine. 

Other precursors seem to be predominantly transcribed in specific tissues. For example 

miR171e transcripts are detected only in callus, miR171f is only transcribed in stem while 

miR171g is observed in callus and root. A similar situation can be observed for several 

families including miR166, miR167 and miR169.  

 

2.5.2  454  transcriptome analysis 

For 454 transcriptome analysis, polyA+ RNA was isolated from V. vinifera L. cv Corvina leaf 

and berry tissues(Rezaian and Krake 1987). 

454 deep sequencing analysis generated 613,098 reads from leaf and 581,655 from berry. 

These reads were mapped to the Vitis genome using the software BLAT (Kent 2002). Custom 

scripts were used to collect preliminary coordinates that coincided with harvester predictions, 

SPIDEY (Wheelan, Church et al. 2001) was used for fine mapping of splice junctions. 

The column correspondent to the attribute “454” in Tab.2.1 shows for which predicted 

miRNA loci expression was supported by 454 transcriptome sequencing data. Expression of 

15 loci received further support from these data. With the exception of miR160b and the 

miR535 family the expression of all precursors detected by 454 sequencing in leaf was also 

strongly supported by Illumina data.  

 

 

2.5.3 Results - Estimation of primary microRNA transcripts and splice sites 

For a number of predicted microRNAs the density of coverage of the corresponding genomic 

loci was sufficient to attempt to estimate patterns of splicing and alternative splicing. 

PolyA+ RNAs are usually mature messages and don’t contains introns. As consequence of 

this, it is very hard to map into the genome tags located in correspondence of the junction of 2 

exons (Fig.2.8). For this reason, sometimes in case of splicing we have a discontiguous 

mapping of whole transcriptome reads. 
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In order to solve this problem, we developed a strategy that exploit the property that most 

introns have a GT at the 5’-splice site (donor site) and an AG at the 3’ splice site (acceptor 

site). 

 

 

 
 
Fig.2.8 -  Problem mapping:  tags of spliced regions 
Poly(A)+RNA tags doesn’t contain introns and tags falling into spliced regions of genomes are not mapped by  
SOAP program.   
GT=donor site; AG =acceptor site. 
 

 

We scanned grape genome regions 5 kb upstream and downstream of predicted miRNA 

precursors for all GT dinucleotides (to define candidate donor sites) and all the AG 

dinucleotides (to define candidate acceptor sites). We collected all genome sequences 

mapping before the donor and then concatenated each of them to sequences mapping after the 

acceptor site. Finally, we mapped reads that did not provide perfect matches to the genomic 

sequence onto these conceptually spliced sequences. We identified all matches where reads 

provided perfect matches with at least 8 bases on either side of the splice junction. Introns 

inferred from mapping of 454 transcriptome reads were also recorded. 

Fig.2.9 shows an example of the application of our strategy: We found 5 different 

possible canonical splice junctions for a specific locus, but only one of those corresponds to a 

real splicing product (Fig.2.9). We defined the transcription profile of vi-miR394b precursor 

in each tissue and detect the presence of a canonical intron supported by 14 Illumina reads (7 

distinct sequences). This intron was also easily detectable through RACE experiments 

(performed by Dott.ssa Erica Mica). We note that the position of the intron corresponds well 

to a region of low, or undetectable levels of Illumina transcriptome coverage. Vvi-miR394B 

appears to be transcribed in callus, stem and leaf, while is not in root. 
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Fig.2.9 - Transcription and splicing of pri-miR394b  in Vitis vinifera. 
A summary of transcription of genomic loci containing predicted pre-miRNAs is provided. Illumina whole 
transcriptome reads per base are reported for four tissues as log(number of reads/expected number of reads under 
random distribution of reads). Local GC content, position and strand of predicted pre-miRNA as also shown 
along with coordinates of: canonical introns inferred from non-contiguous mapping of Illumina reads (blue bars), 
454 reads (black bars) and assembled 454 sequence contigs (green bars). Predicted genes where present are 
represented by red bars. 
GT donor and AC acceptor are coloured in red and defines the intron boundaries.  
Sequences of tags (mapping in correspondence of the junction of 2 exons) are outlined by the dashed red. From 
(Mica, Piccolo et al. 2010)modified. 
 
 

In the case of vvi-MIR162 we found evidence of alternative splicing isoforms 

(confirmed by 454 transcriptome data) (Fig.2.10). 

Indeed, while the boundaries of proposed introns correspond to "shoulders" of falling 

transcript coverage, significant levels of reads mapping within the putative intronic sequences 

are observed. This observation is also consistent with the occurrence of alternative splicing 

and may indicate the presence of other, non detected alternative splicing events. 

Interestingly, Hirsch et al. (Hirsch, Lefort et al. 2006) demonstrated that the primary 

miR162a transcript of Arabidopsis is subjected to complex pattern of alternative splicing, 

similar to that proposed for the grapevine miR162 transcript. In Arabidopsis are present at 

least four transcript isoforms (Fig.2.11), but only one of these (the unspliced one) leads to the 
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correct miRNA hairpin. In particular the npcRNA 78 gene contains the miR162 sequence in 

an alternative intron and corresponds to the MIR162a locus (Hirsch, Lefort et al. 2006).  
 

 
Fig.2.10 - Transcription and alternative splicing of pri-miR162  in Vitis vinifera. 
Whole transcriptome reads per base are reported for four tissues as log(number of reads/expected number of 
reads under random distribution of reads). Local GC content, position and strand of predicted pre-miRNA as 
also shown along with coordinates of: canonical introns inferred from non-contiguous mapping of Illumina reads 
(blue bars), 454 reads (black bars) and assembled 454 sequence contigs (green bars). Predicted genes where 
present are represented by red bars. From (Mica, Piccolo et al. 2010) modified.  
 
 

 
Fig.2.11 - Diagrammatic representation of the differentially spliced transcripts of npcRNA 78  
With ‘a’,’b’,’c’,’d’ are shown the different isoforms related to npcRNA 78. With black box are indicated introns, 
with white box numbered are indicated exons. The isoform that corresponds to the functional  pre-miRNA is the 
‘a’, in which the intron between the exon 3 and 4 is retained. From (Hirsch, Lefort et al. 2006) modified 
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Interestingly, miR162 is a negative regulator: it inactivates DCL1 (DICER-like1) that 

contributes to the nuclear processing of all miRNAs (miR162 included). In other words, 

DCL1 generates active miR162 that blocks DCL1 production creating a negative feedback 

loop (Xie, Kasschau et al. 2003). The ulterior control at the transcription level by splicing 

underlines the importance miR162 as regulator. 

In fact mir162 works in a complex mechanism for regulating the development surface of leaf. 

In the absence of miRNA162 , DCL acts on miR165/166 precursor generating the active 

miRNAs. These active miRNAs in turn block translation of two transcription factor genes, 

PHV/PHB. When no miR165/166 is present in the cytosol of the leaf primordial cells, the 

upper surface (adaxial) is developed. On the other hand, their presence turns off the two 

transcription factor genes, leading to the development of the lower (abaxial) surface of the 

leaf. miR165/166 is normally found at positions distant from the meristem (Carrington and 

Ambros 2003; Gustafson, Allen et al. 2005). 

 

 

 
Fig.2.11  -  Structure and function of Arabidopsis miRNAs.  
(A) Expression of DCL1, which catalyzes miRNA precursor processing, is under negative-feedback regulation 
by miR162 (left). miR165/166 negatively regulates PHV and PHB mRNAs by guiding sequence-specific 
cleavage (right). PHVand PHB are related genes encoding HD-Zip transcription factors. miR165 and miR166 are 
related miRNAs that are predicted to interact with PHVand PHB mRNAs. Only PHV mRNA and miR165 are 
represented. Arrow, miR165-guided cleavage site.  
(B) Model for specification of adaxial/abaxial polarity in Arabidopsis leaves. Expression of PHV and PH  in leaf 
primordium cells close to the meristem results in a transcription program specifying adaxial fate. Inhibition of 
PH and PHB by miR165/166-guided degradation in cells distant to the meristem specifies abaxial fate. 
From (Carrington and Ambros 2003) 
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Our findings suggest conservation of alternative splicing as a key regulatory mechanism in 

miR162 expression and indicate that Illumina and 454 transcript data can also be used to 

identify alternatively spliced plant pri-miRNAs. 

Fig.2.12 shows evidence for expression of the miR168 locus. Analogously to miR162, 

our data suggest alternative splicing of the pri-mRNA, while the distribution of 454 contigs is 

highly consistent with the Illumina data.  

Vaucheret et al. (Vaucheret 2006) showed that AGO1, the target of miR168 is involved in the 

regulation of miR168 stability. Our data may hint at yet another mechanism of regulation of 

this intriguing miRNA. 

 

 

 
Fig.2.12  -  Transcription and alternative splicing of pri-miR168  in Vitis vinifera. 
Whole transcriptome reads per base are reported for four tissues as log(number of reads/expected number of 
reads under random distribution of reads). Local GC content, position and strand of predicted pre-miRNA as 
also shown along with coordinates of: canonical introns inferred from non-contiguous mapping of Illumina reads 
(blue bars), 454 reads (black bars) and assembled 454 sequence contigs (green bars). Predicted genes where 
present are represented by red bars. From (Mica, Piccolo et al. 2010) modified 
 

 

Of 25 precursor loci chosen on the basis of extensive RNA-Seq, 18 showed evidence 

of transcript splicing and 8 of alternative splicing, suggesting that post-transcriptional 

modification of miRNA transcripts is likely to be widespread. 

 

In Fig. 2.13 is shown the junction read coverage for vvi-miR394b, vvi-miR162 and vvi-

miR168. 
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Vvi-MIR162 chr17 + 4716567 4716673 
CCCCAGGCAGCAAAATTTAGTGTTTCCACAGGTTGCATTTTTG ........ TTTCTTGAGCAGGTATCTGGAATCGGAAAGTTGTTTCTTGTTT 
          CAAAATTTAGTGTTTCCACAG                                  GTATCTGGA 3 
         GCAAAATTTAGTGTTTCCACAG                                  GTATCTGG 2 
 
Vvi-MIR162 chr17 + 4715520 4716673 
GCCAAATTCTTGCTGAATGTAGTAATTTCCAGTAAATTTTAAT ........ TTTCTTGAGCAGGTATCTGGAATCGGAAAGTTGTTTCTTGTTT 
        CTTGCTGAATGTAGTAATTTCCA                                  GTATCTGGA 1 
              GAATGTAGTAATTTCCA                                  GTATCTGGAATCG 1 
           GCTGAATGTAGTAATTTCCA                                  GTATCTGGAA 2 
 
Vvi-MIR162 chr17 + 4715520 4716420 
GCCAAATTCTTGCTGAATGTAGTAATTTCCAGTAAATTTTAAT ........ GTTCTTGAGTAGGGGGGATAAGGCTGCTGGTTTTGCGAAGTGC 
       TCTTGCTGAATGTAGTAATTTCCA                                  GGGGGA 1 
               AATGTAGTAATTTCCA                                  GGGGGATAAGGCTG 1 
 
Vvi-MIR162 chr17 + 4715510 4716673 
GCATCACAACGCCAAATTCTTGCTGAATGTAGTAATTTCCAGT ........ TTTCTTGAGCAGGTATCTGGAATCGGAAAGTTGTTTCTTGTTT 
                 TCTTGCTGAATGTA                                  GTATCTGGAATCGGAA 1 
 
Vvi-MIR162 chr17 + 4715507 4716673 
GTAGCATCACAACGCCAAATTCTTGCTGAATGTAGTAATTTCC ........ TTTCTTGAGCAGGTATCTGGAATCGGAAAGTTGTTTCTTGTTT 
       CACAACGCCAAATTCTTGCTGAAT                                  GTATCT 1 
 
Vvi-MIR162 chr17 + 4715476 4716673 
CTGTGTTCTTCTGTGTTTCGAACAGACTCTGGTAGCATCACAA ........ TTTCTTGAGCAGGTATCTGGAATCGGAAAGTTGTTTCTTGTTT 
                      CAGACTCTG                                  GTATCTGGAATCGGAAAGTTG 1 
 
Vvi-MIR162 chr17 + 4715350 4715429 
AGACCATGTTCACAAATAGTCTTGTAAAGCTGTAACAGCCTGA ........ AGTTTATTGCAGGGAAGGAGATCCGCCCTGTGTTCTTCTGTGT 
              AATAGTCTTGTAAAGCT                                  GGAAGGAGATCCG 3 
 
 
Vvi-MIR162 chr17 + 4714863 4716240 
TCATTTGGTCAGATCTGTGGTTTTTGATTTTGTGTTTTTGAAA ........ ACACTCCATAAGGTTTTTTAATTGGGTTAACTTCTATTCTCAT 
       GTCAGATCTGTGGTTTTTGATTTT                                  GTTTTT 1 
 
Vvi-MIR162 chr17 + 4714768 4715429 
ATGGTGACCCTTCAGATTCCTGGTTCACGCTGTTACTCTTTCT ........ AGTTTATTGCAGGGAAGGAGATCCGCCCTGTGTTCTTCTGTGT 
                 TCCTGGTTCACGCT                                  GGAAGGAGATCCGCCC 1 
              GATTCCTGGTTCACGCT                                  GGAAGGAGATCCG 3 
 
Vvi-MIR162 chr17 + 4714759 4716673 
CGTACGGCAATGGTGACCCTTCAGATTCCTGGTTCACGCTGTT ........ TTTCTTGAGCAGGTATCTGGAATCGGAAAGTTGTTTCTTGTTT 
                    TCAGATTCCTG                                  GTATCTGGAATCGGAAAGTTG 1 
 
Vvi-MIR162 chr17 + 4714759 4715429 
CGTACGGCAATGGTGACCCTTCAGATTCCTGGTTCACGCTGTT ........ AGTTTATTGCAGGGAAGGAGATCCGCCCTGTGTTCTTCTGTGT 
                     CAGATTCCTG                                  GGAAGGAGATCCGCCCTGTG 2 
              GACCCTTCAGATTCCTG                                  GGAAGGAGATCCG 3 
            GTGACCCTTCAGATTCCTG                                  GGAAGGAGATC 1 
             TGACCCTTCAGATTCCTG                                  GGAAGGAGATCC 2 
 
Vvi-MIR162 chr17 + 4714740 4715429 
AGAGAGAGAGGGAGAAAAACGTACGGCAATGGTGACCCTTCAG ........ AGTTTATTGCAGGGAAGGAGATCCGCCCTGTGTTCTTCTGTGT 
             GAAAAACGTACGGCAATG                                  GGAAGGAGATCC 1 
                   CGTACGGCAATG                                  GGAAGGAGATCCGCCCTG 1 
            AGAAAAACGTACGGCAATG                                  GGAAGGAGATC 2 
 
Vvi-MIR162 chr17 + 4714729 4715429 
ATAGAGAAGGGAGAGAGAGAGGGAGAAAAACGTACGGCAATGG ........ AGTTTATTGCAGGGAAGGAGATCCGCCCTGTGTTCTTCTGTGT 
        GGGAGAGAGAGAGGGAGAAAAAC                                  GGAAGGAGA 1 
                        GAAAAAC                                  GGAAGGAGATCCGCCCTGTGTTC 1 
                GAGAGGGAGAAAAAC                                  GGAAGGAGATCCGCC 1 
             AGAGAGAGGGAGAAAAAC                                  GGAAGGAGATCC 1 
              GAGAGAGGGAGAAAAAC                                  GGAAGGAGATCCG 1 
            GAGAGAGAGGGAGAAAAAC                                  GGAAGGAGATC 1 
 
Vvi-MIR168 chr2 - 16750027 16748197 
ATGTGATGATGAAAGACTACTTCGATCTCAGGTTTCTAGGTTG ........ GCTTGTTTTCAGGTGCGGGGGCTCAACAAATTTGTTGCAGGGC 
          GAAAGACTACTTCGATCTCAG                                  GTGCGGGGG 2 
 
Vvi-MIR168 chr2 - 16750019 16748197 
ATGAAAGACTACTTCGATCTCAGGTTTCTAGGTTGGAAAAATT ........ GCTTGTTTTCAGGTGCGGGGGCTCAACAAATTTGTTGCAGGGC 
           CTTCGATCTCAGGTTTCTAG                                  GTGCGGGGGC 5 
                       GTTTCTAG                                  GTGCGGGGGCTCAACAAATTTG 3 
        CTACTTCGATCTCAGGTTTCTAG                                  GTGCGGG 4 
                ATCTCAGGTTTCTAG                                  GTGCGGGGGCTCAAC 1 
               GATCTCAGGTTTCTAG                                  GTGCGGGGGCTCAACA 2 
                     AGGTTTCTAG                                  GTGCGGGGGCTCAACAAATT 3 
 
Vvi-MIR168 chr2 - 16748088 16747680 
TCAACCCTAACAATTATTGTCACATGCCCAGGTTTCTTGGTAA ........ TTTATTCTGTAGATCATTGCATGATTGGCCCATTCTCCTCTCT 
                      CATGCCCAG                                  ATCATTGCATGATTGGCCCAT 1 
 
Vvi-MIR394B chr18 - 1385724 1385362 
CTCTCTCGCTCTTCCACTCTAGAGCATCAAGGTGAAAACCCCA ........ CTTGTGTTGCAGGGGTTTCATCAACTCCTCCTCTTTGCCTCTT 
                  CTAGAGCATCAAG                                  GGGTTTCATCAACTCCT 1 
         TCTTCCACTCTAGAGCATCAAG                                  GGGTTTCATC 1 
                     GAGCATCAAG                                  GGGTTTCATCAACTCCTCCT 2 
            TCCACTCTAGAGCATCAAG                                  GGGTTTCATCA 1 
                        CATCAAG                                  GGGTTTCATCAACTCCTCCTCTT 2 
           TTCCACTCTAGAGCATCAAG                                  GGGTTTCATC 5 
                    AGAGCATCAAG                                  GGGTTTCATCAACTCCTCC 3 
 

Fig.2.13 - Splice junction read coverage for vvi-miR394b, vvi-miR162 and vvi-miR168 
Donor  site (GT) and acceptor site /AG) are in red. 
 

It is possible that some splicing events frequently identified by deep sequencing 

approaches could be associated with regulation of downstream processing of transcripts as for 

the miR162 transcript of Arabidopsis (Hirsch, Lefort et al. 2006). For miR162 and miR168, 

this hypothesis might be consistent with the low levels of mature microRNA observed by 
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deep-sequencing, in contrast to the apparently high spliced transcript levels. For several 

pre/pri-miRNA loci (notably miR162 and miR168) we infer several closely related canonical 

introns (shared splice donors with splice acceptor sites shifted by a few tens of bases or vice-

versa). We speculate that this phenomenon might be due, in part, to the incapacity of the 

Nonsense Mediated Decay pathway (which is dependent on ribosomal scanning of mRNAs to 

monitor "erroneous" splicing of non-coding transcripts (Amrani, Sachs et al. 2006). 

 

2.6 Conclusions 

We performed comparative prediction of conserved Vitis vinifera miRNA precursor loci, 

yielding over 140 high confidence predictions on the 12x genome draft. Software to assist in 

the design of oligonucleotide arrays for the validation of miRNA expression was developed 

and Oligonucleotide array and deep sequencing experiments were used to confirm the 

expression of mature miRNAs from most of these loci in at least one tissue or developmental 

stage. Many miRNAs show strong patterns of tissue specific expression. Where knowledge of 

the target gene for these miRNAs is available from other species, we have considered the 

observed expression patterns in Vitis to generate hypotheses regarding the physiological 

significance of our observations. We have shown that for many, but by no means all miRNA 

precursors, evidence for primary transcript expression can be obtained from high throughput 

transcriptome analysis, classically performed to follow expression levels of protein coding 

genes. Finally, we have developed a bioinformatics strategy that, when large numbers of 

transcriptome reads mapping to a precursor miRNA locus are available, allows the estimation 

of patterns of splicing and alternative splicing of pri-miRNA transcripts. Our preliminary data 

suggest that splicing and alternative splicing of pri-miRNAs may be a common phenomenon. 
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Chapter 3 
 

Ab-initio prediction of miRNA precursors from genomic sequence data 
 

 

3.1 Introduction 

With the availability of a complete genomic sequence, the identification of candidate 

precursor sequences for members of conserved miRNA families is relatively straightforward 

using tools such as microHARVESTER (Dezulian, Remmert et al. 2006) or miRscan (Lim, 

Lau et al. 2003). However, novel or lineage specific miRNAs can not be identified in this 

way. When the current project was initiated, deep sequencing of smallRNA fractions (which 

has subsequently become the most common way to identify novel miRNAs) was not 

commonly available, and it was decided to focus on so called ab-initio approaches to identify 

lineage specific miRNAs in plants. Such approaches must necessarily be based on the 

identification of genomic sequences that, if transcribed, could fold to yield hairpins with 

typical characteristics of miRNA precursors as, a-priori, no information on the nature of the 

putative miRNA or miRNA* sequence is available. The situation is further complicated by 

the absence of well conserved primary sequence motifs associated with the specificity of 

DICER-like l (DCL1), the enzyme responsible for the release of the miRNA/miRNA* duplex 

from the hairpin precursor. Thus, ab-initio miRNA prediction tools must evaluate only a 

predicted secondary structure in order to decide if it is likely to be a valid pre-miRNA.  

Simple evaluation of the energetic stability of a hairpin structure is not sufficient for the 

identification of plausible miRNA precursors, in a small to medium sized plant genome such 

as that of Vitis vinifera (480 megabases) a scan of the complete genome using RNALfold 

(Mccaskill 1990; Hofacker, Fontana et al. 1994; Ambros, Bartel et al. 2003; Hofacker 2003; 

Hofacker, Bernhart et al. 2004; Griffiths-Jones 2006; Meyers, Axtell et al. 2008) reveals over 

4 million potentially locally stable hairpin structures with stability in the range observed for 

known precursor miRNAs. However, a collection of information based on primary and 

secondary structure characteristics might allow discrimination between potential miRNA 

precursors and spurious hairpins. Once a probable precursor is identified, it might be possible 

to identify most likely miRNA and miRNA* sequences based on their position in the hairpin 

and the local secondary structure of regions of the stem. Such information would be sufficient 

to design experimental procedures for the validation of in-silico predictions. Some hope for 
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such methods is provided by the findings that real miRNA precursors do possess some 

structural characteristics that distinguish them from other, non-miRNA hairpins (Bonnet, 

Wuyts et al. 2004; Borenstein and Ruppin 2006; Lee and Kim 2008). 

 

It should be noted that even more than sensitivity of such a method, extremely high 

specificity (low false positive prediction rate) is essential to make the method useful, as even 

a 1% false positive rate would result in 40000 false positive predictions when all 4 million 

stable hairpins from the Vitis vinifera genome are tested for example.  

 

Several ab-initio predictors of pre-miRNAs have been implemented based on context specific 

Hidden Markov Models (Agarwal, Vaz et al. 2010), genetic programming (Brameier, Krings 

et al. 2007), the identification of context robust hairpins physically close to known animal 

pre-miRNAs (Sewer, Paul et al. 2005), density information (Bentley, Balasubramanian et al. 

2008) and Support Vector Machine (Xue, Li et al. 2005). Most of these methods rely on so-

called supervised learning techniques, whereby a system is “trained” to distinguish known 

positives from known negative instances (in this case real miRNA precursors and hairpins 

that have similar overall energy, but which do not produce mature miRNAs). Due to some 

previous experience in the laboratory of using Support Vector Machine (Re, Pesole 2009) and 

encouraging results obtained in the prediction of miRNAs using this method in the literature 

(Xue, Li et al. 2005), it was decided to follow this approach to try to develop a reliable ab-

initio pre-miRNA prediction tool. As with any problem in which machine learning 

approaches are used, the selection of characteristics or features used to describe the instances 

to be classified is perhaps the most important step. We have taken some features developed in 

previous studies and added novel descriptors of hairpin structures in order to maximize the 

sensitivity and specificity of our method. 

 

 

3.2  General information about Support Vector Machine (SVM) 

The machine learning method SVM (Support Vector Machine) is able to analyze data and 

recognize patterns, used for classification and regression analysis  

The original SVM algorithm was invented by Vladimir Vapnik and the current standard 

incarnation (soft margin) was proposed by Corinna Cortes and Vladimir Vapnik (Cortes and 

Vapnik 1995; Vapnik 1998) (http://www.springerlink.com/content/k238jx04hm87j80g/). 
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Support Vector Machine performs classification by constructing an N-dimensional 

hyperplane that optimally separates the data into two categories 

An SVM analysis finds the line (or, in general, hyperplane) that is oriented so that the margin 

between the support vectors (the planes that are used to orient the decision hyperplane) is 

maximized (Fig.3.1). 

 

 

 
Fig.3.1 - Maximum-margin hyperplane and margins 
There are many hyperplanes that might classify the data. One reasonable choice as the best hyperplane is the one 
that represents the largest separation, or margin, between the two classes. So we choose the hyperplane so that 
the distance from it to the nearest data point on each side is maximized. If such a hyperplane exists, it is known 
as the maximum-margin hyperplane and the linear classifier it defines is known as a maximum margin classifier. 
From http://www.dtreg.com/svm.htm 
 

 

SVM has been widely applied to the prediction and classification of important biology signals 

such as promoters (Gordon, Chervonenkis et al. 2003), translation initiation sites (Zien, 

Ratsch et al. 2000) splicing sites (Zhang, Heller et al. 2003) and proteins (Leslie, Eskin et al. 

2004). SVM was successfully applied to predict new virus miRNAs (Pfeffer, Sewer et al. 

2005). 

 

A classification task usually involves with training and testing data which consist of some 

data instances. Each instance in the training set contains one “target value” (class labels) and 

several “attributes” (features). The goal of SVM is to produce a model which predicts target 

value of data instances in the testing set which are given only the attributes. 
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Given a training set of instance-label pairs (xi ,yi), i = 1, … l   where xi  ∈  Rn 

 

w, b , ξ
min 1

2
wT w + C  ∑ ξ

i
i = 1

l

w, b , ξ
min
w, b , ξ
min 1

2
1
2

wTwT w + C  ∑ ξ
i

i = 1

l

 
 

subject to: 

 

wT
i i y ( ∅ ( x  ) + b ) ≥ 1 - ξ

i 

ξ ≥ 10
i                                         

wTwT
i i y ( ∅ ( x  ) + b ) ≥ 1 - ξ

i 

ξ ≥ 10
i                                          

 

Here training vectors xi  are mapped into a higher (maybe infinite) dimensional space by the 

function ∅. SVM finds a linear separating hyperplane (fig) with the maximal margin in this 

higher dimensional space. C > 0 is the penalty parameter of the error term.  

Furthermore,  K(xi; xj)  ≡  ∅( xi)T ∅( xj)    is called the kernel function. 

There are many kernel function, but for our analysis we consider the Radial Basis Function 

(RBF) kernel: 

 

K(xi; xj)  =  eγ || x – y || 2 

 

where γ and C are parameters to train the whole training set. 

 

We choose the RBF kernel because it nonlinearly maps samples into a higher dimensional 

space, so it, unlike the linear kernel, can handle the case when the relation between class 

labels and attributes is nonlinear. 

Another reason is that RBF kernel has a minor number of hyperparameters respect to the 

polynomial kernel (a bigger number of hyperparameters increases the complexity of model 

selection). 

There are some situations where the RBF kernel is not suitable. In particular, 

when the number of features is very large, but it is not our case. 

We have used the software LIBSVM  (Chang, Lin; 2010)  

(http://www.csie.ntu.edu.tw/~cjlin/LIBSVM/), which provides programs for most important 

steps in SVM analyses and has been widely used in bioinformatics studies. 
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3.3 SVM workflow 

An SVM analysis consists of many steps (Fig.3.2) 

 

 

TEST

Best C and γ to train training set

Cross-validation – grid search

Features selection

Scaling on the data

Transform data to the SVM format package

TEST

Best C and γ to train training set

Cross-validation – grid search

Features selection

Scaling on the data

Transform data to the SVM format package

 
Fig. 3.2 - General workflow of a typical Support Vector Machine  analysis 

 

 

3.3.1 Data processing - categorical feature 

SVM requires that each data instance is represented as a vector of real numbers. 

Hence, if there are categorical attributes, we first have to convert the categorical attributes 

into numeric data. We used m numbers to represent an m-category attribute. 

Only one of the m numbers is “+1”, and others are “-1”.  

For example, a three-category attribute such as red, green, blue can be represented as [-1,-

1,+1], [-1,+1,-1], and [+1,-1,-1]. 

 

3.3.2 Scaling 

Scaling of data so that all attribute values fall in the same numeric range is a important step 

and gives several advantages.  
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The main advantage of scaling is to avoid attributes in greater numeric ranges dominating 

those in smaller numeric ranges.  

Another advantage is to avoid numerical difficulties during the calculation. Because kernel 

values usually depend on the inner products of feature vectors, large attribute values might 

cause numerical problems. We scaled each attribute to the range [+1; -1] relative to the largest 

and smallest values observed in the training set . 

Thee same method is used to scale both training and testing data. 

The parameter we used for scaling are l = 0 (for scaling lower 0) and u = 1 (for scaling upper 

1). 

 

We utilize scaling software “svm-scale” provided with the LIBSVM (Chang, Lin; 2010)  

(http://www.csie.ntu.edu.tw/~cjlin/LIBSVM/)  distribution. The command line will be: 

 

svm-scale –l 0 –u 1 –s micro_range  input_features > features_scaled 

 

where: 

- –s micro_range meanings to save scaling parameters to the file micro_range (for the 

training set preparation). For the test set, the parameter to use is –r micro_range, that 

indicates to use scaling parameters from the micro_range file; 

- input_features is the name of the input file that contains statistical evaluations of features 

set for each instance; 

- l = 0 (for scaling lower 0) and u = 1 (for scaling upper 1) 

 

 

3.3.3 Feature selection 

In complex classification problems using multiple descriptors or features, it is usually the case 

that the most strong signal is derived not from the values of single features but from 

interactions between different features. It is also possible that several features contain more or 

less redundant information or that some features are positively misleading for the 

classification of instances. Finally, the use of excess features can, in some situations, lead to 

“overfitting” of the model to the training set. In this case over-estimates of the accuracy of the 

method can be obtained as the hyperplane generated is too specific to the behaviour of the 
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training set used. Thus, the selection of combinations of features that can cooperatively assist 

in the discrimination is a very important step.  

 

We generated a script that automates SVM training and testing for all single features, ranking 

them initially for their capacity to discriminate between positive and negative instances. We 

then start with an SVM that uses only the most efficient feature and add the next two features 

in terms of how informative they are. We then exclude a single feature whose omission has 

minimal effect on the accuracy of the SVM. The cycle is repeated (adding 2 features and 

excluding 1) until all features have been incorporated into the SVM. Finally, we choose the 

feature combination that yields the most effective SVM. While this approach is heuristic in its 

selection of combinations of  effective features, it is quite widely used in the literature and the 

best feature combination selected is usually considered to be a good indication of the best 

features combination possible. Only the features selected in this analysis are used in the 

training of the final SVM.  

 

 

3.3.4 Model : Cross-validation,  Grid-search and training of the SVM 

There are two parameters for an RBF kernel: C and γ . It is not known beforehand which 

values of C and γ are best for a given problem; consequently some kind of model parameter 

search must be done. The goal is to identify good (C;γ ) so that the classifier can accurately 

predict unknown data (i.e. testing data). 

Overfitting occurs when a model is too specialized to the classification of a training set to be 

widely applied to real data. The cross-validation procedure can help to prevent the overfitting 

problem. In this procedure, different, randomly selected subsets of the original training set are 

used in an iterative training and testing cycle in order to select a model and parameters that 

will minimize overfitting. 

Fig.3.3 represents a binary classification problem to illustrate this issue. Filled circle and 

triangles are the training data while hollow circles and triangles are the testing data. 

The testing accuracy of the classifier in Fig.3.3a and Fig.3.3b  is not good since it overfits the 

training data. If we think of the training and testing data in Fig.3.3a and Fig.3.3b  as the 

training and validation sets in cross-validation, the accuracy is not good. On the other hand, 

the classifier in Fig.3.3d and Fig.3.3c  does not overfit the training data and gives better cross-

validation as well as testing accuracy. 
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Fig. 3.3 - An overfitting classifier (a,b) and a better classifier (c,d) 
(a) Training data and an overfitting classifier; (b) Applying an overfitting classifier on testing data; (c) Training 
data and a better classifier; (d) Applying a better classi_er on testing data.  ▲ and ●: training data;  ∆ and ○: 
testing data). 
 
 

We performed a grid-search on C and γ using cross-validation. We used the program grid.py 

available in the R-LIBSVM interface (http://www.csie.ntu.edu.tw/~cjlin/LIBSVM/) (Chang, 

Lin; 2010) which automates such a procedure. Various pairs of (C; γ) values are tried and the 

one with the best cross-validation accuracy is picked. The command line for this analysis is: 

 

python grid.py  features_scaled_selected > grid. features_scaled_selected 

 

where: 

 

- features_scaled_selected is the files scaled that contained only the selected features; 

- grid. features_scaled_selected is the file that contains the C and γ values 

 

We take the last set of values for C and γ  printed and train the SVM machine. 

[[local] 13 -3 98.6166  (best c=32.0, g=0.125, rate=98.9723)] 

 

3.3.5 Output of probabilities associated with classifications 

In addition to functions described until now, the LIBSVM package (Chang, Lin; 2010) 

(http://www.csie.ntu.edu.tw/~cjlin/LIBSVM/) allows us to train the SVM in such a way that 

probability scores can be associated with the classifications obtained. By including the option 
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“-b 1” with training and testing commands, we are able to output such scores. Thus we train 

the SVM with the command 

 

  svm-train –b 1 –c x –g x features_scaled_selected 

where: 

- -b specifies that we wish to train the machine to export  probability estimates;  

- -g (gamma) set the γ  parameter; 

- -c (cost) set the C parameter  

 

svm-train generates a model file  (features_scaled_selected.model). 

 

 

3.3.6 Test phase 

The test phase give us the prediction of each instances referring to model.  

Is possible to evaluate a known set of instances, measuring in this way the goodness and 

accuracy of the machine.  

Is possible to evaluate an  unknown set of instances, defining the classification as real 

instances or false instances. 

The general command line is: 

 

svm-predict  -b 1 test_set_scaled_selected features_scaled_selected.model > 

test_set_VS_model 

 

where: 

- -b is the probability estimates; 

- test_set_scaled_selected is the set of instances scaled to classify 

features_scaled_selected.model is the referring model; 

- test_set_VS_model is a file that contains the classification of each instance (“+1” as, 

real instance referring to the model and “-1” as false instance referring to the model)  

 

The number of negative instances that are erroneously classified as positives defines the false 

positives (FP), while the the number of positive instances that are erroneously classified as 

negative defines the false negatives (FN). 
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In addiction, on the screen is printed the overall accuracy of the prediction, but this not 

separated into false positives (FP) and false positives (FN). For our purposes we are 

principally interested in maintaining a low false positive rate for reasons described previously. 

Scripts were prepared to extract this information from the output files of the LIBSVM 

software (Chang, Lin; 2010) (http://www.csie.ntu.edu.tw/~cjlin/LIBSVM/). 

 

 

3.4 Features used to describe hairpins 

We selected 72 features that we hope could represent useful information to discriminate 

between a precursor of miRNA and non-miRNA hairpins. Given the extreme variability  of 

loop length in plant miRNA precursors, we use only the stem region of stem-loop structures 

to calculate statistics. 

 

The first step, before calculating feature values, is extracting from the folded sequence 

nucleotides corresponding to the stem portion (Fig.3.4). 

For this purpose we scan the secondary structure in order to find all nucleotides relationship 

in the structure. The scan starts simultaneously from the first symbol of the sequence (at the 

5’ terminus) and from the last symbol of the sequence (at the 3’ terminus). So 

computationally we use two different index (i, j) that, at the same time, scan the sequence in 

direction of the loop. We checked symbols (brackets or dots) that correspond to the j position 

and to the i position on the secondary structure. When inverted brackets were found, two 

paired bases were detected; when two dots are found, a mismatch or a bugle is detected; when 

a dot and a bracket are found, there is a nucleotide more in one of the arms of the hairpin (we 

need to increase or decrease one index).  

Each two nucleotides of a perfect base pairing were separated by the symbol “/” (for example 

G/C); each two nucleotide of an imperfect base pairing was separated by the symbol “-” (for 

example C-A), and in particular, in case of bugles, the absence of one nucleotide is defined 

with zero (for example: G-0). (Fig.4). 
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>ptc-MIR403c
GGUUUGUGCGUGGAUCUGAGGCCAUCACAACCGUCCACUACACGACCACCCAAUGGCUUUAGAUUCACGCACAAACUCG
(((((((((((((((((((((((((.......(((........)))......))))))))))))))))))))))))).. (-41.42)

>ptc-MIR403c
(((((((((((((((((((((((((.......((()))......)))))))))))))))))))))))))
GGUUUGUGCGUGGAUCUGAGGCCAUCACAACCGUCGACCACCCAAUGGCUUUAGAUUCACGCACAAACU

[G/U] [G/C] [U/A] [U/A] [U/A] [G/C] [U/A] [G/C] [C/G] [G/C] [U/A] [G/C] [G/U] [A/U] [U/A] [C/G] 
[U/A] [G/U] [A/U] [G/U] [G/C] [C/G] [C/G] [A/U] [U/A] [C-A] [A-C] [C-C] [A-C] [A-A] [C-C] [C-0] 
[G/C] [U/A] [C/G]

a

b

c

>ptc-MIR403c
GGUUUGUGCGUGGAUCUGAGGCCAUCACAACCGUCCACUACACGACCACCCAAUGGCUUUAGAUUCACGCACAAACUCG
(((((((((((((((((((((((((.......(((........)))......))))))))))))))))))))))))).. (-41.42)

>ptc-MIR403c
(((((((((((((((((((((((((.......((()))......)))))))))))))))))))))))))
GGUUUGUGCGUGGAUCUGAGGCCAUCACAACCGUCGACCACCCAAUGGCUUUAGAUUCACGCACAAACU

[G/U] [G/C] [U/A] [U/A] [U/A] [G/C] [U/A] [G/C] [C/G] [G/C] [U/A] [G/C] [G/U] [A/U] [U/A] [C/G] 
[U/A] [G/U] [A/U] [G/U] [G/C] [C/G] [C/G] [A/U] [U/A] [C-A] [A-C] [C-C] [A-C] [A-A] [C-C] [C-0] 
[G/C] [U/A] [C/G]

a

b

c

 
Fig. 3.4 – Definition of relations for each couple of bases along the stem for ptc-miR403c 
(a) typical output of RNAfold : hit name, sequence and secondary structure in bracket and dot annotation with its 
free energy; Our script eliminates the terminal bases no paired and the loop region (b) and giveus all base 
relations along the stem region starting from the 5’(c). Paired bases are separated by “/”, unpaired bases are 
separated by “-“. In case of bulges, if one or more nucleotide is missed, it will be replaced by a zeo “0” 
(example: [C-0]). 
  

 

Another step, before features calculating is to check that each hairpin presents a stable 

structure with a minimum free energy of folding less than  -20 kcal/mol. In addition we 

selected a lot of hairpins that contains higher A/U contents, but allowing at least 1 G/C 

pairing. We know that G/C pairing is an important characteristic of all ncRNAs, but a recent 

discovery asserts that in miRNAs A/U pairings is higher than other RNAs and that A/U 

pairings show close relationship with the biogenesis of mature miRNAs, indicating that the 

A/U content may be a useful characteristic of miRNA (Zhang, Song et al. 2010). 

 

 

3.5  Features describing sequence, secondary structure and thermodynamics of hairpins 

Triplet frequencies 

Given the encouraging performance of the triplet SVM classifier proposed by Xue et al. (Xue, 

Li et al. 2005) we started by re-implementing the features suggested in this article which 

consider the relative frequencies of pairing of different bases in different structural contexts in 

the stem region.  

For any 3 adjacent nucleotides, there are 8 (23) possible structure compositions: "(((", "((.", 

"(..", "(.(", ".((", ".(.", "..(" and "...". Considering the middle nucleotide among the 3, there are 
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32 (4 × 8) possible structure-sequence combinations, which we denote as "U(((", "A((.", etc. 

This defines the triplet structure-sequence elements. Fig.3.5 illustrates how a hairpin is 

represented using triplet elements. We exclude the terminal loop and external single-stranded 

regions of the hairpin and only consider the stem portions. The number of appearance of each 

triplet element is counted for each hairpin (pre-miRNA or pseudo pre-miRNA) to produce the 

32-dimensional feature vector. Frequencies were normalized. 

In detail, we use an empty array in which each element corresponds to a specific nucleotide 

interaction. In Fig.3.5 there is the array we prepared counted how many times each typology 

of interaction occurs. 

 

 
ACUGUGGAUCC....................GGAGACAGA 
.((((...(((....................))).)))). 
 
For any 3 adjacent nucleotides of stem, there are 8 possible 
structure compositions: 
 
(((   ((.   (..   (.(  .((  .(.  ..(  ... 
 
Considering the middle nucleotide among the 3, there are 32(a*8) 
possible stricture sequence combinations, which are denoted as: 
U(((, G.((, etc 
 
A * [ (((   ((.   (..   (.(  .((  .(.  ..(  ... ] 
C * [ (((   ((.   (..   (.(  .((  .(.  ..(  ... ] 
U * [ (((   ((.   (..   (.(  .((  .(.  ..(  ... ] 
G * [ (((   ((.   (..   (.(  .((  .(.  ..(  ... ] 
 
Fig.3.5 - Using the triplet elements to represent the local structure-sequence features of the hairpin.  
The triplet element is composed of the 3 continuous sub-structures and the nucleotide type at the middle. The 
appearances of all 32 possible triplet elements are counted along a hairpin segment, forming a 32-dimensional 
vector, which is then normalized to be the input vector for SVM Only stem portion (shadows regions) of the 
hairpin are computed. From (Xue, Li et al. 2005) modified 
 

 

Paired and unpaired frequencies 

For the stem region, we calculate the relative frequencies of all possible typologies of base 

interactions considering the 5’ arm of the hairpin as distinct from the 3’ arm. 

 

In detail, we use an empty array in which each element corresponds to a specific nucleotide 

interaction (bases involved in pairings, combinations of “correctly” juxtaposed paired 
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unpaired bases and nature of bases involved in asymmetric bulges). We then calculate a 

normalized count of the frequencies of each type of interaction between bases.  

The possible combinations considered are shown below, “A-C” is, for example, considered as 

distinct from “C-A” as the first letter always corresponds to the base found on the 5’ arm of 

the hairpin (Fig.3.6) 

 

("[A-A]","[A-C]","[A-G]",
"[U-U]","[U-C]","[U-G]",
"[C-C]","[C-A]","[C-U]",
"[G-G]","[G-A]","[G-U]",
"[A-0]","[U-0]","[C-0]",
"[G-0]","[0-A]","[0-U]",
"[0-C]","[0-G]","[A/U]",
"[U/A]","[C/G]","[G/C]",
"[U/G]","[G/U]")  

Fig.3.6. - Array used for computing paired and unpaired bases frequencies. 
Paired bases are indicated with “/”, while “unpaired bases are indicated with “-“. 
 

 

Complementary bases frequencies 

All typologies of paired bases along the stem (excluding the loop and the terminal region) 

were evaluated. The G/U base pairings was included, as is known to be common in miRNA 

precursor. This measure is distinct from those described previously as arm specificity is not 

considered. Frequencies were normalized to the number of paired bases. 
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Non-complementary bases frequencies 

We calculate the frequencies of 2 typologies of non complementary bases: upb x-x and upb x-o 

depending on the presence or not of a corresponding base on the other arm.  
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Thus: 

∑
n

i =1

ubpiubp =
nx-x

∑
n

w =1

ubp wubp =
nx-o

∑
n

i =1

ubpiubp =
n

∑
n

i =1

ubpiubp =
nx-x

∑
n

w =1

ubp wubp =
nx-o

 
 

Where n is the number of unpaired bases. 

 

 

Symmetry   

We define one pair of non-complementary bases as a mismatch, while longer or asymmetric 

stretches of non-complementary bases are considered as bubbles. We developed a specific 

measure of bulge symmetry: 

a : b 

where, given n bulges, a is equal to the sum of each shorter unpaired stretches of bases (x). 

∑
n

i =1
xia =∑

n

i =1
xi∑

n

i =1
xia =

 
 

where, given m bulges, b is equal to the sum of each longer stretch of unpaired bases (y) . 

∑
m

k =1
ykb =∑

m

k =1
yk∑

m

k =1
ykb =

 
The ratio a : b belongs: 

∑
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Thus for the hairpin in Fig.3.7 the calculation of ratio is a : b = 1 : 6.  

 

 

 

R T W
R T W

 
Fig.3.7 Our annotation for bulges and  mismatches. 
One pair of non-complementary bases as a mismatch (T), while longer or asymmetric stretches of non-
complementary bases are considered as bubbles (R and W). 
 

 

 

Thus, R and W are bulges, while T is a mismatch (according to our annotation) (Fig.3.7).  

In the bulge R there are two bases in one arm of the stem and zero in the other. The bigger 

number of unpaired bases is 2 while the lower is 0. 

In the bulge W there is 1 base in one arm of the stem and three bases in the other. The bigger 

number of unpaired bases is 3 while the lower is 1. 

Thus the ratio value is: 

a : b = (0 + 1) : (3+3) . 

 

The lower  ratio value, more asymmetric is the stem (as consequence the precursor). 

If there are no asymmetric bulges, the ratio is mathematically undefined, so we impose its 

value equal to 1 (maximal symmetry).  

 

 

Number of paired bases  for each nucleotide of the stem 

Given the stem portion (excluding loop and terminals), we calculate the fraction of all bases 

that are involved in paired interactions 

∑
n

i =1

pbiPB =
L

∑
n

i =1

pbiPB =
L
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Number of bulges  for each nucleotide of the stem  

We count the number of bases in the stem region not involved in paired interactions and 

lacking an unpaired counterpart on the other arm. The statistic isnormalized to the number of 

bases in the stem region. 

∑
n

z =1

bulg zbulges  =
L

∑
n

z =1

bulg zbulges  =
L  

 

Number of mismatches  for each nucleotide of the stem 

Given the stem portion (excluding loop and terminals), we count unpaired bases with a 

corresponding unpaired base on the opposite arm of the hairpin. 

∑
n

j =1

mis jmismatches =
L

∑
n

j =1

mis jmismatches =
L  

The value is normalized to the length of the stem 

 

MFE (minimum free energy) 

The calculation of mfe structures is based on dynamic programming algorithm originally 

developed by Zuker and Stiegler (Zuker and Stiegler 1981). Thus, the minimum free energy is 

calculated by RNAFold software by the Vienna RNA package (Mccaskill 1990; Hofacker, 

Fontana et al. 1994; Hofacker, Bernhart et al. 2004; Hofacker and Stadler 2006). 

A secondary structure on a sequence is a list of base pairs i, j with i < j such that for any two 

base pairs i, j and k, l with i ≤ k holds: 
i =k <=> j =l 

 

k < j => i <k < l <j 

 

The first condition implies that each nucleotide can take part in not more that one base pair, 

the second condition forbids knots and pseudoknots. The latter restriction is necessary for 

dynamic programming algorithms. A base pair k, l is interior to the base pair I, j, if i < k < l < 

j.  It is immediately interior if there is no base pair p, q such that i < p < k <l <q < j. For each 

base pair i, j the corresponding loop is defined as consisting of i, j itself, the base pairs 
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immediately interior to i, j and all unpaired regions connecting these base pairs. The energy of 

the secondary structure is assumed to be the sum of the energy contributions of all loops. As a 

consequence of the additivity of the energy contributions, the minimum free energy can be 

calculated recursively by dynamic programming (Zuker and Stiegler 1981; Mccaskill 1990; 

Hofacker, Fontana et al. 1994; Hofacker, Bernhart et al. 2004; Hofacker and Stadler 2006). 

Experimental energy parameters are available for the contribution of an individual loop as 

functions of its size, of the type of its delimiting basepairs and partly of the sequence of the 

unpaired strains. These are usually measured for T = 39 °C and 1 M sodium chloride solutions 

(Freier, Kierzek et al. 1986; Zhao, Yang et al. 2009; Andronescu, Pop et al. 2010). 

For the base pair stacking the enthalpic and entropic contributions are known separately. 

Contributions from all other loop types are assumed to be purely entropic. This allows to 

compute the temperature dependence of the free energy contributions: 

 

∆G stack = ∆T 37, stack -T∆ S37, stack 

∆G loop = T∆ S37, loop 

 

Where ∆G stack  is the conformational free energy of stack and ∆G loop  is the conformational free energy of loop. 

The structure (list of base pairs) leading to the minimum energy is usually retrieved later on 

by “backtracking” through the energy arrays (Hofacker, Fontana et al. 1994). 

The partition function for the ensemble of all possible secondary structures can be calculated 

analogously. 

The computation of the minimum free energy structure including the entire matrix of base 

pairing probabilities is considerably faster. Secondary structures are represented by a string of 

dots and matching parentheses, where dots symbolize unpaired bases and matching 

parentheses symbolize base pairs. 

All MFEs were expressed as negative kcal/mol 

 

 

AMFE (Adjusted MFE) 

Is the MFE of 100 nucleotides and was calculated by: 

MFE 
AMFE  =

L
* 100

MFE 
AMFE  =

L
* 100
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Where L corresponds to the length of RNA sequence (Zhang, Pan et al. 2006). 

MFEI (Minimal Folding Energy Index) 

Is the MFE divided for the %G+C content (Zhang, Pan et al. 2006; Ng Kwang Loong and 

Mishra 2007). 

MFE 
MFEI  =

C + G %

MFE 
MFEI  =

C + G %  
 

AMFE rather than MFE was a better parameter to distinguish miRNAs from rRNA and 

mRNA. However, the AMFE of more than 50% of tRNAs falls into the range of miRNAs 

 

 

RNAz- score 

The significance of a predicted MFE as calculated by RNAfold is difficult to interpret in 

absolute terms. It depends on the length and the base composition of the sequences (longer 

sequences and GC rich sequences tend to have lower MFE). To some extent, the AMFE and 

MFEI measures described above compensate for these considerations, although a measure of 

the significance of an MFE score is desirable.  Typically the significance of a MFE is 

estimated by comparing to many random sequences of the same length and base composition. 

If µ is the mean and and σ the standard deviation of the MFEs of many random sequences a 

convenient normalized measure for the significance of the native sequence with MFE  is a z-

score: 

MFE - µz-score =
σ

MFE - µz-score =
σ  

 

The parameters µ and σ are, by construction, functions of length and base composition. 

However, re-sampling methods to estimate the z-score are extremely time consuming. 

Washietl et al. (Washietl, Hofacker et al. 2005) demonstrated that a relatively simple 

regression model, implemented in a SVM is capable of reliably and quickly estimating this 

statistic. We have taken part of the code implemented in their RNAz software for the 

detection of conserved RNA structures from multiple sequence alignments and customized it 

to allow the estimation of z-scores for MFEs of single sequences. The z score is used as a 

feature in our SVM for ab-initio miRNA discovery. 
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3.6 Generation of  SVM 

Apart from the formulation of features relevant to the discrimination of positive and negative 

instances and the avoidance of overfitting problems during training, the performance of 

machine learning methods is extremely dependent on the quality of annotation and 

representativeness of the data instances used in the training phase. In the case of miRNAs, 

this is means that it is important to have both an accurately annotate collection of real miRNA 

precursors to use as a positive training set and additional positive set to use in testing of the 

trained SVM. Additionally, we require a set of non-miRNA hairpins that would be 

representative of non-miRNA hairpins in the genome that we wish to study. The positive set 

can be obtained from databases of characterized miRNAs (for example miRBase (Griffiths-

Jones 2006; Griffiths-Jones, Saini et al. 2008)) even if there is accumulating evidence that a 

significant proportion of sequences annotated as miRNA precursors in some species are not 

real miRNAs (Pam Green, personal communication). However, formulation of the negative 

set is more problematic as it is difficult to be confident that hairpins extracted randomly from 

genomic sequence are indeed non-microRNA hairpins (the annotation of microRNAs from at 

least most genomes is thought to be far from complete). In the development of the triplet 

SVM classifier, Xue et al. (Xue, Li et al. 2005) used hairpins derived from annotated coding 

regions, but with similar overall thermodynamic stability to known pre-miRNAs as a negative 

control set. The reasoning is that it is not thought that genuine miRNAs derive from coding 

regions in plants or animals, and so these hairpins can confidently be labelled as negative 

instances. Of course there is a risk that compositional or even structural constraints on coding 

regions might result in their characteristics not being representative of genomic hairpins in 

general, however, the encouraging results obtained by this approach led us to follow a similar 

strategy. 

 

 

3.7  Initial evaluation of our machine learning strategy: Feat-SVM 

Xue et al., applied Support Vector Machine (SVM) to 32 features focused on information 

derived from sequence and pairing of every 3 adjacent nucleotides in candidate precursors, 

reaching around 93% sensitivity with 12% false positives (Xue, Li et al. 2005). Our feature 

set includes the 32 features used in the triplet SVM classifier and many additional features 

described above. 
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3.7.1.1  Datasets and Results 

In this section, we first describe how suitable datasets for training and testing the devised 

SVM strategy were prepared. Then we consider results obtained from the trained SVM.  

 

Dataset 

To obtain an initial evaluation of our approach, we trained our SVM with the same dataset 

used by Xue et al. (Xue, Li et al. 2005) and compared the performance with that of the Triplet 

SVM classifier on the same test sets as used in the initial study: 

 

 

Training set 

Positive: 163 real human miRNAs downloaded from the release 5.0 of the miRNA registry 

miRBase(Griffiths-Jones 2006; Griffiths-Jones, Saini et al. 2008). All miRNAs used in this 

dataset, provided by Xue et al. (Xue, Li et al. 2005) have a short loop region lacking 

additional predicted secondary structure (one loop structure in our terminology). 

Negative: 168 hairpins derived from coding region (CDSs) of human RefSeq genes with no 

known alternative splice events. The CDS sequences are extracted according to the UCSC 

refGene annotation tables (Karolchik, Baertsch et al. 2003; Karolchik, Kuhn et al. 2008). 

 

 

Test set  

Positive: 69 human miRNAs downloaded by miRBase (Griffiths-Jones, Saini et al. 2008) and 

not included in the positive training set 

Negative: 1000 hairpins derived from coding region (CDSs) of human RefSeq genes with no 

known alternative splice events. The hairpins was extracted from the genome region of 

positions 56,000,001 to 57,000,000 on human chromosome 19. 

 

 

Feature selection 

Feature selection was performed as presented previously. The list of selected features is 

provided in the first column of Tab.3.1. We note that a substantial number of the additional 

features included in our feature set were selected in the most effective group recovered by our 

heuristic procedure 
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Tab.3.1 Features selected by Feat-SVM and Plant-Bias SVM 
With a “x” are indicated the selected features 
 

Number of feature Feature type Feat-SVM Plant-Bias SVM 

1 A...  x 

2 A..(  x 

3 A.(. x x 

4 A.(( x x 

5 A(..  x 

6 A(.( x  

7 A((. x x 

8 A((( x x 

9 G... x x 

10 G..( x x 

11 G.(. x x 

12 G.(( x x 

13 G(.. x x 

14 G(.( x x 

15 G((. x x 

16 G((( x x 

17 C... x x 

18 C..( x x 

19 C.(. x x 

20 C.(( x x 

21 C(..  x 

22 C(.(  x 

23 C((. x x 

24 C((( x x 

25 U...  x 

26 U..( x x 

27 U.(. x x 

28 U.(( x x 

29 U(..  x 

30 U(.( x x 

31 U((. x x 

32 U((( x x 

33 A-A x x 

34 A-C x x 
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35 A-G x x 

36 U-U x x 

37 U-C x  

38 U-G x x 

39 C-C x x 

40 C-A x x 

41 C-U x x 

42 G-G x x 

43 G-A x x 

44 G-U x x 

45 A-0  x 

46 U-0 x x 

47 C-0   

48 G-0 x x 

49 0-A  x 

50 0-U  x 

51 0-C x x 

52 0-G x x 

53 A/U  x 

54 U/A x  

55 C/G x x 

56 G/C x x 

57 U/G x x 

58 G/U x x 

59 C-G /tot_paired_bases x x 

60 A-U/ tot_paired_bases x x 

61 G-U/ tot_paired_bases x x 

62 X-0/ tot_unpaired_bases x x 

63 X-X/ tot_unpaired_bases x x 

64 Symmetry x x 

65 Pairings/stem_length  x 

66 Bulges/stem_length  x 

67 Mismatches/stem_length x x 

68 Stem_length x x 

69 MFE x x 

70 AMFE x x 

71 MFEI x x 

72 RNAz-score  x 
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Results 

The graph and the table in Fig.3.8 (below) shows the accuracy of classification of test set 

instances by the Triplet SVM classifier and our machine (Feat-SVM). 

The Triplet SVM classifier is able to classify correctly 64 of 69 real miRNA precursors (a true 

positive (TP) rate or sensitivity of 92.75 %).  

Our SVM (Feat-SVM), correctly classifies 68 of the 69 real miRNAs (a TP rate, or sensitivity 

of 98.55%).  

Total sensitivity and specificity
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Fig.3.8 – Accuracy of classification of test set instances by the Triplet SVM classifier and Feat-SVM 
TP= false positives; FN=false negatives. In the x axis 1= sensitivity; 2=false positives rate 
 

With respect to the incorrect classification of negative instances (hairpins derived from coding 

regions) as miRNAs,  the Triplet SVM classifier incorrectly classifies 190 of 1000 hairpins as 

miRNAs (False Positive (FP) rate of 11.9%, or a specificity of 88.1%). Our SVM (Feat-

SVM), instead classify correctly the 96,30 % of negative test set (1000 hairpins derived from 

CDS) so the false positive rate decreases to 3.70 %. 

 

We conclude that our SVM improves both sensitivity and specificity of classification with 

respect to the Triplet SVM classifier. However, the false positive rate (3.7%) in this 

experiment is still too high to make the approach practical for ab-initio prediction of miRNAs 

in a large genome for reasons discussed previously (Fig.3.8) 

 

 

 

 Triplet SVM accuracy  Feat-SVM accuracy  Total instances 

Positive test set TP  92,75 FN 7,25 TP  98,55 FN 1,45 69 

Negative test set TN 88,10 FP 11,90 TN 96,30 FP 3,70 1000 
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Output of probabilities associated with classifications 

In addition to functions described until now, the LIBSVM package (Chang, Lin; 2010) 

(http://www.csie.ntu.edu.tw/~cjlin/LIBSVM/) allows us to train the SVM in such a way that 

probability scores can be associated with the classifications obtained. By including the option 

“-b 1” with training and testing commands, we are able to output such scores. Fig.3.9 shows 

the distribution of probability scores for training and testing phases in the experiment 

described above. 
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Fig.3.9 - Distribution of probability score for training and testing test of Feat-SVM 
We can see that the clear majority of negative instances are associated with extremely low probabilities of being 
miRNAs, while the majority (>90%) of real miRNAs are classified as such with high confidence (a score greater 
than 0.9) (Fig.3.9). These findings give further support to the conclusion that the features we are using give good 
signal with respect to the status of hairpin structures, and indeed that real miRNA precursors do indeed possess 
distinct intrinsic properties that render them functional.  
 

 

Cross species analysis 

Xue at al. (Xue, Li et al. 2005) demonstrated that their Triplet SVM classifier showed similar 

sensitivity in the recognition of pre-miRNAs from other plant and animal genomes, even 

when the training had been performed exclusively on human sequences. After experimenting 

on the human data, we applied our SVM classifier, trained with human data, to other species 

to see if the additional features used retain theor value across large evolutionary distances.  
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The release 5.0 of the miRNA registry (Griffiths-Jones, Saini et al. 2008) contained 1138 pre-

miRNAs entries from 9 species besides human (Caenorhabditis elegans, Caenorhabditis 

briggsae, Drosophila melanogaster,  Danio rerio, Gallus gallus, Mus musculusi, Rattus 

norvegicus, Arabidopsis thaliana, Oryza sativa ). 
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Species Triplet SVM Feat-SVM Total haipins 

Mus musculus 94,4 100 36 

Rattus novegicus 80,0 84,0 25 

Gallus gallus 84,6 100 13 

Danio rerio 66,7 83,0 6 

Caenorhabditis elegans 86,4 90,90 110 

Caenorhabditis briggsae 95,9 97,26 73 

Drosophila melanogaster 91,5 94,36 71 

Oryza sativa  94,8 98, 95 96 

Arabidopsis thaliana 92,0 98,66 75 

 
Fig.3.10 – Sensitivity  of TripletSVM and Feat-SVM for the crossing species analysis 

 

3.8  Evaluation of our second machine learning strategy: Plant-Bias SVM 

For an ab-initio method to be suitable for analysis of large genomes, it is desirable that the 

sensitivity should be high, but it is essential that the false positive rate should be low, to avoid 

the generation of many false positive predictions when very large numbers of candidate 
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hairpins are tested. It has been shown that the use of imbalanced datasets (the situation when 

one class is much more highly represented than the other in training or testing) can effect the 

accuracy of SVM-based classifiers (for detailed discussion see (Batuwita, Palade 2009)). The 

LIBSVM software (Chang, Lin; 2010) (http://www.csie.ntu.edu.tw/~cjlin/LIBSVM/) 

incorporates the possibility to address this problem by specifying, a-priori, an expected 

relative frequency between positive and negative instances. While we do not know a 

meaningful value for this parameter, we performed several tests to examine the effect of a-

priori class frequency weighting on the performance of our SVM, the optimal results obtained 

and presented below used a weighting of 10:1 in favour of  non-miRNA instances. The syntax 

for SVM training in this case is a follows: 

 

svm-train -b 1 -w1 1 -w-1 10 –c 32.0 –g 0.125 features_scaled_selected 

 

where: 

- -w1 is the weight of true instances (+1)  

- -w-1 is the weight of false instances (-1)  

 

Additionally, while the tests presented previously suggest that the sensitivity of our method in 

plants remains high, even when the SVM was trained with human data, we wished to develop 

a system which was trained on plant microRNA and negative training data.   

 

3.8.1  Datasets and Results 

In this section, we first describe how suitable datasets for training and testing the devised 

SVM strategy were prepared. Then we consider results obtained from the trained SVM.  

 

Positive training set 

For the positive training set, we extracted all known miRNA of Arabidopsis and Poplar from 

miRBase, the searchable database of published miRNA sequences and annotation. 

For each hairpin we predict secondary structures of single stranded RNA precursor using the 

software RNAfold from the Vienna package (Hofacker, Fontana et al. 1994; Hofacker 2003; 

Hofacker, Bernhart et al. 2004). 
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We selected randomly 80% of all known miRNAs from Arabidopsis and Poplar excluding all 

precursors belonging to the miR160 family and obtained a total of 228 precursors, 97 from 

Arabidopsis, 131 from Poplar . 

 

 

Negative training set 

For the negative training set we continued to extract hairpins from coding regions as is not 

thought that miRNAs can originated from CDSs.  

We collected all annotated coding region from the Arabidopsis Information Resource (TAIR), 

the database of genetic and molecular biology data for Arabidopsis thaliana 

(http://www.arabidopsis.org/). 

For each coding region we predict secondary structures of single stranded RNA using the 

software RNALfold from the Vienna package (http://www.tbi.univie.ac.at/~ivo/RNA/) 

(Hofacker, Fontana et al. 1994; Hofacker 2003; Hofacker, Bernhart et al. 2004). 

This software computes locally stable RNA secondary structure with a maximal base pair 

span. For a sequence of length n and a base pair span of L, the algorithm uses only O(n+L*L) 

memory and O(n*L*L) CPU time. We use -L 400 -d2 –noLP. Thus we "scan" all Arabidopsis 

coding regions for short RNA structures. The output consists of a list of secondary structure 

components of size <= L, one entry for line. Each output line contains the predicted local 

structure its energy in kcal/mol and the starting position of the local structure (Fig).  

We prepared a script in PERL for extracting all sequences and the correspondent secondary 

structure from the output of RNALfold. In fact each coding region can contain several hairpin 

combinations.  

The script, through pattern matching, finds first all “>” symbols that represent the title of the 

CDS region analysed. If the following lines contain symbols “(“ and “)” , the script splits each 

line by the whitespace character, “\s”, and inserts each element into an array (“array1”). The 

first element at the zero position of array is the textual representation of secondary structure, 

the second element at the first position of array corresponds to the minimum folding energy  

calculated by the software, and finally the last element of at the second position of the array is 

the start position of the coding region analyzed. If the following lines contains “A” or/and 

“C” or/and “G” or/and  “U” the script splits each alphabetical letter that corresponds to the 

nucleotides of the entire coding sequence and then inserts each of them into an array 

(“array2”). Finally, the script detects the correct fraction of the coding sequence whose the 
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secondary structure corresponds. Scans the “array1” for finding the start position of the 

fraction and extracts from the “array2” the first nucleotide. Then, scan all the “array2” adding 

a number of nucleotides equals to the secondary structure length. 

Because of the huge the number of hairpins that could derive from a coding region (3791544 

in our case), we used some filters to decrease their number and select hairpins that could have 

very similar characteristics to real miRNA precursors. Thus, we selected all the hairpins that 

have a minimum folding energy smaller that -15 (Bonnet, Wuyts et al. 2004; Clote, Ferre et 

al. 2005) and that are longer that 70 nucleotides as suggested in published literature (Bartel 

2004) reducing  the number of hairpins recovered from CDSs to 49078. 

The next step was to select hairpins that don’t share any 20mers sequences between them. In 

detail, the strategy was to create two lists or array: one (“ListA”) that contained all the 49078 

hairpins and another, “ListB”, initially empty. Thus, for each sequence of the “ListA”, we 

checked that no 20mers of “ListB” sequences was a subsequence of hairpins of the “ListA”. If 

so, the sequence was transferred into the “ListB” and considered for the negative training set. 

Because of the “ListB” was initially empty, the first hairpin sequence of the “ListA”, was 

immediately considered for the negative training set and passed directly into the “ListB”.  

We choose this strategy to minimize the inclusion of real unknown miRNA families into the 

negative training set. We used the propriety according to which miRNAs are grouped into 

families and a family can be spread into different species or sometimes can be limited to a 

species (lineage-specific). Usually a family contains many mature miRNAs with identical or 

very similar sequences. Thanks to our strategy, we hope to have minimized precursors 

specifying miRNAs belonging to unknown miRNA families. Our final negative training set 

contained 2032 hairpins derived from coding regions and with features very similar to those 

of miRNAs. 

 

 

Feature Selection 

Feature selection was performed as presented previously. The list of selected features is 

provided in the second column of Tab.3.1.  The total number of features selected by our 

heuristic procedure is greater than in the previous experiment. Only the frequency of U-C 

pairings in the stem region is excluded from both analyses. 
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Test set 

For evaluation of the new SVM we considered several positive test sets: 

• 379 real miRNAs downloaded by miRBase (Griffiths-Jones, Saini et al. 2008) and not 

included in the positive training set in order test also inter-plant exchangeability of the 

method (23 from Arabidopsis, 33 from Populus, 185 from Oryza, and 138 from Vitis); 

• the miR160 family in Arabidopsis, Oryza, Populus and Vitis (this family was excluded 

from the training set, thus its detection should not be influenced by exposure to 

homologous sequences during training); 

• 69 human miRNAs downloaded from miRBase  (to perform a test of the sensitivity of 

the plant-trained system on animal sequences) 

 

Following the same methodology used to generate negative training sets we generated 22456 

hairpins from Arabidopsis thaliana CDS, 2416 from Vitis vinifera and 2223 hairpins from 

Oryza sativa for use in evaluation of false positive rates. 

 

 

Results 

The sensitivity and false positive prediction rates for the new SVM and those of the original 

Triplet SVM Classifier are shown in Fig.3.11-15. We note that the new SVM has a sensitivity 

for real miRNAs that is comparable to that of the Triplet SVM Classifier, although we 

detected the 98, 55 % of human miRNAs in contrast with the 92,75% of  Triplet SVM and 

correctly classified all members of the Arabidopsis and poplar miR160 families that were not 

used in training. 

However, while the triplet SVM Classifier continues to yield false positive rates in the range 

of 15-20% in this analysis, our plant-specific weighted classifier greatly reduces false positive 

predictions, both with respect to the Triplet SVM Classifier and with respect to our initial 

SVM. In fact, the overall FP rate of 0.52% is closer to a level that might be considered useful 

to perform genome-wide ab-initio pre-miRNA prediction. However, while a false positive 

rate of 0.5% seems impressive, it will still result in unacceptable levels of wrong predictions 

when the millions of stable hairpins predicted in a large genome are tested. 
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 Plants Triplet SVM % Plant-Bias SVM % Total 

Arabidopsis thaliana TP 95,65 FN 4,35 TP 95,65 FN 4,35 23 

Populus trichocarpa TP 75, 75 FN 24,25 TP 84,84 FN 15,16 33 

Oryza sativa TP 92, 97 FN 7,03 TP 91,35 FN 8,65 185 

Vitis vinifera TP 90,57 FN 9,43 TP 84,89 FN 15,11 138 

R
ea

l p
la

nt
 m

iR
N

A
s 

Tot miRNA TP 90,76 FN 9,24 TP  88,91 FN 11,09 379 

Arabidopsis thaliana TN 83,42 FP 16,58 TN 99,61 FP 0,39 22456 

Oryza sativa TN 85,65 FP 14,35 TN 98,28 FP 1,72 2223 

Vitis vinifera TN 79,88 FP 20,12 TN 99,37 FP 0,63 2416 

H
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Tot hairpins from CDS TN 83,28 FP 16,71 TN 99,48 FP 0.52 27095 

 
Tab.3.2. – Sensitivity and specificity of  Triplet SVM and Plant-Bias SVM 
TP= true positives; FN=false negatives; TN= true negatives; FP=false positives 
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Fig.3.11 – Sensitivity and false positives rate of Triplet SVM and of Plant-Bias SVM  for Arabidopsis 
thaliana 
Sensitivity was calculated on 23 known miRNAs downloaded from miRBase (Griffiths-Jones, Saini et al. 2008), 
specificity on 22456 hairpins generated from coding regions 
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Fig.3.12 – Sensitivity and false positive rate of Triplet SVM and of Plant-Bias SVM  for Oryza sativa 
Sensitivity was calculated on 185 known miRNAs downloaded from miRBase (Griffiths-Jones, Saini et al. 
2008), specificity on 2223 hairpins generated from coding regions 
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Fig.3.13 – Sensitivity of Triplet SVM and of Plant-Bias SVM  for Populus thritocarpa 
33 ptc-miRNAs was  downloaded from miRBase (Griffiths-Jones, Saini et al. 2008) 
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Fig.3.14 – Sensitivity and false positive rate of Triplet SVM and of Plant-Bias SVM  for 138 known 
miRNAs and 2416 hairpins derived from coding regions of Vitis vinifera 
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Fig.3.15 – Total sensitivity and  false positive rate of Triplet SVM and of Plant-Bias SVM 
Sensitivity was calculated on 379 known miRNAs downloaded from miRBase (Griffiths-Jones, Saini et al. 
2008), while the false positive rate on 27095 hairpins generated from coding regions 
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In Fig.3.16 we can see that the clear majority of negative instances are associated with 

extremely low probabilities of being miRNAs, while the majority (>90%) of real miRNAs are 

classified as such with high confidence (a score greater than 0.9). These findings give further 

support to the conclusion that the features we are using give good signal with respect to the 

status of hairpin structures, and indeed that real miRNA precursors do indeed possess distinct 

intrinsic properties that render them functional.  
 

 

 

 
Fig.3.16. Distribution of probability score for training and testing test of Plant-Bias SVM 
 

 

3.9  Conclusions and future directions 

We have demonstrated that the performance of existing SVM-based pre-miRNA classifiers 

can be substantially improved by the addition of extra features, through careful feature 

selection and with the use of class frequency weighting approaches. The minimization of false 

positive rates necessary for the implementation of whole genome ab-initio miRNA prediction, 

comes, in our hands, at the expense of a small loss of sensitivity. It should be stressed that 

despite our best efforts, we can not be completely sure that all instances used in training or 

testing (positive or negative cases) are indeed correctly annotated. This is to say that the 

results obtained could be a slight under-estimation of the performance of the classifier if some 

instances labelled as real miRNAs are not really functional, or vice-versa. 
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Despite the improvements in specificity demonstrated here, we do not yet consider the 

method presented here to be suitable for whole genome scans. With 4 million input hairpins 

(the number of hairpins of length at least 70 bases with MFE < -15 kcal/mol that we detect in 

a genome-wide scan of Vitis vinifera), we might still expect to recover around 20,000 false 

positive predictions. This number is too high to be used to direct manual or even moderately 

high throughput validation experiments. 

 

In the last 2 or 3 years, efforts towards detection of lineage-specific miRNAs have, in general, 

shifted away from ab-initio prediction strategies and towards the study of ultra-high 

throughput smallRNA sequence data (see introduction and Chapter 4 of this thesis). In this 

latter type of approach, smallRNAs are mapped to a reference genome, and pairs of sequences 

that could represent miRNA/miRNA* duplexes are used to define novel miRNAs. Despite it’s 

non-applicability to perform genome-wide ab-initio miRNA predictions, we have 

incorporated our classifier into an analytical pathway for the detection of miRNAs from deep 

sequence data, and as shown in the next chapter, probability scores from the SVM can be used 

to rank predictions from deep sequence data for experimental validation. 
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Chapter 4 
 

MiRNA/miRNA* detection and prediction of putative lineage specific miRNAs 

 

4.1  Introduction 

Ultra deep sequencing of plant smallRNAs offers the possibility to identify novel and 

potentially lineage specific miRNAs. However, given the huge volume of data generated, and 

the fact that many or even most smallRNA sequences do not correspond to miRNAs, but to 

other small interfering RNAs or even to degradation products of other RNAs, it is necessary 

to use specific bioinformatics methods in the interpretation of such data. Clusters of reads that 

map on the genome with the patterns expected for processed precursors (strand specific, 

predominant miRNA and miRNA* species) can indicate the presence of miRNA genes 

without obvious homology to annotated miRNAs. However, exhaustive analysis of all 

possible secondary structures involving all reads mapping close together on the genome 

would be extremely computationally demanding. Several bioinformatics approaches have 

been used to efficiently filter large quantities of NGS smallRNA data, and to discover loci 

showing typical patterns of miRNAs (Friedlander, Chen et al. 2008; Moxon, Jing et al. 2008). 

 

In miRDeep (Friedlander, Chen et al. 2008) and miRCat (Moxon, Schwach et al. 2008), 

which are widely used for this purpose, reads are mapped to the reference genome, and 

typically the reads mapping to annotated structural RNAs (tRNA, rRNA snoRNA etc) and 

highly repetitive regions are excluded. The next filter is to identify regions with 2 very short 

and well defined  peaks of read density close together on the same strand with a low number 

of reads deriving from the antisense strand (potential miRNA/miRNA* pairs). Only if these 

strict definitions are met will the relatively slow step of sequence extraction and secondary 

structure prediction be performed. This last step is important to ensure that the candidate 

miRNA/miRNA* pair can indeed form a duplex in a predicted precursor structure that 

conforms to some minimal energetic parameters. Such a strategy can be optimized to quickly 

search for loci that conform to relatively stringent criteria for miRNA gene annotation 

(Meyers, Axtell et al. 2008). 

 

However, it is thought that younger (often novel and lineage specific) miRNA genes may 

typically by processed in less precise ways than the highly conserved miRNAs that are more 



 101

characterized in the literature and used to establish the “expected” patterns of miRNA 

processing. Such miRNA genes might show atypical hairpin structures, imprecise cleavage, 

or unusual miRNA/miRNA* lengths. Furthermore, several miRNA precursors are known to 

produce more than one mature miRNA/miRNA* pair (Bologna, Mateos et al. 2009; Schwab 

and Voinnet 2009). This type of precursor cleavage pattern is likely to be difficult to detect 

with miRDeep as peaks of read mapping density corresponding to the miRNA and the 

miRNA* will be too long to be recognized as miRNA-like patterns. 

 

 

4.2 An alternative approach for the detection of novel miRNA precursors with high 

throughput  smallRNA sequence data.  

We wished to develop a method for the detection of novel miRNA precursors that would be 

able to detect precursors that are processed to give canonical patterns of miRNA/miRNA* 

products (Kurihara and Watanabe 2004; Meyers, Axtell et al. 2008), but also precursors that 

produce multiple stable products and precursors that produce significant quantities of non-

specific smallRNA products (Bologna, Mateos et al. 2009; Schwab and Voinnet 2009). We 

thus wished to avoid using the detection of discrete peaks of tag mapping density on the 

reference genome as the first filtering step. As an alternative, we developed a rapid in-silico 

assay to determine whether any two tags could possibly constitute a miRNA/miRNA* pair 

without extracting genomic sequence information and modelling potential secondary 

structures. The trick we used was to search for pairs of reads that could form complementary 

duplexes with a stretch of at least 7 complementary bases between the 2 reads generating a 

duplex with potentially 3’ overhangs of one or two bases. This is extremely fast to perform 

and means we can exclude most irrelevant candidates before modeling the secondary structure 

of potential precursors. We do not attempt to establish the most stable complimentary 

structure between two reads, but we simply juxtapose the sequence of the read that maps in 

the upstream position of the genomic sequence with the reversed sequence of the second read 

in ways that would allow 3, 2, 1 or 0 base 3’ overhangs if the sequences were complimentary 

in a hairpin structure (Fig.4.1). In this way, we do not need to worry about potential short 

asymmetric bulges in the miRNA/miRNA* structure but we can quickly identify pairs 

potentially capable of forming duplexes with extensive complementarity. Observation of the 

patterns of miRNA/miRNA* interactions in characterized miRNAs from miRBase and 

empirical testing of different parameter settings led us to accept only pairs with at least 7 
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consecutive paired bases. These settings maximize sensitivity of the analysis with respect to 

known miRNAs while minimizing the amount of false positive pairs that must be modeled for 

secondary structure and other characteristics.  

In addition to this test, we employed several other more standard filters to eliminate candidate 

loci that were unlikely to represent real miRNA precursors. The pipeline that was 

implemented is described schematically in Fig.4.1. 
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Fig. 4.1 – Pipeline for teh prediction of new miRNAs. 
The pipeline is divided into several steps. After mapping tags into the genome (Map reads to genome), we 
selected all putative miRNA/miRNA*that can yield hybrids with at least 7 consecutive paired bases to define 
genomic coordinates of putative miRNA precursor sequences (Potential miRNA/miRNA*. After folding each 
structure (Folfing), was selected all miRNA/miRNA* that presents different types of overhangs at their 3’ ends 
(2-2 = perfect miRNA/miRNA*, while 1-2, 2-1 , 1-1 = imperfect miRNA/miRNA*).Each hairpin was evaluated 
by a classificatory (SVM=Support Vector Machine). With the SVM score and the integration of other 
information  (annotation into genome, expression level..) selected miRNA candidates are ranked. 
 

 

In summary: adapter sequences added to smallRNAs during preparation for sequencing were 

removed as described in previous chapters using custom scripts. Identical reads were merged 

into clusters and the frequency with which each sequence was observed was recorded. Unique 

sequences were mapped tags into the genome with the program SOAP (Li, Li et al. 2008) 

accepting only perfect matches. The first criteria was that the distance between each pair of 
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tags mapped on the genome could not be bigger that 500 bp, as this corresponded to the 

maximal length of a precursor of a well characterized plant miRNA from miRBase (Griffiths-

Jones, Saini et al. 2008) when the analysis was performed. In addition, we take into account 

only tags that do not map perfectly to more than 100 genomic loci in order to exclude reads 

deriving from extremely repetitive regions and which are unlikely to represent true miRNAs. 

Finally, we consider as candidate miRNA/miRNA* pairs only pairs of sequences where the 

total frequency of reads observed for the pair was greater than 10. This filter excludes 

comparisons between pairs of reads that are observed only extremely infrequently and would 

be unlikely to correspond to peaks of density detected by other methods. Pairs of reads that 

follow the above rules are subjected to the rapid test for potential miRNA/miRNA* pairs that 

was previously described.  

 

Pairs of reads that can yield hybrids with at least 7 consecutive paired bases are used to define 

genomic coordinates of putative miRNA precursor sequences (Fig.4.2).  

 

5’- UUCCAUCUCUUGCACACUGGA   -3’
|||..|||.|......|.

3’- AUAAGGUAGGGCACGUGUGGU      -5’ longest complimentary 
stretch=3

5’- UUCCAUCUCUUGCACACUGGA   -3’
|||||||||.|||||||||

3’- AUAAGGUAGGGCACGUGUGGU     -5’ longest complimentary
stretch=9

5’- UUCCAUCUCUUGCACACUGGA   -3’
.|.|...|||.......|.|

3’- AUAAGGUAGGGCACGUGUGGU    -5’ longest complimentary
stretch=3

5’- UUCCAUCUCUUGCACACUGGA   -3’
|....|.|||||..|||...|

3’- AUAAGGUAGGGCACGUGUGGU   -5’ longest complimentary
stretch=5

 
Fig. 4.2 – Generation of the stable hybrid. 
Example of a potential miRNA/miRNA* duplex.  In this duplex, the pairing that allows the selection is the 
second in which at least 7 nt are paired. 
 

For this step, we rely on the observed tendency for miRNA/miRNA* pairs to be often situated 

towards the base of pre-miRNA hairpin structures (Bernstein, Caudy et al. 2001; Lee, Kim et 

al. 2004; Vermeulen, Behlen et al. 2005), as with comparative pre-miRNA prediction tools 

such as microHARVESTER (Dezulian, Remmert et al. 2006) once the genomic coordinates 

of a candidate miRNA/miRNA* pair are known, extensions of 10 bases 5’ and 3’ of the limits 

of the miRNA/miRNA* pair are used to define putative precursor sequences. Even errors in 

this assumption are unlikely to be problematic as it is known that miRNA precursor structures 
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tend to assume similar secondary structures even when the precise coordinates of the hairpin 

are changed, unlike non-miRNA hairpin structures (Bonnet, Wuyts et al. 2004; Borenstein 

and Ruppin 2006; Lee and Kim 2008)  
 
The genomic sequence of a putative pre-miRNA structure was extracted and the global most 

stable secondary structure was estimated using RNAFold (Mccaskill 1990; Hofacker, Fontana 

et al. 1994; Hofacker and Stadler 2006). RNAfold exports a textual representation of the 

predicted secondary structure where each bracket corresponds to a base-pairing, in particular 

“(“ pairs with “)”, while each dot “.” corresponds to a base not paired (it could be  mismatch 

or a base in excess). For example loops are represented uniquely by dots, while stems contain 

a variety of base parings, bubbles, mismatches (Fig.4.3). 
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(((((.((((.....)))))))))

 
Fig. 4.3 - Textual representation of secondary structure, according to RNAfold. 
Each bracket corresponds to a base-pairing, in particular “(“ pairs with “)”, while each dot “.” corresponds to a 
base not paired (it could be  mismatch or a base in excess). 
 
 

In order to allow rapid evaluation of predicted secondary structures, we developed a script in 

PERL able to scan all base pairing possibilities using the textual representation of secondary 

structure. The textual secondary structure could be very complex, as in case of loop structures 

that contain additional secondary structure elements (we use the term multi-loop hairpins). 

Because a mature miRNA (with its corresponding miRNA*) is usually located at the 

beginning of the hairpin (or base of the stem) (Kim 2005; Zeng, Yi et al. 2005; Seitz and 

Zamore 2006), we transform each multi loop hairpin into a single loop one by conceptually 

dissolving secondary structures that fall within the “loop” of a potential stem structure defined 

by the positions of the putative miRNA and miRNA* sequences (Fig.4.4). For the analyses 

we perform, in practice, we don’t need structural information for other part of the hairpin with 



 105

the exception of the stem nearest to the 5’ and 3’ terminus of the predicted structure. A multi-

loop hairpin thus becomes a single stem with a long loop (single-loop hairpin). 

5’ 5’3’ 3’

19 nt 19 nt

5’ 3’

3’5’

5’ 5’3’ 3’

19 nt 19 nt

5’ 3’

3’5’

 
Fig. 4.4 Example of how we manage a multi-loop hairpin. 
miRNA/miRNA* is located at the base of the stem (Kim 2005; Seitz and Zamore 2006) and usually the stem is 
bigger than 19 nt. Taking into account this criteria, we transform each multiple hairpin into a single loop hairpin. 
 

 

The script we developed is articulated and complex. It scans the hairpins starting 

simultaneously from the 5’ and from the 3’ termini, finding all correct base pairings (defined 

as “(“ and “)” ), and all mismatches (represented as positionally corresponding pairs of  “.”) or 

all bubbles (defined as one or more dot “.” without corresponding bases in the opposite arm). 

When an inversion of brackets is found, another loop is begins. To distinguish all hairpins’ 

ramifications, each stem is defined by a number. In this way, the first stem corresponds to 

number zero, the second to the number one and so on (Fig.4.5).  

 

 
Fig. 4.5 – Our new nomenclature for secondary structure 
In order to distinguish all structural ramifications, each stem is defined by a number. In particular, each 
nucleotide (or symbol) is preceded by a number that refers to a specific stem. Thus, the first stem corresponds to 
number zero, the second to the number one and so on. One-loop hairpin will be characterized only by the stem 
number zero. Only a part of sequence is shown. 
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Simple filters were employed to exclude short stems (that are not plausible to appertain to a 

miRNA precursor). We require that the outermost stem must be greater than 19 nucleotides 

and if not, we consider the next stem. If it respects this length criterion we consider it as the 

outermost stem. In the presence of many complex structures we must scan the hairpin 

multiple times until we finished pairing all nucleotides. 

The script generates a graphical representation of the hairpin in HTML format (Fig.4.6). 

Thus, each stem is displayed in a different colour in order to easily distinguish the 

ramification levels of the hairpin.  In addition, a txt file with a new textual representation of 

secondary structure is generated. Now we are able to detect the exact structural juxtaposition 

of pairs of tags within the structure and determine whether the candidate sequences can form 

a plausible miRNA/miRNA* pairing.  

 

 

 
Fig. 4.6 – Graphical representation of each hairpin in HTML format  
Each stem is represented with different colours in order to easily distinguish the ramification levels of the 
hairpin. Only a part of sequence is shown. 
 

 

For each textual representation of secondary structure all stem base pairing was positioned 

into an array. In this way, the first nucleotide of the sequence and its correspondent base pair 

are, both, at the first position of the array, the second and the second-last one at the second 

position and so on, while unpaired bases and asymmetric bulges are depicted in an analogous 

way. Any presence of bulges was evaluated. In detail, in the array we use an ad-hoc 

representation of nucleotide interactions. Each two nucleotides of a perfect base pairing were 

separated by the symbol “/” (example G/C); each two mismatched nucleotides were separated 

by the symbol “-” (example C-A), and in particular, in case of bugles, the absence of one 
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nucleotide is defined with zero (example: G-0). Given the relation “C-A”, the nucleotide “C” 

belongs to the tag-sequence nearest to the 5’ terminus, while the nucleotide “A” belongs to 

the tag-sequence nearest to the 3’ terminus. 

With this information, we are able to select all potential miRNA/miRNA* pairs of tags that 

form a canonical miRNA/miRNA* duplex.  

 

If we know the mature miRNA sequence and want to detect its correspondent miRNA*, first 

we should map the sequence of mature into the secondary structure and then shift two 

nucleotides in order to find the start position of the miRNA* according to the known patterns 

of dsRNA cutting performed by enzymes of the DICER family (Fig.4.7) (Bernstein, Caudy et 

al. 2001; Lee, Ahn et al. 2003; Lee, Nakahara et al. 2004). Thus, scan the secondary structure 

adding a number of nucleotides equal to the length of the mature sequence. We developed a 

script that uses the same trick, but, as we did not know which tag of the pair corresponds to 

the sequence of mature or to the sequence of the star (miRNA*), we considered the tag pair 

nearest to the 5’ terminus as  reference tag , then mapped into the genome and found the its 

correspondent sequence at the 3’ terminus shifted of two nucleotide. We checked that this 

sequence is identical to the remaining sequence of the pair: the complementary sequence. If 

the complementary sequence is the same, we consider the pair of tags as an exact 

miRNA/miRNA* duplex.  

 

 

 
Fig.4.7 - Example of overhangs on the 3' end in a pre-miRNA sequence 
We use the characteristic of 2-nucleotide 3' overhang in order to detect the miRNA* sequence of each mature 
miRNA 
 

 

In detail, given the base pairs relation  “C-A”, the nucleotide “C” refers to the reference 

sequence, while the nucleotide “A” refers to its complementary sequence. Given the relation 

“0-A”, there is not a corresponding base in the 5’ terminus (there is a bulge in the 3’ arm 

terminus). In this case the script will take into account a nucleotide more for the definition of 

the complementary sequence during the scan. 
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In case of a bulge at the first position of the complementary sequence, we look for the first 

nucleotide paired in a previous position of the array  and consider this as the start position of 

the complementary sequence. 

In case of bulges at the last position of the complementary sequence, we look for the next 

paired nucleotide of the array  and consider it as the stop position of the complementary 

sequence. 

 

Each nucleotide of the complementary sequence was inserted into an array until the end of the 

secondary structure scan. After reversing the order of the elements (nucleotides) of the array, 

each nucleotides, from the first until the last position of the array, were recovered in order to 

obtain the complementary sequence. 

 

In order to identify the complementary sequence, it is necessary to consider carefully the 

structure of the candidate miRNA/miRNA* hybrid as more simple strategies assuming that 

the complementary sequence will have the same length as the  reference sequence can be 

misled in situations where asymmetric bulges are present in the hairpin as demonstrated  in 

Fig.4.7 where a 1 nucleotide bulge, leads to an error in the estimation of the complementary 

sequence using a  simple approach. 

 

Enzymes of the DICER family tend to cut dsRNA to yield duplexes with 2base 3’ overhangs 

(Bernstein, Caudy et al. 2001; Lee, Ahn et al. 2003; Lee, Nakahara et al. 2004; Vermeulen, 

Behlen et al. 2005). However, as mentioned previously, we wished to detect precursors that 

may not exactly follow canonical patterns of mature miRNA biogenesis. In addition, we 

reasoned that if miRNA/miRNA* excision was not precise, for miRNA/miRNA* pairs 

expressed at low levels, we might not always detect exactly canonical miRNA/miRNA* 

sequence pairs. Accordingly, we decided to include in our analysis some imperfect pairs of 

tags. In particular we considered cases in which the 3’ termini of the miRNA/miRNA* hybrid 

did not present canonical 2 base overhangs. We developed a simple nomenclature to describe 

these situations: 2.1 (missed one nucleotide in the 3’ overhang of the 3’ read), 1.2 (misses one 

nucleotide in the 3’ overhang of the 5’ read), 1.1 (single base overhangs at the 3’ termini of 

both reads considered) (Fig.4.8). 

Despite these relaxed definitions of candidate miRNA/miRNA* juxtapositions, we 

also require that the miRNA/miRNA* hybrid follows some simple characteristics typical of 
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known pre-miRNA structures. Firstly that not more than 4 bases in either of miRNA/miRNA* 

sequence candidates are not paired in the secondary structure. Secondly that no more than 2 

consecutive bases should be unpaired and thirdly that asymmetric bulges should not be more 

than 2 bases in length. Finally, we require that the minimum free energy of folding for a valid 

secondary structure should be less than -25 kcal per mole. These parameters are derived from 

empirical studies of pre-miRNA structures in plants and are similar to filters implemented in 

comparative miRNA prediction software such as microHARVESTER (Dezulian, Remmert et 

al. 2006) or MirCheck (Lai, Tomancak et al. 2003). 
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Fig. 4.8 – General scheme for miRNA/miRNA* selection. 
Dots indicate the number of overhanged nucleotides taken into account for the selection (2 dots = 2 nt).  We use 
a simple nomenclature to describe these situations: 2.1 (missed one nucleotide in the 3’ overhang of the 3’ read), 
1.2 (misses one nucleotide in the 3’ overhang of the 5’ read), 1.1 (single base overhangs at the 3’ termini of both 
reads considered). 
The condition 2.2 indicates a miRNA/miRNA* duplex that respect the classical criteria described in literature  
(Bernstein, Caudy et al. 2001; Lee, Ahn et al. 2003; Lee, Nakahara et al. 2004; Vermeulen, Behlen et al. 2005). 
 

 

After identification of all genomic loci that produce pairs of reads fulfilling all the 

aforementioned criteria and which could represent possible DICER products in terms of their 

orientation on modelled secondary structures, we perform a simple positional clustering to 

merge overlapping and nested hairpins, where the largest locus for such clusters of positions 

inherit information regarding potential miRNA/miRNA* pairs for nested and overlapping 

loci. This step is important for several reasons, firstly to reduce the number of candidate loci, 

secondly because many miRNA precursors can produce more than one distinct 
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miRNA/miRNA* duplex and because our strategy of allowing candidate hybrids with 

imperfect 3’ overhangs means that where reads shifted by one or two bases with respect to 

each other are present, both correct and slightly incorrect miRNA/miRNA* pairs can be 

recovered for the same locus.  

Once redundant loci that produce more than one plausible miRNA/miRNA* sequence have 

been merged, several additional statistics and information sources are consulted to provide 

additional evidence regarding the possibility that the locus could represent a real miRNA 

precursor. First of all, we recover all smallRNA reads that map to the defined locus, either on 

the sense or antisense strand with respect to the prediction. A minimum of antisense 

smallRNAs and the presence of well defined peaks of read density around the predicted 

miRNA/miRNA* sequences is consistent with miRNA biogenesis rather than other classes of 

siRNA. Secondly, the genomic coordinates of the locus are compared to annotations of 

coding genes,, structural RNAs and repetitive elements/transposons. Real miRNAs do not 

tend to derive from coding regions, from structural RNAs or from transposable elements. 

Third, we attached information regarding evidence for primary transcription of the locus from 

RNAseq experiments, evidence for transcription and particularly tissue specific transcription 

can provide support to a prediction.  

 

We also use the Support Vector Machine (SVM) that was previously developed as part of an 

ab-initio miRNA detection strategy (see Chapter 4) to evaluate candidate pre-miRNAs 

discovered through the deep sequencing analysis pipeline described here. Scores from the 

SVM analysis are attached, along with expression and annotation data to each precursor 

prediction.  

We developed a script able to integrate all this information in a single file. In Fig.4.9 the 

standard output of the program is shown. 

In practice, we use the SVM score to rank predictions and exclude predictions from coding 

regions, annotated transposons and structural RNAs. In accordance with popular criteria  

(Meyers, Axtell et al. 2008) and expectations about the biogenesis of miRNAs not involving 

antisense transcription or RNA-dependent RNA polymerases, we also excluded predictions 

where more than 10% of the total smallRNA reads derived from the opposite strand  

Empirical studies suggest that, at least with the data considered here, this strategy minimizes 

loss of good predictions and maximizes exclusion of spurious predictions. However, all 
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parameters used in our pipeline can be modified by the user to impose more strict or more 

relaxed analyses and final results can be ranked according to a variety of criteria.  

 

Of course, high throughput analytical pipelines such as the one described here can be 

extremely effective in the identification of miRNA precursor loci from NGS smallRNA deep 

sequence data, however, we consider that manual examination of candidates, coupled with 

eventual target prediction and validation are essential steps for conclusive demonstration of 

biological significance. 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.9 – Output file generated  
The output file contains comprehensive information about the predicted locus. Position in 12x grape genome 
assembly (genomic coordinate, strand and chromosome); sequence, secondary structure and thermodynamic 
stability; Tags distributions along the sequence (in colour tags that form duplex 2,2 or 2,1 or 1,2 or 1,1;  in black 
sequences un-paired) ; Expression of each tag in one or more tissues (values separated by “_”, for example the 
sequence in red is 254 in leaf and 143 in root); number of time that tag maps into the genome (for the sequence 
in red is 3). Annotation of the hairpin into the genome (in this case intergenic and not falling in a repetitive 
region). Information about transcription of precursor in callus, root, leaf, stem from RNAseq experiments (see 
chapter3).  
Further down are shown all pairs of observed reads that form perfect or imperfect miRNA/miRNA*. For 
example the tag nearest to the 5’ (in red) forms with the tag nearest to the 3’ (in blue) a duplex in which the 3’ of 
the sequence in red is shifted 2 nt respect to the 5’ of the sequence in blue, while the 3’ of the sequence in blue is 
shifted only 1 nucleotide respect to the 5’ of the sequence in red (combination 2,1). Because reads can derive 
from different nested or overlapped hairpins the SVM score is shown for each pair of tags (for the red tag is 
0.998626) 
 

 

vvi-MIR160e  
UAAGCAUAUAUGCCUGGCUCCCUGUAUGCCAUUUGCAGAGCCCACCGGCACAUCGAUGGCCUUCGUGGAUGGCGUAUGAGGAGCCAUGCAUAUGCCCCAUCUG 
...(((((..(((.(((((((..((((((((((..(..((.(((.(((....))).))).))..)..))))))))))..))))))).))))))))........ 
(-51.10) 
          UGCCUGGCUCCCUGUAUGCCA    254_143 3                           GCGUAUGAGGAGCCAUGCAUA  57_9 1 
          UGCCUGGCUCCCUGUAUGCC      6_2 5                            UGGCGUAUGAGGAGCCAUGCA     1_0 1 
          UGCCUGGCUCCCUGUAUGCCAU    1_0 2                              GCGUAUGAGGAGCCAUGCA     0_4 1 
           GCCUGGCUCCCUGUAUGCCAU    1_0 2                              GCGUAUGAGGAGCCAU        0_2 1 
          UGCCUGGCUCCCUGUAUGC       0_3 5                              GCGUAUGAGGAGCCAUGCAU    0_2 1     
          UGCCUGGCUCCCUGUA          0_7 5                                   GAGGAGCCAUGCAUA   1_0 1     
          UGCCUGGCUCCCUGU           1_0 6                             GGCGUAUGAGGAGCCAUGCAU    1_0 1    
           GCCUGGCUCCCUGUAUGCCA     1_0 3 
            CCUGGCUCCCUGUAUGCC      0_1 5  
                        
 
annotation: intergenic 
Rpt_annotation: not_repetitive 
 
cal_0.000000_0.000000_root_0.000000_0.000000_leaf_0.000000_0.000000_sUem_0.553398_0.000000 
 
 
DUPLEX 5:UGCCUGGCUCCCUGUAUGCCA 3:GCGUAUGAGGAGCCAUGCAU vvi-MIR160e     2,1     0.998626         
DUPLEX 5:UGCCUGGCUCCCUGUAUGCCA 3:GGCGUAUGAGGAGCCAUGCAU vvi-MIR160e    1,1     0.998626         
DUPLEX 5:UUGGCCCCUUGGGGCCUUCCCCCCUUGGUUAAUUGGCCCC 3:GCGUAUGAGGAGCCAUGCAU vvi-MIR160e      1,1     0.998626         
DUPLEX 5:UGCCUGGCUCCCUGUAUGCCA 3:GCGUAUGAGGAGCCAUGCAUA vvi-MIR160e    2,2     0.99847  
DUPLEX 5:UGCCUGGCUCCCUGUAUGCC 3:GCGUAUGAGGAGCCAUGCAUA vvi-MIR160e     1,2     0.99847  
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4.3  Experimental validation of the bioinformatics pipeline 

 

4.3.1  Datasets 

The bioinformatics pipeline described above has been tested using smallRNA deep sequence 

data from the grapevine, Vitis vinifera, generated using standard protocols with the Illumina 

Genome Analyser platform. In short, 3 lanes of sequence data were obtained from the public 

website of the Comparative Sequencing of Plant smallRNA project 

(http://smallrna.udel.edu/data.php). These data derive from leaf, flower and berry samples 

from the Merlot cultivar. These tissue samples were provided by Gabriele Di Gaspero of the 

University of Udine (Italy). Additional Libraries for sequencing were constructed in the lab of 

Prof. Blake Meyers in the University of Delaware (USA) by Emanuele De Paoli and were 

sequenced by Illumina using standard protocols (http://smallrna.udel.edu/methods.php). For 

these samples, the adapter sequences were already removed from the publicly available 

sequence data.  

 

A further two lanes of sequence data were obtained from immature leaf and root tissues from 

the Pinot Nero genotype pn40024. For these libraries, material was provided by Prof. Mario 

Pezzotti of  the University of Verona (Italy). Libraries were prepared by Erica Mica (Scuola 

Sant’Anna, Pisa, Italy) according to standard protocols (Mica, Piccolo et al. 2010) and 

sequencing was performed at the Istituto di Genomica Applicata (Udine, Italy).  

The numbers of reads produced and analysed are shown in Tab.4.1. The analytical pipeline 

was applied independently to the two sets of data although different tissue samples were 

considered together within single experiments. A total of 19117124 reads that mapped 

perfectly to the 12x Vitis vinifera genome assembly (http://www.plantgdb.org/VvGDB/) were 

considered. 

 

We observe distinct peaks at 21 and 24 bases in length, as expected for plant smallRNA data, 

with the 24 base peak expected to correspond predominantly to heterochromatic siRNAs and 

the 21-22 base peak representing microRNAs, ta-siRNAs and other classes of siRNAs 

(Tab4.1, Fig.4.10 and Fig4.11). More distinct 24 base map positions are observed 

(Freq_map_tissue), although the proportion of individual reads mapped tends to be relatively 

higher for 21 base reads (Freq_read_mapped_tissue) (this is typical of microRNAs that are 

excised more precisely than heterochromatic siRNAs). These data are in accord with patterns 
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observed by other workers (Moxon, Jing et al. 2008) suggest that the quality of smallRNA 

sequence data and mapping is good. 

 

 
Experiment total reads total reads with adapter total different reads total mapped reads 

Merlot leaf N/A 3810622 875268 2583036 

Merlot flower N/A 2208760 651490 1511148  

Merlot Berry N/A 2258151 579233 1317172 

pn40024 leaf 15413571 10563362 1871362 8368625 

pn40024 root 23854642 13951895 1172665 5337143 

 

Tab 4.1 – Number of read produced and analysed 
In Fig.4.10(A,B) and Fig.4.11(A,B,C)  is shown the length distributions of mapped reads for each tissue sample 
analysed 
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Fig.4.10 - Tissues from pn40024  
Length distributions of mapped reads for each tissue sample analysed 
A= root, B=leaf 
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Fig. 4.11 - Tissues from Merlot  
Length distributions of mapped reads for each tissue sample analysed 
A= root, B=leaf; C=berry  

 

 

 

4.4  Preliminary results and identification of conserved miRNA precusors 

The independent analyses of the Meyers lab and locally generated smallRNA datasets 

generated 460 and 1617 loci respectively that passed all preliminary filters. The higher 

number of candidate loci associated with the locally generated data are likely to correspond at 

least in part to the much higher number of reads analysed in these experiments (Tab.4.1).  
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As a first evaluation of how effective our pipeline was, we compared the chromosomal 

coordinates of our predicted precursors with the coordinates previously annotated as encoding 

conserved miRNAs detected by microHARVESTER. The Meyer’s lab data recovered 57 

already known conserved miRNAs, while the locally generated  small RNA data allowed the 

identification of 69 conserved miRNAs.  

The discrepancy between these numbers and the 140 predicted conserved precursor 

loci may be explained by several considerations. First, the pipeline employed here in the 

analysis of the Illumina data requires that both the miRNA and miRNA* sequences should be 

represented in the dataset. For miRNAs expressed at low levels, the miRNA* sequence may 

not be represented in the data and thus the locus is effectively invisible to the method. 

Secondly, some miRNAs are expressed in strictly tissue or developmental phase specific 

conditions and may not be expressed in the tissues sampled here. Thirdly, it is not impossible 

that some small proportion of the miRNA precursors predicted by microHARVESTER 

(Dezulian, Remmert et al. 2006) are not in fact real/functional miRNA loci. In fact, we 

previously showed that even attempts to validate precursors predicted through comparative 

approaches using smallRNA deep sequence data do not allow the validation of all predicted 

conserved precursors. Accordingly, we conclude that the pipeline implemented here shows an 

acceptable level of sensitivity in the recovery of precursors for conserved miRNA families. 

Here we present several typical outputs of our pipeline (first for several  conserved 

and previously annotated miRNA loci). 

Fig.4.12 shows the output for a locus corresponding to a member of the miR160 family. The 

genomic sequence (oriented 5’-3’), the predicted secondary structure and free energy of 

folding in kcal/mol as well as the positions and frequencies that reads mapping to the region 

were observed in two tissue types. The final number associated with smallRNA reads shows 

the number of genomic loci in which this reads maps perfectly. The next lines show the status 

of the locus in terms of gene and repeat annotations. The final number associated with 

smallRNA reads shows the number of genomic loci in which this reads maps perfectly. The 

next lines show the status of the locus in terms of gene and repeat annotations. The mean 

coverage for each base in the precursor from RNAseq (Illumina deep sequencing of polyA+ 

RNA) in four different tissues is displayed. For each tissue, two values are given, the first 

corresponding to uniquely mapping RNAseq reads, the second for reads that map in 

redundant genomic loci. Finally, pairs of smallRNA reads that were initially used to define 

the hairpin (from the miRNA/miRNA* filter) are shown along with their degree of overhang 
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(2,2 means the canonical 2 base 3’ overhangs are present). the final value are SVM 

probability scores for the locus representing a real miRNA. It is notable that the “correct” 2,2 

miRNA/miRNA* pairings correspond to the two most frequently observed reads. 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
Fig.4.12 - A typical  output of our pipeline corresponding to the conserved miRNA vvi-MIR160a from 
pn40024 set of data   
The most expressed read is shown in red  (254 in leaf, 143 in root). Its correspondent miRNA* could be the blue 
sequence that is the second most expressed tag (57 in leaf, 9 in root). Interestingly these two tag form a perfect 
duplex (2.2) and in particular the ‘putative miRNA*’ maps only one time into te genome. 
 

 

Reads are concentrated in two regions of the hairpin and corresponds to the real 

mature miRNA and its miRNA*. Slightly shifted reads observed with low frequency and 

correspond to imprecision in DCL-1 cutting, a typical observation for miRNA sequences. No 

reads from the antisense strand were observed in this case. The most expressed tags 

corresponds to mature miRNA and miRNA*. This prediction derived from the locally 

generated data and we can see that the mature miRNA was observed 254 times in leaf and 

143 times in the root sample, it maps to 3 distinct genomic loci (2 others apart from this one). 

Its corresponding miRNA* was observed 57 times in leaf and 9 times in the root sample and 

maps uniquely to this chromosomal location. Taken together, these observations suggest that 

this particular miR160 locus is expressed in our tissue samples. The colored sequences 

correspond to reads involved in a perfect miRNA/miRNA* pairings (2,2) or not (1,2 ; 1,1; 

2,1).  

vvi-MIR160e  
UAAGCAUAUAUGCCUGGCUCCCUGUAUGCCAUUUGCAGAGCCCACCGGCACAUCGAUGGCCUUCGUGGAUGGCGUAUGAGGAGCCAUGCAUAUGCCCCAUCUG 
...(((((..(((.(((((((..((((((((((..(..((.(((.(((....))).))).))..)..))))))))))..))))))).))))))))........ 
(-51.10) 
          UGCCUGGCUCCCUGUAUGCCA    254_143 3                           GCGUAUGAGGAGCCAUGCAUA  57_9 1 
          UGCCUGGCUCCCUGUAUGCC      6_2 5                            UGGCGUAUGAGGAGCCAUGCA     1_0 1 
          UGCCUGGCUCCCUGUAUGCCAU    1_0 2                              GCGUAUGAGGAGCCAUGCA     0_4 1 
           GCCUGGCUCCCUGUAUGCCAU    1_0 2                              GCGUAUGAGGAGCCAU        0_2 1 
          UGCCUGGCUCCCUGUAUGC       0_3 5                              GCGUAUGAGGAGCCAUGCAU    0_2 1      
          UGCCUGGCUCCCUGUA          0_7 5                                   GAGGAGCCAUGCAUA   1_0 1      
          UGCCUGGCUCCCUGU           1_0 6                             GGCGUAUGAGGAGCCAUGCAU    1_0 1     
           GCCUGGCUCCCUGUAUGCCA     1_0 3 
            CCUGGCUCCCUGUAUGCC      0_1 5  
                        
 
annotation: intergenic 
Rpt_annotation: not_repetitive 
 
cal_0.000000_0.000000_root_0.000000_0.000000_leaf_0.000000_0.000000_sUem_0.553398_0.000000 
 
 
DUPLEX 5:UGCCUGGCUCCCUGUAUGCCA 3:GCGUAUGAGGAGCCAUGCAU vvi-MIR160e     2,1     0.998626         
DUPLEX 5:UGCCUGGCUCCCUGUAUGCCA 3:GGCGUAUGAGGAGCCAUGCAU vvi-MIR160e    1,1     0.998626         
DUPLEX 5:UUGGCCCCUUGGGGCCUUCCCCCCUUGGUUAAUUGGCCCC 3:GCGUAUGAGGAGCCAUGCAU vvi-MIR160e      1,1     0.998626         
DUPLEX 5:UGCCUGGCUCCCUGUAUGCCA 3:GCGUAUGAGGAGCCAUGCAUA vvi-MIR160e    2,2     0.99847  
DUPLEX 5:UGCCUGGCUCCCUGUAUGCC 3:GCGUAUGAGGAGCCAUGCAUA vvi-MIR160e     1,2     0.99847  
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This miRNA was originally discovered in cotton, Gossypium hirsutum (Pang, Woodward et 

al. 2009) and was recently annotated also in the grapevine genome (Pantaleo, Szittya et al. 

2010). We observe highest expression of the smallRNA deriving from the 5’ arm of the 

hairpin, while the cotton annotation suggest that the 3’ smallRNA should be the mature 

miRNA. Wwe performed a target prediction analysis for both tags of the duplex 

(UUCCAUCUCUUGCACACUGGA in red and UGGUGUGCACGGGAUGGAAUA in 

blue) using the Axtell target finder script from the CLEAVELAND package (Addo-Quaye, 

Miller et al. 2009). We found a probable target for only for the sequence most expressed 

UUCCAUCUCUUGCACACUGGA in our dataset (in red in Fig.4.12). The target is the Vitis 

ortholog of petunia DOUBLE TOP, an F-Box gene related to Arabidopsis UNUSUAL 

FLORAL ORGANS (UFO) which is involved in maintenance of meristematic identity during 

floral development(Souer, Rebocho et al. 2008). Interestingly, we see this miRNA expressed 

most highly in floral tissues, potentially indicating a role for miR2950 in fine regulation of F-

Box gene expression during floral development.  

Fig.4.13 shows the vvi-miR2950 locus as represented in the Meyers dataset. 

 

 
 
Fig.4.13 Output for MiR2950 from Merlot set of data 
The most expressed tag corresponds to the red (10 in leaf, 278 in root, 54 in flower). Its correspondent miRNA* 
is the blue sequence that is the second most expressed tag (10 in leaf, 108 in root, 20 in flower). Interestingly 
these two tag form a perfect duplex (2.2) and are both unique mapping tags. 

>vvi-MIR2950 
CUUGUGAUGUAUUCCAUCUCUUGCACACUGGACCAGCGCUCCAGCUGCAGUUUGGUGUGCACGGGAUGGAAUACAUCAUGGAUUC 
.(..((((((((((((((((.(((((((..(((((((......))))..)))..))))))).))))))))))))))))..)....   (-
52.60) 
           UUCCAUCUCUUGCACACUGGA    10_278_54 1      UGGUGUGCACGGGAUGGAAUA     10_108_20 1 
          AUUCCAUCUCUUGCACACUGG      0_15_5 1        UGGUGUGCACGGGAUGGAAUAC     0_1_0 1 
           UUCCAUCUCUUGCACACUGG      2_10_0 1        UGGUGUGCACGGGAUGGAAU       0_1_0 1 
           UUCCAUCUCUUGCACACUGGA     0_4_0 1          GGUGUGCACGGGAUGGAAUAC     0_2_0 1 
           UUCCAUCUCUUGCACACUGGACCA  1_3_0 1 
          AUUCCAUCUCUUGCACACUGGACC   0_1_0 1 
          AUUCCAUCUCUUGCACACUGGA     0_1_0 1 
             CCAUCUCUUGCACACUGGACC   0_1_0 1 
             CCAUCUCUUGCACACUGGAC    0_0_1 1 
              CAUCUCUUGCACACUGGA          0_2_0 1 
 
 
annotation: intergenic 
Rpt_annotation: not_repetitive 
 
cal_0.552941_0.000000_root_0.000000_0.000000_leaf_0.000000_0.000000_stem_0.164706_0.000000 
 
 
DUPLEX 5:AUUCCAUCUCUUGCACACUGGA 3:UGGUGUGCACGGGAUGGAAUA   2,1     0.998257         
DUPLEX 5:AUUCCAUCUCUUGCACACUGG  3:UGGUGUGCACGGGAUGGAAUA   1,1     0.998257 
DUPLEX 5:AUUCCAUCUCUUGCACACUGG  3:GGUGUGCACGGGAUGGAAUAC   2,2     0.998182 
DUPLEX 5:AUUCCAUCUCUUGCACACUGG  3:UGGUGUGCACGGGAUGGAAUAC  1,2     0.998182 
DUPLEX 5:UUCCAUCUCUUGCACACUGGA  3:UGGUGUGCACGGGAUGGAAU    2,1     0.998313         
DUPLEX 5:UUCCAUCUCUUGCACACUGG   3:UGGUGUGCACGGGAUGGAAU    1,1     0.998313 
DUPLEX 5:UUCCAUCUCUUGCACACUGGA  3:UGGUGUGCACGGGAUGGAAUA   2,2     0.998316 
DUPLEX 5:UUCCAUCUCUUGCACACUGG   3:UGGUGUGCACGGGAUGGAAUA   1,2     0.998316 
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As with the previous example, the most frequenct reads correspond to the canonical 

miRNA/miRNA* pair, the locus falls in an intergenic, non-repetitive region and the Support 

Vector Machine analysis strongly supports the locus as a valid pre-miRNA. 

 

 

4.5  Novel and lineage specific miRNA precursors in the grapevine, Vitis vinifera  

Having confirmed the capacity of our method to recover conserved, already annotated 

miRNAs, such candidates were  discarded. Careful manual consideration of remaining 

candidates allowed the identification of over 80 potentially grape-specific miRNAs that 

follow the standard rules for miRNA annotation. Most of these (around 50) were identified in 

both the locally generated and Meyers datasets. Around 10 loci consistently produce 24 nt 

rather than 21 nt mature miRNAs. This finding was unexpected because the DCL-1 protein 

usually processes miRNA into 21mers. In addition we found  that lineage specific miRNAs 

tend to be longer with respect to conserved miRNAs. Many of them are more or less 500 nt 

long.  

Interestingly we detected that  many of these lineage specific loci produce large quantities of 

more than 1 mature miRNA. 

 

The output of our pipeline for several examples of candidate novel miRNA loci with 

interesting characteristics are presented in the followings paragraphs, 

 

 

4.6  24 base miRNAs 

Fig.4.14  shows an example of a lineage specific miRNA recovered from the locally 

generated data. As with the previosu examples,  reads are concentrated in discrete positions 

on opposite arms of the hairpin, and the most frequently observed reads correspond to a 

canonical miRNA/miRNA* pair and the hairpin yields a good Support Vector Machine Score.  

Strikingly, the candidate miRNA and its corresponding miRNA* are both 24 bases long. It is 

also of note that the precursor falls within an annotated intron of a RAB type GTP binding 

protein gene. Manual checks confirmed the intronic status and target prediction suggested that 

the miRNA could target a CAAX amino terminal protease family protein (involved in 

maturation and membrane targeting of RAS/RHO/RAB proteins). Thus, the bioinformatics 

analysis suggests an intruiging naegative feedback regulatory loop between the RAB gene 
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hosting the miRNA and the target of the miRNA. We might speculate that in physiological 

conditions, an excess of the RAB transcript could lead to an increase of miRNA production 

and concordant reduction of levels of the CAAX protease (in turn reducing the levels of 

correctly matured RAB protein). To our knowledge, this miRNA represents one of the first 

strongly supported instances of intronic miRNAs in plants and experimental studies of the 

functional role and regulatory mechanisms of the miRNA will be of great interest.  

 

 
>Lineage-specific-EM-67_chr10_-_3022203_3022372
GUAUGACCAUUUUUAUCAUCAUUUUUAUCACUUGCUGAUGUGGUAAGUGAUCAUUAGUAGUAGACAAAUAAUAAAAAAUGCAUUUUAUUGCAUUUUGAUUACUUUUUCUACCAUUAUCGUUAUUUACCACAUUAGUAAGUGAUGAAAAUGGUGAUAGAAAUAGCGGUACA
((((..(.(((((((((((((((((((((((((((((((((((((((((((...((((.(((((.(((((((..((((((((......)))))))).)))).))).))))).))))..))))))))))))))))))))))))))))))))))))))))))).)..)))). 

UUUAUCAUCAUUUUUAUCACUUGC 4_10_1                                               AAGUGAUGAAAAUGGUGAUAGAAA 23_0 1
UAUCAUCAUUUUUAUCACUUGC           2_0 1             AGUGAUGAAAAUGGUGAUAGAAAU    1_0 1
UAUCAUCAUUUUUAUCACUUGCUG         1_0 1             AAGUGAUGAAAAUGGUGAUAGAA 1_0 1       

AAGUGAUGAAAAUGGUGAUAGAAAU    1_0 1
AUUUUUAUCACUUGCUGAUGUGGU  2_0 1             GUAAGUGAUGAAAAUGGUGAUAGA 9_0 1      

AGUAAGUGAUGAAAAUGGUGAUAGA     2_0 1

AGUAAGUGAUGAAAAUGGUGAUAG        3_0 1
UAGUAAGUGAUGAAAAUGGUGAU          1_0 1

AUUAGUAAGUGAUGAAAAUGGUG            1_0 1
AUUUACCACAUUAGUAAGUGAUGA                    2_0 1

annotation: _within_GSVIVT00021253001_intron_exon_3_intron_exon_3_overlaps_GSVIVT00021253001
Rpt_annotation: not_repetitive
cal_0.000000_0.000000_root_0.000000_0.000000_leaf_0.000000_0.000000_stem_0.176471_0.000000

DUPLEX 5:UUUAUCAUCAUUUUUAUCACUUGC 3:AAGUGAUGAAAAUGGUGAUAGAAA 2,2     0.999946
DUPLEX 5:UUUAUCAUCAUUUUUAUCACUUGC 3:AAGUGAUGAAAAUGGUGAUAGAA 2,1     0.999938
DUPLEX 5:UAUCAUCAUUUUUAUCACUUGCUG 3:GUAAGUGAUGAAAAUGGUGAUAGA 2,2     0.999919  

Fig. 4.14 Output for a novel miRNA from pn40024 set of data   
The most expressed tag corresponds to the blue (23 in leaf, 0 in root). Its correspondent miRNA* is the red 
sequence that is the second most expressed tag (4 in leaf, 10 in root). Interestingly these two tag form a perfect 
duplex (2.2) and are unique mapping tags 
 

 

4.7 Conserved atypical processing of miRNA precursors 

The classical model of miRNA maturation is that a first DCL1 cut occurs about 10-11 bases 

from the bottom of the stem, and the second cut 21 bases further up the stem (Bernstein, 

Caudy et al. 2001; Kurihara and Watanabe 2004; Vermeulen, Behlen et al. 2005). This model 

of action is supported by detailed molecular studies in several Arabidopsis miRNAs (Mateos, 

Bologna et al. 2010). 

 

Recently some miRNAs (miR159 and miR319) were shown to be first processed near the 

loop, and several ‘phased’ cuts occur down the stem (Fig.4.15). Mutations and deletions in 

the upper part of the stem region were shown to abolish processing of these precursors in 

Arabidopsis  (Bologna, Mateos et al. 2009; Schwab and Voinnet 2009) while such changes 

had no effect on the processing of other miRNAs (Mateos, Bologna et al. 2010). 
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Fig.4.15 - Model of the maturation of Arabidopsis miR319 and 159 
From (Bologna, Mateos et al. 2009) 

 

As consequence of these sequential cuts, the processing is “phased” and several  small RNAs, 

are consequentially produced and these might be detected through NGS data analysis. In 

Arabidopsis, this alternative way of processing was experimentally validated for miR159 and  

miR319 by the 5' RACE–PCR strategy (Bologna, Mateos et al. 2009) Bologna et al. (2009) 

also generated some stem loops mutants for miR319 and  miR159 precursors and noted that 

deletions of part of the stem nearest of the loop inhibited miR159 expression (Fig.4.16).  

 

 
 
Fig.4.16 - Sequence determinants for miR319a processing. 
(A) Scheme showing the stem loops of several mutant miR319 precursors. The cleavage sites analysed by 5′ 
RACE method are indicated by black lines on the right of each precursor when determined. 319 wt corresponds 
to 319LS2. The miRNA is indicated in red and the miRNA* in blue. (B) Small-RNA blots showing accumulation 
of miR319. Two pools of 25 independent transgenic plants expressing the corresponding precursor from the 35S 
promoter were analysed in each case. (C) Analysis of leaf shape in at least 100 independent transgenic plants for 
each construct. From (Bologna, Mateos et al. 2009) 
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To investigate whether this mechanism is conserved in Vitis vinifera, we carefully considered 

the distribution of reads mapping to annotated miR159 loci. Indeed, the distribution of reads 

on the miR159c precursor strongly suggests that this mechanism is conserved (Fig.4.17). 

 

The read distribution in vvi-miR159c suggests that three cuts are performed towards the loop 

with respect to the mature miR159. Given the experimental data for Arabidopsis, it is highly 

probable that the cuts are also performed from the loop towards the base also in Vitis. In fact 

in vvi-miR159c, the most expressed pair of tags maps into the base of the stem and 

correspond to the expected mature miRNA (Fig.4.17).  

 

 
Fig. 4.17 - vvi-miR159c 
The putative mature miRNA is the most expressed tag (it is highlighted in green in the alignment and indicated 
with the green arrow in the secondary structure). The correspondent miRNA* is the second most expressed tag 
(highlighted in black in the alignment and indicated with the black arrow in the secondary structure). The tags 
have a phased distribution 
 

 

The same phased read distribution was found in vvi-miR169x (Fig.4.18), suggesting that a 

similar mechanism of processing could not be excluded (although we do not have additional 

experimental support in grape or other plants).  Without experimental validations, we are not 

able to define the direction of the cleavage series (from the beginning of the stem or from the 

loop), but, our data show that, as in vvi-miR159c, the most expressed tags map into the 

extreme part of the stem (as usually happens for  functional miRNAs) and that the distribution 

of tags is phased. Thus, the “top-down” phased production of miRNAs is likely to be present 

in additional deeply conserved miRNA families. 

 

 

 

5’ 

3’ 
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Fig.4.18 -  vvi-miR169x 
The putative mature miRNA is the most expressed tag (it is highlighted in green in the alignment and indicated 
with the green arrow in the secondary structure). The correspondent miRNA* is the second most expressed tag 
(is highlighted in black in the alignment and indicated with the black arrow in the secondary structure). The tags 
seems to have a phased distribution. 
 
 

4.8 Phased smallRNA production from lineage specific miRNAs 

Our pipeline also recovered several cases of novel pre-miRNAs that present notable phasing 

of smallRNA products. Fig.4.19, illustrates a novel, apparently non-conserved locus showing 

a similar pattern of reads as observed previously for the conserved miRNAs miR159 / 319 / 

169. Because of the length of its secondary structure, part of this had been cut in nucleotide 

sequence., while is shown in the entire structure.  

We detected that the most expressed tags map into the extreme basal part of the 5’ stem. 

 

Fig.4.19 - Novel miRNA 
The putative mature miRNA is the most expressed tag (it is highlighted in green in the alignment and is 
indicated with the green arrow in the secondary structure). The correspondent miRNA* is the second most 
expressed tag (is highlighted in black in the alignment and indicated with the black arrow in the secondary 
structure). The tags seems to have a phased distribution 
 

 

5

3
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Our data therefore suggest that the phased production of miRNA-like molecules from hairpin 

structures may be more prevalent than previously appreciated, both for conserved and lineage 

specific miRNAs. 

 

 

4.9  Implications for the evolution of miRNA precursors. 

A recent model for the origin and evolution of miRNA genes (Vazquez, Legrand et al. 2010) 

(Fig.4.20) suggests that  that pre-miRNAs could derive from transcribed inverted repeats.  

 

 
Fig.4.20 – Model of Vazquez et al  (Vazquez, Legrand et al. 2010): the microRNA and microRNA-like 
pathways in an evolutionary perspective. 
 

 

A novel inverted repeat would be expected to form a perfectly complementary hairpin, which 

might be expected to represent a good substrate for the enzyme DCL3, which is also involved 

in the production of heterochromatic siRNAs and which tends to generate imprecisely excised 

24 base RNAs. Such a template might also be recognized by DCL2 which is also involved in 

cleavage of viral dsRNAs and which produces 22 base RNAs. Under the model of Vazquez, 

substitutions and small insertions and deletions could, over the course of time, lead to the 

evolution of hairpins with more mismatches and bulges. Such hairpins would be expected to 

represent better targets for DCL4  (which is also involved in the production of phased 

smallRNAs in the ta-siRNA pathway) and could lead to more specific production of 21 base 

RNAs, potentially though a phased mechanism of smallRNA production. Additional 

mutations would tend to lead to shorter stem-loop structures, which, in the presence of 
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selective pressures favouring production of specific smallRNAs would result in the 

stabilization of good DCL1 templates and the evolution of canonical pre-miRNAs.  

 

Thus, during the evolution of a typical miRNA gene, different DCL enzymes might be 

responsible for processing. Conversely, this model might be used to generate several testable 

hypotheses: 

 

 

- lineage specific (young) pre-miRNAs might tend to possess longer and more 

complementary stems than ancient conserved miRNAs; 

- production of 24 base miRNA-like molecules might be more common in lineage 

specific miRNAs than in ancient, conserved miRNAs; 

- production of phased smallRNAs from hairpin structures might be more common in 

younger miRNAs. 

 

 

Evolution of MIR genes by progressive random mutations in initially perfect inverted repeats 

(IRs) which progressively yield shorter hairpins with more mismatches and bulges. Evolution 

of IR genes into MIR genes is accompanied by a change in hairpin processing by DCLs and 

in the size of the miRNAs/miRNA-like siRNAs generated. Long IR use primarily DCL2, 

recently-evolved MIR with intermediate-sized hairpins use DCL4 and ancient MIR genes 

with short hairpins use primarily DCL1 to produce miRNAs. Moreover, all hairpins are 

processed to different extents by DCL3 to yield long-miRNAs. The shift in DCL usage during 

MIR gene evolution might also be accompanied by changes in the function of the 

miRNAs/miRNAs-like siRNAs generated (Vazquez 2006) 

In general, the predictions of this model are consistent with observations from our data and 

bioinformatics pipeline. We do recover many long precursors among our lineage specific 

candidate miRNAs and we observe loci producing 24 base miRNA-like molecules among the 

same set. Additionally, we observe many loci that generate strand specific phased smallRNAs 

from hairpin precursors.  

Fig.4.21 shows a novel pre-miRNA-like locus that we find particularly interesting in the 

context of this evolutionary model.  
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Fig.4.21 - A particular case of putative-novel miRNA 
The most expressed tags map into the extreme basal part of the 3’ 
 

 

The hairpin is relatively long and presents few mismatches and bulges in its structure, 

consistent with it being a relatively young inverted repeat. The precursor shows no significant 

similarity with pre-miRNAs in miRBase. Reads are derived not from discrete locations on 

either arm of the hairpin but are apparently distributed along both arms. However, the most 

frequently observed reads (in red and blue) demonstrate clear patterns of phasing as seen in 

miR159 and other examples presented.  While the majority of reads observed are 21 bases in 

length, we are tempted to view this locus as representing a transitional state between early 

phases of the evolutionary model shown above (a mixture of aspecific and phased smallRNA 

production). We have no information as to whether this locus plays a physiological role in the 

grapevine. 

It is interesting that several relatively ancient miRNA loci (miR159, miR319 and 

miR169 are all present in both monocots and dicots) produce phased smallRNAs as, under the 

evolutionary model described, phased miRNA production should be considered a typical 

marker of younger miRNAs. However, it is easy to imagine an explanation for this 

observation. If during the evolution of a miRNA gene, the production of a particular 

smallRNA is beneficial for the organism, purifying selection will tend to maintain its 

sequence and expression. If such a smallRNA is produced through a phasing mechanism, and 

if it falls towards the base of a stem structure, it is difficult for substitution events to shorten 

the hairpin while maintaining the sequence of the smallRNA. If the model proposed is valid, 

one would expect only loci where the functional smallRNAs derives from near the loop to 

progress towards shorter hairpins and processing exclusively mediated by DCL1. 
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4.10  Conclusions 

We have implemented a pipeline for the identification of plant miRNA precursors from 

smallRNA Next Generation Sequence data. Our method uses novel heuristics to exclude 

spurious candidates and select potential pre-miRNA loci. We have incorporated the Support 

Vector Machine classifier presented in chapter 3 as an additional filter, and our pipeline links 

with annotations of genes and repeats as well as transcriptome data to furnish additional 

information on the loci recovered.  

We show that the method is capable of recovering annotated miRNAs from Vitis, without use 

of sequence similarity to identify candidates. The method recovers many novel, canonical 

miRNAs from Vitis and is capable of identifying loci producing miRNA-like smallRNAs with 

characteristics that are atypical of most conserved miRNAs, for example 24 base miRNAs 

and loci producing multiple phased hairpin-derived smallRNAs. It is worth noting that 

“classical” tools for the identification of miRNAs from high throughput sequence data are not 

designed to recover phased miRNAs. MiRDeep (Friedlander, Chen et al. 2008) for example 

searches for short peaks of read density that should be shorter than 30bases in length. Loci 

producing high quantities of phased reads will not conform to this expectation and are 

unlikely to be detected by such software.  

The patterns of smallRNA generated from putatively lineage specific loci have been 

considered in the context of a current model of miRNA gene evolution, and we find broad 

agreement with the expectations of this model. Accordingly, we believe that, as well as its 

application in discovery of novel miRNAs, our approach will find application in the study of 

miRNA gene evolution and the further development of such models. 

While the system implemented here has been designed with plant miRNAs in mind, there is 

no obvious reason why it should not be used to study miRNAs in animal or other systems. 

Indeed, preliminary data not presented here suggest that even without modification of 

parameters imposed for plant miRNAs, the pipeline functions well for animal deep sequence 

data (over 250 known human miRNAs were recovered using around 25 million publically 

available human smallRNA reads).  

Here we have used the Support Vector Machine classifier based on exclusively hairpin 

derived properties to prioritize predictions that passed all filters in the miRNA prediction 

pipeline. However, deep sequencing of smallRNAs of course also offers the opportunity to 

identify candidate mature miRNAs.  One future development could be to incorporate 

additional features based on the structural and sequence characteristics of the candidate 
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miRNA/miRNA* regions into the SVM in order to provide a more comprehensive set of 

features to differentiate real pre-miRNAs from non-miRNA hairpins. It is envisaged that such 

a strategy should increase both the sensitivity and specificity of the classification system. 



 128

Chapter 5 
 

5.1 General  discussion 

This thesis presents the development, implementation and testing of bioinformatics strategies 

for comparative, ab-initio and deep-sequencing based miRNA discovery. Comparative 

predictions  were validated through deep sequencing and differential expression in Vitis 

tissues demonstrated through oligonucleotide array experiments. Additionally, novel 

bioinformatics strategies for the definition of primary miRNA transcript coordinates and 

splicing patterns from whole transcriptome sequencing data were implemented. A novel 

support vector machine-based ab-initio miRNA prediction software was implemented and 

tested. The software outperforms similar published approaches, particularly in terms of the 

low rate of false positive predictions generated. A new strategy for the identification of 

miRNAs and their precursors from smallRNA Next Generation Sequence data was 

implemented and tested extensively in the grapevine, Vitis vinifera. The method performs 

well in the recovery of known miRNAs and identifies many high confidence predictions for 

novel or lineage specific miRNAs. Interestingly, our method is also able to identify many loci 

that resemble miRNAs but with unusual patterns of processing. The patterns of smallRNA 

generation at such loci fit current models of miRNA gene evolution extremely well and lead 

us to believe that many of these loci represent “transitional forms” in the origin of miRNA 

genes. Thus, we believe that the method described could be of great value in the study of 

miRNA gene evolution and in the generation of novel hypotheses for mechanisms of miRNA 

gene origin, selection and evolution.  

The work presented in this thesis therefore constitutes a series of software tools and strategies 

that can be applied generally in plants and to a large extent also in animal species for the 

detection and annotation of conserved and novel miRNAs. 



 129

Bibliography 
 

Abdel-Ghany, S. E. and M. Pilon (2008). "MicroRNA-mediated systemic down-regulation of 
copper protein expression in response to low copper availability in Arabidopsis." J 
Biol Chem 283(23): 15932-15945. 

Addo-Quaye, C., T. W. Eshoo, et al. (2008). "Endogenous siRNA and miRNA targets 
identified by sequencing of the Arabidopsis degradome." Curr Biol 18(10): 758-762. 

Addo-Quaye, C., W. Miller, et al. (2009). "CleaveLand: a pipeline for using degradome data 
to find cleaved small RNA targets." Bioinformatics 25(1): 130-131. 

Agarwal, S., C. Vaz, et al. (2010). "Prediction of novel precursor miRNAs using a context-
sensitive hidden Markov model (CSHMM)." BMC Bioinformatics 11 Suppl 1: S29. 

Allen, E. and M. D. Howell (2010). "miRNAs in the biogenesis of trans-acting siRNAs in 
higher plants." Semin Cell Dev Biol 21(8): 798-804. 

Allen, E., Z. Xie, et al. (2005). "microRNA-directed phasing during trans-acting siRNA 
biogenesis in plants." Cell 121(2): 207-221. 

Allen, E., Z. X. Xie, et al. (2005). "microRNA-directed phasing during trans-acting siRNA 
biogenesis in plants." Cell 121(2): 207-221. 

Altschul, S. F., W. Gish, et al. (1990). "Basic local alignment search tool." J Mol Biol 215(3): 
403-410. 

Altuvia, Y., P. Landgraf, et al. (2005). "Clustering and conservation patterns of human 
microRNAs." Nucleic Acids Res 33(8): 2697-2706. 

Ambros, V. (2003). "MicroRNA pathways in flies and worms: growth, death, fat, stress, and 
timing." Cell 113(6): 673-676. 

Ambros, V., B. Bartel, et al. (2003). "A uniform system for microRNA annotation." RNA 
9(3): 277-279. 

Amrani, N., M. S. Sachs, et al. (2006). "Early nonsense: mRNA decay solves a translational 
problem." Nat Rev Mol Cell Biol 7(6): 415-425. 

Andronescu, M. S., C. Pop, et al. (2010). "Improved free energy parameters for RNA 
pseudoknotted secondary structure prediction." RNA 16(1): 26-42. 

Aravin, A. A., M. Lagos-Quintana, et al. (2003). "The small RNA profile during Drosophila 
melanogaster development." Dev Cell 5(2): 337-350. 

Arazi, T., M. Talmor-Neiman, et al. (2005). "Cloning and characterization of micro-RNAs 
from moss." Plant J 43(6): 837-848. 

Aukerman, M. J. and H. Sakai (2003). "Regulation of flowering time and floral organ identity 
by a MicroRNA and its APETALA2-like target genes." Plant Cell 15(11): 2730-2741. 

Axtell, M. J. and D. P. Bartel (2005). "Antiquity of microRNAs and their targets in land 
plants." Plant Cell 17(6): 1658-1673. 

Bachellerie, J. P., J. Cavaille, et al. (2002). "The expanding snoRNA world." Biochimie 
84(8): 775-790. 

Bandres, E., E. Cubedo, et al. (2006). "Identification by Real-time PCR of 13 mature 
microRNAs differentially expressed in colorectal cancer and non-tumoral tissues." 
Mol Cancer 5: 29. 

Barad, O., E. Meiri, et al. (2004). "MicroRNA expression detected by oligonucleotide 
microarrays: system establishment and expression profiling in human tissues." 
Genome Res 14(12): 2486-2494. 

Barik, S. (2008). "An intronic microRNA silences genes that are functionally antagonistic to 
its host gene." Nucleic Acids Res 36(16): 5232-5241. 



 130

Bartel, D. P. (2004). "MicroRNAs: genomics, biogenesis, mechanism, and function." Cell 
116(2): 281-297. 

Bashirullah, A., A. E. Pasquinelli, et al. (2003). "Coordinate regulation of small temporal 
RNAs at the onset of Drosophila metamorphosis." Dev Biol 259(1): 1-8. 

Batuwita, R. and V. Palade (2009). "microPred: effective classification of pre-miRNAs for 
human miRNA gene prediction." Bioinformatics 25(8): 989-995. 

Bentley, D. R., S. Balasubramanian, et al. (2008). "Accurate whole human genome 
sequencing using reversible terminator chemistry." Nature 456(7218): 53-59. 

Bentwich, I., A. Avniel, et al. (2005). "Identification of hundreds of conserved and 
nonconserved human microRNAs." Nat Genet 37(7): 766-770. 

Berezikov, E., V. Guryev, et al. (2005). "Phylogenetic shadowing and computational 
identification of human microRNA genes." Cell 120(1): 21-24. 

Berezikov, E., F. Thuemmler, et al. (2006). "Diversity of microRNAs in human and 
chimpanzee brain." Nat Genet 38(12): 1375-1377. 

Bernstein, E., A. A. Caudy, et al. (2001). "Role for a bidentate ribonuclease in the initiation 
step of RNA interference." Nature 409(6818): 363-366. 

Blaszczyk, J., J. E. Tropea, et al. (2001). "Crystallographic and modeling studies of RNase III 
suggest a mechanism for double-stranded RNA cleavage." Structure 9(12): 1225-
1236. 

Bohnsack, M. T., K. Czaplinski, et al. (2004). "Exportin 5 is a RanGTP-dependent dsRNA-
binding protein that mediates nuclear export of pre-miRNAs." RNA 10(2): 185-191. 

Bologna, N. G., J. L. Mateos, et al. (2009). "A loop-to-base processing mechanism underlies 
the biogenesis of plant microRNAs miR319 and miR159." EMBO J 28(23): 3646-
3656. 

Bolstad, B. M., R. A. Irizarry, et al. (2003). "A comparison of normalization methods for high 
density oligonucleotide array data based on variance and bias." Bioinformatics 19(2): 
185-193. 

Bonnet, E., J. Wuyts, et al. (2004). "Evidence that microRNA precursors, unlike other non-
coding RNAs, have lower folding free energies than random sequences." 
Bioinformatics 20(17): 2911-2917. 

Borchert, G. M., W. Lanier, et al. (2006). "RNA polymerase III transcribes human 
microRNAs." Nat Struct Mol Biol 13(12): 1097-1101. 

Borenstein, E. and E. Ruppin (2006). "Direct evolution of genetic robustness in microRNA." 
Proc Natl Acad Sci U S A 103(17): 6593-6598. 

Borsani, O., J. Zhu, et al. (2005). "Endogenous siRNAs derived from a pair of natural cis-
antisense transcripts regulate salt tolerance in Arabidopsis." Cell 123(7): 1279-1291. 

Brameier, M., A. Herwig, et al. (2010). "Human box C/D snoRNAs with miRNA like 
functions: expanding the range of regulatory RNAs." Nucleic Acids Res. 

Brameier, M., A. Krings, et al. (2007). "NucPred--predicting nuclear localization of proteins." 
Bioinformatics 23(9): 1159-1160. 

Brameier, M. and C. Wiuf (2007). "Ab initio identification of human microRNAs based on 
structure motifs." BMC Bioinformatics 8: 478. 

Brennecke, J. and S. M. Cohen (2003). "Towards a complete description of the microRNA 
complement of animal genomes." Genome Biol 4(9): 228. 

Brenner, S., M. Johnson, et al. (2000). "Gene expression analysis by massively parallel 
signature sequencing (MPSS) on microbead arrays." Nat Biotechnol 18(6): 630-634. 

Calin, G. A., C. D. Dumitru, et al. (2002). "Frequent deletions and down-regulation of micro- 
RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia." Proc Natl 
Acad Sci U S A 99(24): 15524-15529. 



 131

Carrington, J. C. and V. Ambros (2003). "Role of microRNAs in plant and animal 
development." Science 301(5631): 336-338. 

Cerutti, L., N. Mian, et al. (2000). "Domains in gene silencing and cell differentiation 
proteins: the novel PAZ domain and redefinition of the Piwi domain." Trends 
Biochem Sci 25(10): 481-482. 

Chen, C. Z., L. Li, et al. (2004). "MicroRNAs modulate hematopoietic lineage 
differentiation." Science 303(5654): 83-86. 

Chen, X. (2005). "MicroRNA biogenesis and function in plants." FEBS Lett 579(26): 5923-
5931. 

Chendrimada, T. P., R. I. Gregory, et al. (2005). "TRBP recruits the DICER complex to Ago2 
for microRNA processing and gene silencing." Nature 436(7051): 740-744. 

Chih-Chung Chang and Chih-Jen Lin (2001)  LIBSVM : a library for support vector 
machines. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm 

Choi, D., J. H. Kim, et al. (2004). "Whole genome analysis of the OsGRF gene family 
encoding plant-specific putative transcription activators in rice (Oryza sativa L.)." 
Plant Cell Physiol 45(7): 897-904. 

Clote, P., F. Ferre, et al. (2005). "Structural RNA has lower folding energy than random RNA 
of the same dinucleotide frequency." Rna-a Publication of the Rna Society 11(5): 578-
591. 

Collier, S., A. Pendle, et al. (2006). "A distant coilin homologue is required for the formation 
of cajal bodies in Arabidopsis." Mol Biol Cell 17(7): 2942-2951. 

Cortes C, Vapnik V. (1995). Support-vector network. Machine Learning. 20:273–297. 
Creighton, C. J., J. G. Reid, et al. (2009). "Expression profiling of microRNAs by deep 

sequencing." Brief Bioinform 10(5): 490-497. 
Davison, T. S., C. D. Johnson, et al. (2006). "Analyzing micro-RNA expression using 

microarrays." Methods Enzymol 411: 14-34. 
Denoeud, F., J. M. Aury, et al. (2008). "Annotating genomes with massive-scale RNA 

sequencing." Genome Biol 9(12): R175. 
Dezulian, T., M. Remmert, et al. (2006). "Identification of plant microRNA homologs." 

Bioinformatics 22(3): 359-360. 
Dong, Z., M. H. Han, et al. (2008). "The RNA-binding proteins HYL1 and SE promote 

accurate in vitro processing of pri-miRNA by DCL1." Proc Natl Acad Sci U S A 
105(29): 9970-9975. 

Dostie, J., Z. Mourelatos, et al. (2003). "Numerous microRNPs in neuronal cells containing 
novel microRNAs." RNA 9(2): 180-186. 

Eamens, A. L., N. A. Smith, et al. (2009). "The Arabidopsis thaliana double-stranded RNA 
binding protein DRB1 directs guide strand selection from microRNA duplexes." RNA 
15(12): 2219-2235. 

Elbashir, S. M., J. Harborth, et al. (2001). "Duplexes of 21-nucleotide RNAs mediate RNA 
interference in cultured mammalian cells." Nature 411(6836): 494-498. 

Elbashir, S. M., W. Lendeckel, et al. (2001). "RNA interference is mediated by 21- and 22-
nucleotide RNAs." Genes Dev 15(2): 188-200. 

Emery, J. F., S. K. Floyd, et al. (2003). "Radial patterning of Arabidopsis shoots by class III 
HD-ZIP and KANADI genes." Curr Biol 13(20): 1768-1774. 

Ender, C., A. Krek, et al. (2008). "A human snoRNA with microRNA-like functions." Mol 
Cell 32(4): 519-528. 

Fang, Y. and D. L. Spector (2007). "Identification of nuclear dicing bodies containing 
proteins for microRNA biogenesis in living Arabidopsis plants." Curr Biol 17(9): 818-
823. 



 132

Forstemann, K., Y. Tomari, et al. (2005). "Normal microRNA maturation and germ-line stem 
cell maintenance requires Loquacious, a double-stranded RNA-binding domain 
protein." PLoS Biol 3(7): e236. 

Freier, S. M., R. Kierzek, et al. (1986). "Improved free-energy parameters for predictions of 
RNA duplex stability." Proc Natl Acad Sci U S A 83(24): 9373-9377. 

Friedlander, M. R., W. Chen, et al. (2008). "Discovering microRNAs from deep sequencing 
data using miRDeep." Nat Biotechnol 26(4): 407-415. 

Gauwerky, C. E., K. Huebner, et al. (1989). "Activation of MYC in a masked t(8;17) 
translocation results in an aggressive B-cell leukemia." Proc Natl Acad Sci U S A 
86(22): 8867-8871. 

German, M. A., M. Pillay, et al. (2008). "Global identification of microRNA-target RNA 
pairs by parallel analysis of RNA ends." Nat Biotechnol 26(8): 941-946. 

Golan, D., C. Levy, et al. (2010). "Biased hosting of intronic microRNA genes." 
Bioinformatics 26(8): 992-995. 

Golden, T. A., S. E. Schauer, et al. (2002). "SHORT 
INTEGUMENTS1/SUSPENSOR1/CARPEL FACTORY, a DICER homolog, is a 
maternal effect gene required for embryo development in Arabidopsis." Plant Physiol 
130(2): 808-822. 

Gordon, L., A. Y. Chervonenkis, et al. (2003). "Sequence alignment kernel for recognition of 
promoter regions." Bioinformatics 19(15): 1964-1971. 

Grad, Y., J. Aach, et al. (2003). "Computational and experimental identification of C. elegans 
microRNAs." Mol Cell 11(5): 1253-1263. 

Gregory, R. I., K. P. Yan, et al. (2004). "The Microprocessor complex mediates the genesis of 
microRNAs." Nature 432(7014): 235-240. 

Griffiths-Jones, S. (2006). "miRBase: the microRNA sequence database." Methods Mol Biol 
342: 129-138. 

Griffiths-Jones, S., H. K. Saini, et al. (2008). "miRBase: tools for microRNA genomics." 
Nucleic Acids Res 36(Database issue): D154-158. 

Grigg, S. P., C. Canales, et al. (2005). "SERRATE coordinates shoot meristem function and 
leaf axial patterning in Arabidopsis." Nature 437(7061): 1022-1026. 

Grun, D., Y. L. Wang, et al. (2005). "microRNA target predictions across seven Drosophila 
species and comparison to mammalian targets." PLoS Comput Biol 1(1): e13. 

Gustafson, A. M., E. Allen, et al. (2005). "ASRP: the Arabidopsis Small RNA Project 
Database." Nucleic Acids Res 33(Database issue): D637-640. 

Hammond, S. M., S. Boettcher, et al. (2001). "Argonaute2, a link between genetic and 
biochemical analyses of RNAi." Science 293(5532): 1146-1150. 

Han, J., Y. Lee, et al. (2004). "The Drosha-DGCR8 complex in primary microRNA 
processing." Genes Dev 18(24): 3016-3027. 

Han, J., Y. Lee, et al. (2006). "Molecular basis for the recognition of primary microRNAs by 
the Drosha-DGCR8 complex." Cell 125(5): 887-901. 

Han, M. H., S. Goud, et al. (2004). "The Arabidopsis double-stranded RNA-binding protein 
HYL1 plays a role in microRNA-mediated gene regulation." Proc Natl Acad Sci U S 
A 101(4): 1093-1098. 

He, P. A., Z. Nie, et al. (2008). "Identification and characteristics of microRNAs from 
Bombyx mori." BMC Genomics 9: 248. 

Hiraguri, A., R. Itoh, et al. (2005). "Specific interactions between DICER-like proteins and 
HYL1/DRB-family dsRNA-binding proteins in Arabidopsis thaliana." Plant Mol Biol 
57(2): 173-188. 



 133

Hirsch, J., V. Lefort, et al. (2006). "Characterization of 43 non-protein-coding mRNA genes 
in Arabidopsis, including the MIR162a-derived transcripts." Plant Physiol 140(4): 
1192-1204. 

Hofacker, I. L. (2003). "Vienna RNA secondary structure server." Nucleic Acids Res 31(13): 
3429-3431. 

Hofacker, I. L., S. H. Bernhart, et al. (2004). "Alignment of RNA base pairing probability 
matrices." Bioinformatics 20(14): 2222-2227. 

Hofacker, I. L., W. Fontana, et al. (1994). "Fast Folding and Comparison of Rna Secondary 
Structures." Monatshefte Fur Chemie 125(2): 167-188. 

Hofacker, I. L. and P. F. Stadler (2006). "Memory efficient folding algorithms for circular 
RNA secondary structures." Bioinformatics 22(10): 1172-1176. 

Houbaviy, H. B., M. F. Murray, et al. (2003). "Embryonic stem cell-specific MicroRNAs." 
Dev Cell 5(2): 351-358. 

Hsu, R. J., C. Y. Lin, et al. (2010). "Novel intronic microRNA represses zebrafish myf5 
promoter activity through silencing dickkopf-3 gene." Nucleic Acids Res 38(13): 
4384-4393. 

Hubbard, S. J., D. V. Grafham, et al. (2005). "Transcriptome analysis for the chicken based 
on 19,626 finished cDNA sequences and 485,337 expressed sequence tags." Genome 
Res 15(1): 174-183. 

Hutvagner, G. (2005). "Small RNA asymmetry in RNAi: function in RISC assembly and gene 
regulation." FEBS Lett 579(26): 5850-5857. 

Ishizuka, A., M. C. Siomi, et al. (2002). "A Drosophila fragile X protein interacts with 
components of RNAi and ribosomal proteins." Genes Dev 16(19): 2497-2508. 

Jackson, A. L., S. R. Bartz, et al. (2003). "Expression profiling reveals off-target gene 
regulation by RNAi." Nat Biotechnol 21(6): 635-637. 

Jacobsen, S. E., M. P. Running, et al. (1999). "Disruption of an RNA helicase/RNAse III gene 
in Arabidopsis causes unregulated cell division in floral meristems." Development 
126(23): 5231-5243. 

Jaillon, O., J. M. Aury, et al. (2007). "The grapevine genome sequence suggests ancestral 
hexaploidization in major angiosperm phyla." Nature 449(7161): 463-467. 

Johnson, S. M., S. Y. Lin, et al. (2003). "The time of appearance of the C. elegans let-7 
microRNA is transcriptionally controlled utilizing a temporal regulatory element in its 
promoter." Dev Biol 259(2): 364-379. 

Johnston, R. J. and O. Hobert (2003). "A microRNA controlling left/right neuronal 
asymmetry in Caenorhabditis elegans." Nature 426(6968): 845-849. 

Jones-Rhoades, M. W. and D. P. Bartel (2004). "Computational identification of plant 
microRNAs and their targets, including a stress-induced miRNA." Mol Cell 14(6): 
787-799. 

Jones-Rhoades, M. W., D. P. Bartel, et al. (2006). "MicroRNAS and their regulatory roles in 
plants." Annu Rev Plant Biol 57: 19-53. 

Karolchik, D., R. Baertsch, et al. (2003). "The UCSC Genome Browser Database." Nucleic 
Acids Res 31(1): 51-54. 

Karolchik, D., R. M. Kuhn, et al. (2008). "The UCSC Genome Browser Database: 2008 
update." Nucleic Acids Res 36(Database issue): D773-779. 

Kawamata, T., H. Seitz, et al. (2009). "Structural determinants of miRNAs for RISC loading 
and slicer-independent unwinding." Nat Struct Mol Biol 16(9): 953-960. 

Kent, W. J. (2002). "BLAT--the BLAST-like alignment tool." Genome Res 12(4): 656-664. 
Kertesz, M., N. Iovino, et al. (2007). "The role of site accessibility in microRNA target 

recognition." Nat Genet 39(10): 1278-1284. 



 134

Kim, J. H., D. Choi, et al. (2003). "The AtGRF family of putative transcription factors is 
involved in leaf and cotyledon growth in Arabidopsis." Plant J 36(1): 94-104. 

Kim, V. N. (2005). "MicroRNA biogenesis: coordinated cropping and dicing." Nat Rev Mol 
Cell Biol 6(5): 376-385. 

Kim, V. N., J. Han, et al. (2009). "Biogenesis of small RNAs in animals." Nat Rev Mol Cell 
Biol 10(2): 126-139. 

Kurihara, Y., Y. Takashi, et al. (2006). "The interaction between DCL1 and HYL1 is 
important for efficient and precise processing of pri-miRNA in plant microRNA 
biogenesis." RNA 12(2): 206-212. 

Kurihara, Y. and Y. Watanabe (2004). "Arabidopsis micro-RNA biogenesis through DICER-
like 1 protein functions." Proc Natl Acad Sci U S A 101(34): 12753-12758. 

Lagos-Quintana, M., R. Rauhut, et al. (2001). "Identification of novel genes coding for small 
expressed RNAs." Science 294(5543): 853-858. 

Lagos-Quintana, M., R. Rauhut, et al. (2003). "New microRNAs from mouse and human." 
RNA 9(2): 175-179. 

Lagos-Quintana, M., R. Rauhut, et al. (2002). "Identification of tissue-specific microRNAs 
from mouse." Curr Biol 12(9): 735-739. 

Lai, E. C. (2002). "Micro RNAs are complementary to 3' UTR sequence motifs that mediate 
negative post-transcriptional regulation." Nat Genet 30(4): 363-364. 

Lai, E. C., P. Tomancak, et al. (2003). "Computational identification of Drosophila 
microRNA genes." Genome Biol 4(7): R42. 

Lanet, E., E. Delannoy, et al. (2009). "Biochemical evidence for translational repression by 
Arabidopsis microRNAs." Plant Cell 21(6): 1762-1768. 

Lau, N. C., L. P. Lim, et al. (2001). "An abundant class of tiny RNAs with probable 
regulatory roles in Caenorhabditis elegans." Science 294(5543): 858-862. 

Lauter, N., A. Kampani, et al. (2005). "microRNA172 down-regulates glossy15 to promote 
vegetative phase change in maize." Proc Natl Acad Sci U S A 102(26): 9412-9417. 

Lee, M. T. and J. Kim (2008). "Self containment, a property of modular RNA structures, 
distinguishes microRNAs." PLoS Comput Biol 4(8): e1000150. 

Lee, R. C. and V. Ambros (2001). "An extensive class of small RNAs in Caenorhabditis 
elegans." Science 294(5543): 862-864. 

Lee, R. C., R. L. Feinbaum, et al. (1993). "The C. elegans heterochronic gene lin-4 encodes 
small RNAs with antisense complementarity to lin-14." Cell 75(5): 843-854. 

Lee, Y., C. Ahn, et al. (2003). "The nuclear RNase III Drosha initiates microRNA 
processing." Nature 425(6956): 415-419. 

Lee, Y., K. Jeon, et al. (2002). "MicroRNA maturation: stepwise processing and subcellular 
localization." EMBO J 21(17): 4663-4670. 

Lee, Y., M. Kim, et al. (2004). "MicroRNA genes are transcribed by RNA polymerase II." 
EMBO J 23(20): 4051-4060. 

Lee, Y. S., K. Nakahara, et al. (2004). "Distinct roles for Drosophila DICER-1 and DICER-2 
in the siRNA/miRNA silencing pathways." Cell 117(1): 69-81. 

Legeai, F., G. Rizk, et al. (2010). "Bioinformatic prediction, deep sequencing of microRNAs 
and expression analysis during phenotypic plasticity in the pea aphid, Acyrthosiphon 
pisum." BMC Genomics 11: 281. 

Leslie, C. S., E. Eskin, et al. (2004). "Mismatch string kernels for discriminative protein 
classification." Bioinformatics 20(4): 467-476. 

Lewis, B. P., C. B. Burge, et al. (2005). "Conserved seed pairing, often flanked by 
adenosines, indicates that thousands of human genes are microRNA targets." Cell 
120(1): 15-20. 



 135

Lewis, B. P., I. H. Shih, et al. (2003). "Prediction of mammalian microRNA targets." Cell 
115(7): 787-798. 

Li, R., Y. Li, et al. (2008). "SOAP: short oligonucleotide alignment program." Bioinformatics 
24(5): 713-714. 

Li, S. C., P. Tang, et al. (2007). "Intronic microRNA: discovery and biological implications." 
DNA Cell Biol 26(4): 195-207. 

Li, W. X., Y. Oono, et al. (2008). "The Arabidopsis NFYA5 transcription factor is regulated 
transcriptionally and posttranscriptionally to promote drought resistance." Plant Cell 
20(8): 2238-2251. 

Liang, C., X. Zhang, et al. (2010). "Identification of miRNA from Porphyra yezoensis by 
high-throughput sequencing and bioinformatics analysis." PLoS One 5(5): e10698. 

Liang, M., E. Davis, et al. (2006). "Involvement of AtLAC15 in lignin synthesis in seeds and 
in root elongation of Arabidopsis." Planta 224(5): 1185-1196. 

Lim, L. P., M. E. Glasner, et al. (2003). "Vertebrate microRNA genes." Science 299(5612): 
1540. 

Lim, L. P., N. C. Lau, et al. (2003). "The microRNAs of Caenorhabditis elegans." Genes Dev 
17(8): 991-1008. 

Lin, S. L., J. D. Miller, et al. (2006). "Intronic microRNA (miRNA)." J Biomed Biotechnol 
2006(4): 26818. 

Lingel, A., B. Simon, et al. (2003). "Structure and nucleic-acid binding of the Drosophila 
Argonaute 2 PAZ domain." Nature 426(6965): 465-469. 

Lingel, A., B. Simon, et al. (2004). "Nucleic acid 3'-end recognition by the Argonaute2 PAZ 
domain." Nat Struct Mol Biol 11(6): 576-577. 

Liu, C. G., G. A. Calin, et al. (2008). "MicroRNA expression profiling using microarrays." 
Nat Protoc 3(4): 563-578. 

Liu, C. G., R. Spizzo, et al. (2008). "Expression profiling of microRNA using oligo DNA 
arrays." Methods 44(1): 22-30. 

Liu, D., J. Fan, et al. (2009). "Identification of miRNAs in a liver of a human fetus by a 
modified method." PLoS One 4(10): e7594. 

Llave, C., K. D. Kasschau, et al. (2002). "Endogenous and silencing-associated small RNAs 
in plants." Plant Cell 14(7): 1605-1619. 

Llave, C., K. D. Kasschau, et al. (2002). "Endogenous and silencing-associated small RNAs 
in plants." Plant Cell 14(7): 1605-1619. 

Long, D., C. Y. Chan, et al. (2008). "Analysis of microRNA-target interactions by a target 
structure based hybridization model." Pac Symp Biocomput: 64-74. 

Lu, C., B. C. Meyers, et al. (2007). "Construction of small RNA cDNA libraries for deep 
sequencing." Methods 43(2): 110-117. 

Lu, S., Y. H. Sun, et al. (2005). "Novel and mechanical stress-responsive MicroRNAs in 
Populus trichocarpa that are absent from Arabidopsis." Plant Cell 17(8): 2186-2203. 

Lund, E., S. Guttinger, et al. (2004). "Nuclear export of microRNA precursors." Science 
303(5654): 95-98. 

Ma, J. B., K. Ye, et al. (2004). "Structural basis for overhang-specific small interfering RNA 
recognition by the PAZ domain." Nature 429(6989): 318-322. 

MacRae, I. J., K. Zhou, et al. (2007). "Structural determinants of RNA recognition and 
cleavage by DICER." Nat Struct Mol Biol 14(10): 934-940. 

Mallory, A. C., D. P. Bartel, et al. (2005). "MicroRNA-directed regulation of Arabidopsis 
AUXIN RESPONSE FACTOR17 is essential for proper development and modulates 
expression of early auxin response genes." Plant Cell 17(5): 1360-1375. 



 136

Mallory, A. C., B. J. Reinhart, et al. (2004). "MicroRNA control of PHABULOSA in leaf 
development: importance of pairing to the microRNA 5' region." EMBO J 23(16): 
3356-3364. 

Margulies, M., M. Egholm, et al. (2005). "Genome sequencing in microfabricated high-
density picolitre reactors." Nature 437(7057): 376-380. 

Mateos, J. L., N. G. Bologna, et al. (2010). "Identification of microRNA processing 
determinants by random mutagenesis of Arabidopsis MIR172a precursor." Curr Biol 
20(1): 49-54. 

McCaig, B. C., R. B. Meagher, et al. (2005). "Gene structure and molecular analysis of the 
laccase-like multicopper oxidase (LMCO) gene family in Arabidopsis thaliana." 
Planta 221(5): 619-636. 

Mccaskill, J. S. (1990). "The Equilibrium Partition-Function and Base Pair Binding 
Probabilities for Rna Secondary Structure." Biopolymers 29(6-7): 1105-1119. 

Meyers, B. C., M. J. Axtell, et al. (2008). "Criteria for annotation of plant MicroRNAs." Plant 
Cell 20(12): 3186-3190. 

Mi, S., T. Cai, et al. (2008). "Sorting of small RNAs into Arabidopsis argonaute complexes is 
directed by the 5' terminal nucleotide." Cell 133(1): 116-127. 

Mica, E., V. Piccolo, et al. (2010). "Correction: High throughput approaches reveal splicing 
of primary microRNA transcripts and tissue specific expression of mature microRNAs 
in Vitis vinifera." BMC Genomics 11: 109. 

Montgomery, T. A., M. D. Howell, et al. (2008). "Specificity of ARGONAUTE7-miR390 
interaction and dual functionality in TAS3 trans-acting siRNA formation." Cell 
133(1): 128-141. 

Morozova, O. and M. A. Marra (2008). "Applications of next-generation sequencing 
technologies in functional genomics." Genomics 92(5): 255-264. 

Mourelatos, Z., J. Dostie, et al. (2002). "miRNPs: a novel class of ribonucleoproteins 
containing numerous microRNAs." Genes Dev 16(6): 720-728. 

Moxon, S., R. Jing, et al. (2008). "Deep sequencing of tomato short RNAs identifies 
microRNAs targeting genes involved in fruit ripening." Genome Res 18(10): 1602-
1609. 

Moxon, S., F. Schwach, et al. (2008). "A toolkit for analysing large-scale plant small RNA 
datasets." Bioinformatics 24(19): 2252-2253. 

Nakielny, S. and G. Dreyfuss (1999). "Transport of proteins and RNAs in and out of the 
nucleus." Cell 99(7): 677-690. 

Ng Kwang Loong, S. and S. K. Mishra (2007). "Unique folding of precursor microRNAs: 
quantitative evidence and implications for de novo identification." RNA 13(2): 170-
187. 

Ohler, U., S. Yekta, et al. (2004). "Patterns of flanking sequence conservation and a 
characteristic upstream motif for microRNA gene identification." RNA 10(9): 1309-
1322. 

Palatnik, J. F., E. Allen, et al. (2003). "Control of leaf morphogenesis by microRNAs." Nature 
425(6955): 257-263. 

Pang, M., A. W. Woodward, et al. (2009). "Genome-wide analysis reveals rapid and dynamic 
changes in miRNA and siRNA sequence and expression during ovule and fiber 
development in allotetraploid cotton (Gossypium hirsutum L.)." Genome Biol 10(11): 
R122. 

Pantaleo, V., G. Szittya, et al. (2010). "Identification of grapevine microRNAs and their 
targets using high-throughput sequencing and degradome analysis." Plant J 62(6): 
960-976. 



 137

Park, W., J. Li, et al. (2002). "CARPEL FACTORY, a DICER homolog, and HEN1, a novel 
protein, act in microRNA metabolism in Arabidopsis thaliana." Curr Biol 12(17): 
1484-1495. 

Pasquinelli, A. E., B. J. Reinhart, et al. (2000). "Conservation of the sequence and temporal 
expression of let-7 heterochronic regulatory RNA." Nature 408(6808): 86-89. 

Pfeffer, S., A. Sewer, et al. (2005). "Identification of microRNAs of the herpesvirus family." 
Nat Methods 2(4): 269-276. 

Prigge, M. J. and D. R. Wagner (2001). "The arabidopsis serrate gene encodes a zinc-finger 
protein required for normal shoot development." Plant Cell 13(6): 1263-1279. 

Provost, P., D. Dishart, et al. (2002). "Ribonuclease activity and RNA binding of recombinant 
human DICER." EMBO J 21(21): 5864-5874. 

Provost, P., R. A. Silverstein, et al. (2002). "DICER is required for chromosome segregation 
and gene silencing in fission yeast cells." Proc Natl Acad Sci U S A 99(26): 16648-
16653. 

Pusch, O., D. Boden, et al. (2003). "Nucleotide sequence homology requirements of HIV-1-
specific short hairpin RNA." Nucleic Acids Res 31(22): 6444-6449. 

Qi, Y., A. M. Denli, et al. (2005). "Biochemical specialization within Arabidopsis RNA 
silencing pathways." Mol Cell 19(3): 421-428. 

Rajagopalan, R., H. Vaucheret, et al. (2006). "A diverse and evolutionarily fluid set of 
microRNAs in Arabidopsis thaliana." Genes Dev 20(24): 3407-3425. 

Rand, T. A., S. Petersen, et al. (2005). "Argonaute2 cleaves the anti-guide strand of siRNA 
during RISC activation." Cell 123(4): 621-629. 

Re, M, G. Pesole, et al. (2009) “Accurate discrimination of conserved coding and non-coding 
regions through multiple indicators of evolutionary dynamics”. BMC Bioinformatics 
10:282 

Reinhart, B. J., F. J. Slack, et al. (2000). "The 21-nucleotide let-7 RNA regulates 
developmental timing in Caenorhabditis elegans." Nature 403(6772): 901-906. 

Rezaian, M. A. and L. R. Krake (1987). "Nucleic acid extraction and virus detection in 
grapevine." J Virol Methods 17(3-4): 277-285. 

Ribeiro-dos-Santos, A., A. S. Khayat, et al. (2010). "Ultra-deep sequencing reveals the 
microRNA expression pattern of the human stomach." PLoS One 5(10): e13205. 

Rodriguez, A., S. Griffiths-Jones, et al. (2004). "Identification of mammalian microRNA host 
genes and transcription units." Genome Res 14(10A): 1902-1910. 

Ruby, J. G., C. H. Jan, et al. (2007). "Intronic microRNA precursors that bypass Drosha 
processing." Nature 448(7149): 83-86. 

Saito, K., A. Ishizuka, et al. (2005). "Processing of pre-microRNAs by the DICER-1-
Loquacious complex in Drosophila cells." PLoS Biol 3(7): e235. 

Saraiya, A. A. and C. C. Wang (2008). "snoRNA, a novel precursor of microRNA in Giardia 
lamblia." PLoS Pathog 4(11): e1000224. 

Schauer, S. E., S. E. Jacobsen, et al. (2002). "DICER-LIKE1: blind men and elephants in 
Arabidopsis development." Trends Plant Sci 7(11): 487-491. 

Schloss, J. A. (2008). "How to get genomes at one ten-thousandth the cost." Nature 
Biotechnology 26(10): 1113-1115. 

Schwab, R. and O. Voinnet (2009). "miRNA processing turned upside down." EMBO J 
28(23): 3633-3634. 

Seitz, H. and P. D. Zamore (2006). "Rethinking the microprocessor." Cell 125(5): 827-829. 
Sempere, L. F., N. S. Sokol, et al. (2003). "Temporal regulation of microRNA expression in 

Drosophila melanogaster mediated by hormonal signals and broad-Complex gene 
activity." Dev Biol 259(1): 9-18. 



 138

Sewer, A., N. Paul, et al. (2005). "Identification of clustered microRNAs using an ab initio 
prediction method." BMC Bioinformatics 6: 267. 

Shaw, P. J. and J. W. Brown (2004). "Plant nuclear bodies." Curr Opin Plant Biol 7(6): 614-
620. 

Shiohama, A., T. Sasaki, et al. (2003). "Molecular cloning and expression analysis of a novel 
gene DGCR8 located in the DiGeorge syndrome chromosomal region." Biochem 
Biophys Res Commun 304(1): 184-190. 

Slack, F. J., M. Basson, et al. (2000). "The lin-41 RBCC gene acts in the C. elegans 
heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription 
factor." Mol Cell 5(4): 659-669. 

Smith, T. F. and M. S. Waterman (1981). "Identification of common molecular 
subsequences." J Mol Biol 147(1): 195-197. 

Song, J. J., J. Liu, et al. (2003). "The crystal structure of the Argonaute2 PAZ domain reveals 
an RNA binding motif in RNAi effector complexes." Nat Struct Biol 10(12): 1026-
1032. 

Song, L., M. H. Han, et al. (2007). "Arabidopsis primary microRNA processing proteins 
HYL1 and DCL1 define a nuclear body distinct from the Cajal body." Proc Natl Acad 
Sci U S A 104(13): 5437-5442. 

Souer, E., A. B. Rebocho, et al. (2008). "Patterning of inflorescences and flowers by the F-
Box protein DOUBLE TOP and the LEAFY homolog ABERRANT LEAF AND 
FLOWER of petunia." Plant Cell 20(8): 2033-2048. 

Stark, A., J. Brennecke, et al. (2003). "Identification of Drosophila MicroRNA targets." PLoS 
Biol 1(3): E60. 

Sturm, M., M. Hackenberg, et al. (2010). "TargetSpy: a supervised machine learning 
approach for microRNA target prediction." BMC Bioinformatics 11: 292. 

Sunkar, R., T. Girke, et al. (2005). "Cloning and characterization of microRNAs from rice." 
Plant Cell 17(5): 1397-1411. 

Sunkar, R., A. Kapoor, et al. (2006). "Posttranscriptional induction of two Cu/Zn superoxide 
dismutase genes in Arabidopsis is mediated by downregulation of miR398 and 
important for oxidative stress tolerance." Plant Cell 18(8): 2051-2065. 

Sunkar, R. and J. K. Zhu (2004). "Novel and stress-regulated microRNAs and other small 
RNAs from Arabidopsis." Plant Cell 16(8): 2001-2019. 

Szarzynska, B., L. Sobkowiak, et al. (2009). "Gene structures and processing of Arabidopsis 
thaliana HYL1-dependent pri-miRNAs." Nucleic Acids Res 37(9): 3083-3093. 

Tabara, H., E. Yigit, et al. (2002). "The dsRNA binding protein RDE-4 interacts with RDE-1, 
DCR-1, and a DExH-box helicase to direct RNAi in C. elegans." Cell 109(7): 861-
871. 

Taft, R. J., E. A. Glazov, et al. (2009). "Small RNAs derived from snoRNAs." RNA 15(7): 
1233-1240. 

Taft, R. J., C. D. Kaplan, et al. (2009). "Evolution, biogenesis and function of promoter-
associated RNAs." Cell Cycle 8(15): 2332-2338. 

Takeda, A., S. Iwasaki, et al. (2008). "The mechanism selecting the guide strand from small 
RNA duplexes is different among argonaute proteins." Plant Cell Physiol 49(4): 493-
500. 

Tam, W. (2001). "Identification and characterization of human BIC, a gene on chromosome 
21 that encodes a noncoding RNA." Gene 274(1-2): 157-167. 

Terrier, N., D. Glissant, et al. (2005). "Isogene specific oligo arrays reveal multifaceted 
changes in gene expression during grape berry (Vitis vinifera L.) development." Planta 
222(5): 832-847. 



 139

Vapnik VN. (1998). Statistical Learning Theory Adaptive and Learning Systems for Signal 
Processing, Communications, and Control. Wiley: New York 

Vaucheret, H. (2006). "Post-transcriptional small RNA pathways in plants: mechanisms and 
regulations." Genes Dev 20(7): 759-771. 

Vaucheret, H. (2008). "Plant ARGONAUTES." Trends Plant Sci 13(7): 350-358. 
Vazquez, F. (2006). "Arabidopsis endogenous small RNAs: highways and byways." Trends 

Plant Sci 11(9): 460-468. 
Vazquez, F., S. Legrand, et al. (2010). "The biosynthetic pathways and biological scopes of 

plant small RNAs." Trends Plant Sci 15(6): 337-345. 
Vermeulen, A., L. Behlen, et al. (2005). "The contributions of dsRNA structure to DICER 

specificity and efficiency." RNA 11(5): 674-682. 
Wang, H., N. H. Chua, et al. (2006). "Prediction of trans-antisense transcripts in Arabidopsis 

thaliana." Genome Biol 7(10): R92. 
Wang, X. (2006). "Systematic identification of microRNA functions by combining target 

prediction and expression profiling." Nucleic Acids Res 34(5): 1646-1652. 
Wang, X., J. Zhang, et al. (2005). "MicroRNA identification based on sequence and structure 

alignment." Bioinformatics 21(18): 3610-3614. 
Washietl, S., I. L. Hofacker, et al. (2005). "Fast and reliable prediction of noncoding RNAs." 

Proceedings of the National Academy of Sciences of the United States of America 
102(7): 2454-2459. 

Wheelan, S. J., D. M. Church, et al. (2001). "Spidey: a tool for mRNA-to-genomic 
alignments." Genome Res 11(11): 1952-1957. 

Wightman, B., I. Ha, et al. (1993). "Posttranscriptional regulation of the heterochronic gene 
lin-14 by lin-4 mediates temporal pattern formation in C. elegans." Cell 75(5): 855-
862. 

Wu, F., L. Yu, et al. (2007). "The N-terminal double-stranded RNA binding domains of 
Arabidopsis HYPONASTIC LEAVES1 are sufficient for pre-microRNA processing." 
Plant Cell 19(3): 914-925. 

Xie, X., J. Lu, et al. (2005). "Systematic discovery of regulatory motifs in human promoters 
and 3' UTRs by comparison of several mammals." Nature 434(7031): 338-345. 

Xie, Z., E. Allen, et al. (2005). "Expression of Arabidopsis MIRNA genes." Plant Physiol 
138(4): 2145-2154. 

Xie, Z., L. K. Johansen, et al. (2004). "Genetic and functional diversification of small RNA 
pathways in plants." PLoS Biol 2(5): E104. 

Xie, Z., K. D. Kasschau, et al. (2003). "Negative feedback regulation of DICER-Like1 in 
Arabidopsis by microRNA-guided mRNA degradation." Curr Biol 13(9): 784-789. 

Xie, Z. and X. Qi (2008). "Diverse small RNA-directed silencing pathways in plants." 
Biochim Biophys Acta 1779(11): 720-724. 

Xu, P., S. Y. Vernooy, et al. (2003). "The Drosophila microRNA Mir-14 suppresses cell death 
and is required for normal fat metabolism." Curr Biol 13(9): 790-795. 

Xue, C., F. Li, et al. (2005). "Classification of real and pseudo microRNA precursors using 
local structure-sequence features and support vector machine." BMC Bioinformatics 
6: 310. 

Yan, K. S., S. Yan, et al. (2003). "Structure and conserved RNA binding of the PAZ domain." 
Nature 426(6965): 468-474. 

Yang, D., F. Buchholz, et al. (2002). "Short RNA duplexes produced by hydrolysis with 
Escherichia coli RNase III mediate effective RNA interference in mammalian cells." 
Proc Natl Acad Sci U S A 99(15): 9942-9947. 

Yang, L., Z. Liu, et al. (2006). "SERRATE is a novel nuclear regulator in primary microRNA 
processing in Arabidopsis." Plant J 47(6): 841-850. 



 140

Yin, J. Q., R. C. Zhao, et al. (2008). "Profiling microRNA expression with microarrays." 
Trends Biotechnol 26(2): 70-76. 

Yu, B., L. Bi, et al. (2010). "siRNAs compete with miRNAs for methylation by HEN1 in 
Arabidopsis." Nucleic Acids Res 38(17): 5844-5850. 

Yu, B., Z. Yang, et al. (2005). "Methylation as a crucial step in plant microRNA biogenesis." 
Science 307(5711): 932-935. 

Zamore, P. D., T. Tuschl, et al. (2000). "RNAi: Double-stranded RNA directs the ATP-
dependent cleavage of mRNA at 21 to 23 nucleotide intervals." Cell 101(1): 25-33. 

Zeng, Y. and B. R. Cullen (2003). "Sequence requirements for micro RNA processing and 
function in human cells." RNA 9(1): 112-123. 

Zeng, Y., E. J. Wagner, et al. (2002). "Both natural and designed micro RNAs can inhibit the 
expression of cognate mRNAs when expressed in human cells." Mol Cell 9(6): 1327-
1333. 

Zeng, Y., R. Yi, et al. (2005). "Recognition and cleavage of primary microRNA precursors by 
the nuclear processing enzyme Drosha." Embo Journal 24(1): 138-148. 

Zhang, B. H., X. P. Pan, et al. (2006). "Evidence that miRNAs are different from other 
RNAs." Cell Mol Life Sci 63(2): 246-254. 

Zhang, H., F. A. Kolb, et al. (2004). "Single processing center models for human DICER and 
bacterial RNase III." Cell 118(1): 57-68. 

Zhang, X. B., X. F. Song, et al. (2010). "Characteristic comparison between two types of 
miRNA precursors in metazoan species." Biosystems 100(2): 144-149. 

Zhang, X. H., K. A. Heller, et al. (2003). "Sequence information for the splicing of human 
pre-mRNA identified by support vector machine classification." Genome Res 13(12): 
2637-2650. 

Zhao, C. Z., H. Xia, et al. (2010). "Deep sequencing identifies novel and conserved 
microRNAs in peanuts (Arachis hypogaea L.)." BMC Plant Biol 10: 3. 

Zhao, J. J., J. Yang, et al. (2009). "Identification of miRNAs associated with tumorigenesis of 
retinoblastoma by miRNA microarray analysis." Childs Nerv Syst 25(1): 13-20. 

Zhu, J. K. (2008). "Reconstituting plant miRNA biogenesis." Proc Natl Acad Sci U S A 
105(29): 9851-9852. 

Zien, A., G. Ratsch, et al. (2000). "Engineering support vector machine kernels that recognize 
translation initiation sites." Bioinformatics 16(9): 799-807. 

Zuker, M. and P. Stiegler (1981). "Optimal computer folding of large RNA sequences using 
thermodynamics and auxiliary information." Nucleic Acids Res 9(1): 133-148. 



 141

Thanks to: 
 
 
Prof. Graziano Pesole for giving me the opportunity to learn from him and from the 
bioinformatics group that he founded. 
 
Carmela Gissi for her availability and for being my Ph.D tutor. 
 
David Horner for what he taught me every day about the wonderful miRNAs world, as Ph.D 
tutor, and about life, as friend. 
 
Giulio Pavesi for being always what he is: fantastic! 
 
Federico Zambelli, Matteo Chiara and Massimiliano Borsani for grappa, beer, express-pizza 
and fusion dance…..thanks for being my colleagues, but also, and above all, my friends. 
 
Francesca Griggio and Renato Lupi for sharing biology, bioinformatics, caffè and music with 
me. 
 
Prof. Gianni Dehò for what he taught me before and during my Ph.D. 
 
 
My family that, despite the distance, always supported me with LOVE. 
 


