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La gratitudine per il passo compiuto non è solamente  

legata alla soddisfazione per aver fatto qualcosa  

di importante, ma indica un’esperienza più profonda:  

ogni scoperta, piccola o grande, rievoca la percezione di una  

misteriosa corrispondenza che lega la realtà all’io umano.  

Lasciandosi scoprire e comprendere, la realtà fisica dimostra  

di essere fatta per l’io, e l’io conferma la sua vocazione di essere 

 destinato al rapporto con tutte le cose. 

 Nell’esperienza della scoperta è come se, per un breve istante,  

anche l’apparenza fisica delle cose lasciasse intravvedere 

 il tratto più vero e ineffabile della realtà: 

 la segreta amicizia di tutto per l’io umano. 

	
  

	
   	
   	
   	
   	
   	
    (M. Bersanelli) 

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  



	
   II	
  

	
  

	
  

	
  

INDEX 
	
  

1. CHAPTER I: INTRODUCTION 

1.1 Biofilms 2 

Ä Importance of biofilm bacterial infections 3 

Ä Biofilm development 4 

1.2 Determinants in biofilm formation 6 

Ä  Lipopolysaccharide (LPS) 6 

Ä  Flagella 7 

Ä  Pili and fimbriae 7 

Ä  Exopolysaccharides 9 

Ä  Outer membrane proteins (OMPs) 10 

Ä  Extracellular DNA 10 

1.3 Regulation of biofilm formation 11 

Ä Transcriptional regulation responding to 11  

environmental factors 

Ä Intracellular signals molecules 13 

Ä Quorum sensing 14 

Ä Global regulators 15 

Ä sRNA and biofilm regulation 17 

Ä GGDEF and EAL proteins: c-di-GMP turnover 17 

Ä Escherichia coli GGDEF and EAL proteins 19 

 

 

 

 



	
   III	
  

2. CHAPTER II: CsgD REGULATION OF BIOFILM  

FORMATION 

2.1 Introduction 22 

2.2 Results Part I 23 

Ä Role of cellulose in biofilm formation 24 

 Results Part II 28 

Ä CsgD effects on MG1655 protein production 28 

Ä Transcriptional activation of rpoS-dependent  31 

genes by CsgD  

Ä Effects of CsgD on σs intracellular concentrations 35 

2.3 Discussion 38 

2.4 Methods 41 

 

 

3. CHAPTER III: yddV-dos OPERON AND 

REGULATION OF CURLI FIBERS 

 
3.1 Introduction 48 

3.2 Results 49 

Ä Partial deletion of the yddV and dos genes  49 

Ä Effects of the yddV and dos mutations on 50  

Congo Red binding and biofilm formation 

Ä Effects of the yddV and dos mutations on 52 

 curli gene expression 

Ä Growth-phase dependent regulation of the 55 

 yddV-dos operon 
 

3.3 Discussion 56 

3.4 Methods 59 



	
   IV	
  

4. CHAPTER IV: YddV CONTROLS PRODUCTION OF 

POLY-N-ACETYLGLUCOSAMINE 

4.1 Introduction 63 

4.2 Results 64 

Ä Overexpression of diguanylate cyclases (DGCs) 64 

Ä Effects of DGC overexpression on cell surface 66 

associated structures 

Ä Regulation of pgaABCD expression by DGCs 70 

Ä The yddV gene positively controls pgaABCD 71 

expression and PNAG production 

Ä Regulation of PNAG-biosynthetic genes by yddV 74  

Ä Effects of the c-di-GMP phosphodiesterases Dos 76 

on pgaABCD expression 

4.3 Discussion 78 

4.4 Methods 80 

 

5. CHAPTER V: STUDY OF PHL1228, A  

BIOFILM-FORMING MUTANT 

5.1 Introduction 87 

5.2 Results 87 
 

Ä Global gene expression in PHL1228     87 

Ä Outer membrane protein analysis 89 

Ä Expression of the pgaABCD operon is 90 

       responsible for biofilm phenotype 

Ä Study on pgaABCD expression 91 

Ä Iron regulation in PHL1228 94 

 

5.3 Discussion 96 

5.4 Methods 99 



	
   V	
  

6. CHAPTER VI: CONCLUDING REMARKS 103 

7. CHAPTER VII: REFERENCES 105 

8. CHAPTER VIII: APPENDIX 125  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  



	
    

	
   	
  
	
  
	
   CHAPTER 1 
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

Introduction 
	
  
	
  



	
   2	
  

INTRODUCTION 
 

 

1.1 Biofilms 

In natural habitats microorganisms are often found attached to solid 

surfaces (both biotic or abiotic) and organized in structured communities known 

as biofilms: such communities are characterized by the presence of different 

bacterial species, often associated with eukaryotic microorganisms, and by the 

presence of a matrix constituted by extracellular macromolecules (e.g. 

polysaccharides) which embeds the microbes. The biofilm mode of growth 

differs significantly from the planktonic state, i.e. bacterial free-living cells 

(Costerton et al., 1995). The tightly associated cells constituting a bacterial 

biofilm are able to coordinate their physiological and metabolic state, thus 

almost resembling the subdivision of functions of a multicellular organism 

(Caldwell, 2002; Costerton et al., 1995; Shapiro, 1998). 

Such “multicellular behavior” offers many advantages to a bacterial 

population. In the environment, organization into a such community plays a key 

role in the production and degradation of pollutants and the cycling of nitrogen, 

sulfur and many metals, carried out by the concerted action of bacteria with 

different metabolic capabilities. Water channels, throughout the biofilm, provide 

the exchange of nutrients and metabolism products, allowing metabolic 

cooperativity (Davey and O’Toole G, 2000). The surrounding extracellular 

matrix confers a certain degree of protection to the bacteria residing within a 

biofilm, in particular against biocides and detergents; bacteria growing as 

biofilm in the human host are less susceptible to the immune response and 

more resistant to antibiotic treatment (Costerton et al., 1994; Costerton et al., 

1999).  

Biofilm growth can tremendously impact various human activities: 

bacterial contaminations, usually by biofilms, can hamper industrial processes, 

in particular the food and paper industry. Bacteria adhering to metal surfaces 

can promote their corrosion leading to substantial economic damages 

(Costerton et al., 1995). Biofilms removal is carried out using either biocides or 
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mechanical methods (grinding, wash-out with high-pressure water, etc…), but 

their complete and efficient removal is often difficult. 

Biofilm, on the other hand, can also have beneficial functions: for instance, 

removal of organic material and more efficient processing of contaminants in 

wastewater treatment, or bioremediation of polluted soil, are mostly carried out 

by biofilm-growing bacteria. 

 

Importance of biofilms in bacterial infections 

A wide variety of medical devices, such as catheters or prostheses, are 

readily colonized by bacterial biofilms, thus becoming a reservoir of pathogenic 

bacteria and the starting point for serious human diseases and infections. The 

total amount of death that can be attributed to infections associated to medical 

devices is worldwide approximately 160,000 per years (WHO estimates).  Bone 

(osteomyelitis, caused prevalently by Streptococci and other Gram positive 

bacteria) and urinary tract (cystitis and urethretis, caused mainly by 

enterobacteria such as enteropathogenic E. coli) infections are mainly due to 

biofilms, and show remarkable resistance to antibiotic treatment. This 

resistance results in establishment of chronic bacterial infections (Finlay and 

Falkow, 1997; Hoyle and Costerton, 1991).  

Production of exopolysaccharides can protect the bacterial cell against 

the immune response of the host (Vuong et al., 2004), and can be stimulated 

by exposure to antibiotics. Thus, antibiotic treatment can be counterproductive 

in some cases and even promote biofilm formation (Rachid et al., 2000; Sailer 

et al., 2003). An example of extensive colonization linked to exopolysaccharide 

production are lung infections caused by Pseudomonas aeruginosa, often in 

concert with other opportunistic pathogens. In cystic fibrosis (an inherited 

chronic disease that affects the lungs and digestive system) patients, infections 

by P. aeruginosa are the main cause of death. Gene transfer is enhanced within 

biofilm (Ghigo, 2001; Li et al., 2001; Molin & Tolker-Nielsen, 2003), thus 

providing for quick and efficient transfer of antibiotic resistance genes, and 

making the combat of biofilm-born infections difficult. Moreover, biofilms may 

consist of cells of several or a single bacterial species interacting cooperatively. 

Cells within a biofilm are physiologically heterogenous because of a variety of 

microniches occur within the biofilm structure. Cells on the surface of the 

structure with ready access to nutrients would be metabolically active and able 



	
   4	
  

to divide; in contrast cells in the internal layers of a biofilm may be largely 

dormant. This concept of physiological heterogeneity within a biofilm is 

important because, unlike the relative physiological synchrony of planktonic 

bacteria in broth culture, biofilm heterogeneity results in cells with vastly 

different properties, such as susceptibilities to antibiotics. Indeed, cells in the 

deeper layers of thick biofilms, which grow more slowly, have less access to 

antibiotics and nutrients. As a result, biofilms may be as much as 1000 times 

more refractory to antibiotic killing than bacterial cells suspended in broth 

culture (Behlau & Gilmore, 2008). 

 

Biofilm development 

Transition from the planktonic mode of growth to more a complex 

structure such as a biofilm occurs as a sequential and developmental process 

(Fig. 1) (Reisner et al., 2003; Stoodley et al., 2002; Ghigo, 2001). The process 

of adhesion to a surface, i.e the first step of biofilm formation, is mostly 

controlled by physico-chemical properties such as Van der Waals interaction, 

electrical charge and hydrophobicity of both bacterial cells and surfaces; often 

bacteria have to overcome electric charge repulsion in order to attach to a 

surface (Jucker et al., 1996; Van Loosdrecht et al., 1990). Upon adhesion 

bacteria might sense contacts with the surface and induce specific gene 

expression, leading to further development of the biofilm (Davies et al., 1993; 

Otto & Silhavy, 2002; Sauer & Camper, 2001; Wang et al., 2004b). In the 

presence of environmental conditions allowing bacterial growth, adherent cells 

can divide and form an attached monolayer known as a microcolony. 

Establishment of stronger cell-cell contacts allows the microcolony to finally 

differentiate into a mature biofilm whose three-dimensional structure is 

determined by the extracellular polymeric substances (EPS) in which the biofilm 

is encased. EPS is constituted by a highly hydrate milieu consisting of different 

types of exopolysaccharides, extracellular proteins and enzymes, and even DNA 

(Lawrence et al., 1991; Withchurch et al., 2002); in addition, bacterial outer 

membrane vesicles, flagella, phages, pili, host matrix material, and lysed cell 

debris may also be present (Hunter and Beveridge, 2005). This EPS matrix 

provides structural support to the biofilm, similar to an exoskeleton (Ghigo, 

2003). Biofilm maturation is characterized by the growth of surface-attached 

microcolonies that progress to a mature architecture with increased synthesis of 
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EPS, leading to a complex architecture that includes channels, pores, and even 

a redistribution of the bacteria farther away from the substratum. Growth 

generally occurs as the result of binary division of attached cells spreading 

daughter cells upward and outward from the attached surface to form cell 

clusters (Heydorn et al., 2000); however, recruitment of cells from the bulk 

fluid to the aggregating microorganisms has also been observed (Molin et al., 

2000). A mature biofilm can reach a thickness ranging from µm to cm, thus 

representing a heterogeneous micro-environment with respect to physical and 

chemical conditions such as osmolarity, oxygen, pH and nutrients (Stoodley et 

al., 2002). 

 

 

 
http://www.pasteur.fr/recherche/RAR/RAR2006/Ggb-en.html 

 

Figure 1. Construction of a biofilm. Free (planktonic) bacteria assemble on a surface. 

 

After biofilm maturation, EPS matrix levels appear to decrease, perhaps 

due to metabolism, with subsequent detachment (Fig. 1, stage 5) of clumps 

and individual cells (Gilbert et al., 1998). This detachment event can take place 

through mechanic breakage of biofilms, especially when exposed to high flow. 

However, it was also observed that biofilm cells can induce the production of 

EPS-degrading enzymes, thus promoting their release from the biofilm (Jones 

et al., 1998; Landini et al., 2010). 
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1.2 Determinants in biofilm formation 

Transition from free-living cells to the biofilm mode of growth implies 

substantial modifications regarding morphology and biochemistry of the cell 

(Davies et al., 1993; Pratt & Kolter, 1999; Prigent-Combaret & Lejeune, 1999; 

Prigent-Combaret et al., 1999; Schembri et al., 2003). Thus far several 

features taking part in biofilm formation have been identified; most of these 

biofilm determinants are cell-surface exposed or extracellular structures directly 

involved in attachment to substrata and in cell aggregation. 

In the following parts, I will give a general overview of the different 

components involved in adhesion and biofilm formation, and then I will focus in 

particular on two determinants: curli fibers, a structural determinant in E. coli, 

and the recent discovered class of the GGDEF-EAL proteins; both curli and 

GGDEF proteins are  subjects of my experimental work. 

 

Lipopolysaccharide (LPS) 

The lipopolysaccharide, also known as lipoglycan, is the main component 

of the outer membrane of gram-negative bacteria, and it consists of three 

subunits: lipid A, core oligosaccharide and O-specific antigen or O-side chain. 

LPS has been shown to be involved in interactions, either attraction or 

repulsion, of bacteria with solid surfaces, such as glass beads or Teflon (Jucker 

et al., 1997). In Pseudomonas B13 variations in the composition of external LPS 

appear to be responsible for the different adhesion behavior of at least three 

bacterial subpopulations (Simoni et al., 1998). 

In E. coli W3100, knock-out mutations in rfaG, rfaP and galU genes, 

which are involved in LPS core biosynthesis, lead to a decreased ability to 

adhere to polystyrene surfaces, and galU and galE Vibrio cholerae mutants are 

not able to form biofilm (Nesper et al., 2001). However, the loss of the 

adhesion properties seem to be caused by affected type I fimbriae and/or 

flagella (see below), associated with these mutations, rather than to a direct 

role of LPS in cell-surface interactions (Genevaux et al., 1999). In E. coli W3100 

grown under anoxic conditions, the ability to adhere to hydrophilic surfaces was 

negatively affected by higher production of LPS, while inactivation of waaQ, 

which is part of the LPS core biosynthetic operon, stimulated adhesion both 

under aerobic and anoxic conditions, suggesting a negative role of LPS in 
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adhesion to sand (Landini & Zehnder, 2002). In contrast, several strains 

defective in LPS synthesis, such as Klebsiella pneumonia, Proteus mirabilis and 

Serratia marascens, were found to have reduced ability to adhere to 

uroepithelial cells, as well as to form biofilms (Izquierdo et al., 2002). Thus LPS 

can contribute in different ways to adhesion properties of a cell, by either 

bridging the gap between cell and surface or inhibiting attachment through 

steric hindrance of such a bridging (Rijnaarts, 1994; van Loosdrecht et al., 

1990). 

 

Flagella 

Flagella are filamentous structures, mainly constituted by the flagellin 

protein, the product of the fliC gene. Flagella allow bacterial motility and play a 

central role in chemotaxis. Their role in adhesion processes might be to 

overcome surface repulsion and to stabilize surface contact. Mutations affecting 

E. coli flagellar functions, such as flh or mot, abolish both initial interaction with 

the surface and movement along the surface (Danese et al., 2000a; Pratt & 

Kolter, 1998). A functional flagellum has been suggested to be involved in 

biofilm formation by Pseudomonas sp. as well, since insertion mutation in either 

flgK or fliP, both involved in flagellar synthesis, lead to non-motile strains 

deficient in biofilm formation (O’Toole & Kolter, 1998a; O’Toole & Kolter, 

1998b). In contrast, motility is not essential to biofilm formation in curli-

producing E. coli strains (Prigent-Combaret et al., 2000) or in Pseudomonas 

fluorescens biofilm-forming, non-motile mutants (Robleto et al., 2003). 

Presence of flagella in P. putida was found in planktonic cultures prior to biofilm 

formation, and again in mature biofilms, but not during the microcolony state, 

suggesting a role of flagella in initiation of cell-surface contact as well as in the 

detachment of cells from the biofilm (Sauer & Camper, 2001). 

 

Pili and Fimbriae 

Like flagella, pili and fimbriae are extracellular structures constituted by 

proteins which, however, are not involved in cell motility. Type I fimbriae are 

short and numerous, and are encoded by the fim genes and expressed in most 

E. coli and Salmonella strains. Type I fimbrae play a key role in the colonization 

of various host tissues as well as in biofilm formation on abiotic surfaces and in 

autoaggregation (Boddicker et al., 2002; Pratt & Kolter, 1998; Schembri et al., 
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2001). Fimbriae are dispensable for the establishment of initial cell-surface 

contacts, but appear to be essential for the stabilization of cell-cell contacts in 

later steps of biofilm formation. Deletion of entire fim cluster results in 

increased expression of Antigen 43 (Ag43), a surface protein, encoded by the 

flu gene (Schembri et al., 2002). Ag43 mediates cell-cell or cell-surface 

contacts and promotes biofilm formation in glucose-minimal medium in E. coli 

(Danese et al., 2000a). In contrast to other surface structures such as fimbriae, 

Ag43 adhesin is directly anchored to the outer membrane, thus resulting in a 

more intimate cell-cell contact than in other cellular interactions. Another kind 

of fimbriae, called autoaggregative adherence fimbriae (AAF), is a determinant 

for biofilm formation by enteroaggregative E. coli (Sheikh et al., 2001). 

Pili are generally longer than fimbriae; they can serve as specific 

receptors for bacteriophages and are involved in the process of conjugation. E. 

coli cells can establish tight cell-cell contacts through F-pili. Such pili promote 

horizontal gene transfer of genetic material between donor and recipient cells, 

transfer that appear to take place with higher frequency in biofilms than in 

planktonic cells. Type F-pili are encoded by natural conjugative plasmids, which 

thus direct the expression of biofilm factors as part of a coordinated strategy 

aimed to their propagation (Ghigo, 2001). In Pseudomonas sp. type IV pili, 

involved in surface-associated twitching motility, appear to be necessary for 

microcolony formation: indeed, mutants unable to express type IV pili cannot 

progress beyond the initial adhesion step and form microcolonies (O’Toole & 

Kolter, 1998a). Another study found that type IV pili are induced in biofilm 

cells, whereas planktonic cells lack these structures, suggesting a role of 

twitching motility within the biofilm (Sauer & Camper, 2001). Biofilm-dependent 

expression of type IV pili is only one of several examples of switching the 

production of different kinds of pili according to the environmental cues and 

physiological conditions. For instance, Vibrio cholerae expresses TCP (toxin-

coregulated pilus, belonging to the type IV pili group) in the host intestinal 

surface, where it is an essential colonization factor, whereas attachment to 

abiotic surfaces such as borosilicate is rather mediated by the mannose-

sensitive hemagglutin (MSHA) pilus (Watnick et al., 1999).  
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Exopolysaccharides 

Secreted polysaccharides play a key role in shaping and providing 

structural support to the biofilm (Sutherland, 2001). These polymers are very 

diverse and are often involved in the establishment of productive cell-to-cell 

contacts that contribute to the formation of biofilms at liquid–solid interfaces, 

pellicles at air–liquid interfaces, cell aggregates and clumps in liquid cultures, 

and wrinkled colony morphology on agar plates. Evidence for a structural role of 

some of these matrix polysaccharides is accumulating, and the regulation of 

production of these exopolysaccharides is now actively being investigated in 

different bacteria (Kirillina et al. 2004; Branda et al., 2005; Simm et al., 2005). 

For instance, production of extracellular polysaccharides (EPS), such as alginate 

in P. fluorescens and colanic acid (CA) in E. coli is induced after attachment to a 

solid surface (Davies & Geesey, 1995). In agreement with this observation, CA 

synthesis does not appear critical for initial colonization but rather for the 

formation of the complex three-dimensional structure of biofilms (Danese et al., 

2000a; Prigent-Combaret et al., 2000). Same results were found regarding 

alginate expression of Pseudomonas aeruginosa (Wozniak et al., 2003). 

Exopolysaccharides can remain attached to the cell surface in a capsular form 

or be released as slime. EPS display a considerable heterogeneity, ranging from 

simple α,1-4-linked, un-branched glucose polymer called dextran, to the more 

complex substituted hetero-polysaccharides made up of combinations of 

different repeating subunits, such as xanthan and colanic acid. EPS biosynthesis 

is extremely complex: colanic acid synthesis in E. coli involves 19 genes, 

clustered in the wca locus (Stevenson et al., 1996). Interestingly, although CA 

synthesis is widely present in the Enterobacteriaceae, the genes involved in its 

biosynthesis are not highly conserved (Stevenson et al., 1996). CA is critical for 

biofilm three-dimensional structure formation based on the research of Danese 

and colleagues (2000b), nevertheless, overproduction of colanic acid inhibits 

biofilm formation in E. coli BW25113 strains (Zhang et al., 2008). 

In Gram positive Staphylococcus epidermidis, expression of the icaABCD 

operon leads to production of polysaccharide intracellular adhesin (PIA), an 

important factor in colonization of medical devices and in cell-cell adhesion 

(Conlon et al., 2002; Heilmann et al., 1996; McKenney et al., 1998). PIA 

production actively protects the bacteria against major components of the 

human immune system, such as leukocytes and antibacterial peptides (Vuong 
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et al., 2004). icaA is a glycosyltransferase which catalyses the assembly of 

large polymers of N-acetylglucosamine residues (Gerke et al., 1998; Heilmann 

et al., 1996). Also other Staphylococcus species, such as S. aureus and S. 

caprae, were found to form biofilms by icaABCD-dependent PIA production 

(Allignet et al., 2001; Cramton et al., 1999). It appears that ica-like genes 

encode proteins responsible for the production of extracellular polymeric 

substance (EPS) in a widely distributed group of bacteria. Homologous genes 

responsible for biofilm formation are found in Yersinia pestis and also E. coli 

(see chapter III, IV, V; Darby et al., 2002; Joshua et al., 2003; Wang et al., 

2004a).  

Cellulose is an extracellular matrix component originally identified as an 

additional determinant for biofilm formation in enterobacteria (Zogaj et al., 

2003). Cellulose is present in the biofilm of an Enterobacter sakazakii clinical 

isolate (Grimm et al., 2008). In Salmonella strains, a mutant in cellulose 

production retained some capability to form cell aggregates, but not a confluent 

biofilm (Jonas et al., 2007). However, the role of cellulose as an adhesion factor 

is not straightforward (Wang et al., 2006). 

 

Outer membrane proteins (OMPs)  

Proteins located in the outer membrane of Gram negative bacteria are 

often involved in cell-surface attachment. The effects of OMPs are probably less 

involved in direct interaction, rather than in modulating the effects of surface 

structures. Type 1 fimbriae-mediated surface contact leads to distinct changes 

in the outer membrane protein composition, including reductions in the levels of 

many outer membrane proteins (Otto et al., 2001). These alterations imply that 

a change in the cell surface takes place immediately in response to attachment. 

Inactivation of ompX led to enhanced fimbriation, significantly increased surface 

attachment and impairment of motility. Moreover, inactivation of ompX results 

in an approximately threefold increase in the production of EPS (Otto & 

Hermansson, 2004). Thus, OmpX likely affects regulation and/or cell 

localization of different cell surface structures. 

 

Extracellular DNA 

Extracellular DNA (eDNA) is an important component of the biofilm matrix. 

It is released by autolysis and acts as an adhesive (Vilain et al., 2009) and 
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strengthens biofilm (Whitchurch et al., 2002). It was demonstrated that 

Pseudomonas aeruginosa biofilms in early development stage were strongly 

inhibited by treatment with DNaseI, although cell viability was not affected. In 

contrast, mature biofilms were not sensitive to treatment with DNase I, 

suggesting that eDNA is important only at the early stages (Whitchurch et al., 

2002). In addition to the structural role of eDNA, intracellular levels of cytidine 

influence extracellular polysaccharides biosynthesis and surface attachment in 

Vibrio cholerae, thus suggesting that nucleosides might act as signals for biofilm 

formation (Haugo & Watnick, 2002). Finally, Streptococcus mutants defective in 

competence genes were found attenuated in biofilm formation (Li et al., 2002; 

Loo et al., 2000; Yoshida and Kuramitsu, 2002). Such competence mutants are 

also defective in autolysis suggesting that not enough eDNA might be present 

to initiate biofilm formation in these strains. 

 

 

1.3 Regulation of biofilm formation 

Gene expression regulation for biofilm determinants often requires a 

combination of different environmental signals, which can modulate the activity 

of complex regulatory networks or both specific and global regulator. 

Interestingly, despite the striking biofilm phenotype, only a few biofilm-specific 

genes and small parts of biofilm-dedicated pathways have been revealed thus 

far (Ghigò, 2003; Landini, 2009). Adhesion and/or aggregative cellular factors 

can be part of environmental stress regulons (i.e nutritional or oxidative 

stress), and so can directly affect transition from single cells to biofilm, biofilm 

maintenance and even dispersal.   

 

Transcriptional regulation responding to environmental factors. 

Bacterial gene expression is mainly regulated at the transcriptional level 

in response to external stimuli or stresses. Many transcription factors, either 

global or specific, can influence biofilm formation. For instance, expression of 

curli fibers, the main adhesion factor in E. coli strains, is regulated by low 

temperature, low osmolarity conditions and by nutrient starvation (Gerstel & 

Romling, 2001; Olsen et al., 1993). Temperature regulation also plays a role in 

the expression of outer biofilm determinants, such as the Yersinia pestis hms 
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genes, responsible for PIA production: these genes are degraded upon a 

temperature shift from 26°C to 34°C (Perry et al., 2004). The presence of a 

specific substrate may trigger opposite reaction in different bacterial species. 

For instance, biofilm formation by E. coli K12, S. aureus  and Streptococcus 

mutans is repressed by the presence of glucose (Jackson et al., 2002; Regassa 

et al., 1992; Shemesh et al., 2007), which, in contrast, promotes biofilm 

formation of enteroaggregative E. coli (Sheikh et al., 2001) and of Salmonella 

enteriditis (Bonafonte et al., 2000). Glucose-mediated regulation of biofilm 

formation appears to take place at two different levels: through the cAMP/CAP 

regulon (transcriptional regulation) and by the CsrA protein (post-

transcriptional regulation). Presence or absence of oxygen is another signal with 

high influence on biofilm formation: indeed during P. aeruginosa chronic 

infection of the cystic fibrosis lung, oxygen-limiting conditions seems to 

contribute to persistent infection; oxygen limitation increases antibiotic 

tolerance, and induces biofilm formation and alginate biosynthesis (Schobert & 

Tielen, 2010). In contrast, growth in oxygen-limited conditions results in a 

sharp decrease in E. coli adhesion to hydrophilic substrates (Landini & Zehnder, 

2002).  

Influence of environmental factors can be mediated by two-component 

regulatory systems that can sense the changes in the environmental conditions 

and trigger a specific cellular response. Two-component regulatory systems are 

constituted by a sensor protein, usually found in the membrane, and by a 

regulatory protein, able to bind specific sequences on the DNA. Transcription 

regulation is triggered by chemical modification of an inactive regulatory protein 

(usually by phosphorylation) carried out by the sensor protein. Several two-

component regulatory systems are directly involved in biofilm formation; an 

example is the cpxA/cpxR system involved in control of curli biosynthesis. It is 

composed by CpxA, a sensor kinase and phosphatase, and CpxR, a response 

regulator. These genes are induced by general stress conditions in the 

periplasmic compartment resulting in protein denaturation. The cpx system is 

involved in surface sensing and promoting adhesion. A CpxR mutant strain 

forms less stable cell-surface interactions in comparison to the wild type strain 

(Otto & Silhavy, 2002). Consistent with this, when E. coli cells interact with a 

hydrophobic surface, the Cpx pathway is activated (Otto & Silhavy, 2002). In 

addition to stable cell–surface interactions being regulated by sensing contact 
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with a surface, these interactions can also be regulated by environmental 

conditions, specifically increased osmolarity. The EnvZ/OmpR signaling system, 

another two-component signalling pathway, appears to have a role in 

promoting stable cell–surface interactions in response to increased osmolarity 

(Otto & Silhavy, 2002). A strain of E. coli with a mutation in the OmpR protein 

(OmpR234) responsible for hyperactivation of the curli-encoding operons, leads 

to increased adhesion (Vidal et al., 1998; Prigent-Combaret et al., 2001). The 

EnvZ/OmpR signalling system is activated to generate phosphorylated OmpR 

under conditions of increasing osmolarity (Pratt and Silhavy, 1995), suggesting 

that increased osmolarity would stimulate stable cell–surface interactions. 

Several two-component systems such as PhoQP influence expression of EPS 

biosynthesis, for instance colanic acid, thus affecting biofilm formation, in 

response to external concentrations of divalent cations such as zinc and to 

glucose availability (Hagiwara et al., 2003). 

 

Intracellular signal molecules 

Products of amino acids degradation may function as intracellular signal 

molecules involved in adhesion.  Indole has a role on biofilm formation. Indole 

production is a phenotypic trait displayed by several Gram-negative bacteria 

including E. coli and it is produced by the degradation of tryptophane, a 

reaction performed by tryptophanase encoded by the tnaA gene (Newton and 

Snell, 1964). Indole has been described as a potential extracellular signal 

(Wang et al., 2001). Genes necessary for indole production (including tnaA) 

have been shown to be induced by addition of E. coli stationary phase 

supernatant (Ren et al., 2004), suggesting the existence of complex cross-talk 

between different extracellular signaling pathways. A mutant of E. coli K-12 

S17-1 for gene tnaA is unable to produce a biofilm (Di Martino et al., 2002). 

Another diffusible molecule, O-acetyl-l-serine (OAS), appears to modulate E. 

coli biofilm formation. A mutation in the gene coding for a serine 

acetyltransferase cysE, which catalyzes the conversion of serine to O-acetyl-l-

serine, was shown to enhance biofilm formation through reduction of the 

amount of an extracellular signal molecule. The authors suggest that OAS or 

other cysteine metabolites may play a physiological role, possibly by activating 

genes whose expression leads to inhibition of biofilm formation (Sturgill et al., 

2004). 
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Medicago sativa produces L-canavanine (a nonproteinogenic amino acid, 

structurally related with the proteinogenic L-arginine) (Plaga et al., 1998) that 

interferes with the quorum sensing system of its nitrogen-fixing symbiont 

Ensifer meliloti and inhibits the expression of genes for the production of 

exopolysaccharides in the bacterium. Moreover, recently Kolodkin-Gal et al., 

showed that in Bacillus subtilis a mixture of D-leucine, D-methionine, D-

tyrosine, and D-tryptophan causes the release of amyloid fibers that linked cells 

in the biofilm together (Kolodkin-Gal et al., 2010). 

 

Quorum sensing 

The differentiation from microcolony to a mature biofilm embedded in an 

EPS matrix seems to be triggered by both extracellular factors and quorum 

sensing signals. Quorum sensing (QS), a term introduced by Fuqua et al. 

(1994), is an example of cell-to-cell communication and depends on small, 

diffusible signal molecules called autoinducers (Kaplan & Greenberg, 1985). The 

signals molecules are produced and secreted during bacterial growth. Their 

concentrations in the environment accumulate as the bacterial population 

increases, and when it reaches a threshold level (quorum level), it induces 

phenotypic effects by regulating QS-dependent target gene expression. 

Bacterial QS mechanism is based on two groups of signal molecules: peptide 

derivatives typical for Gram-positive bacteria, and fatty acid derivatives typical 

for Gram-negative bacteria. 

The best characterized QS mechanism, typical of Gram-negative bacteria, 

involves production and response to small signal molecules belonging to the N-

acyl-homoserine lactones (AHLs) family (Teplitsky et al., 2003; Fuqua et al., 

1994), which are utilized by the bacteria to monitor their own population. These 

density-dependent regulatory systems rely on two proteins, an AHL synthase, 

usually a member of the LuxI family protein, and an AHL receptor protein 

belonging to the LuxR family of transcriptional regulators. At low population 

densities cells produce a basal level of AHL via the activity of an AHL synthase. 

When cell density increases, AHL accumulates in the growth medium; on 

reaching a critical threshold concentration, the AHL molecule binds to its 

cognate receptor which in turn leads to the induction/repression of AHL-

regulated genes (Eberl, 1999). QS regulates several events in P. aeruginosa 

beside biofilm formation, such as the production of virulence factors and 
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secondary metabolites, as well as the adaptation and survival in stationary 

phase. Mutants lacking the autoinducer produce thinner, less structured 

biofilms which are more susceptible to biocides; however, biofilm formation is 

not completely impaired (Davies et al., 1998). Within the biofilm, quorum 

sensing-dependent genes are expressed at higher levels in cells near the 

surface, and expression decreases with the depth of the biofilm (De Kievit et 

al., 2001). Thus, QS is required for the differentiation of individual cells to a 

complex multicellular structure and differentiation of the mature biofilm into the 

typical mushroom-like structures, rather than for the first steps of biofilm 

formation. It is worth mentioning that QS signals in P. aeruginosa biofilm are 

detectable in lungs of cystic fibrosis patients (Singh et al., 2000), suggesting 

that QS might be a possible target for preventing biofilm formation. Quorum 

sensing in Escherichia coli and Salmonella has been an elusive topic for a long 

time. However, in the past 8 years, several research groups have demonstrated 

that these bacteria use several quorum-sensing systems, such as: the luxS/AI-

2, AI-3/epinephrine/norepinephrine, indole, and the LuxR homolog SdiA to 

achieve intercellular signaling. The majority of these signaling systems are 

involved in interspecies communication, and the AI-

3/epinephrine/norepinephrine signaling system is also involved in interkingdom 

communication. Both E. coli and Salmonella reside in the human intestine, 

which is the largest and most complex environmental niche in the mammalian 

host. The observation that these bacteria evolved quorum-sensing systems 

primarily involved in interspecies communication may constitute an adaptation 

to this environment (Walters & Sperandio, 2006).  

 

Global regulators 

Several global regulatory proteins are involved in biofilm formation. Many 

global regulators display low level specificity in DNA binding and regulate 

transcription of many genes by modifying the architecture of their regulatory 

regions. H-NS and RpoS, associated with responses to environmental 

conditions, play a role in modulating biofilm formation. H-NS is a nucleoid-

associated protein that has been shown to regulate a large number of genes in 

E. coli (approximately 5% of the E. coli K-12 genome) (Soutourina et al., 

1999), including numerous cell envelope components such as flagella, type I 

fimbriae, LPS, and colanic acid, most of them linked to environmental stimuli 
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including pH, oxygen, temperature, and osmolarity (Dorman & Bhriain, 1992; 

Olsen et al., 1998; Hommais et al., 2001; Dorman, 2004). The H-NS protein 

appears to have a direct relationship with biofilm formation: it is able to inhibit 

formation of complexes between promoters and σ70-RNA polymerase (the main 

form of RNA polymerase during the exponential phase of growth). However, 

RNA polymerase associated with σs, an alternative σ factor mainly active in 

stationary phase, can by-pass H-NS inhibition. This effect by the H-NS protein 

is called exponential silencing and also takes place at the csgBA promoter, thus 

preventing transcription of the structural units of curli subunits during 

exponential phase of growth (Arnqvist, 1994a). In E. coli strains unable to 

produce curli, hns mutants display better adhesion properties when grown in 

anaerobic conditions. H-NS inhibition of adhesion is mediated by lower LPS and 

FliC (flagellin) production, which can act as negative determinants for initial 

attachment to hydrophilic surfaces (Landini & Zehnder, 2002). Thus, H-NS 

appears to be a negative determinant for biofilm formation. 

The alternative σs subunit of RNA polymerase (also called RpoS protein) 

is a master regulator of general stress response and it seems to directly affect 

biofilm formation, though its role is still controversial. It governs the expression 

of many genes induced during the stationary phase of growth and in P. 

aeruginosa the QS system appears to be related to RpoS expression through 

mutual control (Latifi et al., 1996; Whiteley et al., 2000). Thus, RpoS was 

thought to play a key role in biofilm formation in many bacterial species. 

Indeed, rpoS mutants of E. coli build thinner biofilm when grown in continuous 

cultures (Adams & McLean, 1999). Schembri et al. found that 46% of RpoS-

dependent genes to be differently expressed in biofilms and deletion of rpoS 

rendered E. coli incapable of establishing sessile communities (Schembri et al., 

2003). In contrast, other investigators reported that expression of RpoS in P. 

aeruginosa is repressed in biofilms, and rpoS-deficient mutants not only formed 

better biofilms than wild type cells, but were more resistant to antimicrobial 

treatment (Whiteley et al., 2000). Consistent with these findings, RpoS seems 

to negatively influence expression of type I fimbriae in E. coli, which can also 

mediate biofilm formation (Dove et al., 1997). Thus it is possible that RpoS can 

play both a negative and a positive role in biofilm formation.  
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sRNA and biofilm regulation 

In bacteria, more than 150 non-coding small RNAs (sRNAs) have been 

described (Livny & Waldor, 2007). The first bacterial sRNAs were discovered in 

Escherichia coli, either fortuitously due to their abundance or by the observation 

of phenotypes conferred by their overexpression. Most bacterial sRNAs affect 

gene expression regulation, usually at the post-transcriptional level and in 

collaboration with the RNA chaperone Hfq. sRNAs co-interact with specific 

mRNA targets, thereby modifying the accessibility of the Shine-Dalgarno 

sequence to the translational machinery and thus altering the mRNA stability. A 

second type of post-transcriptionally active sRNAs interacts with RNA-binding 

regulatory proteins of the RsmA/CsrA family. RsmA (regulator of secondary 

metabolism) and CsrA (carbon storage regulator) can act as translational 

repressors; sRNAs having high affinity for these proteins are therefore able to 

relieve translational repression by sequestering them (Babitzke & Romeo, 

2007). Recently, it has been discovered that a lot of these sRNA are involved in 

the expression regulation of biofilm formation. For instance, CsrA, a global 

regulator involved in the control of motility and biofilm formation as well as in 

virulence and pathogenesis, quorum sensing and oxidative stress response, is 

regulated at the post-transcriptional level by two sRNAs called CsrB and CsrC in 

E. coli (Dubey & Babitzke, 2005; Liu et al., 1997). These sRNAs are composed 

of multiple CsrA binding sites that bind and sequester CsrA, thereby inhibiting 

its activity. Moreover, recently it has been described that the expression of 

CsgD, the transcriptional activator of curli genes, is in part controlled post-

transcriptionally by two redundant sRNAs, OmrA and OmrB (Holmqvist et al., 

2010). 

 

GGDEF and EAL proteins: c-di-GMP turnover 

A class of bacterial proteins containing a so-called GGDEF/EAL domain 

appears to play a central role in sensing environmental conditions and in 

directing bacterial response to a molecular level. A significant number of these 

GGDEF/EAL proteins are directly involved in the expression of virulence and/or 

biofilm factors through c-di-GMP production hydrolysis. Bis-(3´-5´)-cyclic 

dimeric guanosine monophosphate (c-di-GMP) was discovered by Benziman and 

co-workers as a factor that allosterically activates the membrane bound 

cellulose synthase of Gluconacetobacter xylinus (Ross et al., 1987; Tal et al., 
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1998). c-di-GMP is a soluble molecule that functions as a second messenger in 

bacteria. In general, c-di-GMP stimulates the biosynthesis of adhesins and 

exopolysaccharide matrix substances in biofilms and inhibits various forms of 

motility: it controls switching between the motile planktonic and sedentary 

biofilm-associated ‘lifestyles’ of bacteria. Moreover, c-di-GMP controls the 

virulence of animal and plant pathogens (Cotter & Stibitz, 2007; Ryan et al., 

2007; Tamayo et al., 2007), progression through the cell cycle (Duerig et al., 

2009), antibiotic production (Fineran et al., 2007) and other cellular functions.  

c-di-GMP is produced from two molecules of GTP by diguanylate cyclases 

(DGCs) and is broken down into 5′-phosphoguanylyl-(3'-5')-guanosine (pGpG) 

by specific phosphodiesterases (PDEs); pGpG is subsequently split into two GMP 

molecules (Fig. 2) by EAL phosphodiesterases albeit  with a much slower kinetic 

(Schmidt et al., 2005), or by other cellular enzymes.  

DGC activity is associated with the GGDEF domain, which is named after 

the amino acid sequence motif that is an essential part of the active site of the 

enzyme (Malone et al., 2007; Chan et al., 2004). c-di-GMP-specific PDE activity 

is associated with the EAL or HD-GYP domains; these amino acid motifs of both 

domains are essential for their enzymatic activities (Christen et al., 2005; 

Schmidt et al., 2005; Ryan et al., 2006; Hengge, 2009). The active DGC is a 

dimer of two subunits with GGDEF domains. The active site (A site) is located at 

the interface between the two subunits, which each bind one molecule of GTP 

(Chan et al., 2004; Christen et al., 2005). 
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R. Hengge 

 
Figure 2. Structure and functions of c-di-GMP. At the cellular level, bis-(3’-5’)-
cyclic dimer guanosine monophosphate (c-di-GMP) levels are controlled by GGDEF (red) 
and EAL (blue) proteins. c-di-GMP can reduce motility by downregulating flagellar 
expression or assembly, or interfering with flagellar motor function. High c-di-GMP 
levels are required for the stimulation of various biofilm-associated functions, such as 
formation of fimbriae and others adhesions and matrix exopolysaccharides. pGpG, 5’-
phosphoguanylyl-(3’-5’)-guanosine. 
 
 

The A site corresponds to the GGDEF motif, and any point mutation in 

this motif (except a D to E mutation) eliminates enzymatic activity. An active 

EAL domain PDE is a monomeric enzyme that linearizes c-di-GMP to 5′-pGpG, 

which is then further degraded by non specific cellular PDEs. The second type of 

c-di-GMP-specific PDE is the HD-GYP domain proteins, which form a subfamily 

of the HD superfamily of metal-dependent phosphohydrolases and are 

unrelated to the EAL proteins (Galperin et al., 1999). These enzymes break the 

phosphodiester bond in c-di-GMP to produce 5´-pGpG, and can further degrade 

5´-pGpG to GMP. 

 

Escherichia coli GGDEF and EAL proteins 

 E. coli K-12 has 29 genes involved in c-di-GMP turnover, which encode 

12 proteins with GGDEF domains, 10 proteins with EAL domains and seven 
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proteins that feature both domains. Given these numbers, it is easy to imagine 

that target components or processes controlled by these effectors are various 

and different. However, c-di-GMP physiological impact nor its effector 

mechanisms are still poorly understood. In general, functions that contribute to 

biofilm formation, are positively regulated by c-di-GMP, while motility is 

downregulated by c-di-GMP, as can be show by overproducing GGDEF or EAL 

proteins (D′Argenio et al., 2002; Simm et al., 2004; Tischler and Camilli, 2004; 

Lim et al., 2006). At least two separate DGC–PDE systems (YdaM–YciR and 

YegE–YhjH) control the transcription of the csgDEFG operon, which encodes the 

transcriptional regulator CsgD and several proteins required for curli assembly 

and export. Moreover, the DGC AdrA (also referred to YaiC), which is expressed 

under CsgD control during entry into stationary phase (Weber et al., 2006; 

Kader et al., 2006; Brombacher et al., 2006), is required for cellulose 

production (Zogaj et al., 2001); its function is counteracted by the EAL domain 

protein YoaD (Brombacher et al., 2006). The role of GGDEF and EAL proteins 

and their modulation in E. coli biofilm formation in response to environmental 

signals is one of the central aims of my work.  
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INTRODUCTION 
	
  

The experiments described in this chapter have been published in the 

following publications:  

 

- Gualdi, L., Tagliabue, L. & Landini, P. (2007). Biofilm Formation-

Gene Expression Relay System in Escherichia coli: Modulation of σS-

Dependent Gene Expression by the CsgD. J. Bacteriol. 189: 8034-

8043. 

 
- Gualdi, L., Tagliabue, L., Bertagnoli, S., Ieranò, T., De Castro, C. 

& Landini, P. (2008). Cellulose modulates biofilm formation by 

counteracting curli-mediated colonization of solid surfaces in 

Escherichia coli. Microbiology. 154: 2017-2024. 

 

In enterobacteria, curli fibers (also known as Tafi, thin aggregative 

fimbriae, in Salmonella) are an important factor in adhesion to surfaces, cell 

aggregation, and biofilm formation (Doran et al., 1996; Olsen et al., 1993; 

Romling et al., 1998a). Curli-encoding genes are clustered in two operons: csgBA 

encodes the structural components, while the divergently oriented csgDEFG 

operon encodes proteins involved in curli assembly and transport, as well the 

CsgD transcription factor, which is necessary for csgBA transcription (Arnqvist et 

al., 1994; Hammar et al., 1995). Expression of the csg operons takes place in 

response to a combination of environmental conditions, such as slow growth rate 

(<32°C), low osmolarity, and slow growth (Olsen et al., 1993). Such 

environmental signals are mediated at the gene expression level by a number of 

regulators, including, besides CsgD, global regulatory proteins such as OmpR, H-

NS, CpxR, and the alternative σ factor σs (Arnqvist et al., 1994; Romling et al., 

1998; Prigent-Combaret et al., 2001; Bougdour et al., 2004). However, this 

strict environmental control is lost in several bacterial strains due to mutations 

either in regulatory genes (Arnqvist et al., 1994; Vidal et al., 1998) or in the 

csgDEFG sequence (Romling et al., 1998a). Indeed, temperature-dependent 

regulation does not take place in several Salmonella and pathogenic E. coli 

strains, in which curli are also expressed at 37°C and represent an important 
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virulence factor (Ben et al., 1996; Bian et al., 2000; Persson et al., 2003). In 

contrast, curli operons are silent in a large number of laboratory strains, as well 

as in some clinical and environmental isolates, despite the presence of functional 

csg genes (Romling et al., 1998). 

In addition to its role as activator of the csgBA operon, CsgD activates 

cellulose production, which results in the formation of a curli/cellulose 

extracellular matrix (Romling et al., 2000; Zogaj et al., 2001). CsgD stimulates 

cellulose production indirectly, by activating transcription of the adrA gene; in 

turn, the AdrA protein positively affects the enzymatic activity of the cellulose 

biosynthetic machinery through its diguanylate cyclase activity, i.e. synthesis of 

the signal molecule c-di-GMP. Although cellulose was originally described as an 

additional determinant for biofilm formation in enterobacteria (Romling et al., 

2000), its role as an adhesion factor is not straightforward (Wang et al., 2006). 

This part of my work describes the effects of CsgD overexpression on 

biofilm regulation and global gene expression in MG1655, a well-characterized 

laboratory strain used as standard reference for E. coli (Blattner et al., 1997). 

 

 

RESULTS 
 

Part I 
 

As mentioned in the previous section, several laboratory strains, including 

MG1655, are only capable to produce curli fibers in limited amounts, insufficient 

to promote biofilm formation in standard laboratory assays (Fig. 1, WT/pT7-7, 

left panel), even though the genes necessary for curli biosynthesis and assembly 

are fully functional (Romling et al., 1998).  However, albeit low, curli production 

takes place at sufficient levels to be determined on agar medium supplemented 

with Congo Red stain (CR medium). CR is a dye able to bind to 

exopolysaccharides and amyloid fibers; thus, due to their ß-amyloid structure, 

curli bind CR with very high affinity.  
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Figure 1: Biofilm formation on microtiter plates of E. coli MG1655 (wild-type, WT), 
PHL856 (csgA::kan) and LG26 (Δbcs::kan) transformed with either pT7-7 or pT7CsgD, 
grown at 30°C (green bars) or at 37°C (red bars). Surface-attached cells were quantified 
by spectrophotometric determination after CV staining and resuspension in ethanol. 
Values are the mean of four independent experiments, with a standard deviation always 
lower than 10%.  
 
 

Because of MG1655 low ability to adhere to a surface, we overexpressed 

CsgD in this strain in order to boost biofilm formation. In the pT7CsgD plasmid, 

the csgD gene is under the control of a promoter dependent on the 

bacteriophage T7 RNA polymerase. In E. coli strains such as MG1655, which do 

not carry the T7 RNA polymerase-encoding gene, low-level, constitutive 

transcription of genes under the control of pT7 promoters can still take place, 

due to weak promoter recognition by bacterial RNA polymerase.  

 

Role of cellulose on biofilm formation. In E. coli, expression of the 

csgBA genes, leading in turn to curli production and biofilm formation, is 

temperature-regulated and can take place at ≤30 °C and not at 37 °C (Olsen et 

al., 1993; Romling et al., 1998a; Prigent-Combaret et al., 2001; Castonguay et 

al., 2006). However, transformation of MG1655 with pT7CsgD results in 

dramatically stronger biofilm formation at 37 °C compared to 30 °C (Fig. 1). 

Biofilm formation at 37 °C is totally dependent on a functional csgA gene, 
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suggesting that it is still mediated by curli production (Fig. 1). However, csgBA 

operon transcription levels at 30 °C and 37 °C are comparable in MG1655 

pT7CsgD (Table 1), suggesting that increased biofilm formation at 37 °C is not 

mediated by a corresponding increase in curli production.  

 

Table 1. Relative expression of curli- and cellulose-related genes 

Strain	
   csgB	
   csgD	
   csgG	
   adrA	
  

MG1655/pT7-­‐7	
  30°C	
   1*	
   1*	
   1*	
   1*	
  

MG1655/pT7-­‐7	
  37°C	
   0,014	
   0,11	
   0,032	
   0,42	
  

MG1655/pT7CsgD	
  30°C	
   2430	
   60,8	
   15,3	
   337	
  

MG1655/pT7CsgD	
  37°C	
   1518	
   33,5	
   2,25	
   1,23	
  
 
*ΔCt between the gene of interest and the 16S gene was arbitrarily set at 1 for 
MG1655/pT7-7 grown at 30 °C and expressed as relative values for other strains and 
growth conditions.  
 

These observations strongly suggest that curli can synergize with another 

factor that is only expressed at 37 °C. To identify such a factor, we analyzed the 

membrane expression pattern and we determined production of extracellular 

polysaccharides (EPS) in MG1655/pT7CsgD, both at 30 °C and at 37 °C.  While 

the membrane protein pattern failed to show any significant difference in CsgD-

dependent protein expression at both growth temperatures (data not shown), 

analysis of EPS production showed a high increase in cellulose production when 

the strain was transformed with the pT7CsgD vector only at 30 °C (Fig. 2). 

Interestingly, as shown in Fig. 2, increase in cellulose production is not 

detectable at 37 °C, i.e. in the conditions in which stimulation of biofilm by CsgD 

is greater. This observation was surprisingly, because cellulose was proposed to 

be an adhesion factor in E. coli (Romling et al., 2000). 
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Figure 2. Determination of cellulose production in E. coli MG1655 (WT), PHL856 
(csgA::kan) and LG26 (Δbcs::kan) transformed with either pT7-7 or pT7CsgD, grown at 
30 °C (green bars) or at 37 °C (red bars). The values indicate the amount of cellulose as 
percentage of total dry weight of the culture surpernatant after lyophilization. Values are 
the mean of two independent experiments with very similar results.  
 
 

Thus, taking together, these data indicate that, while csg genes expression 

is similar at 30 °C and 37 °C, CsgD-dependent biofilm formation is dramatically 

higher at 37 °C, the conditions of low cellulose production. These results suggest 

that cellulose production negatively correlates with adhesion in MG1655 

pT7CsgD. Cellulose production was not affected by csgA inactivation, while, as 

expected, was totally abolished in LG26, the bcsA mutant derivative of MG1655 

(Fig. 2).  

To test the hypothesis that cellulose might act as a negative determinant 

for biofilm formation, we set up adhesion assays with LG26 strain. In contrast 

with csgA inactivation, that abolishes surface attachment by MG1655 even with 

overexpression of CsgD, deletion of bcsA gene has very little effect on MG1655, 

but it strongly stimulates adhesion to microtitre plates at 30 °C in the presence 

of pT7CsgD, suggesting that cellulose can negatively affect curli-mediated biofilm 

formation (Fig. 1). At 37 °C, bcsA deletion has very little effect on adhesion, 

consistent with lack of cellulose production at this temperature. 
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What is the negative role of cellulose on biofilm formation? Considering 

that cellulose production does not inhibit curli-dependent biofilm formation 

through negative regulation of curli-encoding genes (Table 1), we decided to test 

cellulose effects on Congo red staining. MG1655 colonies are red on CR medium, 

due to curli production; the red phenotype is totally abolished by inactivation of 

the csgA gene, encoding the major subunit of curli, but is not affected by a 

mutation in the bcsA gene, responsible for cellulose production (Fig. 3). 

Moreover, lack of cellulose production at 37 °C is able to restore the red 

phenotype in the presence of the pT7CsgD plasmid (Fig. 3). So, it seems to be 

that high cellulose production would shield binding of curli fibers to CR, thus 

leading to less curli-dependent biofilm formation. 

  

 

 
 
 
 
Figure 3. Phenotypes of strains MG1655 (WT), PHL856 (csgA) and LG26 (ΔbcsA) on 
Congo Red-supplemented agar medium (CR medium), either at 30 °C (upper panel) or at 
37 °C (lower panel). Strains were transformed either with the pT7-7 control vector or 
with the pT7CsgD plasmid as indicated. 
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Thus, cellulose in our laboratory conditions doesn’t seem to be an 

adhesion factor.  In order to understand the role of cellulose in MG1655, we 

performed bacterial cell aggregation tests and we also tested resistance to 

desiccation. Several reports, indeed, point to a role for cellulose in resistance to 

environmental stresses such as desiccation (Gibson et al., 2006). As shown in 

Table 2, MG1655 grown in M9Glu/sup did not form any detectable cell 

aggregates; however, MG1655/pT7CsgD displayed a strong aggregative 

phenotype at 37 °C, but not at 30 °C; deletion of bcsA resulted in pT7CsgD-

dependent cell aggregation even at 30 °C, suggesting that cellulose plays a 

negative role in cell aggregation as well as in biofilm formation. In contrast, lack 

of bcsA resulted in four- to fivefold decrease in sensitivity to desiccation (Table 

2). Thus, our results would suggest that in MG1655, cellulose function might be 

more related to resistance to environmental stresses rather than to biofilm 

formation and cell aggregation.  

 

Table 2. Cell aggregation properties and resistance to desiccation. 

Strain	
   Cell	
  aggregation	
   Cell	
  surviving	
  exposure	
  to	
  dry	
  
conditions	
  (%,±)*	
  

	
  	
   30°C	
   37°C	
   	
  	
  
MG1655/pT7-­‐7	
   -­‐	
   -­‐	
   1,8	
  (±0,14)	
  

MG1655/pT7CsgD	
   -­‐	
   +	
  +	
   7,6	
  (±0,25)	
  

PHL856	
  (csgA::Kan)/pT7-­‐7	
   -­‐	
   -­‐	
   0,5	
  (±	
  0,07)	
  

PHL856	
  (csgA::Kan)/pT7CsgD	
   -­‐	
   -­‐	
   3,5	
  (±0,17)	
  

LG26	
  (ΔbcsA::Kan)/pT7-­‐7	
   -­‐	
   -­‐	
   0,3	
  (±0,06)	
  

LG26	
  (ΔbcsA::Kan)/pT7CsgD	
   +	
  +	
   ++	
   1,6	
  (±0,11)	
  
 
*Cells were incubated for 1 h at 30 °C, and values (mean of three different experiments) 
were determined as described in Methods. 
 
 
 
Part II 
 
 

CsgD effects on MG1655 protein production. In order to investigate 

the possible effects of CsgD on global gene expression in MG1655 strain, we 

carried out protein analysis of fractionated cell extracts on monodimensional 

SDS-PAGE, comparing MG1655 transformed with pT7-7 control vector and 
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pT7CsgD. We decided to perform a similar approach in another laboratory strain, 

EB1.3, which is impaired in rpoS expression. rpoS gene encodes for σs, an 

alternative sigma subunit of the RNA polymerase (Mulvey & Loewen, 1989). 

Unlike EB1.3, in the rpoS-proficient strain CsgD overexpression significantly 

affects protein production pattern (Fig. 4). We excised the bands differently 

expressed in MG1655/pT7CsgD and identified the corresponding proteins by 

MALDI-TOF after in-gel trypsin digestion (Table 3). We found that CsgD 

positively affects expression of the PflB, GadA, WrbA and Dps proteins in the 

cytoplasmic fraction and of Dps, CsgG and OmpW proteins in the outer 

membrane fraction. Interestingly, four of the six proteins produced at higher 

level in the presence of CsgD, namely GadA (band 2 in Fig. 4), WrbA (band 5), 

Dps (bands 6, 7 and 11) and CsgG (band 9), are encoded by genes known to 

belong to the rpoS regulon, i.e. their transcription depends upon σs factor. The 

GadA, WrbA and Dps proteins are, respectively, a glutamate decarboxylase 

involved in resistance to acid stress (De Biase et al., 1999; Smith et al., 1992), a 

quinone reductase part of a response to oxidative stress (Natalello et al., 2007; 

Patridge and Ferry, 2006) and a bacterial ferritin able to protect DNA from iron-

mediated hydroxyl-radical formation (Martinez and Kolter, 1997; Zhao et al., 

2002). Interestingly, two bands corresponding to the Dps protein were found in 

the cytoplasmic fraction of MG1655/pT7CsgD (bands 6 and 7, Fig. 4A); this 

would suggest the existence of different Dps isoforms, as also observed in two-

dimensional gel analysis of the MG1655 proteome (Lelong et al., 2007). Despite 

Dps being a cytoplasmic protein, we also detected its presence in the outer 

membrane fraction (band 11, Fig. 4C), as already report for other biofilm-

forming E. coli strain (Lacqua et al., 2006), thus suggesting that a fraction of the 

Dps protein might be associated with the outer membrane. Unlike Dps, GsgG and 

OmpW are outer membrane proteins (Loferer et al., 1997; Pilsl et al., 1999). The 

CsgG is a component of the curli transport system and is encoded by a gene 

belonging to the csgDEFG operon, which also encoded CsgD (Hammar et al., 

1995; Loferer et al., 1997). 
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Figure 4. SDS-PAGE of fractioned cells extracts. (A) Cytoplasmic proteins. Lane 1, 
MG1655/pT7-7; lane 2, MG1655/pT7CsgD; lane 3, EB1.3/pT7-7; lane 4, EB1.3/pT7CsgD. 
(B) Cytoplasmic proteins. Lane 5, MG1655; lane 6, PHL628; lane 7, PHL1087. (C) Inner 
membrane proteins. Lane 8, MG1655/pT7-7; lane 9, MG1655/pT7CsgD; lane 10, 
EB1.3/pT7-7; lane 11, EB1.3/pT7CsgD. (D) Outer membrane proteins. Lane 12, 
MG1655/pT7-7; lane 13, MG1655/pT7CsgD; lane 14, EB1.3/pT7-7; lane 15, 
EB1.3/pT7CsgD. The relevant genotype of the different bacterial strains is indicated in 
the figure. ompR* stands for the ompR234 mutation resulting in increased CsgD 
expression (Vidal et al., 1998). The position of molecular mass markers is shown 
(numbers indicate molecular masses in kilodaltons). Asterisks indicate bands 
differentially expressed in a CsgD-dependent manner that were excised and identified by 
MALDI-TOF (numbered from 1 to 11). 
 
 

Consistent with their being part of the rpoS regulon, no CsgD-dependent 

increase in protein expression of GadA, WrbA, Dps and CsgG could be detected in 

EB1.3/pT7CsgD, the rpoS mutant of MG1655 transformed with the pT7CsgD 

plasmid (Fig. 4, lanes 4 and 11), thus suggesting that regulation by CsgD does 

not bypass the need for σs. Moreover, we found that expression of the PflB 

protein (band 1), encoded by a gene thus far never described as σs dependent, is 

stimulated by CsgD in the MG1655 background only, suggesting that its CsgD-

dependent expression requires a functional rpoS gene (Fig. 4A). In contrast, 

expression of the OmpW protein (band 10), although stimulated by CsgD, 

appears to be negatively regulated by σs (Fig. 4, compare lane 12 and 14). 

The induction of proteins belonging to the rpoS regulon in 

MG1655/pT7CsgD is strictly dependent on CsgD expression. Indeed, ectopic 

expression of the AdrA protein (a c-di-GMP synthase), as well as truncated 
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(inactive) forms of CsgD, did not lead to any detectable changes in protein 

expression (data not shown). In addition, the same pattern of protein regulation 

was observed comparing MG1655/pT7CsgD to PHL628, an ompR234 mutant of 

MG1655 characterized by high level of transcription of the csgD gene (Prigent-

Combaret et al., 2001). Proteins whose production is increased in the 

cytoplasmic fraction of PHL628 correspond to those identified in 

MG1655/pT7CsgD, as determined by MALDI-TOF analysis, and their expression 

was totally abolished in PHL1087, a csgD::kan derivative of PHL628 (Fig. 4B). 

 

Transcription activation of rpoS-dependent genes by CsgD. 

Although monodimensional SDS-PAGE can only provide an incomplete view of 

CsgD-mediated effects on global protein production in MG1655, these results 

(Fig. 4 and Table 3) suggest that CsgD might somehow affect the expression of 

the rpoS regulon. In order to confirm this possibility, we determined CsgD effects 

on transcription of the dps, pflB and osmB genes by real-time PCR, both in the 

MG1655 strain and its derivative EB1.3. These genes were chosen as 

representatives of known rpoS-dependent genes encoding genes whose 

production is stimulated by CsgD (dps), genes encoding proteins stimulated by 

CsgD but not assigned to the rpoS regulon (pflB), and rpoS-dependent genes 

encoding proteins for which no stimulation by CsgD could be detected in our 

SDS-PAGE experiments (osmB). 
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Table 3.  Gene characteristics 

Table	
  

Band	
  N°a	
   Protein	
  
Predicted	
  

molecular	
  mass	
  
(Da)c	
  

Gene	
  function	
  (reference)	
   Regulation	
  of	
  corresponding	
  gene	
  (reference)	
  

1	
   PflB*	
   85,357	
   Pyruvate	
  formate	
  lyase	
  I	
  	
   Induced	
  by	
  ArcA	
  and	
  FNR	
  	
  

2	
   GadA*	
   52,685	
   Glutamate	
  decarboxylase	
  	
   Positively	
  regulated	
  by	
  rpoS,	
  CRP,	
  gadE,	
  gadW,	
  
gadX;	
  negatively	
  by	
  HN-­‐S	
  	
  

3	
   TnaA†	
   52,773	
   Tryptophan	
  deaminase	
  	
   Positively	
  regulated	
  by	
  rpoS	
  and	
  CRP	
  	
  

3	
   GatZ†	
   47,109	
   Subunit	
  of	
  tagatose-­‐1,6-­‐bisphosphate	
  aldolase	
  2	
  	
   Positively	
  activated	
  by	
  CRP;	
  repressed	
  by	
  ArcA	
  	
  

4	
   GatY†	
   30,812	
   Subunit	
  of	
  tagatose-­‐1,6-­‐bisphosphate	
  aldolase	
  2	
  	
   Same	
  transcription	
  unit	
  as	
  gatZ	
  

5	
   WrbA*	
   20,846	
   Quinone	
  reductase;	
  response	
  to	
  oxidative	
  stress	
  	
   Positively	
  regulated	
  by	
  rpoS	
  	
  
6,7	
  and	
  

11	
   Dps*	
   18,695	
   Bacterial	
  ferritin	
  	
   Positively	
  regulated	
  by	
  rpoS	
  	
  

8	
   CsgD*	
   24,935	
   Transcritpional	
  regulator	
  	
   Positively	
  regulated	
  by	
  rpoS,	
  hns	
  and	
  ompR	
  	
  

9	
   CsgG*	
   30,557	
   Outer	
  membrane	
  protein;	
  curli	
  transport	
  component	
  	
   Same	
  transcription	
  unit	
  as	
  csgD	
  

10	
   OmpW*	
   22,928	
   Outer	
  membrane	
  protein;	
  receptor	
  for	
  colicin	
  S4	
  	
   Positively	
  regulated	
  by	
  FNR	
  	
  
 

a In Fig.4 band 3 was identified as a mixture of two proteins and thus appears twice, once for each protein. 
b *, Increased expression in MG1655/pT7CsgD; †, decreased expression in MG1655/pT7CsgD. 
c Predicted molecular masses were obtained from the EcoCyc database (http://www.ecocyc.org/). 
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As shown in Fig. 5, CsgD activates transcription of dps, pflB and osmB 

genes by a similar extent (19- to 30-fold); however, CsgD transcription 

activation can only occur in the MG1655 strain, and it is totally abolished in its 

rpoS derivative EB1.3. These results confirm that CsgD-mediated effects on 

protein expression take place at gene transcription level and suggest that CsgD 

can activate expression of the rpoS regulon, or at least of a subset of σs-

dependent promoters. Interestingly, both the CsgD-dependent csgB and the 

adrA promoters, as well as the csgD promoter itself, have been proposed to be 

under the control of σs and regulated by the Crl protein, a specific modulator of 

σs activity (Bougdour et al., 2004; Pratt and Silhavy, 1998; Robbe-Saule et al., 

2007; Romling et al., 1998a). Thus, it might be possible that CsgD could act as 

a specific activator for the σs-associated form of RNA polymerase (Eσs). In order 

to better understand the interplay between σs and CsgD, we compared the 

effect of the rpoS inactivation on CsgD transcription at either the csgB or the 

csgD promoter. Activation of its own promoter by CsgD is suggested by 

increased production of the CsgG protein (Fig. 4), encoded by a gene which is 

part of the csgDEFG operon.  

 

 
 
Figure 5. Relative transcription of the dps, pflB and osmB genes in MG1655 and rpoS, 
as determined by real-time PCR. Relative transcription values were set to 1 for both 
MG1655/pT7-7 and rpoS/pT7-7 for better comparison of the CsgD-dependent effects in 
either strain. 
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Thus, we transformed with either pT7-7 or pT7CsgD vector two 

derivatives of the MG1655 strain carrying, respectively, a csgA::uidA 

(transcription of the csgA gene is directed by csgB promoter) or a csgD::uidA 

chromosomal transcriptional fusion. Results shown in Fig. 6 indicate that CsgD 

expression results in increased transcription levels for both the csgB and csgD 

promoters. However, CsgD-dependent transcription activation at the csgB and 

csgD promoters greatly differs both in timing and in the extent of dependence 

on the rpoS gene: transcription from the csgB promoter (Fig. 6A) is activated 

by CsgD regardless of growth phase, and rpoS inactivation only results in a 

slight reduction (down to ca. 65%) in promoter activity. Thus, although σs is 

required for optimal transcription levels, the csgB promoter is activated by 

CsgD in a manner largely independent of σs, strongly suggesting that σs is not 

directly involved in protein-protein interaction between CsgD and RNA 

polymerase leading to transcription activation. In contrast to csgB, CsgD-

mediated stimulation of its own promoter only takes place in late-log and 

stationary phase and is totally abolished in an rpoS strain. 

 

 

 
Figure 6. ß-Glucoronidase activity measured from either csgA::uidA (A) or from 
csgD::uidA (B) chromosomal fusions. Cultures were grown in M9Glu/sup at 30°C. (A) 
Reporter gene expression from the csgB promoter in PHL856 (MG1655 csgA::uidA, 
circles) and LG05 (MG1655 rpoS csgA::uidA, triangles) transformed either with pT7-7 
(open symbols) or pT7CsgD (closed symbols). Dashed lines indicate growth curves of 
MG1655/pT7-7 (Ο) and pT7CsgD (●). (B) Reporter gene expression from the csgD 
promoter was measured either in PHL1088 (MG1655 csgD::uidA, circles) and LG07 
(MG1655 rpoS csgD::uidA, triangles) transformed either with pT7-7 (open symbols) or 
pT7CsgD (closed symbols). Dashed lines indicate growth curves of MG1655/pT7-7 (Ο) 
and EB1.3/pT7-7 (●) 
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Effects of CsgD on σs intracellular concentrations. Results shown in 

Fig. 5, indicating that CsgD does not function as an Eσs-specific transcription 

activator, and the observation that rpoS-dependent promoters stimulated by 

CsgD (Fig. 6) lack a putative CsgD binding site would suggest that the CsgD 

protein might affect expression of the rpoS regulon by altering either σs activity 

or its intracellular concentration. In a previous work it was shown that CsgD can 

activate the yaiB gene (Brombacher et al., 2006). The product of the yaiB (now 

iraP) gene has been shown to be a stabilization factor for the σs protein, which 

acts by inhibiting RssB-mediated degradation of σs in response to phosphate 

starvation (Bougdour et al., 2006). Thus, CsgD activation of the iraP gene 

should results in improved σs stability and possibly increase in σs intracellular 

concentrations, resulting in increased transcription of σs-dependent genes. In 

order to confirm these results, we compared iraP expression in both 

MG1655/pT7-7 and the MG1655/pT7CsgD strain by real-time PCR experiments. 

As shown in Fig. 7, CsgD increases iraP transcription levels of ~ 15-fold. 

Stimulation of iraP transcription of ~ 6-fold was also observed when we 

compared MG1655 to its ompR234 mutant derivative PHL628 (Fig. 7), which 

expresses the csgDEFG operon at higher levels than MG1655 (Prigent-Combaret 

et al., 2001). Activation of iraP transcription in the ompR234 mutant strain was 

totally abolished by csgD inactivation (Fig. 7), thus confirming that iraP 

activation observed in PHL628 depends on CsgD. CsgD-induced iraP expression 

in either MG1655/pT7csgD or PHL628 is consistent with increased production of 

proteins encoded by rpoS-dependent genes observed in both strain (Fig. 4). 
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Figure 7. Expression levels of the iraP gene, normalized to 16S rRNA, are shown as 
relative values in MG1655/pT7CsgD in comparison to MG1655/pT7-7, as well as in 
PHL628 and PHL1087 in comparison to MG1655. Samples were taken from cultures 
grown overnight in M9Glu/sup at 30 °C. Values shown are the average of three 
independent experiments, with a standard deviation always lower than 10%. 
 
 

In order to verify that CsgD expression might stimulate the rpoS regulon 

by IraP-dependent stabilization of σs, we compared the levels of σs intracellular 

amount in both MG1655/pT7-7 and MG1655/pT7CsgD by Western blotting 

experiments (Fig. 8A). Expression of CsgD from the pT7CsgD plasmid resulted 

in a clearly detectable increase in σs intracellular amounts in MG1655 strain. As 

expected, no bands reacting with anti- σs antibodies were detected in the rpoS 

mutant EB1.3, regardless the presence of pT7CsgD (lanes 5 and 6). 

Inactivation of the iraP gene completely abolishes CsgD-dependent increase in 

σs intracellular concentrations (lane 4), strongly suggesting that this effect 

indeed takes place through IraP-mediated stabilization of the σs protein. In the 

growth conditions we tested, σs intracellular levels do not differ significantly in 

MG1655 compared to its iraP mutant derivative (Fig. 8A, lane 1 and 3), a 

finding in agreement with previous results that indicate that IraP is only 

essential for σs stability under phosphate starvation conditions (Bougdour et al., 

2006). In order to correlate σs intracellular concentration and expression of σs-

dependent genes, cell extracts from the MG1655, EB1.3 (rpoS) and LG03 (iraP) 

strains were compared by SDS-PAGE. As shown in Fig. 8B, a strict correlation 

exists between σs intracellular concentration and expression of proteins encoded 
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by σs-dependent genes. Consistent with the lack of CsgD-dependent increase in 

σs intracellular concentration in LG03 (iraP; Fig. 8A, lane 4), the CsgD protein 

failed to stimulate expression of the GadA, WrbA and Dps proteins in the strain 

(Fig. 8B, lane 4). The band running with electrophoretic mobility similar to 

WrbA in cell extracts of EB1.3 and LG03 was identified as adenosine 

phosphoribosyltransferase and its expression appears to be CsgD independent 

(Fig. 8B). To confirm that CsgD-dependent accumulation of σs is mediated by its 

stabilization via the IraP protein, we performed σs protein turnover assays in 

cell extracts of either MG1655 or its iraP mutant derivative (LG03), grown both 

in the presence or absence of the pT7CsgD plasmid. As shown in Fig. 9, the 

stability of the σs protein is increased in cell extracts of MG1655/pT7CsgD 

compared to MG1655/pT7-7; however, no CsgD-dependent σs stabilization 

could be detected in cell extracts of the LG03/pT7CsgD strain, consistent with a 

direct role of the IraP protein in CsgD-mediated σs stabilization. In the absence 

of CsgD expression, the σs half-life in cell extracts of the iraP mutant is similar 

to MG1655 (14 versus 12 min, respectively), as detected by image analysis. 

 

 
  

Figure 8. (A) Western blotting with anti-σs antibodies. Cell extracts were prepared 
from overnight cultures grown in M9Glu/sup at 30 °C and 20 µg of total proteins were 
loaded onto a SDS-polyacrylamide gel. (B) SDS-PAGE analysis of cytoplasmic proteins. 
Differently expressed proteins are indicated by an asterisk. 
 

B	
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Figure 9. σs turnover experiments. Cell extracts of MG1655/pT7-7, MG1655/pT7CsgD, 
LG03/pT7-7 and LG03/pT7CsgD were incubated at 37 °C. Samples (50 µg of proteins) 
were taken at the indicated times and loaded onto a SDS-polyacrilamide gel. The 
amount of σs protein was determined by Western blotting. σs half-life values were 
obtained by quantification of the σs-corresponding bands using the ImageQuant 5.2 
image analysis program.    
 
 
 
 
 

 

DISCUSSION 
 

In this work, we analyzed the effects of CsgD overexpression on biofilm 

formation and σs stabilization. The CsgD protein activates transcription of the 

csgBA operon and the adrA gene, thus leading to production of two extracellular 

structures: curli fibers and cellulose. Co-ordinated production of both curli and 

cellulose was initially proposed to be functional in cell adhesion and biofilm 

formation (Romling et al., 2000). However, more recent report pointed to a 

negative role for cellulose in curli-mediated interaction (Wang et al., 2006). Our 

results strongly suggest that cellulose overproduction in a csgD-overexpressing 

derivative of the MG1655 laboratory strain of E. coli negatively affects biofilm 

formation (Fig. 1) and cell aggregation (Table 2). These results indicate that 

cellulose might act as a weak adhesion factor in strain poorly efficient in curli 

production, but its production is detrimental for biofilm formation in bacterial 
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strains that strongly produce curli (Fig. 1), thus suggesting that cellulose 

modulates cell’s adhesion properties. Since cellulose production does not inhibit 

curli-dependent biofilm formation through negative regulation of curli-encoding 

genes, a possible mechanism for inhibition of curli-mediated adhesion by 

cellulose might be physical masking of curli fibres by excessive cellulose 

production, similar to the effect of other capsular polysaccharides on 

proteinaceous adhesion factors (Schembri et al., 2003). In contrast to the effect 

on biofilm formation, cellulose appears to play a role in protection against 

environmental stresses such as desiccation (Table 2), in agreement with 

previous observations in Salmonella spp (White et al., 2006). Interestingly, 

even csgA inactivation results in a decreased resistance to desiccation (Table 

2), suggesting that the curli/cellulose matrix might confer better protection 

than cellulose alone.  

Beside its role in curli and cellulose activation, the CsgD protein can 

activate the expression of the iraP gene (Bougdour et al., 2006). The IraP 

protein acts as a stabilization factor for σs factor by binding to the RssB protein 

and thus preventing σs proteolysis by the RssB-ClpXP protein complex. IraP-

dependent stabilization of σs takes place in response to phosphate starvation. In 

this work, we showed that CsgD transcription activation of the iraP gene does 

indeed result in a significant increase on σs intracellular concentration by 

positively affecting σs protein stability (Fig. 8 and 9), with altered expression of 

σs-dependent genes (Table 1, Fig. 4, 5, 8B). Our experiments were performed 

in phosphate-rich medium, suggesting that IraP-mediated σs stabilization might 

take place in response to environmental signals other than phosphate 

starvation; in the csgD-expressing PHL628 strain of E. coli, CsgD-dependent 

iraP transcription can only take place in response to environmental signals 

leading to CsgD expression and curli production, i.e., low temperature and 

osmolarity (stress conditions). 
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Figure 10. Model of the CsgD/σs autoactivation loop. Thin light blue arrows indicate 
gene expression; block light blue arrows indicate positive regulatory interactions; CpxR 
blocks csgDEFG expression. See the text for details. 
 

CsgD-mediated increase of σs cellular concentrations via the iraP gene 

would trigger an autoactivation loop, as summarized in Fig. 10: an increase in 

the cellular σs pool in conditions permitting csg expression (i.e., low osmolarity) 

leads to increased transcription from the csgD promoter; in turn, production of 

the CsgD protein results in iraP activation and consequent further stabilization 

of σs. Evidence for this mechanism in the MG1655 strain is provided by σs-

dependent activation of the csgD promoter in the presence of pT7CsgD (Fig. 

6B) and consequent production of proteins encoded by the csgDEFG operon, 

such as CsgG (Fig. 4C), in response to CsgD-dependent accumulation of σs. A 

possible feedback control for this regulation loop could be provided by the 

CpxA/CpxR two-component regulatory system, whose activity is triggered by 

curli overexpression and results in repression of both csgD and csgB promoters 

(Prigent-Combaret et al., 2001). Consistent with this model, transcription of the 

cpxRA operon is itself positively controlled by σs (De Wulf et al., 1999). A more 

general role of CsgD- σs interaction would be to coordinate the production of 

adhesion and cell aggregation factors, relaying the transition from single cell to 

biofilm to expression of the rpoS regulon, i.e one of the main stress responses 

in bacteria (Hengge-Airons, 2002).  



	
   41	
  

METHODS 
 

Bacterial strains and growth conditions. All strains and plasmids used are listed in 

Table 3. Bacteria were grown in M9Glu/sup medium (M9 minimal medium 

supplemented with 0.5% glucose and 2.5% Luria broth) at 30 °C or 37 °C. When 

needed, antibiotics were used at the following concentrations: ampicillin, 100 µg/ml; 

tetracycline, 25 µg/ml; kanamycin, 50 µg/ml and chloramphenicol, 35 µg/ml. For 

growth on Congo-red-supplemented agar medium, bacteria were inoculated in 

M9Glu/sup medium in a microtitre plate and then spotted using a replicator, on Congo 

red medium (1% Casamino acids, 0.15% yeast extract, 0,005% MgSO4, 2% agar) to 

which 0,004% Congo red and 0,001% Comassie blue were added after autoclaving. 

Both dyes were dissolved in 50% ethanol to a final concentration of 0.2%.  

 

Biofilm formation assays. Biofilm formation in microtiter plates was determined 

essentially as described previously (O’Toole and Kolter, 1998). Cells were grown in 

liquid cultures in microtiter plates (0.2 ml) for 18 h in M9Glu/sup at 30 °C or at 37 °C. 

The liquid culture was removed, and the cell optical density at 600 nm (OD600) was 

determined spectrophotometrically. Cells attached to the microtiter plates were washed 

with 0.1 M phosphate buffer (pH 7.0) and then stained for 20 min with 1% crystal violet 

(CV). The stained biofilms were thoroughly washed with water and dried. CV staining 

was visually assessed, and the microtiter plates were scanned. For semiquantitative 

determination of biofilms, CV-stained cells were resuspended in 0.2 ml of 70% ethanol, 

and their absorbance was measured at 600 nm and normalized to the OD600 of the 

corresponding liquid culture. To determine cell aggregation, 2 ml cultures were grown 

overnight in 15 ml Falcon tubes with vigorous shaking, then left standing at room 

temperature for 1h. Cell aggregation was determined by visual estimation of the cell 

sediment at the bottom of the Falcon tube. 

 

Extracellular polysaccharide determination. Cellulose in the growth medium was 

determined by measuring the glucose reducing units produced after treatment with 

cellulase. Cultures (50 ml) were grown overnight at either 30 °C or 37 °C. Cells were 

pelleted by centrifugation, and the culture supernatants were lyophilized. Dried culture 

supernatants were dissolved in water at 100 mg/ml final concentration, and the 

resuspended culture supernatants were incubated with cellulase from Trichoderma 

reesei ATCC 26921 (5 mg/ml, 30 U/ml; Sigma) in sodium acetate buffer (pH 5.0) at 37 

°C for 16h. Glucose released from cellulose by cellulase digestion was estimated with 

the procedure described by Somogyi (1952) for the determination of reducing sugar 

units. As a standard for cellulose quantitative determination, we used a 
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carboxymethylcellulose solution (5 mg/ml) in sodium acetate buffer. For both culture 

supernatants and carboxymethylcellulose solution three different volumes (5, 15 and 30 

µl) were incubated with cellulase. The amounts of sugars released by 

carboxymethylcellulose degradation were used as calibration curve. For culture 

supernatants, the amounts of reducing sugars were expressed at the percentage of 

total dry mass after lyophilization. In culture supernatants of the bcs mutant LG26 

strain, used as negative control, the percentage of glucose released by cellulase 

treatment never exceed 0.05%. 

 

Gene expression determination by real-time PCR. RNA isolation, cDNA synthesis, 

and real time- PCR analysis. For RNA isolation, strains were grown in M9Glu/sup at 30 

°C to stationary phase (OD600 ~2). The cells were harvested by centrifugation at 13,000 

rpm for 5 min at 4°C, and total RNA was extracted by using an RNeasy minikit 

(QIAGEN). RNA samples were checked by agarose gel electrophoresis to assess the lack 

of degradation and then quantified spectrophotometrically. Genomic DNA was removed 

by DNase I treatment. Reverse transcription was performed on 1 µg of total RNA, along 

with negative control samples incubated without reverse transcriptase. cDNA synthesis 

efficiency was verified by electrophoresis on agarose gel in comparison to negative 

controls. Real-time PCR was performed by using the SYBR green PCR master mixture, 

and the results were determined with an iCycle iQ realtime detection system (Bio-Rad). 

Reaction mixtures (25 µl) included 0.1 µg of cDNA and 300 nM concentrations of 

primers in the reaction buffer and enzyme supplied by the manufacturer. The 

sequences of the primers used are listed (Table 4). All reactions were performed in 

triplicate, including negative control samples, which never showed significant threshold 

cycles (Ct). The relative amounts of the transcripts were determined by using 16S rRNA 

as the reference gene: Ct(gene of interest)- Ct(16s)=ΔCt value. 

 

Protein localization experiments. Cell fractionation was performed as described 

previously (Deflaun et al.,  1994). Portions (250 ml) of cultures grown in M9Glu/sup at 

30 °C for 18 h were centrifuged at 4,000 X g for 10 min at 4 °C and washed with 5 ml 

of 0.1 M phosphate buffer pH 7.0 (PB). Cells were resuspended in 2 ml of PB with 

addition of 100 µg of lysozyme/ml and 1 mM EDTA (pH 8.0) and incubated at room 

temperature for 10 min. Cells were disintegrated by using a French press and 

centrifuged as described above to remove unbroken cells. The low-speed centrifugation 

supernatant was then centrifuged at 100,000 X g for 1 h at 4 °C to separate the 

cytoplasm (supernatant) and the membrane fraction (pellet). The pellet was 

resuspended in 2 ml of 2% Sarkosyl in phosphatebuffered saline, left for 20 min at 

room temperature, and centrifuged at 40,000 X g at 10 °C for 10 min to remove 
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ribosomes and cytoplasmic proteins that were still associated with the membrane 

fraction. The pellet was resuspended in 1 ml of 1% Sarkosyl, precipitated again 20 min 

at room temperature, and centrifuged as described above. The supernatant, 

corresponding to inner membrane proteins, was collected, and the pellet, corresponding 

to outer membrane proteins, was resuspended in 0.5 ml of H2O. Protein concentrations 

were determined, and 20 µg of total proteins was loaded onto a 12% sodium dodecyl 

sulfate-polyacrylamide gel (SDS-PAGE). Specific bands were identified by matrix-

assisted laser desorption ionization–time of flight (MALDI-TOF) analysis of the peptide 

products after in-gel trypsin digestion (Chen et al., 2000; performed by CRIBI, 

University of Padua, Padua,Italy [http://www.bio.unipd.it/cribi/]). 

 

σs determination by Western blotting. Protein amounts in cytoplasmic samples were 

determined by the Bradford method, and 20 µg portions of total proteins were loaded 

onto an SDS-PAGE gel (12% acrylamide). Proteins were transferred on Hybond P 

membranes (Amersham Life Sciences) and incubated with the polyclonal rabbit 

antibodies against the σs protein (Robbe-Saule et al., 2007). The anti-σs antibodies 

were detected by using a secondary anti-rabbit antibody conjugated with fluorescein. 

For σs turnover experiments, 50 µg of cell extracts (cytoplasmic fractions) was 

incubated at 37 °C for different times (0, 5, 10, and 20 min). Reactions were stopped 

by the addition of an equal amount of SDS-PAGE loading buffer, and the samples were 

used for Western blotting. Bands were quantified by using the ImageQuant 5.2 software 

(Molecular Dynamics). 

 

Other methods. ß-Glucuronidase assays were performed as described previously. 

Bacteriophage P1vir transductions were carried out as described previously (Miller, 

1972). The correctness of transduction was checked by PCR verification of the presence 

of the antibiotic cassette used for selection in the gene of interest, except for the rpoS 

mutants, which were checked by catalase activity assays as previously described (Visick 

and Clarke, 1997). 

 

Bacteriophage P1vir transductions were carried out as described by Miller (1972). For 

overexpression of the AdrA protein, the adrA gene was amplified by PCR and the PCR 

product was directly cloned into the pTOPO vector. The correct orientation of the adrA 

insertion (i.e. under the control of the lac promoter) was confirmed by digestion with 

EcoRI/EcoRV, which gives two distinct digestion patterns depending on orientation of 

the adrA gene. 
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Desiccation experiments were performed as follows. Overnight cultures grown at 30 °C 

in M9Glu/sup were diluted 1:100 in H2O. To determine bacterial concentration in the 

suspension before desiccation, 20 ml was spotted on a glass slide, to which 80 ml H2O 

was added immediately. Serial dilutions (10-2 to 10-5) were plated on LB agar. Typical 

c.f.u. ml-1 values for the bacterial suspensions used in the desiccation experiments 

ranged between 107 and 2.5x107. For the desiccation assay, 20 ml of the bacterial 

suspension was spotted on a glass slide and allowed to air-dry at 30 °C for 1 h, a time 

sufficient for full drying of the suspension drop. The dried suspension was resuspended 

in 100 ml H2O, and serial dilutions (10-1 to 10-4) were plated on LB agar and incubated 

overnight at 37 °C. The percentage of cells surviving drying was calculated as 

recovered cells (c.f.u. ml-1) divided by the number of cells (c.f.u. ml-1) spotted on the 

glass slide. Efficient recovery of bacterial cells from the glass slide after exposure to 

dryness was verified by direct microscopic observation (at 100 x magnification). 

 

Curli subunit determination by SDS-PAGE was performed after formic acid solubilization 

of membrane-associated proteins. Samples (50 ml) of cultures grown in M9Glu/sup at 

30 °C for 18 h were centrifuged at 4000 g for 10 min at 4 °C and washed with 5 ml 0.1 

M sodium phosphate buffer pH 7.0 (PB). Cells were resuspended in 1 ml PB with 

addition of 100 mg lysozyme ml-1 and 1 mM EDTA pH 8.0 and incubated at room 

temperature for 10 min. Cells were disintegrated using a French press and centrifuged 

at 30.000 g for 30 min. The pellet was dissolved in 1 ml PB and treated with formic acid 

as described by Collinson et al. (1991). 
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Table 3. Strain and plasmids used in this work. 
 

Strain and plasmid Relevant genotype or characteristics Reference or source 

-------------------------------------------------------------------------------------------------- 

E. coli 

MG1655 E. coli K-12 λ- F-, rph-1 Blattner et al., 1997 

EB1.3 MG1655 rpoS::Tn10   Prigent-Combaret 
      et al., (2001) 

LG03 MG1655 iraP::Kan        This study  

LG05 EB1.3 csgA::uidA-kan        This study 

LG07 EB1.3 csgD::uidA-kan        This study 

LG20 MG1655crl::920cam; obtained by         This study 
 transduction from LP468  
 (Pratt & Silhavy, 1998) 

LG26 MG1655ΔbcsA::kan; obtained by        This study  
 P1vir transduction from  
 MG1655bcsA (gift from C. Beloin) 

PHL1087 PHL628 csgD::uidA-kan    Prigent-Combaret  
    et al., (2001) 

 

PHL1088 MG1655 csgD::uidA-kan    Prigent-Combaret  
    et al., (2001) 

 

PHL628 MG1655 ompR234    Prigent-Combaret  
    et al., (2001) 

PHL856 MG1655 csgA::uidA-kan    Prigent-Combaret  
    et al., (2001) 

--------------------------------------------------------------------------------------------------

Plasmid  

 

pT7-7 Control vector, ampicillin resistance, S. Tabor, Institute of 
 T7 RNA polymerase-dependent  Cancer research, UK 
 promoter 

pT7CsgD csgD gene cloned into plasmid pT7-7    Prigent-Combaret  
 as a 651 bp NdeI/PstI fragment       et al., (2001) 

pTOPO Control vector allowing direct          Invitrogen 
 cloning of PCR, products ampicillin  
 kanamycin resistance 

pTOPOAdrA adrA gene cloned as PCR product into     This study  
 pTOPO vector  
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Table 4. Primers used in this work. 
 

Primers Sequence 
-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	
  
csgB_fw	
   CATAATTGGTCAAGCTGGGACTAA 

csgB_rev	
   GCAACAACCGCCAAAAGTTT	
  

adrA-­‐rt_fw	
   GGCTGGGTCAGCTACCAG	
  

adrA-­‐rt_rev	
   CGTCGGTTATACACGCCCG	
  

bcsA-­‐rt_fw	
   GACGCTGGTGGCGCTG	
   	
  

bcsA-­‐rt_rev	
   GGGCCGCGAGATCACC	
  

adrA_fw	
   GCTCCGTCTCTATAATTTGGG	
  

adrA_rev	
   ATCCTGATGACTTTCGCCGG	
  

rpoS_fw	
   GGCCTTAGTAGAACAGGAACC	
  

rpoS_rev	
   CCAAGGTAAAGCTGAGTCGC	
  

iraP_fw	
   TGTGTGCGCAGGTAGAAGC	
  

iraP_rev	
   GCGCCCCCTCTACCTGA	
  

dps_fw	
   GGATGGCTTCCGCACCG	
  

dps_rev	
   CCTGTCAGGAAGCCGC	
  

pflB_fw	
   ACGGCTACGACATCTCTGG	
  

pflB_rev	
   ACCGAAGGACATTGCAGCAC	
  

osmB_fw	
   GACCGCGGCTGTTCTGG	
  

osmB_rev	
   CCTAATGGCCCTGCACCC	
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INTRODUCTION 

	
  
The experiments described in this chapter have been published in the 

following publication: 

 

- Tagliabue, L., Maciąg, A., Antoniani, D., Landini, P. (2010). The 

yddV-dos operon controls biofilm formation through the regulation of 

genes encoding curli fibers’ subunits in aerobically growing Escherichia 

coli. FEMS Immunol Med Microbiol. 59(3):477-84. 

 

The transition from planktonic cells to biofilm is regulated by 

environmental and physiological cues, relayed to the bacterial cell by signal 

molecules such as cyclic di-GMP (c-di-GMP). Intracellular levels of c-di-GMP are 

regulated by two classes of isoenzymes: diguanylate cyclases (DGCs, c-di-GMP 

biosynthetic enzymes), and c-di-GMP phosphodiesterases (c-PDEs, with PDE 

activity resides in EAL or HD-GYP domains), which degrade c-di-GMP (Chang et 

al., 2001; Tamayo et al., 2005; Cotter & Stibitz, 2007). Active DGCs are 

characterized by an intact GGDEF motif that represents the active centre of the 

enzyme (the A-site) and usually also carry an I-site, i.e. a secondary and 

inhibitory binding site for c-di-GMP (Christen et al., 2005; Malone et al., 2007). 

Similarly, in c-PDEs, the catalytic EAL domain retains a number of functionally 

important, and thus highly conserved, amino acids (Rao et al., 2008; Schmidt 

et al., 2005). c-di-GMP promotes biofilm formation in Gram negative bacteria 

by stimulating the production of adhesion factors by acting on c-di-GMP-

responsive proteins (reviewed in Hengge, 2009), while repressing cell motility 

(Kader et al., 2006; Mèndez-Ortiz et al., 2006; Weber et al., 2006; Jonas et al., 

2008). In addition, c-di-GMP can directly affect virulence factor production in 

pathogenic bacteria (Kulasakara et al., 2006; Hammer & Bassler, 2009). In E. 

coli and other enterobacteria, the production of curli fibers and cellulose, which 

form an extracellular matrix promoting biofilm formation (Römling et al., 

1998a; Prigent- Combaret et al., 2000; Gualdi et al., 2008), is strongly 

stimulated by c-di-GMP (Zogaj et al., 2001; Kader et al., 2006; Weber et al., 

2006). At least six different genes encoding c-di-GMP-related proteins are 
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involved in curli gene regulation (Sommerfeldt et al., 2009). The expression of 

several DGC-encoding genes, as well as curli-encoding genes, is controlled by 

σS, an alternative s factor mainly active under slow growth conditions and in 

response to cellular stresses. The yddV-dos operon is the most expressed 

among σS -dependent genes encoding enzymes related to c-di-GMP metabolism 

(Weber et al., 2006; Sommerfeldt et al., 2009). The yddV-dos operon encodes, 

respectively, a protein with DGC activity and a c-PDE that can degrade c-di- 

GMP to pGpG (the linear form of diguanylic acid), not known to function as a 

signal molecule (Schmidt et al., 2005). Dos stands for direct oxygen sensor, 

because the Dos protein is complexed to a heme prosthetic group that can bind 

O2, CO and nitric oxide (NO) (Delgado-Nixon et al., 2000). A recent publication 

(Tuckerman et al., 2009) has reported that YddV is also a heme-binding oxygen 

sensor, and that YddV and Dos interact to form a stable protein complex. 

Although it has been reported that YddV overexpression can stimulate biofilm 

formation (Mèndez-Ortiz et al., 2006), the targets of yddV-dependent biofilm 

induction have not yet been identified. In this work, we have investigated the 

role of the yddV-dos operon in the regulation of curli production. 

 

 

 

RESULTS 
 

 Partial deletion of the yddV and dos genes. We investigated the 

possibility that the yddV-dos operon might affect the production of curli fibers 

by constructing two mutants in either the yddV or the dos genes. In order to 

evaluate more precisely the contribution of c-di-GMP synthesis and turnover 

toward YddV and Dos protein activities, our mutagenesis strategy targeted 

exclusively the region of the gene encoding the domains involved in c-di-GMP 

metabolism, allowing the production of truncated YddV and Dos proteins 

carrying functional heme-binding and sensor domains. Because yddV and dos 

are part of the same transcriptional unit (Mèndez- Ortiz et al., 2006), insertions 

of antibiotic resistance cassettes into the yddV gene can result in transcription 

termination, thus preventing dos transcription. However, in the AM95 

(yddVΔ931–1383:: cat) mutant, replacement of the distal part of the yddV gene by 

the chloramphenicol acetyl-transferase (cat) gene, placed in the same 
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orientation, results in semi-constitutive transcription of the dos gene from the 

cat promoter, as determined by qRT-PCR (data not shown). Because YddV and 

Dos constitute a highly expressed protein complex possessing both DGC and 

PDE activity (Sommerfeldt et al., 2009; Tuckerman et al., 2009), the 

production of truncated forms of either YddV or Dos should result in the 

formation of mutant YddV–Dos protein complexes unbalanced either towards 

accumulation or towards degradation of c-di-GMP. However, we found that 

mutants in the dos gene showed phenotypic instability at the level of cell 

aggregation in liquid culture and Congo red binding, suggesting that the dos 

mutant strain might accumulate spontaneous mutations suppressing the dos 

defect. Thus, the dos mutant strain was not investigated any further, and we 

focused on the yddV mutant AM95 and on MG1655 derivatives overexpressing 

either the YddV or the Dos proteins from multicopy plasmids. 

 

Effects of the yddV and dos mutations on Congo red binding and 

biofilm formation.  In order to determine the possible effects of mutations in 

yddV DGC domain on curli production, we performed Congo red-binding assays 

using CR medium. Curli fibers bind CR with very high affinity, due to their ß-

amyloid fibers. Congo red can bind, albeit with a lower affinity, other cell 

surface-exposed structures, such as the extracellular polysaccharides cellulose 

and poly-N-acetylglucosamine (Jones et al., 1999; Zogaj et al., 2001); 

however, in E. coli MG1655, due to the low production of extracellular 

polysaccharides, the red phenotype on CR medium is totally dependent on curli 

production (Gualdi et al., 2008). Indeed, a mutant carrying a null mutation in 

the csgA gene, encoding the main curli structural subunit, displays a white 

phenotype on CR medium (Fig. 1a). The yddVΔ931–1383::cat mutation resulted in 

a clear, albeit partial, loss of the red phenotype on CR medium, indicative of a 

reduction in curli production. To further confirm the effects of the mutation in 

the yddV gene, we cloned either the yddV or the dos genes into the pGEM-T 

Easy vector, under the control of the lac promoter, producing the pGEM-YddVWT 

and pGEM-DosWT plasmids (Table 3). In addition, we constructed plasmids 

carrying mutant alleles of either gene (pGEM-YddVGGAAF and pGEMDosAAA, Table 

3), in which the coding sequence for the amino acids responsible for either DGC 

activity (in the YddV protein) or c-PDE activity (in the Dos protein) had been 

altered. The substitution of GGDEF motif into the DGC catalytic site to GGAAF 
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results in a drastic loss (>90%) of DGC activity (De et al., 2008; Antoniani et 

al., 2010). In the Dos protein, the glutamic acid and leucine in the EAL motif 

were changed to alanine residues, giving rise to the DosAAA mutant; mutations 

affecting the EAL motif abolish c-PDE activity (Kirillina et al., 2004; Bassis & 

Visick, 2010). Transformation of the yddV mutant AM95 strain with pGEM-

YddVWT, but not with pGEM-YddVGGAAF, restored the red phenotype on CR 

medium (Fig. 1b), indicating that YddV can affect the CR phenotype in a 

manner dependent on its DGC activity. Transformation of MG1655 with the 

pGEM-DosWT plasmid (Fig. 1c) resulted in a white CR phenotype, consistent with 

a negative role of Dos in curli production. In contrast, no effects were observed 

on the CR phenotype in the MG1655 strain harboring the pGEM-DosAAA plasmid, 

carrying the mutant Dos protein impaired in its c-PDE activity. 

 

 
Figure 1. (a) Congo red phenotype of MG1655 (WT), PHL856 (csgA) and AM95 (yddV). 
(b) AM95 (yddV) strain transformed with either pGEM-YddVWT or pGEMYddVGGAAF. (c) 
MG1655 strain transformed with either pGEM-DosWT or pGEM-DosAAA. 
 
  
 So, being curli fibers the main determinant for adhesion to abiotic 

surfaces in E. coli MG1655 strain, we set up biofilm formation experiments on 

polystyrene microtitre plates in order to confirm Congo red binding results (Fig. 

2). Consistent with the pivotal role of curli in adhesion to abiotic surfaces, 

biofilm formation on microtiter plates was reduced by about 10-fold by the 

inactivation of the csgA gene, encoding the major curli subunit (Fig. 2), as well 
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as by growth at 37 °C (see Chapter II, Fig. 1), the temperature at which curli 

fibers are not produced in most enterobacteria (Römling et al., 1998a). 

Inactivation of the yddV gene resulted in a c. 3.5-fold reduction in biofilm 

formation. Overexpression of YddVWT, but not of the YddVGGAAF protein, results 

in strong biofilm stimulation, in agreement with CR phenotypes (Fig. 1b). 

 

 
Figure 2. Surface adhesion on polystyrene microtitre plates by strains MG1655 
(WT), PHL856 (csgA), AM95 (yddV), and MG1655 transformed with pGEM-YddVWT, 
pGEM-YddVGGAAF, pGEM-DosWT and pGEM-DosAAA. The relative adhesion value was set to 
1 for MG1655; the actual adhesion unit for MG1655 was 3.1. Results are the average of 
three independent experiments, with standard deviations always lower than 10%. 
 
 

Overexpression of the Dos protein mimicked the effects of the yddV 

mutation, resulting in decreased biofilm production; however, no effect was 

detected for overexpression of the Dos mutant protein impaired in c-PDE 

activity (Fig. 2). Thus, the results of CR binding and biofilm formation strongly 

support the hypothesis that the YddV and Dos proteins control curli production 

through the modulation of intracellular c-di-GMP concentrations.  

 

Effects of the yddV and dos mutations on curli gene expression. 

The regulation of adhesion factors’ production by DGCs can take place at 

different levels, such as allosteric activation, as in the stimulation of cellulose 
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biosynthesis by AdrA (Zogaj et al., 2001), or gene regulation, such as in the 

transcription regulation of the csgDEFG operon by YdaM and YegE (Sommerfeldt 

et al., 2009). We tested the possibility that the yddV gene might affect the CR 

phenotype and adhesion to polystyrene through gene expression regulation of 

the curli-encoding operons. Curli production and assembly is mediated by two 

divergent operons; csgDEFG encodes the transport and assembly proteins and 

the CsgD regulator, which in turn activates the csgBAC operon, encoding curli 

structural subunits (Römling et al., 1998b). Because curli genes are subject to 

growth phase-dependent regulation mediated by the rpoS gene (Römling et al., 

1998b), we assessed the effects of the yddV mutation at different growth 

stages: early exponential phase (OD600 nm = 0.25), late exponential phase 

(OD600 nm = 0.7) and stationary phase (overnight cultures, OD600 nm ≥ 2.5). 

Transcription levels of the csgB and csgD genes in M9Glu/sup medium at 30 °C 

were determined by qRT-PCR (Table 1). Interestingly, the expression of csgD 

and csgB follows different kinetics: while csgB is only induced in the late 

stationary phase, csgD transcription levels are very similar both in the 

exponential and in the stationary phase. A different timing between csgD and 

csgB transcription in E. coli MG1655 has already been reported (Prigent-

Combaret et al., 2001). Although the lack of stationary-phase-dependent-

activation of the csgD gene might appear to be surprising, rpoS-dependent 

gene expression during the exponential phase is rather common (Dong et al., 

2008); indeed, the expression of both csgB and csgD is totally abolished in the 

rpoS-deficient EB1.3 mutant derivative of MG1655 (data not shown). yddV 

inactivation caused a drastic decrease in csgB expression (c. 400-fold reduction, 

Table 1), while showed a much more reduced effect on csgD transcription (c. 

2.5-fold), suggesting that the YddV protein specifically regulates the 

transcription of the csgBAC operon. Overexpression of either the YddV or the 

Dos protein confirmed this result, showing csgBAC upregulation by YddV and 

downregulation by Dos, in a manner dependent on their DGC and c-PDE 

activities, respectively (Table 2). 
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Table 1. Relative expression of csgB and csgD genes in MG1655 vs. AM95 (yddV::cat) 

Genes                          csgB             csgD                            adrA 
                         ------------------------------      ------------------------------    -------------------------- 
Strains                    MG1655 (WT)      AM95 (yddV)        MG1655 (WT) AM95 (yddV)      MG1655 (WT) AM95 (yddV) 

Growth condition                        

Early exponential (OD600=0.25) 1* 0.7 1* 0.6 ND   ND             

Late exponential (OD600=0.7)          0.8 0.9 1.5 0.7 ND ND 

Stationary (OD600≥2.5)                  391  0.9 1.4 0.6 1* 0.74 

Stationary, anoxic (OD600≥1.6)      57.2 22.4 1.6 1.4 ND ND 

 
*ΔCt between the gene of interest and the 16S gene was arbitrarily set at 1 for MG1655 in the early exponential 
growth phase for csgB and csgD genes, and in stationary phase for adrA. The actual ΔCt values were: csgD=15.0; 
csgB=21.7; adrA= 22.4. ΔCt between the gene of interest and the 16S gene for different growth phases and for 
mutant strains are expressed as relative values. Values are the average of two independent experiments performed 
in duplicated. ND, not determined. 

 

 

The observation that YddV regulates csgBAC transcription, which is also 

dependent on the CsgD protein, may suggest that c-di-GMP synthesis by YddV 

might trigger CsgD activity as a transcription regulator. To test this hypothesis, 

we studied the effect of the yddV mutation on the expression of adrA, a CsgD-

dependent gene involved in the regulation of cellulose production (Zogaj et al., 

2001): as shown in Table 1, adrA transcript levels were not significantly 

affected by yddV inactivation, suggesting that the CsgD protein can function as 

a transcription activator in the yddV mutant strain AM95. 

Both the YddV and the Dos protein require binding of their heme 

prosthetic groups to O2, or alternatively to NO, in order to trigger either DGC or 

c-PDE activity (Taguchi et al., 2004; Tuckerman et al., 2009). Thus, we 

measured csgB and csgD expression levels in bacteria grown in oxygen 

limitation, comparing MG1655 with its yddVΔ931–1383::cat mutant derivative. 

Growth under anoxic conditions did not affect csgD transcript levels, while 

reducing csgB expression by c. 7-fold; yddV inactivation resulted only in a c. 

2.5-fold reduction in csgB transcript levels, vs. the c. 400-fold reduction in 

aerobic growth (Table 1), suggesting that YddV-dependent regulation of the 

csgBAC operon is bypassed under oxygen-limiting conditions. Consistent with 

this observation, no effect on csgBAC expression by either YddV or Dos 

overexpression could be detected in MG1655 grown in oxygen limitation (Table 

2). 
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Table 2. Relative expression of csgB and csgD genes in response to either YddV or Dos 
overexpression. 
 
 

Strains                   csgB expression (aerobic)       csgB expression (anoxic)     csgD expression (aerobic) 

----------------------------------------------------------------------------------------- 
MG1655/pGEM-T  1* 0.38 1* 

MG1655/pYddVWT                                 31.2 0.32 2.1 

MG1655/pYddVGGAAF  2.3 0.45 1.6 

MG1655/pDosWT  0.06 0.34 ND 

MG1655/pDosAAA 1.04 0.37 ND 

 
*ΔCt between the gene of interest and the 16S gene was arbitrarily set at 1 for MG1655/pGEM-T 
under aerobic conditions. Actual ΔCt values in MG1655/pGEM-T: csgB= 15.9; csgD=14.6. Values 
are the average of two independent experiments performed in duplicate. 
 
 
 

Growth-phase dependent regulation of the yddV-dos operon.  Our 

results clearly indicate that a functional yddV gene is required for csgBAC, but 

not csgDEFG, expression (Table 1), suggesting that the YddV protein acts 

downstream of CsgD in the regulatory cascade leading to curli production. It is 

thus possible that the CsgD protein might activate the transcription of the 

yddV-dos operon and, in turn, YddV might trigger csgBAC expression in the 

stationary phase of growth. However, co-transcription of the yddV and the dos 

genes also raises the question of how the opposite activities of the YddV and 

Dos proteins are modulated. We investigated the possibility that the yddV-dos 

transcript might be processed in the stationary phase of growth, resulting in the 

accumulation of the YddV protein, with consequent activation of csgBAC 

expression. To address these questions, we determined both yddV and dos 

transcripts at different growth stages, and we tested the possible dependence 

of yddV-dos transcription on the CsgD protein by comparing MG1655 with its 

csgD mutant derivative AM75. In addition, because transcription of the yddV-

dos operon is controlled by the rpoS gene (Weber et al., 2006; Sommerfeldt et 

al., 2009), which also regulates curli-encoding genes (Römling et al., 1998b), 

we also determined gene expression kinetics of the yddV-dos operon in the 

rpoS mutant derivative EB1.3. 
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Figure 3. Relative expression levels of the yddV gene in strains MG1655 (WT), EB1.3 
(rpoS) and AM75 (csgD), and of the dos gene in MG1655, as measured by realt-time 
PCR experiments. Expression values in MG1655 in the early exponential growth phase 
(OD600nm=0.25; orange bars) (corresponding to a ΔCt relative to 16S rRNA=16.3 for 
yddV and =15.8 for dos) were set to 1. The other samples were taken in late 
exponential phase (OD600nm=0.7; green bars) and stationary phase (OD600nm≥2.5; red 
bars). Data are the average of two independent experiments, each performed in 
duplicate. 
 
 

As shown in Fig. 3, transcription of the yddV gene was induced in an 

rpoS-dependent manner in the late exponential phase, reaching maximal 

induction in overnight cultures; in contrast, csgD inactivation did not affect 

yddV expression. Transcription of the yddV and of the dos genes followed a 

very similar pattern (Fig. 3) and the overall ratio between yddV and dos 

transcripts remained constant in different growth phases, suggesting that 

neither yddV nor dos is subject to specific regulation at the level of mRNA 

processing, at least under the conditions tested. 

 

 

 

DISCUSSION 
 

 Curli fibers are a major adhesion factor in E. coli and their production is 

subjected to multiple forms of regulation. In this work we showed that even the 

yddV-dos operon, encoding a YddV-Dos protein complex involved in c-di-GMP 
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biosynthesis and turnover, affects curli production. Control of curli production 

by yddV-dos takes place at the level of transcription regulation of the csgBAC 

operon, encoding curli structural subunits (Table 1), and is mediated by the 

DGC and PDE activities of YddV and Dos (Fig. 1b and c; Table 2). In contrast, 

the YddV–Dos protein complex does not strongly influence csgDEFG expression, 

nor does it affect the expression of the CsgD-dependent adrA gene, encoding a 

positive effector for cellulose biosynthesis (Table 1). Regulation of the csgBAC 

operon, but not of csgDEFG, has already been described for another DGC, the 

product of the yeaP gene (Sommerfeldt et al., 2009). Thus, in E. coli, the 

production of curli and cellulose involves DGC and c-PDE proteins at various 

levels (summarized in Fig. 4). Indeed, csgDEFG transcription is regulated by the 

DGC YdaM (Weber et al., 2006) and by the PDEs YciR and YhjH (Pesavento et 

al., 2008), csgBAC transcription by YeaP and by the YddV–Dos complex 

(Sommerfeldt et al., 2009; this work), while the AdrA protein activates cellulose 

production (Zogaj et al., 2001). The involvement of such a large number of c-

di-GMP-related proteins might depend on the need to relay different 

environmental signals to the activation of the csgD regulon. Indeed, curli and 

cellulose production responds to a variety of environmental cues, including low 

temperature, slow growth and low osmolarity (Römling et al., 1998b). In 

addition, devoted DGCs and PDEs can trigger the expression of individual CsgD-

dependent genes (e.g. csgBAC) in response to specific environmental signals, 

thus altering the relative expression of genes belonging to the CsgD regulon 

and, in particular, the balance between curli and cellulose production. 

Depending on the prevalence of either its DGC or its c-PDE activities, the YddV–

Dos complex can either activate or repress csgBAC expression. In the bacterial 

cell, this could be achieved by changing the relative intracellular concentrations 

of either YddV or Dos proteins, for instance through post-transcriptional 

regulation. However, our results seem to rule out the possible regulation of 

either yddV or dos at the level of mRNA stability (Fig. 3), suggesting that YddV 

and Dos might be regulated either in their protein stability level or through 

modulation of their enzymatic activities. Both DGC activity by YddV and c-PDE 

activity by Dos are inhibited in the absence of oxygen; however, YddV and Dos 

respond differently to oxygen concentrations, which can thus affect the overall 

balance between DGC and c-PDE activities in the YddV–Dos protein complex 

(Tuckerman et al., 2009). Thus, oxygen availability in the bacterial cell might 
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function as an environmental signal for the modulation of intracellular c-di-GMP 

concentrations via the YddV–Dos complex. Oxygen tension is known to regulate 

curli production in Salmonella (Gerstel & Römling, 2001). It is conceivable that 

oxygen sensing can be important for curli expression in relation to biofilm 

growth: indeed, with the exception of cells in the external layers, bacteria 

growing in biofilms are exposed to a gradient in oxygen availability that leads to 

a switch to anaerobic metabolism in the innermost biofilm layers (Borriello et 

al., 2004; Rani et al., 2007). 

 

 
 

Figure 4. Model summurizing gene expression regulation of curli- and cellulose-related 
genes by DGC and c-PDE proteins. Protein with DGC activity are indicated by open 
ellipses; c-PDEs are shown as dark squares. The CsgD protein, which activates both the 
csgBAC operon encoding the curli structural subunit and adrA, encoding a DGC acting 
as a positive effector for cellulose biosynthesis, is indicated in the gray ellipse.  
 
 

The growth of E. coli MG1655 in oxygen limitation results in a sevenfold 

decrease in csgBAC, but not csgDEFG, expression (Table 1); under these 

growth conditions, overexpression of neither YddV nor Dos affects csgBAC 

expression (Table 2), consistent with the inhibition of both DGC and c-PDE 
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activities of the YddV and Dos proteins in the absence of oxygen. This result 

would suggest that in the innermost biofilm layers, oxygen limitation might lead 

to reduced csgBAC expression and curli production, without, however, affecting 

the expression of csgDEFG and of other genes belonging to the CsgD regulon. 

We conclude that relay of oxygen sensing to curli production is mediated by c-

di-GMP signalling involving the YddV–Dos complex. 

 

 

 

METHODS 
 

Bacterial strains and growth conditions. The bacterial strains used in this work are 

listed in Table 3. E. coli MG1655 mutant derivatives were constructed using either the λ 

Red technique (Datsenko & Wanner, 2000) or by bacteriophage P1 transduction (Miller, 

1972). The primers used for gene inactivation and for confirmation of target gene 

disruption by PCR are listed in Table 4. Bacteria were grown in M9Glu/sup medium 

(Brombacher et al., 2006), a glucose based medium supplemented with 2.5% Luria–

Bertani medium as a source of amino acids and vitamins. For growth under anoxic 

conditions, liquid cultures were grown with no shaking in 15-mL glass tubes filled to the 

top; these conditions are sufficient for the full induction of genes responding to 

anaerobiosis (Landini et al., 1994). Antibiotics were used at the following 

concentrations: ampicillin, 100 µg/ml; chloramphenicol, 50 µg/ml; tetracycline, 25 

µg/ml; and kanamycin, 50 µg/ml. For Congo red binding assays, bacteria grown 

overnight in a microtiter plate were spotted, using a replicator, on Congo red 

supplemented medium (CR medium), composed of 1.5% agar, 1% Casamino acids, 

0.15% yeast extract, 0.005% MgSO4 and 0.0005% MnCl2, to which 0.004% Congo red 

and 0.002% Coomassie blue were added after autoclaving. Bacteria were grown for 20 

h at 30 °C; phenotypes were better detectable after 24–48 h of additional incubation at 

4 °C. Surface adhesion assays in polystyrene microtiter plates were performed as 

described (Dorel et al., 1999). 

 

 

Plasmid construction. The plasmids used in this work are listed in Table 3. For the 

construction of the pGEM-T Easy (http://www.promega.com/ tbs/tm042/tm042.pdf) 

plasmid derivatives, either the yddV or the dos genes were amplified by PCR from E. 

coli MG1655 genomic DNA and the PCR product was cloned into the plasmid, producing 

pGEM-YddVWT and pGEM-DosWT, respectively. The pGEM-YddVGGAAF and pGEM-DosAAA 
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plasmids were obtained by three-step PCR mutagenesis (Li & Shapiro, 1993) using the 

primers listed in Table 4. All constructs were verified by sequencing. 

 

Gene expression studies. Quantitative real-time PCR (qRT-PCR) for the 

determination of the relative expression levels was performed on cultures grown at 30 

°C in M9Glu/sup medium. Samples were taken in the early (OD600nm=0.25) and late 

(OD600nm=0.7) exponential phase and in the stationary phase (OD600nm~2.5) for cultures 

grown aerobically, and in the stationary phase (OD600nm~1.6) for cultures grown under 

anoxic conditions. RNA extraction, reverse transcription and cDNA amplification steps 

were performed as described (Gualdi et al., 2007), using 16S RNA as the reference 

gene. 

 

Table 3. E. coli strains and plasmids used in this work. 

E.coli     Relevant phenotype             Reference or sources 

 

Strains 

MG1655 K-12, F-λ-rph1    Blattner et al. 

       (1997) 

  EB1.3                      MG1655 rpoS::tet  Prigent-Combaret 

      et al., (2001) 

  PHL856 MG1655 csgA-uidA::Kan Gualdi et al., (2008) 

  AM75 MG1655csgD::cat        This work 

  AM95 MG1655yddVΔ931-1383::cat        This work 

 

Plasmids 

  pGEM-T Easy Control vector, ampicillin resistance        Promega 

  pGEM-YddVWT yddV gene cloned in pGEM-T Easy vector        This work 

  pGEM-YddVGGAAF yddV allele carrying the mutation resulting        This work 

 in the GGDEF       GGAAF change in the  

 YddV DGCcatalytic site   

  pGEM-DosWT The dos gene cloned in pGEM-T Easy vector        This work  

  pGEM-DosAAA dos allele carrying the mutation resulting in         This work 

 EAL      AAA change in the Dos c-PDE  

 catalytic site 

----------------------------------------------------------------------------------------- 
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Table 4. Primers used in this work. 
 

Primers Sequence Utilization 
----------------------------------------------------------------------------------------- 
yddV_for	
  	
   CCAGCCTTATAAGGGTGTG	
   yddV cloning 
  and mutant 
  verification  	
  
yddV_rev TTACCTCTGCATCCTGGC	
   yddV cloning	
  
	
  
yddVGGAAF_for  TACGGGGGCGCTGCATTTATCATT Construction of  
  pGEM-YddVGGAAF 
yddVGGAAF_rev  AATGATAAATGCAGCGCCCCCGTA  Construction of  
  pGEM-YddVGGAAF 
dos_for  AATCATGAAGCTAACCGATGCG dos cloning 

dosAAA_for ACGGCATCGCAGCCGCTGCTCGCT Construction of 

  pGEM-DosAAA 
dosAAA_rev  AGCGAGCAGCGGCTGCGATGCCGT Construction of 
  pGEM-DosAAA 
 
yddV_cat_for  GGATGTACTGACGAAATTACTTAACCG  yddV inactivation 
 CCGTTTCCTACCGTACCTGTGACGGAAGATCAC  
 
yddV_cat_rev CATCGGTTAGCTTCATGATTACCTCTGC yddV inactivation 
 ATCCTGGCGCATGGGCACCAATAACTGCCTTA 
 
dos_tet_for CCTGCACAATTACCTCGATGACCTGGTCGA dos inactivation 
	
   CAAAGCCGTCCTAGACATCATTAATTCCTA 
 
dos_tet_rev GTTAAATGAAAACCCGCGAGTGCGGGCGAG  dos inactivation 
 AGGAATTTGGAAGCTAAATCTTCTTTATCG 
 
csgD_cam_for CTGTCAGGTGTGCGATCAATAAAAAAAGCG csgD inactivation 
	
   GGGTTTCATCTACCTGTGACGGAAGATCAC 
 
csgD_cam_rev AATGAATCAGGTAGCTGGCAAGCTTTTGCG csgD inactivation 
 TAAAGTAGCAGGGCACCAATAACTGCCTTA 
 
csgD_rev GCCATGACGAAAGGACTACACCG Mutant verification 

cat_rev GGGCACCAATAACTGCCTTA Mutant verification 

tet_rev  GAAGCTAAATCTTCTTTATC Mutant verification 

16S_for  TGTCGTCAGCTCGTGTCGTGA  qRT-PCR 

16S_rev  ATCCCCACCTTCCTCCGGT  qRT-PCR 

csgB_RT_for  CATAATTGGTCAAGCTGGGACTAA qRT-PCR 

csgB_RT_rev  GCAACAACCGCCAAAAGTTT  qRT-PCR 

csgD_RT_for  CCCGTACCGCGACATTG qRT-PCR 

csgD_RT_rev ACGTTCTTGATCCTCCATGGA qRT-PCR 

dos_RT_for CAGAGAAGCTCTGGGGATACA qRT-PCR and 
  mutant verification 
dos_RT_rev TTTTTCTCCAGCTGCAGCTCC qRT-PCR 

yddV_RT_for GTTGAGCGGCAGTTGAAGAGT qRT-PCR 

yddV_RT_rev TTTTTCAGCACCCGAAACCCC qRT-PCR 
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INTRODUCTION 

	
  
The experiments described in this chapter have been published in the 

following publication: 

 

-­‐ Tagliabue, L., Antoniani, D., Maciąg, A., Bocci, P., Raffaelli, N. & 

Landini, P. (2010). The diguanylate cyclase YddV controls 

production of the exopolysaccharide poly-N-acetylglucosamine (PNAG) 

through regulation of the PNAG biosynthetic pgaABCD operon. 

Microbiol. 156: 2901 - 2911. 

 

As I already discussed in the previous chapters, transition from 

planktonic cells to biofilm is regulated by the second messenger, bis-(3’,5’)-

cyclic diguanylic acid, better known as cyclic-di-GMP (c-di-GMP). Intracellular 

levels of c-di-GMP are regulated by two classes of isoenzymes: diguanylate 

cyclases (DGCs, c-di-GMP biosynthetic enzymes) and c-di-GMP 

phosphodiesterases (PDEs), which degrade c-di-GMP (Cotter & Stibitz, 2007). 

DGC- and PDE-encoding genes are present in high number in Gram negative 

bacteria, suggesting that c-di-GMP biosynthesis and degradation might 

constitute a mechanism for signal transduction involving c-di-GMP-responsive 

proteins interacting with specific DGCs. In this chapter, I have addressed the 

question of how different DGCs can affect specific cellular processes. Indeed, c-

di-GMP-driven cell processes, such as cellulose production in Salmonella (Zogaj 

et al., 2001), depend on specific interactions between a given DGC and one or 

more target proteins. To this aim, four different DGCs (AdrA, YcdT, YdaM and 

YddV) were overexpressed and their effect on production of extracellular 

structures was tested. For AdrA, YcdT and YdaM, a role in regulation of the 

extracellular structures curli, cellulose and PNAG have already been proposed 

(Weber et al., 2006). In the previous chapter, I have shown that YddV can 

affect expression of curli-encoding genes in a manner dependent on oxygen 

availability. 

 The YddV protein is arguably one of the most expressed DGCs in E. coli 

(Sommerfeldt et al., 2009), which underlines its importance. In this chapter, I 
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will show that overexpression of YddV leads to production of poly-N-

acetylglucosamine (PNAG), an EPS able to promote biofilm formation, by 

triggering expression of pgaABCD, the PNAG biosynthetic operon. The 

ubiquitous exopolysaccharide, poly-N-acetyl (ß-1,6) glucosamine (PNAG) 

appears to play an important role in biofilm formation, immune evasion, and 

pathogenesis in a variety of bacterial species including: S. aureus (Cramton et 

al., 1999; Kropec et al., 2005; Cerca et al., 2007), Staphylococcus epidermidis 

(Mack et al., 2000; Vuong et al., 2004; Cerca et al., 2006) and E. coli (Wang et 

al., 2004; Agladze et al., 2005). PNAG was first described in S. epidermidis in 

which it is encoded by the intercellular adhesin (ica) locus (Heilmann et al., 

1996). In E. coli, PNAG is synthesized by the four proteins encoded within a 

homologous locus, pgaABCD (Wang et al., 2004). It has been shown that 

posttranscriptional control of pgaABCD expression by the RNA-binding protein 

carbon storage regulator A (CsrA) regulation leads to the inhibition of biofilm 

formation (Wang et al., 2005). 

 

 

 

RESULTS 
 

Overexpression of diguanylate cyclases (DGCs). In Enterobacteria, 

production of EPS such as poly-N-acetylglucosamine (PNAG) and cellulose 

(Römling et al., 2000; Zogaj et al., 2001; Boehm et al., 2009), and of 

proteinaceous adhesion factors such as curli fibers (Kader et al., 2006; Weber 

et al., 2006) is regulated by DGC proteins and c-di-GMP biosynthesis. However, 

for several genes encoding putative DGCs, their functional role in production of 

adhesion factors has not been fully determined: for instance, yddV, arguably 

the most highly expressed DGC-encoding gene in E. coli (Sommerfeldt et al., 

2009), can activate transcription of the csgBA operon, encoding curli subunits 

(Tagliabue et al., 2010); however, YddV  overexpression can stimulate biofilm 

formation independently of curli production (Mendez-Ortiz et al., 2006), thus 

suggesting that yddV can induce biofilm formation by acting on additional, not 

yet identified, targets. In order to study the effects of YddV on production of 

extracellular structures, we cloned the yddV gene into the p-GEM-T easy 

plasmid, which allows constitutive expression of cloned genes in the absence of 
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IPTG induction. We compared yddV with three different DGC-encoding genes: 

adrA, encoding an activator of cellulose production (Zogaj et al., 2001), ycdT, 

located in the pgaABCD locus and co-regulated with the PNAG-biosynthetic 

genes (Jonas et al., 2008), and ydaM, required for expression of curli-encoding 

genes (Weber et al., 2006). 

 

 
Figure 1. HPLC determination of intracellular c-di-GMP concentrations in MG1655 and 
in MG1655 transformed with either the pGEM-T Easy vector or pGEM-T Easy carrying 
the DGC-encoding genes AdrA, YcdT, YdaM and YddV. The peak corresponding to c-di-
GMP is marked by an arrow; the peak with a retention time of 21.8 minutes 
corresponds to NAD, while the peak at 23.5 minutes was not identified. 
 
 

Plasmid-driven expression of each of the four genes resulted in a 

significant increase in intracellular c-di-GMP concentrations consistent with 

production of active proteins; however, while overproduction of the AdrA and 

the YdaM proteins resulted in a more than 150-fold increase in intracellular c-

di-GMP, in agreement with previous observations (Antoniani et al., 2010), YcdT 

and YddV only enhanced c-di-GMP concentration by ca. 10-fold (Fig. 1). c-di-
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GMP intracellular concentrations did not strictly correlate with DGC 

overproduction levels, as judged by SDS-PAGE analysis of cell extracts (data 

not shown). Expression of each DGC led to reduction in bacterial mobility (Table 

1), in agreement with previous observations (Mendez-Ortiz et al., 2006; Jonas 

et al., 2008; Pesavento et al., 2008). 

 

Table 1. Effects of DGCs overexpression on cell motility and cell aggregation. 
  

Bacterial strains      Cell Motility* (mm)   Aggregation** 

-------------------------------------------------------------------------------------------------- 

MG1655pGEM-T Easy  10.5 - 

MG1655pAdrA    8  + 

MG1655pYcdT     7   - 

MG1655pYdaM  8.75     +++ 

MG1655pYddV    7     ++ 

*) Average of two independent experiments. **) Determined by visual inspection as 
described in Gualdi et al., 2008. Results are from four independent experiments. 
 

 

Effects of DGC overexpression on cell surface-associated 

structures. The plasmids carrying DGC-encoding genes were used to 

transform a set of mutant derivatives of E. coli MG1655 deficient in the 

production of curli, cellulose, or PNAG, namely: AM70 (ΔcsgA::cat), unable to 

produce curli; LG26, a ΔbcsA::kan mutant impaired in cellulose production; 

AM73, a ΔcsgA/ΔbcsA double mutant, and AM56, a ΔpgaA::cat mutant unable 

to export PNAG and to expose it on the cell surface (Itoh et al., 2008). We 

expected that phenotypes depending on increase in production of cell surface-

associated structures caused by DGC overexpression would be abolished by 

inactivation of the corresponding target genes. Since curli, cellulose and PNAG 

affect binding of bacterial cell surface to the dye Congo red (Olsen et al., 1989; 

Zogaj et al., 2001; Perry et al., 1990; Gualdi et al., 2008), we measured the 

effects of DGC overexpression on color phenotype on agar medium 

supplemented with Congo red (CR medium). In the absence of DGC-

overexpressing plasmids, strains carrying mutations in curli-related genes 

(ΔcsgA and the ΔcsgA/ΔbcsA double mutant) showed a white phenotype on CR 

plates (Fig. 2). In contrast, inactivation of genes responsible for either cellulose 

(ΔbcsA) or PNAG biosynthesis (ΔpgaA) did not affect the red phenotype of the 
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parental strain, consistent with previous observations that in E. coli MG1655 

Congo red-binding mostly depends on curli production (Gualdi et al., 2008; Ma 

& Wood, 2009). Plasmid-driven expression of DGCs resulted in very different 

effects on colony phenotype on CR media: expression of the AdrA protein 

conferred a red phenotype to the csgA mutant strain, but not to the 

ΔcsgA/ΔbcsA double mutant, consistent with its role as an activator of cellulose 

production (Zogaj et al., 2001; Antoniani et al., 2010). Overexpression of YdaM 

did not affect CR phenotype in MG1655 and in its ΔpgaA mutant derivative, but 

it conferred a weak red phenotype on CR medium both to the curli-deficient 

mutant and to the ΔcsgA/ΔbcsA double mutant impaired in both curli and 

cellulose production. Since YdaM controls the production of both curli and 

cellulose via expression of the csgD gene (Weber et al., 2006), this observation 

suggests that either YdaM or CsgD might trigger the production of yet 

additional cell surface-associated structures able to bind Congo red. In contrast 

to AdrA and YdaM, YcdT expression led to no detectable changes in CR 

phenotype in any of the strains tested (Fig. 2). However, YcdT overexpression, 

in addition to increasing c-di-GMP intracellular concentrations (Fig. 1), clearly 

affected cell motility (Table 1) and colony size on LB medium (data not shown), 

suggesting that YcdT is produced in an active form in strains carrying the pYcdT 

plasmid. Finally, YddV overexpression led to the loss of the red phenotype on 

CR medium in curli-producing strains, with the exception of the pgaA mutant 

unable to expose PNAG on the cell surface (Fig. 2, last row). 
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Figure 2. Congo red binding assay. The MG1655 strain and isogenic mutants deficient 
in production of cell surface-associated structures were transformed with either the 
pGEM-T Easy vector or the vector carrying the DGC-encoding genes AdrA, YcdT, YdaM 
and YddV.  Strains tested were: MG1655 (WT); ΔcsgA: AM70 (curli-deficient mutant); 
ΔbcsA: LG26 (cellulose-deficient mutant); ΔcsgA/ΔbcsA: AM73 (curli- and cellulose-
deficient mutant); ΔpgaA: AM56 (PNAG-deficient mutant). 
 
 

Although a white CR phenotype could indicate negative regulation of curli 

production by YddV, the observation that YddV-dependent white colony 

phenotype on CR medium requires a functional pgaA gene suggests that YddV 

overexpression might trigger PNAG overproduction. Indeed, in curli-producing 

strains of E. coli, EPS overproduction can result in the loss of the red colony 

phenotype on CR medium, possibly due to shielding of curli fibers (Gualdi et al., 

2008; Ma & Wood, 2009). To understand whether YddV-dependent loss of the 

red colony phenotype on CR medium could indeed be due to PNAG 

overproduction, we verified EPS production in the absence and in the presence 

of the pYddV plasmid by plating on agar medium supplemented with Calcofluor, 

a fluorescent dye able to bind EPS. Presence of pYddV promotes Calcofluor 
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binding, which is however abolished in the pgaA mutant strain AM56, indicating 

that YddV overexpression increases EPS production in a manner dependent on 

the presence of a functional pgaA gene (Fig. 3, left panel). 

 

 

 
Figure 3. Left panel. Effects of YddV overexpression on EPS production determined by 
Calcofluor binding assay. The following strains: MG1655 (WT); ΔcsgA: AM70 (curli-
deficient mutant); ΔbcsA: LG26 (cellulose-deficient mutant); ΔpgaA: AM56 (PNAG-
deficient mutant) were transformed either with the control vector (panel above) or with 
pYddV (panel below). Right panel. Surface adhesion on polystyrene microtiter plates 
by strains carrying either pGEM-T Easy (green bars) or pYddV (red bars). Surface 
adhesion values are set to 1 for strains transformed with pGEM-T Easy. Actual Adhesion 
units values were: MG1655 (WT)=5.6; AM70 (csgA)=1.1; LG26 (bcsA)=5.4; AM73 
(csgA/bcsA)=1.2; AM56 (pgaA)=3.8, WT+Dispersin B=4.4. Experiments were repeated 
three times with very similar results. 
 
 

We determined YddV stimulation of surface adhesion in MG1655 and in 

its mutant derivatives deficient in production of specific cell surface-associated 

factors. As shown in Fig. 3 (right panel), YddV overexpression stimulated 

surface adhesion in the MG1655 strain as well as in mutants unable to 

synthesize either curli or cellulose, while failing to enhance biofilm formation in 

a pgaA mutant. Treatment with the PNAG-degrading enzyme Dispersin B 

abolished YddV-dependent stimulation of surface adhesion in MG1655 (Fig. 3, 

right panel). 

In contrast to YddV, overexpression of either AdrA or YcdT resulted in 

little or no increase in surface adhesion (Fig. 4). Finally, YdaM overexpression 

stimulated PNAG production: indeed, YdaM-dependent biofilm formation was 

affected (ca. 2-fold) by pgaA inactivation and by treatment with Dispersin B; 

however, unlike YddV, YdaM-mediated biofilm formation was totally abolished in 
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the AM70 csgA mutant, indicating that it mostly depends on curli production 

(Fig. 4). 

 

 
Figure 4. Surface adhesion on polystyrene microtiter plates by strains carrying the 
pGEM-T Easy control vector (blue bars), pAdrA (orange), pYcdT (green), and pYdaM 
(red). Surface adhesion values are set to 1 for strains transformed with the control 
vector. Actual values were: MG1655 (WT)=5.6; AM70 (csgA)=1.1; LG26 (bcsA)=5.4; 
AM73 (csgA/bcsA)=1.2; AM56 (pgaA)=3,8, WT+Dispersin B=4.4. Experiments were 
repeated three times with similar results. 
 
 

Regulation of pgaABCD expression by DGCs. Regulation of EPS 

production by DGCs can take place at different levels: cellulose production is 

stimulated by AdrA through allosteric activation of the cellulose synthase 

protein machinery (Zogaj et al., 2001; Simm et al., 2004); the YdeH protein 

affects PNAG production through stabilization of the PgaD protein (Boehm et 

al., 2009); finally, the YdaM protein activates curli and cellulose production via 

up-regulation of csgDEFG transcription (Weber et al., 2006). We tested the 

possibility that the YddV protein might regulate PNAG production by affecting 

transcription of the pgaABCD operon, encoding the proteins involved in PNAG 

biosynthesis. To this aim, we performed quantitative Real Time PCR 

experiments in MG1655 transformed with pYddV and determined transcript 

levels of the pgaA gene. 

As shown in Fig. 5, pgaA transcript levels were increased by roughly 10-

fold by YddV overexpression. In contrast, overexpression of AdrA and YcdT did 

not lead to any significant increase in pgaA transcript levels. Interestingly, 

YdaM overexpression also resulted in an increase in pgaA transcript levels, 
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albeit lower than what observed for YddV, consistent with YdaM-dependent 

stimulation of PNAG production (Fig. 5).	
  	
  

	
  

 
Figure 5. Effects of DGC overexpression on pgaA transcript levels. The MG1655 strain 
was transformed either with the pGEM-T Easy vector or with the following plasmids: 
pYddV, pYddVGGAAF, pAdrA, pYcdT, and pYdaM. The pYddV plasmid carries a copy of the 
wild type yddV allele, while pYddVGGAAF carries a mutant yddV allele encoding a protein 
lacking DGC activity. pgaA expression values in MG1655 transformed with pGEM-T Easy 
(corresponding to a ΔCt relative to 16S rRNA=15.7) was set to 1. The strains were 
grown overnight in M9Glu/sup medium at 30°C in the absence of IPTG. Results are the 
average of three independent experiments performed in duplicate. Standard deviations 
were always lower than 5%. 
 
 

To test if YddV- dependent activation of pgaABCD transcription is 

mediated by its DGC activity, we constructed a plasmid carrying a mutant yddV 

allele encoding a protein in which the amino acids in the GGDEF catalytic site 

are changed to GGAAF (YddVGGAAF); this mutation results in loss of DGC activity 

(De et al., 2008; Antoniani et al., 2010; data not shown). Overexpression of the 

YddVGGAAF protein did not affect pgaA transcript levels in Real Time PCR 

experiments (Fig. 5), suggesting that pgaABCD regulation by YddV requires its 

DGC activity. 

 

The yddV gene positively controls pgaABCD expression and PNAG 

production. To test if PNAG production is indeed controlled by the yddV and 

ydaM genes through pgaABCD regulation, we constructed MG1655yddV and 

MG1655ydaM mutant derivatives (AM95 and AM89, respectively). In the AM89 

strain, the ydaM gene is inactivated by the insertion of the EZ-
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Tn5<R6Kγori/KAN-2> transposon at nucleotide 654, i.e., in the central part of 

the ydaM ORF (1233 bp). The AM95 strain carries a yddV allele in which the 

portion of the gene encoding the C-terminal domain (150 amino acids) of the 

YddV protein, which includes the GGDEF domain responsible for DGC activity, 

has been replaced by a chloramphenicol resistance cassette (ΔyddVCTD::cat, 

Table 2). We measured the effects of the ΔyddVCTD::cat mutation on levels of 

pgaA transcript by Real-Time PCR, which showed that partial deletion of the 

yddV gene resulted in a ca. 3.5-fold reduction in pgaA transcript levels in 

comparison to MG1655 (Fig. 6). In contrast, no detectable reduction was 

observed in the MG1655ydaM mutant AM89, suggesting that the ydaM gene is 

not crucial for pgaABCD expression (Fig. 6). 

 

 
 

 
Figure 6. Relative expression levels of the pgaA gene in strains MG1655 (WT), AM95 
(yddV), AM89 (ydaM), LT24 (csrA) and AM98 (csrA/yddV), as measured by Real-Time 
PCR experiments. pgaA expression values in MG1655 (corresponding to a ΔCt relative to 
16S rRNA=15.7) was set to 1. Data are the average of three independent experiments, 
each performed in triplicate. Standard deviations were calculated on the average value 
of each independent experiment and they were always lower than 5%. 
 

 

We investigated the effects of partial deletion of the yddV gene on PNAG 

production by surface adhesion experiments. Surface adhesion to polystyrene 

microtiter plates is strongly stimulated by inactivation of the csrA gene, 

consistent with higher pgaABCD expression in this strain (Fig. 6); disruption of 

the pgaA gene, involved in PNAG biosynthesis, counteracts the effects of the 

csrA mutation (Fig. 6), indicating that increased biofilm formation in the csrA 



	
   73	
  

derivative of MG1655 depends solely on PNAG production. Partial deletion of the 

yddV gene abolished surface adhesion in MG1655csrA (Fig. 7), consistent with 

reduced pgaABCD expression in the MG1655csrA/yddV mutant (Fig. 6). 

Mutations either in the pgaA or the yddV genes resulted in a 2.5-fold reduction 

in surface adhesion in the MG1655 background, in agreement with previous 

observations (Wang et al., 2004; Tagliabue et al., 2010). 

 

 
Figure 7. Surface adhesion on polystyrene microtiter plates of strains MG1655 (WT), 
AM95 (yddV), AM56 (pgaA), LT24 (csrA), AM98 (csrA/yddV) and LT108 (csrA/pgaA). 
Surface adhesion value for MG1655 (4.9 in this set of experiments) was set to 1. 
Results are the average of three independent experiments and standard deviations 
were always lower than 10%. 
 

To further confirm that the effects of yddV inactivation on surface 

adhesion in the MG1655csrA/yddV background are indeed due to reduced PNAG 

production, we transformed the AM98 strain with either pYddV, carrying the 

wild type copy of the yddV gene, or pYddVGGAAF, expressing the YddVGGAAF 

protein lacking DGC activity. Expression of genes cloned into pGEM-T Easy 

occurs at lower levels in strains carrying a csrA mutation, possibly due to 

reduced plasmid copy number in the csrA mutant strain (data not shown): thus, 

in the absence of IPTG induction, no plasmid was able to restore ability to form 

biofilm to AM98 (Fig. 8). In contrast, upon IPTG induction, production of YddV, 

but not of the mutant YddVGGAAF protein lacking DGC activity, clearly stimulated 

surface adhesion. Treatment with the PNAG-degrading enzyme Dispersin B led 

to complete loss of biofilm stimulation by the YddV protein (Fig. 8), strongly 

suggesting that YddV-dependent increase in biofilm formation depends on PNAG 

production. 
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Figure 8. Surface adhesion on polystyrene microtiter plates of strain AM98 (csrA/yddV) 
transformed either with pGEM-T Easy (control vector) or with plasmids carrying yddV 
alleles. The pYddV plasmid carries a copy of the wild type yddV allele, while pYddVGGAAF 
carries a mutant yddV allele encoding a protein lacking DGC activity. For full 
expression, IPTG was added to growth medium at 0.5 mM. When present, Dispersin B 
was added to the growth medium at a final concentration of 20 µg/ml. Data are the 
average of two independent experiments with very similar results. 
 
 
 

Regulation of PNAG-biosynthetic genes by yddV. The pgaABCD 

operon is regulated at the transcription initiation level by the NhaR protein, 

which responds to Na+ ions (Goller et al., 2006). However, the main mechanism 

of pgaABCD regulation takes place at post-transcriptional level, via negative 

control by the RNA-binding CsrA protein (Wang et al., 2004; Wang et al., 2005; 

Cerca and Jefferson, 2008); CsrA negatively controls pgaABCD expression 

through binding to a 234-nucleotide untranslated region (UTR) in its mRNA, 

thus blocking its translation and stimulating its degradation (Wang et al., 

2005). We investigated whether the yddV gene can positively affect pgaABCD 

expression by increasing transcription initiation from its promoter or at post-

transcriptional level via its UTR. To this aim, we constructed two reporter 

plasmids in which we cloned either the pgaABCD promoter region including the 

233-nt UTR (-116 to +233 nt relative to the pgaABCD transcription start site, 

defined as “pgaAWT” regulatory region) or the pgaABCD promoter region alone 

(-116 to +23 nt relative to the pgaABCD transcription start site, defined as 
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“pgaAΔUTR” regulatory region). The two regulatory regions were placed upstream 

of Vibrio harveyi luciferase-encoding luxAB genes, to produce respectively the 

pPgaAWT and pPgaAΔUTR plasmids, which were used to transform MG1655 and its 

csrA, yddV, and csrA/yddV mutant derivatives. Luciferase assays using the 

pPgaAWT plasmid mirrored the results of Real Time PCR experiments, further 

confirming that pgaABCD expression is dependent on csrA inactivation and that 

it is positively regulated by yddV (Fig. 9). In contrast, high levels of luciferase 

activity from the pPgaAΔUTR plasmid were detected in all four strains tested, 

indicating that deletion of pgaABCD UTR by-passes both csrA- and yddV-

dependent regulation (Fig. 9), and strongly suggesting that positive regulation 

by the YddV protein might take place at the post-transcriptional level. 

 

 
Figure 9. Luciferase assays using pPgaAWT and pPgaAΔUTR plasmids (constructs shown 
in the inset, top left) in strains MG1655 (WT), LT24 (csrA), AM95 (yddV) and AM98 
(csrA/yddV). Samples were taken from cultures in stationary phase (OD600nm~1.6). 
Data are the average of two independent experiments with very similar results. 
 

 

To test whether the ΔGGDEFyddV mutation can negatively affect 

pgaABCD mRNA stability, we performed mRNA decay kinetics experiments on 

the pgaA transcript. In both the MG1655 and MG1655yddV strains the pgaA 

transcript has a half-life of 1.5 minutes, indicating that yddV does not affect 
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pgaABCD mRNA stability in the MG1655 background (Fig. 10), consistent with 

lack of any significant difference in pgaA transcription in the two strains (Fig. 

6). In contrast, inactivation of the csrA gene leads to an increase of pgaA 

transcript half-life to 4.2 minutes; the 2.8-fold increase in pgaABCD mRNA 

stability measured in the MG1655csrA strain is in very good agreement with 

previous observations (Wang et al., 2005). In the MG1655csrA/yddV double 

mutant, however, pgaA transcript half-life is reduced to 2 minutes (Fig. 10), 

thus suggesting that the YddV protein positively affects pgaABCD mRNA 

stability.   

 

 
 
Figure 10. Decay of pgaA mRNA as determined by Real Time PCR. Diamonds, MG1655 
(WT); circles, AM95 (yddV); squares, LT24 (csrA); triangles, AM98 (csrA/yddV). The 
solid horizontal line represents the 50% value; the dotted lines show the times 
corresponding to the mRNA half-lives in the different strains. Correlation coefficients 
(R2) for linear interpolation are shown for each set of data and were always >0.9. 
 
 
 

Effects of the c-di-GMP phosphodiesterase Dos on pgaABCD 

expression. The yddV gene is transcribed in an operon with the dos (yddU) 

gene (Mendez-Ortiz et al., 2006); the product of the dos gene is a heme-

binding oxygen sensor (Delgado-Nixon et al., 2000), which possesses putative 

domains for both DGC and c-di-GMP phosphodiesterase (PDE) activity (Schmidt 

et al., 2005). However, due to degeneration of the GGDEF motif responsible for 
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DGC catalytic activity, Dos can only function as a PDE (Schmidt et al., 2005; 

Tuckerman et al., 2009). The presence in the same transcriptional unit of genes 

coding for a DGC and a PDE suggests that Dos might modulate YddV DGC 

activity. Indeed, a recent report shows that the two proteins co-purify and form 

a complex in solution (Tuckerman et al., 2009), suggesting that the YddV-Dos 

protein complex might exist in a stable form in the bacterial cell. Environmental 

signals might modulate either the DGC activity of YddV or the PDE activity of 

Dos. Since the insertion of the cloramphenicol resistance cassette into the yddV 

gene could result in polar effects on dos expression, we compared dos 

transcript levels in the MG1655ΔyddVCTD::cat strain to MG1655 by Real Time-

PCR. Transcription of the dos gene was only reduced by ca. 2.5-fold in the 

MG1655yddV strain (data not shown), suggesting that in this strain the dos 

gene is still expressed at significant levels, probably due to transcription 

readthrough from the promoter of the cloramphenicol resistance cassette 

upstream of the dos gene. To investigate the possible role of dos in pgaABCD 

regulation, we inactivated the dos gene both in the MG1655 strain and in its 

csrA mutant derivative. Real-Time PCR experiments confirmed that dos 

inactivation increased pgaA transcript levels both in the MG1655 (ca. 4-fold) 

and in the MG1655csrA strains (ca. 2-fold; Fig. 11), consistent with the 

hypothesis that Dos modulates DGC activity by the YddV protein. 

 

 
Figure 11. Relative expression levels of the pgaA gene in strains MG1655 (WT), LT24 
(csrA), AM109 (dos), and LT110 (csrA/dos), as measured by Real-Time PCR 
experiments. pgaA expression values in MG1655 (corresponding to a ΔCt relative to 
16S rRNA=15.5) was set to 1. Results are the average of three independent 
experiments, each performed in triplicate, with very similar results. 
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DISCUSSION 
 

In Enterobacteria, biosynthesis of the c-di-GMP signal molecule by 

diguanylate cyclases (DGCs) stimulates the transition from planktonic to biofilm 

cell, repressing flagellar synthesis and cell motility while promoting production 

of adhesion factors (Mendez-Ortiz et al., 2006; Pesavento et al., 2008). In this 

report, we have shown that overexpression of YddV, a DGC protein, promotes 

production of the EPS poly-N-acetyl (ß-1,6) glucosamine (PNAG; Fig. 2, 3) by 

activating expression of pgaABCD, the PNAG biosynthetic operon (Fig. 3). 

pgaABCD activation and consequent stimulation of PNAG biosynthesis requires 

DGC activity  by the YddV protein (Fig. 5, 8); however, increase of intracellular 

c-di-GMP due  to overexpression of other DGCs, such as AdrA and YcdT, is not 

sufficient to activate PNAG production (Fig. 1, 2, 4). In contrast, overexpression 

of YdaM, a cytoplasmic DGC, resulted in increased PNAG production (Fig. 4) and 

pgaABCD expression (Fig. 4, 5), although to a lesser degree than YddV. 

However, unlike yddV, ydaM inactivation did not affect pgaABCD expression 

(Fig. 5), suggesting specific dependence of this process on the YddV protein. 

Specificity of DGCs-mediated regulation might indicate that c-di-GMP 

biosynthesis is needed to trigger specific protein-protein (or protein-DNA, or 

protein-RNA) interactions between DGCs and their targets (Hengge, 2009). 

Thus, it can be speculated that c-di-GMP biosynthesis could act as an activating 

step in signal transduction pathways leading to regulation of gene expression 

and of protein activity. 

Dependence of PNAG production on c-di-GMP biosynthesis has already 

been described both in Yersinia pestis, where the HmsT protein activates PNAG 

production by allosteric activation of its biosynthetic machinery (Kirillina et al., 

2004). In contrast, our results suggest that the YddV protein promotes PNAG 

production by activating the expression of the PNAG biosynthetic operon 

pgaABCD (Fig. 5, 6), possibly via interaction with a c-di-GMP-responsive 

regulatory protein. In addition to YddV, PNAG production is controlled by 

another DGC, YdeH, which positively affects PgaD protein stability via a yet 

unknown mechanism (Boehm et al., 2009). Similarly, cellulose biosynthesis is 

regulated by DGC proteins at both gene expression and protein activity levels: 

the YdaM protein positively regulates csgDEFG transcription (Weber et al., 

2006); the CsgD protein, in turn, activates adrA transcription. The adrA gene 
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encodes another DGC that stimulates cellulose production through allosteric 

activation of the cellulose synthase machinery (Romling et al., 2000; Zogaj et 

al., 2001). Thus, it appears that DGC-dependent control at multiple levels is a 

common mechanism for EPS biosynthesis regulation in E. coli. A model 

summarizing multiple level EPS regulation by DGCs is summarized in Fig. 12. 

Recent observations indicate that c-di-GMP can act as a riboswitch, binding 

specific elements (aptamers) in the untranslated regions (UTR) in some mRNAs 

and affecting their stability (Sudarsan et al., 2008). The pgaABCD transcript is 

characterized by a rather long UTR (234nt, Wang et al., 2005) and is regulated 

at the level of mRNA stability by the CsrA protein; our results show that a 

functional yddV gene is able to prevent degradation of pgaABCD transcript (Fig. 

10). This effect cannot be detected in the wt strain, where the presence of the 

CsrA protein might override mRNA stabilization by YddV, but it can only be 

detected in a MG1655csrA background. Thus our findings suggest that the YddV 

protein might regulate gene expression by affecting mRNA stability in E. coli, in 

line with recent observations that c-di-GMP can regulate gene expression 

through direct binding to riboswitch elements in mRNAs (Sudarsan et al., 

2008): it is likely that, in the bacterial cell, mRNA/c-di-GMP interaction might 

be mediated by protein factors, possibly DGCs themselves, in order to ensure 

specific gene expression regulation. Indeed, effects on RNA stability have 

already been shown for another protein carrying a GGDEF domain, the CsrD 

protein (Suzuki et al., 2006). However, CsrD is unable to synthesize c-di-GMP 

due to lack of conservation of the catalytic site (Suzuki et al., 2006); thus, the 

YddV protein might be the first example of a DGC being able to regulate gene 

expression by affecting mRNAs stability, either directly or via a YddV-dependent 

factor. We speculate that YddV-mediated mRNA stabilization takes place 

through interaction with the 233-nt UTR of the pgaABCD transcript (Fig. 9), 

possibly promoting the formation of a secondary structure resulting in mRNA 

stabilization. Future investigations will allow the identification of the specific 

nucleotide sequences involved in YddV-dependent mRNA stabilization and 

elucidation of its molecular mechanism. 
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Figure 12. Model summarizing transcriptional and post-transcriptional regulation of 
EPS biosynthesis by DGC proteins. Proteins with DGC activity are indicated in shaded 
ellipses. Cellulose biosynthesis, represented on the left hand side of the figure, is 
regulated by YdaM, promoting transcription of the csgD gene (Weber et al., 2006), and 
AdrA, which activates cellulose synthase activity by the cellulose synthase (Bcs) 
complex through its DGC activity (Romling et al., 2000; Zogaj et al., 2001). PNAG 
production is positively affected by YddV through activation of pgaABCD transcription or 
post-transcriptionally via its UTR (see Fig. 5, 6, 10) and by YdeH-dependent 
stabilization of the PgaD protein (Boehm et al., 2009) at post-transcriptional level. 
  
 
 
 
 
 
 

METHODS 
	
  

Bacterial	
   strains	
   and	
   growth	
   conditions.	
   Bacterial strains used in this work are listed in	
  

Table 2. When not otherwise stated, bacteria were grown in M9Glu/sup (M9 inorganic 

salts	
   (Smith and Levine, 1964), 5 g/L glucose, 0.25 g/L Peptone, 0.125 g/L Yeast 

Extract). When	
  needed, antibiotics were used at the following concentrations: ampicillin, 

100 µg/ml;	
  chloramphenicol, 50 µg/ml; kanamycin, 50 µg/ml; tetracycline, 25 µg/ml; 

rifampicin, 100 µg/ml. For Congo red (CR) or Calcofluor (CF) assays, overnight cultures 

were spotted, using	
   a replicator, on agar media supplemented with 0.5% Casamino 

acids, 0.15% yeast extract,	
  0.005% MgSO4, 0.0005% MnCl2; either 0.004% Congo red 
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and 0.002% Coomassie blue (for CR medium) or 0.005% Calcofluor (for CF medium) 

were added after autoclaving. Bacteria	
  were grown for 20h at 30° C; phenotypes were 

better detectable after 24-48h incubation at 4° C. 

Biofilm formation assays. Biofilm formation in microtiter plates was determined 

essentially as described (Dorel et al., 1999). Bacterial cultures were grown overnight in 

M9Glu/sup at 30°C in polystyrene microtiter plates (0.2 ml); cell density of the culture 

was determined spectrophotometrically at 600nm (OD600nm). Cells attached to the 

microtiter plates were washed gently with water and stained for 20 min with 1% crystal 

violet in water (CV), thoroughly washed with water and dried. For semi-quantitative 

determination of biofilms, CV-stained cells were resuspended in 0.2 ml of 95% ethanol 

by vigorous pipetting. The OD600nm of each sample was determined and normalized to 

the OD600nm of the corresponding liquid cultures (Adhesion units). Sensitivity of biofilms 

to treatment with the PNAG degrading enzyme Dispersin B (Kaplan et al., 2004; 

purchased from Kane Biotech Inc., Winnipeg, Canada) was performed by adding 20 

µg/ml of the enzyme to the growth medium. 

Plasmid construction. Plasmids used in this work are listed in Table 2. For 

overexpression of genes encoding DGCs, genes of interest were amplified by PCR and 

the corresponding products cloned into the pGEM-T Easy vector. Correct orientation of 

the inserts (i.e., under the control of the Plac promoter) was verified by PCR using 

primers listed in Table 3. For DGC-overproduction studies, strains carrying pGEM-T Easy 

derivatives were grown at 30°C in M9Glu/sup medium in the absence of IPTG induction 

of the Plac promoter. The pYddVGGAAF plasmid, carrying the yddV gene mutated in the 

DGC catalytic site, was obtained by 3-step PCR mutagenesis (Li & Shapiro, 1993) using 

the primers listed in Table 3. All constructs were verified by sequencing. 

 

Luciferase assay. Luciferase assays were performed as described below, using the 

vector pJAMA8 (Jaspers et al., 2000), which carries promoterless luxAB genes from 

Vibrio harveyi. The pgaABCD promoter and regulatory region, ranging from -116 to 

+234 nucleotides relative to the pgaABCD mRNA start site, and the pgaABCD promoter 

region in which the untranslated region of the transcript was deleted (ΔUTR, ranging 

from -116 to +23 nucleotides relative to the pgaABCD mRNA start site) were amplified 

from the chromosomal DNA using primers including SphI and the XbaI restriction sites 

and cloned into the multiple cloning site of pJAMA8 to obtain pPgaAWT and pPgaAΔUTR, 

respectively. Bacterial strains containing the different reporter plasmids were grown 

overnight. The samples were adjusted to an OD600 of 0.05–0.1 in PBS buffer. 20 µl of 

this solution was tested for luciferase activity by adding 200 ml PBS containing n-

decanal to a final concentration of 2 nM. Measurement of relative light units (RLU) was 
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conducted by a 2 s pre-measurement delay followed by a 3 s measurement after 

addition of the substrate in a MicroLumat LB 96 P luminometer (Berthold Technologies). 

Results are expressed as RLU per OD600 of the tested bacterial samples. 

 

Gene expression studies. Real-Time PCR for determination of relative expression 

levels was performed on overnight cultures grown in M9Glu/sup medium at 30° C. 

Primers for Real- Time PCR are listed in Table 3. RNA extraction and further Reverse 

Transcription and cDNA amplification steps were performed as described (Gualdi et al., 

2007), using 16S RNA as reference gene. mRNA stability was measured by Real-Time 

PCR experiments in the presence of rifampicin as described (Wang et al., 2005). 

 

Other methods. E. coli MG1655 mutant derivatives were constructed either using the 

λ Red technique (Datsenko & Wanner 2000) or by bacteriophage P1 transduction 

(Miller, 1972), except the AM89 strain (MG1655 ydaM::Tn5-kan) obtained in a 

transposon mutagenesis screening for adhesion-deficient MG1655 mutants using the 

EZ-Tn5<R6Kγori/KAN-2> transposon (Epicentre; Landini, unpublished data). Primers 

used for gene inactivation and for confirmation of target gene disruption by PCR are 

listed in Table 3. Bacterial cell motility was evaluated as described (Pesavento et al., 

2008). Determination of intracellular c-di-GMP concentration was performed as 

previously described (Antoniani et al., 2010). 
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Table 2. E. coli strains and plasmids used in this work. 

E. coli strains               Relevant genotype or characteristics            Reference  
-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	
  

MG1655 K-12,  K-12, F- λ- rph-1  Blatter et al., 1997 

AM56  MG1655ΔpgaA::cat  This work 

AM70  MG1655ΔcsgA::cat  This work 

LG26 MG1655ΔbcsA::kan  Gualdi et al., 2008 

AM73  MG1655ΔcsgA::cat, ΔbcsA::kan  This work 

AM89  MG1655ydaM::Tn5-kat  This work 

AM95 MG1665yddVCTD::cat (yddVΔ931-1383::cat) Tagliabue et al., 

2010 

AM98  MG1655csrA::Kan,yddVΔ931-1383::cat  This work 

AM109  MG1655dos::tetΔ1200-2004  This work 

LT24  MG1655csrA::kan  This work 

LT108  MG1655csrA::kan ΔpgaA::cat  This work 

LT110  MG1655csrA::kan, dos::tetΔ1200-2004  This work 

-------------------------------------------------------------------------------------------------- 

Plasmids 

-------------------------------------------------------------------------------------------------- 

pGEM-T Easy  Control vector allowing direct cloning of  Promega 
 PCR products, ampicillin resistance 
 

pAdrA adrA gene cloned as PCR product into  This work 
 pGEM-T vector 
 

pYcdT ycdT gene cloned as PCR product into  This work 
 pGEM-T vector 
 

pYdaM ydaM gene cloned as PCR product into  This work 
 pGEM-T vector 
 

pYddV yddV gene cloned as PCR product into Tagliabue et  
 pGEM-T vector al., 2010 
 

pYddVGGAAF yddV allele carrying mutation resulting in  Tagliabue et 
 GGDEF     GGAAF change in the DGC  al., 2010 
 catalytic site of the YddV protein 
 

pJAMA8 Control vector fo luciferase assays, Jaspers et al.,  
 ampicillin resistance 2000 
 

pPgaAWT pgaA promoter and regulatory region This work 
 (-116 to +233 relative to transcription start 
 site) cloned into the SphI/XbaI sites of  
 pJAMA8 
 

pPgaAΔUTR pgaAΔUTR (-116 to + 23 relative to This work 
transcription start site) cloned into the  
SphI/XbaI sites of pJAMA8 

-------------------------------------------------------------------------------------------------- 
 



	
   84	
  

Table 3. Primers used in this work. 
 

 
Primers Sequence Utilization 
-------------------------------------------------------------------------------------------------- 
adrA_for  5’-­‐GCTCCGTCTCTATAATTTGGG-­‐3’	
  	
   adrA	
  cloning 
adrA_rev  5’-­‐ATCCTGATGACTTTCGCCGG-­‐3’	
  	
   adrA	
  cloning 
ydaM_for  5’-­‐GCGATCGGATAGCAACAA-­‐3’	
  	
   ydaM	
  cloning 
ydaM_rev  5’-­‐GAAGTCGTTGATCTCGAC-­‐3’	
   ydaM	
  cloning 
ycdT_for  5’-­‐GGGATCTACAACCTACAG-­‐3’	
  	
   ycdT	
  cloning	
  
ycdT_rev	
  	
   5’-­‐CATATTACGTGGGTAGGATC-­‐3’	
   ycdT	
  cloning 
yddV_for  5’-­‐CCAGCCTTATAAGGGTGTG-­‐3’	
   yddV	
  cloning	
  and	
  
	
   	
   mutant	
  screening 
yddV_rev 5’-­‐TTACCTCTGCATCCTGGC-­‐3’	
   yddV	
  cloning	
  	
  
ydaM_for	
  	
   5’-­‐GCGATCGGATAGCAACAA-­‐3’	
   ydaM	
  mutant	
  
	
   	
   screening	
  
ydaM_rev	
   5’-­‐GAAGTCGTTGATCTCGAC-­‐3’	
   ydaM	
  mutant	
  
	
   	
   screening	
  
EZ-­‐Tn5_for	
   5’-­‐CCTCTTTCTCCGCACCCGAC-­‐3’	
   ydaM	
  mutant	
  
	
   	
   screening	
  
yddVGGAAF_for	
   5’-­‐TACGGGGGCGCTGCATTTATCATT-­‐3’	
   Construction	
  of	
  
	
   	
   pYddVGGAAF	
  

yddVGGAAF_rev	
   5’-­‐AATGATAAATGCAGCGCCCCCGTA-­‐3’	
   Construction	
  of	
  	
  
	
   	
   pYddVGGAAF	
  

csgA_cat_for	
   5’-­‐TTTCCATTCGACTTTTAAATCAATCCGATGGGGG	
   csgA	
  inactivation	
  
	
   TTTTACTACCTGTGACGGAAGATCAC-­‐3’	
  
csgA_cat_rev 5’-­‐AACAGGGCTTGCGCCCTGTTTCTGTAATACAAA	
   csgA	
  inactivation	
  
	
   TGATGTAGGGCACCAATAACTGCCTTA-­‐3’ 
dos_tet_for 5’CCTGCACAATTACCTCGATGACCTGGTCGACAAA	
   dos	
  inactivation	
  
	
   GCCGTCCTAGACATCATTAATTCCTA-­‐3’	
  
dos_tet_rev	
   5’GTTAAATGAAAACCCGCGAGTGCGGGCGAGAGG	
   dos	
  inactivation	
  
	
   AATTTGGAAGCTAAATCTTCTTTATCG-­‐3’	
  
yddV_cat_for	
   5’-­‐GGATGTACTGACGAAATTACTTAACCGCCGTTT	
   yddV	
  inactivation	
  
	
   CCTACCGTACCTGTGACGGAAGATCAC-­‐3’	
  
yddV_cat_rev	
   5’-­‐CATCGGTTAGCTTCATGATTACCTCTGCATCCTGG	
   yddV	
  inactivation	
  
	
   GGAGTAATACAGGTACCTGTGACGGAAGATCAC-­‐3’	
  
pgaA_cat_for	
   5’-­‐ATACAGAGAGAGATTTTGGCAATACATGGAGT	
   pgaA	
  	
  
	
   AATACAGGTACCTGTGACGGAAGATCAC-­‐3’	
  	
   inactivation	
  
pgaA_cat_rev	
   5’-­‐ATCAGGAGATATTTATTTCCATTACGTAACATATT	
   pgaA	
  	
  
	
   TATCCGGGCACCAATAACTGCCTTA-­‐3’	
   inactivation	
  
cat_rev	
   5’-­‐GGGCACCAATAACTGCCTTA-­‐3’	
   Mutant	
  	
  
	
   	
   verification	
  
csgA_for	
   5’-­‐ACAGTCGCAAATGGCTATTC-­‐3’	
   Mutant	
  
	
   	
   verification	
   	
  
pgaA_for	
   5’-­‐TGGACACTCTGCTCATCATTT-­‐3’	
   Mutant	
  
	
   	
   verification	
  
pPgaA-­‐delUTR	
  _for	
   5’-­‐	
  GCATGCAACAATTAAATCCGTGAGTGCCG-­‐3’	
   pgaA	
  promoter	
  	
  
	
   	
   cloning	
  
pPgaA-­‐delUTR_rev	
   5’-­‐	
  TCTAGAATCTTCAGGAATACGGCATAAAT-­‐3’	
   pgaA	
  promoter	
  	
  
	
   	
   cloning	
  
pPgaA_wt_for	
   5’-­‐	
  AGCATGCCTCAAATAGTCTTTTTCCAT-­‐3’	
   pgaA	
  promoter	
  	
  
	
   	
   cloning	
  
-------------------------------------------------------------------------------------------------- 
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Primers Sequence Utilization 
-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	
  
pPgaA_wt_rev	
   5’-­‐	
  ATCTAGATACATCCTGTATTACTCCATG-­‐3’	
   pgaA	
  promoter	
  
	
   	
   cloning	
  
16s_for	
   5’-­‐TGTCGTCAGCTCGTGTCGTGA-­‐3’	
   qRT-­‐PCR	
  
16s_rev	
   5’-­‐ATCCCCACCTTCCTCCGGT-­‐3’	
   qRT-­‐PCR	
  
dos_RT_for	
   5’-­‐CAGAGAAGCTCTGGGGATACA-­‐3’	
   qRT-­‐PCR	
  
dos_RT_rev	
   5’-­‐TTTTTCTCCAGCTGCAGCTCC-­‐3’	
   qRT-­‐PCR	
  
pgaA_RT_for	
   5’-­‐CCGCTACCGTCATCAGCAATT-­‐3’	
   qRT-­‐PCR	
  
pgaA_RT_rev	
   5’-­‐AGCGCCTTTTGCCACAGTGT-­‐3’	
   qRT-­‐PCR	
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STUDY OF PHL1228, A 
BIOFILM FORMING MUTANT 
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INTRODUCTION 
 

	
  

In E. coli, several genes coding for extracellular features are involved in 

bacterial adhesion to solid surfaces and/or biofilm formation.  As I showed in 

previous chapters, YddV regulates the expression of different adhesion factors; 

in particular, YddV overexpression leads to production of poly-N-

acetylglucosamine (PNAG), an EPS able to promote biofilm formation, by 

triggering expression of pgaABCD, the PNAG biosynthetic operon. pgaABCD 

expression is very low in MG1655 laboratory strain, in any tested growth 

condition. Consistent with this observation, mutations in regulatory genes or in 

promoters of biofilm-related genes can lead to reversion to a biofilm-forming 

phenotype. In this work, I investigated the PHL1228 strain (coming from a 

collaboration with the group of Corinne Dorel), a spontaneous mutant of E. coli 

MG1655 showing a strong biofilm-forming phenotype. PHL1228 was obtained 

by EB12 strain (a derivative of MG1655 in which the csgA gene, encoding the 

main curli subunit (see Chapter II), has been inactivated by a kanamycin 

resistance cassette) grown as continuous culture for several hundred 

generations; EB12 strain, unable to produce curli, was used in order to identify 

possible determinants for biofilm formation different from curli fibers. Cells 

appearing to attach to the chemostat glass were isolated and tested for their 

adhesion properties. Gene array experiments showed that biofilm-formation by 

PHL1228 is mediated by increased expression of the pgaABCD operon; I 

performed a molecular characterization of the PHL1228 strain, in order to 

investigate the mutation leading to pgaABCD expression. 

 

RESULTS 
 

Global gene expression in PHL1228. PHL1228 strain is a spontaneous 

mutant of E. coli MG1655 showing a strong biofilm-forming phenotype (Fig. 1). 

Since gene expression regulation in bacteria takes place mostly at the 

transcriptional level, I expected that biofilm formation by PHL1228 would be 

due to increased transcription of one or more genes encoding biofilm 
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determinants. Thus, in order to compare gene expression levels in EB12 and 

PHL1228, a gene array experiment was carried out on bacteria grown in M9sup 

medium at 28°C in stationary phase, i.e the optimal conditions for biofilm 

formation by PHL1228. About 100 genes were found to be up-regulated in 

PHL1228, while almost 300 genes were down-regulated. Such a high number of 

differentially regulated genes in PHL1228 would be consistent with a mutation 

in a global regulatory gene. Among genes differently regulated in PHL1228 

(transcriptional regulators, genes involved in general metabolism etc…), I will 

focus on genes related to outer membrane and cell surface, in order to identify 

possible adhesion factors. Known outer membrane factors taking part in biofilm 

formation, such as genes involved in colanic acid synthesis (wcaCG), as well as 

flagellar (flhEH, fliFN,flgFH) and fimbrial (fimF) genes, were expressed at lower 

levels in PHL1228. Results of microarray analysis also pointed to a strong 

transcription activation of ompR-regulated genes (Oshima et al., 2002; Salgado 

et al., 2004), such as csgD (10.7), ompF (51), ompC (7.7), nmpC (9.8), fepA 

(5.3), osmB (4.7).  

 

 

 
Figure 1. Phenotype of the biofilm forming strain PHL1228. A) Cristal violet stained 
biofilm of PHL1228 compared to its parental strain EB12. B) Raster electron 
micrographs of EB12 and the biofilm-forming PHL1228.  
 

 

Interestingly, transcription levels of the pgaABCD genes were 

dramatically enhanced in PHL1228 (20- to 200-fold). The pgaABCD operon 

defines a single transcriptional unit on the E. coli chromosome; a divergently 

transcribed gene, ycdT, encoding a transmembrane GGDEF protein, was also 

expressed at high levels (5-fold) in PHL1228. As already mentioned in previous 

chapters, pgaABCD genes show a high degree of similarity to the hmsHFRS 

A	
   B	
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operon of Yersinia pestis, which also displays an identical gene organization, 

while the ycdT gene is homologous to the regulator protein hmsT. The hms 

genes encode a haemin-binding system and is also involved in biofilm formation 

by Y. pestis in the flea midgut (Hinnebusch et al., 1996). The pgaABCD operon 

shows weaker similarity with the ica locus, which encodes for polysaccharide 

intercellular adhesin (PIA), involved in biofilm formation in Staphylococcus 

epidermidis, thus suggesting that it might encode functional biofilm 

determinants in E. coli. Indeed, the pgaABCD operon encodes for proteins 

responsible for the biosynthesis of poly-N-acetyl-glucosamine (PNAG; Wang et 

al., 2004). In order to confirm the results of gene array experiments suggesting 

strong stimulation of both pgaABCD and ycdT gene expression, Real-time PCR 

experiments were performed. Results showed a very good correlation between 

RT-PCR and gene array experiments (data not shown).  

 

Outer membrane protein analysis. Biofilm determinants are usually 

exposed on the cell surface, and are often associated to the outer-membrane in 

Gram negative bacteria. Thus, we performed analysis of the outer membrane 

proteins (OMPs) fraction of PHL1228 in comparison to EB12 (Fig. 2). 40µg of 

proteins was loaded onto the gel for either strain. 
 

 
 

 
Figure 2. SDS-PAGE analysis of outer membrane protein pattern of EB12 and 
PHL1228. Proteins identified by mass spectrometry, which differ in expression in 
PHL1228, are indicated. 
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Proteins differently expressed in PHL1228 were identified by Mass 

Spectrometry determination following excision from gel and trypsin digestion. 

Expression of ompR-dependent proteins such as OmpC, OmpF and FepA was 

much stronger in PHL1228, in agreement with gene array results. Surprisingly, 

the DNA-binding protein Dps was found in the OMP fraction of PHL1228. It is 

noteworthy that the Dps protein is also present in significant amounts in the 

OMP fraction of other biofilm-forming E. coli strains, thus suggesting a possible 

secondary role as an outer membrane component (Landini, 2009; Pham et al., 

2010). The PgaA and PgaB proteins were also found in higher amount in the 

PHL1228 outer membrane fraction; this suggests that PgaA and PgaB are 

surface-exposed proteins, consisting with their role in biofilm formation.  

 

Expression of the pgaABCD operon is responsible for biofilm 

phenotype. The results of the experiments presented in the previous sections 

clearly show that the pgaABCD operon is strongly expressed in the PHL1228 

and the PgaA and PgaB proteins are located in the outer membrane protein 

fraction (Fig. 2). To establish if pgaABCD expression is responsible for the 

biofilm-forming phenotype of the PHL1228 strain, we targeted the pgaA gene 

for insertion mutagenesis with a cloramphenicol resistance cassette, so 

obtaining the LT106 strain (PHL1228pgaA). Inactivation of pgaA results in a 

sharp decrease in the ability of PHL1228 to form biofilm and to adhere to 

microtitre plates (Fig. 3), suggesting that PNAG represents the biofilm 

determinant for PHL1228. 
 

 
Figure 3. Surface adhesion on polystyrene microtitre plates of EB12 (MG1655csgA), 
PHL1228 and LT106 (PHL1228pgaA) strains. Surface adhesion values are set to 1 for 
EB12. Actual adhesion values were: EB12 (csgA): 0.65; PHL1228: 5.5; LT106 (pgaA): 
0.95. 
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Study on pgaABCD expression. In order to characterize the 

mutation/s leading to biofilm formation in PHL1228, we decided to focus on 

csrA (Carbon Storage Regulatory A) gene. CsrA is a small RNA-binding protein 

that recognizes sequences located within the leaders of target mRNAs and 

alters their translation and stability (Liu et al., 1995; 1997; Wei et al., 2001; 

Baker et al., 2002; Dubey et al., 2003). Two untranslated RNAs, CsrB and CsrC, 

antagonize CsrA activity by sequestering this protein (Liu et al., 1997; 

Weilbacher et al., 2003). CsrA binds to six sites in the pga operon leader 

transcript and one of the CsrA binding sites overlaps the cognate SD sequence. 

Thus, csrA deletion leads to increased pgaABCD expression. 

 

Figure 4. Summary of the regulatory interactions of CsrA/B/C, BarA/UvrY. CsrA 
activates csrB/csrC transcription indirectly (Gudapaty et al., 2001). This effect of CsrA 
requires functional UvrY, which directly activates csrB transcription. UvrY also activates 
the expression of barA, in an autoregulatory loop. Finally, CsrB RNA binds to ~18 
subunits of CsrA protein and antagonizes its regulatory effects in the cell (Liu et al., 
1997; Romeo, 1998). 

 

First of all we verified if, in PHL1228, regulation of pgaA transcript occurs 

at the UTR level performing luciferase assays using two reporter plasmids in 

which we cloned either the pgaABCD promoter region including the 233-nt UTR 

(-116 to +233 nt relative to the pgaABCD transcription start site, defined as 

“pgaAWT” regulatory region) or the pgaABCD promoter region alone (-116 to 

+23 nt relative to the pgaABCD transcription start site, defined as “pgaAΔUTR” 

regulatory region). pPgaAWT and pPgaAΔUTR plasmids (see Chapter IV) were used 
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to transform EB12 strain and its spontaneous mutant PHL1228. Luciferase 

assays with pPgaAWT confirmed that pgaA transcript levels are dramatically 

higher in PHL1228 compared to EB12 strain; in contrast, high levels of 

luciferase activity from the pPgaAΔUTR plasmid were detected both in EB12 and 

PHL1228, indicating that the deletion of pgaABCD UTR it’s able to by-pass CsrA 

regulation and suggesting that the difference between pgaA expression in the 

two strains would be due to a negative regulation at the UTR level (Fig. 5). 

 

 

Figure 5. Luciferase assays using pPgaAWT (light blue columns) and pPgaAΔUTR (green 
columns) plasmids in strains EB12 (csgA) and PHL1228 (EB12pgaA). Samples were 
taken from cultures in stationary phase (OD600nm~1.6). Data are the average of two 
independent experiments with very similar results. 
 

Since the behavior of PHL1228 strain resembled a csrA mutant strain 

(biofilm formation, high pgaA expression, pgaABCD transcript regulation at 

post-transcriptional level), we performed mRNA decay kinetics experiments on 

the pgaA transcript, in order to verify CsrA-dependent mRNA destabilization 

activity. Cell growth was stopped with rifampicin, samples were taken at 

different time points after addition of rifampicin and RT-PCR experiments 

measuring pgaA transcript levels were performed.  In the EB12 strain the pgaA 

transcript is rapidly degraded (similar to pgaA mRNA in the parental strain 

MG1655; see Chapter IV, Fig. 10; Wang et al., 2005), while it is very stable 

(half-life longer than 8 minutes) in the PHL1228 strain, similar to previous 
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results showing pgaA mRNA stabilization in a csrA mutant strain (Chapter IV, 

Fig. 10; Wang et al., 2005; Fig. 6).  

 

Figure 6. Decay of pgaA mRNA as determined by Real Time PCR. Black line, EB12; 
green line, PHL1228. The dotted horizontal line represents the 50% value; the dotted 
vertical line shows the time corresponding to the mRNA half-life in EB12. Values are 
from three different experiments with very similar results. 

 

We decided to investigate if CsrA pathway was somehow deregulated in 

the biofilm-forming mutant. It is known that CsrA activity is antagonized by two 

small RNAs, CsrB and CsrC, whose levels are dramatically decreased in a csrA 

mutant, because of an autoregulatory loop in which CsrA production leads to 

csrB transcription activation. Thus, we performed RT-PCR experiments on csrB 

and csrC transcripts in order to verify if their expression was reduced in our 

mutant strain. As shown in Fig. 7, values indicate that csrB and csrC are highly 

downregulated (about 150 fold) in PHL1228 strain compared to EB12 (like in a 

csrA mutant). Since our data strongly suggested that the CsrA protein is not 

active in PHL1228, we sequenced the csrA gene from PHL1228, which, 

surprisingly, carries a wt csrA allele. Thus, PHL1228 can be defined as a “csrA-

like mutant”, i.e it is mutated in a yet unidentified gene affecting either CsrA 

protein activity or csrA stability. To test if the mutation might affect the 

expression of the csrA gene, we measured csrA transcript levels in the EB12 

and PHL1228 strains, but, again, no difference was observed. 

We also tried to restore the EB12 phenotype overexpressing csrA gene in 

PHL1228 strain. Interestingly, while in EB12 we succeeded in overexpressing 

csrA (about 13000-fold as measured by RT-PCR experiments), in PHL1228 csrA 

gene expression levels were always very low (about 30-fold, data not shown).  

Times	
  (minutes)	
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Figure 7. Relative expression levels of the csrB/csrD genes in strains EB12 and 
PHL1228, as measured by Real-Time PCR. 

 

Iron regulation in PHL1228. In addition to increased expression of the 

pga operon, the results of the gene array experiment showed that several iron-

dependent genes, such as fepA, are also up-regulated in PHL1228. FepA is a 

protein involved with transport of enterobactin-iron across the outer 

membrane. In Yersinia pestis, the hms genes belong to the so-called haemin 

storage system. Haemin binding and storage was first thought to constitute an 

uptake or storage system for iron, but hms expression regulation by iron is still 

not totally clear for Yersinia pestis (Lillard et al., 1999; Perry et al., 2004; 

Podladchikova  and Rykova, 2006). Thus, it is conceivable that pga and iron 

uptake genes might be co-regulated. We tested whether in PHL1228 fepA 

transcript was regulated, as well as pgaA, at post-transcriptional level. 

Luciferase assay with UTR-deleted construct (data not shown) showed that fepA 

regulation occurs at the UTR level, and transcript decay experiment indicated a 

stabilization of fepA mRNA in the mutant strain (Fig. 8). So, in PHL1228, iron 

regulation seems to be connected to pga expression, possibly via CsrA.  

csrB
	
   csrB	
  

rB	
  

csrC	
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Figure 8. Decay of fepA mRNA as determined by Real Time PCR. Blue line, EB12; green 
line, PHL1228. The dotted horizontal line represents the 50% value; the dotted vertical 
line shows the time corresponding to the mRNA half-life in EB12. Values are from three 
different experiments with very similar results. 

 

We tested the effect of iron concentration on pgaABCD expression (Fig. 

9A); depletion of iron from the growth medium obtained through the addition of 

2,2’-dipyridyl, a chelating ligand, resulted in a 2-fold increase of pgaABCD 

expression, while growth in the presence of excess of iron had no or little effect. 

Thus, lack of iron seems to modulate pgaABCD activity. Effects of iron 

concentration were much more dramatic on biofilm formation by PHL1228. Cells 

growing in M9sup in the presence of 50 µM FeSO4 showed a 50% reduction in 

biofilm formation compared to cells grown with no added iron. In contrast, cells 

growing under iron depletion, although impaired in growth (µmax= ca. 50%, 

data not shown), showed an increase in biofilm formation (Fig. 9B). Microarray 

experiments in a csrA mutant strain of Salmonella typhimurium showed an 

increase in expression of a fur-regulated iron transporter (sitABCD; Lawhon et 

al., 2003). Interestingly, co-purification experiments with CsrA protein (in which 

CsrA was His-tagged and overexpressed in EB12 and PHL1228 strains) showed 

the presence of 4 peptides corresponding to the Fur protein co-eluted with CsrA 

from PHL1228 (data not shown).  Thus, iron dependence of E.coli pgaABCD 

expression and co-purification results might implicate involvement of the Fur 

protein in PHL1228; however, no differential expression of either fur was 

detected in gene array or RT-PCR experiments, nor did sequencing of the fur 

gene reveal any mutation (data not shown). Nevertheless, we decided to 
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analyze the expression levels of other iron-dependent genes, like tonB, fecA 

and entD.  TonB is a cytoplasmic membrane protein, which provides the energy 

source required for the import of iron-siderophore complexes and vitamin B12 

across the outer membrane (Letain, 1997); FecA is the TonB energy 

transducing system-dependent ferric citrate uptake receptor, while EntD is a 

component of the enterobactin synthase multienzyme complex. Real-Time PCR 

experiments (data not shown) highlighted a global deregulation of iron-uptake 

pathway in PHL1228. The biological meaning of these data and the possible 

binding CsrA-FuR are yet under investigation. 

 

 

Figure 9. A) Luciferase reporter experiments testing the activity of the pgaA 
promoter using PHL1228 cells grown under different conditions: supplemented with 
FeSO4 (red bars), no addition (green bars), or in presence of the chelator 2,2’-
Dipyridyl (DP, blue bars). Values are the average of two independent experiments 
with very similar results. B) Surface adhesion on polystyrene microtiter plates of 
PHL1228 cells grown in different conditions (as described for panel A). 
 

 
DISCUSSION 
	
  

Most laboratory strains of Escherichia coli are unable to attach efficiently 

to solid surfaces and to form biofilm, although they possess the genes encoding 

for biofilm determinants. However, spontaneous mutations can restore the 

expression of silenced genes and induce a biofilm-forming phenotype. Curli 

fibers are an important biofilm determinant in environmental and in pathogenic 

strains of E. coli, and in Salmonella. In this report we selected for mutations 

resulting in the activation of biofilm determinants other than curli: to this aim, 

we used the EB12 strain, a derivative of MG1655 in which the csgA gene, 

A	
   B	
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encoding the main subunit of the curli subunit, had been inactivated. We were 

able to isolate from a continuous culture of EB12 a spontaneous mutant, the 

PHL1228 strain, which displays an adherent phenotype (Fig. 1). We expected 

the mutation resulting in the biofilm phenotype of PHL1228 to positively affect 

expression of genes encoding biofilm determinants. Thus, we compared gene 

expression at the whole genomic level in EB12 and PHL1228 mutant derivative. 

Through this genomic approach we found a high number of differentially 

expressed genes, consistent with a mutation (or mutations) in regulatory 

genes. Several biofilm-related genes were found to be differentially expressed 

in PHL1228, such as glgS, encoding the glycogen biosynthesis protein (Beloin et 

al., 2004; Schembri et al., 2003b). Glycogen synthesis provides glucose 

polymers used in the synthesis of extracellular substances, and is a biofilm 

determinant in Salmonella enteritis (Bonafonte et al., 2000); however, changes 

in the expression levels of these proteins might be a result of PHL1228 growth 

physiology rather than the main determinant for biofilm formation in this strain. 

Interestingly, the pgaABCD locus was among the genes more highly up-

regulated in PHL1228 (Fig. 2). Inactivation of the pgaA gene resulted in loss of 

the PHL1228 biofilm-forming phenotype, thus strongly suggesting that 

increased expression of the pgaABCD operon is the main biofilm determinant in 

PHL1228 (Fig. 3). The pgaABCD locus encodes for proteins responsible for poly-

N-acetylglucosammine biosynthesis (PNAG), an extracellular polysaccharide 

involved in biofilm formation and adhesion in several strains, such as Y. pestis, 

S. aureus and E. coli. In E. coli strains, pgaABCD operon is regulated at post-

transcriptional level by CsrA, a small protein that binds to the leader of target 

mRNAs, inhibiting their translation and altering their stability. From the 

literature it is known that CsrA binds to six sites on pgaA transcript (Wang et 

al., 2004). Thus, we tested if pgaA expression could be regulated at the 

translation level in the PHL1228 strain as well. Luciferase assays with ΔUTR 

constructs suggest that up-regulation of pgaA transcript takes indeed place at 

post-transcriptional level in PHL1228 (Fig. 5). Transcript decay experiments 

confirmed that pgaA mRNA is more stable in the PHL1228 strain compared to 

its parental strain (Fig. 6). Moreover, Real-Time PCR experiments showed a 

strong decrease (more than 100-fold) in csrB and csrC transcripts, as occurs in 

a csrA mutant strain (Fig. 7); expression of CsrB and CsrC is indeed positively 

regulated by CsrA, in an autoregulatory loop, via UvrY or independently of it. 
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Although PHL1228 behaviour (biofilm formation, cell aggregation and gene 

expression pattern) would be in line with a mutation in the csrA gene, no 

mutation in the csrA gene from PHL1228 could be detected. Thus, PHL1228 

seems to be a “csrA-like mutant”, i.e. it is mutated in a yet unidentified gene 

affecting either CsrA protein activity or csrA stability.  

 In addition to the results concerning pgaA stability, gene array results 

pointed to an increase in the PHL1228 strain of fepA, a gene involved in iron 

uptake. Luciferase assays with UTR-deleted constructs showed that fepA 

regulation (like pgaA) occurs at the UTR level, and transcript decay experiments 

showed a stabilization of fepA mRNA in the mutant strain (Fig. 8). Starting from 

these data we analyzed other iron-dependent genes, like tonB, fecA, entD, fhuA 

and RT-PCR experiments showed that there is a global deregulation of iron-

uptake pathway (data not shown). We investigated if this deregulation might be 

due to a different expression of the Ferric uptake regulator (fur) gene, but no 

differential expression of fur was detected in gene array or RT-PCR experiments 

(data not shown). Interestingly, Fur peptides co-eluted with purified CsrA 

protein overexpressed in PHL1228 strain but not in EB12 strain (data not 

shown), suggesting a possible interaction of these two proteins in our biofilm-

forming mutant. Iron-dependent regulation of biofilm formation varies by 

bacterial species, and the exact regulatory pathways that control iron-

dependent biofilm formation are often unknown or only partially characterized. 

Iron is a key nutrient that has been shown to regulate biofilm formation in 

multiple bacterial species. In some species, such as Legionella pneumophila, 

Staphylococcus aureus, and Streptococcus mutans, iron limitation induces 

biofilm formation (Berlutti et al., 2004; Hindre et al., 2008; Johnson et al., 

2005). In contrast, iron limitation inhibits biofilm formation in other species 

such as Vibrio cholera and Xylella fastidiosa (Cursino et al., 2009; Koh and 

Toney, 2005; Banin et al., 2005; Mey et al., 2005). However, iron regulation of 

biofilm formation can be quite complex even within the same species. The 

complicated relationship between iron availability and biofilm formation has 

been most well studied in the opportunistic pathogen, Pseudomonas 

aeruginosa. In P. aeruginosa, iron limitation can reduce biofilm formation by 

blocking early steps in microcolony formation (Banin et al., 2005). The iron-

chelation activity of human lactoferrin can also diminish P. aeruginosa biofilm 

formation, and it has been suggested that this may play a role in limiting 
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infection. This suggests that up-regulation of iron-dependent genes in PHL1228 

is correlated with pgaABCD expression and consequent biofilm formation and 

that adherent phenotype depends on concerted production of different 

determinants, whose expression is also affected by iron concentration. 

Characterization of the mutation responsible for the PHL1228 biofilm phenotype 

is currently being undertaken; an attractive approach could be to sequence the 

whole EB12 and PHL1228 genome to identify the mutation responsible for the 

PNAG-producing phenotype of PHL1228.  

 

 

METHODS 
 

Bacterial strains and growth conditions.	
   Bacterial strains used in this work are 

listed in	
  Table 1. When not otherwise stated, bacteria were grown in M9Glu/sup (M9 

inorganic salts	
  (Smith and Levine, 1964), 5 g/L glucose, 0.25 g/L Peptone, 0.125 g/L 

Yeast Extract). When	
   needed, antibiotics were used at the following concentrations: 

ampicillin, 100 µg/ml;	
  chloramphenicol, 50 µg/ml; kanamycin 50 µg/ml; rifampicin, 100 

µg/ml.  

Biofilm formation assays. Biofilm formation in microtiter plates was determined 

essentially as described (Dorel et al., 1999). Bacterial cultures were grown overnight in 

M9Glu/sup at 30°C in polystyrene microtiter plates (0.2 ml); cell density of the culture 

was determined spectrophotometrically at 600nm (OD600nm). Cells attached to the 

microtiter plates were washed gently with water and stained for 20 min with 1% crystal 

violet (CV), thoroughly washed with water and dried. For semi-quantitative 

determination of biofilms, CV-stained cells were resuspended in 0.2 ml of 95% ethanol 

by vigorous pipetting. The OD600nm of each sample was determined and normalized to 

the OD600nm of the corresponding liquid cultures (Adhesion units). Sensitivity of biofilms 

to treatment with the PNAG degrading enzyme Dispersin B (Kaplan et al., 2004; 

purchased from Kane Biotech Inc., Winnipeg, Canada) was performed by adding 20 

µg/ml of the enzyme to the growth medium. 

Plasmid construction. Plasmids used in this work are listed in Table 1.  

Luciferase assay. Luciferase assays were performed as described below, using the 

vector pJAMA8 (Jaspers et al., 2000), which carries promoterless luxAB genes from 

Vibrio harveyi. The pgaABCD promoter and regulatory region, ranging from -116 to 
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+234 nucleotides relative to the pgaABCD mRNA start site, and the pgaABCD promoter 

region in which the untranslated region of the transcript was deleted (ΔUTR, ranging 

from -116 to +23 nucleotides relative to the pgaABCD mRNA start site) were amplified 

from the chromosomal DNA using primers including SphI and the XbaI restriction sites 

and cloned into the multiple cloning site of pJAMA8 to obtain pPgaAWT and pPgaAΔUTR, 

respectively. Bacterial strains containing the different reporter plasmids were grown 

overnight. The samples were adjusted to an OD600 of 0.05–0.1 in PBS buffer. 20 µl of 

this solution was tested for luciferase activity by adding 200 ml PBS containing n-

decanal to a final concentration of 2 nM. Measurement of relative light units (RLU) was 

conducted by a 2 s pre-measurement delay followed by a 3 s measurement after 

addition of the substrate in a MicroLumat LB 96 P luminometer (Berthold Technologies). 

Results are expressed as RLU per OD600 of the tested bacterial samples. 

RNA isolation and gene array assay. Total RNA from E. coli cells grown overnight to 

stationary phase in M9Glu/sup at 30°C was isolated with RNeasy mini kit (Qiagen) 

including an on-column DNase I treatment. RNA samples were quantified using a 

spectrophotometer (260 nm) and checked by gel electrophoresis. For gene array 

experiments, fluorescently labeled cDNA from 25 µg total RNA was produced using the 

CyScribe First-Strand cDNA Labeling kit (Amersham biosciences) incorporating Cy3- or 

Cy5-dCTP respectively. Labeled cDNAs were pooled and purified with the Minielute PCR 

purification kit (Quiagen) and concentrated with a Microcon-30 (Millipore) prior to the 

addition of the hybridization buffer. For our experiments we used the E. coli K-12 V2 

Array (MWG) containing 4286 genes (http://www.mwg-biotech.com/) according to the 

manufacturer’s instructions.  

Gene array data analaysis. Microarray slides were scanned using the Affimetrix 428TM 

Array Scanner (High Wycombe, UK). Spots and corresponding background signals of 

obtained sixteen-bit TIFF images were quantified using the Affimetrix JaguarTM software 

version 2. Subsequent data analysis was performed using the program GeneSpring 4.1 

from Silicon Genetics (Redwood City, USA). Induction factors (PHL1228 compared to 

control) were calculated using the Cy3 and Cy5 signal intensities of each spot. Spots 

with control signals below a value of 10 were excluded from the analysis and the 

minimal treatment to control ratio was set to 0.01. Normalization was performed using 

the 50th percentile distribution of remaining spots after background correction. Only 

PHL1228 signals values higher than 400 for up-regulated and EB12 signals for down-

regulated genes respectively were considered. Finally, genes having an average 

Induction Factor (IF) of at least 4.5, and a signal to control ratio in both of the two 

experiments of more than 2.5, were chosen.   
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Gene expression studies. Real-Time PCR for determination of relative expression 

levels was performed on overnight cultures grown in M9Glu/sup medium at 30° C. 

Primers for Real- Time PCR are listed in Table 2. RNA extraction and further Reverse 

Transcription and cDNA amplification steps were performed as described (Gualdi et al., 

2007), using 16S RNA as reference gene. mRNA stability was measured by Real-Time 

PCR experiments in the presence of rifampicin as described (Wang et al., 2005). 

 

Outer membrane proteins. Isolation of outer membrane proteins (OMPs) was carried 

out using the Sarkosyl extraction method as described in Landini & Zehnder, 2002. 40 

µg of OMP were analyzed by sodium dodecyl sulfate-polyacrilamide gel electrophoresis 

(SDS-PAGE). Protein bands of interest were extracted from the gel and identified by 

mass spectroscopy analysis of trypsin cleavage products as previously described by 

Chen et al., 2000. 

 

Electron microscopy. Bacterial cells from overnight liquid cultures were fixed with 

2.5% glutaraldehyde and prepared for transmission electron microscopy as described in 

Kessi et al., 1999.  

 

Table 1. Strains and plasmids used in this work. 
 

E. coli strains          Relevant characteristics  Reference 
-------------------------------------------------------------------------------------------------- 

EB12 MG1655 csgA::uidA-Kan; malT54::Tn10 This study 

LT106 PHL1228 pgaA::cat This study 

MG1655 K-12, F- λ- rph-1 Blatter et al., 1997 

PHL1228  EB12, biofilm-forming mutant This study 

--------------------------------------------------------------------------------------------------
Plasmids 
----------------------------------------------------------------------------------------- 

pJAMA8 Control vector for luciferase assays, Jaspers et al., 2000 
ampicillin resistance 

pPgaAWT pgaA promoter and regulatory region This study 
(-116 to +233 relative to transcription 
start site) cloned into the SphI/XbaI sites 
of pJAMA8  

pPgaAΔUTR pgaAΔUTR (-116 to + 23 relative to This study 
 transcription start site) cloned into the 
 SphI/XbaI sites of pJAMA8 
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Table 2. Primers used in this work. 

Primers Sequence Utilization 

-------------------------------------------------------------------------------------------------- 

pPgaA-­‐delUTR	
  _for	
   GCATGCAACAATTAAATCCGTGAGTGCCG	
   pgaA	
  promoter	
  cloning	
  

pPgaA-delUTR_rev TCTAGAATCTTCAGGAATACGGCATAAAT	
   pgaA	
  promoter	
  cloning	
  

pPgaA_wt_for	
   AGCATGCCTCAAATAGTCTTTTTCCAT	
   pgaA	
  promoter	
  cloning 

pPgaA_wt_rev	
   ATCTAGATACATCCTGTATTACTCCATG	
   pgaA	
  promoter	
  cloning	
  

16s_for	
   TGTCGTCAGCTCGTGTCGTGA	
   qRT-­‐PCR	
  

16s_rev	
   ATCCCCACCTTCCTCCGGT	
   qRT-­‐PCR	
  

pgaA_RT_for	
   CCGCTACCGTCATCAGCAATT	
   qRT-­‐PCR	
  

pgaA_RT_rev	
   AGCGCCTTTTGCCACAGTGT	
   qRT-­‐PCR	
  

pFepA_for	
   CTGCATGCCCATGTTTCGACTGCCACCA	
   fepA	
  promoter	
  cloning	
  

pFepA_wt_rev	
   CTTCTAGACAAGGCCAGGGAATGAATCTTC	
   fepA	
  promoter	
  cloning	
  

pFepA-­‐delUTR_rev	
   TTTCTAGACGCGCCATTACGCTATTGC	
   fepA	
  promoter	
  cloning	
  

pgaA_cat_for	
   ATACAGAGAGAGATTTTGGCAATACATGGAGT	
   pgaA	
  	
  inactivation	
  
	
   AATACAGGTACCTGTGACGGAAGATCAC	
   	
  

pgaA_cat_rev	
   ATCAGGAGATATTTATTTCCATTACGTAACATA	
   pgaA	
  inactivation	
  
TTTATCCGGGCACCAATAACTGCCTTA	
  

pgaA_for	
   TGGACACTCTGCTCATCATTT	
   Mutant	
  verification	
  

fepA_RT_for	
   ATTCCCTGGCCTTGTTGGTCA	
   qRT-­‐PCR	
  

fepA_RT_rev	
   GGCGGTAACGACAATAGTATCG	
   qRT-­‐PCR	
  

csrB_RT_for	
   GGGAGTCAGACAACGAAGTG	
   qRT-­‐PCR	
  

csrB_RT_rev	
   CTGACCGGTTCTCATTCTCC	
   qRT-­‐PCR	
  

csrC_RT_for	
   TAGAGCGAGGACGCTAACAG	
   qRT-­‐PCR	
  

csrC_RT_rev	
   AACGGGTCTTACAATCCTTGCAG	
   qRT-­‐PCR	
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CONCLUDING REMARKS 
	
  
 
 

In this PhD thesis work I investigated the expression modulation of the 

major adhesion factors in Escherichia coli; in particular I focused on the role of 

GGDEF and EAL proteins, on their modulation in E. coli biofilm formation in 

response to environmental signals and on regulation of curli fibers, cellulose 

and poly-N-acetylglucosamine (PNAG), the most important biofilm determinants 

in E. coli.  

E. coli is an Enterobacterium, normally living inside the mammalian gut, 

at temperature of 37° C and in relatively nutrient-rich environment. Once 

outside the host, bacteria usually face much lower temperatures (< 30°C) and 

a nutrient-limiting environment. The biofilm determinants studied in this thesis 

are all expressed in response to environmental conditions such as low 

temperature, low osmolarity and starvation, suggesting that E. coli bacteria 

switch to a biofilm mode of growth as part of their adaptation to the natural 

environment.  In response to reduction in growth rates, E. coli seems to 

canalize its energy consumption into production of extracellular features such 

as curli or exopolysaccharides. Biofilms can be thus considered as a “resistance 

form” of growth able to withstand stress conditions more efficiently than cells 

living in a planktonic mode of growth.   

The CsgD protein is the master regulator of E. coli biofilm formation. It is 

a transcriptional factor necessary for curli genes transcription and, through the 

AdrA protein, for cellulose biosynthesis. Gene regulation by CsgD is tightly 

connected to production and sensing of cyclic di-GMP, a bacterial second 

messenger involved in various cellular processes, including biosynthesis of 

extracellular polysaccharides (Simm et al., 2004), biofilm formation (Hickman 

et al., 2005), and virulence (Pratt et al., 2007; Tischler and Camilli, 2005), as 

well as morphological and physiological differentiation (Paul et al., 2004). The 

CsgD-dependent adrA gene, involved in cellulose biosynthesis (Zogaj et al., 

2001), encodes a cyclic di-GMP synthase (Simm et al., 2004). CsgD can also 

activate yoaD, whose gene product is a cyclic di-GMP phosphodiesterase, 

suggesting that CsgD is directly involved in feedback regulation of cyclic di-GMP 

intracellular levels and of cellulose biosynthesis (Brombacher et al., 2006). 
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CsgD is also able to activate the iraP gene: IraP acts as a stabilization factor for 

the σs protein, an alternative sigma factor of RNA polymerase which directs 

transcription of genes involved in adaptation to slow growth and to cellular 

stresses. Here I showed that CsgD transcription activation of the iraP gene does 

result in a significant increase of σs intracellular concentration by positively 

affecting σs protein stability, thus leading to altered expression of σs-dependent 

genes. CsgD-mediated increase of σs cellular concentrations via the iraP gene 

would trigger an autoactivation loop leading to an increased production of 

CsgD-dependent adhesion determinants such as curli fibers and cellulose. This 

autoregulatory circuitry might be further fueled by σs-dependent induction of 

genes encoding di-guanylate cyclases, i.e., proteins able to synthesize the 

second messenger di-cyclic- GMP, which, in turn, can positively affect csg gene 

expression (Kader et al., 2006; Weber et al., 2002).  

The yddV-dos operon is the most expressed among c-di-GMP-related 

genes showing dependence on σs (Weber et al., 2006; Sommerfeldt et al., 

2009). It encodes, respectively, a protein with DGC activity and a PDE that can 

degrade c-di- GMP to pGpG. Both Dos and YddV are heme-binding oxygen 

sensors, and interact to form a stable protein complex (Tuckerman et al., 

2009). Although it has been reported that YddV overexpression can stimulate 

biofilm formation (Mendez-Ortiz et al., 2006), the targets of yddV-dependent 

biofilm induction had not yet been identified. Here I showed that YddV acts 

modulating curli and PNAG expression. Control of curli production by yddV-dos 

takes place at the level of transcription regulation of the csgBAC operon, 

encoding curli structural subunits, and is mediated by the DGC and PDE 

activities of YddV and Dos. In contrast, the YddV–Dos protein complex does not 

strongly influence csgDEFG expression, nor does it affect the expression of the 

CsgD-dependent adrA gene, encoding a positive effector for cellulose 

biosynthesis. Regarding PNAG production, we showed that YddV is able to 

prevent degradation of pgaABCD transcript in the MG1655csrA background, 

thus suggesting that a DGC might regulate gene expression by affecting mRNA 

stability in E. coli. YddV regulation of pgaABCD operon in a wild type contest is 

still controversial: pgaABCD genes are expressed at low levels in MG1655 (the 

standard laboratory strain of E. coli) and their mRNA half-life is lower than two 

minutes regardless of the growth conditions tested; thus, possible effects of 
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yddV inactivation on destabilization of the pga transcript are not easy to 

evaluate in the wt contest.  

In the last part of my thesis I tried to characterize a biofilm-forming 

mutant of E. coli, able to express pgaABCD genes at high levels. Even if initial 

data suggested that a mutation in the csrA gene could be responsible for pga 

mRNA stabilization in this mutant, actual the mutation leading to the adhesive 

phenotype and to PNAG production is outside the csrA gene and is still 

unknown. Moreover my data suggest a connection between pga expression and 

iron regulation in E. coli strains: it is conceivable that pgaABCD expression and 

consequent biofilm formation and the adherent phenotype depends on 

concerted production of different determinants, whose expression is also 

affected by iron concentration.  

 Thus, my research highlighted that biofilm production is the result of 

coordinated expression of different adhesion determinants, whose regulation is 

complex and not fully understood. In particular, the precise extent and the 

molecular mechanism of c-di-GMP adhesion factors regulation remains to be 

largely identified and represents an exciting challenge for future research in the 

biofilm field. 
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