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Introduction

In the Standard Model, CP violation in weak interactions involving quarks is parame-
terized by an irreducible complex phase in the Cabibbo-Kobayashi-Maskawa (CKM) quark-
mixing-matrix. The precise determination of the CKM elements is a necessary ingredient
for a stringent test of the Standard Model predictions, and is a crucial input for reducing
the theoretical error in many New Physics searches with flavor, e.g., in the kaon sector.

The unitarity of the CKM matrix is typically expressed as a triangle relationship among
its parameters, where the area of the so-called Unitarity Triangle visually depicts the
amount of asymmetry between the decays of B particles and their antimatter counterparts.
In the past few years, the BABAR and Belle experiments have been able to measure all
three angles of the triangle from CP asymmetry measurements. The first asymmetry
measurements in B particle decays, about ten years ago, allowed to determine β, which
is now known to better than 5% precision. The angles α and γ, measured in much rarer
processes, required several years of data taking before analyses could yield reliable answers.
A remarkable feature is that the direct measurement of the angles of the Unitarity Triangle
generates an area that is consistent with the area predicted by measurement of the sides.

The determination of α from time-dependent CP asymmetries in b → uūd tree-dominated
modes (such as B → ππ, ρπ, ρρ, and a1(1260)π) is complicated by the fact that penguin
(i.e., loop) contributions may be large, and occur with a different CKM phase than tree
amplitudes. While the prospects for observing direct CP violation in these channels im-
prove, in order to overcome penguin pollution and extract α cleanly one needs to introduce
symmetry arguments, and use the measurements of a set of auxiliary B decay channels as
an input. One of the strengths of the B-factories lies in their ability to use multiple ap-
proaches to the measurement of α, allowing the refinement of theoretical model-dependent
estimates of the penguin and tree contributions by comparison with data in many chan-
nels. Independent measurements of this angle in different channels also provide a means
to resolve discrete ambiguities that may emerge in the extraction of α. Finally, exploring
the full spectrum of possible α determinations at B-factories can inform the strategies to
measure this angle at other facilities.

Contrary to the sin 2β case, no theoretically and experimentally clean golden mode has
been identified for the measurement of α. Until recently, α had been measured in B → ππ,
ρπ, and ρρ decays only. In addition to these modes, the time-dependent analysis of the
decay B0 → a1(1260)±π∓ can also be used to extract an effective phase αeff , which is equal
to the weak phase α in the limit of vanishing penguin amplitudes. The effect of penguin
contributions can be determined from the measurements of the branching fractions of the
B → a1(1260)K, B → K1(1270)π, and B → K1(1400)π decays. The B → a1(1260)K
decays have been recently observed by BABAR.

This dissertation describes the first observation of neutral B meson decays to K1(1270)π
and K1(1400)π with the BABAR experiment. The analysis also includes the first measure-
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2 CONTENTS

ment of the branching fractions of B+ → K1(1270)0π+ and B+ → K1(1400)0π+ decays.
The branching fractions in this modes provide the missing piece of input to constrain the
model uncertainty due to penguin pollution in the extraction of α in the B0 → a1(1260)±π∓

channel.
In Chapter 1, I describe the CKM paradigm of CP violation, and report the current

status of the measurement of the CKM angles. The theoretical background on the extrac-
tion of α in the B0 → a1(1260)±π∓ channel is also provided. In Chapter 2, an overview
of the PEP-II accelerator and the BABAR detector, which collected the data on which this
work is based, is presented. In Chapter 3, I introduce the K-matrix formalism used for
the parameterization of the K1 resonances. Chapter 4 is devoted to a discussion of the
discriminating variables used in the reconstruction and selection of the B candidates. The
analyses of charged and neutral B meson decays to K1(1270)π and K1(1400)π are reported
in Chapter 5. Finally, in Chapter 6, I use the experimental results to extract bounds on
the penguin-induced shifts in α.



Chapter 1

The CKM matrix and the Unitarity
Triangle

In the Standard Model (SM) of electroweak interactions based on the SU(2)L×U(1)Y
symmetry [1], CP violation in quark sector with three generations arises from a single
irremovable phase in the mixing matrix describing the couplings of the charged W gauge
bosons to the quarks [2, 3].

Charged current weak interactions can be written as

LW = − g√
2

(

ū c̄ t̄
)

L
γµV





d
s
b





L

W+
µ + h.c., (1.1)

where g is the SU(2)L coupling constant, Wµ is the W boson field operator, and {u, c, t}L
and {d, s, b}L are the left-handed quark field flavor eigenstates, with charges Q = 2/3
and Q = −1/3 respectively. The matrix of the couplings, called the Cabibbo-Kobayashi-
Maskawa (CKM) matrix,

V =





Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb



 , (1.2)

is a 3×3 unitary matrix (V V † = V †V = I), thus depending on nine parameters, three real
angles and six phases. The number of phases can be reduced to one by a redefinition of
the phases of the quark fields. An explicit “standard parameterization” in terms of three
mixing angles θ12, θ13, θ23, and a phase δ, with a particular quark fields phase convention,
is [4]

V =





c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13



 , (1.3)

where cij ≡ cos θij and sij ≡ sin θij , 0 ≤ θij ≤ π/2, and 0 ≤ δ ≤ 2π.
Following the experimental observation of a hierarchy s13 ≪ s23 ≪ s12 ≪ 1 between

the mixing angles [5]

|Vij | =





0.97428 ± 0.00015 0.2253 ± 0.0007 0.00347+0.00016
−0.00012

0.2252 ± 0.0007 0.97345+0.00015
−0.00016 0.0410+0.0011

−0.0007

0.00862+0.00026
−0.00020 0.0403+0.0011

−0.0007 0.999152+0.000030
−0.000045



 , (1.4)

3



4 1. The CKM matrix and the Unitarity Triangle

Figure 1.1: Sketch of the unitarity triangle [5].

Wolfenstein proposed an expansion of the CKM matrix in terms of the Cabibbo parameter
λ ≃ |Vus| ≈ 0.23 [6]. The following definitions of the real parameters A, λ, η, ρ (η̄, ρ̄) are
used:

s12 ≡ λ, s23 ≡ Aλ2, s13e
−iδ ≡ Aλ3

1 − λ2/2
(ρ− iη) ≡ Aλ3(ρ̄− iη̄)

√
1 − A2λ4

√
1 − λ2[1 −A2λ4(ρ̄− iη̄)]

, (1.5)

which ensure that ρ̄+ iη̄ = −(VudV
∗
ub)/(VcdV

∗
cb) is phase-convention-independent.

The Wolfenstein representation of V is easily derived:

V =





1 − λ2/2 λ Aλ3(ρ − iη)
−λ 1 − λ2/2 Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1



 +O(λ4).

Unitarity of the CKM matrix V requires that V ∗
jiVjk = V ∗

ijVkj = δik. Of particular
relevance is the relation

V ∗
ubVud + V ∗

cbVcd + V ∗
tbVtd = 0, (1.6)

which describes the so-called Unitarity Triangle (UT), typically used to pictorially represent
the irreducible CP violating phase as its sides are nearly of the same order of magnitude in
length. The UT can be rotated by a conventional phase so that V ∗

cbVcd is real, and scaled
by dividing the length of all sides by |V ∗

cdVcb|. As shown in Fig. 1.1, two vertices have
coordinates (0, 0) e (1, 0), while the coordinates of the third vertex (apex) in terms of the
Wolfenstein parameters are, neglecting terms of order λ4, given by (ρ̄, η̄).

The lengths of the two complex sides are
∣

∣

∣

∣

V ∗
ubVud
V ∗
cbVcd

∣

∣

∣

∣

=
√

ρ̄2 + η̄2 =
1 − λ2/2 +O(λ4)

λ

∣

∣

∣

∣

Vub
Vcb

∣

∣

∣

∣

, (1.7)

∣

∣

∣

∣

V ∗
tbVtd
V ∗
cbVcd

∣

∣

∣

∣

=
√

(1 − ρ̄)2 + η̄2 =
1 +O(λ4)

λ

∣

∣

∣

∣

Vtd
Vcb

∣

∣

∣

∣

. (1.8)

The three angles, denoted by α, β, and γ, are defined as

α ≡ arg

[

− V ∗
tbVtd

V ∗
ubVud

]

, β ≡ arg

[

−V
∗
cbVcd
V ∗
tbVtd

]

, γ ≡ arg

[

−V
∗
ubVud
V ∗
cbVcd

]

. (1.9)

Information on the angles α, β and γ can be obtained from the measurement of CP -
violating Bu and Bd decays. The redundant measurement of these quantities in several
processes involving B-meson decays constitute a consistency check of the validity of the
SM.



1.1 The B meson system 5

1.1 The B meson system

The light B ≡ Bu,d mesons consist of the four pseudoscalar (JP = 0−) mesons

B+ = ub̄, B0 = db̄, (1.10)

B− = ūb, B0 = d̄b, (1.11)

with masses mB+ = 5279.1 ± 0.4 MeV/c2 and mB0 = 5279.5 ± 0.5 MeV/c2, and mean lives
of the order of 1.6 ps (τB+ = 1.638 ± 0.011 ps, τB0 = 1.525 ± 0.009 ps) [5].

1.1.1 Mixing of neutral mesons

Due to the presence of non-flavor-conserving weak processes, the effective Hamiltonian
of the B0B0 system is not diagonal in the {B0, B0} base, so that mixing effects occur. For a
weakly-decaying neutral meson X0 (e.g. K0, D0, Bd or Bs) an arbitrary linear combination
of the flavor eigenstates

a|X0〉 + b|X0〉 (1.12)

mixes according to the time-dependent Schrödinger equation

i
∂

∂t

(

a
b

)

= Heff

(

a
b

)

, (1.13)

with

Heff =

(

H0 H12

H21 H0

)

= M − i
Γ

2
=

(

M0 M12

M∗
12 M0

)

− i

2

(

Γ0 Γ12

Γ∗
12 Γ0

)

, (1.14)

where the M and Γ matrices describe the mixing and decay of the neutral mesons, re-
spectively. Assuming CPT invariance implies H11 = H22, M21 = M∗

12 and Γ21 = Γ∗
12.

Each of the off-diagonal elements can be complex: the angle in the complex plane of M12

represents the phase of the mixing, while Γ12 represents the (complex) coupling of X0 and
X̄0 to common decay modes (for example, B0/B̄0 → J/ψK0

S or π+π−).
The mass eigenstates are the eigenvectors of the effective Hamiltonian Heff

|XL〉 = p|X0〉 + q|X̄0〉
|XH〉 = p|X0〉 − q|X̄0〉 (1.15)

where |XL〉 and |XH〉 are the lighter and heavier mass eigenstates, and p and q are complex
numbers:

q

p
=

√

M∗
12 − i

2
Γ∗

12

M12 − i
2
Γ12

;
√

|p|2 + |q|2 = 1. (1.16)

The eigenvalues λL e λH of Eq. (1.14) are:

λL = ML − i
ΓL
2
, λH = MH − i

ΓH
2
. (1.17)

where ML and MH are the masses of the eigenstates |XL〉 and |XH〉, respectively, and ΓL
and ΓH their widths. We define

Md ≡
MH +ML

2
= M0, Γd ≡

ΓH + ΓL
2

= Γ0. (1.18)
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We now specialize to the case of the Bd system. The evaluation of the Standard Model

amplitudes for the |∆B| = 2 process B0 ↔ B
0
, determined at quark level by the box

diagrams (bd̄) ↔ (b̄d) (Fig. 1.2), leads to [7]:
∣

∣

∣

∣

Γ12

M12

∣

∣

∣

∣

= O

(

m2
b

m2
t

)

≪ 1, (1.19)

∆Md ≡
MH −ML

2
= 2|M12|, (1.20)

∆Γd ≡
ΓH − ΓL

2
≈ −2|Γ12|, (1.21)

q

p
≈ e−2iβ, (1.22)

where in the last line the same quark field phase convention adopted for the standard
parameterization of the CKM matrix has been used, and we have made the phase choice
CP (B0) = B0.

�B0 B0

t, c, u

W+ W−

t̄, c̄, ū

d

b̄

b

d̄ �B0 B0

W+

t, c, u t̄, c̄, ū

W−

d

b̄

b

d̄

Figure 1.2: Feynman diagrams mixing B0 −B0.

Here, the lifetime difference ∆Γd between the two mass eigenstates is small compared
with the mixing frequency (∆Γd/∆Md = O(10−2) ≪ 1). Since ∆Md/Γd has been measured
to be (0.774 ± 0.008), then |∆Γd|/Γd = 0.009 ± 0.037 ≪ 1. This is due to the large mass
of the B meson and thus great available phase space for flavor-specific decays, which
dominate the partial width (in contrast, e.g., to the neutral K system) and give equivalent
contributions (by CPT symmetry) to the width of both neutral B eigenstates. The resulting
lack of decay suppression of either eigenstate implies nearly equivalent lifetimes.

q/p ≈ e−2iβ is almost a pure phase, and the expected deviation of |q/p| from 1 is
|q/p|−1 ≈ 5×10−4 [7]. The time evolution of neutral B mesons which are initially created
(at time t = 0) as pure flavor eigenstates can be written as:

|B0
phys(t)〉 = f+(t)|B0〉 + (q/p)f−(t)|B0〉 (1.23)

|B0
phys(t)〉 = f+(t)|B0〉 + (p/q)f−(t)|B0〉 (1.24)

where, neglecting ∆Γd/Γd, the functions f±(t) are

f+(t) = e−iMdte−Γdt/2 cos(∆Mdt/2), (1.25)

f−(t) = e−iMdte−Γdt/2i sin(∆Mdt/2). (1.26)

At the B factories, the B0B0 pair originating from the e+e− → Υ (4S) → B0B0 process
is produced in a coherent L = 1 state

S(t = 0) =
B0B0 −B0B0

√
2

. (1.27)
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The time evolution of the two B mesons is then such that at any time, until one particle
decays, there is exactly one B0 and one B0:

S(t) = e−2iMdte−Γdt
B0B0 −B0B0

√
2

. (1.28)

As soon as one of the two B mesons decays to a final state that is accessible only to B0

or B0, the other follows a time evolution given by Eqs. 1.23 and 1.24, where t is now the
difference between its proper time and the decay instant of the former B.

1.2 CP violation in B decays

Three types of CP violation can potentially be observed at B physics experiments:

1. CP violation in decay (often referred to as direct CP violation): this occurs when
multiple amplitudes with different weak phases as well as different strong phases
contribute to a given final state; the result is visible as differing magnitude of the
amplitude of a decay versus its CP conjugate.

2. CP violation purely in mixing (or indirect CP violation): this occurs when the mass
eigenstates of a neutral meson are different from the CP eigenstates.

3. CP violation in the interference between decays of mixed and unmixed mesons (or in
the interference between mixing and decay): this occurs for decays which are common
to a neutral meson and its antiparticle.

1.2.1 CP violation in decay

CP violation in decay is observed as the difference between the decay rate of a particle
to a final state and the decay rate of its antiparticle to the corresponding charge-conjugate
final state, and can occur for both neutral and charged B meson decays. It is usually
expressed as a branching-fraction asymmetry

ACP ≡ B(B → f) − B(B → f)

B(B → f) + B(B → f)
=

|Af |2 − |Af |2

|Af |2 + |Af |2
, (1.29)

where Af and Af are the total B → f and B → f decay amplitudes, respectively:

Af =
∑

i

|Ai|ei(φi+δi), Af = ηCP
∑

i

|Ai|ei(−φi+δi), (1.30)

where ηCP is the CP eigenvalue, φ are the weak phases (i.e., phases that change sign under
CP ), and δ are the strong phases (i.e., phases that do not change sign under CP ). CP
violation can only occur if there are at least two interfering processes contributing to the
total decay amplitude with non-equal weak and strong phases, so that the numerator of
the asymmetry is nonzero:

|Af |2 − |Af |2 = 2ηCP
∑

i,j

|Ai||Aj| sin(φi − φj) sin(δi − δj). (1.31)
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1.2.2 CP violation in mixing

The mixing formalism for neutral mesons has been discussed in Sec. 1.1.1. CP violation
occurs when |q/p| 6= 1, which can be clearly understood as a difference in how B0 and B0

mesons mix. This type of CP violation is negligibly small in the B system, the currently
best measurements giving |q/p| = 1.0002 ± 0.0028 [8], which is consistent with unity.

1.2.3 CP violation in interference between decay and mixing

Final states which may be reached from either B0 or B0 decays may exhibit a third
type of CP violation, which results from the interference between the direct decay of the
meson into the final state and the alternate path of first mixing into the anti-meson and
then decaying into the final state. Both q/p and Af/Af , representing the contribution
from mixing and from the decay amplitudes, respectively, appear in the expression for the
quantity

λf ≡ ηCP
q

p

Af

Af
, (1.32)

where ηCP is the CP eigenvalue of the final state. When |λCP | = 1, CP violation may
result from λCP 6= 1 (Im(λCP ) 6= 0), even if |q/p| = 1 and |Af/Af | = 1, i.e., there is
no CP violation in either mixing or decay. This case corresponds to CP violation in the
interference between decays to the final state f with and without mixing. This effect can
be observed experimentally only in the difference in the time-dependent decay rates of B0

and B0 mesons:

ACP (t) ≡ Γ(B0 → f)(t) − Γ(B0 → f)(t)

Γ(B0 → f)(t) + Γ(B0 → f)(t)
, (1.33)

=
2 Im(λf )

1 + |λf |2
sin(∆Mdt) −

1 − |λf |2
1 + |λf |2

cos(∆Mdt), (1.34)

= S sin(∆Mdt) − C cos(∆Mdt), (1.35)

where ∆Md is the B0 −B0 mixing frequency. The coefficient S quantifies CP violation in
decay-mixing interference, while C is a measure of direct CP violation. (The direct CP
asymmetry ACP = C.) By construction, the two parameters satisfy the relation S2 +C2 ≤
1, equivalent to the trivial condition |Im(λf)| ≤ |λf |.

1.3 Measurement of β

The decay amplitudes for the modes b → cc̄s b → ss̄s and b → cc̄d are related to the
angle β.

A(cc̄s) = VcbV
∗
cs(T + P c − P t) + VubV

∗
us(P

u − P t) (1.36)

A(ss̄s) = VcbV
∗
cs(P

c − P t) + VubV
∗
us(P

u − P t) (1.37)

A(uūs) = VcbV
∗
cs(P

c − P t) + VubV
∗
us(T + P u − P t) (1.38)

where the unitarity (GIM) relations among the CKM elements have been used to express
VtbV

∗
ts in terms of VubV

∗
us and VcbV

∗
cs.
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Here, T is the contribution of the tree diagrams, excluding the CKM factors. Simi-
larly, P q are the q-mediated penguin contributions, excluding the CKM factors. The term
VubV

∗
us carries a phase e−iγ relative to VcbV

∗
cs, but is doubly Cabibbo-suppressed by a factor

λ2 = 0.0513±0.0005, so that the impact on the CP violation observables is negligible. The
gluonic and electroweak penguins have the same phase structure. In addition, the elec-
troweak penguin contribution is typically of order O(10%) of the gluonic contributions [9].
β can therefore be cleanly extracted, up to a two-fold ambiguity in the range [0, 180]◦, from
the coefficient S of the sin(∆Md∆t) term in the time-dependent CP asymmetry (Eq. 1.33).

1.3.1 b → cc̄s decays

The angle β of the Unitarity Triangle can be accurately measured from the time-
dependent CP asymmetry (Eq. 1.33) in the “golden modes” f = (cc̄)K0, such as J/ψK0

S
,

ψ(2S)K0
S
. With this method BABAR and Belle find:

sin 2β = 0.687 ± 0.028(stat) ± 0.012(syst) (BABAR [10]) (1.39)

sin 2β = 0.650 ± 0.029(stat) ± 0.018(syst) (Belle [11, 12]) (1.40)

and the world average is:
sin 2β = 0.673 ± 0.023 [8]. (1.41)

One of the two solutions, β ≈ 21◦, is in excellent agreement with the value predicted
from the CKM fits to the Unitarity Triangle constraints. The solution with cos 2β < 0
is excluded by BABAR at 86% CL from the study of the time- and angular-dependent
distribution of neutral B decays to the mixed-CP J/ψK∗0 (K∗0 → K0

S
π0) final state [13].

1.3.2 b → cc̄d and b → ss̄s decays

The phenomenology of these rare decays is the same as for the cc̄s decays. A pa-
rameter sin 2βeff , where βeff denotes an effective value of β, can be extracted from these
penguin (loop) dominated decays. Measurable differences ∆S between the values of sin 2β
in penguin-dominated modes and the J/ψK0

S
measurement can signal the presence of New

Physics contributions in the loop. In some NP scenario, such deviations can be ≈ O(1) [14].
A background to ∆S measurements as a tool for NP searches are the doubly-Cabibbo

suppressed tree contributions, which may also introduce nonzero ∆S. The Standard Model
effect is predicted in most models to be a positive shift in ∆S [15].

The size of this shift is related to the ratio of tree to penguin amplitudes, which depends
on the decay mode. Theoretical estimates for this ratio are affected by large uncertainties
for most decay modes, with the notable exception of the KSKSK

0 and φK0 modes (in
which the tree amplitudes don’t contribute at leading order), and η′K0 (in which the gluon
penguin amplitude is enhanced).

The η′K0 channel provides the most precise measurement of S in a penguin dominated
mode:

Sη′K0 = 0.57 ± 0.08(stat) ± 0.02(syst) (BABAR [16]), (1.42)

Sη′K0 = 0.64 ± 0.10(stat) ± 0.04(syst) (Belle [11]). (1.43)

Although this is one of the theoretically cleanest modes, the observed discrepancy between
SJ/ψK0

S
and Sη′K0 is not significant.
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1.4 Measurement of γ

The most popular methods for determining γ at the B-factories are based on the time-
integrated analysis of the B− → fDK

(∗)− decays, where the final state fD is accessible

either via intermediate D(∗)0 or D
(∗)0

mesons. This channel receives contributions from the
color-suppressed b → u transition B− → D

(∗)0
K(∗)−, as well as from the color-favored b→ c

transition B− → D(∗)0K(∗)−: γ can therefore be extracted by measuring the interference

of these two paths, which occurs when D
0

and D0 both decay to fD. The sensitivity to
γ depends on the amount of interference, and henceforth on the relative magnitude rB of
the color-suppressed B-decay amplitude compared to the color-allowed one.

Several methods have been proposed, each one associated to a particular class of D-
decay final states fD, that use B± decays to pose constraints on the cartesian coordinates
x± ≡ rB cos(δB ± γ) and y± ≡ rB cos(δB ± γ), where δB denotes the relative strong phase
between the b → u and b→ c transition.

The Gronau-London-Wyler (GLW) method [17] is based on the reconstruction of D0

and D
0

decays to CP -even (e.g., K+K−) and CP -odd (e.g., K0
S
π0) eigenstates fCP±, while

the Atwood-Dunietz-Soni (ADS) method [18] relies on the reconstruction of D0 decays
to a doubly-Cabibbo-suppressed (DCS) final state fADS (e.g., B− → D0K− or B− →
D∗0K− (D∗0 → D0{π0, γ}), with D0 → K+π−). Each GLW or ADS channel contributes
two experimental observables, i.e., the branching ratio and the B+/B− asymmetry of the
Cabibbo-suppressed decay:

RGLW ≡ B(B− → [fCP±]D0K−) + B(B+ → [fCP±]D0K+)

B(B− → D0K−) + B(B+ → D
0
K+)

= 1 + r2
B ± 2rB cos γ cos δB,

AGLW ≡ B(B− → [fCP±]D0K−) − B(B+ → [fCP±]D0K+)

B(B− → [fCP±]D0K−) + B(B+ → [fCP±]D0K+)
= ±2rB sin γ sin δB/RGLW ,

RADS ≡ B(B− → [fADS]D0K−) + B(B+ → [fADS]D0K+)

B(B− → [fADS]D0K−) + B(B+ → [fADS]D0K+)
=

r2
D + r2

B + 2rDrB cos γ cos(δB + δD),

AADS ≡ B(B− → [fADS]D0K−) − B(B+ → [fADS]D0K+)

B(B− → [fADS]D0K−) + B(B+ → [fADS]D0K+)
=

2rDrB sin γ sin(δB + δD)/RADS,

where rD and δD are the magnitude ratio and the strong phase difference of the doubly-
Cabibbo-suppressed and the Cabibbo-allowed D0 amplitudes in ADS channels, fADS (the
CP conjugate of fADS) is the Cabibbo-allowed D0 decay, and the notation [f ]D0 indicates

that the final state f is produced from the decay of a D0 or D
0
. For each channel, the

number of unknown (at least three, {γ, rB, δB}) exceeds the number of observables, so that
the combination of several channels is necessary to constrain the system of unknowns.

The Giri-Grossmann-Soffer-Zupan (GGSZ) method [19] is based on the reconstruction
of Cabibbo-favored D decays to three-body (or multi-body) self-conjugate final states, such
as K0

S
π+π−. A Dalitz plot analysis of a three-body final state of the D meson allows one

to obtain all the information required for the determination of γ in a single decay mode.
The decay amplitudes of the admixed D0 and D0 state produced in the B+ → DK+ and
B− → DK− processes as a function of Dalitz plot variablesm2

+ = m2
K0

Sπ
+ and m2

− = m2
K0

Sπ
−
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are

fB+ = fD(m2
+, m

2
−) + rBe

i(δB+γ)fD(m2
−, m

2
+) , (1.44)

fB− = fD(m2
−, m

2
+) + rBe

i(δB−γ)fD(m2
+, m

2
−) , (1.45)

where fD(m2
+, m

2
−) is the amplitude of the D0 → K0

S
π+π− decay.

Both the ADS and GGSZ method rely on some previous knowledge of the D-decay
parameters, that can be provided by the independent analysis of large D samples produced
at the B-factories (introducing a model to describe the variation of the D-decay strong
phase across the Dalitz plot) or by the input from the charm-factories.

From the combination of all the input from the B factories, γ is known to a precision
of about 11◦, up to a two-fold ambiguity. The two solutions are γ = (−106 ± 11)◦ and
γ = (74 ± 11)◦ [20].

1.5 Measurement of α

The angle α can be measured from the study of charmless B decays dominated by
the b → uūd transition, such as B decays to ππ, ρπ, ρρ, and a1(1260)π. The interference
between the direct tree decay (which carries the weak phase γ: Fig. 1.3, left) and decay after
B0B0 mixing (which carries an additional phase 2β) results in a time-dependent decay-rate
asymmetry that is sensitive to the angle 2β + 2γ = 2π − 2α.

If only the tree amplitude contributes to the decay to a CP eigenstate, S = sin(2α) and
C = 0 (if the final state is not a CP eigenstate, an additional strong phase δ̂ between the
two contributing tree amplitudes emerges). However, b → uūd transitions receive sizeable
contributions from penguin (loop) amplitudes (Fig. 1.3, right), which carry different strong
and weak phases. This contribution can result in nonzero direct CP -violation (C 6= 0) and
modifies S into

S = sin(2αeff)
√

1 − C2. (1.46)

The angle αeff coincides with α in the limit of vanishing penguin contributions. In order
to constrain ∆α ≡ α − αeff , several techniques have been devised, based on the SU(2)
isospin symmetry (for decays to a CP -eigenstate, such as B0 → π+π−, ρ+ρ−, and in the
Dalitz plot analysis of the three-body π+π−π0 decays), or on the SU(3) approximate flavor
symmetry (for decays to a non CP -eigenstate, such as B0 → ρ±π∓, a1(1260)±π∓). In the
following sections, we limit the discussion to BABAR measurements.

B0 π+, ρ+

π−, ρ−

b

d

u u

d
t, c, u

g

b

d

d

u

u
B0

π+, ρ+

π−, ρ−

Figure 1.3: The tree (left) and penguin (right) diagrams contributing to “charmless” B
decays such as B → ππ, B → ρρ, and B → ρπ.
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Figure 1.4: S+−
ππ and C+−

ππ in B0 → π+π−: the central values, errors, and confidence-level
(C.L.) contours, calculated from the square root of the change in the value of −2 lnL
compared with its value at the minimum [21]. The systematic errors are included. The
measured value is 6.7σ from the point of no CP violation (S+−

ππ = 0 and C+−
ππ = 0).

1.5.1 Isospin analysis of B → ππ decays

Originally it was believed that α could be extracted, in a straightforward way analogous
to that used for β, from the time-dependent evolution of neutral B decays to the CP -even
eigenstate f = π+π−. This analysis represents a prototype for α measurements. The
amplitude of this process is

A(uūd) = VtbV
∗
tdP

t + VcbV
∗
cdP

c + VubV
∗
ud(T + P u), (1.47)

which can be rewritten, expressing VcbV
∗
cd in terms of VtbV

∗
td and VubV

∗
ud as

A(uūd) = VtbV
∗
td(P

t − P c) + VubV
∗
ud(T + P u − P c), (1.48)

which has the form

A(uūd) = Teiγ + P. (1.49)

In the ππ system, however, the penguin pollution is greatest, and the tree (T ) and penguin
(P ) amplitudes each contribute, with relative weak (φ) and strong (δ) phases, with com-
parable magnitudes. Direct CP violation, which is given by ACP = 2 sinφ sin δ/(|T/P | +
|P/T | + 2 cosφ cos δ), can therefore be within observational reach.

From the time distribution of B0 → π+π− decays a non-zero CP violation asymmetry
S+−
ππ = −0.68 ± 0.10 ± 0.03 was observed with significance 6.3σ [21], as shown in Fig. 1.4.

A non-zero direct CP violation asymmetry C+−
ππ = −0.25 ± 0.08 ± 0.02 was also extracted

with significance 3.0σ [21].
In principle, α could be also measured from the time-dependent analysis of B0 → π0π0

decays. However, at present-day B factories no reliable vertex information can be extracted
for this channel, and S00

ππ can not be determined. At future very high luminosity Super
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Flavor factories, conversions into electron positron pairs of the photons originating from
the π0 decays could be used to determine the vertex of the B0 → π0π0 decay [22].

The rates and CP asymmetries of B0 → π+π− and B0 → π0π0 decays can be combined
with the results for the B+ → π+π0 mode in a model-independent isospin analysis [23].
Under the isospin symmetry, B → ππ amplitudes can be decomposed in isospin I = 0 (A0)
and I = 2 (A2) amplitudes. By virtue of Bose statistics, I = 1 contributions are forbidden,
and the following relations hold [23]:

(1/
√

2)A+− = A2 − A0 (1.50)

A00 = 2A2 + A0, A
+0 = 3A2, (1.51)

where Aij (A
ij
) are the amplitudes of B (B) decays to the πiπj final state. This yields the

complex triangle relations:
1√
2
A+− = A+0 − A00 (1.52)

1√
2
A

+−
= A

−0 − A
00
. (1.53)

Tree amplitudes receive contributions from both A0 and A2, while gluonic penguin dia-
grams are pure I = 0 amplitudes and do not contribute to the B+ → π+π0 amplitudes.
Possible contributions from electroweak penguins (EWP), which do not obey SU(2) isospin
symmetry, are assumed to be negligible and are therefore ignored. Under this assumption,

|A+0| = |A−0| (a sizeable contribution from EWPs would result in |A+0| 6= |A−0| and
would be signalled by an evidence of direct CP violation in B+ → π+π0 decays). If A+0

and A
−0

are aligned with a suitable choice of phases, the relations (1.52) and (1.53) can
be represented in the complex plane by two triangles (Fig. 1.5), and the phase difference

between A+− and A
+−

is 2∆α.

A
+−

A
−0~

A
+−~

A
00

A
00~

1
2 1

2

+0
A  ,  

Figure 1.5: Triangles in the complex plane describing the isospin relations Eq. (1.52) and
Eq. (1.53).

Constraints on the CKM angle α and on the penguin contribution ∆α are obtained
from a 1 − C.L. scan over the parameters of interest, α and |∆α|. ∆α is extracted with
a four-fold ambiguity (which can be graphically represented as a flip of either triangle
around A+0). An additional two-fold ambiguity arises from the trigonometric relation
S+−
ππ = sin(2αeff)

√

1 − C+−2
ππ , which results in a global eight-fold ambiguity on α in the

range [0, 180]◦.
The results are shown in Fig. 1.6. A value ∆α < 43◦ at 90% confidence level (C.L.)

is obtained, which dominates the uncertainty on α [21]. Considering only the solution
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consistent with the results of global CKM fits, α is in the range [71, 109]◦ at the 68%
C.L. [21].
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Figure 1.6: Left: Projection of the 1−C.L. scan on ∆α for the ππ system. Right: Projection
of the 1 − C.L. scan on α for the ππ system.

1.5.2 Isospin analysis of B → ρρ decays

With respect to B → ππ decays, B → ρρ decays have a more favorable penguin to
tree amplitude ratio. Moreover, the BF for B0 → ρ+ρ− decays is greater than that for
B0 → π+π− decays by a factor of ≈ 5. Finally, the B0 → ρ0ρ0 decay (the analog of
B0 → π0π0) can be reconstructed from a final state consisting of all charged tracks, with
enough efficiency to allow for a measurement of S00

ρρ with the present statistics.
In B0 → ρ+ρ− transitions, a pseudo-scalar particle decays into two vector mesons.

Three helicity states (H = 0,±1), with different CP transformation properties, can there-
fore contribute to the decay [24]. The H = 0 state corresponds to longitudinal polarization
and is CP -even, while the transverse polarization states H = +1 and H = −1 (which are
superpositions of S-, P-, and D-wave amplitudes) have not a definite CP eigenvalue.

The analysis of the angular distribution of B0 → ρ+ρ− decays allows to determine the
longitudinal polarization fraction fL:

1

Γ

d2Γ

d cos θ1d cos θ2
∝ 4fL cos2 θ1 cos2 θ2

+(1 − fL) sin2 θ1 sin2 θ2, (1.54)

where θ1 (θ2) is the angle between the daughter π0 and the direction opposite to the B
direction in the ρ+ (ρ−) rest frame, as shown in Fig. 1.7. Isospin relations similar to Eq.
(1.52) and (1.53) hold separately for each polarization state.

Since experimental measurements have shown the decay to be dominated by the longitu-
dinal (CP -even) polarization, it is not necessary to separate the definite CP contributions
of the transverse polarization by means of a full angular analysis.

A second complication arises because the ρ mesons have finite width, thus allowing
for the two ρ mesons in the decay to have different masses. Since the Bose-Einstein
symmetry does not hold, in this case, the wave function of the ρρ system can be anti-
symmetric, and isospin I = 1 amplitudes are allowed, breaking the isospin relations (1.52)
and (1.53) [25]. The stability of the fitted CP -violation parameters against the restriction
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Figure 1.7: Definition of the θ1 and θ2 angles in B → ρρ decays.

of the ππ invariant mass window used to select the ρ candidates shows however that possible
isospin violation effects are below the current sensitivity. Model-dependent uncertainties
from flavor-symmetry breaking have been estimated to be of order 1◦ − 2◦.

The BF’s of B+ → ρ+ρ0 and B0 → ρ+ρ− measured by BABAR are very similar and much
higher than that for the B0 → ρ0ρ0 penguin transition [26–28]. As a consequence, the
isospin triangles do not close, i.e., |A+−|/

√
2 + |A00| < |A+0|. This results in a degeneracy

of the eight-fold ambiguity on α into a four-fold ambiguity, corresponding to peaks in the
vicinity of 0◦, 90◦ (two degenerate peaks), 180◦, as shown in Fig. 1.8. A value −1.8◦ <
∆α < 6.7◦ at 68% C.L. is obtained. Considering only the solution consistent with the
results of global CKM fits, α = 92.4+6.0

−6.5 [28, 29].
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Figure 1.8: Left: Projection of the 1−C.L. scan on ∆α for the ρρ system. Right: Projection
of the 1 − C.L. scan on α for the ρρ system.
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1.5.3 Time dependent Dalitz plot analysis of B0 → π+π−π0 de-

cays

The ρ±π∓ final state is not a CP eigenstate. For the ρπ channel, therefore, two time-
dependent distributions can be analyzed, for the ρ+π− and the ρ−π+ final states, respec-
tively. An isospin analysis for these final states would require solving a set of higher-order
algebraic equations, and hence the solution would be severely obscured by a very high num-
ber of discrete ambiguities. An analysis based on the approximate SU(3) symmetry [30],
similar to the one discussed in the next section, could instead be performed.

As B → ρπ decays result in a three-body final state, an alternative path consists in
performing a time-dependent Dalitz plot analysis of the B → π+π−π0 decays [31]. This
method exploits the interference between the intermediate ρ resonances to extract a value
of α without ambiguities in the range [0, 180]◦ and without relying on measurements of
any auxiliary channels.

The amplitude A3π of the B0 → π+π−π0 transition receives contributions from B0 →
ρ+π−, B0 → ρ−π+, and B0 → ρ0π0, and can be written as

A3π(s+, s−) = f+(s+, s−)A+ + f−(s+, s−)A− + f0(s+, s−)A0, (1.55)

where the subscript “+” represents ρ+π−, “−” is for ρ−π+, and “0” is for ρ0π0; s+ =
(p+ +p0)

2, s− = (p−+p0)
2, and p+, p−, and p0 are the four-momenta of the π+, π−, and π0,

respectively. The kinematic functions fi and f̄i are the products of Breit-Wigner functions
to describe the ππ lineshape and an angular function to describe the helicity distribution.

The Dalitz plot has a time distribution

|A(t, s+, s−)|2 ∝ e−Γ|t|

{

(|A3π|2 + |A3π|2) −

qtag(|A3π|2 − |A3π|2) cos(∆m∆t) +

qtag 2 Im

(

q

p
A∗

3πA3π

)

sin(∆m∆t)

}

, (1.56)

where qtag equals +1 (−1) when the tag-side B decays as a B0(B0). From a fit to the
time-dependence of the Dalitz plot it is possible to determine the six complex amplitudes
Ai and Ai (12 real parameters), and α is then obtained via the relationship

ei2α =
A+ + A− + 2A0

A+ + A− + 2A0

. (1.57)

From such an analysis, BABAR finds at the 68% C.L. α = (87+45
−13)

◦ [32].

1.6 Weak phase α from B0 → a±
1 (1260)π∓

It is possible to use the experimental information from the TD CPV analysis of B0 →
a±1 π

∓ decays [33], and from the branching fraction measurements of B0 → a±1 π
∓ [34],

B0 → a−1 K
+, B+ → a+

1 K
0 [35], and B0 → K+

1 π
−, B+ → K0

1π
+ decays (measured in this

work), to extract the CKM angle α.
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In order to exploit the experimental information to constrain this angle we follow the
Gronau and Zupan paper [36] to identify a convenient parameterization of the amplitudes

A+ ≡ A(B0 → a+
1 π

−), A− ≡ A(B0 → a−1 π
+), (1.58)

A+ ≡ A(B0 → a−1 π
+), A− ≡ A(B0 → a+

1 π
−). (1.59)

These amplitudes can be expressed in terms of “tree” (t±) and “penguin” (p±) amplitudes,
with different strong phases (implicit in the definition of p and t) and relative weak phase
γ:

A± = eiγt± + p±, A± = e−iγt± + p±. (1.60)

We can express the time-dependence of B0 → a±1 π
∓ decay rates as

F
a±1 π

∓

Qtag
(∆t) ∝ (1 ±ACP )

e−|∆t|/τ

8τ

{

1 +

Qtag ×
[

(S ± ∆S) sin(∆md∆t) − (C ± ∆C) cos(∆md∆t)

]}

,

where Qtag = +1(−1) if the tag-side B decays as a B0 (B0), τ = 1.525± 0.009 ps [5] is the
mean B lifetime, ∆md = 0.507 ± 0.005 ps−1 [5] is the B0-B0 mixing frequency, and ACP

is the time- and flavor-integrated CP asymmetry

ACP ≡ |A+|2 + |A−|2 − |A−|2 − |A+|2
|A+|2 + |A−|2 + |A−|2 + |A+|2

.

The parameters C and ∆C parameterize the flavor-dependent direct CP violation and
the asymmetry between the CP -averaged rates B̄(a+

1 π
−) and B̄(a−1 π

+), respectively [36]:

C + ∆C =
|A+|2 − |A−|2
|A+|2 + |A−|2

, C − ∆C =
|A−|2 − |A+|2
|A−|2| + A+|2

,

while S and ∆S

S + ∆S =
2 Im(e−2iβA−A

∗
+)

|A+|2 + |A−|2
, S − ∆S =

2 Im(e−2iβA+A
∗
−)

|A−|2 + |A+|2
.

The quantities
2α±

eff ± δ̂ = arg
(

e−2iβA±A
∗
∓
)

, (1.61)

with

2α±
eff ≡ arg

(

e−2iβA±A
∗
±
)

,

δ̂ ≡ A∗
−A+,

are then experimentally accessible from the inversion of (1.61):

2α±
eff ± δ̂ = arg

(

e−2iβA±A
∗
∓
)

= arcsin

(

S ± ∆S
√

1 − (C ± ∆C)2

)

. (1.62)
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Table 1.1: Summary of the eight solutions to (1.63), in absence of penguin contributions.

α π/4 − δ̂/2 π/2 + α 3π/4 − δ̂/2 π/4 + δ̂/2 π/2 − α 3π/4 + δ̂/2 π − α

δ̂ π/2 − 2α π + δ̂ 3π/2 − 2α −π/2 + 2α −δ̂ −3π/2 + 2α π − δ̂

The quantities α±
eff reduce to α in case of negligible penguin contributions:

e−2iβA±A
∗
± = e−2iβe−2iγ

[

|t±|2
(

1 + 2r±e
iγ cos δ± + r2

±e
2iγ
)]

= e2iα
[

|t±|2
(

1 + 2r±e
iγ cos δ± + r2

±e
2iγ
)]

.

The above expression can be rewritten as

e−2iβA±A
∗
± = e−2iβe−2iγ

[

e2i∆α
± ∣
∣A±A

∗
±
∣

∣

]

= e2iα
[

e2i∆α
± ∣
∣A±A

∗
±
∣

∣

]

= e2i(α+∆α±)
(

∣

∣A±
∣

∣

2
+
∣

∣A∗
±
∣

∣

2
) 1

2

√

1 − (A±
CP )2,

where 2∆α± = 2(α±
eff − α) = arg

(

1 + 2r±e
iγ cos δ± + r2

±e
2iγ
)

.

The strong phase δ̂ can be averaged out from (1.62), yielding an effective value of α

αeff =
1

2

[

arcsin

(

S + ∆S
√

1 − (C + ∆C)2

)

+ arcsin

(

S − ∆S
√

1 − (C − ∆C)2

)]

, (1.63)

which is determined up to an eightfold ambiguity in the range [0, 180]◦. The set of ambi-
guities on αeff , in absence of penguin contributions, is summarized in Table 1.1.

We now introduce the CP asymmetries A±
CP in B0 → a±1 π

∓ decays, that are related to
the time- and flavor-integrated charge asymmetry Aa1π

CP [33] by

A+
CP = −Aa1π

CP (1 + ∆C) + C

1 + Aa1π
CPC + ∆C

, A−
CP =

Aa1π
CP (1 − ∆C) − C

1 −Aa1π
CPC − ∆C

.

We are thus lead to:
∣

∣e−iγA± − eiγA±
∣

∣

2
= 4p2

± sin2 γ

= |A±| +
∣

∣A±
∣

∣− 2 Re
(

e2iγA∗
±A±

)

=
(

∣

∣A±
∣

∣

2
+
∣

∣A∗
±
∣

∣

2
)

[

1 −
√

1 − (A±
CP )2 cos 2∆α±

]

. (1.64)

It is possible to relate the B0 → a±1 π
∓ decays with the corresponding ∆S = 1 decays,

B → a1K and B → K1Aπ, where K1A is a nearly equal mixture of the K1(1270) and
K1(1400) resonances and belongs to the same SU(3) flavor multiplet as the a1 meson (see
Chapter 3). The ∆S = 1 transitions are particularly sensitive to the presence of penguin
amplitudes because the ratios of penguin-to-tree amplitudes are enhanced by a CKM factor
(λ)−2 (λ = 0.23) over the corresponding ratios in ∆S = 0 decays. Similar SU(3)-based
approaches have been proposed for the extraction of α in the π+π− [37], ρ±π∓ [30], and
ρ+ρ− channels [38, 39].
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For the strangeness changing decay amplitudes, we write:

A(B+ → a+
1 K

0) = −(λ)−1fK
fπ
p−, A(B0 → a−1 K+) =

fK
fπ

[−(λ)−1p− + eiγλt−],

A(B+ → K0
1Aπ

+) = −(λ)−1fK1A

fa1
p+, A(B0 → K+

1Aπ
−) =

fK1A

fa1
[−(λ)−1p+ + eiγλt+],

where λ = |Vus|/|Vud| = |Vcd|/|Vcs|, and fπ, fK , fa1 , fK1A
are decay constants. To improve

the precision of the analysis, factorizable SU(3) breaking factors are included in the above
expression, and are given by the ratios of meson decay constants under the assumption
that form factors do not differ much from one another. We have neglected nonfactorizable
SU(3) breaking corrections and contributions from exchange and annihilation diagrams
(contributing to ∆S = 0 and ∆S = 1 decays, respectively), which are formally 1/mb

suppressed relative to tree and penguin amplitudes [36].
We now define the following ratios of CP -averaged rates [36]:

R0
+ ≡ λ̄2f 2

a1B̄(K+
1Aπ

−)

f 2
K1A

B̄(a+
1 π

−)
, R0

− ≡ λ̄2f 2
πB̄(a−1 K

+)

f 2
KB̄(a−1 π

+)
,

R+
+ ≡ λ̄2f 2

a1B̄(K0
1Aπ

+)

f 2
K1A

B̄(a+
1 π

−)
, R+

− ≡ λ̄2f 2
πB̄(a+

1 K
0)

f 2
KB̄(a−1 π

+)
,

where B̄(f) ≡ 1
2
B(B → f)+B(B → f). The CP -averaged rates for B → a1π are calculated

as

B̄(a+
1 π

−) =
1

2
B(a±1 π

∓)(1 + ∆C + Aa1π
CPC),

B̄(a−1 π
+) =

1

2
B(a±1 π

∓)(1 − ∆C −Aa1π
CPC),

where B(a±1 π
∓) is the flavor-averaged branching fraction of neutralB decays to a1(1260)±π∓

[34]. In terms of the above parameterization, we can write:

R0
± =

r2
± + 2r±z±λ

2
+ λ

4

1 + r2
± − 2r±z±

, R+
± =

r2
±

1 + r2
± − 2r±z±

, (1.65)

where z± = cos δ± cos(α + β), rt ≡ |t−/t+|, δt ≡ arg(t−/t+), r± ≡ |p±/t±|, and δ± ≡
arg(p±/t±). The above equations are solved to write r± in terms of z± and R0

± or R+
± [30]:

r± =

√

(R0
± + λ

2

±)2z2
± + (1 − R0

±)(R0
± − λ

4

±) − (R0
± + λ

2

±)z±

1 − R0
±

(1.66)

=

√

R+
±

2
z2
± + (1 − R+

±)R+
± − R+

±z±

1 − R+
±

, (1.67)

where only the positive solutions have been taken. These expressions are monotonically
decreasing functions of z±, so that the penguin-over-tree ratios r± are bracketed by their
values at z± = ±1:

√

R0
± − λ

2

±

1 +
√

R0
±

<
|p±|
|t±|

<

√

R0
± + λ

2

±

1 −
√

R0
±
, (1.68)

√

R+
±

1 +
√

R+
±

<
|p±|
|t±|

<

√

R+
±

1 −
√

R+
±
. (1.69)
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Substituting R+
± in Eq. 1.64 it is possible to derive the following inequalities involving ∆α±:

cos 2∆α± =
1 − 2R+

± sin2 γ
√

1 − (A±
CP )2

≥ 1 − 2R+
±

√

1 − (A±
CP )2

. (1.70)

Similar inequalities involving R0
± are derived by noting that

λ̄2f 2
a1
B̄(K+

1Aπ
−)

f 2
K1A

|p±|2
= 1 + 2r−1

± λ
2
z± + r−2

± λ
4

(1.71)

and [1 − cos2 δ± cos2 γ + (cos2 δ± cos2 γ − 2x cos δ± cos γ + x2)] ≥ sin2 γ, where x = r−1
± λ

2
,

so that

cos 2∆α± ≥ 1 − 2R0
±

√

1 − (A±
CP )2

. (1.72)

In Chapter 6, solving this system of inequalities allows to calculate bounds on |∆α| =
1
2
(∆α+ + ∆α−).



Chapter 2

The BABAR experiment

2.1 Overview

Exploring CP violation in the B system and its potential impact on the Standard
Model, baryogenesis, and cosmology, requires copious production of B mesons, accurate
measurement of the B flight time and flavor, and reasonably low background for recon-
struction.

The asymmetric e+e− B-factories operated at a center-of-momentum (CM) energy√
s = 10.58 GeV fulfill these requirements. This energy corresponds to the mass of the

Υ (4S) resonance, a bb bound state lying just above the open flavor threshold, that de-
cays almost exclusively to approximately equal numbers of B0B0 and B+B− pairs [5]. The
Υ (4S) resonance thus provides a very clean environment for B reconstruction, with a very
favorable ratio of bb production compared to lighter quark pairs production (Table 2.1). A
typical Υ (4S) → BB event has on average ten charged particles and twenty photons, as
compared with the hundreds of charged particles in events recorded at hadronic colliders,
which can also be used to study b-hadron decays.

e+e− → Cross section (nb)

bb 1.05
cc 1.30
ss 0.35
uu 1.39

dd 0.35

τ+τ− 0.94
µ+µ− 1.16
e+e− ≈ 40

Table 2.1: Approximate production cross sections at PEP-II (
√
s = 10.58 GeV). Bhabha

cross section is an effective cross section for production within the detector acceptance.

As it is produced in e+e− annihilation through a virtual photon, angular momentum
conservations ensures the Υ (4S) resonance carries the same spin and parity as the photon,
i.e., it is a vector. Since B mesons are pseudoscalars, the BB pair from the Υ (4S) decay
evolves in a coherent P -wave and the two mesons have opposite flavor before one of them
decays, in accordance with Bose statistics. Thus, it is possible to infer the flavor of a

21
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Figure 2.1: The PEP-II asymmetric storage ring and the SLAC linear accelerator. The
SLAC linac is the injector for PEP-II. The single interaction point of PEP-II is at Inter-
action Region 2, where BABAR is situated.

reconstructed B candidate (Brec) from the flavor of the other B in the Υ (4S) event (Btag)
at the time of its decay. This can be done through charge correlations of the Btag daughters
without fully reconstructing its decay. Such flavor “tagging” of the other B in turn allows
the measurement of time-dependent CP asymmetries in reconstructed final states to which
both B0 and B0 can decay. The decay rate of Brec is measured as a function of the difference
in decay times of the two B’s, ∆t ≡ tBrec

− tBtag
.

Since the lifetime of the B mesons is of order τ = 1.5 ps, if the two B mesons were
produced in the laboratory frame the two decay vertices would be separated by only about
30 µm, a distance that couldn’t be resolved by typical silicon-vertex detectors, which have
a spatial vertex resolution of about 50 µm. To bring the average decay-vertex separa-
tion within the resolution reach of silicon-detector technology, the B factories adopted an
asymmetric configuration in which the electron and positron beams collide with different
energies. The resulting BB system is thus boosted in the laboratory frame and the distance
between the decay vertices in the laboratory frame is dilated along the beam direction.

2.2 The PEP-II asymmetric collider

Two asymmetric B-factories have been built: PEP-II/BABAR (part of the accelerator
complex at SLAC, shown in Fig. 2.1) and KEK-B/Belle. The PEP-II B-factory [40] consists
of two storage rings built one above the other in the previously existing PEP (Positron-
Electron Project) tunnel. The construction project reutilized much of SLAC’s existing PEP
facility: the lower ring (high energy ring, HER), which stores electrons, was an upgrade
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of the PEP collider; the upper ring (low energy ring, LER), used for positrons, was newly
constructed.

The rings are matched to the 3.2-kilometer-long SLAC linear accelerator, which acts
as a particle injector. The positrons are generated partway along the linear accelerator by
directing high-energy electrons onto a cooled rotating tungsten target. Both the electrons
and positrons are stored in damping rings, where the spatial and momentum spread of the
beams are reduced, before they are reinjected into the linac and accelerated to the collision
energies. The electron and positron beams are then extracted from the linac and directed
to the PEP-II storage rings, where they are made to collide.

PEP-II was primarily designed to operate at a CM energy of 10.58 GeV to study time-
dependent CP violation asymmetries in the B meson system. Most of the data is taken
at this CM energy; however, approximately 10% of the data are taken 40 MeV below
the resonance peak energy (off-resonance data), in order to allow studies of non-resonant
background in data. In addition, BABAR also collected world-record samples at the Υ (2S)
and Υ (3S) CM energies: at the end of its operations, the physics program of PEP-II/BABAR

encompassed the study of rare B meson decays, τ and charm physics, charmonium and
bottomonium spectroscopy, and two-photon physics.

A plot of PEP-II integrated luminosity as a function of time is shown in Fig. 2.2. PEP-
II has delivered 557 fb−1 [41], while KEK-B integrated luminosity has exceeded 1 ab−1 [42].
The work in this thesis is based on the BABAR dataset collected at the Υ (4S) resonance,
corresponding to an integrated luminosity of 413 fb−1 and NBB = (454.3 ± 5.0) × 106

produced BB pairs.
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Figure 2.2: PEP-II-BABAR integrated luminosity since startup.

2.3 The BABAR detector

When PEP-II is operated at 10.58 GeV, 9.0 GeV electrons and 3.1 GeV positrons collide
head-on in the single interaction point of PEP-II, where BABAR is located. This configu-
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ration provides a relativistic boost of βγ = 0.56 to the CM system, corresponding to an
average separation βγcτ ≈ 250µm between the decay vertices of the two B mesons in a
Υ (4S) event.

The BABAR detector is a large, multi-purpose hermetic detector with several compo-
nents [43]. Surrounding the interaction point is a five-layer double-sided silicon vertex
tracker that provides precision measurements near the collision point of charged particle
tracks in the planes transverse to and along the beam direction. A 40-layer drift chamber
surrounds the SVT. Both of these tracking devices operate in the 1.5T magnetic field of
a superconducting solenoid to provide measurements of the momenta of charged particles.
Charged hadron identification is achieved through measurements of particle energy loss
in the tracking system and of the Cerenkov angle obtained from a detector of internally
reflected Cerenkov light (DIRC). A CsI(Tl) electromagnetic calorimeter (EMC) provides
photon detection and electron identification. Finally, the instrumented flux return (IFR)
of the magnet allows discrimination of muons from pions and detection of K0

L
mesons.

The structure of the BABAR detector is shown in Fig. 2.3 and Fig. 2.4. The detector
has a cylindrical geometry in the inner zone and a hexagonal shape in the outermost; the
central body is called “barrel” and is enclosed by two “endcaps”. In the BABAR coordinate
system, the z-axis is directed along the axis of the solenoid magnet, the y-axis is vertical,
and the x-axis is horizontal and points toward the external part of the PEP-II ring. To
maximize the geometric acceptance for the boosted Υ (4S) decays, the geometrical center
is offset from the beam-beam interaction point towards forward polar angles, i.e. in the
direction of the boost.

2.3.1 The silicon vertex tracker (SVT)

Together, the silicon vertex tracker (SVT) and the central tracking drift chamber (DCH)
form the charged particle tracking system. Precise and efficient measurement of track
four-momentum is necessary to fully reconstruct B meson decays, which tend to have
multiple charged decay products. In addition, good vertex and ∆z resolution and accurate
track extrapolation to the outer subdetectors are essential for event reconstruction and
background subtraction.

The SVT is the most relevant detector for the measurement of time dependent CP
asymmetries in BABAR. Its purpose is to provide precise reconstruction of charged particle
trajectories and decay vertices near the interaction region. Many of the decay products
of the B mesons have low transverse momentum pT . The SVT must provide stand-alone
tracking for particles with transverse momentum less than 120 MeV/c, the minimum that
can be measured reliably in the DCH alone. Beyond the stand-alone tracking capability,
the SVT provides the best measurement of track angles, which is required to achieve the
design resolution for the Cerenkov angle for high momentum tracks.

The design of the SVT is illustrated in Fig. 2.5 and consists of five layers of double-sided
silicon strip sensors, organized in 6, 6, 6, 16, and 18 modules. The geometrical acceptance
of SVT is about 90% of the solid angle in the CM system. The modules of the inner
three layers are straight, while the modules of layers 4 and 5 are arch-shaped (Fig. 2.6) to
minimize the amount of silicon required to cover the solid angle, and increase the crossing
angle for particles near the edges of acceptance.

The five layers and the long radial separation between SVT detector layers provide both
standalone track pattern recognition and refinement of drift chamber tracks via addition
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of SVT hits. The inner three layers perform the impact parameter measurement and are
located as close to the beampipe as possible, since the trajectory of the particles farther
away is affected by multiple scattering within the detector. The outer layers are necessary
for pattern recognition and low pT tracking, and are closer to the drift chamber to facilitate
matching of SVT tracks with DCH tracks. To fulfill the physics requirements, the spatial
resolution for perpendicular tracks must be 10–15µm in the three inner layers and about
40µm in the two outer layers.

The silicon sensors are 300 µm-thick high sensitivity n-type substrates, with p+ and n+

strips running orthogonally on opposite sides: the φ measuring strips run parallel to the
beam, while the z measuring strips are oriented transversely to the beam axis. As high-
energy particles pass through the sensor they ionize the material, producing electron-hole
pairs, that migrate under an applied depletion voltage of ∼ 25 − 35 V. The strips are AC-
coupled to the electronic read-out (only approximately half the strips are read out). The
signal is then amplified and discriminated with respect to a signal threshold by front-end
electronics. The time over threshold of the signal is related to the charge of the signal and
is read out by the data acquisition system for triggered events. The resulting information
on the ionization energy loss dE/dx provides a 2σ separation between kaons and pions up
to 500 MeV/c and between kaons and protons above 1 GeV/c.

The offline reconstruction has the responsibility for the alignment of each SVT module.
Alignment is critical for the accuracy of vertexing and of track reconstruction, and is done
in two steps. The local SVT alignment uses dimuon and cosmic ray events to calibrate
the relative position of each of the 340 wafers. The global alignment then determines the
overall position and rotation of the SVT with respect to the DCH.

Being the innermost detector, the SVT has been designed to withstand a high dose
of integrated ionizing radiation, up to a lifetime-integrated dose of 2 Mrad. To limit the
exposure, the SVT includes a radiation protection system consisting of PIN diodes (doped
p-type and n-type semiconductor regions separated by an intrinsic semiconducting region)
and diamond diode sensors located in close proximity to the beam. These monitors can
abort the colliding beams in the event of sudden high instantaneous or prolonged back-
ground levels that could damage the hardware components.

Figure 2.7: Left: fully assembled SVT. The silicon sensors of the outer layer are visible,
as is the carbon-fiber space frame (black structure) that surrounds the silicon. Right: an
SVT arch module.
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2.3.2 The drift chamber (DCH)

For pt ≥ 100 MeV/c, BABAR measurement of charged particles momenta is dominated
by the DCH, a multi-wire proportional chamber. The DCH provides particle identifica-
tion information based on the measurement of the ionization energy loss (dE/dx) for low
momentum particles (< 700 MeV/c), and those in the extreme forward and backward di-
rections that fall outside the geometric acceptance of the DIRC. The DCH also serves in
reconstructing longer-lived particles (such as K0

S
’s) that decay away from the interaction

region outside of the SVT.
The DCH measures the trajectory of charged particles by the ionization of an 80:20

helium:isobutane gas mixture as the particle passes through the detector. The ionized
electrons from the gas drift towards gold-coated tungsten-rhenium sense wires held at high
voltage (∼ 1900V); as they are accelerated, they ionize other molecules of gas produc-
ing a shower of negative charge deposited on the sense wire. The positively ionized gas
molecules produced in the shower are attracted by gold-coated aluminium grounded field
wires, arranged in a hexagonal pattern, that surround the sense wire.

The position of the primary ionization clusters is derived from timing of the leading
edge of the amplified signal from the sense wire, while the total charge induced on the wire
is a measure of the ionization energy loss, dE/dx. Samples of cosmic muons and dilepton
events are used to calculate isochrones (distances of equal drift time) from which the drift
time to distance relation is determined. A typical dE/dx resolution of 7.5% is estimated
from a sample of Bhabha events.

The final design adopted for the DCH is illustrated in Fig. 2.8. The hexagonal drift
cells are arranged in 40 cylindrical layers; the layers are grouped into 10 superlayers. Two
of the four layers in each superlayer are directed along the z-axis, while the other two are
set at small stereo angles relative to the two axial layers, thus providing a measurement
of the longitudinal (z) position of tracks with good (∼ 1 mm) resolution. The DCH has a
typical position resolution of 140 µm.

The achieved resolution on transverse momentum is

σpt/pt = (0.13 ± 0.01)% · pt + (0.45 ± 0.03)%, (2.1)

where pt is given in units of GeV/c. The first contribution comes from the curvature
error due to finite spatial measurement resolution; the second contribution, dominating
at the low momenta that characterize B decays, is due to multiple Coulomb scattering.
The choice of low-mass aluminum field-wires and of a helium-based gas mixture is aimed
at minimizing the material within the chamber volume, to reduce the impact of multiple
scattering on pt resolution.

2.3.3 The DIRC

The detector of internally reflected Cerenkov light (DIRC) is designed to provide a good
π−K separation over the momentum range 700 MeV/c− 4.2 GeV/c, while minimizing the
amount of material in front of the EMC.

The DIRC principle uses internal reflection within quartz bars, which serve as radiators
as well as light guides, to propagate Cerenkov light to readout phototubes while preserving
the Cerenkov angle. This requires extremely flat surfaces in order to avoid dispersing the
reflected angles. The Cerenkov angle contains information on particle type via the relation
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Figure 2.8: Longitudinal section of the drift chamber.

BaBar Drift Cells

     0
Stereo

 1    
Layer

     0
Stereo

 1    
Layer

     0 2         0 2         0 2    

     0 3    

     0 4         0 4    

    45 5        45 5    

    47 6        47 6        47 6    

    48 7        48 7    

    50 8    

   -52 9    

   -5410    

   -5511    

   -5712    

     013         013    

     014         014    

     015    

     016    

1 cm

Sense Field Guard Clearing

Sense


Field

Guard
 


Figure 2.9: Left: schematic layout of the drift cells for the four innermost superlayers.
The numbers on the right side give the stereo angles in mrad of sense wires in each layer.
Right: DCH cell drift isochrones for cells in layers 3 and 4 (axial). Isochrones are at 100
ns intervals.
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Figure 2.10: Schematics of the DIRC fused silica radiator bar and imaging region.

cos θC = 1/nβ, with β being the particle velocity normalized to the speed of light, and
n being the mean index of refraction (= 1.473 for fused silica). Fused, synthetic silica
quartz is used due to the excellent optical surface it allows through polishing, as well as
other favorable properties such as long attenuation length, low chromatic dispersion, small
radiation length, and radiation hardness. At the backward end of the bars, the photons
pass through a standoff box filled with purified water that has a similar refractive index
of n = 1.346, so that refraction at the silica-water boundary is minimized. A mirror is
placed at the end opposite the standoff box to collect light internally reflected toward the
opposite end of the detector. The rear surface of the standoff box is instrumented with
photomultiplier tubes (PMTs), which collect the photons, convert them to electrons with
photocathodes, and amplify the signal using the gas-avalanche principle. As the standoff
box is located outside the solenoid magnet, it is possible to limit the magnetic field in its
volume to about 1 Gauss with a bucking coil that counteracts the field of the solenoid, so
that conventional PMTs, which do not tolerate high magnetic fields, can be used.

The emission angle and the arrival time of the Cerenkov photons are reconstructed
from the observed space-time coordinates of the PMT signals and then transformed into
the Cerenkov coordinates (θC , φC and δt) via a maximum likelihood fit. The time interval
between the t0 of the event and the time at which an hit in the PMTs occurs is mea-
sured with a resolution of 1.5 ns. Timing gives information on the photon propagation
angles, providing an independent measurement of the Cerenkov angle, and is critical for
background hit rejection, resolving ambiguities, and separation of hits from differing tracks
within an event.

Based on the position and timing of the PMT signals from the DIRC, coupled with
the particle position and angle from the tracking system, the Cerenkov angle can be over-
constrained and measured with a resolution of ∼ 3 mrad. At 3 GeV/c, this results in π−K
separation of 4.2 σ.

2.3.4 The electromagnetic calorimeter (EMC)

The EMC is designed to operate within the 1.5-T magnetic field and detect electromag-
netic showers from photons and electrons, with excellent energy and angular resolution over
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Figure 2.11: Longitudinal cross section of the EMC (left). Schematic of a wrapped CsI(Tl)
crystal and read out package (right). Dimensions are in mm.

the energy range from 20 MeV to 9 GeV. This functionality is necessary to reconstruct π0

and η two-photon decays, as well as for identification of high-energy photons from radiative
B decays.

BABAR uses a thallium-doped cesium iodide (CsI(Tl)) crystal calorimeter in order to
achieve the necessary energy and angular resolution to meet these physics requirements.
The EMC consists of a cylindrical barrel and a conical forward endcap, for a total of 6580
crystals, that cover ∼ 90% of the CM acceptance. A diagram can be seen in Fig. 2.11.

The crystals have nearly square front and rear faces with a trapezoidal longitudinal
cross-section. They act not only as a total-absorption scintillating medium, but also as a
light guide to collect light at the silicon PIN photodiodes that are mounted on the rear
surface.

The energy response of the EMC is calibrated using low-energy photons from a radioac-
tive source and high-energy photons from radiative Bhabha events. As electromagnetic
showers spread throughout several crystals, a reconstruction algorithm is used to associate
activated crystals into clusters and either to identify them as photon candidates or to
match individual maxima of deposited energy to extrapolated tracks from the DCH-SVT
tracker. Additional PID is obtained from the spatial shape of the shower.

Energy resolution is determined, e.g., using χc → J/ψγ and Bhabha scattering events,
to be

σE
E

=
(2.32 ± 0.30)%

4
√

E( GeV)
⊕ (1.85 ± 0.12)%, (2.2)

while angular resolution is determined by analyzing π0 and η decays to two photons of
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Figure 2.12: Overview of the barrel sectors and forward and backward end doors of the
IFR. The shape of the RPC modules and their dimensions in mm are indicated.

equal energy to be

σθ = σφ =
(3.87 ± 0.07) mrad

√

E( GeV)
⊕ (0.00 ± 0.04) mrad. (2.3)

In both cases, the first term is due to fluctuations in the number of photons and to electronic
noise of the photon detector and electronics, while the second term arises from the non-
uniformity of light collection, leakage and absorption due to materials between and in front
of the crystals, and calibration uncertainties.

2.3.5 The instrumented flux return (IFR)

Detection of muons and neutral hadrons (primarily K0
L
’s) is a necessary step for sev-

eral BABAR measurements: muons are important, e.g., for the J/ψ reconstruction and for
tagging the flavor of the non-signal B through semileptonic decays of the B or daughter D
mesons in the event; K0

L
detection allows the study of exclusive B decays to CP eigenstates.

The main requirements for the IFR are: a large solid angle coverage, good efficiency
and high background rejection power for muons with momentum down to 1 GeV/c.

The IFR uses the steel flux return of the magnet as a muon filter and hadron absorber.
Its layout is illustrated in Fig. 2.12. It consists of an hexagonal barrel region closed in the
forward and backward directions by two endcaps that can be opened to access the inner
part of the BABAR detector. Both the endcaps and the barrel region are layered and active
detectors are inserted between the iron plates.

The IFR was originally equipped with 19 layers of resistive plate chambers (RPCs) in
the barrel and 18 in the endcaps. In addition, two layers of cylindrical RPCs were installed
between the EMC and the cryostat of the magnet to improve the matching between IFR
and EMC showers. Resistive plate chambers consist of two highly-resistive bakelite planes
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Figure 2.13: Cross section of a BABAR RPC.

closely separated by a gap filled with a gas mixture, held at a large potential voltage. The
inside surface of the bakelite is smoothed with a linseed-oil coating so that the electric field
is uniform, thus preventing discharges in the gas and large dark currents. The RPCs operate
in “streamer” mode, wherein particles passing through the chamber ionize the gas, and
the applied high voltage accelerates the resulting electrons into a controlled gas-discharge
avalanche. The streamer signal is collected by inducing a charge in capacitatively-coupled
read-out strips outside of the RPC. The gas gain in streamer mode is sufficient to produce
a large signal independent of initial ionization, greatly simplifying the electronics read-out.
A cross-sectional diagram of a planar RPC is shown in Fig. 2.13.

During the first year of operation, a large fraction of the RPC modules suffered signif-
icant losses in efficiency. It was found that linseed oil droplets had formed on the inner
surface of the bakelite plates, probably because of high operating temperatures (> 37◦ C).
These accumulating droplets, under the high electric field, could “bridge the gap” between
the plates, leading to discharge and large detector dead areas.

In 2002, new RPCs constructed under much stricter tolerances were installed into the
forward endcap. The backward endcap was not retrofitted, as its acceptance in the CM
frame is small. In the barrel, the RPCs were replaced with limited streamer tubes (LST)
during two installation phases, in 2004 (top and bottom sextants) and 2006 (the other
sextants). The outermost layer of RPCs (layer 19) was inaccessible in the upgrade, and
was disconnected. To improve hadron absorption within the active region of the IFR, 6
layers of brass were installed every second layer starting with layer 5. The remaining twelve
layers were filled with LSTs.

The LSTs consist of a PVC comb of seven or eight gas-filled cells with grounded
graphite-coated walls and a central gold-plated beryllium-copper anode wire held at high
voltage (Fig. 2.14 and Fig. 2.15). Similar to RPCs, the gas operates in streamer mode when
ionized, with the charge collected on the high voltage sense wire while simultaneously in-
ducing a charge on a plane, which is mounted below the tube. The LSTs are mounted
with the wire directed along the beam (so as to provide information about the azimuthal
angle of the hit), while the induced charge on the plane is detected using copper strips
perpendicular to the wire direction and conveys the z coordinate.
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Figure 2.14: Sketch of an 8-cell module (top), and photo of an LST partially inserted in
the sleeves (shown at the bottom of the picture).

2.3.6 The trigger

The BABAR trigger needs to provide a high efficiency, stable, and well-understood re-
sponse for physics events. Since the events which pass the trigger must be fully recon-
structed in the offline event reconstruction, the output rate must be no higher than 120
Hz to satisfy computing limitations of the offline processing farm. Since events with either
a DCH track or a > 100 MeV EMC cluster occur at 20 kHz, the trigger is responsible for
scaling this rate down by a factor of > 150 while accepting over 99% of B events, over 95%
of hadronic continuum, and over 90% of τ+τ− events. Online dead time is kept lower than
1%.

The BABAR trigger is implemented in two levels, a Level 1 hardware trigger (called
L1), and a Level 3 software trigger (called L3). The L1 trigger consists of several dedicated
microprocessor systems that analyze data from the front-end electronics of the DCH, EMC,
and IFR to form primitive physics objects used to make the trigger decision. These include
tracks of minimum transverse momentum that penetrate to a particular depth into the
DCH and energy clusters in the EMC above set thresholds.

After an L1 accept decision, the L1 output is passed on to the L3 trigger, which consists
of software-based algorithms run on a farm of commercial PCs. The L3 trigger also has
access to the complete event data and refines the L1 decision with more sophisticated
selections, such as requirements on a tracks distance of closest approach to the interaction
point or the total invariant mass of an event.
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Figure 2.15: Diagram of a prototypical limited streamer tube.
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Chapter 3

The strange axial vector mesons
K1(1270) and K1(1400)

3.1 Introduction

Introduced in 1966, SU(3) and the non-relativistic quark model have ever since allowed
to correlate huge amounts of experimental data on elementary particles and their inter-
actions. One of their main successes has been the classification of particles in spin-parity
multiplets sharing similar properties.

Two nonets (8 ⊕ 1) of spin-parity JP = 1+ mesons containing the light u, d, s quarks
are expected, each identified by the C−parity of its I = 1, I3 = 0 member, the a1(1260)0

(C = +1) and the b1(1235)0 (C = −1). The mesons belonging to these multiplets are the
a1(1260), f1(1420), f1(1285), K1A, and the b1(1235), h1(1380), h1(1170), K1B [5].

The K1 mesons (formerly also known as Q mesons), although observed in several re-
actions, have been most thoroughly studied in diffractive production processes K± →
K±π+π−p [44, 45] and three-prong τ decays [46–49]. The partial wave analysis of the
diffractive data shows a resonant contribution of a system Kρ in the 1+ waves with invari-
ant mass ∼ 1270 MeV/c2, and a two-peak structure in the 1+ K∗π system, at ∼ 1240 MeV
and ∼ 1400 MeV/c2. In non-diffractive reactions (such as the baryon exchange reaction
K−p → Σ−(Kππ)+ [50], the hypercharge exchange reaction π−p → (Kππ)Λ [51], and
pp̄ annihilation [52, 53]) one often observes only one resonance. The most conclusive and
high-statistics sample of K1(1270) and K1(1400) mesons was collected by the ACCMOR
Collaboration with the WA3 experiment [45]. The WA3 fixed target experiment accumu-
lated data from the reaction K−p → K−π+π−p with an incident kaon energy of 63 GeV.
The partial wave analysis of the reaction final state is described in Sec. 3.4.

In the currently accepted description [5], the two peaks are associated with two partially
overlapping resonances, the K1(1270) and the K1(1400), both decaying to the Kππ final
state. Models including a higher number of resonances have also been proposed [54]. The
masses, widths and decay modes of theK1 mesons are briefly summarized in Table 3.1. The
K1(1270) decays predominantly through the Kρ intermediate state, while the decays of the
K1(1400) proceed almost exclusively via the K∗π channel. The experimental properties
of the K1 mesons suggest that the K1(1270) and the K1(1400) mesons are nearly equal
admixtures of the strange members of the C = +1 and C = −1 octets [55–57], where the
mixing is parameterized by a mixing angle θK ; this is further discussed in Sec. 3.2.

37
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Meson JP M (MeV) Γ (MeV) Decay Modes Fraction (Γj/Γ)

K1(1270) 1+ 1273± 7 87 ± 7 Γ1 : Kρ (42 ± 6)%
Γ2 : K∗

0 (1430)π (28 ± 4)%
90 ± 20 † Γ3 : K∗(892)π (16 ± 5)%

Γ4 : Kω (11.0 ± 2.0)%
Γ5 : Kf0(1370) (3.0 ± 2.0)%
Γ6 : γK0 seen
(K∗π)D−wave/(K∗π)S−wave 1.0 ± 0.7

K1(1400) 1+ 1402± 7 174 ± 13 Γ1 : K∗(892)π (94 ± 6)%
Γ2 : Kρ (3.0 ± 3.0)%
Γ3 : Kf0(1370) (2.0 ± 2.0)%
Γ4 : Kω (1.0 ± 1.0)%
Γ5 : K∗

0 (1430)π not seen
Γ6 : γK0 seen
(K∗π)D−wave/(K∗π)S−wave 0.04 ± 0.01

K∗(1410) 1− 1414 ± 15 232 ± 21 Γ1 : K∗(892)π > 40%
Γ2 : Kπ (6.6 ± 1.3)%
Γ3 : Kρ < 7%
Γ4 : γK0 seen

K∗
2 (1430) 2+ 1425.6± 1.5 174 ± 13 Γ1 : Kπ (49.9 ± 1.2)%

Γ2 : K∗(892)π (24.7 ± 1.5)%
Γ4 : Kρ (8.7 ± 0.8)%
non Kππ modes

K∗(1680) 1− 1717 ± 27 322 ± 110 Γ1 : Kπ (38.7 ± 2.5)%
Γ2 : Kρ (31.4+4.7

−2.1)%
Γ3 : K∗(892)π (29.9+2.2

−4.7)%

Table 3.1: Properties of selected strange mesons (†=estimate). Data are reproduced from
Ref. [5].

3.2 The K1 mixing angle

The complicated experimental picture described in the previous section has been at-
tributed to the presence of two kaon resonances, the K1A and K1B, that belong to different
SU(3) octets. In the framework of SU(3) it is possible to define the analogs of the G
parity, GV and GU , for the U and the V spin [58], respectively. The K1A and K1B are then
eigenstates of GV and GU , although they are not eigenstates of G parity. If the Hamilto-
nian is invariant under SU(3) transformations, the K1A and K1B cannot mix, as they have
opposite GV parities (GV = −C). When SU(3) is broken, however, the strange members
of the C = +1 and C = −1 can mix, while for the corresponding non-strange states the G
parity is still conserved and no mixing occurs.

The mixing relations can be written as:

|K1(1400)〉 = |K1B〉 sin θK + |K1A〉 cos θK , (3.1)

|K1(1270)〉 = |K1B〉 cos θK − |K1A〉 sin θK , (3.2)

where the K1(1270) and K1(1400) are the mass eigenstates. Different conventions exist for
the mixing angle θK , and are discussed in Sec. 3.4.2.

A mechanism for the mixing of K1 mesons was proposed in Ref. [57]. The K1A and
K1B states are coupled one another via their decay channels K∗π and Kρ [57]:

|K1A〉 ↔ |K∗π〉 ↔ |K1B〉, |K1A〉 ↔ |Kρ〉 ↔ |K1B〉 (3.3)
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No mixing is produced in the SU(3) limit, as a cancellation occurs between these concurring
transitions.

The effect of a nonzero mixing angle θK is to enhance the K∗π decay mode and sup-
press the Kρ for one mass eigenstate, and vice versa for the other one. The value of θK
has been investigated for many years using different approaches, relying on the available
experimental information about the masses, the decay patterns, and the production rates
of the K1(1270) and K1(1400) mesons in diffractive processes and τ decays [45, 49, 56, 59].

Although a consensus on the value of |θK | has not been reached, yet, most phenomeno-
logical papers are based on the values |θK | = 33◦, 58◦ obtained in Ref. [59] from the masses
and branching fractions of K1(1270) and K1(1400) rates. An analysis of the most recent
data of τ decays points to the values |θK | = (69± 16± 19)◦ or |θK | = (49± 16± 19)◦ [49].
The ambiguities in the determination on θK can in principle be relieved by the study
of B decays to K1(1270)γ and K1(1400)γ [61] and charmonium decays to K1(1270)0K̄0

and K1(1400)0K̄0 [62]. Although currently available data samples are probably too small,
high-luminosity experiments at the charm threshold, such as BESIII [63], and future Super
B-factories may be able to measure these transitions with sufficient precision.

In this work we extract all the relevant information about the K1 system, including
the θK mixing angle, from the K-matrix analysis of the ACCMOR data [45], discussed in
Sec. 3.4.

3.3 K1 resonances in B decays

The production ofK1 mesons inB decays has been observed in the B → J/ψK1(1270) [64],
B → K1(1270)γ [65], and B → K1(1270)φ [66] decay channels. Previous searches for the
B → K1(1400)π transitions resulted in the upper limits B0 → K1(1400)+π− < 1.1 × 10−3

and B+ → K1(1400)0π+ < 2.6 × 10−3 at the 90% confidence level (C.L.) [67].
Most searches for rare B meson decays to two-body systems containing an unstable

particle, or resonance, rely on the so-called “quasi-two-body” approximation. This ap-
proximation rests on the assumption that the decay amplitude can be factorized in a
product of sequential two-body decay amplitudes.

Several quasi-two-body decay chains can in principle result in the same multiparticle
final state, and models usually have to accommodate for these extra contributions. In
order to simplify the analysis of the experimental data, it is common practice to sum up
the contribution from each different channel incoherently. Interference effects are either
neglected (as in Refs. [64,65]) or accounted for as sources of systematic uncertainty (as in
Ref. [66]). There exist several circumstances under which this is a good approximation:

• the kinematic regions populated by each channel do not significantly overlap, as for
two narrow resonances that are separated in mass by several times their widths;

• rapidly varying phases across the phase space are averaged out: they could be as-
sociated, e.g., to random combinations of final state particles at reconstruction level
(i.e., combinatorial background);

• for selected observables, interference effects between two resonances with different
spin-parity quantum numbers are negligible as long as acceptance effects do not spoil
the orthogonality condition for the amplitudes (expressed by an integral over the
phase space);
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• interference with continuum background can be safely neglected, as the qq (q =
u, d, s, c) event topology and kinematics are different from that of Υ (4S) events (as
will be discussed in Chapter 4); the impact parameter for B meson daughters is
larger, on average, than that for qq final state particles, as the B meson lifetime is
& 1 ps; the “tag-side” of the event in the e+e− → Υ (4S) → BB process will be
different from that in e+e− → qq (tagging information is in fact sometimes used for
background suppression).

The K1 system represents a very special case, as it consists of two wide and overlapping
resonances that share the same spin-parity assignment and decay to the same Kππ final
state; interference between the two resonances can therefore be sizeable.

For B meson decays to three body final states, Dalitz Plot techniques have proven
effective in accounting for the simultaneous presence of several interfering decay channels.
For these transitions, the kinematics of the decay in the B rest frame can be fully param-
eterized in terms of two variables, and therefore represented on a plane. The complete
description of a four body decay, in the rest frame of the decaying particle, requires in-
stead five kinematic variables; the techniques devised so far to generalize the Dalitz Plot
method to higher-dimensional spaces (e.g., for the analysis of the resonant structures in
D0 → K−π+π+π− [68,69]), do not retain the pictorial immediacy of the three-body Dalitz
plot. In addition, B → K1π transitions are expected to be rare, with branching fractions
of order 10−6 calculated under the näıve factorization hypothesis [70, 71] or in the QCD
factorization framework [72]. After accounting for the efficiency, the signal in the recon-
structed sample for the B → K1π analysis is therefore expected to consist of no more
than a few hundred events. Although Dalitz Plot analyses have already been performed
on three-body rare charmless B decays of comparable rate [73], the increased number of
kinematic variables characterizing a four-body decay prevents a full amplitude analysis of
the B → K1π transition at the statistics collected by the present B-factories.

Our approach consists in a quasi-two-body analysis of the B → K1π decays, in which a
single K1 component accounts for both K1(1270) and K1(1400). The primary information
extracted in this analysis will therefore be the combined decay rate of B0 (B+) mesons into
K1(1270)+π− and K1(1400)+π− (K1(1270)0π+ and K1(1400)0π+). (Charge conjugation is
implied throughout the text). We allow for interference effects between the K1 resonances
in the three-body K1 → Kππ decays. These effects are expressed in terms of a set ζ of two
effective parameters for the relative contribution and phase of the K1(1270) and K1(1400)
production amplitudes.

The exact interference pattern depends on the detailed distribution of the final state
particles, i.e. on the masses, widths, and spins of all the possible intermediate states in
the Kππ decay, and on the magnitude and phase of the amplitude for each decay channel.
Under the quasi-two-body approximation, we characterize the propagation and decay of
the K1 resonances according to the results of the analysis of the Kππ system produced in
diffractive reactions (Sec. 3.4). We’ll postpone a detailed description of the model for B
decays until Sec. 3.5.

Once the signal model has been defined, it is possible to derive the distributions for
any relevant experimental observable from a full Monte Carlo (MC) simulation, taking
into account the response of the detector [74]. As shown by previous analyses of B mesons
decays to final states containing an axial-vector meson and a pseudoscalar meson [33–35], a
particularly useful set of observables is represented by the energy-substituted massmES, the
energy difference ∆E, the Fisher discriminant F constructed from a linear combination of
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topological variables, the reconstructed Kππ invariant mass mKππ, and an angular variable
H related to the spin of the Kππ resonance. These observables are defined and discussed
in Sec. 4. The mKππ distribution, in particular, is sensitive to the relative contribution
of the K1(1270) and K1(1400) channels. The analytical description of the dependence of
the mKππ distribution on the production parameters ζ would require the parameterization
of acceptance effects in several variables and the evaluation of a multi-dimensional phase
space integral. Instead, we sample the mKππ distribution on the nodes of a grid in the
two-dimensional space spanned by the production parameters ζ. At each node, the mKππ

distribution is described with a non-parametrical template modeled upon a MC distribution
generated according to the values of ζ corresponding to that node. In this way it is possible
to compare the mKππ distribution in data with each sampled distribution by means of a
scan.

3.4 The partial wave analysis of the Kππ system

The PDG data are largely based on the results obtained by the ACCMOR Collaboration
in Ref. [45]. There, a two-resonance, six-channel K-matrix model was used to describe the
resonant Kππ JP = 1+ system in the K−p → K−π+π−p data collected by the WA3
experiment, both at low t′ values (0 ≤ |t′| ≤ 0.05 GeV2) and high t′ values (0.05 ≤ |t′| ≤
0.7 GeV2, where |t′| is the four momentum transfer squared with respect to the recoiling
proton). The data is split into bins, 20 MeV/c2 wide, of the Kππ invariant mass. For each
invariant mass bin, a partial wave analysis [76–78] of the K+π+π− system was performed.
The diffractive production of the ωK− final state, with ω → π+π−π0 was also observed,
showing a single peaking structure consistent with the one observed in the K−π+π− final
state at ∼ 1270 MeV/c2. However, the ωK data were not further analyzed [45].

The partial wave analysis allows to decompose the K+π+π− system in states of different
spin-parity JP = 1+, and extract the intensities and relative phases of the contributions
from distinct intermediate resonances, angular momenta, and magnetic substates.

In the isobar model the decay of the K+π+π− system is supposed to always proceed
through an intermediate Kπ or ππ state (the isobar), represented by a complex factor
describing the dependence of the amplitude on the mass of the resonant two-body system
(usually a Breit-Wigner function) multiplied with the appropriate spin-parity term. The
1+ partial waves included by the ACCMOR Collaboration to model the low t′ data are
1+S0+(K∗π), 1+S0+(ρK), 1+P0+(K∗

0 (1430)π), 1+P0+(f0(1370)K), 1+D0+(K∗π), where
the channels are identified by the notation JPLMη followed by the isobar and bachelor
particles. With an abuse of notation, we have indicated the (Kπ)S−wave and (ππ)S−wave

isobars with K∗
0(1430) and f0(1370), respectively: this notation is consistent with the PDG

entries for theK1 resonances [5]. Here J denotes the total angular momentum, P the parity,
L the orbital angular momentum of the bachelor particle (in spectroscopic notation: S for
L = 0, P for L = 1, D for L = 2, ...), M and η the magnetic substate of the Kππ system
and the naturality of the exchange in the production process [77]. The intensity and phase
relative to the 1+S0+(K∗π) amplitude are extracted for each channel.

The results of the partial wave analysis for JP = 1+ waves in low t′ data are shown in
Fig. 3.1. Points and error bars have been reproduced from Fig. 13 of Ref. [45] by reading the
graphs from a scanned copy of the article (several software tools exist to extract data points
from the digital version of a scientific publication). Following the paper by the ACCMOR
Collaboration [45], we fit the intensity and phase differences for the 1+ waves with a K-
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Figure 3.1: Points with error bars: results of the partial wave analysis of the K−π+π− sys-
tem in low t′ WA3 data [45] for JP = 1+ waves, reproduced from Fig. 13 in Ref. [45].
Intensity (left) and phase relative to the 1+S0+(K∗π) amplitude (right) for the (a)
1+S0+(K∗π), (b, c) 1+S0+(ρK), (d, e) 1+P0+(K∗

0(1430)π), (f, g) 1+P0+(f0(1370)K),
and (h, i) 1+D0+(K∗π) channels. The solid lines represent the K-matrix model fit to data,
and the dashed lines the contribution from the background.
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matrix model in the P-vector approach [79]. We are induced to repeat the fit performed
by ACCMOR by the fact that only a subset of the fitted values for the parameters of the
model are reported in Ref. [45]. Furthermore, the observed intensity and phase shifts in
Fig. 3.1 cannot be used directly, as they include the contribution of the background.

3.4.1 The model

A K-matrix formulation may be useful whenever two nearby and potentially overlapping
resonances are present and the violation of the unitarity of the scattering amplitudes is of
concern; it has been extensively used in the past to parameterize two-body reactions of the
type ab→ cd.

The formulation of Ref. [79] generalizes the K-matrix formalism to describe the produc-
tion of resonances in more complex reactions. The key assumption underlying the P-vector
approach is that the two-body system in the final state is an isolated one and that the two
particles do not interact with the rest of the final state in the production process.

Although the formulation adopted by ACCMOR for the K-matrix is not the most
general possible, and although several parameterizations other than a K-matrix could be
used [78], we are mainly concerned with obtaining a reliable description of the relative
intensity and phases between the amplitudes of the different decay channels, for each one
of the K1 resonances.

ACCMOR’s model accounts for the production of two K1 resonances that are allowed to
decay in six channels (the numbering will be retained throughout this
work): 1) 1+S0+(K∗π), 2) 1+S0+(ρK), 3) 1+P0+(K∗

0 (1430)π), 4) 1+P0+(f0(1370)K),
5) 1+D0+(K∗π) and 6) 1+S0+(ωK). In the following, the index a will indicate the K1

state of higher mass (i.e. the K1(1400)), and the index b will denote the K1 state of lower
mass (i.e. the K1(1270)). In order to be consistent with the partial wave analysis of the
WA3 data, we describe the isobars in the model with the parameters reported in Table 3.2.

Isobar Mean mass ( GeV/c2) Width ( GeV) References
K∗ 0.896 0.051 [5]
ρ 0.776 0.146 [5]
K∗

0 1.250 0.600 [45]
f0(1370) 1.256 0.400 [80]

ω 0.783 0.008 [5]

Table 3.2: Parameters for the isobars used in the K-matrix model.

We parameterize the production amplitude for each channel in the reaction K−p →
(K−π+π−)p as

Fi = eiδi
∑

j

(1 − iKρ)−1
ij Pj , (3.4)

where the index i (and similarly j) represents the ith channel [79]. The δi parameters are
offset phases with respect to the 1+S0+(K∗π) channel (δ1 ≡ 0): they are introduced and
left float in the fit in order to accommodate for any mismatch between the data and the
assumptions made in the partial wave analysis or in the fitting amplitudes [45, 76, 81].

The K-matrix is real and symmetric by construction. The dominance of the two K1

resonances in the dynamical behavior of the amplitudes is signalled by the presence of two
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poles in the K-matrix K:

Kij =
faifaj
Ma −M

+
fbifbj

Mb −M
, (3.5)

where M is the Kππ invariant mass, and the poles Ma and Mb are real [82]. Since the
model comprises six channels, the K-matrix is a 6 × 6 matrix. The decay couplings fαi
(α = a, b) are defined as the products

fαi = gαi
BL
i (M) (3.6)

of a decay constant gαi (real, but allowed to be negative) and a centrifugal barrier factor
BL
i . The barrier factors BL

i are given by [76]:

BL
i (M) =

[

qi(M)2R2

1 + qi(M)2R2

]L/2

, (3.7)

where qi is the breakup momentum in channel i. Typical values for the interaction radius
squared R2 [83] are in the range 5 < R2 < 100 GeV−2 [81] and the value R2 = 25 GeV−2

is used.

As seen above, the physical resonances K1(1270) and K1(1400) are mixtures of the two
SU(3) octet states K1A and K1B. Assuming that SU(3) violation manifests itself only in
the mixing, we impose the following relations [45, 82]:

ga1 = 1
2
γ+ cos θK +

√

9
20
γ− sin θK , (3.8)

gb1 = −1
2
γ+ sin θK +

√

9
20
γ− cos θK , (3.9)

ga2 = 1
2
γ+ cos θK −

√

9
20
γ− sin θK , (3.10)

gb2 = −1
2
γ+ sin θK −

√

9
20
γ− cos θK , (3.11)

where γ+ and γ− are the couplings of the SU(3) octet states to the ρK and K∗π S-wave
channels:

〈K∗π|K1A〉 = 1
2
γ+ = 〈ρK|K1A〉, (3.12)

〈ρK|K1B〉 = −
√

9
20
γ− = −〈K∗π|K1B〉. (3.13)

Since the ωK data were not analyzed by the ACCMOR Collaboration [45], the parameters
for the ωK channel are not fitted and the couplings to the ωK channel are fixed to 1/

√
3

of the ρK couplings [45], as follows from the quark model.

The decay of the K−π+π− system can be expressed as the decay chain

K1 → V3 + h4, V3 → h5 + h6, h = π,K , (3.14)

i.e., the isobar V3 in the two body final state V3 + h4 is an unstable particle V3 itself,
that decays to the h5 + h6 system. Therefore, the V3 + h4 system is often referred to as a
quasi-two-body final state. In order to account for the unstable nature of the isobar, the
phase space for this decay chain is taken as the two particle phase space element evaluated
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at the complex mass of V3. The elements of the diagonal phase space matrix ρ(M) are
therefore approximated with the (non-relativistic) form:

ρij(M) =
2δij
M

√

2m∗m4

m∗ +m4
(M −m∗ −m4 + i∆), (3.15)

where m4 is the mass of the bachelor particle h4, and m∗ (∆) is the pole mass (half width)
of the intermediate resonance state V3 [84].

The production vector P consists of a background term D [81, 85, 86] and a direct
production term R, according to the following relation among vector elements:

Pi = Ri +
∑

j

(1 + iτKij)Dj , (3.16)

where τ is a constant.
R is given by

Ri =
fpafai
Ma −M

+
fpbfbi

Mb −M
, (3.17)

where fpa and fpb represent the amplitudes for producing the statesK1(1400) andK1(1270),
respectively, and are complex numbers. As the overall phase can be chosen arbitrarily, we
assume fpa to be real. We furthermore assume fpa and fpb don’t depend on M .

A typical feature of diffractive reactions is the production of systems that show up
as bumps at rather small masses but do not correspond to resonances [87]. Such systems
seem to be produced in diffractive reactions only. A dynamical model (the Deck effect [88])
was proposed to describe the diffractive production of such nonresonant systems. This
mechanism is connected with diffractive excitation seen as a general consequence of the
composite nature of hadrons. Pictorially, a pion component in the incident hadron may be
perturbed by the proton incoming at not too small an impact parameter [87]. A feature that
could be ascribed to such a mechanism can be observed in Fig. 3.1(a) at M ∼ 1.1 GeV/c2.

The Deck background amplitudes are parameterized by a complex amplitude D
(0)
i eiφi

modulated by a mass dependence of the form proposed in Ref. [89]:

Di = D
(0)
i eiφi

1

M2 −M2
K

BL
i (M) (3.18)

where MK is the mass of the incident kaon. For the 1+D0+(K∗π) channel we set D
(0)
5 = 0

as in the ACCMOR analysis [45]. For the ωK channel we set D
(0)
6 = 0 (choosing D

(0)
6 =

1/
√

3D
(0)
2 doesn’t affect the results appreciably).

Including the bare Deck amplitude Eq. 3.18 in the production vector P accounts for
the effects of rescattering through the K1 resonances, as illustrated in Ref. [81, 85, 90] for
a K-matrix model with one resonance and one channel. The form in Eq. 3.16 represents
the generalization to a K-matrix model with more resonances and more decay channels.
The term multiplied by the constant τ in Eq. 3.16 (in the following, we’ll refer to it as the
“τ -term”) is introduced when expressing the Deck background amplitude as proposed in
Ref. [90]. In this model, the constant τ measures the separation in space of the produced
particles. In particular, for localized production processes τ is large, while the spatially
diffuse Deck mechanism corresponds to small values of τ . The ACCMOR Collaboration
finds a value τ = 0.4 to be appropriate for the small |t′| region (0 < |t′| < 0.05 GeV2)
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considered here. This value was obtained from the analysis of the diffractive production of
the 3π system [81, 91] and was used also for the analysis of the Kππ system, which relies
on the same model.

The ACCMOR’s fit to the results of the Kππ partial wave analysis was not sensitive
to the value of τ [45]. It should be noted, however, that if τ is fixed to a nonzero value,
the amount of background depends on the exact choice of the normalization used for the
phase space term. In particular, if this choice greatly differs from the one used by the
ACCMOR’s Collaboration, fixing the same value τ = 0.4 in the fit could result in the
τ -term dominating the total background amplitude. Since the τ -term has the same poles
as the direct production term R, overestimating τ would undermine the stability of the fit,
that might therefore erroneously ascribe the peaking structures in Fig. 3.1 to background,
as in Ref. [54] (Fig. 6). We choose therefore to fix τ to 0, so that we are left with a
production term similar to the one used in [86]:

Pi = Ri +Di. (3.19)

This is a legitimate approximation, as the Deck background corresponds to small values of
τ [90], as stated above.

3.4.2 Correspondence between different notations

Before proceeding to the fit, we want to clear any potential issues in the interpretation
of the results, that may arise from the use, in the literature, of at least three different sets
of notations. In this section we will illustrate the notations used in Refs. [45], [56], and [59],
and identify the correspondence between the different conventions.

In order to uniform the notation, we’ll use |h〉 to indicate |K1(1400)〉 (i.e. |Qa〉 in
ACCMOR notation [45] and |Q2〉 in SLAC notation [56]; “h” is for “higher mass”) and |l〉
to indicate |K1(1270)〉 (i.e. |Qb〉 in ACCMOR notation [45] and |Q1〉 in SLAC notation [56];
“l” is for “lower mass”). For the |K1A〉 and |K1B〉 states (A for the a1 C = +1 multiplet, B
for the b1 C = −1 multiplet), we’ll use |+〉 (for C = +1) and |−〉 (for C = −1), respectively.

For the couplings we’ll retain the notation specific to each paper, therefore for the cou-
plings of the |+〉 state we’ll use γ+ (ACCMOR [45]), gK (SLAC [56]), fa (Suzuki [59]);
for the couplings of the |−〉 state we’ll use γ− (ACCMOR [45]), gB (SLAC [56]), fb
(Suzuki [59]). As for the mixing angle, θK will refer to the ACCMOR convention (as
this is the default notation in this work, K refers to K1), θC to SLAC (C for Carnegie)
and θS to Suzuki’s notation [59].

Suzuki notation

In the Suzuki paper [59], the mixing relations are defined in Eq. (2.5) as:

|h〉 = |+〉 cos θS − |−〉 sin θS, (3.20)

|l〉 = |+〉 sin θS + |−〉 cos θS .
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The couplings are defined in Eq. (2.3) and (2.4) [59]:

〈K∗π|h〉 = +
1

2
fa cos θS +

3√
20
fb sin θS , (3.21)

〈K∗π|l〉 = −1

2
fa sin θS +

3√
20
fb cos θS,

〈ρK|h〉 = +
1

2
fa cos θS −

3√
20
fb sin θS,

〈ρK|l〉 = −1

2
fa sin θS −

3√
20
fb cos θS.

The relative phases of the ρK and K∗π decay amplitudes are opposite for the C = +1 and
C = −1 state as stated in Ref. [57]:

〈K∗π|+〉 = −〈ρK|+〉, 〈K∗π|−〉 = +〈ρK|−〉. (3.22)

ACCMOR notation

In the ACCMOR paper [45], the mixing relations are:

|h〉 = +|+〉 cos θK + |−〉 sin θK , (3.23)

|l〉 = −|+〉 sin θK + |−〉 cos θK ,

while the couplings are defined as [45]:

〈K∗π|h〉 = +
1

2
γ+ cos θK +

3√
20
γ− sin θK , (3.24)

〈K∗π|l〉 = −1

2
γ+ sin θK +

3√
20
γ− cos θK ,

〈ρK|h〉 = +
1

2
γ+ cos θK − 3√

20
γ− sin θK ,

〈ρK|l〉 = −1

2
γ+ sin θK − 3√

20
γ− cos θK .

The relative phases of the ρK andK∗π decay amplitudes are opposite to those in Suzuki [59]:

〈K∗π|+〉 = +〈ρK|+〉, 〈K∗π|−〉 = −〈ρK|−〉. (3.25)

However, we can to redefine the sign of the K∗π state so that the same relation as in
Ref. [59] is obtained:

〈K∗π|h〉 = −1

2
γ+ cos θK − 3√

20
γ− sin θK , (3.26)

〈K∗π|l〉 = +
1

2
γ+ sin θK − 3√

20
γ− cos θK ,

〈ρK|h〉 = +
1

2
γ+ cos θK − 3√

20
γ− sin θK ,

〈ρK|l〉 = −1

2
γ+ sin θK − 3√

20
γ− cos θK .

It can be noticed that it is now possible to find a correspondence between the couplings in
Suzuki convention [59] and those in ACCMOR convention [45] by identifying:

θK ↔ −θS, γ+ ↔ fa, γ− ↔ −fb. (3.27)
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SLAC notation

Finally, in the SLAC notation [56], the couplings are defined as:

〈K∗π|h〉 = −1

2
gK sin θC +

3√
20
gB cos θC , (3.28)

〈K∗π|l〉 = +
1

2
gK cos θC +

3√
20
gB sin θC ,

〈ρK|h〉 = −1

2
gK sin θC − 3√

20
gB cos θC ,

〈ρK|l〉 = +
1

2
gK cos θC − 3√

20
gB sin θC .

This choice corresponds to identifying:

θC ↔ π

2
− θK , gK ↔ γ+, gB ↔ −γ−. (3.29)

3.4.3 Ambiguities

There appear to be several ambiguities for the best fit of the K-matrix model to the
ACCMOR data [45]. Here we identify and characterize the most relevant for the analysis.
For simplicity we consider only the K∗π and ρK S-wave channels (two intensities and one
relative phase). As we have defined the Qa meson to represent the state of higher mass,
we have not considered ambiguities that can be reduced to an interchange of the Qa and
Qb mass poles (i.e. Ma ↔ Mb).

In order to conduct this study, we have investigated the behavior of the ratio of K∗π
and ρK production amplitudes (Eq. 8 in Ref. [82]):

αeiβ =
fa2(Mb −M) + gfb2(Ma −M) + iρ1(fa2fb1 − fa1fb2)(gfa1 − fb1)

fa1(Mb −M) + gfb1(Ma −M) + iρ2(fa1fb2 − fa2fb1)(gfa2 − fb2)
, (3.30)

where we have defined (following ACCMOR):

fa1 ≡ 〈K∗π|h〉, fb1 ≡ 〈K∗π|l〉, fa2 ≡ 〈ρK|h〉, fb2 ≡ 〈ρK|l〉, (3.31)

and g is the ratio fpb/fpa of the production parameters for the |h〉 (fpa) and |l〉 (fpb) states.
It is always possible to choose fpa > 0 (i.e. real and positive).

We identify the following set of potential ambiguities (the others can result from a
combination of any number of them):

1. θK 7→ θK + π, γ± unchanged; θK 7→ θK + π, γ± 7→ −γ±; because of this, it is possible
to restrict the discussion to values of θK in the [−π/2, π/2] range;

2. θK 7→ −θK + π, γ− 7→ −γ−, fpb 7→ −fpb, γ+ unchanged;

3. θK 7→ θK − π/2, γ+ 7→ γ−, γ− 7→ −γ+; however, this transformation doesn’t leave
αeiβ invariant: instead, αeiβ 7→ −αeiβ, i.e. β 7→ β + π. In the ACCMOR fit
model, small phase shifts between the model and the data are allowed. They are
accounted for by the “offset phases” δi; we anticipate from Sec. 3.4.4 that the fit
to the ACCMOR data [45] yields θK ∼ 70◦, and that this solution is associated to
“small” (i.e. |δi| < 90◦) offset phases. The companion solution for θK 7→ θK − π/2 is
associated to offset phases of order π (i.e. δi 7→ δi + π) and is therefore disfavored by
data. We will not consider this ambiguity further.
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3.4.4 Results of the fit

The production amplitudes were fitted to the intensity of the five Kππ channels in
Fig. 3.1 together with the phases measured relative to 1+S0+(K∗π) amplitude [45].

We write the intensities as: [92]

I(M) =
1

2
|Fi(M)|2 Re ρi(M), (3.32)

while the relative phases are given by:

ψ(M) = arg

[

Fi(M)

F1(M)

]

. (3.33)

Following the analysis of Section 3.4.3, we seek solutions corresponding to positive
values of the γ+ parameters, as found in the ACCMOR analysis [45]. The data sample
consists of 215 bins. The results of this fit are displayed in Fig. 3.1 and show a good
qualitative agreement with the results obtained by the ACCMOR Collaboration [45].

We obtain χ2 = 855, with 26 free parameters, while the ACCMOR Collaboration ob-
tained χ2 = 529. We interpret this difference as due to slight inaccuracies in extracting the
errors on the data points from the WA3 paper [45]. These discrepancies do not appreciably
affect the extracted central values and errors of the parameters of the model, summarized
in Table 3.3, and are therefore innocuous for the purposes of the present work. Although
neither fit is formally a good one, the model succeeds in reproducing the relevant features
of the data.

Figure 3.1 also shows the background only contribution to the intensity of each channel.
We don’t observe the large background contributions claimed in Ref. [54]. Instead, the Deck
background accounts for the low-mass bump in the 1+S0+(K∗π) intensity, as expected. The
K-matrix model after background-removal is shown in Fig. 3.2. In particular, the effect
of the Deck background on the relative phases for each channel can be inferred from the
plots.

The errors in Table 3.3 are of systematic origin and are derived by shifting the mass
scale of the histogram by ±20 MeV, corresponding to the interval of the binning. Errors
have been calculated only for the parameters that enter the model for B decays, described
in Sec. 3.5.

3.5 Model for K1 mesons production in B decays

The K-matrix model introduced above has been adapted to describe the production
of K1 mesons in B decays in the quasi-two-body analysis outlined in Sec. 3.3. The Deck
background is removed from the model, as Deck background is expected to be negligible
in non-diffractive processes [92]. In this way, the K-matrix accounts for the K1 signal
contribution only, while the backgrounds arising from resonant and non-resonant B decays
to the (Kππ)π final state will be taken into account separately.

The parameters of the K-matrix can be classified in two sets: the first set of parameters
describes the propagation and decay of the K1 resonances, while the second set describes
the production of the K1 system. This is illustrated pictorially in Fig. 3.3. The first
set comprises the mass poles Mα (α = {a, b}), the decay constants gα,i, and the offset
phases. Under the factorization assumption, the values for these parameters can be fixed
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Parameter Fitted value Values in Ref. [45]
Ma 1.40 ± 0.02 1.40 ± 0.02
Mb 1.16 ± 0.02 1.17 ± 0.02
θ 72◦ ± 3◦ 64◦ ± 8◦

γ+ 0.75 ± 0.03 0.78 ± 0.1
γ− 0.44 ± 0.03 0.54 ± 0.1
ga3 0.02 ± 0.03
gb3 0.32 ± 0.01
ga4 −0.08 ± 0.02
gb4 0.16 ± 0.01
ga5 0.06 ± 0.01
gb5 0.21 ± 0.04
δ2 −31◦ ± 1◦ ∼ −30◦

δ3 82◦ ± 2◦ ∼ 90◦

δ4 78◦ ± 4◦ ∼ 90◦

δ5 20◦ ± 9◦ ∼ 0◦

fpa 18 11
Re(fpb) −22 −23
Im(fpb) 5 −13

Re(D
(0)
1 eiφ1) 65

Im(D
(0)
1 eiφ1) 21

Re(D
(0)
2 eiφ2) −30

Im(D
(0)
2 eiφ2) −14

Re(D
(0)
3 eiφ3) 16

Im(D
(0)
3 eiφ3) 9

Re(D
(0)
4 eiφ4) 16

Im(D
(0)
4 eiφ4) −20

Table 3.3: Parameters for the K-matrix model extracted from the fit to the WA3 data.
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Figure 3.2: Points with error bars: results of the partial wave analysis of the K−π+π− sys-
tem in low t′ WA3 data [45] for JP = 1+ waves, reproduced from Fig. 13 in Ref. [45].
Intensity (left) and phase relative to the 1+S0+(K∗π) amplitude (right) for the (a)
1+S0+(K∗π), (b, c) 1+S0+(ρK), (d, e) 1+P0+(K∗

0(1430)π), (f, g) 1+P0+(f0(1370)K),
and (h, i) 1+D0+(K∗π) channels. The solid lines represent the K-matrix model fit to data,
after removing the contribution from the Deck background.
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B

π

K1

5

6

3

Figure 3.3: Diagram illustrating the K-matrix description of the production of K1 reso-
nances in B decays. The dashed line connecting the B meson to the π is associated to the
P-vector, while the K1 propagator and the K1 decay are described by the K-matrix.

to those extracted from the fit to the ACCMOR data, since the decay of the K1 mesons is
independent on the production process.

The second set includes the complex production parameters fpa, fpb, that provide an
effective parameterization of the interference effects in the B → K1π process. Since one
global phase is arbitrary, the production parameters can be written in terms of three
real parameters. The production terms can be normalized so that |fpa|2 + |fpb|2 = 1, by
introducing two real production parameters ζ = (ϑ, φ): fpa ≡ cosϑ, fpb ≡ sinϑeiφ, where
ϑ ∈ [0, π/2], φ ∈ [0, 2π]. In this parameterization, tanϑ represents the magnitude of the
production constant for theK1(1270) resonance relative to that for theK1(1400) resonance,
while φ is the relative phase. This parameterization is convenient when performing a scan
over the production parameters ζ, since the physical ranges of ϑ and φ are finite. The
third real parameter is the normalization of the signal contribution and is represented by
the combined branching fraction of B decays to K1(1270)π and K1(1400)π.

For given values of ζ, signal MC samples for B decays to the (Kππ)π final states can be
generated by weighting the (Kππ)π population according to the amplitude
∑

i6=ωK〈Kππ|i〉Fi, where the term 〈Kππ|i〉 consists of a factor describing the angular dis-
tribution of the Kππ system resulting from the K1 decay, an amplitude for the resonant
ππ and Kπ systems, and isospin factors, and is calculated using the formalism described in
Refs. [45, 76]. The ωK channel is excluded from the sum, since the ω → π+π− branching
fraction is only (1.53+0.11

−0.13) %, compared to the branching fraction (89.2 ± 0.7) % of the
dominant decay ω → π+π−π0 [5]. Most of the K1 → ωK decays therefore result in a
different final state than the reconstructed one.

Mass distributions

For the ππ and Kπ resonances, the following ℓ-wave Breit-Wigner parameterization is
used [76]:

BW (m) = (π)−1/2 [m0Γ(m)]1/2

(m2
0 −m2) − im0Γ(m)

(3.34)

with

Γ(m) = Γ(m0)
m0

m

[

q(m)

q(m0)

]2ℓ+1 [
1 +R2q2(m0)

1 +R2q2(m)

]ℓ

, (3.35)

where m0 is the nominal mass of the resonance, Γ(m) is the mass-dependent width, Γ(m0)
is the nominal width of the resonance, q is the breakup momentum of the resonance into
the two-particle final state, and R2 = 25 GeV−2.
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The K∗
0(1430) and f0(1370) amplitudes are also parameterized as Breit-Wigner func-

tions. For the K∗
0 (1430) we assume a mass of 1.250 GeV and a width of 0.600 GeV [45],

while for the f0(1370) we use a mass of 1.256 GeV and a width of 0.400 GeV [80]. As
the resonant structure of the (Kπ)S−wave and (ππ)S−wave systems is not well known, in
Sec. 5.8 we replace the Breit-Wigner formulation for these channels with a phase-shift
parameterization, and evaluate a systematic uncertainty.

Angular distributions

In Fig. 3.4 we show the reference frame [76] chosen to evaluate the distributions of
the products of B → K1π decays, where K1 decays proceed through the intermediate
resonances Xs = {K∗(892), K∗

0(1430)} or Xd = {ρ, f0(1370), ω}. Final state particles are
labeled with a subscript {k, l,m, n}, according to the following scheme: B0 → K+

1 π
−
k ,

K+
1 → X0

sπ
+
l , X0

s → K+
mπ

−
n or B0 → K+

1 π
−
k , K+

1 → X0
dK

+
l , X0

d → π+
mπ

−
n for neutral B

meson decays, and B+ → K0
1π

+
k , K0

1 → X+
s π

−
l , X+

s → K0
mπ

+
n or B+ → K0

1π
+
k , K0

1 →
X0
dK

0
l , X

0
d → π+

mπ
−
n for charged B meson decays. The angular distribution for the K1

system produced in B decays can be expressed in terms of three independent angles (Θ, β,
Φ). In the K1 rest frame, we define the Y axis as the normal to the decay plane of the K1,
and orient the Z axis along the momentum of l (Fig. 3.4a). Θ and Φ are then the polar
and azimuthal angles of the momentum of k, respectively, in the K1 rest frame (Fig. 3.4b).
We define β as the polar angle of the flight direction of m relative to the direction of the
momentum of l (Fig. 3.4c).

In the helicity formalism, the angular function for the transition amplitude is given
by [75]

A =
∑

−j≤λ≤j
C(L, j, J |0,−λ)DJ∗

0,−λ(Φ,Θ,−Φ)dj−λ,0(β), (3.36)

where the notation reflects the one in [76]. The resulting angular parts of the transition
amplitudes for S-, P -, and D-wave decays of the K1 axial vector (JP = 1+) mesons with
scalar (JP = 0+) and vector (JP = 1−) intermediate resonances Xs,d are given by:

AS ∝ cos Θ cosβ + sin Θ sinβ cos Φ, (3.37)

AP ∝ cos Θ, (3.38)

AD ∝ −2 cos Θ cosβ + sin Θ sin β cos Φ. (3.39)

Isospin factors

For the most abundant K1 decay channels we calculate:

〈K+π−π+|1+S(K∗π)〉 =

√
2

3
AS(pπ+ ,pK+)BWℓ=0(K

+π−) (3.40)

〈K+π−π+|1+S(ρK)〉 =
1√
6
AS(pK+ ,pπ+)BWℓ=0(π

+π−) (3.41)

〈K+π−π+|1+P (K∗
0π)〉 =

√
2

3
AP (pπ+ ,pK+)BWℓ=1(K

+π−) (3.42)

〈K+π−π+|1+D(K∗π)〉 =

√
2

3
AD(pπ+ ,pK+)BWℓ=2(K

+π−) (3.43)
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Figure 3.4: Reference frame for the angular distribution with an “l-type” isobar, as shown
in [76]. For “n-type” and “m-type” isobars, the reference frame is obtained by means of a
permutation of the indices.

where the numerical factors are SU(2) Clebsch-Gordan coefficients [5], while BW (h+h
′−)

and AS,P,D are the normalized mass distribution and angular distribution, described in
Sec. 3.5 and Sec. 3.5, respectively. These expressions can be compared to those in Appendix
B of Ref. [93]. In the above expressions, the argument of the angular function specifies the
permutation of the indices of the final state particles used in the definition of the reference
frame relevant to each channel (Fig. 3.4). We point out that, in Eq. 3.41, the Clebsch-
Gordan coefficient undergoes a change of sign under the interchange of the labels of the
two pions, while (Θ,Φ, β) 7→ (Θ, π + Φ, π − β); the other equations, e.g., Eq. 3.40, are left
unchanged.

For the other three-particles final states we obtain

〈K0π0π+|1+S(K∗π)〉 =
1

3

[

AS(pπ+ ,pK0)BWℓ=0(K
0π0) − AS(pπ0 ,pK0)BWℓ=0(K

0π+)
]

〈K0π0π+|1+S(ρK)〉 =
1√
3
AS(pK0 ,pπ+)BWℓ=0(π

+π0)

〈K0π0π+|1+P (K∗
0π)〉 =

1

3

[

AP (pπ+ ,pK0)BWℓ=1(K
0π0) − AP (pπ0 ,pK0)BWℓ=1(K

0π+)
]

〈K0π0π+|1+D(K∗π)〉 =
1

3

[

AD(pπ+ ,pK0)BWℓ=2(K
0π0) − AD(pπ0 ,pK0)BWℓ=2(K

0π+)
]
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〈K+π0
1π

0
2|1+S(K∗π)〉 =

1√
36

[

AS(pπ0
2
,pK+)BWℓ=0(K

+π0
1) + AS(pπ0

1
,pK+)BWℓ=0(K

+π0
2)
]

〈K+π0
1π

0
2 |1+S(ρK)〉 = 0

〈K+π0
1π

0
2|1+P (K∗

0π)〉 =
1√
36

[

AP (pπ0
2
,pK+)BWℓ=1(K

+π0
1) + AP (pπ0

1
,pK+)BWℓ=1(K

+π0
2)
]

〈K+π0
1π

0
2|1+D(K∗π)〉 =

1√
36

[

AD(pπ0
2
,pK+)BWℓ=2(K

+π0
1) + AD(pπ0

1
,pK+)BWℓ=2(K

+π0
2)
]

The same quantities relevant to the analysis of charged B decay modes are obtained in
a straightforward way from the previous ones by taking the opposite hypercharge Y = S

2
,

i.e., by making the replacements K+ → K̄0, K0 → K−:

〈K0π−π+|1+S(K∗π)〉 =

√
2

3
AS(pπ+ ,pK0)BWℓ=0(K̄

0π−)

〈K0π−π+|1+S(ρK)〉 =
1√
6
AS(pK0 ,pπ+)BWℓ=0(π

+π−)

〈K0π−π+|1+P (K∗
0π)〉 =

√
2

3
AP (pπ+ ,pK0)BWℓ=1(K̄

0π−)

〈K0π−π+|1+D(K∗π)〉 =

√
2

3
AD(pπ+ ,pK0)BWℓ=2(K̄

0π−)

〈K−π0π+|1+S(K∗π)〉 =
1

3

[

AS(pπ+ ,pK−)BWℓ=0(K
−π0) − AS(pπ0 ,pK−)BWℓ=0(K

−π+)
]

〈K−π0π+|1+S(ρK)〉 =
1√
3
AS(pK− ,pπ+)BWℓ=0(π

+π0)

〈K−π0π+|1+P (K∗
0π)〉 =

1

3

[

AP (pπ+ ,pK−)BWℓ=1(K
−π0) − AP (pπ0 ,pK−)BWℓ=1(K

−π+)
]

〈K−π0π+|1+D(K∗π)〉 =
1

3

[

AD(pπ+ ,pK−)BWℓ=2(K
−π0) − AD(pπ0 ,pK−)BWℓ=2(K

−π+)
]

〈K0π0
1π

0
2|1+S(K∗π)〉 =

1√
36

[

AS(pπ0
2
,pK0)BWℓ=0(K̄

0π0
1) + AS(pπ0

1
,pK0)BWℓ=0(K̄

0π0
2)
]

〈K0π0
1π

0
2 |1+S(ρK)〉 = 0

〈K0π0
1π

0
2|1+P (K∗

0π)〉 =
1√
36

[

AP (pπ0
2
,pK0)BWℓ=1(K̄

0π0
1) + AP (pπ0

1
,pK0)BWℓ=1(K̄

0π0
2)
]

〈K0π0
1π

0
2|1+D(K∗π)〉 =

1√
36

[

AD(pπ0
2
,pK0)BWℓ=2(K̄

0π0
1) + AD(pπ0

1
,pK0)BWℓ=2(K̄

0π0
2)
]

Contribution of the ωK channel

The contribution of the ωK channel is not included into the calculation of the Kππ
Dalitz plot population [45], but it is taken into account when evaluating the overall effi-
ciencies for the reconstruction of B decays, corrected for the branching fraction of the K1

decay to the reconstructed final state.
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The correction is calculated by first considering the production amplitude for the
K+π+π− final state in the ρK channel. According to the above calculations, and omitting
the angular dependence, we obtain

F2〈K+π−π+|1+S(ρK)〉 = F2
1√
6

[mρΓρ(m)]1/2
(

m2
ρ −m2

)

− imρΓρ(m)
. (3.44)

The amplitude associated to the ωK channel is then given by:

F6〈K+π−π+|1+S(ωK)〉 = F6
1√
2

[

mωΓρ(m)Γω→2π

mω

mρ

Γρ→2π
)
]1/2

(m2
ω −m2) − imωΓω(m)

, (3.45)

where we use the following values [5], expressed in MeV:

Γω→2π = (14.4 ± 2.3) × 10−2,

Γρ→2π = 146.4

and the 1√
2

factor arises because of the convention used [82, 93]. The contribution of the

ωK channel is finally rescaled for the ω → π+π− branching fraction, which is equal to
(1.70 ± 0.27)%.

3.6 Kinematics

The kinematics of the quasi-two-body decay B → h4 + P , P → h3 + D,
D → h1 + h2, where the hi’s are pseudoscalar particles, can be expressed in terms of
several Mandelstam-like variables. These are defined as:

si ≡ (Q− pi)
2,

tij ≡ (Q− pi − pj)
2,

where Q = p1 + p2 + p3 + p4. Only five of these variables are independent.
The relevant quantities for the calculation of the amplitudes in Sec. 3.5 can be expressed

as follows (the label P or D in parenthesis indicates that the quantity is evaluated in the
rest frame of P or D, respectively):

E1(P ) =
m2
B + 2m2

1 +m2
4 − t23 − s1

2
√
s4

E2(P ) =
m2
B + 2m2

2 +m2
4 − t13 − s2

2
√
s4

E3(P ) =
m2
B + 2m2

3 +m2
4 − t12 − s3

2
√
s4

E4(P ) =
m2
B −m2

4 − s4

2
√
s4

|~pi(P )| =
√

E2
i(P ) −m2

i
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E1(D) =
t34 −m2

2 +m2
1

2
√
t34

E3(D) =
s4 − t34 −m2

3

2
√
t34

|~pi(D)| =
√

E2
i(D) −m2

i

~p3(P ) · ~p4(P ) =
s3 −m2

B −m2
3

2
+ E3(P )

(√
s4 + E4(P )

)

~p1(P ) · ~p3(P ) =
m2

1 +m2
3 − t24

2
+ E1(P )E3(P )

~p1(P ) · ~p4(P ) =
s1 −m2

B −m2
1

2
+ E1(P )

(√
s4 + E4(P )

)

~p1(D) · ~p3(D) =
m2

1 +m2
3 − t24

2
+ E1(D)E3(D)

cos Θ =
~p3(P )

|~p3(P )|
· ~p4(P )

|~p4(P )|

cos β =
~p1(D)

|~p1(D)|
· ~p3(D)

|~p3(D)|

cos Φ =
~p1(P ) −

(

~p1(P ) · p̂3(P )

)

p̂3(P )
∣

∣~p1(P ) −
(

~p1(P ) · p̂3(P )

)

p̂3(P )

∣

∣

· ~p4(P ) −
(

~p4(P ) · p̂3(P )

)

p̂3(P )
∣

∣~p4(P ) −
(

~p4(P ) · p̂3(P )

)

p̂3(P )

∣

∣

3.7 Monte Carlo production

We have generated about 900 000 events using EvtGen [94] with a user defined module,
which modulates the K+π−π+π− phase space according to the amplitude Agen:

|Agen|2 = |BWK1
|2 ·
(

0.24 · |BWK∗|2 + 0.43 · |BWρ|2 + 0.20 · |BWK∗
0
|2
)

+

|BWK ′
1
|2 ·
(

0.81 · |BWK∗|2 + 0.13 · |BWρ|2
)

, (3.46)

where:

BWi =

√
Γi

(m−mi) + iΓi/2
. (3.47)

Γi and mi are the width and mean mass of the resonance i, respectively, and their value is
set according to Table 3.2; m is the invariant mass of the resonant particles. The amplitude
is not Bose-symmetrized: we estimate that the effect of neglecting Bose-symmetrization
in signal MC is of order 0.5%, which corresponds to the fraction of events for which s2 >
s4. The output of the EvtGen simulation is passed to the simulation of the full detector
response.

The events generated with the simplified model described above are weighted in order
to obtain the MC distributions associated to different values of the production terms. The
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weight of each event is the ratio of the squared amplitude A(ζ) calculated as in Sec. 3.4.1
to the squared amplitude Agen (3.46):

w(ζ) =
|A(ζ)|2
|Agen|2

. (3.48)

The weights are calculated from generator level information. In Fig. 3.5 and Fig. 3.8,
the obtained angular distributions in the reweighted datasets for different spin-parity con-
figurations are compared to those obtained from the EvtGen built-in models in order to
ensure that our custom implementation of reweighting is reliable and compatible with the
results of the default simulation procedure.



3.7 Monte Carlo production 59

Θcos 
-1 -0.5 0 0.5 10

2000

4000

6000

8000

10000

12000

14000

16000

18000

)πS(K*+ - 1Θcos 

βcos 
-1 -0.5 0 0.5 10

2000

4000

6000

8000

10000

12000

14000

16000

18000

)πS(K*+ - 1βcos 

Φ
0 0.5 1 1.5 2 2.5 30

5000

10000

15000

20000

25000

)πS(K*+ - 1Φ

Θcos 
-1 -0.5 0 0.5 10

500

1000

1500

2000

2500

3000

3500

4000

 - SP6637Θcos 

βcos 
-1 -0.5 0 0.5 10

500

1000

1500

2000

2500

3000

3500

4000

4500

 - SP6637βcos 

Φ
0 0.5 1 1.5 2 2.5 30

1000

2000

3000

4000

5000

6000

 - SP6637Φ

Figure 3.5: Angular distributions in reweighted (first row) and default (second row) MC
samples ((K∗π)S−wave channel).
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Figure 3.6: Angular distributions in reweighted (first row) and default (second row) MC
samples (ρK channel).
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Figure 3.7: Angular distributions in reweighted (first row) and default (second row) MC
samples ((K∗

0π) channel).
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Figure 3.8: Angular distributions in reweighted MC sample ((K∗π)D−wave channels).



Chapter 4

Discriminating variables

4.1 Kinematical variables

The kinematics of Υ (4S) → BB decays is characterized by ∆E andmES.These variables
allow the separation between BB events and combinatorial background.

• mES = [(1
2
s + pΥ (4S) · pB)2/E2

Υ (4S) − p2
B] (energy substituted mass) corresponds to

the mass of the B candidate calculated using the reconstructed momentum and the
energy of the initial e+e− state, in the LAB frame.

• ∆E = E∗
B − 1

2

√
s is defined as the difference between the energy of the B candidate

and its expected value, calculated from the energy of the initial e+e− state, in the
CM frame.

mES is related to the reconstructed momenta of the final state particles, while ∆E is
related to the reconstructed energies. Because of this, ∆E depends on the mass hypothesis
assigned to the final state particles, while mES does not.

The mES resolution is dominated by the beam energy fluctuations, while the ∆E res-
olution is dominated by the error on the measurement of the B energy. This is relevant
to the choice of the control sample for the verification of the agreement between data and
MC. In particular, the mES distribution of correctly reconstructed B decays is largely in-
dependent of the B decay mode, while for ∆E it is preferable to choose a control sample
with a similar kinematics as the reconstructed signal B decay mode. The B → Dπ decay
mode, with D → Kππ, therefore represents a good control sample; charmless decay modes
to the same final state as the signal have similar ∆E and mES distributions, but are too
rare to constitute a viable control sample.

4.2 Topological variables

Several topological variables can be defined, which are useful to distinguish between the
jet-like structure of e+e− → qq (q = u, d, s, c) events (the so-called continuum background),
and the isotropic distribution of decay products in BB events (in the CM frame). These
variables are here defined in terms of quantities (momenta and angles) measured in the
CM frame. Two recurring concepts in their definitions are those of

• rest-of-event (ROE), i.e., the set of all detected tracks and photons in the event that
have not been used to reconstruct the signal B candidate;

61
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• the thrust (T ) and thrust axis (~v) [95]: the thrust T is defined as

T = max
|~n|=1

∑

i |~n · ~pi|
∑

i |~pi|
, (4.1)

where the sum runs over the detected particles. The thrust can be computed by
summing over all tracks and photons in the event (T ), or considering only objects
belonging to the B decay tree (TB) or to the ROE (TROE). The thrust axis ~v is given
by the ~n vector for which the maximum of T is attained.

Here we list the topological variables that enter the analysis:

• cos θT is the cosine of the angle θT between the thrust axis of the B candidate and
the thrust axis of the ROE, calculated in the CM frame. The | cos θT| variable has a
nearly flat distribution for BB events while it is sharply peaked at +1 for continuum
background events (Fig. 4.1).

|Tθ|cos
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.02

0.04

0.06

0.08

0.1

0.12

Figure 4.1: | cos θT | : comparison between Monte Carlo signal events (solid line) and off-
peak data (dashed line).

• the Fisher discriminant F =
∑

i αixi is a statistical test, defined as a linear combina-
tion of several variables, where the αi coefficients are chosen so that they maximize
the separation between the F distributions in the signal and background hypotheses.
The Fisher discriminant used in this analysis has the following form:

F = 0.367·(1.60287·| cosθC |+1.89495·| cosθB |−0.66531·L0+2.6685·L2)−1.3, (4.2)

where the coefficients are optimized on samples of MC signal events and off-peak
data. The following variables enter the definition of F : the absolute value of the
cosine of the angle between the direction of the reconstructed B candidate and the
beam axis (| cos θB|), the absolute value of the cosine of the angle between the thrust
axis of the reconstructed B candidate and the beam axis (| cos θC |), and the two
monomials L0 and L2, with

Ln =
∑

i=ROE

pi × | cos(θi)|n, (4.3)

where the sum runs over the reconstructed tracks and neutrals in the ROE, pi is the
momentum of particle i, and θi is the angle between the flight direction of particle i
and the thrust axis of the B candidate. These variables are shown in Figure 4.2.
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Figure 4.2: Variables used in the F calculated for BB MC signal events (solid line) and
off-peak data (dashed line): | cos θB|, top left; | cos θC |, top right; L0, bottom left; L2,
bottom left.

4.3 Characterization of the Kππ resonant structure

The invariant mass mKππ of the Kππ system and an angular variable H are used to
characterize the resonant structure in the decay of the B candidate and distinguish the K1

resonances from other Kππ resonances in the selected mass region. The mKππ variable, in
particular, can also provide information on the parameters describing K1 production.

The angular variable H is defined as the cosine of the angle α between the flight
direction of the primary pion and the normal to the plane defined by the momenta of the
K1 candidate’s daughters, evaluated in the rest frame of the K1 candidate. This variable
is particularly suited for the characterization of B → K1π, K1 → Kππ transitions, since
it does not depend on the details of the K1 → Kππ decays.

The angular distributions for B → KXπ decays are calculated in the helicity formalism.
In this way it is possible to check for possible inaccuracies in the simulation of the angular
distributions in Monte Carlo samples. Tables 4.1 – 4.2 summarize the behavior of the
angular distributions for B → KXπ, KX → Kππ decays, which are assumed to proceed
through a chain of quasi-two-body processes B → Ph1, P → Dh2, D → h3h4, where h1,
h2, h3, h4 are pseudo-scalar particles and several combinations of the D and P spin-parities
are considered.

The calculation is performed for two sets of coordinates:

• the first choice of coordinates is (cos Θ,Ψ), where Θ is the polar angle of the flight
direction of h1 from the flight direction of h2, Ψ is the azimuthal angle of the flight
direction of h1 in the plane orthogonal to the flight direction of h2, and both angles
are evaluated in P rest frame;
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JP (M) JP (D) dΓ/(d cosΘ dΨ d cosβ) ∝
1+ 1− pure S-wave (cos Θ cosβ + sin Θ cos Ψ sinβ)2

1+ 1− pure D-wave (−2 cos Θ cosβ + sin Θ cos Ψ sin β)2

1+ 0+ cos2 Θ
1− 1− sin2 Θ sin2 Ψ sin2 β
2+ 1− cos2 Θ sin2 Θ sin2 Ψ sin2 β

Table 4.1: Angular distributions for KX(Kππ)π decays (in terms of Θ, Ψ, β).

JP (M) JP (D) dΓ/(d cosα dγ d cosβ) ∝
1+ 1− pure S-wave sin2 α (− cos γ cosβ − sin γ sin β)2

1+ 1− pure D-wave sin2 α (2 cos γ cosβ − sin γ sin β)2

1+ 0+ sin2 α cos2 γ
1− 1− cos2 α sin2 β
2+ 1− sin2 α cos2 α cos2 γ sin2 β

Table 4.2: Angular distributions for KX(Kππ)π decays (in terms of α, γ, β).

• the second choice of coordinates is (cosα, γ), where α is the polar angle of the flight
direction of h1 from the normal to the plane of M decay, γ is the azimuthal angle of
the flight direction of h1 in the plane of P decay, and both angles are evaluated in P
rest frame.

In both sets, β is the angle between the flight direction of h3 and the flight direction of
particle h2, calculated in D rest frame. The Jacobian for the change of variables from the
first set of coordinates to the second one is |J | = 1.

The amplitudes for the B → K1(Kππ)π decays listed in Table 4.2, where K1 is an axial
vector meson, factorize in M ∼ sinα f(γ,xD), where xD indicates two variables which
completely describe the Kππ Dalitz plot, given the Kππ invariant mass. Stated otherwise,
the distribution of H ≡ cosα doesn’t depend on the orbital angular momentum of the
products of K1 decays. Because of this, we assume that interference effects between the
nearby K1 resonances do not appreciably affect the signal distribution in this observable.
A comparison between the H distributions for JP (M) = 1+ and JP (M) = 2+ Monte Carlo
events is shown in Figure 4.3.
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Figure 4.3: Angular variable shapes for JP (M) = 1+ (left) and JP (M) = 2+ (right)
without the effects of detector acceptance and resolution.



Chapter 5

Analysis of B decays to K1(1270)π
and K1(1400)π

5.1 Data and Monte Carlo samples

The analysis presented in this thesis is based on the data sample recorded by BABAR

in the period 1999-2006, corresponding to (454.3± 5.0) × 106 BB pairs and an integrated
luminosity of 413 fb−1. The uncertainty associated to the B counting, i.e., the measurement
of the number of produced Υ (4S) mesons, is 1%.

In addition to the data collected at the Υ (4S) peak (on-resonance data,
√
s = 10.58 GeV),

a reduced data sample of 41.2 fb−1 is collected about 40 MeV below the Υ (4S) peak (off-
resonance data,

√
s = 10.54 GeV), and is used to study the e+e− → qq background events.

The properties of background and signal events are studied on large samples of sim-
ulated Monte Carlo events before looking at the data, thus preventing the analyst from
introducing artificial biases in the measurement. For the simulation of the production
and decay of the BB pairs, the EvtGen package [94] is used. A GEANT4-based Monte
Carlo simulation is used to model the response of the detector [74], taking into account
the varying accelerator and detector conditions.

The production of inclusive BB Monte Carlo samples is centralized and consists of
702.8 × 106 B0B0 events and 702.6 × 106 B+B− events, equivalent to about 3.1 times
the on-resonance integrated luminosity. The branching fractions used in the simulation are
taken from the experimental measurements (where available), or from theoretical estimates.
Quark fragmentation is in general simulated with the JETSET generator [96].

In addition to generic BB samples, selected BB Monte Carlo samples are generated
according to exclusive decay modes for both signal and background. The signal exclusive
Monte Carlo samples are listed in Table 5.1, while the background samples will be studied
in Sec. 5.3

In order to treat long decay chains efficiently, EvtGen allows the amplitude for each
node in the decay chain to be written independently of the other nodes in the tree, while
the framework handles the bookkeeping of amplitudes and spin density matrices [94]. As
each node is simulated individually, this procedure cannot account for interference effects
between two decay chains.

To simulate the effects of interference, we generate samples of about 900 000 events
each for the decay sequences B0 → K1(1400)+π−, K1(1400)+ → K+π+π−, and B+ →
K1(1400)0π+, K1(1400)0 → K0

S
π+π−, with K0

S
→ π+π−. The kinematics of the whole

65
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decay chain is generated, and each generated event is reweighted according to the total
decay amplitude as described in Sec. 3.7.

Decay chain Events

B0 → X, B0 → K1(1400)
+π−, K1(1400)

+ → K∗0π+, K∗0 → K+π− 350 000

B0 → X, B0 → K1(1270)
+π−, K1(1400)

+ → K+ρ0, ρ0 → π+π− 175 000
B− → X, B+ → K1(1400)

0π+, K1(1400)
0 → K∗+π−, K∗+ → K0

Sπ+, K0
S → π+π− 387 000

B− → X, B+ → K1(1270)
0π+, K1(1400)

0 → K0
Sρ0, ρ0 → π+π−, K0

S → π+π− 387 000

Table 5.1: Exclusive signal Monte Carlo samples used for the analysis.

5.2 Reconstruction of the decay chain

The B0 → K+
1 π

−, K+
1 → K+π+π− decay chain is reconstructed by means of a vertex fit

of all combinations of four charged tracks having a zero net charge. Similarly we reconstruct
the B+ → K0

1π
+, K0

1 → K0
S
π+π− chain by combining a K0

S
candidate with three charged

tracks.

5.2.1 Charged tracks reconstruction

Charged particle tracks are reconstructed from the spatial hits in the SVT and the
DCH: an iterative fitting algorithm based on the Kalman filter technique performs pattern
recognition and determines for each track the five parameters of the helix described by a
charged particle in the magnetic field of BABAR’s solenoid. The full map of the magnetic
field, the detailed distribution of the material in the detector and the expected energy loss
of the particle as it traverses the detector are taken into account.

In order to improve the accuracy in the determination of the event shape variables, we
require a minimum of 5 tracks in each event.

With the exception of the pions from K0
S

decays, the charged pions and kaons produced
in B → K1π decays are expected to originate from the e+e− interaction region: we therefore
require that the distance of the point of closest approach of the track to the interaction
point be less than 1.5 cm in the XY plane (transverse to the magnetic field) and less than
2.5 cm along Z (parallel to the magnetic field). Each track used in the reconstruction
of the B → K1π decay chain is furthermore required to have a transverse momentum
pt > 50 MeV/c and a momentum |p| < 10 GeV/c.

5.2.2 Charged tracks identification

The charged particles used for reconstructing the B candidate are identified as either
pions or kaons, and must not be consistent with the electron, muon or proton hypotheses.
The K0

S
daughters are not subject to particle identification (PID) requirements.

The π/K/p separation is achieved by likelihood-based classifiers calculated from the
specific ionization loss dE/dx measured in the SVT and in the DCH, the Cerenkov angle
θC , and the number Nγ of Cerenkov photons reconstructed in the DIRC. The particle ID
information from each of the three subdetectors is used to calculate a likelihood, for a given
particle hypothesis. A subsystem provides particle information for a charged track only if
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a number of minimal requirements are satisfied. The global likelihood for a given particle
hypothesis is thus given by the product of the likelihoods of the subsystems that pass the
requirements for that track.

Muon candidates are primarily identified by: the measured number of hadronic inter-
action lengths traversed from the outside radius of the DCH through the IFR iron, and its
difference with respect to the predicted penetration depth for a muon of the same momen-
tum and angle; the average number and the variance of hits per IFR layer; the χ2 for the
geometric match between the track extrapolation into the IFR and the IFR hits, the χ2 of
a polynomial fit to the IFR hits; the continuity of the tracks in the IFR, and the energy
release in the electromagnetic calorimeter. This information is passed as input to a neural
network.

In BABAR several “PID selectors” for each particle specie are defined, that correspond
to different sets of cuts on the likelihood ratios for the π/K/p discrimination or on the
output of the neural network for the muon identification, and result in different selection
efficiencies and mis-identification rates. In order to retain a high selection efficiency, we
identify charged pions by vetoing the alternative hypotheses, i.e., the kaon, electron, proton,
and muon hypotheses. Similarly, we identify charged kaons by vetoing the pion, electron,
proton, and muon hypotheses.

5.2.3 Composite candidates reconstruction

K0
S

candidates

The K0
S

candidates are reconstructed from pairs of oppositely-charged pions with an
invariant mass in the range [486, 510] MeV/c2, whose decay vertex is required to be dis-
placed from the K1 vertex by at least 3 standard deviations. A χ2 probability greater than
0.001 is required.

K1 candidates

For the B0 modes we reconstruct the K1 candidate in the K+
1 → K+π+π− decay by

combining three tracks, identified as two charged pions and one charged kaon. For the B+

modes we reconstruct the K1 candidate in the K0
1 → K0

S
π+π− decay by combining two

charged pions with a K0
S

candidate. We require the reconstructed mass mKππ to lie in the
range [1.1, 1.8] GeV/c2, and the K1 momentum in the center of mass frame to be in the
range [2.30, 2.65] GeV/c. To reduce background from B → V π decay modes, where V is a
vector meson decaying to Kππ such as K∗(1410) or K∗(1680), we require |H| < 0.95.

B candidates

B mesons are reconstructed by combining a K1 candidate with a charged pion (“pri-
mary” or “prompt”) with a center of mass momentum pCMS ≥ 1.35 GeV/c. The prompt
track and the K1 candidate are constrained to originate from a common vertex.

We reduce fake B candidates from qq events by requiring | cos θT| < 0.8. A loose
selection is applied on the observables entering the fit: 5.25 < mES < 5.29 GeV/c2, |∆E| <
0.15 GeV, and −3 < F < 3. Background from B decays to final states containing charm
or charmonium mesons is suppressed by means of vetoes.
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5.2.4 Charm vetoes

A B-meson candidate is rejected if it shares at least one track with a background B
candidate reconstructed in the B0 → D−π+, B0 → D∗−π+, B+ → D̄0π+, or B+ → D̄∗0π+

decay modes, and satisfying 5.27 < mES < 5.29 GeV/c2 and −0.15 < ∆E < 0.15 GeV. The
D mesons are reconstructed in the Kπ, Kππ, and Kπππ decays, with at most one neutral
pion in the final state and an invariant mass 1.800 < mD < 1.940 GeV/c2. The D∗ meson
is reconstructed by combining a D meson with a charged or neutral pion, or a photon.
For each background decay mode and for each signal B candidate, we select, among the
background B candidates that share at least one track with the signal B candidate, the
candidate with the highest B-vertex fit probability.

To avoid excessively deteriorating the signal efficiency for the B+ → K0
1π

+ mode, we
apply the veto in this channel only if the reconstructed neutral (charged) D mesons further
satisfy 1.836 < mD0 < 1.892 GeV/c2 (1.841 < mD+ < 1.897 GeV/c2).

5.2.5 Charmonium vetoes

A signal candidate is also discarded if any π+π− combination consisting of the “primary”
pion from the B decay together with an oppositely charged pion from the K1 decay has
an invariant mass mππ consistent with the cc mesons χc0(1P ) or χc1(1P ) decaying to a
pair of oppositely charged pions, or J/ψ and ψ(2S) decaying to muons (where the muons
are misidentified as pions). We reject the signal candidates for which mππ is in one of the
following ranges:

• J/ψ: 3.040 < mππ < 3.150 GeV/c2;

• ψ(2S): 3.670 < mππ < 3.695 GeV/c2;

• χc0: 3.375 < mππ < 3.455 GeV/c2;

• χc1: 3.480 < mππ < 3.540 GeV/c2.

5.2.6 Best-candidate selection

When reconstructing B candidates, it is possible that, in the same event, more than one
combination of reconstructed particles satisfy the selection criteria. The average number of
candidates in events containing at least one candidate is 1.2 for both the B0 → K+

1 π
− and

B+ → K0
1π

+ modes, as evaluated in on-resonance data. In events with multiple candidates,
we select the candidate with the highest χ2 probability of the B vertex fit.

For Monte Carlo signal events, or simulated events with similar topologies, it is possible
to classify the reconstructed B candidates in two classes:

• Truth Matching (TM) candidates: the reconstructed decay tree can be completely
associated to the generated particle content and the simulated topology;

• Self Cross Feed (SCF) candidates: at least one of the final state particles from which
the B candidate is reconstructed cannot be matched to any of the particles from the
decay of the simulated B meson.
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The rate at which the best-candidate selection algorithm selects a TM candidate, when-
ever present, over a SCF candidate characterizes its performances. Due to the specific
kinematics of multicandidate events, this rate depends on the location of the event in the
four-particle phase space. On average, this rate ranges between 85% and 90%, as evaluated
on the Monte Carlo signal samples.

5.2.7 Classification of the events on the K1 → Kππ Dalitz plot

After the best-candidate selection, we classify the events in mutually exclusive categories
according to the invariant masses of the ππ and Kπ systems in the reconstructed decays
of the K1 mesons.

The events that satisfy the requirement 0.846 < mKπ < 0.946 GeV/c2 belong to class
1 (“K∗ band”: the range has been calculated from the full width of the K∗ mesons,
Γ ∼ 50 MeV, and is centered on the mass of the K∗0 meson); events not included in class
1 for which 0.500 < mππ < 0.800 GeV/c2 belong to class 2 (“ρ band”); all other events are
rejected.

This classification is based on the experimental prejudice, based on the literature, that
the K1(1400) decays predominantly through the K∗π channel, while the ρK channel is
dominant in K1(1270) decays.

5.2.8 Efficiency

The signal reconstruction and selection efficiencies are obtained from the reweighted
signal Monte Carlo samples described in Sec. 3.7.

A “raw efficiency” ǫ can be calculated as ratio of the number of TM candidates surviving
all cuts, including the best-candidate selection, over the number of generated events. For
a weighted Monte Carlo sample, the reconstruction and selection efficiency is calculated
as ǫ =

∑

i wiχi/
∑

i wi, where the index i runs over the generated events, wi is the weight
associated to the ith event, and χ is a characteristic function such that χi = 1 if a TM
candidate survives the selection for that event and χi = 0 otherwise. Likewise, the error

on ǫ is given by ∆ǫ/ǫ = (
∑

i w
2
iχi)

1/2
/
∑

i wiχi. A procedure similar to the one described
above can be applied to other counting problems with weighted Monte Carlo samples, by
a suitable redefinition of the characteristic function χ.

The signal reconstruction and selection efficiencies depend on the assumed production
parameters ζ. For B0 modes these efficiencies range from 5 to 12% and from 3 to 8% for
events in class 1 and class 2, respectively. For B+ modes the corresponding values are 4-9%
and 2-7%. The fractions of selected signal events in class 1 and class 2 range from 33% to
73% and from 16% to 49%, respectively, depending on the production parameters ζ. About
11% to 19% of the signal events are rejected at this stage. For combinatorial background,
the fractions of selected events in class 1 and class 2 are 22% and 39%, respectively, while
39% of the events are rejected. In Fig. 5.1 we show the efficiency for TM events corrected

for the branching fraction B(K
(′)
1 → K+π−π+) as a function of ϑ and φ. The fraction

of SCF candidates in the selected samples after the best-candidate selection depends only
slightly on ϑ and φ and corresponds to 25% and 20% of TM events for B0 and B+ modes,
respectively.
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Figure 5.1: Efficiency for TM events, corrected for the K1 → Kππ branching fractions, as
a function of the production parameters ζ. Top: B0, “class 1” events; middle: B0, “class
2” events; bottom: B+, “class 1” events.
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5.3 BB backgrounds

The BB background is first studied in inclusive generic B0B0 and B+B− samples.
The size of these samples is 3.1 times the on-resonance integrated luminosity. The avail-
able statistics is therefore not sufficient to perform detailed studies of the distributions in
several observables, or to allow a sufficient number of independent toy samples to be be
embedded into simulated experiments (Sec. 5.6). Moreover, the normalization of charmless
background in generic BB Monte Carlo samples is not fully reliable: more precisely, the
nonresonant multiparticle components generated with the JETSET fragmentation algo-
rithm are generally overestimated, and double counting of some decays has been observed
in the past.

Nevertheless, it is possible to use these samples to identify the background decay chan-
nels that are most likely to enter the selected sample. These are then studied in more
detail using BB MC samples generated according to exclusive decay modes. In particular,
we evaluate the reconstruction efficiency and the number of expected candidates in the
on-resonance data sample.

Because of charge conservation, B+B− events, when reconstructed according to the B0

decay tree, result in SCF candidates for a total of ∼ 470 and ∼ 1160 candidates in class 1
and class 2, respectively (normalized to the on-resonance integrated luminosity). Similarly,
the B0B0 events, when reconstructed as B+B− events, result in SCF candidates for a total
of ∼ 540 and ∼ 980 candidates in class 1 and class 2, respectively. These SCF modes don’t
exhibit any peaking structure.

Background B decays to open charm final states are studied separately from charmless
BB background channels, by reconstructing Monte Carlo cocktails consisting of several
exclusive decay modes with a D or D∗ meson in the final state. Since the mKππ selection
window excludes the D region, most of the charm background is due to combinatorial
background or to the lower tail of the D mass distribution. In the B0 modes, the recon-
struction efficiency for D mesons is further suppressed by the fact that the pions in the
resonant Kππ system are opposite in charge when produced in K1 decays, while they have
the same charge if they come from the fragmentation of a D. Most reconstructed B decays
to charm are therefore combinatorial and have a behavior similar to that of continuum.

Finally, several rare charmless B decays result in the same Kπππ final state as signal,
or to a ππππ final state in which a kaon is misidentified as a kaon. Among the charmless
B decays to Kπππ, the non-resonant decay modes are considered collectively as one single
component, while each peaking background is taken into account separately.

Tables 5.2 and 5.3 report the results of the BB studies for the B0 and B+ modes, re-
spectively. The tables report only the most relevant cross feed modes, which are expected
to result in a nonnegligible background, grouped according to similarities in the distribu-
tions in ∆E, mES, mKππ. The branching fractions of the studied background BB modes
are taken from HFAG [8] and PDG tables [5]. When no BF measurement is available we
assume a reasonable BF. For the B → K∗(1410)π modes we assume half the value of the
ULs quoted in [8] for the B → K∗(1680)π decays.
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Cross Feed Channel MC ǫ (%) B (10−6)
∏Bi # evts

Class 1 candidates
B0 → a±

1 K∓, a+
1 → ρ0π+ 0.138 16.3 ± 3.7 0.5 5.1 ± 1.2

B0 → D−π+, D− → K−π+π− 0.017 2680± 130 0.09 18.6 ± 0.9

B0 → a±
1 π∓, a+

1 → ρ0π+ 0.612 31.7 ± 3.7 0.49 43.2 ± 5.0
B0 → a±

2 π∓, a+
2 → ρ0π+ 0.730 3 ± 3∗ 0.35 3.5 ± 3.5

B0 → π+π+π−π− 0.041 10 ± 10∗ 1 1.9 ± 1.9

B0 → K∗0π+π−, K∗0 → K+π− 1.286 5 ± 5∗ 0.67 19.5 ± 19.5
B0 → ρ0K+π−, ρ0 → π+π− 0.240 10 ± 10∗ 1 10.8 ±10.8
B0 → ρ0K∗0, K∗0 → K+π−, ln 2.577 2.8 ± 0.8 0.67 22.0 ± 6.3
B0 → f0K

∗0, K∗0 → K+π−, f0 → π+π− 1.202 2.1 ± 2.1∗ 0.44 5.0 ± 5.0
B0 → K+π+π−π− 0.108 10 ± 10∗ 1 4.9 ± 4.9

B0 → K∗±(1410)π∓, K∗+(1410) → K∗0π+ (TM) 11.4 5 ± 5∗ 0.39 100.9±100.9

B0 → K∗±
2 (1430)π∓, K∗+

2 (1430) → K∗0π+ (TM) 14.0 3.2 ± 3.2∗ 0.11 22.4 ± 22.4
B0 → K∗±

2 (1430)π∓, K∗+
2 (1430) → ρ0K+ (TM) 4.6 3.2 ± 3.2∗ 0.03 1.9 ± 1.9

B0 → K∗±(1680)π∓, K∗+(1680) → K∗0π+ (TM) 5.7 5.0 ± 5.0∗ 0.14 18.1 ± 18.1
B0 → K∗±(1680)π∓, K∗+(1680) → ρ0K+ (TM) 1.3 5.0 ± 5.0∗ 0.10 3.0 ± 3.0

B0 → K±
1 (1270)π∓, K+

1 (1270) → ωK+ (TM) 0.01 28 ± 28∗ 0.11 0.1± 0.1

Class 2 candidates

B0 → a±
1 K∓, a+

1 → ρ0π+ 0.223 16.3 ± 3.7 0.5 8.3 ± 1.9

B0 → D−π+, D− → K−π+π− 0.035 2680± 130 0.09 38.2 ± 1.8

B0 → a±
1 π∓, a+

1 → ρ0π+ 1.039 31.7 ± 3.7 0.49 73.4 ± 8.5
B0 → a±

2 π∓, a+
2 → ρ0π+ 1.362 3 ± 3∗ 0.35 6.5 ± 6.5

B0 → π+π+π−π− 0.104 10 ± 10∗ 1 4.7 ± 4.7

B0 → ρ0K+π−, ρ0 → π+π− 0.771 10 ± 10∗ 1 34.9 ± 34.9
B0 → K∗0π+π−, K∗0 → K+π− 0.323 5 ± 5∗ 4.9 ± 4.9
B0 → ρ0K∗0, K∗0 → K+π−, ln 0.405 2.8 ± 0.8 0.67 2.8 ± 0.8
B0 → f0K

∗0, K∗0 → K+π−, f0 → π+π− 0.204 2.1 ± 2.1∗ 0.44 0.9 ± 0.9
B0 → K+π+π−π− 0.257 10 ± 10∗ 1 11.7 ± 11.7

B0 → K∗±(1410)π∓, K∗+(1410) → K∗0π+ (TM) 2.4 (3.3) 5 ± 5∗ 0.39 21.3± 21.3

B0 → K∗±
2 (1430)π∓, K∗+

2 (1430) → K∗0π+ (TM) 2.8 (3.8) 3.2 ± 3.2∗ 0.11 4.4 ± 4.4
B0 → K∗±

2 (1430)π∓, K∗+
2 (1430) → ρ0K+ (TM) 12.0 (13.6) 3.2 ± 3.2∗ 0.03 5.1 ± 5.1

B0 → K∗±(1680)π∓, K∗+(1680) → K∗0π+ (TM) 1.0(1.5) 5.0 ± 5.0∗ 0.14 3.1 ± 3.1
B0 → K∗±(1680)π∓, K∗+(1680) → ρ0K+ (TM) 3.9(4.6) 5.0 ± 5.0∗ 0.10 8.8 ± 8.8

B0 → K±
1 (1270)π∓, K+

1 (1270) → ωK+ (TM) 0.03 (0.35) 28 ± 28∗ 0.11 0.3± 0.3

Table 5.2: Potential BB background to B0 → K+
1 π

− modes for events in class 1 (top)
and class 2 (bottom). For each decay mode we give the mode number, MC reconstruction
efficiency ǫ, branching fraction (B) [5,8,98], daughter branching fraction product, estimated
background in ML input. The branching fractions marked with a ∗ are assumptions. PDFs
will be modeled upon a MC sample of the first decay mode listed for each category.
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Cross Feed Channel MC ǫ (%) B (10−6)
∏Bi # evts

Class 1 candidates

B+ → ρ0K∗+ , K∗+ → K0
Sπ+ 2.795 3.6 ± 1.9 0.23 10.5 ± 5.6

B+ → K∗+π−π+, K∗+ → K0
Sπ+ (TM) 0.934 10 ± 10∗ 0.23 9.8 ± 9.8

B+ → ρ0K0
Sπ+ (TM) 0.149 10 ± 10 ∗ 0.346 2.3 ± 2.3

B+ → K∗+f0, K∗+ → K0
Sπ+ , f0 → π+π− 1.315 5.2 ± 1.3 0.23 7.2 ± 1.8

B0 → a+
1 π− 0.0428 33 ± 5 1 6.41 ± 0.97

B+ → a0
1π

+, a0
1 → ρ±π∓ 0.020 20.4 ± 5.8 1 1.8 ± 0.5

B+ → a±
1 K0

S, a±
1 → ρ0π+ 0.346 34.9 ± 6.7 0.346 3.0 ± 0.6

B+ → K∗0
0 π+, K∗0

0 → K+π− 0.003 45.2 ± 6.3 0.62 0.4 ± 0.1

B0 → D(∗)0π+ cocktail 0.010 2490 ± 150 1.000 113.0 ± 6.8

B0 → D(∗)+X cocktail 0.0033 4500 ± 500 1.000 67.4 ± 7.5

B+ → K∗0(1410)π+, K∗0(1410) → K∗+π− (TM) 9.467 5 ± 5∗ 0.133 28.6 ± 28.6
B+ → K∗0(1410)π+, K∗0(1410) → ρ0K0

S (TM) 3.280 5 ± 5∗ 0.008 0.6± 0.6

B+ → K∗0
2 (1430)π+, K∗0

2 (1430) → K∗+π− (TM) 11.578 5.6 ± 2.2 0.038 11.2 ± 4.4
B+ → K∗0

2 (1430)π+, K∗0
2 (1430) → ρ0K0

S (TM) 3.665 5.6 ± 2.2 0.010 0.9 ± 0.4

B0 → K∗0(1680)π+, K∗0(1680) → K∗+π− (TM) 5.432 6.0 ± 6.0∗ 0.046 6.8 ± 6.8
B0 → K∗0(1680)π+, K∗0(1680) → ρ0K0

S (TM) 1.105 6.0 ± 6.0∗ 0.036 1.1 ± 1.1

Class 2 candidates

B+ → ρ0K∗+, K∗+ → K0
Sπ+ 0.896 3.6 ± 1.9 0.23 3.4 ± 1.8

B+ → ρ0K0
Sπ+ (TM) 0.562 10 ± 10∗ 0.345 8.8 ± 8.8

B+ → K∗+π−π+, K∗+ → K0
Sπ+ (TM) 0.143 10 ± 10∗ 0.23 1.5 ± 1.5

B+ → K∗+f0, K∗+ → K0
Sπ+ , f0 → π+π− 0.411 5.2 ± 1.3 0.23 2.2 ± 0.6

B+ → a0
1π

+, a0
1 → ρ±π∓ 0.054 20.4 ± 5.8 1 5.0 ± 1.4

B+ → a±
1 K0

S, a±
1 → ρ0π+ 0.065 34.9 ± 6.7 0.346 3.6 ± 0.7

B+ → K∗0
0 π+, K∗0

0 → K+π− 0.017 45.2 ± 6.3 0.62 2.1 ± 0.3

B0 → D(∗)0π+, cocktail 0.019 2490 ± 150 1.000 214.8 ± 12.9

B0 → D(∗)+X , cocktail 0.010 4500 ± 500 1.000 204.3± 22.7

B+ → K∗0(1410)π+, K∗0(1410) → K∗+π− (TM) 1.95 5 ± 5∗ 0.133 5.9 ± 5.9
B+ → K∗0(1410)π+, K∗0(1410) → ρ0K0

S (TM) 6.76 5 ± 5∗ 0.008 1.2 ± 1.2

B+ → K∗0
2 (1430)π+, K∗0

2 (1430) → K∗+π− (TM) 2.24 5.6 ± 2.2 0.038 2.2 ± 0.9
B+ → K∗0

2 (1430)π+, K∗0
2 (1430) → ρ0K0

S (TM) 9.79 5.6 ± 2.2 0.010 2.5 ± 1.0

B0 → K∗0(1680)π+, K∗0(1680) → K∗+π− (TM) 0.85 6.0 ± 6.0∗ 0.046 1.1 ± 1.1
B0 → K∗0(1680)π+, K∗0(1680) → ρ0K0

S (TM) 4.10 6.0 ± 6.0∗ 0.036 4.1 ± 4.1

Table 5.3: Potential BB background to B+ → K0
1π

+ modes for events in class 1 (top)
and class 2 (bottom). For each decay mode we give the mode number, MC reconstruction
efficiency ǫ, branching fraction (B) [5,8,98], daughter branching fraction product, estimated
background in ML input. The branching fractions marked with a ∗ are assumptions. PDFs
will be modeled upon a MC sample of the first decay mode listed for each category.
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5.4 Fit description

We use an unbinned, extended maximum-likelihood (ML) fit to extract the signal
branching fraction and production parameters. The general form of the likelihood Le,r
for a candidate e to belong to class r can be written as

Le,r =
∑

s

ns,r Ps,r(xe; ζ, ξ), (5.1)

where the probability distribution functions (PDFs) Ps,r are formed using the set of ob-
servables xe = {∆E, mES, F , mKππ, |H|}, and ns,r are the event yields. The subscript
r = {1, 2} corresponds to one of the resonance band classes defined in Sec. 5.2.7, and
the index s represents the event categories used in the fit model. The dependence on the
production parameters ζ is relevant only for the signal PDF, while ξ represents all other
PDF parameters.

5.4.1 Sample composition

Several event categories are included in the fit model. The signal component accounts
for the combined contribution of the K1(1270) and K1(1400) resonances to the resonant
Kππ system in the final state, including interference effects. Background events arise
primarily from random combinations of particles in continuum e+e− → qq events (q =
u, d, s, c) (combinatorial background). The combinatorial background PDF is found to
describe well also the background from random combinations of B tracks, including SCF
candidates from misreconstructed signal-like event topologies. Another important source
of background is represented by B decays that proceed through a decay pattern similar
to signal, e.g., B decays to K∗(1410)π, K∗(1680)π, K∗

2 (1430)π, and the decays to the
nonresonant final states K∗ππ and ρKπ: we refer to these background sources collectively
as “peaking background”, as they exhibit signal-like distributions in the mES, ∆E, and F
observables.

As a mean to improve the stability of the fit, the signal and peaking background cate-
gories are defined to consist of TM candidates only, while SCF candidates are allowed to
be incorporated in the combinatorial background component.

For the analysis of the reconstructed B0 modes, the fit model includes

1. signal,

2. combinatorial background,

3. B0 → K∗(1410)+π−,

4. B0 → K∗(892)0π+π− + ρ0K+π−,

5. B0 → a1(1260)±π∓, and

6. B0 → D−
Kπππ

+.

For the reconstructed B+ modes, the model consists of

1. signal,



5.4 Fit description 75

2. combinatorial background,

3. B+ → K∗(1410)0π+,

4. B+ → K∗(892)+π+π− + ρ0K0
Sπ

+, and

5. B+ → K∗(892)+ρ0.

The contribution from K∗
1(1680)π and K∗

2 (1430)π TM candidates is expected to be
quantitatively small, according to the existing experimental limits on these transitions [5].
Therefore, these components are not included in the models for the B0 or B+ channels.

5.4.2 Free parameters

The signal branching fractions for the B meson decays to the combined K1(1270)π and
K1(1400)π final state are free parameters in the fit. In the definition of Le,r the yields of
the signal category for the two classes are expressed as a function of the signal branching
fraction B as n1,1 = B×NBB× ǫ1(ζ) and n1,2 = B×NBB× ǫ2(ζ), where the total selection
efficiency ǫr(ζ) includes the daughter branching fractions and the reconstruction efficiency
obtained from MC samples as a function of the production parameters.

The yields for the event categories s = 5, 6 (B0 modes) and s = 5 (B+ modes) are fixed
to the values estimated from MC simulated data and based on their previously measured
branching fractions [5,8]. The yields for the other background components are determined
from the fit. We don’t impose any relation between the background yields for region 1 and
the yields for the corresponding components in region 2.

The PDF parameters for the combinatorial background are left free to vary in the
fit, while those for the other event categories are fixed to the values extracted from MC
samples.

5.4.3 Strategy for the extraction of the production parameters

For the B0 modes we perform a negative log-likelihood scan with respect to ϑ and φ.
Although the events in class r = 2 are characterized by a smaller signal-to-background
ratio with respect to the events in class r = 1, including these events in the fit for the
B0 modes helps to resolve ambiguities in the determination of φ in cases where a signal
is observed. At each point of the scan, a simultaneous fit to the event classes r = 1, 2
is performed. For the B+ modes, due to a less favorable signal-to-background ratio and
increased background from B decays, we are not sensitive to φ over a wide range of possible
values of the signal BF. We therefore assume φ = π and restrict the scan to ϑ. At each
point of the scan, we perform a fit to the events in class r = 1 only. The fitted samples
consist of 23167 events (B0 modes, class 1), 38005 events (B0 modes, class 2), and 9630
events (B+ modes, class 1).

The choice φ = π in reconstructed B+ decays minimizes the variations in the fit results
associated with the differences between the mKππ PDFs for different values of φ. This
source of systematic uncertainty is accounted for as described in Sec. 5.8. The variations
in the efficiency ǫ1 as a function of φ for a given ϑ can be as large as 30 %, and are taken
into account in deriving the branching fraction results as discussed in Sec. 5.7.

In order to simplify the fit procedure and reduce its computational cost, the PDF param-
eters of the combinatorial background are extracted from a separate fit to the data, prior
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to the scan. In order not to bias the results on the signal branching fractions and produc-
tion parameters, this preliminary fit relies on only three observables (x = {mES,∆E,F})
that are largely independent of the detailed kinematics of the B → Kπππ decays. The
number of event categories is consequently reduced in the preliminary fit. For the B0

modes, four components are included in the model: combinatorial background, a peaking
BB component, B → a1π, and B → Dπ decays. For the B+ modes, only two components
are included in the model: the combinatorial background, and a peaking BB component.
For the peaking BB component, the mES,∆E and F signal PDFs are used. In subsequent
stages, the PDF parameters for the combinatorial category are fixed to the values extracted
from the preliminary fit.
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5.5 Probability distribution functions

The signal and background PDFs are constructed as products of the PDFs describing
the distribution of each observable. The factorizability of the PDFs rests on the assumption
of negligible correlations between the corresponding observables.

5.5.1 Correlations

The assumption of negligible correlations among the discriminating variables in the
selected data samples has been tested with Monte Carlo samples and in on-resonance
data.

In on-resonance data, the largest linear correlation coefficient is obtained between the
H and mKππ observables, and amounts to 13%. The effect of this correlation has been
studied by parameterizing the PDF for H and mKππ with a two-dimensional nonparametric
model, modeled on on-resonance data, and repeating the fits. No significant difference was
observed with respect to the fit with the factorized form. The other linear correlation
coefficients are below the 10% level.

The linear correlation between two variables x, y in the reweighted samples can be
evaluated as

σxy ≡
∑

i wi(xi − x̄)(yi − ȳ)
√
∑

i wi(xi − x̄)2
√
∑

i wi(yi − ȳ)2
, (5.2)

where x̄ ≡
P

i wixi
P

i wi
, and the index i runs over the selected events. For the Monte Carlo signal

events linear correlations are below the 10% level, with the largest values corresponding
to the ∆E-mKππ (9% in B0 decay modes) and mES-mKππ (−10% in B+ decay modes)
correlation coefficients. These values do not depend sensibly on the production parameters
used in reweighting the sample. The effect of correlations in signal-like components is taken
into account in systematic uncertainties.

5.5.2 PDF parameterization

The ∆E and mES PDFs of the categories 1, 3, 4, and 5 are each parameterized as a sum
of a Gaussian function to describe the core of each distribution, plus an empirical function
determined from MC simulated data to account for the tails of the distribution.

For the combinatorial background we use a first degree Chebyshev polynomial for ∆E
and an empirical phase-space function [97] for mES:

f(x) ∝ x
√

1 − x2 exp
[

−ξ1(1 − x2)
]

, (5.3)

where x ≡ 2mES/
√
s and ξ1 is a parameter that is determined from the fit.

For all categories the F distribution is well described by a Gaussian function with
different widths to the left and right of the mean. A second Gaussian function with a
larger width accounts for a small tail in the distribution and prevents the background
probability from becoming too small in the signal F region. The mES, ∆E, and F PDFs
for the signal and continuum background components are shown in Fig. 5.2.

The production of K∗
1 (1410) and a1(1260) resonances, occurring in B background, is

taken into account in the correspondingmKππ (Fig. 5.3) and |H| PDFs. For all components,
the PDF for |H| is parameterized with polynomials (Fig. 5.4). The mKππ distribution for
the signal depends on ζ. To each point of the ζ scan we therefore associate a different
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nonparametric template (Fig. 5.5), modeled upon signal MC samples reweighted according
to the corresponding values of the production parameters ϑ and φ, as described in Sec. 5.5.3.
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Figure 5.2: PDF for signal (top) and continuum background (bottom, modeled on off-
resonance data) “class 1” events reconstructed in the B0 → K+

1 π
− mode. From left to

right: ∆E, mES, F .
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Figure 5.3: PDF for mKππ in “class 1” background events reconstructed as B0 → K+
1 π

−.
Top, from left to right: B0 → K∗

1 (1410)+π−, B0 → K∗
1(1680)+π−, and B0 → K∗

2 (1430)+π−

components. Bottom, from left to right: continuum background (modeled on off-resonance
data), B0 → K∗(892)0π+π−, and B0 → a1(1260)±π∓ components.
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Figure 5.4: PDF for H in “class 1” signal and background events reconstructed as B0 →
K+

1 π
−. Top, from left to right: signal, B0 → K∗

1(1410)+π−, and B0 → K∗
2 (1430)+π−

events. Bottom, from left to right: continuum background (modeled on off-resonance
data), B0 → K∗(892)0π+π−, and B0 → a1(1260)±π∓ events.

5.5.3 Parameterization of the mKππ signal PDF

The mKππ distribution in signal is described with a nonparametric PDF modeled upon
reweighted signal Monte Carlo events. A one-dimensional kernel estimation PDF (KEYS;
for a brief introduction to applications of kernel estimation in High Energy Physics, see
Ref. [99]) is implemented in the ROOT framework as the RooKeysPdf class. We have modified
this class in order to handle weighted datasets.

The level of “smoothing” achieved by the KEYS PDF is governed by a scale factor
parameter, that is optimized separately for the B0 class 1, B0 class 2, and B+ class 1
events. The chosen scale parameter is used for all ϑ and φ values.

A KEYS PDF is evaluated for each of the points of the scan on the two-dimensional
space spanned by the production parameters ζ (Fig. 5.6 – 5.8). Since the runtime compu-
tation of the function at different mKππ values is computing costly, we have implemented a
lookup table method. We have extended the lookup table to parameterize the dependence
of the PDF shape on the production parameters ζ. This allows to retrieve the PDF values
from precalculated values in memory, using interpolation for values that fall between two
precomputed values.

A common issue when dealing with KEYS PDFs with a gaussian kernel (as in the
RooKeysPdf class) is the parameterization of the distribution near the definition boundaries
for the observable, determined by the selection cuts. The RooKeysPdf class implements a
mirroring technique by which the mKππ distribution is “reflected” across each boundary.
We found, however, that the resulting distribution does not satisfactorily model the region
at the boundary. A better technique consists in temporarily extending the selection limits
on mKππ so that the range in which we are interested is well within the new mKππ definition
boundaries. After modeling the PDF and filling the lookup tables, the mKππ range can be
brought back to the original range.
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Figure 5.5: PDF for mKππ in “class 1” K1(1270)π (ϑ = π/2, left) and K1(1400)π (ϑ = 0,
right) signal events reconstructed in the B0 → K+

1 π
− mode.

5.5.4 Data/MC corrections

We use large control samples to verify the mES, ∆E, and F PDF shapes that are
determined from Monte Carlo samples. We use the B0 → D−π+ decay with D− →
K+π−π−, and the B+ → D̄0π− decay with D0 → K0

Sπ
+π−, which have similar topology

to the signal B0 and B+ modes, respectively. We select these samples by applying loose
requirements on mES and ∆E, and requiring for the D candidate mass 1848 < mD− <
1890 MeV and 1843 < mD0 < 1885 MeV. The selection requirements on the B and D
daughters are similar to those for the B → K1π modes. These selection criteria are
applied both to the data and to the MC events.

There is good agreement between data and MC samples: the deviations in the means
of the distributions are about 0.5 MeV for mES, 3 MeV for ∆E, and negligible for F .
We apply shifts and scale factors, listed in Tables 5.4 and 5.5, to the parameters of core
Gaussians for mES, ∆E, and F .

PDF µ shift σ(L) scale σR scale
∆E −0.00327 ± 0.00033 1.071 ± 0.015
mES −0.00050 ± 0.00004 1.068 ± 0.014
F 0.038 ± 0.018 1.042 ± 0.026 0.918 ± 0.024

Table 5.4: Data/MC corrections for the B0 modes, evaluated from studies of the B0 →
D−π+, D− → K+π−π− control sample.

PDF µ shift σ(L) scale σR scale
∆E −0.00381 ± 0.00052 0.994 ± 0.022
mES −0.00059 ± 0.00007 1.051 ± 0.024
F 0.018 ± 0.033 1.067 ± 0.049 0.942 ± 0.041

Table 5.5: Data/MC corrections for the B+ modes, evaluated from studies of the B+ →
D0π+, D0 → K0

S
π+π− control sample.
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Figure 5.6: mKππ PDF templates for B0 → K+
1 π

− “class 1” events, evaluated at regular intervals in the two-dimensional space spanned
by the production parameters ζ.
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Figure 5.7: mKππ PDF templates for B0 → K+
1 π

− “class 2” events, evaluated at regular intervals in the two-dimensional space spanned
by the production parameters ζ.
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Figure 5.8: mKππ PDF templates for B+ → K0
1π

+ “class 1” events, evaluated at regular intervals in the two-dimensional space spanned
by the production parameters ζ.
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5.6 Validation of the fit procedure

In order to study possible biases introduced by the fit we have applied the fit procedure
to several Monte Carlo samples and studied the distribution of the fit results. Two variants
of these tests are performed: “pure” toys, in which the full sample is generated from the
fit model, and “embedded” toys, in which events from fully simulated MC samples are
included in the sample (continuum background and generic BB events are generated from
the PDFs, since the available MC samples are not sufficient to perform a significant number
of tests).

Pure toys assess the overall feasibility of the optimization procedure, the stability, and
the expected sensitivity of the fit for any free parameter in the model (in particular B, ϑ,
φ). Embedded toys are more suited to estimate the effect of the simplifications introduced
in the model of the signal and BB background contributions. Such model inaccuracies
include: neglected correlations between discriminating variables; inappropriate choices of
PDF parameterizations (e.g., due to the lack of MC statistics or to the computational cost
associated to other parameterizations); the presence of event species for which no explicit
component has been introduced (e.g. SCF events).

In order to reduce the time needed to perform these tests we do not perform the
likelihood scan over the range for ϑ. Instead, at each step of the likelihood scan over the
range for φ, we minimize the negative log-likelihood with respect to the yields and also ϑ.

The size of each simulated sample is tuned to reproduce the size of the on-resonance
selected data sample. The sample composition reflects the expected number of events in
each component of the model. In embedded toys, SCF candidates originating in signal and
peaking background events are also included in the expected proportion.

The signal branching fraction in B0 modes is assumed to be B = 28 × 10−6, which
is an educated guess based on the results of the preliminary analysis in Ref. [100]. For
B+ modes, we have repeated the validation procedure for 0, 80, and 170 signal events.
The values of the production parameters ϑ and φ for each sample are generated randomly
according to a uniform distribution over the physical range. The signal TM and SCF events
are then embedded using an accept and reject method, in which the weights are calculated
as described in Sec. 3.7.

An auxiliary set of toys has shown that for the B+ modes the extraction of φ is not
reliable; the results shown in the following are therefore obtained with the revised strategy,
described in Sec. 5.4.3, in which φ is fixed in the analysis of the B+ modes. The results of
the pure toys are shown in Fig. 5.9 and Fig. 5.10 for the B0 and B+ modes, respectively,
while the results of the embedded toys are shown in Fig. 5.11 and Fig. 5.12. The distribu-
tions of the fitted signal yield or branching fraction and of its error are reported: the bias
is under control both for B0 and B+ modes. The nonresonant K∗ππ + ρKπ and contin-
uum background components serve as “garbage collectors” for SCF events, whose presence
does not impact the signal extraction. Finally, the extracted production parameters are
compared to the generated values and demonstrate the linearity of the fit response.
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Figure 5.9: Results of the pure toys for the B0 modes. Top: distributions of the fitted
values (left) and normalized residuals (right) for the signal branching fraction. Middle,
bottom: distributions of the fitted values (left) and residuals (right) for the production
parameters ϑ (middle) and φ (bottom).
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Figure 5.10: Results of the pure toys for the B+ modes. Top: distributions of the fitted
values (left) and normalized residuals (right) for the signal yield. Bottom: distributions of
the fitted values (left) and residuals (right) for the production parameter ϑ.
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Figure 5.11: Results of the embedded toys for the B0 modes. Top: distributions of the fitted
values (left) and normalized residuals (right) for the signal branching fraction. Middle,
bottom: distributions of the fitted values (left) and residuals (right) for the production
parameters ϑ (middle) and φ (bottom).
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Figure 5.12: Results of the embedded toys for the B+ modes. Top: distributions of the fit-
ted values (left) and normalized residuals (right) for the signal yield. Bottom: distributions
of the fitted values (left) and residuals (right) for the production parameter ϑ.
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5.7 Results

The results of the likelihood scans are shown in Table 5.6 and Fig. 5.13. At each point
of the ζ scan the −2 lnL(B; ζ) function is minimized with respect to the signal branching
fraction B. Contours for the value Bmax(ζ) that maximizes L(B; ζ) are shown in Fig. 5.13c
and Fig. 5.13d as a function of the production parameters ζ, for B0 and B+ modes,
respectively. The associated statistical error σB(ζ) at each point ζ, given by the change
in B when the quantity −2 lnL(B; ζ) increases by one unit, is displayed in Fig. 5.13e and
Fig. 5.13f.

Systematics are included by convolving the experimental two-dimensional likelihood
for ϑ and φ, L ≡ L(Bmax(ζ); ζ), with a two-dimensional Gaussian that accounts for the
systematic uncertainties. In Fig. 5.14a and Fig. 5.14b we show the resulting distributions
in ϑ and φ. The 68% and 90% probability regions are shown in dark and light shading,
respectively, and are defined as the regions consisting of all the points that satisfy the
condition L(r) > x, where the value x is such that

∫

L(r)>x
L(ϑ, φ)dϑdφ = 68% (90%).

Table 5.6: Results of the ML fit at the absolute minimum of the − lnL scan. The first
two rows report the values of the production parameters (ϑ, φ) that maximize the likeli-
hood. The third and fourth rows are the reconstruction efficiencies, including the daughter
branching fractions, for class 1 and class 2 events. The fifth row is the correction for
the fit bias to the signal branching fraction. The sixth row reports the results for the
B → K1(1270)π +K1(1400)π branching fraction and its error (statistical only).

B0 → K+
1 π− B+ → K0

1π+

ϑ 0.86 0.71
φ 1.26 3.14 (fixed)
ǫ1 (%) 3.74 1.36
ǫ2 (%) 1.68 –
Fit bias correction (×10−6) +0.0 +0.7
B (×10−6) 32.1 ± 2.4 22.8 ± 5.1

5.7.1 Statistical significance

The significance is calculated from a likelihood ratio test ∆(−2 lnL), where ∆(−2 lnL)
is the difference between the value of −2 lnL (convolved with systematic uncertainties) for
zero signal and the value at its minimum for given values of ζ.

In order to include the contribution of systematic uncertainties, we convolute the like-
lihood with a gaussian function with mean µ = 0 , and width σ given by the sum in
quadrature of the additive systematic effects, excluding interference. Interference effects
are not included in this calculation since the significance is related to the probability to
observe an upward fluctuation - mimicking signal - under the no-signal hypothesis: if no
signal is present, the interference of any other component with the signal itself vanishes,
and so does the associated systematic uncertainty.

A χ2 distribution for ∆(−2 lnL) is assumed. For the charged modes we have verified
(by means of toy experiments) that floating the parameter ϑ results in one more degree
of freedom in addition to the branching fraction. A similar test for the neutral modes
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Figure 5.13: (a, b) − lnL scan (systematics not included) in the production parameters
ϑ and φ for the (a) B0 and (b) B+ modes. The cross in (a) indicates the position of the
absolute minimum in the − lnL scan. A second, local minimum is indicated by a star and
corresponds to an increase in ∆(− lnL) of 2.7 with respect to the absolute minimum. (c,
d) Contours for the B → K1(1270)π + K1(1400)π branching fraction (in units of 10−6)
extracted from the ML fit for the (c) B0 and (d) B+ modes. (e, f) Contours for the
statistical error (in units of 10−6) on the B → K1(1270)π +K1(1400)π branching fraction
for the (e) B0 and (f) B+ modes.
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Figure 5.14: (a, b) 68% (dark shaded zone) and 90% (light shaded zone) probability regions
for ϑ and φ for the (a) B0 and (b) B+ modes.

is not feasible, but we assume that the behaviour of ϑ is the same. In order to take
into account the fact that for the neutral modes also φ is left float in the fit, we average
the likelihood over φ keeping ϑ fixed to the value which minimizes the NLL, ϑ = ϑmin.
We observe nonzero B0 → K+

1 π
− and B+ → K0

1π
+ branching fractions with 7.5σ and

3.2σ significance, respectively, calculated assuming a χ2 distribution for ∆(−2 lnL) with 2
degrees of freedom.

5.7.2 sPlot projections

The event-weighting technique sPlot [101] allows to unfold the contributions of the
individual Ns components to the distribution observed in data for a given control variable.

A set of discriminating variables is used to analyze the data sample, i.e., to determine
the event yields N̂ and parameters θ̂ that are free parameters in the fit model. From
this information, a weight sPn(ye) for each event e is determined, which represents the
probability for that event to belong to the specie n:

sPn(ye) =

∑Ns

j=1 Vnjfj(ye)
∑Ns

k=1Nkfk(ye)
, (5.4)

with the matrix V defined according to

V−1
nj =

N
∑

e=1

fn(ye)fj(ye)

(
∑Ns

k=1Nkfk(ye))2
, (5.5)

where fi is the (known, e.g., from MC studies) PDF of the i-th component for the discrim-
inating variables ye. This background subtraction method relies on the prior knowledge
of the distributions of a subset y of the discriminating variables to calculate the sPlot
histogram (i.e., the histogram obtained by weighting each event with sPn(ye)), defined as

Nn sM̃n(x̄) Vx ≡
∑

xe⊂δx
sPn(ye). (5.6)
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The sPlot histogram reproduces on average the distribution Mn and the normalization Nn

of the event specie n in the set of control variables x, under the assumption that all the
observables in the chosen subset of the discriminating variables are uncorrelated with the
control variables:

〈Nn sM̃n(x̄)Vx〉 = NnMn(x). (5.7)

In the above equations, x̄ is the middle point of the bin δx and Vx is the volume of the bin.
The projection variable x has therefore to be excluded from the set y when calculating
the corresponding sPlot histogram. In the calculation of the weights for all histograms we
have used for the yields N̂ and the parameters θ̂ the values extracted from the nominal fit
(i.e., the one including mES, ∆E, F , H, mKππ).

In the original sPlot implementation, the matrix V−1 was obtained from the covariance
matrix resulting from the fit

V−1
nj =

∂2(−L)

∂Nn∂Nj

=
N
∑

e=1

fn(ye)fj(ye)

(
∑Ns

k=1Nkfk(ye))2
, (5.8)

where ye represents the reduced set of discriminating variables for the event e. We have
verified that this option is numerically less accurate than the direct computation, and does
not easily generalize to models with fixed components in the fit.

Figures 5.15 and 5.16 show the distributions of ∆E, mES and mKππ for the signal and
combinatorial background events. Since mKππ is the main observable for the discrimination
between signal and peaking background, in calculating the mKππ sPlot we only attempt to
subtract the continuum background from the combined contribution of signal and peaking
background components.
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Figure 5.15: sPlot projections of signal onto mES (left), ∆E (center), and mKππ (right) for
B0 class 1 (top), B0 class 2 (middle), and B+ class 1 (bottom) events: the points show the
sums of the signal weights obtained from on-resonance data. For mES and ∆E the solid
line is the signal fit function. For mKππ the solid line is the sum of the fit functions of the
decay modes K1(1270)π+K1(1400)π (dashed), K∗(1410)π (dash-dotted), and K∗(892)ππ
(dotted), and the points are obtained without using information about resonances in the
fit, i.e., we use only the mES, ∆E, and F variables.
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Figure 5.16: sPlot projections of combinatorial background onto mES (left), ∆E (center),
and mKππ (right) for B0 class 1 (top), B0 class 2 (middle), and B+ class 1 (bottom)
events: the points show the sums of the combinatorial background weights obtained from
on-resonance data. The solid line is the combinatorial background fit function. For mKππ

the points are obtained without using information about resonances in the fit, i.e., we use
only the mES, ∆E, and F variables.
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5.8 Systematic errors

The main sources of systematic uncertainties are listed below and summarized in Ta-
ble 5.7. For the branching fractions, the errors that affect the results only through effi-
ciencies are called “multiplicative” and given in percentage. All other errors are labeled
“additive” and expressed in units of 10−6.

5.8.1 Additive uncertainties

• PDF parameters: we repeat the fit by varying, within their uncertainties, the PDF
parameters ξ that are not left floating in the fit.

• MC/data corrections: we take into account data/MC discrepancies in the parameters
of the core Gaussians for signal mES, ∆E, and F PDFs, and we repeat the fit by
varying the corrections within their uncertainties (Sec. 5.5.4).

• ML fit bias: the signal PDF model excludes fake combinations originating from misre-
constructed signal events. Potential biases due to the presence of fake combinations,
or other imperfections in the signal PDF model (e.g., neglected correlations), are
estimated with MC simulated events, i.e., we repeat the validation exercise feeding
the MC simulation with the parameters extracted from the unblind nominal fit to
the on-resonance data.

• Fixed phase φ: for B+ modes, we introduce an additional additive systematic un-
certainty to account for the variations of the φ parameter. We repeat the fit several
times, generating φ at random at each iteration. The additive systematics uncertain-
ties on B and ϑ are evaluated by comparing the mean and RMS of the distribution
of the refitted values with the results of the nominal fit (φ = π).

• Scan: we account for the possible bias introduced by the finite resolution of the (ϑ, φ)
likelihood scan.

• K1 K-matrix parameters: a systematic error is associated to variations in theK1(1270)
and K1(1400) mass poles and K−matrix parameters in the signal model. Since the
parameters of the K−matrix are correlated with the mass poles, we only vary the
K1 mass poles. We evaluate this systematic effect by means of MC simulated exper-
iments. In the signal model used for the simulation, the positions of the K1a and
K1b mass poles are varied by ±0.02 GeV, while the fit is performed with the nominal
model.

• K1 offset phases: we evaluate this systematic effect by means of MC simulated ex-
periments. Signal events are generated from a model in which we set δi = 0. A fit is
performed with the nominal model and the observed bias is assumed as a systematic
uncertainty.

• K1 intermediate resonances: we evaluate a systematic uncertainty related to the pa-
rameterization of the intermediate resonances in K1 decay. This is done by means of
MC simulated experiments. Signal events are generated from a model in which we
replace the K∗(1430) Breit-Wigner lineshape with a Kπ S-wave LASS parameteriza-
tion [102], while the fit is performed with the nominal model.
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• K∗/ρ bands: we test the stability of the fit results against variations in the selection
of the “K∗” and “ρ bands,” and evaluate a corresponding systematic error.

• Peaking BB background: an additional systematic uncertainty originates from po-
tential peaking BB background, including B → K∗

2(1430)π and B → K∗(1680)π,
and is evaluated by introducing the corresponding components in the definition of
the likelihood and repeating the fit with their yields fixed to values estimated from
the available experimental information (Sec. 5.3).

• Fixed background yields: we vary the yields of the B0 → a1(1260)±π∓ and B0 →
D−
K+π−π−π+ (for the B0 modes) and B+ → K∗+ρ0 (for the B+ modes) event cate-

gories by their uncertainties and take the resulting change in results as a systematic
error.

The above systematic uncertainties do not scale with the event yield and are included
in the calculation of the significance of the result.

5.8.2 Systematic uncertainty due to interference

In this section we outline the procedure to estimate the systematic uncertainty due to
the interference between the B → K1π and the charmless nonresonant component.

We perform simulated fits to Monte Carlo samples generated according to the results
of the likelihood scans. The relative fractions of the squared amplitudes for B meson
decays into signal and B → K∗ππ + ρKπ final states are fixed to the values extracted
from the nominal fit. The overall phases and relative contribution for the K∗ππ and ρKπ
interfering states are assumed to be constant across phase space and are generated between
zero and a maximum value using uniform prior distributions. Since we are assuming that
all the fitted non-resonant contribution interferes, and that the K∗ππ and ρKπ phases
are constant across the phase space, we expect the estimated systematic uncertainty to be
conservative.

We calculate the systematic uncertainty from the RMS variation of the average signal
branching fraction and production parameters. This uncertainty is assumed to scale as the
square root of the signal branching fraction and does not affect the significance.

5.8.3 Multiplicative uncertainties

The systematic uncertainties in efficiencies include those associated with track finding,
particle identification and, for the B+ modes, K0

S reconstruction. Other systematic effects
arise from event selection criteria, such as track multiplicity and thrust angle, and the
number of B mesons.

• MC statistics: this systematic error is the statistical error on the efficiency due to
the finite size of the Monte Carlo samples used for its evaluation, and amounts to
1%.

• PID: we have evaluated the systematic error due to PID vetoes. For the B0 modes
we assign an uncertainty of 2.9%, based on B0 → D−(K+π−π−)π+ control sample
studies, while for the B+ modes we evaluate an uncertainty of 3.1%, based on B+ →
D0(K0

Sπ
+π−)π+ control sample studies.
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• Track finding efficiency: we assign a 0.236% systematic uncertainty per track, result-
ing in a total error of 1% for the neutral modes and 0.8% for the charged modes: this
evaluation is based on efficiency studies, performed by the BABAR Collaboration, in
τ+τ− events with 3-prong - 1-prong topology.

• KS reconstruction: this systematic error is calculated according to efficiency tables
provided by the BABAR Collaboration for the most common K0

S
selection cuts and

based on studies of the B → cc̄K0
S

decays. These tables parameterize efficiency
corrections to the Monte Carlo as a function of the transverse flight length, the polar
angle in the laboratory, and the transverse momentum of a K0

S
particle.

• cos θT: a systematic uncertainty of 1% is assigned looking at the variation of the
shape of signal MC events before and after the cos θT cut.

• Track multiplicity: we have requested the reconstruction of at least 5 charged tracks
in the event. Signal MC inefficiency for this cut is about 2%. We assign an uncertainty
of 1%.

• Number of BB pairs: the B counting group recommends a systematic uncertainty of
1.1%.

Table 5.7: Estimates of systematic errors, evaluated at the absolute minimum of each
− lnL scan. For the branching fraction, the errors labeled (A), for additive, are given in
units of 10−6, while those labeled (M), for multiplicative, are given in percentage.

B0 → K+
1 π− B+ → K0

1π+

Quantity B ϑ φ B ϑ

PDF parameters (A) 0.8 0.01 0.15 1.4 0.07
MC/data correction (A) 0.8 0.00 0.01 1.0 0.02
ML fit bias (A) 0.6 0.03 0.02 2.0 0.08
Fixed phase (A) − − − 0.6 0.06
Scan (A) 0.9 0.04 0.16 0.0 0.04
K1 K−matrix parameters (A) 2.2 0.01 0.36 0.5 0.05
K1 offset phases (A) 0.2 0.01 0.02 0.0 0.00
K1 intermediate resonances (A) 0.5 0.00 0.06 0.2 0.02
K∗/ρ bands (A) 0.2 0.05 0.00 1.2 0.05

Peaking BB bkg (A) 0.8 0.01 0.13 1.0 0.01
Fixed background yields (A) 0.0 0.00 0.00 0.4 0.02
Interference (A) 6.0 0.25 0.52 10.6 0.43
MC statistics (M) 1.0 − − 1.0 −
Particle identification (M) 2.9 − − 3.1 −
Track finding (M) 1.0 − − 0.8 −
K0
S reconstruction (M) − − − 1.6 −

cos θT(M) 1.0 − − 1.0 −
Track multiplicity (M) 1.0 − − 1.0 −
Number BB pairs (M) 1.1 − − 1.1 −
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5.9 Branching fraction results

We derive the probability distributions for the B → K1(1270)π + K1(1400)π, B →
K1(1270)π, B → K1(1400)π, and B → K1Aπ branching fractions by means of an averaging
procedure, that takes into account the dependence of the results of the fit on ϑ and φ. For
the B+ modes, since the φ parameter is not a free parameter in the fit, the probability
distribution in φ is assumed to be flat, i.e., we set P (ϑ, φ) = P (ϑ, π); in addition, we set
L(B′;ϑ, φ) = L(B;ϑ, π), where B′ = B × ǫ1(ϑ, π)/ǫ1(ϑ, φ).

At each point in the ζ plane we calculate the distributions for the branching fractions,
given by f(B; ζ) = cL(B; ζ), where c is a normalization constant. Systematics are in-
cluded by convolving the experimental one-dimensional likelihood L(B; ζ) with a Gaussian
function that represents systematic uncertainties. The width σsys of the Gaussian function
depends on the branching fraction according to the relation

σ2
sys(x) = σ2

A + σ2
Ix+ σ2

Mx
2, (5.9)

where x = B/Bmax, and Bmax is the branching fraction value that maximizes L. In the above
expression, σA represents the additive systematic uncertainties, except the contribution due
to interference (σI), while σM represents the multiplicative uncertainties; σA, σM , and σI
are evaluated for B = Bmax, as described in Sec. 5.8.

The branching fraction results are obtained by means of a weighted average of the
branching fraction distributions defined above, with weights calculated from the experi-
mental two-dimensional likelihood for ϑ and φ (Fig. 5.14).

For each point of the ζ scan, the B → K1(1270)π, B → K1(1400)π, and B → K1Aπ
branching fractions are obtained by applying ζ-dependent correction factors (Sec. 5.9.1)
to the combined B → K1(1270)π + K1(1400)π branching fraction associated with that ζ

point.
From the resulting distributions f(B) we calculate the corresponding two-sided inter-

vals at 68% probability, which consist of all the points B > 0 that satisfy the condition
f(B) > x, where x is such that

∫

f(B)>x, B>0
f(B)dB = 68%. The upper limits (UL) at

90% probability are calculated as
∫

0<B<UL f(B)dB = 90%. The results are summarized in
Table 5.8 (statistical only) and Table 5.9 (including systematics).

We measure B(B0 → K1(1270)+π− + K1(1400)+π−) = 3.1+0.8
−0.7 × 10−5 and B(B+ →

K1(1270)0π+ +K1(1400)0π+) = 2.9+2.9
−1.7 × 10−5 (< 8.2× 10−5), where the two-sided ranges

and upper limits are evaluated at 68% and 90% probability, respectively, and include
systematic uncertainties.

5.9.1 Calculation of the correction factors

When dealing with interfering resonances, it is difficult to disentangle the individual
contributions to the branching fraction. It is possible to gain some insight in this problem
by considering a K-matrix model comprised of two resonances and a single decay channel
(e.g., i = 1). If the mass poles are far apart relative to the widths, then the matrix K
is dominated either by the first or the second resonance, and the total amplitude can be
expressed as a sum of Breit-Wigner amplitudes:

F ≈ fpafa1
(Ma −M) − iρ1f 2

a1

+
fpbfb1

(Mb −M) − iρ1f 2
b1

. (5.10)
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Table 5.8: Branching fraction results for B → K1π decays, in units of 10−5, and corre-
sponding confidence levels (C.L., statistical uncertainties only). For each branching fraction
we provide the mean of the probability distribution, the most probable value (MPV), the
two-sided interval at 68% probability, and the upper limit at 90% probability.

Channel Mean MPV 68% C.L. interval 90% C.L. UL
B0 → K1(1270)+π− +K1(1400)+π− 3.2 3.1 (2.9, 3.4) 3.5
B0 → K1(1270)+π− 1.7 1.6 (1.3, 2.0) 2.1
B0 → K1(1400)+π− 1.6 1.6 (1.3, 1.9) 2.0
B0 → K+

1Aπ
− 1.5 1.4 (1.0, 1.9) 2.2

B+ → K1(1270)0π+ +K1(1400)0π+ 2.9 2.3 (1.6, 3.5) 4.5
B+ → K1(1270)0π+ 1.1 0.3 (0.0, 1.4) 2.5
B+ → K1(1400)0π+ 1.8 1.7 (1.0, 2.5) 2.0
B+ → K0

1Aπ
+ 1.1 0.2 (0.0, 1.5) 2.3

Table 5.9: Branching fraction results for B → K1π decays, in units of 10−5, and correspond-
ing confidence levels (C.L., systematic uncertainties included). For each branching fraction
we provide the mean of the probability distribution, the most probable value (MPV), the
two-sided interval at 68% probability, and the upper limit at 90% probability.

Channel Mean MPV 68% C.L. interval 90% C.L. UL
B0 → K1(1270)+π− +K1(1400)+π− 3.3 3.1 (2.4, 3.9) 4.3
B0 → K1(1270)+π− 1.7 1.7 (0.6, 2.5) 3.0
B0 → K1(1400)+π− 1.6 1.7 (0.8, 2.4) 2.7
B0 → K+

1Aπ
− 1.6 1.4 (0.4, 2.3) 2.9

B+ → K1(1270)0π+ +K1(1400)0π+ 4.6 2.9 (1.2, 5.8) 8.2
B+ → K1(1270)0π+ 1.7 0.0 (0.0, 2.1) 4.0
B+ → K1(1400)0π+ 2.0 1.6 (0.0, 2.5) 3.9
B+ → K0

1Aπ
+ 1.6 0.2 (0.0, 2.1) 3.6

The problem becomes more complicated if the resonances lie nearby, when the above
expression is not strictly valid. In this case, the total amplitude is again a sum of Breit-
Wigner amplitudes:

F =
fpafa1

(Ma −M) − iρ1

[

f 2
a1 + f 2

b1

(

Ma−M
Mb−M

)] +
fpbfb1

(Mb −M) − iρ1

[

f 2
b1 + f 2

a1

(

Mb−M
Ma−M

)] , (5.11)

where the widths have been modified by the unitarity constraint: Γa 7→ Γa + Γb

(

Ma−M
Mb−M

)

.

We work out our approach from the analogy of Eq. 5.11 with Eq. 5.10, based on the
linearity of the amplitude F in the P-vector elements

Pi =
fpafai
Ma −M

+
fpbfbi

Mb −M
. (5.12)

The correction factors for the production of the K1(1270) (K1(1400)) resonance only is
therefore obtained by subtracting the Ma (Mb) pole from the P-vector.
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Similarly, we define the production amplitudes for the K1A (fpA) and K1B (fpB) as [86]:

fpA = fpa cos θK − fpb sin θK , (5.13)

fpB = fpa sin θK + fpb cos θK .

or, equivalently,

fpa = fpA cos θK + fpB sin θK , (5.14)

fpb = −fpA sin θK + fpB cos θK .

The correction factor for the production of K1A or K1B only is thus calculated by sub-
tracting a suitable linear combination of the Ma and Mb poles from the P-vector. No other
elements of the amplitude is modified in this calculation.

To summarize, these are the replacements that we introduce in the K-matrix model to
describe the production of only one of the following resonances:

• K1(1270): Pi 7→ P ′
i = Pi −

fpafai
Ma −M

.

• K1(1400): Pi 7→ P ′
i = Pi −

fpbfbi
Mb −M

.

• K1A: Pi 7→ P ′
i = Pi −

[

sin θK
fpBfai
Ma −M

+ cos θK
fpBfbi
Mb −M

]

.

• K1B: Pi 7→ P ′
i = Pi −

[

cos θK
fpAfai
Ma −M

− sin θK
fpAfbi
Mb −M

]

.

Equivalently, we can express the above replacement in terms of a redefinition of the pro-

duction parameters (fpa, fpb) 7→ (f ′
pa, f

′
pb), i.e., P ′ =

f ′paf
′
ai

Ma−M − f ′pbf
′
bi

Mb−M :

• K1(1270): (fpa, fpb) 7→ (0, eiφ sinϑ).

• K1(1400): (fpa, fpb) 7→ (cos ϑ, 0).

• K1A: (fpa, fpb) 7→ (|fpA| cos θK ,−|fpA| sin θK).

• K1B: (fpa, fpb) 7→ (|fpB| sin θK , |fpB| cos θK).

Each individual branching fraction B′ is then calculated, at each point in the scan over
ζ, as

B′(ζ) ≡ B(ζ)

∑

i

∫

|A′
i(ζ)|2dΦi

∑

i

∫

|Ai(ζ)|2dΦi

, (5.15)

where B is the combined branching fraction, the index i runs over all isospin configurations
of the final state particles, and the integration over the four-particle phase space can be
performed by reweighting the signal MC samples. Here we have indicated with Ai the total
B → K1π amplitude calculated with the nominal form P of the P-vector (Sec. 3.5), and
with A′

i the amplitude obtained by replacing P with P′. The two-dimensional distributions
of the B → K1Aπ and B → K1Bπ branching fractions over the space spanned by ζ are
shown in Fig. 5.17 and Fig. 5.18, respectively.
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Figure 5.17: B0 → K+
1Aπ

− (left) and B+ → K0
1Aπ

+ (right) branching fractions as a function
of ϑ and φ.
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Figure 5.18: B0 → K+
1Bπ

− (left) and B+ → K0
1Bπ

+ (right) branching fractions as a function
of ϑ and φ.

As done for the combined branching fraction, the final results for the individual branch-
ing fractions are obtained by means of a weighted average over ζ, with weights calculated
from the experimental two-dimensional likelihood for ϑ and φ.

Including systematic uncertainties we obtain the two-sided intervals (in units of 10−5):
B(B0 → K1(1270)+π−) ∈ [0.6, 2.5], B(B0 → K1(1400)+π−) ∈ [0.8, 2.4], B(B0 →
K+

1Aπ
−) ∈ [0.4, 2.3], B(B+ → K1(1270)0π+) ∈ [0.0, 2.1] (< 4.0), B(B+ → K1(1400)0π+) ∈

[0.0, 2.5) (< 3.9), B(B+ → K0
1Aπ

+) ∈ [0.0, 2.1] (< 3.6), where the two-sided ranges and
the upper limits are evaluated at 68% and 90% probability, respectively.

5.9.2 Effect of ambiguities on the branching fraction results

We have shown in Sec. 3.4.3 that several degenerate solutions exist for the fit of the
K-matrix model to the ACCMOR data. Here we show that the branching fraction results
don’t depend on these ambiguities, by investigating each of them separately.
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Ambiguity 1: θK 7→ θK + π, γ± 7→ −γ± or γ± unchanged

This ambiguity doesn’t modify the parameters fai, fbi (apart from a global change of
signs), thus leaving the K-matrix unaltered. Under these transformations, the P-vector
may undergo a change of sign, which is irrelevant since we are interested in the squared
amplitudes. Therefore, this ambiguity doesn’t affect the MC simulation nor does it alter the
ratios of integrals that enter the calculation of the branching fractions B(B → K1(1270)π),
B(B → K1(1400)π), B(B → K1Aπ), and B(B → K1Bπ).

Ambiguity 2: θK 7→ −θK + π, γ− → −γ−, fpb → −fpb, γ+ unchanged

This transformation reverts the sign of the decay couplings of the K1(1270) resonance
(fbi), while leaving those of the K1(1400) (fai) unchanged. This change in the fbi couplings
can be compensated by a change in the sign of the fpb production parameter: the amplitude
calculated with γ− = |γ−| and fpb = |fpb|eiφ is identical to the amplitude calculated with
γ− = −|γ−|, fpb = |fpb|ei(φ+π). The other production parameter (fpa) is unaltered. This is
equivalent to a change in sign in fpA, while fpB doesn’t change.

The results of the analysis of the B decay data are not affected by any model ambiguity
as long as we specify the couplings in the text (i.e., the results on ζ in this work are obtained
with γ− = |γ−|). Using the other solution for the decay couplings (i.e., γ− = −|γ−|), the
extracted values of φ would be shifted by π: φ 7→ φ+ π. This leaves the K-matrix and the
P-vector unchanged, also when one resonance is “turned off”:

• fpafai
Ma −M

7→ fpafai
Ma −M

.

• fpbfbi
Mb −M

7→ (−fpb)(−fbi)
Mb −M

.

• Pi −
[

sin θK
fpBfai
Ma −M

+ cos θK
fpBfbi
Mb −M

]

7→

Pi −
[

sin(π − θK)
fpBfai
Ma −M

+ cos(π − θK)
fpB(−fbi)
Mb −M

]

.

• Pi −
[

cos θK
fpAfai
Ma −M

− sin θK
fpAfbi
Mb −M

]

7→

Pi −
[

cos(π − θK)
(−fpA)fai
Ma −M

− sin(π − θK)
(−fpA)(−fbi)
Mb −M

]

.

This completes the demonstration that the branching fraction results do not depend on
which one of the degenerate solutions is chosen for the K-matrix fit.
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Chapter 6

Bounds on penguin induced |∆α| in

B0 → a
±
1 (1260)π∓

6.1 Experimental input

We use the measurements presented in this work to derive bounds on the model un-
certainty |∆α| on the weak phase α extracted in B0 → a1(1260)±π∓ decays. We use the
previously measured branching fractions of B0 → a1(1260)±π∓, B0 → a1(1260)−K+ and
B+ → a1(1260)+K0 decays [34,35] and the CP−violation asymmetries [33] as input to the
method of Ref. [36]. The values used are summarized in Tables 6.1 and 6.2.

Table 6.1: Summary of the branching fractions used as input to the calculation of the
bounds on |∆α| [34, 35].

Decay mode Branching fraction
(in units of 10−6)

B0 → a1(1260)±π∓ 33.2 ± 3.8 ± 3.0
B0 → a1(1260)−K+ 16.3 ± 2.9 ± 2.3
B+ → a1(1260)+K0 34.8 ± 5.0 ± 4.4

Table 6.2: Summary of the values of the CP−violation parameters used as input to the
calculation of the bounds on |∆α| [33].

Quantity Value
Aa1π
CP −0.07 ± 0.07 ± 0.02

S 0.37 ± 0.21 ± 0.07
∆S −0.14 ± 0.21 ± 0.06
C −0.10 ± 0.15 ± 0.09
∆C 0.26 ± 0.15 ± 0.07

The bounds are calculated as the average of |∆α+| = |α+
eff − α| and |∆α−| = |α−

eff −α|,

103
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Table 6.3: Correlation matrix (stat.) from the BABAR TD fit [98].

Aa1π
CP S ∆S C ∆C

Aa1π
CP 1.00 0.00 0.00 0.00 0.00

S 0.00 1.00 −0.01 −0.03 0.00
∆S 0.00 −0.01 1.00 0.01 −0.02
C 0.00 −0.03 0.01 1.00 −0.11
∆C 0.00 0.00 −0.02 −0.11 1.00

which are obtained from the inversion of the relations [36], rederived in Sec. 1.6:

cos 2(α±
eff − α) ≥ 1 − 2R0

±
√

1 −A± 2
CP

, cos 2(α±
eff − α) ≥ 1 − 2R+

±
√

1 −A± 2
CP

. (6.1)

R0
+ ≡ λ̄2f 2

a1
B̄(K+

1Aπ
−)

f 2
K1A

B̄(a+
1 π

−)
, R0

− ≡ λ̄2f 2
πB̄(a−1 K

+)

f 2
KB̄(a−1 π

+)
,

R+
+ ≡ λ̄2f 2

a1
B̄(K0

1Aπ
+)

f 2
K1A

B̄(a+
1 π

−)
, R+

− ≡ λ̄2f 2
πB̄(a+

1 K
0)

f 2
KB̄(a−1 π

+)
,

For the constant λ̄ = |Vus|/|Vud| = |Vcd|/|Vcs| we take the value 0.23 [5]. The decay
constants fK = 155.5 ± 0.9 MeV and fπ = 130.4 ± 0.2 MeV [5] are experimentally known
with small uncertainties.

For the decay constants of the a1 and K1A mesons the values fa1 = 203± 18 MeV [103]
and fK1A

= 207 MeV [72] are used. Because of the large width of the a1(1260) resonance, it
is difficult to represent its coupling to the weak currents in terms of a single decay constant.
As a cross check, the value fa1 = 203±18 MeV, obtained from the analysis of the a1 meson
production in τ decays [103], is therefore compared to the values calculated using different
methods, such as QCD sum rules (fa1 = 238 ± 10 MeV) [104] and SU(3) relations using
fK1(1270) as an input (fa1 = 215 − 223 MeV) [105]. These values are in good agreement.

From the rates of τ → Kππν decays [47] it is possible to derive the value of the decay
constant of the K1(1270) meson, |fK1(1270)| = 175 ± 19 MeV [106]. The value of fK1A

is
calculated from the quark model, using |fK1(1270)| and fa1 = 203 ± 18 MeV as input [61].
This value depends on the mixing angle assumed, and reference values are given in Ref. [72]
for two positive θK values, θK = 58◦ (fK1A

= 207 MeV) and θK = 37◦ (fK1A
= 293 MeV),

where the authors of Ref. [72] use the measurement of the branching fractions of B decays
to K1(1270)γ to determine the sign of θK (θK > 0). Since fK1A

is not available for θK = 72◦

(the value used in the rest of the analysis, see Table 3.3), in the following we use the value
of fK1A

corresponding to a mixing angle θK = 58◦ [72], and we assume an uncertainty of
20 MeV on fK1A

. Incidentally, assuming θK = 58◦ instead of θK = 37◦ is a conservative
choice for the determination of the bounds on ∆α, since fK1A

(−58◦) ≪ fK1A
(−37◦) and a

lower fK1A
results in higher bounds on ∆α. Under a change of sign in θK , the main effect

on the form factors is a change in sign of fK1(1270), while the sign of fK1(1400) is unchanged.
Since fK1B

≪ fK1A
, mK1(1270)fK1(1270) ≈ mK1A

fK1A
sin θK within O(10%) effects. Using

näıve arguments based on SU(3) relations and the mixing formulae, in Sec. 6.1.1 we verify
that the dependence of fK1A

on the mixing angle is rather mild in the θK range [58, 72]◦.
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6.1.1 Variation of the decay constant with the mixing angle

We check, using symmetry arguments, that the dependence of fK1A on the mixing angle
is mild in the θK range [58, 72]◦ and that assuming an uncertainty of 20 MeV is reasonable.

We use the following relations, based on the Gell-Mann-Okubo mass formula and on
the mixing relations (3.1):

mA =
√

m2
K1(1400) cos2 θK +m2

K1(1270)
sin2 θK , (6.2)

mB =
√

m2
K1(1400)

sin2 θK +m2
K1(1270)

cos2 θK , (6.3)

with mK1(1400) = 1.400 GeV and mK1(1270) = 1.270 GeV.
The transformation properties of the strange weak axial-vector current under charge

conjugation in the SU(3) limit [59] imply fK1B
= 0, and result in:

fK1(1400)mK1(1400)

fK1(1270)mK1(1270)

= −cos θK
sin θK

. (6.4)

SU(3) breaking can flip the SU(3) charge conjugation property of the strange weak current,
and the effect on the above expression can be parameterized by the introduction of a
parameter δ [106]:

fK1(1400) = fK1(1270)

mK1(1270)

mK1(1400)

(

−cos θK − δ sin θK
sin θK + δ cos θK

)

, (6.5)

with |δ| =
ms −mu√
2(ms +mu)

= 0.18. For θK = 72◦ , τ -decay data favors δ = −0.18 [106]

(Fig. 6.1).
Finally, from the mixing relations, one obtains [72]

fK1A
= − 1

mA

(fK1(1270)mK1(1270) sin θK + fK1(1400)mK1(1400) cos θK). (6.6)

 ]o [ Kθ
-150 -100 -50 0 50 100 150

R

0

5

10

15

20

25

30

Figure 6.1: Ratio of decay rates of the K1 resonances R ≡ B(τ→K1(1270)ν)
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for δ = −18 (dashed) and δ = 18 (solid). The factor Φ = 1.8 [59] accounts for phase space
and other kinematical corrections.
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Figure 6.2: Probability distributions for B0 → K+
1Aπ

− (left) and B+ → K0
1Aπ

+ (right)
branching fractions, extracted from the results of the analysis reported in this work.

Using fK1(1270) = −175 MeV as an input, we calculate the values of fK1(1400) and fK1A
for

θK = 58◦ and θK = 72◦. The above formulas do not reproduce the value fK1A
= 207 MeV at

θK = 58◦, but provide an estimate of the dependence of fK1A
on θK . We obtain fK1(1400) =

85 MeV, fK1A
= 193 MeV at θK = 72◦, and fK1(1400) = 144 MeV, fK1A

= 226 MeV at
θK = 58◦.

6.2 Extraction of the bounds

We use a Monte Carlo technique to estimate a probability region for the bound on
|αeff − α|. All the CP -averaged rates and CP -violation parameters participating in the
estimation of the bound are generated according to the experimental distributions, taking
into account the statistical correlations among Aa1π

CP , C, and ∆C [8].
We generate several sets of the experimental parameters according to the following

distributions:

• B̄(a±1 π
∓) gaussian;

• Aa1π
CP : gaussian;

• S,∆S,C,∆C: four dimensional gaussian, taking into account correlations;

• B̄(a−1 K
+): gaussian;

• B̄(a+
1 K

0): gaussian;

• B̄(K+
1Aπ

−): non parametric distribution, shown in Fig. 6.2 (left);

• B̄(K0
1Aπ

+): non parametric distribution, shown in Fig. 6.2 (right).

For each set of generated values we solve the system of inequalities in Eq. (6.1), which
involve |α+

eff − α| and |α−
eff − α|, and we calculate a bound on |αeff − α| from

|αeff − α| ≤ (|α+
eff − α| + |α−

eff − α|)/2. (6.7)
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The probability regions are obtained by a counting method: we estimate the fraction of
experiments for which the extracted bound on |αeff −α| is greater than a given value. The
distributions for the upper bounds on |α+

eff − α| and |α−
eff − α| are shown in Fig 6.3, and

correspond to

|α+
eff − α| < 10◦ at 68% CL, |α+

eff − α| < 13◦ at 90% CL, and (6.8)

|α−
eff − α| < 13◦ at 68% CL, |α−

eff − α| < 15◦ at 90% CL. (6.9)

For the overall bound we obtain (Fig. 6.4)

|αeff − α| < 11◦ at 68% CL, |αeff − α| < 13◦ at 90% CL. (6.10)

In a similar way we derive limits on the penguin-to-tree ratios r±, by solving the relevant
system of inequalities for each set of generated values. We obtain

0.15 < r+ < 0.28 at 68% CL, 0.11 < r+ < 0.37 at 90% CL, (6.11)

0.23 < r− < 0.39 at 68% CL, 0.21 < r− < 0.47 at 90% CL. (6.12)
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Figure 6.3: 1 − CL distribution of the upper bound on |∆α+| (left) and |∆α−| (right).
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Figure 6.4: 1 − CL distribution of the upper bound on |∆α|.
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6.2.1 Effect of additional sources of SU(3) breaking

We study the effect of additional nonfactorizable sources of SU(3) breaking, by intro-

ducing positive parameters 0.7 ≤ c± ≤ 1.3, and writing p′± = −c±λ
−1
p±, where p′ is the

penguin amplitude in ∆S = 1 transitions [30].

r± =

√

(R0
± + c2±λ

2

±)2z2
± + (c2± − R0

±)(R0
± − λ

4

±) − (R0
± + c2±λ

2

±)z±

c2± − R0
±

, (6.13)

=

√

R+
±

2
z2
± + (c2± − R+

±)R+
± − R+

±z±

c2± − R+
±

. (6.14)

Substituting R+
± in (1.64) it is possible to derive the following inequalities involving

∆α±:

cos 2∆α± =
1 − 2c−2

± R+
± sin2 γ

√

1 − (A±
CP )2

≥ 1 − 2c−2
± R+

±
√

1 − (A±
CP )2

. (6.15)

Similar inequalities involving R0
± are derived by noting that

λ̄2f 2
a1
B̄(K+

1Aπ
−)

f 2
K1A

|p±|2
= c2±

(

1 + 2c−1
± r−1

± λ
2
z± + c−2

± r−2
± λ

4
)

(6.16)

and

c2±
[

1 − cos2 δ± cos2 γ + (cos2 δ± cos2 γ − 2x cos δ± cos γ + x2)
]

≥ c2± sin2 γ, (6.17)

where x = c−1
± r−1

± λ
2
, so that

cos 2∆α± ≥ 1 − 2c−2
± R0

±
√

1 − (A±
CP )2

. (6.18)

The results obtained in Sec. 6.2 correspond to the choice c± = 1. Assuming that the
neglected sources of SU(3) breaking manifest as a 10% or 30% shift (at amplitude level) of
the penguin contributions, we repeat the procedure and obtain the distributions in Fig. 6.5
for the bounds on |α+

eff − α| and |α−
eff − α|. For c± = {0.7, 1.3}, the observed shifts in the

bounds are of order 3◦, which is an O(r2
±) effect.

6.3 Results on the CKM angle α

As seen in Sec. 1.6, the determination of αeff [33] presents an eightfold ambiguity in the
range [0◦, 180◦]. The eight solutions are αeff = (11± 7)◦, αeff = (41± 7)◦, αeff = (49± 7)◦,
αeff = (79±7)◦, αeff = (101±7)◦, αeff = (131±7)◦, αeff = (139±7)◦, αeff = (169±7)◦ [33].
Under the assumption that the relative strong phase between the t− and t+ tree amplitudes
is much less than 90◦ (valid to leading order in 1/mb [36], and verified in the similar
ρ±π∓ channel [30]), it is possible to reduce this ambiguity to a twofold ambiguity in the
range [0◦, 180◦]: αeff = (11 ± 7)◦, αeff = (79 ± 7)◦. We combine the solution near 90◦,
αeff = (79 ± 7)◦ [33], with the bounds on |αeff − α| and estimate the weak phase

α = (79 ± 7 ± 11)◦. (6.19)

This solution is consistent with the current average value of α, based on the analysis of
B → ππ, B → ρρ, and B → ρπ decays [5, 20] (Fig. 6.6).
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Figure 6.5: 1 − CL distribution of the upper bound on |∆α+| (left) and |∆α−| (right),
assuming additional sources of SU(3) breaking. Short-dashed: c± = 0.9 (right), c± = 1.1
(left); long-dashed: c± = 0.7 (right), c± = 1.3 (left).
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Figure 6.6: Left: input to the SM UT fit for α, from the ππ, ρρ, and ρπ channels [20].
Right: prediction for α from the SM UT fit (excluding the input for α) [20].
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Conclusions

In this thesis we have presented the branching fraction measurements of charged and
neutral B meson decays to K1(1270)π and K1(1400)π, obtained from a data sample of 454
million Υ (4S) → BB̄ events. This analysis is particularly challenging from the experimen-
tal side since the branching fractions involved are very low, at the level of 10−6 − 10−7,
and the signal is characterized by the simultaneous presence of two overlapping resonances,
which exhibit sizeable interference effects. The combined K1(1270)π and K1(1400)π signal
is therefore modeled with a K-matrix formalism, which accounts for the effects of interfer-
ence between the K1(1270) and K1(1400) mesons by introducing two effective parameters.
The model is derived from the analysis, performed by the ACCMOR Collaboration, of the
diffractive production of strange mesons.

Including systematic and model uncertainties, we have measured

B(B0 → K1(1270)+π− +K1(1400)+π−) = 3.1+0.8
−0.7 × 10−5, and

B(B+ → K1(1270)0π+ +K1(1400)0π+) = 2.9+2.9
−1.7 × 10−5 (< 8.2 × 10−5),

where the upper limit is calculated at 90% probability. A combined signal for the de-
cays B0 → K1(1270)+π− and B0 → K1(1400)+π− is observed for the first time, with a
significance of 7.5σ.

By exploiting the physical interpretation of the model in terms of two resonances, that
are nearly equal mixtures of SU(3) eigenstates, we distinguish the individual contribu-
tions of the K1(1270) and K1(1400) resonances to the combined signal, and the following
branching fractions are derived for the neutral B meson decays:

B(B0 → K1(1270)+π−) ∈ [0.6, 2.5] × 10−5, and

B(B0 → K1(1400)+π−) ∈ [0.8, 2.4] × 10−5,

where the two-sided intervals are evaluated at 68% probability.
A significance of 3.2σ is obtained for B+ → K1(1270)0π+ +K1(1400)0π+, and we derive

the following two-sided intervals at 68% probability and upper limits at 90% probability:

B(B+ → K1(1270)0π+) ∈ [0.0, 2.1] × 10−5 (< 4.0 × 10−5), and

B(B+ → K1(1400)0π+) ∈ [0.0, 2.5] × 10−5 (< 3.9 × 10−5).

In the near future, the availability of updated experimental data onK1 mesons produced
in diffractive processes (e.g., data collected with the COMPASS spectrometer at CERN), or
in τ and B decays (most notably, B → J/ψK1 decays), could lead to a significant reduction
of the systematic errors associated to uncertainties in the parameters of the K-matrix. In
particular, τ → K1ν and B → J/ψK1 decays would provide clean samples of K1 mesons,
without the additional complication of background from near-threshold enhancements of
diffractive origin.
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112 Conclusions

The analysis effort toward the extraction of the CKM angle α from theB0 → a1(1260)±π∓

channel started in 2006 with the measurement of the B0 → a1(1260)±π∓ decay channel,
that was observed with a sufficiently high branching fraction to allow the study of the time
distribution of the decays. The first step consisted in determining the effective value of
α from the time-dependent analysis of CP -violating asymmetries in B0 → a1(1260)±π∓

decays. In this work, we have combined the results of the branching fraction measure-
ments presented in this dissertation with the measurements - performed by BABAR - of
the B0 → a±1 π

∓, B0 → a−1 K
+, and B+ → a0

1π
+ branching fractions to derive bounds on

the penguin-induced shifts of the effective value of the CKM angle α, thus yielding an
independent estimate for the CKM angle α

α = (79 ± 7 ± 11)◦. (6.20)

Finally, we have concluded the dissertation by assessing the impact on the precision of α
of additional sources of SU(3) breaking, other than the ones considered in the Gronau and
Zupan model, which is found to be of order 3◦.

An interesting feature of the measurement of α from these channels is the fact that
a sufficient number of observables can be extracted from the analysis of B decays to fi-
nal states consisting of charged tracks only (i.e., π+π−π+π− and K+π−π+π−), so that
measurement at hadron collider experiments (e.g., LHCb) is not a priori precluded.

This work has been published in Phys. Rev. D81, 052009 (2010).
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[15] Andreas Höcker and Zoltan Ligeti, Ann. Rev. Nucl. Part. Sci. 56, 501 (2006).

[16] B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 79, 052003 (2009).

[17] M. Gronau and D. London, Phys. Lett. 253B, 483 (1991); M. Gronau and D. Wyler,
Phys. Lett. 265B, 172 (1991).

[18] D. Atwood, I. Dunietz, and A. Soni, Phys. Rev. D 63, 036005 (2001).

[19] A. Giri, Y. Grossman, A. Soffer and J. Zupan, Phys. Rev. D 68, 054018 (2003).

115



116 BIBLIOGRAPHY

[20] A. Bevan et al. [UTfit Collaboration], online update at http://www.utfit.org.

[21] B. Aubert et al. [BABAR Collaboration], arXiv:0807.4226 [hep-ex] (2008).

[22] S. Ishino et al., arXiv:hepex/0703039 (2007).

[23] M. Gronau and D. London, Phys. Rev. Lett. 65, 3381 (1990).

[24] A. L. Kagan, Phys. Lett. 601B, 151 (2004).

[25] A. F. Falk, Z. Ligeti, Y. Nir, and H. Quinn, Phys. Rev. D 69, 011502 (2004).

[26] B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 76, 052007 (2007).

[27] B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 78, 071104 (2008).

[28] B. Aubert et al. [BABAR Collaboration], Phys. Rev. Lett. 102, 141802 (2009).

[29] B. Aubert et al. [BABAR Collaboration], Phys. Rev. Lett. 97, 261801 (2006).

[30] M. Gronau and J. Zupan, Phys. Rev. D 70, 074031 (2004).

[31] A. E. Snyder and H. R. Quinn, Phys. Rev. D 48, 2139 (1993).

[32] B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 76, 012004 (2007).

[33] B. Aubert et al. [BABAR Collaboration], Phys. Rev. Lett. 98, 181803 (2007).

[34] B. Aubert et al. [BABAR Collaboration], Phys. Rev. Lett. 97, 051802 (2006).

[35] B. Aubert et al. [BABAR Collaboration], Phys. Rev. Lett. 100, 051803 (2008).

[36] M. Gronau and J. Zupan, Phys. Rev. D 73, 057502 (2006).

[37] M. Gronau and J. L. Rosner, Phys. Lett. 595B, 339 (2004).

[38] M. Beneke, M. Gronau, J. Rohrer, and M. Spranger, Phys. Lett. 638B, 68 (2006).

[39] B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 76, 052007 (2007).

[40] PEP-II: An Asymmetric B Factory. Conceptual Design Report, SLAC-R-418 (1993).

[41] http://www.slac.stanford.edu/grp/cd/soft/images/pepii_lum.html.

[42] http://www-acc.kek.jp/kekb/Commissioning/Record/Luminosity_record.

html.

[43] B. Aubert et al. [BABAR Collaboration], Nucl. Instrum. Methods Phys. Res., Sect.
A 479, 1 (2002).

[44] G. W. Brandenburg et al., Phys. Rev. Lett. 36, 703 (1976).

[45] C. Daum et al. [ACCMOR Collaboration], Nucl. Phys. B187, 1 (1981).

[46] D. A. Bauer et al. [TPC/2γ Collaboration], Phys. Rev. D 50, R13 (1994).



BIBLIOGRAPHY 117

[47] R. Barate et al. [ALEPH Collaboration], Eur. Phys. Jour. C 11, 599 (1999)
[arXiv:hep-ex/9903015].

[48] G. Abbiendi et al. [OPAL Collaboration], Eur. Phys. Jour. C 13, 197 (2000).

[49] D. M. Asner et al. [CLEO Collaboration], Phys. Rev. D 62, 072006 (2000) [arXiv:hep-
ex/0004002].

[50] P. Gavillet et al. [Amsterdam-CERN-Nijmegen-Oxford Collaboration], Phys. Lett.
76B, 517 (1978).

[51] S. Rodeback et al. [CERN-College de France-Madrid-Stockholm Collaboration], Z.
Phys. C 9, 9 (1981).

[52] R. Armenteros et al., Phys. Lett. 9B, 207 (1964).

[53] A. Astier et al., Nucl. Phys. B10, 65 (1969).

[54] L. S. Geng, E. Oset, L. Roca, and J. A. Oller, Phys. Rev. D 75, 014017 (2007).

[55] G. Goldhaber, Phys. Rev. Lett. 19, 976 (1967).

[56] R. K. Carnegie et al., Phys. Lett. 68B, 287 (1977).

[57] H. J. Lipkin, Phys. Lett. 72B, 249 (1977).

[58] S. Meshkov, C. A. Levinson, and H. J. Lipkin, Phys. Rev. Lett. 10, 361 (1963).

[59] M. Suzuki, Phys. Rev. D 47, 1252 (1993).

[60] H.-Y. Cheng, C.-K. Chua, and C.-W. Hwang, Phys. Rev. D 69, 074025 (2004).

[61] H. Y. Cheng and C. K. Chua, Phys. Rev. D 69, 094007 (2004)

[62] M. Suzuki, Phys. Rev. D 55, 2840 (1997)

[63] D. M. Asner et al. [BESIII Collaboration], Int. J. Mod. Phys. A24, supplement 1,
327 (2009).

[64] K. Abe et al. [Belle Collaboration], Phys. Rev. Lett. 87, 161601 (2001) [arXiv:hep-
ex/0105014].

[65] H. Yang et al. [Belle Collaboration], Phys. Rev. Lett. 94, 111802 (2005).

[66] B. Aubert et al. [BABAR Collaboration], Phys. Rev. Lett. 101, 161801 (2008).

[67] H. Albrecht et al. [ARGUS Collaboration], Phys. Lett. 254B, 288 (1991).

[68] J. Adler et al. [MARK-III Collaboration], Phys. Rev. Lett. 64, 2615 (1990).

[69] D. Coffman et al. [MARK-III Collaboration], Phys. Rev. D 45, 2196 (1992).

[70] V. Laporta, G. Nardulli, and T. N. Pham, Phys. Rev. D 74, 054035 (2006); 76,
079903 (2007).



118 BIBLIOGRAPHY

[71] G. Calderon, J. H. Munoz, and C. E. Vera, Phys. Rev. D 76, 094019 (2007).

[72] H.-Y. Cheng and K.-C. Yang, Phys. Rev. D 76, 114020 (2007).

[73] B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 76, 012004 (2007).

[74] S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).

[75] J. D. Richman, An Experimenters Guide to the Helicity Formalism, CALT-68-1148
(1984).

[76] D. J. Herndon, P. Soding, and R. J. Cashmore, Phys. Rev. D 11, 3165 (1975).

[77] D. Aston, T. A. Lasinski, P. K. Sinervo, The SLAC Three-Body Partial Wave Anal-
ysis System, SLAC-R-287 (1985).

[78] K. Peters, Int. J. Mod. Phys. A21, 5618 (2006).

[79] I. J. R. Aitchison, Nucl. Phys. A189, 417 (1972).

[80] R. L. Kelly et al. [Particle Data Group], Rev. Mod. Phys. 52, S1 (1980).

[81] C. Daum et al. [ACCMOR Collaboration], Nucl. Phys. B182, 269 (1981).

[82] M. G. Bowler, J. B. Dainton, A. Kaddoura, and I. J. R. Aitchison, Nucl. Phys. B74,
493 (1974).

[83] J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics (John Wiley and Sons,
New York, 1952).

[84] M. Nauenberg and A. Pais, Phys. Rev. 126, 360 (1961).

[85] M. G. Bowler, M. A. V. Game, I. J. R. Aitchison, and J.B. Dainton, Nucl. Phys.
B97, 227 (1975).

[86] M. G. Bowler, J. Phys. G3, 775 (1977); 1503 (1977).

[87] U. Amaldi, M. Jacob, and G. Matthiae, Ann. Rev. Nucl. Sci. 26, 385 (1976).

[88] R. T. Deck, Phys. Rev. Lett. 13, 169 (1964).

[89] L. Stodolsky, Phys. Rev. Lett. 18, 973 (1967).

[90] M. G. Bowler, J. Phys. G5, 203 (1979).

[91] C. Daum et al. [ACCMOR Collaboration], Phys. Lett. 89B, 281 (1980).

[92] A. C. Irving, J. Phys. G6, 153 (1980).

[93] K. W. J. Barnham et al., Nucl. Phys. B25, 49 (1970).

[94] D. Lange et al., Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001).
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