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Chapter 1

Introduction

The advent of the proteomic era, originated from the knowledge of entire genomes
in the last decade, has emphasized the importance of understanding biological and
functional roles of proteins present in organisms.

Proteins play a fundamental part in cell life and their damage or alteration causes the
insurgence of pathologies. As a matter of fact they are important targets for drug design.
In cells, proteins can be seen as molecular machines having a specific structure (called
native fold) which is strictly related to their function. Often to carry it out, a protein
undergoes conformational variations due to the interaction with other molecules, which
can consist from small changes in a loop orientation to entire domain motions.

The interactions between proteins are important for the majority of biological func-
tions. For example, signals from the exterior of a cell are mediated to the inside of
that cell by protein-protein interactions of the signaling molecules. This process, called
signal transduction, plays a fundamental role in many biological events and in many
diseases (e.g. cancers). Proteins might interact for a long time to form part of a protein
complex. A protein may carry another protein (for example, from cytoplasm to nucleus
or vice versa in the case of the nuclear pore importins), or a protein may interact briefly
with another one just to modify it (for example, a protein kinase will add a phosphate
to a target protein).

Considering all the kind of chemical reactions occuring and all the different proteins
present in a cell, it is very easy to understand that protein-protein interactions are of
central importance for virtually every process in a living organism. Information about
these interactions improves the knowledge of diseases and can provide the basis for
new therapeutic approaches. For these reasons the determination of the structure, the
analysis of conformational properties and the characterization of the interactions with
other molecules are important parameters to study the behaviour of these biological
macromolecules and to highlight how they express their function.

The relevance of computational and theoretical approaches applied to the descrip-
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tion of biomolecules has been increasing over the years. Experimental techniques
present difficulties in the characterization of molecular movements, for example the
time scales involved are too short for any experimental measure, or it can not be easy to
reproduce the conditions required. On the contrary, computational modelling studies
of bio-systems provide reliable information on these structural variations which can
be combined with experimental data collected in laboratories, resulting in reduction of
costs and time required for discovery.

Biomolecules are probably one of the most complex subject to study consider-
ing both the high number of degrees of freedom per system (composed by macro-
molecules and surrounding environment) and the huge hierarchy of functionally sig-
nificant timescales movements, which can vary from nanoseconds to milliseconds and
beyond.

Quantum chemistry would provide the ideal knowledge to study both proteins and
chemical reactions through the representation of electronic interactions and motions of
light particles, such as protons, with the implementation of excellent models. Unfortu-
nately, considering the computer power available, the number of atoms in biomolecules
is too high to use it.

On the other hand methods based on classical physics can be applied to characterize
macromolecules with good approximation for the analysis of such complex systems.
Non-bonded interactions among molecules can be very well described by a classical
potential-energy function or force field as part of a classical Hamiltonian of the system
of interest, allowing a good molecule representation.

The theoretical framework of this thesis work is constituted by classical simulations
applied to the analysis of peptides and proteins. Atomic and molecular degrees of free-
dom with the corresponding classical force fields and classical Newtonian dynamics
have been used to sample the different system conformations in order to analyse and
characterize their structural, dynamical and functional properties.

In particular two main topics have been studied. The first one is the charaterization
and prediction of antibody binding sites on antigenic protein surfaces (epitopes). The
second is the study of folding and unfolding processes of small polypeptide molecules.
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1.1 Antigenic epitope prediction

The interaction between molecules is at the basis of cellular life. It is no surprise
that the study of molecular recognition processes has emerged in recent years as a
very important and relevant field of research, influencing areas like molecular biology,
biochemistry, biomedicine, immunology, etc.

Regarding immunology, the recognition of antigens by antibodies is a fundamental
step for the adaptative immune response, which leads to the neutralization of a specific
pathogen. Antigens are molecules (proteins or polysaccharides) expressed on the
surface of infectious agents like viruses and bacteria which are recognised by the host
immune system as non-self.

In case of infection, the immune system cells identify the invading agent through
specific antigenic molecules expressed on it and activate the immune response. For the
organism this process is fundamental to avoid the spreading of the infectious pathogen
and to neutralize it. The immune response consists at the beginning in the production
of signalling molecules attracting cells like macrophages and granulocytes which start
to fight the infection. Subsequently, in the activation and differentiation of limphocytes
B and T which can react specifically with the production of antibodies and the activation
of cells able to kill the pathogen.

When the infection is defeated, immune cells (called memory cells) remain in circle in
the host body to ensure a rapid and efficient immune response through the production
of specific antibodies in case of a second infection from the same pathogen. In this
context, a vaccine is a biological preparation based on the capability of the immune
system to keep memory of the infectious organisms. It is constituted by an inactivated
pathogen, or a part of it, which is injected into an organism inducing protection against
infective agents through the activation of the immune system and the production of
memory cells.

In order to make vaccine preparations it is important to know which pathogen
molecules can be recognised by antibodies as not all the molecules expressed on a
pathogen surface can be a good target for the antibody binding. In particular, the
molecular regions recognized by antibodies assume huge relevance. Being able to
characterize their chemical and physical properties and determine their presence and
position on molecule surfaces, can result in a considerable advantage in vaccine design,
reducing both industrial cost and production time [1].

Using high resolution structures, it will be possible to design antigenic molecules
making their production more efficient and improving the steps of the storing process,
thereby lowering costs and eliminating problems to distribution. Furthermore with
the knowledge of which parts of an antigen must be retained to preserve basic char-
acteristics for the recognition process and which can be altered, vaccine antigens can
be modified more rapidly in response to changing epidemiology. Finally, the use of
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different molecules in combination-vaccines and the immunization regimens can be
simplified with a proper design.

All these considerations emphasize the reasons why it is very important to iden-
tify good antigenic molecules for vaccine design. Antibody recognition is influenced
by a number of different aspects related to antigenic molecules such as: size, shape,
structural complexity, abundance, solubility, propensity to oligomerization, epitope
structure and position and many others. Some of these aspects are in connection with
the molecular structure of the antigen itself, in particular the ones related to the epitope
regions. Indeed, the ability to predict epitope sequences and location is central to the
development of structural vaccinology. Based on these aspects, the study of the struc-
tural and dynamical properties of these molecules, using computational techniques,
can be a good instrument to improve the knowledge in this field.

The first part of this thesis work consists in the description of a new method (called
MLCE, Matrix of Local Coupling Energies) developed to predict epitopes on anti-
genic protein surfaces. This method is based on the integrated analysis of dynamical
and energetic properties of antigens in order to identify non-optimized, low-intensity
energetic interaction networks in the protein structure isolated in solution. This tech-
nique relies on the idea that recognition sites may correspond to localized regions with
low-intensity energetic couplings with the rest of the protein, which allows them to
undergo conformational changes, to be recognized by a binding partner, and to tolerate
mutations with minimal energetic expense.

Nineteen different antigenic protein structures were downloaded from the Protein
Data Bank (PDB). All these proteins were crystallized alone in solution and in complex
with at least one antibody. Information about the region recognised by antibodies was
used only to check the predictions obtained with the method developed and not to
make the predictions train. For each protein five molecular dynamics simulations of
30ns have been carried out for a total of 150ns. From the simulations the most rep-
resentative structures through a cluster analysis of the conformations assumed by the
proteins in the trajectories were determined. To identify epitopes, MLCE method was
then applied on the main cluster structure (the most reprensetative one).

The principal cluster structure is optimized through molecular mechanics steps and
on it non-bonded energy contributions are calculated for each pair of residues, result-
ing in a square matrix NxN (where N is the number of aminoacids) containing the
energetic values. This matrix is diagonalized and decomposed in eigenvalues and
eigenvectors. The first eigenvalue and its related eigenvector are subsequently used to
rebuild the energy matrix multiplying it by its transpose. This process allows to filter
the information in the original energetic matrix focusing only on the most important
interactions present in the protein fold [2–4].
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Afterwards a contact matrix (whose dimensions are still NxN) is built from the
protein structure. This matrix is based on the spatial distance between each pair of
residues and the matrix elements are set to 1 if two residues are close in the structure
or to 0 if their distance is higher than a cut-off edge.

The energy and the contact matrices are then multiplied through the Hadamard
product. The resulting matrix (called MLCE, Figure 3.3) allows to identify residues
forming patches and showing coupled energetic values with the other protein regions.
The patches with minimal energetic coupling correspond to sites not involved in the
stabilization of the protein fold and prone to be subjected to conformational variations
upon the binding of a partner like an antibody.

The contact-filtered coupling interactions are ranked in increasing order according to
their respective intensities (from weaker to stronger). Starting from the minimum value
(weakest local coupling interactions, defined as ”soft spots”, in contrast with the ”hot
spots”, characterized by high coupling intensities), the set of putative interaction sites
was defined by including increasing residue-residue coupling values until the number
of couplings that correspond to the lowest 15% of all contact-filtered pairs was reached.
This then is related, in the approximation, to the set of local interactions, possessing
minimal intensities, which may identify antigen-antibody or protein interaction sites.
The corresponding residues define putative epitope sequences.

Importantly, MLCE does not require the use of any training set of antibody-antigen
complexes, as the determination of the epitope regions is based solely on structural-
dynamical and energetic properties of uncomplexed antigens in isolation.

Upon analyzing the results on isolated proteins and benchmarking against antibody
complexes, it has been found that the method successfully identifies binding sites
located on the protein surface that are accessible to putative binding partners (Table 3.2).

To assess the predictivity performance of MLCE technique several statistical anal-
yses on all antigens analyzed have been used. Results are reported in Table 3.2, and
the average performances are similar or better than the ones reported for knowledge
based methods [5].

A public web server (BEPPE, Binding Epitope Prediction from Protein Energetics)
has been implemented with MLCE method. The aim is to carry out epitope predic-
tions on single protein structures obtained from X-Ray, NMR or through computational
tools like homology modelling or MD simulations. The screenshot of the main page is
represented in Figure 3.9.

To use BEPPE, the input steps required are: upload a protein structure in PDB
format, select the softness level of the prediction and insert an email address to receive
the output.

BEPPE is implemented to allow the user to choose the prediction softness, meaning
that it is possible to consider for the epitope identification the 10% (strict), 15% (default)
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or 20% (soft) lowest energetic residue couplings in the MLCE calculation. As result
the number of predicted residues and the patch size will vary according to the user
selection (going from few residues with a strict prediction to a higher number with a
soft one).

BEPPE reads the input and then performs the following passages:

- Optimize the protein structure through 500 steps of molecular mechanics

- Perform MLCE calculation

- Select the predicted residues and clusterize them into patches using the contact
matrix previously calculated, rank the patches according to their average energies
and select up to 4 different patches (discarding the ones composed by less than 5
residues)

- Create sequence segments in fasta format (1 residue letter code) and joining
predicted residues which are far away up to 4 positions in the sequence

- Align these segments (using BLASTP algorithm [6]) with all human protein se-
quences available in order to find mimotopes (a mimotope is an epitope which
is homologue to a region present in a host protein, making it problematic to be
recognised by host antibodies [7])

- Send the output to the email address specified

The output consists in:

- predicted residues clusterized into patches

- a Pymol script readable with Pymol program, useful to have a three-dimentional
representation of the protein with patches highlighted

- results of the alignment with human proteins

- a link to download output files

1.2 Folding and unfolding processes of small peptides

The second part of this work focuses the folding and unfolding processes of small
polypeptides.

Protein folding is the physical phenomenon by which a polypeptide folds into its
characteristic and functional three-dimensional structure from random coil.

The correct three-dimensional structure is essential for proteins to function. Indeed,
failure to fold into the native shape usually produces inactive proteins with different
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properties, including toxic prions, in addition to several neurodegenerative and other
diseases originated from accumulation of misfolded (incorrectly folded) proteins [8].
In particular, the local formation of secondary structural elements, acting as nucleation
sites for the formation of native structures, plays a crucial role in the first phases of
protein folding. Thus, understanding the folding mechanism, at the highest possible
resolution, of synthetic peptides adopting well-defined secondary structures is of great
relevance for the comprehension of native protein folding [9, 10].

Structural studies on peptides are very important to determine their properties
in order to make their use and synthesis easy and straightforward. For example, in
peptide design the secondary structure is an essential element to consider (together with
sequence, peptide length, hydrophobic stretches and the presence of residues like Cys
or Met which are susceptible to oxidation and/or side reactions). To know the peptide
structure, and how it folds in isolation, is a relevant information. For example, it is
useful to avoid the formation of β sheet structures, which causes incomplete solvation
of the growing peptide, resulting in a high degree of deletion sequences in the final
product.

Peptides present a lot of different applications. In biomedicine they can be used
as ligands for targets like receptors in order to influence and modulate their activity
and all the following reaction cascade triggered in the biological response. In material
science, short sequences have been utilized to characterize the sequence determinants
of the formation of ordered supra-molecular structures showing nanoscale dimensions.
In vaccinology, peptides can be recognised by antibodies in order to make an efficient
vaccine, etc [11, 12].

The aim of this part is to identify and characterize the aminoacids mostly involved in the
stabilization of a 15-mer peptide (called QK, sequence Ac−KLTWQELYQLKYKGI−NH2)
homologue to the region of VEGF (Vascular Endothelial Grow Factor) which interacts
with its endogenous receptor and to highlight the folding/unfolding steps related to its
structure. VEGF protein is involved in the angiogenesis process and constitutes a good
target to regulate the formation of new blood vessels from pre-existing ones. For this
reason it takes relevance in different pathologies, ranging from cardiovascular diseases
to tumor and macular degeneration.

The QK polypetide, despite its small dimension, folds into an α helical shape and
remains stable in this conformation even at high temperatures. Several molecular
dynamics simulations were carried out on QK peptide at different temperatures in
order to test the persistence of the α helix in diverse conditions. The results have
been integrated with NMR spettroscopy and Circular Dichroism (CD) data obtained in
collaboration with Dr L. D’Andrea’s group at IBB-CNR.

After the analysis of the conformations assumed by the peptide during the MD
simulations, all data collected agreed in identifying two leucine residues (in position
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7 and 10) as fundamental for the stability of the structure. The time spent in α helix
by the peptide decreased as the temperature rised, but even at the highest temperature
simulated (380K) have been found helical conformations. This fact was confirmed
by the experimental analysis. In addition, the folding pathway was studied with a
simulation started from the extended peptide conformation. Results showed that after
50ns of MD the peptide was folded in α helical structure.

To further improve the knowledge on this peptide a mutation on its sequence has
been induced, in order to substitute the leucine in position 10 with an alanine residue,
and check if the stability of the helix could be perturbed. With this mutation the
polypeptide was less stable at higher temperatures and it unfolded with higher fre-
quency during the simulations. Again, these results were in agreement with the NMR
and CD analysis, demonstrating the importance of the formation of a hydrophobic in-
teraction between leucine residues in position 7 and 10 for the stability of the structure.

Overall, results obtained proved to be relevant for the determination of epitope anti-
genic regions on protein surfaces and for the characterization of folding/unfolding
processes of small peptides. In both cases, despite the different areas studied, we
demonstrated the importance of the analysis of molecular properties with computa-
tional techinques and their relevance to support experimental research.

Publications on which this thesis is based

- Scarabelli G, Morra G, Colombo G. Predicting interaction sites from the ener-
getics of isolated proteins: a new approach to epitope mapping. Biophys J. 2010
May 19;98(9):1966-75.

- Soriani M, Petit P, Grifantini R, Petracca R, Gancitano G, Frigimelica E, Nardelli F,
Garcia C, Spinelli S, Scarabelli G, Fiorucci S, Affentranger R, Ferrer-Navarro M,
Zacharias M, Colombo G, Vuillard L, Daura X, Grandi G. Exploiting antigenic
diversity for vaccine design: the Chlamydia ArtJ paradigm. J Biol Chem. 2010
Sep 24;285(39):30126-38. Epub 2010 Jun 30.

- Diana D, Ziaco B, Colombo G, Scarabelli G, Romanelli A, Pedone C, Fattorusso
R, D’Andrea LD. Structural determinants of the unusual helix stability of a de
novo engineered vascular endothelial growth factor (VEGF) mimicking pep-
tide. Chemistry. 2008;14(14):4164-6.

- Diana D, Ziaco B, Scarabelli G, Pedone C, Colombo G, D’Andrea LD, Fattorusso
R. Structural analysis of a helical peptide unfolding pathway. Chemistry. 2010
May 10;16(18):5400-7.
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Chapter 2

Methods of simulations

Because of the impossibility to observe individual atoms or molecules directly, various
models have been developed to describe and characterize the molecular properties of a
system. In this respect the personal image of an atom or molecule is strongly dependent
on the models that have been chosen to represent them. The sophistication of the model
is related to the properties that will be analysed, and in general it is advisable to choose
the simplest representation that considers the properties of interest in a satisfactorily
way.

Over the last decade a combination of computer graphics and molecular modelling
techniques has resulted in unprecedented power to create and manipulate three di-
mensional models of molecules using computers. The aim of this chapter is to provide
a basic description of all-atom molecular dynamics (MD) simulations of peptides and
proteins and of the analysis of the resulting sets of data.

Molecules such as proteins, lipids, DNA, carbohydrates are dynamic and their parts
undergo movements which can lead to changes in molecule conformations. Often
experimental analyses measure a time average or an ensemble average over the range
of possible configurations the molecule can adopt. One way to investigate the range
of accessible configurations is to simulate the motions or dynamics of a molecule
numerically. This can be done by computing a trajectory, i.e. a series of molecular
configurations as a function of time by the simultaneous integration of the Newton’s
equations of motion.

MD simulations are based on the time dependent behaviour of atomic and molecular
systems calculation, giving a detailed description of the variation from one conforma-
tion to another of the system studied. Simulations generate ensembles of representative
configurations in such a way that accurate values of thermodynamic and structural
properties can be obtained with a reasonable amount of computation, in particular
statistical analysis links microscopical and macroscopical properties providing the fun-
damental principles for the description of biomolecular systems.
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In the first of part of the chapter, calculation of time and ensemble average proper-
ties of molecular systems are described, subsequently, concepts and equations at the
basis of Molecular Dynamics (MD) simulations are explained. In the second part are
highlighted in detail the determination of thermodynamic and structural properties
deriving from a trajectory.

2.1 Time and Ensemble Averages

Macroscopic properties like pressure, heat capacity, volume etc depend on the positions
and momenta of the N particles constituting the system. The value of a particular
property A at a certain time t can be defined as a function of pN(t) and rN(t) representing
the N momenta and positions of the particles at time t, respectively. The instantaneous
value of A at time t can thus be written as:

A(pN(t), rN(t)) = A(p1x, p1y, p1z, p2x, p2y, p2z, . . . , x1x, x1y, x1z, x2x, x2y, x2z, . . . , t) (2.1)

where p1x corresponds to the momentum of particle 1 in the x direction and x1x is
its x coordinate. During time, the value of quantity A changes because of the effect of
temperature fluctuations and interactions between particles.

Experimentally it is impossible to measure the single value of A at time t, but it
is possible to measure the average of A during the time in which the experiment is
carried out, and therefore it represents a time average. As the time over which the
measurement is made grows to infinity, the average value of A approaches to its real
equilibrium value. The average value of Aave can thus be written as:

Aave = lim
τ→∞

1
τ

∫ τ

t=0
A(pN(t), rN(t))dt (2.2)

In this case, the measurement time is much longer than the typical relaxation time
of each event and the average value represents the equilibrium one.

In theory moving to simulations for the calculation of average values of selected
system properties is straightforward: starting from an energy function which describes
the interactions between the particles in the system it is possible to calculate the forces
acting on the particles, then through Newton’s second law of motion the positions and
momenta as a function of time are obtained.

Application of equation 2.2 would then provide the average values of the property of
interest, but unfortunately the dimensions of real molecular systems make it impossible
to calculate. The determination of interactions, positions and momenta for number of
particles of the order of 1023 is currently out of reach for most powerful computers even
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using very simplified energy functions.
This problem can be overcame with statistical mechanics. In statistical mechanics

the attention is not focused just on one single system evolving in time, but rather on a
large number of replicas of the same system evolving simultaneously. As a consequence
the time average is replaced by an ensemble average

< A >=

∫ ∫
dpNdrNA(pN, rN)ρ(pN, rN) (2.3)

< A > corresponds to the ensemble average or expectation value of property A, i.e.
the average value of A over all the replicas of the system in the ensemble generated
by the simulation. ρ(pN, rN) is the probability density of the ensemble, meaning the
probability to obtain a configuration with momenta pN and positions rN among all the
configurations sampled in the simulation. If the simulation is long enough to sample
all the relevant configurations for the system for the ergodic hypothesis the ensemble
average will be equivalent to the time average. Under these conditions the density of
probability is described by the typical Boltzmann distribution.

ρ(pN, rN) =
1
Q

e
−E(pN ,rN )

kBT (2.4)

where E is the energy function, Q the partition function, kB the Boltzmann’s constant
and T the temperature. The partition function is generally written in terms of the
Hamiltonian H governing the system, e.g.

QNVT =
1

N!
1

h3N

∫ ∫
dpNdrNe

−H(pN ,rN )
KBT (2.5)

The subscript NVT indicates a systems with a constant volume V, number of particles
N and temperature T (Canonical Ensemble). In MD simulations on biological systems
the Hamiltonian H can be approximately considered equal to the total energy E of the
system. N! arises from the indistinguishability of the particles in a system to ensure
proper counting of states, while 1

h3N is related to the equivalence of the partition function
to that calculated through quantum mechanics.

MD simulations generate a trajectory consisting of a collection of subsequent config-
urations and describing how the dynamic variables vary in the time. Thermodynamic
quantities are calculated from the trajectory using numerical integration of equation
2.3:
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< A >=
1
M

M∑
i=1

A(pN, rN) (2.6)

where M is the number of configurations (samples) from the simulation over which
the property is evaluated.

2.2 Molecular Dynamics

Molecular Dynamics (MD) is a technique useful to compute the equilibrium and trans-
port properties of many-body systems using classical mechanics laws. It constitutes
an excellent approximation for a wide range of materials and applications for systems
where electronic motions and reorganizations are not involved, like for the dynamical
characterization of complex biomolecular molecules or a polymer behavior. The final
result of an MD simulation is a trajectory that highlights the variation of the positions
and velocities of the atoms in time. On this trajectory it is possible to determine the
properties of interest as time or ensemble averages, as described previously. The suc-
cessive configurations composing the trajectory of the system are generated through
the application of Newton’s laws of motion on atom particles:

d2xi

dt2 =
Fxi

mi
(2.7)

From the equation 2.7 it is evident that particle i with mass mi moves along co-
ordinate xi subjected to the force Fxi which is due to the presence and interaction of
atom i with all other particles in the system. The force can be expressed as the negative
derivative of a potential function V(r1, r2, r3, . . . , rN) describing the fundamental types
of interactions in the system.

Fi = −
∂V
∂ri

(2.8)

V can be considered as the potential energy of the system as a function of atomic
positions, the equations are solved simultaneously in small time steps (dt) and the
atomic coordinates are written in the trajectory output file.

A typical potential function for all-atom protein simulations is expressed in the
following form:
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V(R) =
∑

b

Db[1 − e(−a(b−b0))]2 +
∑
θ

H0(θ − θ0)2 +
∑
φ

Hφ[1 + scos(nφ)] +
∑
χ

Hχχ
2+

+
∑

b

∑
b′

Fbb′ (b − b0)(b
′

− b
′

0) +
∑
θ

∑
θ′

Fθθ′ (θ − θ0)(θ
′

− θ
′

0)+

+
∑

b

∑
θ

Fbθ(b − b0)(θ − θ0) +
∑
θ

∑
θ′

Fθθ′φ(θ − θ0)(θ
′

− θ
′

0)cosφ+

+
∑
χ

∑
χ′

Fχχ′χχ
′

+
∑

i

∑
j>i

[Ai j

r12
i j

−
Bi j

r6
i j

+
qiq j

ri j

]
(2.9)

Each term defines the contribution of a particular element:

1.
∑

b Db[1 − e(−a(b−b0))]2 represents the stretch of a chemical bond

2.
∑
θ H0(θ − θ0)2 corresponds to the deformation of a bond angle

3.
∑
φ Hφ[1 + scos(nφ)] reflects the torsion of a dihedral angle

4.
∑
χ Hχχ2 takes into account the distorsion of atom involved in planar bonds laying

outside the plane

5.
∑

b
∑

b′ Fbb′ (b − b0)(b′ − b′0) defines the contemporary stretching distorsion of two
bonds

6.
∑
θ

∑
θ′ Fθθ′ (θ−θ0)(θ′ −θ′0) represents the contemporary bend of two angle bonds

7.
∑

b
∑
θ Fbθ(b − b0)(θ − θ0) corresponds to the stretch of one bond and the bend of

an angle bond

8.
∑
θ

∑
θ′ Fθθ′φ(θ − θ0)(θ′ − θ′0)cosφ defines the distorsion of an angle bond and a

dihedral one

9.
∑
χ

∑
χ′ Fχχ′χχ

′ reflects the stretch-bend deformation of atoms forming planar
bonds

10.
∑

i
∑

j>i

[
Ai j

r12
i j
−

Bi j

r6
i j

+
qiq j

ri j

]
considers non-bonded interactions (Van der Waals and

electrostatic).

Several parameters are present in the Force Field, such as the equilibrium distances,
force constants or Van der Waals and electrostatic terms, all of them have to be deter-
mined by either using experimental data or through the fitting to high level ab initio
calculations. Clearly, the parametric nature of the force fields imposes restrictions to
their uses in contexts which are different from the ones they have been developed for,
so for example it would be unwise to use a force field set for aminoacids in a inorganic
polymer study.
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2.2.1 Molecular Dynamics Parameters

First, to run an MD simulation it is necessary to define a molecular system to study and
to identify the properties useful for its characterization. Generally, the model system
will consist of N particles which will interact under the action of the potential and
forces defined in equations 2.7 to 2.9.

An MD trajectory is divided into two parts, the first one is the equilibration stage, in
which the system (and the properties of interest) will evolve as a function of time, and
the second one is the production phase where it is possible to carry out the effective
measurements as the system has reached the equilibrium. The choices of the model,
the equilibration time and the way the measurement is carried out are very sensitive
points which have to be evaluated carefully. Indeed incorrect results or bad artifacts
can be generated by using the wrong model to describe the phenomena, by using too
short equilibration/measurement times, or by not noticing irreversible and chemically
meaningless changes that can occur in the system.

Starting conformation

To start the simulations initial positions and velocities to all atoms in the system must
be assigned. In the case of biological molecules or protein simulations, the initial
positions can be obtained from structural determination experiments such as NMR or
X-Ray measurements.

Clearly, in biomolecular simulations, the user is mostly interested in investigat-
ing the properties of the system in presence of the appropriate solvent (or mixture of
solvents), rather than simply studying gas-phase properties. To this end, the solute
(protein, DNA, drugs, etc. . . ) is inserted in a pre-equilibrated solvent bath (any solvent
molecules whose coordinates are too close to the solute atoms are eliminated from the
system). In theory a simulation should be able to reproduce the behaviour of an infinite
system or of a real system of around 1023 particles, in which a negligible number of
particles would be in contact with the boundaries (like the vessel walls in real-life ex-
periments), in order to calculate straightforwardly macroscopic quantities. In practice
this situation is completely out of reach even for the most powerful computers, and the
study has to be carried out on finite-size systems characterized by some boundaries.

The correct choice of the method to treat the boundaries of the simulation is fun-
damental for the calculation of the properties of interest. Depending on the physico-
chemical problem under investigation it is possible to set up two different boundary
conditions, Periodic Boundary Conditions and Non-Periodic Boundary Methods. In
this work, we will only use Periodic Boundary Conditions (PBC) and explicit solvent
representations which are the most used for protein and peptide studies.
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Figure 2.1: Example of a cubic simulation cell surrounded by its replicas (8 in this case) in order to set

up periodic boundary conditions in 2D.

Periodic Boundary Conditions

Periodic Boundary Conditions (PBC) are useful to run a simulation considering a rela-
tively small number of particles, in such a way that the particles experience interactions
and forces as if they were in a bulk fluid. The simplest representation of such a system
is represented by a cubic box of particles which is replicated in all directions to give a
periodic array (Figure 2.1).

The particles coordinates in the replica images are obtained by adding to the original
ones multiples of the box sides. If a particle leaves the box during the simulation, it
will be replaced by its image coming in from the opposite side of the box. In this way
the number of particles in the simulation box is kept costant and the solvent behaves
basically as a bulk with no border effects affecting the results of the simulation. To
reduce the cost in term of calculation periodic boundary conditions are most often
combined with the minimum image convention: only one, the nearest-image of each
particle is considered for short-range non-bonded interaction terms.

There is also the possibility of choosing different shapes of the box, the most common
are types of geometric solid (cubic, hexagonal prism, truncated octahedron, rhombic
dodecahedron and elongated dodecahedron) that fulfil the condition to fill the whole
space and be replicated by simple translation operations of the central box in Cartesian
coordinates, in order to avoid problems with the periodic boundary conditions.

The choice of the type of box depends on the shape and simmetry of the molecules
under study, for example for globular molecules with an approximately spherical
symmetry the best one will be the truncated octahedron or the rhombic dodecahedron,
which can approximate better the spherical shape. For extremely elongated systems
with a cylindrical symmetry, the best choice will be the hexagonal prism, while for
systems like membrane double layers, a good box is a cubic or parallelepiped one.

PBC conditions are very convenient and are as close as possible to a realistic sit-
uation even though they present some drawbacks. For example it is not possible to
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achieve fluctuations that have a bigger wavelength than the length of the cell itself.
Also if there are long-range interactions between molecules, such as electrostatic ones,
it is often necessary to use truncation or cutoff approximations for the treatment of
long range forces in order to avoid the formation of artifacts such the ones where a
particle interacts with its own periodic image (and so with itself). For these reasons
it is very important to set up proper conditions in order to have a correct simulation box.

After the solvation of the system initial atomic positions must be carefully checked
to avoid any sizeable overlap of groups and different atoms positioned in the same
point in the space box. On average initial structures have to be minimized in order to
remove bad contacts and optimize bond, angular and torsional interactions. The mini-
mization procedure has the main objective to place the initial structure on low energy
points on the Potential Energy Surface. For the starting movement, to each particle
is assigned a initial velocity that is drawn from a uniform Maxwellian distribution of
velocities consistent with the temperature at which the simulation will be run.

p(vi) =

√
mi

2πkT
e

miv
2
i

2kT (2.10)

Electrostatic interactions

The most time consuming part in an MD simulations is the calculation of forces. For
example considering the potential describing the interactions in the system like the one
depicted in equation 2.9 (which is essentially a pair-wise potential) it is necessary to
take into account the force contribution acting on particle i due to the presence of all
its neighbors. This would imply that the computational time required to evaluate the
forces is in the range of N2, where N is equal to the number of atoms in the system.

The biggest part of the computational cost is related to the term representing the
non-bonded interactions energies (Lennard-Jones and Electrostatics) in equation 2.9. In
principle, these interactions are calculated between every pair of atoms in the system,
but actually for many systems this is not strictly necessary. Lennard-Jones potentials
(the C6 and C12 terms) for instance decay very fast as a function of the distance between
atoms, reflecting the r−6 dependence of the dispersion interactions. The most simple
way to deal with them is to use a non-bonded cutoff and to apply the minimum-image
convention. With a cutoff threshold the interactions between all pairs of atoms whose
distance is higher than the cutoff are set to zero and excluded from the calculation.

When periodic boundary conditions are used, the box dimensions should be large
enough to avoid that a particle can interact with their own periodic images (which
leads to problematic artifacts that invalidate the simulation). This limits the extension
of the cutoff to be no more than half the length of the cell when using a cubic cell.
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Cutoff values should be chosen carefully when long range electrostatic interactions
are involved in the simulations, such as in the case of presence of ionizable groups,
counterions and so on. Of course in these kind of situations the thresholds should be
much longer than in the cases of uncharged Lennard-Jones particles.

In general the use of cutoffs leads to truncating the potentials in non natural way
and it brings errors especially in the cases of charged systems, where electrostatics is
particularly important. To solve these problems other methods have been developed
to properly deal with long-range interactions. In the next section it will be described
the treatment of long-range electrostatic interactions with Particle Mesh Ewald (PME)
method, a technique that allows to treat explicitly electrostatics without the use of cutoff

thresholds.

Ewald summation method

The aim of Ewald summation method is to model properly long-range forces in sim-
ulations involving charged groups [13, 14]. Electrostatic forces are the main group of
long-range interactions and decay as r−1 and their treatment is fundamental for the
calculation of properties such as the dielectric constant.

This method has been developed to compute long-range contributions to the po-
tential energy in systems with periodic boundary conditions derived from ionic crystal
studies. In a system positively and negatively charged particles are assumed to be lo-
cated in a cube with side of length L (Volume = L3), with periodic boundary conditions,
and the total number of particles in the simulation box is equal to N (of course at short
distances the particles repel one another). The system is electrically neutral, meaning
that (

∑
i zi = 0 with zi corresponding to the charge of the atom i).

Coulomb contribution to the potential energy of the system is equal to:

UCoul =
1
2

N∑
i=1

ziφ(ri) (2.11)

with φ(ri) is the electrostatic potential at the position of ion i:

φ(ri) =

′∑
j,n

z j

|ri j + nL|
(2.12)

Where the prime sign on the summation in equation 2.12 indicates that the sum is
calculated for all periodic images n and over all particles j, except j=i if n=0.

As the use of 2.12 to study electrostatic properties in a simulation would result in a
very slowly converging sum, the expression for charge density have to be rewritten.
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In equation 2.12 the charge density has been described as a sum of d functions,
and the contribution to the electrostatic potential due to these charges decays as r−1.
Taking as example a situation in which every charge zi is surrounded by a diffuse
charge distribution of the opposite sign, such that the total charge of the cloud exactly
cancels zi, the electrostatic potential due to particle i is due exclusively to the fraction of
zi which is not screened. At long distances, this fraction rapidly goes to zero influenced
by the functional form of the screening charge distribution. Generally, the choice for
this distribution is a Gaussian.

The contribution to the electrostatic potential at a point ri due to a set of screened
charges can be easily computed by direct summation, because the electrostatic potential
due to a screened charge is a rapidly decaying function of r. However, in MD simulation
it is not relevant the potential due to the screened charge, but the one due to actual
point charges. Hence, it must be corrected for the fact that it has been added a screening
charge cloud to every particle.

This compensating charge distribution is a function that varies smoothly in space,
for example to compute the electrostatic energy at the site of ion i it is necessary firstly
to exclude the contribution of the charge zi to the electrostatic potential. However,
it is convenient to add a screening charge around ion i to the compensating charge
distribution that must be subtracted as the compensating charge distribution becomes a
smoothly varying periodic function. The idea is that such a function can be represented
by a rapidly converging Fourier series. Of course, at the end it is necessary to correct for
the inclusion of a spurious self interaction between ion i and its compensating charge
cloud.

In this way PME has the advantage of a convergence of the Fourier-space summation
compared to its real-space equivalent when the real-space interactions are long-ranged.
Because electrostatic energies consist of both short- and long-range interactions, it is
maximally efficient to decompose the interaction potential into a short-range compo-
nent summed in real space and a long-range component summed in Fourier space.

Integration of equation of motion

MD simulations are based on the integration of Newton’s equation of motion. To
calculate the position of a particle at a certain time t + ∆t, r(t + ∆t) it is possible to
expand with Taylor series the coordinate of that particle around time t.

r(t + ∆t) = r(t) + v(t)∆t +
f (t)
2m

∆t2 +
∆t3

3!
r + O(∆t4) (2.13)

and in the same way:
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r(t − ∆t) = r(t) − v(t)∆t +
f (t)
2m

∆t2
−

∆t3

3!
r + O(∆t4) (2.14)

Summing up equations 2.13 and 2.14 results in:

r(t + ∆t) + r(t − ∆t) = 2r(t)
f (t)
m

∆t2 + O(∆t4) (2.15)

and then:

r(t + ∆t) ≈ 2r(t) − r(t − ∆t) +
f (t)
m

∆t2 (2.16)

The estimate of the new positions contains an error which is of the order of ∆t4,
where ∆t is the time step in out MD scheme, typically between 1 and 10 fs in the
simulation of biomolecular systems. The algorithm presented here is the so called
Verlet algorithm. It is important to notice from 2.16 that velocities are not used to
compute the new position, however, it is always possible to compute the velocity from
the knowledge of the trajectory using:

r(t + ∆t) − r(t − ∆t) = 2v(t)∆t + O(∆t2) (2.17)

or

v(t) =
r(t + ∆t) − r(t − ∆t)

2∆t
+ O(∆t2) (2.18)

This expression for the velocity is exact to within an order ∆t2, but it is not possi-
ble to obtain a better estimate of the velocities (and hence of the kinetic energy and
temperature of the system) using Verlet-like algorithms.

Once the new positions have been calculated the old ones (at t − ∆t) are discarded.
After each time step, it is possible to calculate current temperature, potential energy
and total energy. Of course the total energy must be conserved, and a good integration
scheme has to ensure this in the very first place.

It is possible to use other integration algorithms, for example, GROMACS relays on
leap-frog algorithm for the integration of the equations of motion. This algorithm uses
positions r at time t and velocities v at time t − ∆t/2 and it updates the positions and
velocities using the force f(t) determined by the positions at time t:
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v
(
t +

∆t
2

)
= v

(
t −

∆t
2

)
+

f (t)
m

∆t (2.19)

and

r(t + ∆t) = r(t) + v
(
t +

∆t
2

)
∆t (2.20)

Temperature and pressure control

To obtain an easier connection with experiments it is often desirable to run simulations
at constant Temperature (T) or Pressure (P), the two most common simulation ensem-
bles are in fact the NVT and NPT. This section is about the methods used to control the
temperature and the pressure in MD simulations.

The temperature regulation in MD simulations is fundamental for comparison of re-
sults with experimental findings. Moreover it might be of interest to investigate the
behavior of a system at different temperatures or to check the temperature induced
unfolding behavior of a protein, DNA stretch etc. Simulated annealing MD protocols,
in which the temperature is changed in a controlled fashion, are also of interest for
NMR or X-ray structure refinements.

Temperature is related to the average kinetic energy:

< K >NVT=
3
2

NKBT (2.21)

From this relation is evident that it is easily possible to control the temperature
scaling the kinetic energy and hence the atom velocities. An alternative way to maintain
the temperature close to the desired value is to couple the system to an external heat
bath kept at the desired temperature. In the Berendsen coupling algorithm the bath acts
as a heat reservoir which can supply or remove energy from the system. The velocities
are scaled at each time step, such that the rate at which the temperature changes is
proportional to the difference in temperature between the bath and the system. If T0 is
defined as the reference temperature and T as the instantaneous one the scaling formula
will be:

dT
dt

=
T0 − T
τ

(2.22)

meaning that a temperature deviation decays exponentially with a time constant τ.
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This method presents the advantage related to the fact that the strength of coupling
can be varied and adapted to different situations by just changing the scaling factor τ.
For equilibration purposes for instance the coupling time can be taken quite short (e.g.
0.01ps), while for productive runs this value can be much higher (like 0.5ps), in general
if τ is high the coupling is weak and viceversa (when it equals the time step, we simply
have a velocity rescaling algorithm).

The main problem with this algorithm is that it does not generate rigorous canoni-
cal averages, velocities are rescaled artificially and this is reflected in any temperature
difference between components of the system (this is particular relevant in the phe-
nomenon of ”hot” solvent and ”cold” solute). One possible solution is to couple
separately the different components to the heat bath, but a problem of unequal energy
distribution among components may still be present.

Just like the temperature in a simulation it is also possible to control the pressure.
This is useful to check the system behavior as a function of pressure, enabling the study
of conformational changes induced by ultra-high pressure conditions. These types
of studies are being applied for instance to study enzymatic reactivity for industrial
applications or in the study of the properties of proteins which show conformational
variations.

Pressure fluctuations are generally much more pronounced than temperature ones
since the pressure is related to the virial, which is obtained as the product of the
positions and the derivative of the potential energy function. This product is much
more sensitive to the variations in position than the internal energy, which brings bigger
pressure fluctuations.

Berendsen control algorithm can be used also for the pressure control, in fact it is
based on the same concepts as for the temperature regulation. This algorithm rescales
coordinates and box vectors every step with a matrix µ, which has the effect of a
first-order relaxation of the pressure towards a given reference pressure P0.

dP
dt

=
P0 − P
τP

(2.23)

and the scaling matrix µ is:

µi j = δi j −
∆t
3τP

βi j[P0i j − Pi j(t)] (2.24)

where β is the isothermal compressibility of the system. In most cases this will be a
diagonal matrix, with equal elements on the diagonal, the value of which is on average
not known. Generally it is sufficient to consider a rough estimate of the value of β
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since it only influences the non-critical time constant of the pressure relaxation without
affecting the average pressure itself. For water at 1atm and 300K this value is equal
to 4.6 ∗ 10−5Bar−1. The scaling can be done isotropically or anisotropically depending
on the type of system being simulated. For instance for a globular protein isotropic
scaling is fine while for systems with interfaces (like membrane receptors) or with
conformational changes in one direction mainly anisotropic scaling is better.

2.2.2 Thermodynamic quantities

Computer simulations allow the calculation of quantities which can be compared di-
rectly with experimental results (a fundamental step for the validation of simulation
results) and also the prediction of properties inaccessible to experiments. Many differ-
ent types of properties can be calculated ranging from average energies to structural
and conformational information, in the next part of the paragraph some of them will
be explained.

Energy

Internal energy is the most straightforward quantity that it is possible to calculate from
simulations. It can be obtained as the ensemble average of the energies of the states
(configurations) sampled during simulations:

< E >=
1
M

M∑
i=1

E(pN, rN) (2.25)

Pressure

In simulations generally pressure is determined through the use of the virial theorem.
The virial is defined as the expectation value of the sum of products of the particle
coordinates with the forces acting on them. This can be formalized as:

W =
∑

xip
′

xi (2.26)

with xi being the coordinate and p′xi being the first derivative of the momentum
along that coordinate. The latter quantity has the dimensions of a force. The virial
theorem states that the virial is equal to −3NkBT. By knowing from the simulation
the forces acting on each single atom it is possible to obtain the pressure through this
expression:
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P =
1
V

[
NkBT −

1
3KBT

N∑
i=1

N∑
j=i+1

ri j fi j

]
(2.27)

Temperature

The system temperature can be calculated directly from the kinetic energies K of the
particles:

K =

N∑
i=1

|pi|
2

2mi
=

kBT
2

(3N −NC) (2.28)

The single atom masses mi, their momenta etc. are all known from the trajectories
of MD simulations and Nc takes into account the removal of 3 degrees of freedom to
constrain the total momentum of the system to a constant equal to zero.

2.2.3 Structural properties

Molecular simulations give access to the calculation of a large number of structural
properties, in special they are relevant for the study of conformational variations,
molecular interactions, in the description of allosteric modifications, etc.

Root Mean Square Deviation

Root Mean Square Deviation (RMSD) generally contains information on the divergence
in time of a structure from a reference one and it is determined with the following
formula:

RMSD(t1, t2) =

√√
1
M

N∑
i=1

mi||ri(t1) − ri(t2)||2 (2.29)

Where M is the sum over all the atom masses, and ri(t) is the position of atom i at
time t. A protein is usually fitted on the backbone atoms N, Cα, C or just Cα atoms, but
of course it is possible to compute the RMSD over other elements like only side chain
atoms or even the whole protein. In general as reference structure for the calculation it
is used the first one in the simulation (or a crystal one). In addition it can be defined
a matrix with the RMSD as a function of t1 and t2, allowing easy identification of
structural transitions in a trajectory.
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Radius of gyration

The Radius of Gyration (Rg) gives a measure for the compactness of the structure and
it is defined as:

Rg =

√∑
i ||ri||

2mi∑
i mi

(2.30)

This measure is very useful in the polymer field in order to describe the dimensions
of a polymer chain, in MD simulations it gives information about the changes in the
protein structure shape.

Root Mean Square Fluctuation

Root Mean Square Fluctuation (RMSF) determines the average fluctuation of each
protein atom during the simulation time using as reference structure the average one:

RMSF =

√√√
1
T

T∑
t j=1

||ri(t j) − r̃i||
2 (2.31)

where T is the time used to determine the average and r̃i is the average position of
particle i.

Cluster analysis

Molecular simulations generate a large amount of data representing different confor-
mations of the molecules studied. Many of these conformations are very similar and in
these cases it is desirable to filter out from the large data set only a subset of representa-
tive conformations that can be much more easy to analyse avoiding redundance. This
is carried out generally by using statistical cluster analysis methods, which can group
together objects with a certain similarity and extracting the simulation representative
structures. For this process it is necessary to define a measure for similarity between
objects; generally in protein and peptide simulations a natural choice is the RMSD.
However it does not exist a universal similarity measure nor a general cluster analysis
method to be applied to every situation without a previous assessment of the problem
at hand.

In this paragraph it is briefly described the method introduced by Daura and
coworkers [15] which is actually based on recursive RMSD evaluations: to find clusters
of structures in a trajectory the RMSD of atom positions between all pairs of atoms is
determined. For each structure the number of other structures for which the RMSD is
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less than a threshold value (neighbour conformations) is calculated. Then the structure
with the highest number of neighbours is taken as the center of the cluster and forms,
together with its neighbours, the first cluster. Subsequently the structures of this clus-
ter are thereafter eliminated from the pool of structures. The process is repeated until
the pool of structures is empty. This procedure generates a series of nonoverlapping
clusters of structures.

Secondary structure analysis

Another useful parameter to analyze protein structures is the evolution of secondary
structure. The DSSP (Dictionary of Secondary Structure of Proteins) is the most widely
used approach in this respect. The DSSP program was designed by Wolfgang Kab-
sch and Chris Sander to standardize secondary structure assignment [16]. DSSP is a
database of secondary structure assignments for all protein entries in the Protein Data
Bank (PDB) and also the program that calculates DSSP entries from PDB entries.

Normal Mode analysis

Normal mode analysis (NMA) leads to the expression of protein dynamics in terms of
a superposition of collective variables, namely, the normal mode coordinates [17].

The main idea is that large and relevant protein movements may actually be under
selective pressure. For this reason, aminoacid sequences may have evolved so that
energetic barriers related to big structural variations (necessary to carry out the protein
function) are low, as consequence, analysing one or a few low-frequency normal modes
of the protein can be a fast and reliable method to describe them.

NMA is most often used in order to try to guess what kind of conformational change
a protein undergoes in order to fulfil its function, by analysing its lowest-frequency
modes one after the other.

Normal mode calculation is based on the harmonic approximation of the potential
energy function around a minimum energy conformation. This approximation allows
the analytic solution of the equations of motion by diagonalizing the Hessian matrix (the
mass-weighted second derivatives of the potential energy matrix). The eigenvectors of
this matrix are the normal modes, and the eigenvalues are the squares of the associated
frequencies. The protein movement can be represented as a superposition of normal
modes, fluctuating around a minimum energy conformation. For proteins, the normal
modes responsible for most of the amplitude of the atomic displacement are associated
to the lowest frequencies. In order to avoid time-consuming energy minimizations, as
well as the corresponding drift of the studied structure, a single-parameter Hookean
potential is used, which was shown to yield low-frequency normal modes as accurate
as those obtained with more detailed, empirical, force fields [18].
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EP =
∑

d0
i, j<Rc

c(di, j − d0
i, j)

2 (2.32)

where di, j is the distance between two atoms i and j, d0
i, j is the distance between

the atoms in the three-dimensional structure, c is the spring constant of the Hookean
potential (assumed to be the same for all interacting pairs) and RC is an arbitrary cut-off,
beyond which interactions are not taken into account. This approximation implies that
the reference structure represents the minimum energy conformation.

Moreover, all atom masses are set to the same fixed value in the kinetic energy term,
as this approximation was shown to have little influence on the low-frequency modes.
Therefore, only normalized frequencies are reported, the lowest non-trivial frequency
being set to one. Note that there are always six zero frequencies (corresponding to the
three overall rotations and three overall translations of the system), but more than six
can be obtained if a group of atoms is at a distance larger than RC from the others.

Major applications of normal modes are the identification of potential conforma-
tional changes like in enzyme structures upon ligand binding, membrane channel
opening or after generic protein-protein interaction events.

Energy Decomposition Method

A protein structure is composed by an intricated network of bonded and non-bonded
chemical interactions. All the bonds that join the protein atoms of the backbone are
built during the traslation process in the ribosomes, but it is important to underline that
to assume the folded and functional state non-bonded interactions are fundamental.
Indeed, a protein structure can be seen as a complex network of energetic interac-
tions between aminoacids, some of them would form strong and stabilizing bonds
(in particular in the fold core), while other (on surface) would be involved in weaker
contacts.

To characterize a protein fold, it is important to identify the crucial residues re-
sponsible for the energetic stability of the structure from those residues not forming
stabilizing interactions.

To achive this goal, in our group has recently been proposed the energy decomposi-
tion method (EDM) [3,4,19,20] that, as a first step, computes the matrix of nonbonded
interaction energies (namely, van der Waals and electrostatic interactions) between
pairs of residues. This matrix is afterward diagonalized, and from the analysis of
the eigenvector associated with the lowest eigenvalue, it is possible to identify those
residues that behave as strongly interacting and stabilizing centers.

It is worthwhile to observe that there are two slightly different versions of the energy
decomposition method. In the first one, the nonbonded interaction energy matrix is
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obtained as an average over the MD trajectory. In addition solvation effects are not
taken into account directly, although the solvent is present during the MD simulation
and, hence, influences the protein structure.

In the second approach, after a cluster analysis performed on the MD trajectory,
only the most representative structure of the most populated cluster is taken into
account and the nonbonded interaction energy matrix is computed on that protein
structure. Obviously, in the second case, the average solvent effect is not considered,
and, to resolve this problem, the solvent is directly taken into account using the PBSA
method [21, 22] in the calculation of the nonbonded interactions.

It is important to observe that the two versions of the EDM provide qualitatively
equivalent results, although the second one is less computationally demanding. Of
course, because of the great number of simulations to be analyzed in our study, we
opted for the second approach, using the GROMOS [15] methodology to carry out the
cluster analysis with 0.2 nm as the root-mean-square deviation (RMSD) cutoff.

Now, for the sake of completeness, it is interesting to consider some theoretical
details about the EDM. Let us indicate with M the non-bonded interaction energy
matrix without the diagonal elements, namely without the self-interaction terms. This
matrix can be diagonalized and expressed in terms of its eigenvalues and eigenvectors:

Mi j =

N∑
k=1

λkwikw jk (2.33)

where N is the number of aminoacids in the protein, λk is the kth eigenvalue, and wik

is the ith component of the kth eigenvector. Eigenvalues and eigenvectors are usually
labeled following an increasing order. Therefore, λ1 is the lowest eigenvalue, and
hereafter, we will refer to the first eigenvector as the eigenvector corresponding to
eigenvalue λ1. The total nonbonded energy is defined as:

Enb =
1
2

N∑
i, j=1

Mi j =
1
2

N∑
i, j=1

N∑
k=1

λkwikw jk =
1
2

N∑
k=1

λkWk (2.34)

where Wk =
∑N

i, j=1 wikw jk. If |λ1W1| is much larger than |λkWk| for k , 1, the sum
over i and j of Mi j is dominated by the contribution due to the first eigenvalue and
eigenvector, such that the total nonbonded energy can be approximated by

Enb ≈ Eapp
nb =

λ1

2

N∑
i, j=1

wi1w j1 =
λ1W1

2
(2.35)
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As mentioned above, the eigenvector associated with the lowest eigenvalue is used
to identify the most stabilizing aminoacids. In particular, considering its squared
components as the weights of the corresponding residues in the structural stabilization,
we can define ”hot spots” as those residues with a weight higher than a threshold t.
This threshold is set equal to the squared component of a normalized ”flat eigenvector”
(namely, a normalized vector whose components provide the same contribution for
each site). This corresponds to a case in which each residue equally contributes to the
structural stability, and therefore, the threshold t is equal to 1/N, where N is the number
of the eigenvector components.

To sum up, with this analysis it is possible to identify aminoacids, involved in the
most relevant non-bonded interactions, responsible for the stabilization of the protein
fold.
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Chapter 3

MLCE: a new method for epitope
prediction

This chapter concentrates the development of a new method useful for the prediction
of epitope locations on antigenic protein surfaces.

At the beginning of this chapter we explain the biological background concepts that
are at the basis of this part of the thesis, in particular focusing on vaccine develop-
ment and aspects related to protein antigens study. In the central part, the details of
the methodology developed (called MLCE) and how energetic properties of a protein
structure can be used to predict epitope residues are illustrated. A statistical analysis
on nineteen different antigenic proteins has been carried out to test MLCE technique
performance. At the end of the chapter, we describe BEPPE, a public web server imple-
mented with MLCE method in order to make it available for the scientific community.

This chapter is based on the following scientific work:
Scarabelli G, Morra G, Colombo G. Predicting interaction sites from the energetics

of isolated proteins: a new approach to epitope mapping. Biophys J. 2010 May
19;98(9):1966-75.

3.1 Biological framework

Development of antibiotic resistance in pathogenic bacteria is potentially one of the
most serious threats in modern medicine [23]. The massive use of drugs and the possi-
bility to exchange genetic material between infectious agents, resulting in acquisition
of resistance and immunity, is causing a loss of effectiveness of commercially available
antibiotics.

One approach to minimize the use of these medicines is to vaccinate population
against strains of pathogenic bacteria, inducing and establishing protection against
infective agents through the activation of the host immune system.
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3.1.1 Immune response

The interaction between molecules is at the basis of cellular life. It is no surprise
that the study of molecular recognition processes has emerged in recent years as a
very important and relevant field of research, influencing areas like molecular biology,
biochemistry, biomedicine, immunology, etc.

Regarding immunology, the recognition of antigens by antibodies is a fundamental
step for the adaptative immune response which leads to the neutralization of a specific
pathogen. Antigens are molecules (proteins or polysaccharides) expressed on the
surface of infectious agents like viruses and bacteria which are recognised by the host
immune system as non-self.

In case of infection, the immune system cells identify the invading agent through
specific antigenic molecules expressed on it and activate the immune response. For the
organism, this process is fundamental to avoid the spreading of the infectious pathogen
and to neutralize it. The immune response consists at the beginning in the production
of signalling molecules attracting cells like macrophages and granulocytes which start
to fight the infection. Subsequently in the activation and differentiation of limphocytes
B and T which can react specifically with the production of antibodies and the activation
of cells able to kill the pathogen.

When the infection is defeated, immune cells (called memory cells) remain in circle
in the host body to ensure a rapid and efficient immune response through the pro-
duction of specific antibodies in case of a second infection from the same pathogen
(Figure 3.1).

In this context, a vaccine is a biological preparation based on the capability of the
immune system to keep memory of the infectious organisms. It is constituted by an
inactivated pathogen, or a part of it, which is injected into an organism inducing pro-
tection against infective agents through the activation of the immune system and the
production of memory cells.

In order to make a vaccine preparation it is important to know which pathogen
molecules can be recognised by antibodies as not all the molecules expressed on a
pathogen surface can be a good target for the antibody binding. In particular, the
molecular regions recognized by antibodies assume huge relevance. Being able to
characterize their chemical and physical properties and determine their presence and
position on molecule surfaces, can result in a considerable advantage in vaccine design,
reducing both industrial cost and production time [1].

Using high resolution structures, it will be possible to design antigenic molecules,
making their production more efficient and improving the steps of the storing process,
thereby lowering costs and eliminating problems to distribution. Furthermore, with
the knowledge of which parts of an antigen must be retained to preserve basic char-
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Figure 3.1: Schematic representation of the humoral response. The antigens on the pathogen surface are

recognized by specific B cell which start the production of antibodies in order to block the invading agent and to

make possible its elimination. After defeating the infection, memory cells remain vigilant for further invasions

from the same infective organism. Picture adapted from www.nobelprize.org
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acteristics for the recognition process and which can be altered, vaccine antigens can
be modified more rapidly in response to changing epidemiology. Finally, the use of
different molecules in combination vaccines and the immunization regimens can be
simplified with a proper design.

All these considerations emphasize why it is very important to identify good anti-
genic molecules for the vaccine design. Antibody recognition is influenced by a lot of
different aspects related to antigenic molecules like: size, shape, structural complexity,
abundance, solubility, propensity to oligomerization, epitope structure and position
and many others. Some of these aspects are in connection with the molecular struc-
ture of the antigen itself, in particular the ones related to the epitope regions. Indeed,
the ability to predict epitope sequences and location is central to the development of
structural vaccinology. Based on these aspects, the study of the structural and dy-
namical properties of these molecules, using computational techniques, can be a good
instrument to improve the knowledge in this field.

3.1.2 History of vaccines

Vaccines were developed for the first time by Edward Jenner in 1796 starting from what
a milkmaid boast said about human smallpox. She told Jenner she would never have
the often-fatal or disfiguring disease smallpox, because she had already had cowpox,
which has a very mild effect in humans. Jenner decided to verify this fact inoculating
cowpox to a 8 years old boy. After 6 weeks he variolated the boy’s arm with smallpox
and observed that the boy did not catch smallpox.

In nineteen century Louis Pasteur generalized Jenner’s idea by developing what he
called a rabies vaccine (now termed an antitoxin) inactivating the pathogen organisms
and inject them into patients.

Since those times, a lot of different vaccines have been developed using Pasteur
methodology (or similar ones), which consisted in the use of killed or attenuated
microrganisms, or with the selection of part or subunits of the agents like toxins or
specific proteins. Examples of diseases overcome with these techniques are cholera,
bubonic plague, hepatitis A, etc.

Unfortunately, for some pathogens all these kinds of approaches did not work,
and so it was not possible to find a reliable vaccine to prevent their related diseases.
This problems raised the necessity to find new techniques to identify good antigenic
candidates to develop new vaccines.

3.1.3 Reverse Vaccinology

In the last decade the advent of post-genomic methodologies has had a great impact on
immunology studies. The case of Neisseria meningitidis illustrates the strategic/synergic
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role played by new genomics and bioinformatics methods in vaccine development
and the possibilities they are bringing to overcome all difficulties, present in classical
approaches, related to the design of vaccines.

Neisseria meningitidis is a major cause of bacterial septicemia and meningitis in hu-
mans [24], it is a Gram-negative bacterium, capsulated in its invasive form, classified
into five major pathogenic serogroups on the basis of the chemical composition of dis-
tinctive capsular polysaccharides [25]. For one serotype (group B, called MenB) this
polysaccharide is identical to a widely distributed human carbohydrate, making its use
as the basis of a vaccine for prevention of MenB diseases problematic [26]. As conse-
quence, most efforts have turned to development of vaccines based on surface-exposed
or exported proteins [27]. Unfortunately, all the attempts tried in 40 years with clas-
sical vaccine development approaches failed, because of hypervariability and/or poor
conservation among the diverse MenB strains that cause endemic disease, making it
unlikely that they would provide broad protection against it [28]. For these reasons
currently there is no commercial vaccine against serogroup-B N. meningitidis.

In 2000, when N. meningitidis genome was sequenced, a new technique to obtain new
vaccine candidates emerged. The general idea is that a genome sequence containes
the information of the complete repertoire of its antigenic proteins, so through a rapid
and intelligent screening selection of all the organism proteins it can be possible to
identify good antigenic proteins. This technique was named Reverse Vaccinology (RV,
Figure 3.2) as it is based on a reverse approach compared to the classical vaccine devel-
opment methodologies. Serogroup B of Neisseria meningitidis was the first case studied
with the reverse vaccinology approach.

Starting from the sequenced genome of the MC58 MenB strain 2158 predicted ORFs
(Open Reading Frame, one ORF corresponds to a region of the genome which is trans-
lated into a protein) were screened for the design of a novel vaccine [29]. Assuming
that surface exposed antigens are the most suitable vaccine candidates, due to their po-
tential to be recognized by the immune system, the draft MC58 genome was screened
using bioinformatics tools, leading to the identification of 570 ORFs predicted to encode
either surface exposed or secreted proteins [30, 31]. Antigen selection then continued
based on the following criteria:

- the ability of candidate proteins to be cloned and expressed in Escherichia coli as
recombinant (350 candidates)

- the confirmation of surface exposure through ELISA and FACS analysis

- the protective immunity obtained from the elicited antibodies, measured with
serum bactericidal assay and/or passive protection in infant rats (28 candidates)
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- the screening to determine the conservation level of the candidates within differ-
ent meningococcal strains, primarily containing disease-associated MenB strains.

After all these steps few antigens have been identified by reverse vaccinology:

- genome-derived Neisseria antigen 1870 (GNA1870; which is factor H-binding
protein [fHBP])

- GNA1994 (which is NadA)

- GNA2132 (GenBank accession number NP 275117)

- GNA1030 (GenBank accession number AAF41429)

- GNA2091 (GenBank accession number NP 275079)

- an outer membrane vesicles (OMV) from New Zealand MeNZB vaccine strain,
which contains the immunogen PorA.

The vaccine formulation obtained is currently being tested in clinical phase III and
consists of a combination of fHBP-GNA2091 fusion protein, a GNA2132-GNA1030
fusion protein, NadA and OMV.

Figure 3.2: This picture represents the reverse vaccinology main steps carried out on Neisseria meningitidis.

Starting from the sequenced bacterial genome, more than 500 surface proteins have been selected, then ∼ 350 have

been expressed in Escherichia coli and after in vitro and in vivo assays only few of them were selected as vaccine

candidates.

The multivalent vaccine approach was taken due to the antigenic diversity of
disease-causing MenB strains and should strengthen the protective activity of the vac-
cine, increasing in this way the breadth of MenB strains targeted by the vaccine and
preventing the selection of escape mutants (i.e., bacteria that have a mutation in a
gene encoding an antigen that would allow them to escape killing or neutralization
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by vaccine-induced antibodies). When tested against a panel of 85 meningococcal iso-
lates (predominantly MenB isolates) representative of the global population of disease-
causing strains, the vaccine induced bactericidal antibodies in mice against 78% and
90% of strains when administered with the adjuvants aluminium hydroxide and MF59
(an oil-in-water emulsion), respectively [32]. Initial phase II clinical results in adults
and infants indicated that this vaccine was well tolerated and induced a protective
immune response against three diverse MenB strains in 89%-96% of subjects following
three vaccinations and 93%-100% after four vaccinations [33].

This initial success of reverse vaccinology in developing a vaccine for MenB served
as a proof-of-concept for this approach and catalyzed a paradigm shift in vaccine
development. In fact this technique is independent of several of the constraints of
classical vaccinology, such as the need to culture the pathogen in vitro (and all the
difficulties related with). Today, the same genome-based approach is being applied
to streptococci, chlamydia, staphylococci, Plasmodium falciparum and to bioterrorism
associated agents such as Yersinia pestis [34]. These projects are based on stand-alone
reverse vaccinology approaches, with some improvements like the use of pangenomics,
and/or a combination of genomic, proteomic, and transcriptomic approaches.

3.1.4 Importance of epitope prediction

The success of reverse vaccinology has brought light on a fundamental question: why
are some pathogenic proteins able to induce the production of bactericidal antibodies
and many others not? Which are the necessary characteristics an antigenic protein
should have to be recognised by an antibody?

Answer to these questions can be very useful to develop a rational vaccine design,
improving the selection processes to obtain good vaccine candidates. Indeed, the
optimization of vaccine antigens by combining the tools of genetic engineering with
the insights provided by high resolution structural analysis will result in important
advantages.

For example from the point of view of industrial applications, knowing the optimal
structural characteristics for antibody binding can be useful to design and produce
vaccines with higher efficiency and to improve the storage stability, resulting in the
reduction of costs and in the elimination of problems related to the distribution. In
addition, by engineering antigens amenable for use in combination vaccines, immu-
nization regimens can be simplified. Also by knowing which parts of an antigen must
be retained to preserve basic characteristics and which can be altered, vaccine antigens
can be modified more rapidly in response to changing epidemiology [35].

All these aspects are related to the location of the antibody binding region on the
antigen surfaces, so it is very clear why the possibility to predict the location of epitopes
constitutes an important advantage to vaccine design.
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In the effort to predict the antibody binding sites on antigenic proteins we have
decided to study the structural properties of 19 antigens present in the Protein Data
Bank (PDB). Importantly for all those proteins the structure of the isolated antigen and
the structure of the antigen in complex with at least one specific antibody were present
in the PDB.

Most of the computational methods available so far to predict the epitope positions
was built only to locate linear epitopes (so epitopes constituted by residues consecutive
in the protein sequence). Just few of them could identify structural regions, which
constitute around 90% of all epitopes known [36]. Among this group many epitope
predictors were built using information contained in data sets of known epitopes and
no one considered the dynamical properties of the antigenic proteins. But as each
molecule is subjected to movements and interactions with other molecules relevant
knowledge can be lost without considering the dynamics.

For all these reasons we have thought that molecular dynamics simulations carried
out on antigenic proteins could be very useful for the localization and characterization
of epitopes as it takes into account the dynamical behaviour of a molecule. Several
molecular dynamics simulations have been carried out on the isolated antigens. The
knowledge of the epitope locations (obtained from the complex structures) has been
used only to verify the predictions resulting from the MD calculations and not to make
the epitope predictions themselves.

3.2 MLCE method

Epitopes are parts of the protein that can be recognized by a binding partner. Their
sequences are typically mutation-tolerant [37], suggesting that they are not involved in
the stabilization of the antigen fold. These sites have evolved, and must continuously
evolve, to escape recognition by the host immune system, without impairing the native
structure of the protein necessary for function in the pathogen [35]. Moreover, epi-
topes can be flexible and easily undergo conformational fluctuations [38, 39]. In other
words, they are not involved in major intramolecular stabilizing interactions with other
residues of the protein important to preserve the fold.

From the conformational and topological standpoints, epitopes are exposed regions
on the protein surface, accessible for antibody binding [40]. Moreover, specifically in
the case of discontinuous epitopes, high-resolution x-ray structures of antigen-antibody
complexes showed they consist of residues whose spatial proximity relationships define
a (large) patch on the surface of the antigen [41, 42].

Based on these considerations, we have set out to combine an analysis of protein
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energetics obtainable from MD simulations with the topological information obtainable
from the contact matrix of the representative structure of the trajectory [43]. The aim is
to identify contiguous regions in the three-dimensional conformation of the antigen that
are minimally coupled to the rest of the protein, and are thus likely sites for the dynamic
modulation that would play a role in recognition events. The analysis of energetics is
based on the energy decomposition method already developed in our group, which
allows the detection of residue-residue couplings that are important in the stabilization
of a fold (see details in previous chapter, energy decomposition method).

The method provides a simplified view of residue-residue pair interactions, extract-
ing the major contributions to energetic stability of the native structure from the results
of all-atom MD simulations. For a protein of N residues, the NxN matrix (Mi j) of aver-
age nonbonded interactions between pairs of residues can be built by averaging over
the structures visited during an MD trajectory [2–4, 19, 43]. The rather noisy energy
matrix is then simplified through eigenvalue decomposition.

Analysis of the N components of the eigenvector associated with the lowest eigen-
value was shown to identify residues that behave as strong interaction centers. These
interaction centers are themselves characterized by components that have an intensity
higher than the threshold value, which corresponds to a flat normalized vector with
residues that would all provide the same contribution. It has been verified that applying
this analysis to the representative conformation of the most populated structural cluster
from the simulation yields the same results as the averaging over the equilibrated part
of the trajectory [20].

As a caveat, it is worth noting that the latter approximation is valid when the most
frequented cluster is significantly more populated than the others, so as not to neglect
significant structural deviations captured by other clusters. In all the cases studied
here this holds true, as we did not observe any major domain rearrangements, domain
motions, or folding-unfolding events during simulations. The method was validated
against experimental data and a relationship was found between the topological and
energetic properties of a protein and its stability [2–4, 19, 43].

The map of pair energy-couplings filtered with topological information can be used
to identify local couplings characterized by energetic interactions of minimal intensi-
ties. Because low-intensity couplings between distant residues in the structure are a
trivial consequence of the distance dependence of energy functions, local low-energy
couplings identify those sites in which interaction-networks are not energetically op-
timized. These regions may be regarded, therefore, as prone to interact with binding
partners or to otherwise tolerate mutations that would preserve the antigen three-
dimensional structure.

Moreover, thanks to the lower intensity constraints to the rest of the structure, these
substructures would be characterized by dynamical properties that allow them to visit
multiple conformations, a subset of which can be recognized by the antibody to form
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a complex. The sites identified are typically clustered at the protein surface and are
easily accessible. These concepts are somewhat reminiscent of local frustration, in
which highly frustrated regions are often localized near interaction sites on protein
surfaces [44].

3.2.1 Analysis of energetics and topological properties

The MLCE technique is based on the calculation of two matrices. The first is a fil-
tered energetic matrix obtained with energy decomposition methodology previously
explained (see section 2.2.3, structural properties). The second one is a contact matrix
which takes into account information related to spatial proximity between each pair of
residues.

The Energy Decomposition Method relies on the calculation of the interaction matrix
Mi j, which is determined by evaluating average, interresidue, non-bonded (van der
Waals and electrostatics) interaction energies between residue pairs, calculated over the
structures visited during an MD trajectory. For a protein of N residues, this calculation
yields an NxN matrix (where N is the residue number). As stated above, the same
results can be obtained by calculating the interaction matrix Mi j from the representative
conformation of the most populated cluster, in the absence of major conformational
changes.

The aim of the energy decomposition method is to obtain a simplified picture of the
most relevant residue-residue interactions in a certain fold and the interaction matrix
can be represented as in equation 2.35.

From the physical point of view, this approximation indicates that any two residues
i and j interact with energy λ1w1

i w1
j . The value represents λ1 a coupling parameter: a

modulation of its intensity, as a result of mutations, can be interpreted as a rescaling
in the intensity of protein interactions. A variation in the eigenvector components is
related to a reorganization of native interactions that would modulate the contribution
of a certain pair to the overall stability.

The principal eigenvector (defined as the sequence eigenvector, SE) constitutes
a simple vectorial representation of the sequence: it reports on the contribution of
each residue in the stabilization of the fold, which ultimately depends on the chemical
properties of the residue itself. From this we can recover an approximation to the global
stabilization energy, Eapp

nb , which was shown to correlate with the relative different
stabilities of mutants of several proteins, proving thereby to be a sufficient energetic
descriptor to discriminate among them [43]. This method provides information on the
mean coupling energy between two residues in the native state, revealing the network
of most interacting residues through the structure.

The contact map of the representative structure from MD recapitulates which
residue pairs are in contact in the conformation. If the distance between any two
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Cbeta atoms is below a cutoff value, the corresponding matrix entry is set to 1, otherwise
it is set to 0. The distance cutoff is set to 6.5Å. For the sake of homogeneity with the
energy matrix, contacts between nearest neighbors i, i+1 are included as well:

Ci j =

 1 if ri j < 6.5Å
0 if ri j > 6.5Å

To calculate the contact matrices we consider the representative structure of the main
cluster obtained with the GROMOS method from the MD trajectory of each antigen
(cutoff value of 2Å [15]).

Energy decomposition was carried out both by averaging on structures saved every
nanosecond during the simulations and on the representative protein conformation
of the most populated structural cluster obtained from the trajectory. The resulting
structures were minimized, and solvation effects were taken into account using the
molecular-mechanics (MM)-Poisson-Boltzmann surface area (PBSA) method, with the
nonbonded energy term for residues i and j [45] resulting in:

Enb
ij = Eelect

i j + EvdW
ij + Gsolv

i j (3.1)

3.2.2 Epitope Identification

The simplified interaction matrix defined byλ1w1
i w1

j is multiplied by the residue-contact
matrix. This procedure allows to filter the information contained in the simplified
energy matrix λ1w1

i w1
j in terms of residues that are close in space, highlighting pairs

within the contact cutoff that are also coupled through nonbonded interactions. This
provides a compact way to highlight which local pair-contacts in the three-dimensional
organization of the protein are coupled through energetic interactions.

The resulting matrix can be viewed as the matrix of local coupling energies (MLCE,
Figure 3.3). The contact-filtered coupling interactions are ranked in increasing order
according to their respective intensities (from weaker to stronger). Starting from the
minimum value (weakest local coupling interactions, defined as ”soft spots”, in con-
trast with the ”hot spots” characterized by high coupling intensities), the set of putative
interaction sites was defined by including increasing residue-residue coupling values
until the number of couplings that correspond to the lowest 15% of all contact-filtered
pairs was reached. This then corresponds, in the approximation, to the set of local inter-
actions, possessing minimal intensities, which may identify antigen-antibody or protein
interaction sites. The corresponding residues define putative epitope sequences.
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Figure 3.3: Schematic representation of MLCE method. The contact map is multiplied by the simplified energy-

coupling matrix. The resulting matrix reports the energetic coupling intensity of two residues in contact in space,

represented as a color scale assigned to each point of the matrix. The weakest local interactions vanish in the

background color: predicted epitopes are identified with circles.

3.2.3 Simulation setup

All the starting structures of the proteins were downloaded from the Protein Data
Bank, their respective codes are reported in Table 3.1 and subjected to explicit water
MD simulations. The structures of the isolated antigens were solvated with explicit
water, using the SPC water model [46] in triclinic or cubic boxes (depending on the
protein shape) large enough to contain the whole protein and 1.4 nm of solvent from
the protein.

Total charge of each system was neutralized with suitable counter ions. The systems
were subsequently optimized through a molecular mechanics process with steepest de-
scent algorithm (2000 steps). MD simulations were started from the minimized systems
and carried out using GROMACS [47], with GROMOSS96 43A1 force field [48]. LINCS
algorithm [49] was used to constrain the bond lengths for the all atoms. Electrostatic in-
teractions were calculated through PME implementation of Ewald summation method,
and temperature was set to 300K and kept constant with Berendsen thermostat [50] with
a coupling constant of 0.1 ps. The timestep used was 2 fs.

Five simulations of 30 ns each with different random initial velocities were run for
each protein, to check result dependence on simulation conditions. The first 5 ns of
each simulation were discarded from final analysis. Average simulation time required
using a parallel calculation on 32 Intel Xeon 3.166GHz cores for a protein of 200 residues
has been around 24 hours.

3.3 Results

To evaluate the ability of our method to predict epitopes, we studied nineteen protein
antigens for which crystal structures were available both in isolation and in complex
with at least one specific antibody in the Protein DataBank (PDB). The dataset was
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constructed by searching the PDB and initially discarding all complexes involving
antibodies bound with only short peptide stretches, and focusing only on real protein-
protein complexes.

Proteins studied

Antigen Antigen-Antibody complexes Biological role

1AO3 1FE8, 2ADF von Willerbrand factor domain A3 (H. sapiens)

1AUQ 1OAK von Willerbrand factor domain A1 (H. sapiens)

1BV1 1FSK Major pollen allergen Bet V 1-A (B. pendula)

1CK4 1MHP α I β I Integrin I-domain (R. norvegicus)

1CMW 1BGX Taq DNA polymerase I (T. acquaticus)

1D7P 1IQD Coagulation factor VIII precursor (H. sapiens)

1GWP 1AFV Gag polyprotein (HIV type I)

1HCN 1QFW Human chorionic gonadotropin (H. sapiens)

1K59 1H0D Angiogenin (H. sapiens)

1KDC 1NSN, 2GSI Staphilococcal nuclease (S. aureus)

1KZQ 1YNT Major Surface Antigen SAG1 (T. gondii)

1P4P 1RJL Outer surface protein B (B. burgdorferi)

1PKO 1PKQ Myelin olygodendrocyte glycoprotein (R. norvegicus)

1POH 2JEL Histidine containing phosphocarrier protein (E. coli)

1THF 1AHW Human tissue factor (H. sapiens)

1UW3 1TPX Prion protein (O. aries)

2VPF 1TZH, 1CZ8, 1BJ1, 2FJG, 2FJH Vascular endothelial grow factor (H. sapiens)

3LZT 1IC4, 1NDG, 1DQJ, 1FDL Lysozyme (G. gallus)

1YQV, 1MCL, 1NDM, 1P2C, 2ZNW
7NN9 1NCA Neuraminidase N9 (Influenza A virus)

Table 3.1: Table representing the selected antigens used to test MLCE method. All these proteins have different

sequences, structures and are present in different organisms.

Moreover, we selected antigen proteins whose structures had been solved in isola-
tion via x-ray crystallography with a resolution lower than 2.6Å or via nuclear magnetic
resonance (Table 3.1).

The set of isolated antigens was chosen to be nonredundant and diverse in terms
of structures and sequences. Structural similarities were also minimal, because the
antigens and epitopes were comprised from a diverse group of possible conformations
that ranged from random loops to ordered secondary structures (Figure 3.4).

The predictive analysis was performed based only on MD simulations starting from
the x-ray structure of the antigenic proteins in isolation. The validity of the epitope
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prediction was benchmarked against the corresponding structure of the antibody-
complexed antigen. MLCE method does not require the use of any training set of
antibody-antigen complexes, as the determination of the epitope regions is based solely
on structural-dynamical and energetic properties of uncomplexed antigens in isolation.

In Figure 3.4 it has been reported the projection of the low energy couplings on the
surfaces of the proteins of the test set.

Figure 3.4: Projection of the low-energy couplings from MLCE on their respective locations on the three-

dimensional structure of all proteins analyzed. Predicted epitopes are in red, actual epitopes are in blue, and their

intersection is in purple.

3.3.1 Evaluation of epitope predictions

To assess the predictivity performance of the MLCE technique ROC curve statistical
analyses on all antigens analyzed have been used. This analysis has been exploited
previously in the immunoinformatics field in epitope prediction efforts [5, 38, 51] and
is based on the calculation of four main parameters: true positives (TP), true negatives
(TN), false positives (FP), and false negatives (FN) [52]. The parameters are determined
by comparing the predictions with experimental data.

For benchmarking, it was decided to rely on published articles on antigen-antibody
complexes. We considered as an epitope the region beginning and ending with
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aminoacids directly forming interactions with the antibody (defined by the crystal
data). The epitope definition used includes also residues directly proximal in sequence
with the previous ones, even though they may not directly contact the antibody in
the complex x-ray structure, as they may have a relevant role in defining the optimal
conformation required for recognition.

The parameters described above are used to determine different statistical measures:

FPR =
FP

TN + FP
(3.2)

TPR (or Sensitivity) =
TP

TP + FN
(3.3)

Speci f icity = 1 − FPR (3.4)

Accuracy =
TP + TN

TP + TN + FP + FN
(3.5)

PPV =
TP

TP + FP
(3.6)

The dependency of TPR versus FPR can be plotted in a graph known as the ROC
curve. The area under the ROC curve (also known as the area under the curve, or AUC)
is a good indicator of the performance of the method, and has been widely used in the
evaluation of other approaches [38, 53].

The points in these graphs have been determined by changing the cutoff threshold
used on the low-energy contact matrix values to identify the possible epitope residues.
To determine the ROC curve, we considered 19 different cutoff values on the ordered
matrix elements, starting with the set of values containing the lowest 5% of the filtered
contact energy values and increasing the threshold by 5% per step.

The area under the ROC curve, called AUC, is comprised between 0 and 1 (with
a value of 0.5 for a random classifier) and it is useful to make comparisons among
predictions obtained with different methods. AUC values have been calculated as the
sum of the trapezoid areas determined by considering the points in the graph.

To assess the role of MD simulations, this analysis was carried out both on the
representative structures obtained from the MD simulations and on single minimized
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Performance of MLCE method in epitope predictions
MD MM No. of Interface

Antigen Antibody complexes AUC AUC Sensitivity Specificity Accuracy PPV epitopes residues

1AO3 1FE8, 2ADF 0.5 0.37 0.12 0.77 0.65 0.1 2 33

1AUQ 1OAK 0.89 0.95 0.78 0.79 0.79 0.15 1 9

1BV1 1FSK 0.64 0.41 0.35 0.78 0.74 0.16 1 17

1CK4 1MHP 0.88 0.71 0.92 0.78 0.79 0.22 1 12

1CMW 1BGX 0.64 0.62 0.30 0.77 0.76 0.05 1 30

1D7P 1IQD 0.82 0.85 0.67 0.80 0.79 0.30 1 18

1GWP 1AFV 0.58 0.55 0.30 0.90 0.72 0.58 3 47

1HCN 1QFW 0.81 0.73 0.54 0.86 0.81 0.38 2 28

1K59 1H0D 0.87 0.87 0.73 0.85 0.84 0.41 1 15

1KDC 1NSN, 2GSI 0.67 0.66 0.41 0.85 0.74 0.45 2 32

1KZQ 1YNT 0.56 0.61 0.36 0.74 0.70 0.12 1 22

1P4P 1RJL 0.98 0.98 1 0.89 0.90 0.48 1 13

1PKO 1PKQ 0.84 0.7 0.56 0.92 0.86 0.53 1 18

1POH 2JEL 0.25 0.24 0 0.83 0.62 0 1 21

1TFH 1AHW 0.69 0.66 0.30 0.82 0.75 0.21 1 27

1UW3 1TPX 0.94 0.91 0.67 0.95 0.92 0.62 1 12

2VPF 1TZH, 1CZ8 0.49 0.56 0.21 0.89 0.61 0.57 2 40

1BJ1, 2FJG, 2FJH

3LZT 1IC4, 1NDG, 1DQJ 0.67 0.66 0.2 0.92 0.56 0.72 3 65

1FDL, 1YQV, 1MLC

1NDM, 1P2C, 2ZNW

7NN9 1NCA, 1NMC 0.72 0.57 0.36 0.79 0.76 0.11 1 25

Mean 0.71 0.66 0.46 0.84 0.75 0.32 1.42 18.6

Table 3.2: This table reports the results obtained with statistical analyses carried out on MLCE predictions.

Columns 1 and 2: List of the Protein Data Bank (PDB) codes of the isolated proteins studied and used for prediction

in this article and of the complexes with their respective antibodies, which were used for benchmarking. Columns

3-9: Area under the curve (AUC) values calculated with the matrix of local coupling energies (MLCE) approach on

the structures obtained from extensive molecular dynamics (MD) simulations; from molecular mechanics (MM)

minimization on the PDB structure; Sensitivity; Specificity; Accuracy; PPV; number of epitopes in the protein;

number of residues in the epitopes.

structures obtained directly from the PDB. Results are summarized in Table 3.2.
The MLCE approach provided good performances, with an average AUC of 0.71.

In only one case the AUC value was lower than 0.5 (for Histidine-containing phos-
phocarrier protein, i.e., HPr, 1poh.pdb). In all other cases, MLCE determined putative
antibody-binding sites with high ranking. One case of particular interest is lysozyme,
where multiple antibody-binding regions are known (Figure 3.5a). MLCE approach
proved able to identify these multiple binding sites. The same considerations can be ap-
plied to the cases of the von Willebrand factor A3-domain protein (vWF-A3; 1ao3.pdb;
Figure 3.5b) and human chorionic gonadotropin (HCG, 1hcn.pdb; Figure 3.5c). Two
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epitopes have been mapped on each protein and their location and sequences were
correctly predicted by our approach.

Figure 3.5: Examples of multiple antibodies binding to the same antigen (light colored), highlighting the

possibility for one protein to possess multiple epitopes. The PDB code of the antigen is close to the yellow antigen,

and the PDB codes of the complexes are near each respective antibody. (a) lysozyme; (b) the von Willebrand A3

factor; and (c) human chorionic gonadotropin.

In addition sensitivity, specificity, and accuracy of MLCE method have been eval-
uated, based on the definitions of Ponomarenko and Bourne [5]. Within the chosen
threshold, the sensitivity (the proportion of correctly predicted epitope residues with
respect to the total number of epitope residues) gave an average value of 0.46, which
is slightly better or comparable to the values reported in the literature [38, 53]). The
results of specificity (the proportion of correctly predicted nonepitope residues with
respect to the total number of nonepitope residues) and accuracy (the proportion of cor-
rectly predicted epitope and nonepitope residues with respect to all residues) provided
average values of 0.84 and 0.75, respectively (Table 3.2).

This confirms the applicability of the approach to the identification of putative
binding-sites on protein surfaces.

Finally, the positive predictive value (PPV) of the method was determined. This
value reports on the proportion of correctly predicted epitope residues with respect to
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the total number of predicted epitope residues. The results obtained with MLCE are in
line with the performances of several known predictors of protein-protein interaction
sites and protein-protein docking programs reported in Ponomarenko and Bourne [38]
and in de Vries and Bonvin [53].

Based on the comparison with other algorithms, at least one-half of the predictions
may be useful to direct protein-protein docking efforts by reliably focusing on the
predicted epitope region. Considering that antigens are notoriously hard to predict,
this can be considered a positive result of the MLCE approach, given that it relies only
on a general physical hypothesis for protein-protein interactions and on no previous
assumptions regarding epitope sequences, shapes, etc.

3.3.2 Structural properties of predicted epitopes

The structural properties of predicted binding-sites were examined to evaluate the
ability of the method to retrieve epitopes from any secondary structure motif, and to
discriminate the antibody-binding properties of loops within the same structure.

The case of the OspB C-terminal fragment from Borrelia burgdorferi (1p4p.pdb)
is particularly interesting (Figure 3.4). The antibody-binding region is defined by a
discontinuous (conformational) epitope that consists of residues that belong to three
different loops. The protein also presents several other loops. The MLCE method is
able to discriminate the three loops making up the epitope region from the other loops.
The epitope-loops are actually decoupled, in terms of stabilizing interactions, from the
rest of the protein. The remaining loops provide stabilization energy to the folding
core, and thus may not undergo conformational changes, interact with other proteins,
or tolerate mutations without major energetic costs.

Importantly, MLCE could also detect epitopes that are part of ordered secondary
structures. Epitopes with α helical structures are predicted for 1auq, 1uw3, and 3lzt.
Epitopes in β sheet conformations are correctly detected in 1tfh, 1gwp, and 1pko.

In the case of human angiogenin (ANG, 1k59.pdb), MLCE identifies an additional
region of low-energy coupling located at the opposite face of the molecule from the
antibody-binding site. Indeed, crystal structure determination has shown that binding
of the complementarity determining regions of the antibody induces a dramatic con-
formational change precisely at the region of angiogenin opposite to the epitope [54],
which is used by the protein to bind to cells. Moreover, in the case of Histidine-
containing phosphocarrier protein (HPr, 1poh.pdb), where the calculated AUC value
from our calculation is as low as 0.25, the protein-region of lowest energy couplings
coincides with the substrate-binding site.

As epitopes identified with MLCE are minimally coupled to the rest of the protein,
they are also endowed with higher flexibility, as shown by the root-mean-square fluc-
tuation graphs. Importantly, the analysis of flexibility profiles alone is not sufficient to
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Figure 3.6: Examples of fluctuations and SASA determined on a test case antigen (1p4p.pdb). Residues in the

circled regions constitute the epitope, as it is shown it is difficult to set up a threshold to distinguish epitopes from

other protein regions.

discriminate between epitope and nonepitope regions (Figure 3.6, upper).
An attempt to characterize epitopes was carried out calculating the Solvent Acces-

sible Surface Area (SASA) on the main representative structure of the protein using
Naccess program [55]. SASA is determined moving a sphere with a radius of 1.4Å on
protein structure surface profile. Unfortunately, this approach was not successfull to
distinguish epitope sites from others like exposed loop regions (Figure 3.6,down).

Similar results have been obtained with Normal Modes calculation. In Figure 3.7
are reported, as an example, fluctuations of protein residues along the first three lowest
energy normal modes. Normal modes have been obtained both by using an Elastic
Network Model to represent protein structures [56] and by an all-atom representation
of the protein implemented in Amber program. As shown in the graph, epitope
identification is difficult as these residues behave in the same way as other protein
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Figure 3.7: Normal Mode Analysis carried out on 1p4p test case. In the graph are represented the first 3 normal

modes calculated on the principal cluster structure. In gray shadows are highlighted epitope regions.

regions.
These observations corroborate with the hypothesis that MLCE has the ability to

detect sites poised to interact with other partners.

3.3.3 Impact of MD simulations on predictions

The use of MD simulations improved the results of our functional predictions. Indeed,
the performance of the method appears to deteriorate slightly when applied to the
structures of antigens extracted directly from the PDB, yielding an average AUC of 0.66
(Table 3.2).

Finally, we also tested the dependency of MLCE performance on the simulation
length. To this end, each trajectory was split into 2ns intervals and the performance
was evaluated on increasing time windows (Figure 3.8). In general, the performance, in
terms of the resulting AUC value, converges within the first 4-6ns showing a possibility
that one might employ shorter simulation times than those proposed here. In any case,
as the final goal is to make available the method in a server-based version useful
predictions can also be obtained with the use of the simple MM-PBSA approach.
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Figure 3.8: Example of AUC values obtained cutting recursively MD trajectory every 2ns. MLCE calculation

has been carried out on the truncated simulations. Cut-time is represented on the x-axis, while AUCs on the y-axis.

3.4 BEPPE (Binding Epitope Prediction from Protein

Energetics), a new web server for epitope prediction

A public web server, called BEPPE (available at, http://158.109.215.216/upload.php?
UserName=103) was subsequently implemented with MLCE method. The aim is to
carry out epitope predictions on single protein structures obtained from X-Ray, NMR or
through computational tools like homology modelling or MD simulations. Screenshot
of the main page is represented in Figure 3.9.

To use BEPPE the input steps required are: upload a protein structure in PDB
format, select the softness level of the prediction and insert an email address to receive
the output.

3.4.1 Input

BEPPE is implemented to allow the user to choose the prediction softness, meaning
that it is possible to consider for epitope identification the 10% (strict), 15% (defalut) or
20% (soft) lowest energetic residue couplings in MLCE calculation. As result number
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Figure 3.9: BEPPE main page screenshot. A brief explanation is on the page top (with a link to another page

containing more details), then the instructions to run a calculation are reported and at the bottom the reference

scientific article is written.

of predicted residues and patch sizes will vary according to user selection (going from
few residues with a strict prediction to a higher number with a soft one).

3.4.2 Method

BEPPE reads the input and then performs the following steps:

- Optimize protein structure through 500 steps of molecular mechanics

- Perform MLCE calculation

- Select predicted residues and clusterize them into patches using the contact matrix
previously calculated, rank the patches according to their average energies and
select up to 4 different patches (discarding the ones composed by less than 5
residues)

- Create sequence segments in fasta format (1 letter code) joining predicted residues
which are far away up to 4 positions in sequence

- Align these segments (using BLASTP algorithm [6]) with all human protein se-
quences available in order to find mimotopes (a mimotope is an epitope which
is homologue to a region present in a host protein, making it problematic to be
recognised by host antibodies [7])

- Send the output to the email address specified by the user

3.4.3 Output

The output consists in:
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- predicted residues clusterized into patches

- a Pymol script readable with Pymol program, useful to have a three-dimensional
representation of the protein with patches highlighted

- results of the alignment with human proteins

- a link to download output files

BEPPE performance was compared with other three different epitope predictor web
servers, DiscoTope [57], Bepro [58] and Ellipro [5].

DiscoTope predictions are based on aminoacid statistics, spatial information, and
surface accessibility in a compiled data set of discontinuous epitopes determined by X-
ray crystallography of antibody-antigen protein complexes. Bepro relies on aminoacid
propensity scale along with side chain orientation and solvent accessibility information
using half sphere exposure values. Both DiscoTope and Bepro are built using a training
set of antigenic protein with known epitopes. On the other hand Ellipro is not knowl-
edge based, it uses geometric information contained in the structure, approximating
protein shape as an ellipsoid and determining a protrusion index for each residue.
Resulting aminoacids are then clusterized based on their protrusion index values.

Server performances on the nineteen antigen proteins used to test BEPPE are shown
in Figure 3.10. PPV and sensitivity have been selected to evaluate the different ap-
proaches. As shown in the figure, BEPPE presents a slighly lower value for sensitivity
while it has a better value for PPV compared to the other methods. The clusterization
step, following MLCE calculation, reduces the number of predicted residues, improv-
ing the PPV average value shown in Table 3.2 but decreasing the average Sensitivity
value.

In conclusion, BEPPE has the advantage of being able to find structural epitopes
without using any antigenic training set, it is not knowlegde based and epitopes are
predicted just relying on physical and chemical properties of the protein itself. In
addition the quite remarkable PPV average value (0.44) underlies that almost the half
epitope residues predicted by BEPPE are part of real epitopes.

3.5 Discussion

Reliable prediction of antibody-binding sites for a specific protein is a necessary condi-
tion to the discovery of new therapeutic opportunities in immunology. One fundamen-
tal aim of structural vaccinology is the selection of protein candidates with optimized
properties in terms of sequence, structure, and presentation of the determinants for
antibody-recognition.

In this context, upon being conducted on new pathogens, high-throughput genomic
investigations (such as those employing RV) may reveal target antigens that have little

53



Figure 3.10: Sensitivity and PPV calculated on the principal cluster structures of the nineteen antigens reported

in Table 3.2 have been used to compare different techniques to predict epitopes. As shown BEPPE reaches almost

the same values for sensitivity but higher values for PPV.

sequence similarity to functionally annotated ones, and which may contain novel folds.
Consequently, it is important to develop computational methods that can help identify
potential epitope regions of an antigen independently of its sequence and/or shape
similarity with other known proteins, and independently of the knowledge of related
structures of antibody complexes.

Starting from these considerations, in this thesis work, the development of a new
approach for the identification of possible antibody binding sites based uniquely on
the structure, dynamics, and energetics of the protein-antigen in isolation is reported.
The corresponding antibody-bound complexes are used for benchmarking the results.

The approach proposed is based on simple energetic and conformational concepts.
Antigenic proteins must fold to a well-defined three-dimensional structure to properly
carry out their functions in the pathogen.

The stabilization of the folded state can be achieved through interactions of higher
intensity between specific residues that define the folding nucleus. Mutations in the
folding nucleus have been shown to impact on protein stability and foldability [2,4,19,
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20, 59–61]. In contrast, epitopes are typically mutation-prone sites [35, 62]: a protein
from a pathogen should, in fact, be able to tolerate mutations that could help it evade
the immune defense system of a host.

The energy decomposition method that has been introduced and tested proved
able to single out the residues of the folding nucleus and flag their contribution to
stabilization energy [2,20]. The ability to identify the folding nucleus complementarily
determines the possibility to identify positions that are more tolerant to mutations.
Typically, they coincide with the residues characterized by low energetic couplings
with the remainder of the protein. Moreover, low-intensity couplings between proximal
residues define sites whose interaction-networks are not energetically optimized and
which are generally located on the surface.

From the dynamic point of view, these substructures may easily undergo conforma-
tional transitions and fluctuations favoring the docking of potential binding partners
through a conformational selection mechanism [63]. Binding of a specific antibody
partner would thus select specific geometries of the antigen, shifting the equilibrium
toward thermodynamically stable complexes.

Based on these premises, the positioning of these sites can be identified in a com-
pact way by multiplying the simplified energy-coupling matrix by the residue-contact
matrix. This procedure allows to filter the information contained in the simplified
energy matrix in terms of residues that are close in space, highlighting pairs within
the contact cutoff that are also energy-coupled through nonbonded interactions in the
three-dimensional structure. By concentrating on the lowest energy-coupled pairs in
contact according to the contact matrix definition, it is possible to identify surface
patches that can be recognized by a putative binding partner.

It is important to underline that the aim is to identify, specifically, locally organized
residues with nonoptimized interaction energy-networks that are independent of pos-
sible dynamic signatures. Interestingly, analysis of normal modes or cross-correlation
coefficients of residue pairs could not identify any specific, nonrandom fluctuations
involving spatially localized regions with the lowest energetic-couplings.

Epitopes are characterized by (anti)correlated as well as random motions with the
rest of the protein or with other parts of the conformational epitope. This aspect can be
interpreted in the light of the weak energy-couplings among epitope residues, which
result in higher flexibility and in the absence of major conformational constraints to the
rest of the protein.

The surface patches identified through our procedure define the three-dimensional,
structured landscapes associated with discontinuous epitopes that are recognized by
antibodies.

It is worth noting, once more, that the whole procedure for epitope identification is
based on the study of the antigen in isolation, and the structures of antigen-antibody
complexes are used only as a posteriori validations of the analysis. The predictivity,
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specificity, and accuracy of the method are in line with what has been reported recently
in the literature [38, 53].

Interestingly, MLCE proves able to identify multiple epitope sites encompassing
different antigen regions (Figure 3.5). A certain protein surface may in fact contain
several possible antibody-binding sites that may not be represented in the sets of
structures currently available. Spatially localized sites with low energetic coupling to
the rest of the protein may determine the dynamics required for specific function and/or
recognition of partners other than just antibodies [64].

In the case of angiogenin (ANG,1k59.pdb), in addition to correctly predicting the
epitope, MLCE method detects the cell-binding region of angiogenin at the opposite
part of the molecule from the combining site [54]. In the case of Histidine-containing
phosphocarrier protein (HPr, 1poh.pdb), the regions of low-coupling energy include
the phosphate-binding site, located in the N-terminal region.

Nonoptimized interaction networks can be exploited by the protein to modulate
structural plasticity and local flexibility and provide conformational and functional
adaptability to possible binding partners. As is also suggested by Ferreiro et al. [44],
localizing alternate conformational states or sequence mutations on specific substruc-
tures, while minimizing the influence on the three-dimensional stability required for
function, could provide a mechanism of specific control of motions by concentrating
only on a subregion of the protein.

The MD-based method we propose is clearly not as efficient, in terms of computa-
tional expenses, as are dedicated bioinformatics tools and servers that build on different
ideas [5, 51, 58, 65].

In most cases, the use of MD structures (either the most representative conformation
from cluster analysis or averaging over the trajectories) gives only slight improvements
over direct minimization of the PDB structure of the antigen. MD-related performance
improvements in our data set are noticed mainly for cases in which an epitope is shared
between a secondary structure element and a loop.

The release of strain determined by the initial crystal packing and consequent confor-
mational relaxation determined by MD favor the geometric and energetic organization
optimized for the recognition of the binding partner. In this framework, the role of
MD can be most relevant in cases where major structural rearrangements are involved,
e.g., in domain motions, large conformational changes, and local folding-unfolding.
These cases were not present in our initial dataset, but correct epitope predictions
have already been obtained for multidomain aminoacid transporting proteins from the
pathogen Chlamydia.

Given all these caveats, it is, however, important to underline that the aim of the
study was to introduce a conceptually different approach. We notice that dramatic
improvements in algorithms and hardware solutions [66–68] might make it possible to
obtain large-scale MD-based predictions more quickly and on longer timescales.
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Despite its limitations, we think that the MLCE method may be a valid tool to
direct epitope-mapping experiments and possibly identify binding patches to restrict
the search of binding poses in protein-protein docking algorithms. With regard to
epitope mapping, our approach is already being applied to targets of industrial interest
(see next section).

Further improvement of the predictions may be obtained by integrating MLCE with
other predictors that are based on bioinformatics analysis.

From the point of view of possible applications, this method may be relevant for
structure-based vaccine design. It is possible in fact to focus antigen mutagenesis on
those regions that are not part of the folding core and, by so doing, preserve the fold
and leave the three-dimensional structure of the protein and epitope presentation un-
changed. Random or site-directed mutagenesis could thus be concentrated upon the
putative epitope sites, eventually selecting new sequences with maximum affinity for
neutralizing antibodies.

An alternative strategy would imply the stabilization of the structure of the antigen
by engineering Cys cross-linking mutations, or by further optimization of the fold-
ing core, to obtain a dominant conformation that would stably present the antibody
recognition determinants rather than transiently populate binding conformations.

Finally, by knowing which parts of the antigens can be modified and which should
be left unchanged to retain efficient neutralizing antibody recognition, protein antigens
could be modified and selected to optimize production and storage, with an impact on
costs and distributions of potential vaccines.
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Chapter 4

The Chlamydia ArtJ paradigm, an
industrial test case

This chapter focuses on the use of structural data obtained on two antigenic pro-
teins expressed on Chlamydiae trachomatis and Chlamydiae pneumoniae, called CT381
and CPn0482 respectively, for the identification and characterization of functionally
immunogenic domains.

CT381 and CPn0482 are both present on bacterium surface and show a good ho-
mology between their sequences. Trying to characterize and compare their antigenic
properties can result in an important improvement in vaccine design.

In the first part of this chapter a brief introduction explains the biological framework
related to CT381 and CPn0482 antigenic proteins. Subsequently, we describe exper-
imental and computational analyses carried out on them. In the end, data obtained
with these different approaches are compared to completely characterize the protein
targets.

This work has been carried out in collaboration with other research groups: Novartis
Vaccine (Siena, Italy) has accomplished molecular biology and immunology analyses,
BioXtal (Marseille, France) has resolved the crystal structure of the two proteins, Uni-
versitàt Autonoma de Barcelona (Bellaterra, Spain) has simulated dynamical behaviour
of these antigens and Jacob University of Bremen (Bremen, Germany) and our group
have predicted epitope residues for those proteins.

This chapter is based on:
Soriani M, Petit P, Grifantini R, Petracca R, Gancitano G, Frigimelica E, Nardelli

F, Garcia C, Spinelli S, Scarabelli G, Fiorucci S, Affentranger R, Ferrer-Navarro M,
Zacharias M, Colombo G, Vuillard L, Daura X, Grandi G. Exploiting antigenic di-
versity for vaccine design: the Chlamydia ArtJ paradigm. J Biol Chem. 2010 Sep
24;285(39):30126-38. Epub 2010 Jun 30.
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4.1 Introduction

One of the riddles in vaccine research is that subunit antigens showing high sequence
homology among bacterial species may eventually display diverse antigenic and pro-
tective properties.

For example, antigens belonging to very conserved protein families, such as those
including glycolytic enzymes or heat shock proteins, are highly expressed and im-
munogenic in most bacterial pathogens but are found to be protective only for some
of them [69]. Therefore, it emerges that sequence conservation and structural simi-
larities are necessary but not sufficient prerequisites to predict antigen immunologic
properties.

Experimental evidence that highly homologous proteins fail to elicit cross-protection
against closely related heterologous strains may be ascribed to a variety of causes, in-
cluding differential expression level and/or cellular localization. The in vivo capacity
of an antigen to raise antibodies able to protect from bacterial infection, by either
neutralizing bacterial entry or promoting their killing, could also depend on a com-
plex combination of properties including structural complexity, dynamics and epitope
distribution.

In this context, Chlamydiae trachomatis (CT) and Chlamydiae pneumoniae (CPn) are an
optimal test case to study, as they show two homologue proteins (called ArtJ), expressed
on their surfaces that, although similar at sequence level, show diverse immunogenic
properties [70].

For this reason we performed structural and functional analyses of ArtJ orthologues
to characterize their antigenic properties, trying to improve the research of a vaccine
able to induce immunity against these pathogens.

C. trachomatis is an infective bacterium causing prostatitis and epididymitis in men
while in women is responsible for cervicitis, pelvic inflammatory disease (PID), ectopic
pregnancy and it is one of the most common sexually transmitted infections worldwide.
On the other hand C. pneumoniae is a major cause of pneumonia, pharyngitis, bronchitis
and atypical pneumonia.

ArtJ protein is so annotated by analogy with the ART transport systems of E. coli,
which has five genes organized in two operons [71]: artPIQM and ArtJ, which are
responsible for the arginine transport. In CPn, however, the artPIQM genes are absent
and, therefore, it appears that chlamydial ArtJ operates in a molecular context that is
different from the E. coli model and must be peculiar to this species.

Moreover, ArtJ is able to induce high antibody titers both in mouse models and hu-
man patients that experienced a C. trachomatis infection. However, while recombinant
CPn ArtJ elicited antibodies able to neutralize Chlamydia infectivity the CT protein did
not show this functional activity [70].

This evidence raised the question whether differences in structural features and
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related properties such as dynamics, specific intramolecular interactions and electro-
statics, between CT and CPn ArtJ may account, in addition to (or as a consequence of)
sequence differences, for their different immunogenicity.

In this chapter the investigation of the antigenic properties of ArtJ in the two
Chlamydia species will be illustrated by exploiting new structural information.

4.2 Experimental and computational procedures

CT and CPn ArtJ ORFs (Open Reading Frame) were PCR-amplified using their re-
spective chromosomal DNA as template and amplification products have been used
to transform cells in order to obtain their expression. The proteic extract was purified
and then proteins was crystallized in order to determine their molecular folds. The
structures have been deposited in Protein Data Bank (PDB) with the following entry
codes: 3G41 (CPn ArtJ) and 3DEL (CT ArtJ).

In addition mouse antisera and in vitro assays have been performed in order to test
production and binding ability of specific antibodies against ArtJ proteins.

For further details on these parts see Soriani M. et al. J Biol Chem. 2010 Sep
24;285(39):30126-38.

Molecular dynamics simulations were carried out on the crystal structures obtained.
All MD simulations were performed with software package GROMACS 3.3.1 using
GROMOS 45a3 force field with SPC water model, and periodic boundary conditions.
Temperature and pressure were kept respectively at 300 K and 1 bar.

Simulations of CT ArtJ and CPn ArtJ included residues from GLU34 to ASN257
and from ARG31 to GLU255, respectively. The initial open-apo conformation of CPn
ArtJ, and the initial closed forms (both apo and bound) of CT ArtJ, were obtained by
homology modeling using the MODELLER [72] program with CT ArtJ and CPn ArtJ
crystallographic structures used as template. This procedure generated six different
systems for simulation.

Protein structures taken every 25 ps in the period 100-200 ns of the five simulations
performed for each system were clustered with the algorithm proposed by Daura [15],
using a cut-off of 0.2 nm and all C-α atoms (including that of the arginine ligand,
when present) for the calculation of RMSD. Then the resulting largest structural cluster
obtained in each case was used for energy-based predictions of epitope locations.

4.3 Structure of ArtJ proteins

To investigate the presence of structure-dependent factors that could be partly account-
ing for the different antigenic properties of the two orthologs, the crystallographic
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structures of CT and CPn ArtJ were determined by X-ray crystallography at 1.9Å and
2.1Å, respectively (Figure 4.1).

Figure 4.1: Structures of CT ArtJ (A), CPn ArtJ (B), and G. Stearothermophilus ArtJ part C (pdb-entry

2Q2A). The structures are shown in cartoon representation, with α helices colored red, β strands colored blue

and unstructured regions shown as gray tubes. Secondary-structure elements (according to DSSP) are labeled

H1 to H8 for helices and S1 to S12 for β strands, following the polypeptide chain from N- to C-terminus. The

HIS-tag occupying the binding site in the CT ArtJ structure is labeled and colored orange. The arginine ligand

co-crystallized with CPn and G. Stearothermophilus ArtJ is labeled and displayed as van-derWaals spheres (C:

orange, N: blue; O: red). Domains D1 and D2 are identified and separated by a dashed line. D) Independent

superposition of domains D1 and D2 from CT (red) and CPn (blue) ArtJ. For D1, C-α atoms of residues E34-E120

and V215-N256 (CT ArtJ residue numbering) were used for superposition and calculation of the reported C-α

RMSD. For D2, residues I121-K129 and P135-W214 were used. E) Arginine binding site in the crystallographic

structure of CPn ArtJ. The arginine ligand and the binding site residues interacting with it are represented with

sticks (C: orange for ligand, grey for binding-site residues; N: blue; O: red).

As expected, the structures of these two proteins are very similar to that of Geobacillus
stearothermophilus ArtJ, recently solved in its arginine-bound state (PDB code 2Q2A,
Figure 4.1C) [73], despite a sequence identity of only 21% between G. stearothermophilus
and C. pneumoniae ArtJ.

Like other periplasmic binding proteins (PBPs), CT and CPn ArtJ adopt a type II
PBP fold [74] featuring two α − β domains with the arginine-binding site positioned
at their interface. The N-C terminal domain (D1) comprises from the N-terminus to
residue 120 and from residue 215 to the C-terminus (residue numbering corresponding
to CT ArtJ). This domain shares the same structural features in CT and CPn ArtJ.

The central domain (D2) encompasses residues 121 to 214 and displays only
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minor structural differences between the two proteins, mainly the presence of two
additional β strands along residues 121-124 and 141-144 in CPn ArtJ (residue numbering
corresponding to CT ArtJ) (S8 and S9 in Figure 4.1B). This high structural similarity
between CPn and CT ArtJ is confirmed by α-carbon root-mean-square differences of
0.91Å(D1) and 0.76Å(D2) (Figure 4.1D). In CPn ArtJ, an extra density was observed in
the binding region. This density has been attributed to a bound arginine molecule for
the following reasons:

- the density appeared despite the absence of ligand in the model used in refinement

- there is an excellent fit of an Arg molecule in the experimental density that would
not fit Lys or His

- its position is identical to the one occupied by Arg in 2Q2A [73](Figure 4.1C)

This aminoacid was captured by the protein during expression and retained during
purification despite extensive washes in Ni affinity and a gel filtration step.

The Arg binding site from CPn ArtJ is similar to that described for 2QA2 and is
also made of two polar regions flanking a hydrophobic region (Figure 4.1E) [73]. The
arginine is held by hydrogen bonds with residues N38, T40, A96, G97, S99, R104, F149,
E186 and further enclosed in the binding site by the aromatic side chains of Y41, F79,
F149 and by M98, T148. There is no arginine density in CT ArtJ but, in this case,
the C-terminal His-tag folded back into the ligand-binding region and a density was
observed for all His residues.

4.4 Experimental epitope determination

Mapping of epitopes was performed using both polyclonal sera and monoclonal anti-
bodies. In either case, cross-recognition of the protein from one species by the serum
or monoclonal antibodies generated against the other was also tested.

In order to map epitopes recognized by sera from mice immunized with CT and
CPn ArtJ, overlapping sequences of 15-residue peptides corresponding to both proteins
were synthesized on a cellulose membrane and tested for binding of polyclonal anti-
bodies by immunoblotting. As shown in Figure 4.3 anti-CPn ArtJ polyclonal antiserum
recognized a number of different peptides within the N-terminal region of CPn ArtJ,
spanning residues 51 to 130. No linear peptides were recognized from residues 131 to
259.

A similar pattern was detected when anti-CPn ArtJ serum was incubated with
CT ArtJ spotted membranes. When incubation was performed with anti-CT ArtJ
polyclonal antiserum, the positive CT ArtJ peptides were found only within three
restricted regions, with one located at the N-terminus and corresponding to residues
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16 to 30 and the remaining two located at the C-terminus, and interestingly, the anti-CT
ArtJ serum did not strongly recognize any linear peptides of CPn ArtJ.

These results show that linear epitopes are partly common to both variants of ArtJ,
but that the immunogenicity of the two antigens is different.

In addition monoclonal antibodies (mAbs) against CT and CPn ArtJ were obtained
and used to identify epitope regions by three mapping protocols based on limited
antigen proteolysis. MAbs were selected according to their capability to recognize
the antigen both by immunoblotting experiments (dot blot and western blotting on
recombinant ArtJ) and by FACS analysis on chlamydial EBs (Elementary Bodies). The
monoclonal antibodies tested recognized the same peptides overlapping with regions
identified by polyclonal antisera and belonging to D1.

4.5 Computational epitope predictions

To include information on ArtJ dynamics in the computational prediction of epitope
regions, dynamics of the apo and Arg-bound forms of CT and CPn ArtJ were first
studied by MD simulation, based on the crystallographic structures described previ-
ously. For each system, five individual simulations of 200 ns were performed in explicit
water. The apo forms, as expected for ligand-free PBPs, exhibited large-scale (semi-
rigid body) inter-domain movements, whereas the Arg-bound forms were relatively
rigid. The structures sampled in these simulations were then clustered by conformation
and used for energy-based and electrostatic-desolvation-based predictions of epitope
regions.

Epitope predictions were performed by means of MLCE method based on the inte-
gration of the topological information available from the atomic-contact matrix with the
energetic information attainable through the energy-decomposition approach, allow-
ing the mapping of the principal energy couplings in a protein undergoing dynamics
(as described in the previous chapter).

Results of the predictions are reported in Figure 4.2 and identify disctinct epitope
maps for the two proteins, supporting a physico-chemical basis for their different
antigenic properties.

In particular, the D1 domain of CPn ArtJ shows a higher population of possible
antigenic regions than the corresponding domain in CT ArtJ (the predicted epitopes in
CT ArtJ D1 are also present in CPn ArtJ D1, the latter having additional ones), while the
distribution in the respective D2 domains is more similar. Globally, CPn ArtJ appears
to have a higher immunogenic potential, with more predicted epitopes and a larger
number of epitope residues.
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In addition epitopes on these proteins have been computationally predicted with an-
other technique, which relies on electrostatic-desolvation penalties [75]. This method
is based on the idea that similar to other protein-protein interactions, the formation
of antibody-antigen complexes requires removal of water molecules from the binding
interface region. An approach to calculate the electrostatic energy change upon displac-
ing water from the protein surface was used to systematically investigate the surface
desolvation properties of CT and CPn ArtJ. The results of this epitope predictions on
ArtJ are summarized in Figure 4.2 and correlate well with the experimental analysis
(Figure 4.3).

As with MLCE method, the predictions suggest qualitative differences between the
two domains and predict distinct epitope maps for the two proteins, and as a matter
of fact the results are remarkably consistent with those of the energy-decomposition-
based prediction, despite the different physical properties behind the two methods. In
Figure 4.2 is shown the consensus predictions obtained combining the two method-
ologies, consisting in the strict intersection of the sets of epitopes predicted by the two
approaches.

Figure 4.2: Mapping of consensus predicted epitopes on the X-ray structures of CT (A) and CPn (B) ArtJ.

Orange segments correspond to the computationally predicted epitopes. Domains D1 and D2 are identified and

separated by a dashed line.

Furthermore the prediction methods can detect potential differences between the
full molecule and the isolated domains, as indicated in Figure 4.3, where some of
the epitopes are predicted in the isolated domains and not in the complete X-ray
structures. It should be also noted that the prediction of epitopes not detected in
the experimental mappings (three with the energy-based method and five with the
desolvation-based method) may have a number of causes. Thus, the epitope might still
exist but not be detected under the given experimental conditions or the binding-prone
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region identified as an epitope might instead participate in other types of interactions,
for example, with membrane components.

The consensus prediction shows the same basic features discussed after the inde-
pendent methods, namely, that despite high sequence and structural similarity the
two protein surfaces display local differences in their physico-chemical properties that
could potentially have an effect on the relative immunogenic properties of the two
molecules. Again, CPn ArtJ appears globally more immunogenic (eight epitopes for
four in CT ArtJ), with its D1 domain featuring epitopes that overlap with those in CT
ArtJ D1 plus an additional three epitopes.

Predicted epitopes in D2 tend to be less numerous but longer in sequence and larger
in surface, arguably indicating participation in less specific interactions (i.e. not with
antibodies).

Figure 4.3: Graphical representation of experimental and computational epitope mappings of CT and CPn

ArtJ. Sequence alignment of the two proteins, with conserved residues, is reported in middle row. Beginning

and end of D2 are marked with vertical lines. Experimentally determined epitopes are identified by a yellow

background. Very low reactivity regions of CPn ArtJ are colored in light blue. Epitope regions predicted by the

two computational methods (consensus predicted epitopes) are shown in red font, and highlighted bold when they

overlap with experimentally determined epitope regions.

4.6 Data interpretation

Experimental mapping of antigenic regions in both CPn and CT ArtJ, supported by
structure-based computational analysis were crucial in unraveling the antigenic prop-
erties of Chlamydial ArtJ. The analysis of the 3D structural organization of the predicted
epitope sequences suggests differences between the two proteins at the level of epitope
presentation. In particular, both energy-decomposition and electrostatic-desolvation
analyses show that putative interaction surfaces in CPn ArtJ are more extensive in
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number than in CT ArtJ, suggesting a higher immunogenic character of the former.
This is especially so in relation to the D1 domain, which features a larger number of
putative epitopes and concentrates a majority of the differences between the epitope
sets in the two ortholog proteins, with the CT ArtJ D1 epitopes overlapping with a
subset of those predicted for CPn ArtJ. The D2 domain is characterized by a smaller
number of predicted epitopes occupying a larger surface, which, combined with the
weak immunogenic properties of D2 observed experimentally, could be indicative of a
different, less-specific, type of interaction interface.

These results suggest that structural/dynamical differences, determined by rela-
tively small differences in the primary and tertiary arrangements, may define the
surface properties underlying differential epitope presentation and recognition by an-
tibodies of the two antigens. It is important to note that the use of high resolution
structures, proper characterization of the protein’s dynamics and high resolution com-
putational analyses can illuminate those small differences and give access into the
structure-dynamics-function relationships at the basis of antibody recognition.

In this context, it is worth underlining that both energy desolvation and MLCE
methods predict conformational epitopes, while experimental epitope mapping fo-
cuses on linear sequence stretches. This apparent contrast can be solved by noting
that the majority of predicted epitopes are made up of aminoacid stretches that are
separated along the primary sequence. The latter can thus be conveniently expressed
in terms of peptides as in epitope mapping experiments.

In conclusion, the combined analysis of structure, physico-chemical determinants of
antibody recognition and epitope mapping allowed the successfully identification and
characterization of immunogenic regions in ArtJ. A key aspect of this study was the
analysis of two closely related antigens. Indeed, by this comparative and integrated
approach, it has been possible to provide a rational for the experimental differences in
antibody recognition on the basis of three-dimensional structure and surface properties
derived from it, improving knowlewdge in vaccine design.
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Chapter 5

Folding and unfolding of small
polypeptides

This chapter focuses on the study of the folding and unfolding steps of a 15mer-peptide
(called QK) and one of its mutant (called QKL10A), both constituted only by natural
aminoacids. In the first part, the biological aspects related to protein and peptide
folding are described. Then, in the central section, experimental and computational
analyses carried out on QK and QKL10A peptides are explained. In the final part, the data
obtained and their relevance for folding process and peptide design are shown. Experi-
mental parts have been performed by Dr. Luca D’Andrea’s group at IBB-CNR (Napoli).

This chapter is based on:

- Diana D, Ziaco B, Colombo G, Scarabelli G, Romanelli A, Pedone C, Fattorusso
R, D’Andrea LD. Structural determinants of the unusual helix stability of a de
novo engineered vascular endothelial growth factor (VEGF) mimicking pep-
tide. Chemistry. 2008;14(14):4164-6

- Diana D, Ziaco B, Scarabelli G, Pedone C, Colombo G, D’Andrea LD, Fattorusso
R. Structural analysis of a helical peptide unfolding pathway. Chemistry. 2010
May 10;16(18):5400-7

5.1 Protein folding

Protein folding is the physical process by which a polypeptide folds into its character-
istic and functional three-dimensional structure from random coil (Figure 5.1). When
translated from a sequence of mRNA to a linear chain of aminoacids, a protein exists as
an unfolded polypeptide or random coil, which lacks any developed three-dimensional
structure. Aminoacids interact with each other to produce a well-defined structural
conformation, the folded structure, known as the native state.
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Figure 5.1: Representation of folding mechanism. Starting from an unstructured one, aminoacid interactions

drive the molecule to a folded and functional structure.

The correct three-dimensional structure is essential to function, although some
parts of functional proteins may remain unfolded. In general, failure to fold into the
intended shape usually produces inactive proteins with different properties including
toxic prions. Several neurodegenerative and other diseases are originated from the
accumulation of misfolded (incorrectly folded) proteins in organism tissues.

Importantly, the aminoacidic sequence (or primary structure) of a protein deter-
mines its native conformation [76,77] and plays a fundamental role in folding. Proteins
can assume spontaneously their functional structure during or after the synthesis.
However, the process depends also on other parameters such as solvent type (water
or lipid bilayer), salt concentration, temperature and presence of molecular chaper-
ones [78].

Folded proteins usually have a hydrophobic core in which side chain packing has a
stabilizing role, while charged or polar side chains occupy the solvent-exposed surface
where they interact with surrounding water molecules (Figure 5.2). Minimizing the
number of hydrophobic side chains exposed to water is an important driving force
behind the folding process [79].

The formation of intramolecular hydrogen bonds provides another important con-
tribution to protein stability. The strength of hydrogen bonds depends on their environ-
ment, thus H-bonds enveloped in a hydrophobic core contribute more than H-bonds
exposed to the aqueous environment to the stability of the native state [80].

The folding process in vivo often begins co-translationally, so that N-terminus of the
protein begins to fold while C-terminal portion is still being synthesized by the ribo-
some. Specialized proteins called chaperones assist the folding of other proteins [81].
In eukaryotic organisms these molecules are known as heat shock proteins. Although
most globular proteins are able to assume their native state unassisted, chaperone-
assisted folding is often necessary in the crowded intracellular environment to prevent
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Figure 5.2: Representation a protein structure. Water molecules surronding the protein are pictured with blue

spheres, protein is colored in yellow, red aminoacids are the residues forming the structure core.

aggregation or misfolding, which are correlated to many pathologies and that may
occur as a consequence of exposure to heat or other changes in cellular environment.

On average, studying the complete folding process of a protein using computational
simulations is very demanding for actual computer power. In general, the folding into
the active conformation, starting from an unstructured one, is carried out with time
ranges in the order from nanoseconds to milliseconds, while molecular simulations can
cover times of few hundreds of nanoseconds. For this reason, only model systems of
these processes have been simulated until now.

In the last year, a new important breakthrough to clarify all the steps of protein
folding has been developed by Shaw and coworkes [82]. They designed dedicated
CPU cores (called Anton) able to perform MD simulations with an efficiency never
reached before. Using this technology, MD folding studies were carried out on two
proteins, WW-domain and BPTI, simulating times up to 1 ms (in only three weeks of
calculation), highlighting how they gain their stuctured and functional conformations.
In particular, in this study simulations revealed that the folding protein followed more
or less the same general pattern of movements each time it folded, rather than each
folding event having a distinct progression. This fact was something of a surprise
because it was not clear from previous modelling and experimental works this would
be the case.

In addition, simulating individual proteins for long periods is not the only way
to investigate protein folding: networks of computers can also cobble together large
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numbers of shorter simulations to explore some key events. Still, this new work sets
the stage for extended simulations of dozens, if not hundreds, of other proteins that
are less well understood, which could reveal whether all proteins follow a similar set
of rules as they fold.

In the end, this new CPU generation has opened remarkably and unthinkable oppor-
tunities to characterize biological macromolecule behaviours, allowing the possibility
to simulate molecular movements until now inaccessible.

5.1.1 α helix polypeptides

Local formation of secondary structural elements, acting as nucleation sites for the for-
mation of native structures, plays a crucial role in the first phases of protein folding [83].
Thus, an understanding of the folding mechanism, at the highest possible resolution,
of synthetic peptides adopting well-defined secondary structures is of great relevance
for the comprehension of native protein folding [84]. Peptides that form helices in
solution do not show a simple two-state equilibrium between fully folded and fully
unfolded structures. Instead, they form a complex mixture of all helix, all coil, and
most frequently, central helices with frayed ends [85]. Accordingly, their folding has
been often described by using the so-called nucleation-propagation models [86].

These models typically assume a nucleation-growth mechanism with the establish-
ment of a first helical turn representing an entropically unfavorable, slow nucleation
reaction, which needs to be balanced by favorable enthalpic contributions. Indeed,
according to this mechanism, the nucleation process needs to overcome the largest
free-energy barrier, since three residues (corresponding to one helical turn) concomi-
tantly lose their conformational entropy, whereas propagation steps are energetically
favorable because of the loss of the conformational entropy of a single residue is bal-
anced by the energy gained from the formation of one extra hydrogen bond [87, 88].

This model implies high cooperativity if the nucleation step is rate limiting, since
once the first turn has occurred somewhere in the sequence, all subsequent turns
would form at essentially the same time. As a matter of fact, previous experiments
on the helix-coil transition by employing the laser-induced temperature-jump (Tjump)
method have shown that single exponential kinetics, which are characteristic of a two-
state system [89, 90] can be adequate to describe the helix-coil transition. On the other
hand, since the cooperativity of isolated short α helices is weak, they do not generally
fold in a two-state fashion, but rather with biexponential kinetics resulting from the
coupling of nucleation and the only slightly faster diffusive elongation.
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5.2 QK peptide

QK peptide is a designed,α-helical, 15-mer peptide composed only of natural aminoacids
(sequence Ac − KLTWQELYQLKYKGI − NH2), which activates VEGF dependent an-
giogenic response. VEGF is a protein involved in new blood vessel formation and as
consequence it is a good target for pathologies like cardiovascular diseases and tumors.
Indeed, to live tumor cells require oxygen like any other cell, so the prevention of its
assumpion constitutes a way to block tumor cell division.

QK peptide is an interesting molecule to study because it shows an unusual thermal
stability. Its design was based on the VEGF binding region to VEGF-receptor (residues
17-25, forming a N-terminal helix), for this reason it shows a high homology degree with
it (Figure 5.3). Understanding the aspects related to its stability could have implications
in the protein folding field and in the design of helical structured scaffolds, improving
the realization of peptides for applications in chemical biology.

As it has been described recently, NMR structure of QK in pure water presents
a central helical sequence (residues 4-12), flanked by N- and C-capping regions [91].
QK helical conformation represents an important prerequisite for its biological activity,
since the isolated region taken from VEGF protein, corresponding to its binding site,
does not assume a helical conformation and does not a have significant biological
activity. On the contrary, QK peptide is folded into α helix in solution and it is able to
bind its biological target.

Interestingly, QK represents one of the very few examples of bioactive helical de-
signed peptides, composed of only natural aminoacids. To gain an insight into the
molecular determinants of QK helical propensity, we examined the effect of the temper-
ature on QK structure through Nuclear Magnetic Resonance (NMR), Circular Dichroism
(CD) and Molecular Dynamics (MD) analyses.

Figure 5.3: Sequence alignment of QK peptide with VEGF binding region. The homology between the two

segments is at the basis of QK binding to VEGF receptor.

5.2.1 NMR and CD analyses

Primarily, the aggregation state of the peptide under conditions identical to those
used in the NMR structure determination was confirmed by NMR DOSY experiments.
DOSY-derived diffusion coefficient value of 1.98 ∗ 10−10m2s−1 is consistent with a QK
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monomer state. QK structure variations upon temperature increase were followed by
TOCSY experiments. In the 298-343K range only small changes of backbone chemical
shifts were observed.

Unusually, chemical shift index (CSI) analysis indicates that at 343K the peptide
retains at least the 80% of the helix conformation at 298K and the slight reduction
occurs uniformly in 4-12 region.

The thermal behaviour was also analyzed by CD spectroscopy which allowed to
extend the temperature range from 278 to 368K. The analysis of the spectra and the
dependence of 222nm ellipticity with the temperature, showed that the peptide lose,
reversibly, part of its helical structure but neither at 368 K appears to assume a complete
random coil conformation.

CD analysis, in accordance with NMR results, indicates that QK retains 79% and 65%
of its room temperature helix content at 343 and 368K, respectively, as calculated from
the ellipticity at 222nm [92]. Unfortunately, only qualitative structural information
could be derived from CD experiments because of the presence in the 9-mer helical
segment of three aromatic residues (Trp4, Tyr8, and Tyr12) at positions i, i+4, and i+8,
the contribution of which to ellipticity at 222nm is uncertain.

In the end, experimental analyses agreed in the presence of a strong (and unsual
for a small polypeptide) helix thermal stability. Up to now, this fact has been reported
just for peptides with unnatural constrains [92,93], while QK is formed only by natural
aminoacids.

5.2.2 QK peptide MD simulation setup

To assess the determinants of the helix stabilization in solution, experimental structural
data have been complemented with extensive all-atom molecular dynamics simula-
tions in explicit water. Five QK structures of the NMR ensemble were used as starting
structures, after fitting to NOE constraints. Each model was used as starting conforma-
tion for four simulations at the following different temperatures: 300K, 320K, 340K, and
380K. Each 300K MD simulation was 200ns long, while the other ones were each 100ns
long. In total 20 MD trajectories were generated for a sampling time of approximately
2.4 microseconds. Moreover, in order to shed light on the folding mechanism, four
different simulations with lengths ranging from 50 to 100ns, at 350K, were run from a
completely extended structure of the polypeptide.

In each simulation, the isolated peptide structure was first solvated with water in a pe-
riodic truncated octahedron, large enough to contain the peptide and 0.9nm of solvent
molecules on all sides. The protonation and charge states of the residue sidechains were
chosen to be consistent with the solution conditions of the experiments: NH groups
were considered with a +1 charge and carboxylic groups were considered to bear a
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-1 charge. The system resulted to have a total charge of +2. All solvent molecules
within 0.15 nm of any peptide atom were removed. Two Cl− counterions were added
to the system. Different sets of initial velocities obtained from a Maxwellian velocity
distribution at the desired temperatures were used to start production runs.

In each case, the system was initially energy minimized with a steepest descent
method for 1000 steps. In all simulations the temperature was maintained close to the
intended value by weak coupling to an external temperature bath [50], with a coupling
constant of 0.1ps.

QK peptide and the rest of the system were coupled separately to the temperature
bath. AMBER force field [94] and TIP3P water model [95] were used. LINCS algo-
rithm [49] was used to constrain all bond lengths. A dielectric permittivity, ε=1, and a
time step of 2fs were used. A cut-off value, set to 0.9nm, was used for the calculation
of non-bonded Van der Waals interactions. The calculation of electrostatic forces uti-
lized the PME implementation of the Ewald summation method. In each simulation,
the density of the system was adjusted performing the first equilibration runs at NPT
condition by weak coupling to a bath of constant pressure (P0 = 1 bar, coupling time
τP = 0.5ps) [50].

Production runs have been obtained using NVT conditions, after equilibration,
covered the simulation lengths discussed at the beginning of this paragraph. All MD
runs and trajectory analyses were performed using GROMACS software package [47].
Peptide configurations were saved every 4ps for subsequent statistical analysis.

Conformational cluster analysis of the trajectories was performed using the method
described in Daura et al [15].

5.2.3 QK peptide MD results

All the simulations starting from the helical structures showed a clear, unusual stability
of the helix that is maintained even at high temperatures (Figure 5.4), for most of the
simulation time, consistently with NMR observations.

To obtain a more global view on peptide behavior, a cluster analysis was performed
on a single ensemble obtained from all the structures collected from all the simulations
carried out at the same temperature value. Representative structures of the most pop-
ulated clusters (so the most visited structures in the MD simulations) are represented
in Figure 5.5.

Evaluation of structures and stabilizing contacts showed the presence of a network
of interactions always involving the hydrophobic side chains of residues 7 and 10
(colored in red in Figure 5.5).

Trajectories were also analyzed in terms of time evolution of root mean square de-
viation (RMSD) after backbone-backbone superposition, flexibility (RMSF), secondary
structure evolution (Figure 5.6) and in terms of stabilizing interactions.
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Figure 5.4: Percentage of time each residue spent in helical conformation at different temperatures. Color code:

Black 300K, Red 320K, Green 340K, Blue 380K.

Figure 5.5: Representative conformations of the main cluster obtained from the analysis of all the trajectories at

different temperatures. Leu7 and Leu10 are colored in red in the 300K structure.

Finally, the first 20ns of each refolding trajectory were analyzed in terms of the per-
centage of time spent by each residue in a helical conformation, to define the presence
of a preferred folding direction.

The analysis of the folding simulations showed a higher tendency for residues
located at the N-terminal region to adopt a helical structure in the first events of QK
folding (Figure 5.7). This result indicates a relevant role of the N-capping in stabilizing
and nucleating the nascent α-helical turn which, then, propagates towards the C-
terminal region.
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(a) RMSD (b) RMSF

(c) Secondary Structure

Figure 5.6: Examples of analyses obtained for the trajectories collected at 320K. (a) RMSD determined using

as reference structure the initial helical conformation. (b) RMSF. (c) Secondary Structure during simulation.

Color code: Yellow turn, Blue α-helix, Green bend, White coil. All data reported show small variations in peptide

conformation. In particular, the central helix formed by residues from 7 to 10 is remarkably stable, highlighting

QK stability during all the time simulated. In addition, it is evident the presence of a helix turn at the N terminal

(residues 2 to 5). This region is fundamental for the folding process as it forms a structured cap leading the folding

of the other peptide residues into helical conformation.

5.3 QKL10A peptide

To confirm experimentally these contributions to QK helix stability, we decided to
design a novel peptide, called QKL10A, mutating QK sequence: leucine residue in
position 10 was replaced by an alanine to perturbe the stabilizing hydrophobic contacts.
As the former peptide, this mutant has been analysed with a combination of CD, NMR
and MD.

5.3.1 QKL10A CD and NMR results

QKL10A thermal unfolding was investigated by following the variation of the mean
residue ellipticity, θ, at 222nm in the 288-353K range. CD analysis is still limited by the
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(a) % time spent in α helix

(b) Snapshot refolding structures

Figure 5.7: (a) Percentage of helical conformation attained by each residue during QK refolding process. (b)

Selected structures along the refolding trajectories. Leu7 and Leu10 are highlighted in red.

presence of three aromatic residues as for QK peptide. Anyway, in this context, peptide
helical unfolding appears to be complete above 333K, since no significant variation of
the mean residue ellipticity is observed at higher temperatures.

To determine the aggregation state of QKL10A, diffusion-ordered spectroscopy (DOSY)
experiments were performed under conditions identical to those used for NMR spec-
troscopy structure determination. DOSY measurements at 298K provided a diffusion
coefficient value of 1.98 ∗ 10−10m2s−1, which is equivalent to that measured for QK
peptide and corresponds to what is expected for a monomeric 15-mer helical peptide.

NOESY assignments of QKL10A peptide showed an extensive HN −HN(i, i + 1), Hα −

HN(i, i + 3), Hα −Hβ(i, i + 3) net of cross peaks primarily observed in the 4-12 region of
the peptide. This confirmed the high helical propensity of the central region, as already
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indicated by the chemical shift index (CSI) analysis based on Hα chemical shifts.
The NMR spectroscopy structure of QKL10A showed a well-defined helix encom-

passing residues 4-12 in agreement with the CSI data and very similar to what was
observed for the QK peptide.

To better investigate the QKL10A thermal unfolding, Dr. D’Andrea and coworkers
recorded a set of NMR spectra for the chemical shift proton assignment of QKL10A every
5 Kelvin degrees in the range 288-343 K.

Plots of Hα resonances of QKL10A helical residues as a function of temperature clearly
indicate that helical unfolding occurs in the 303-333K range and could be fitted by using
unconstrained two- or three-state sigmoidal curves (Figure 5.8).

(a) (b)

(c)

Figure 5.8: QKL10A Hα chemical shifts plotted versus temperature. (a) Experimental data for residues W4

(green), A10 (black), K11 (blue), and Y12 (red) are fitted with a sigmoidal function. (b) residues E6 (black), L7

(green), Y8 (red), and Q9 (blue) are fitted with a double step function. (c) Q5 could not be fitted with reasonable

error.

In particular, Hα chemical shift curves of residues Trp4, Ala10, Lys11, and Tyr12
(Figure 5.8a) present two-state sigmoidal-like behavior with a melting temperature
of about 309K and with the unfolding process concluding at around 320K. On the
contrary, Glu6, Leu7, Tyr8, and Gln9 curves show three-state behavior, with two melting
temperatures included in the 306-308K and 321-327K ranges (Figure 5.8b). The Hα

77



chemical shift temperature dependence of Gln5 could not be fitted with reasonable
errors, by using either of the two sigmoidal curves, but clearly shows an unfolding
process concluding at around 328K (Figure 5.8c).

On the basis of these observations, NMR spectroscopy structure of QKL10A at 313K
was determined, in order to derive more resolved conformational preferences when
the terminal residues of the helix (residues 4, 5, 10, 11 and 12) appear to be largely
unfolded. The NMR structure of QKL10A at 313K (Figure 5.9) shows that the helical
conformation is reduced to a single turn, including residues 6 to 9. At the same time,
the C-terminal region is largely disordered, whereas the residues at the N-terminal side
of the room-temperature helix lost their helical conformation in favor of a distorted
turn.

(a) (b)

Figure 5.9: NMR spectroscopy structures of QKL10A at 313K. (a) Ribbon model of a representative structure

and (b) backbone superposition of the 20 energy-minimized structures.

5.3.2 QKL10A MD simulations results

Equilibrium conformational properties of QKL10A were further investigated by MD
simulations in explicit water at different temperatures. The same protocol used for QK
peptide has been applied to simulate and analyse QKL10A mutant.

Five different starting structures, corresponding to five different models present in
the NMR spectroscopy ensemble, were used for MD simulation. Each model was run
for 100ns at four different temperatures of 300, 320, 340, and 380K. A total timespan of
500ns was, thus, run at each temperature, for a total simulation time of 2µs.

Backbone atom-positional root mean square deviation (RMSD) from the α-helical
structure determined by NMR spectroscopy at room temperature has been calculated
as a function of time (Figure 5.10).
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Figure 5.10: Time evolution during MD simulations of the backbone atom-positional RMSD from the α-helical

structure determined at 300K by NMR spectroscopy. The line corresponding to 0.2nm indicates the RMSD

threshold with respect to the structure determined by NMR spectroscopy under which a structure is considered

folded into a native-like helical conformation.

At 300K, the structure of QKL10A in water appeared to be stable, with RMSD values
consistent with the ideal helical structure (lower than 0.2nm) populated for about 28% of
the simulation time. Structural cluster analysis based on an RMSD-similarity criterion
proved that, indeed, the three most populated clusters account for mostly α-helical
structures.

Increasing the temperature determines a decrease of the ideal helical populations.
Notably, a significant amount of the α-helical population is still present at 320 and 340K
(20% and 24%, respectively), which is in qualitative agreement with the experimen-
tal data. At 380K the peptide is mostly unfolded (the α-helical structure population
decreasing to around 14%).

Interestingly, cluster analysis shows that in all cases a significant percentage of
residues are still in helical conformation (Figure 5.11). In particular, the central region
of QKL10A (residues 6 to 9) is structured as a helical turn in representation of the most
populated clusters at 320, 340, and 380K, suggesting that this specific part of the peptide
may be the local elementary structure on which full folding is initiated.

The NMR spectroscopic structure of QKL10A at 313K (Figure 5.9b) shows that the
helical conformation is reduced to a single turn, including residues 6 to 9.

Backbone atom positional RMSD from this structure was then calculated for each
of the temperatures to assess the ability of MD simulations to sample the structures of
possible intermediates or partly folded structures (Figure 5.12).
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Figure 5.11: Representative structures of the most populated clusters as derived by MD simulations in explicit

water at 320, 340, and 380K.

Figure 5.12: Time evolution during MD simulations of the backbone atom-positional RMSD from the helical-

turn-containing structure determined by NMR spectroscopy at 313K. The line corresponding to 0.2nm indicates

the RMSD threshold with respect to the structure determined by NMR spectroscopy under which a structure is

considered folded into a native-like helical conformation.

Interestingly, the percentage of structures with low RMSD compared with NMR
spectroscopy structure at 313K is more significant at increasing temperatures (320 to
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380K). Within the limitations of MD simulations, it is important to note that the highest
population of structures similar to the folding intermediate is indeed observed at the
simulation temperature (320K) closer to the experimental conditions (313K). In this
context, the simulations at different temperatures provide a molecular picture and
model for the unfolding curves determined experimentally.

The unfolding evolution of QKL10A was also characterized in terms of percentage of
initial helical structure for each residue in the peptide molecules at different tempera-
tures (Figure 5.13). In these cases, only the central residues preserve a high amount of
helical secondary structure. In agreement with experimental data, C-terminal residues
appear to be the first ones to undergo a transition to a random coil, followed by the
N-terminal residues.

Figure 5.13: Histogram of the amount of time spent in α-helix per each residue. In blue is represented QKL10A

mutant peptide residues, in red QK peptide residues. As it is shown central residues of both peptides are in α-helix

conformation for longer time, even though on average in case of QK peptide the % of time is higher.

Finally, a refolding simulation was run starting from a completely extended confor-
mation, RMSD time evolution with respect to the folded or intermediate structures was
monitored (Figure 5.14) in order to characterize the folding steps. Within the 100ns of
the simulation, QKL10A is able to fold into a native-like helical conformation. Conforma-
tions with low RMSD values with respect to the folding intermediate are sporadically
populated in the last 40ns of the refolding simulation. Interestingly, these structures
are visited immediately before the peptide visits native-like structures.
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Figure 5.14: Refolding simulation from a completely extended conformation of the sequence. The lower panel

depicts the time evolution of the RMSD of the structures visited during the refolding simulation with respect to

the ideal α-helical structure determined by NMR spectroscopy at 298K. The upper panel shows the same quantity

calculated with respect to the helical-turn-containing structure determined by NMR spectroscopy at 313K.

5.4 Discussion

QK is a designed, 15-mer peptide composed only of natural aminoacids, which is a
helical in pure water and is able to efficiently activate the VEGF-dependent angiogenic
response [91, 96].

To gain a more detailed understanding of the molecular basis of QK helical structure,
which appears to be strictly related to its biological activity, we carried out a QK stability
characterization. Data collected through experimental analyses (CD and NMR) showed
that the QK peptide has an unusual thermal stability up to 368K that prevented us
from obtaining a structural depiction of the folding/unfolding pathway of the helix.
Nonetheless, using MD computational approach, the structural determinants of QK
thermal stability were identified, in particular, two leucine residues (in position 7 and
10) were playing an important role in the strong stability. This fact allowed us to design
the less stable QKL10A mutant, which appeared to be largely unfolded at 343K.

Results that provide information about the thermal unfolding process of the QKL10A

helix at the molecular level were subsequently obtained, by using a combination of
experimental (CD and NMR spectroscopy) and computational (MD) techniques. CD
analysis indicates that the helical content in QKL10A is significantly reduced in the 288-
333 K temperature range. Moreover, CD unfolding curve shows a broad transition, as
previously observed for the helix-coil transition of peptides with similar helical content,
which is compatible with the nucleation-propagation folding-unfolding model [85].

Nonetheless, the absence of a plateau at the lowest values of the CD temperature
dependency plot has required a more detailed molecular analysis of QKL10A thermal
unfolding obtained through NMR spectroscopic techniques. QKL10A structure, obtained
through NMR spectroscopy, is in complete agreement with the secondary structure
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indicated by the Hα based CSI.
The solution structure of QKL10A is almost identical to that of QK and consists of

a helix spanning the residues from Trp4 to Tyr12 and of two disordered N- and C-
terminal tails. Although being significantly less populated than in the QK peptide, as
shown by CD spectra and CSI analyses, the helical conformation in QKL10A involves
exactly the same central region as in QK. MD simulations indicate that at 300K QKL10A

populates an ideal helical conformation for 28% of the simulation time and partial
α-helical structures for some of the remaining time.

To obtain higher resolution structural details of the thermal unfolding pathway of
the mutant peptide, we used the temperature dependency of QKL10A proton chemical
shifts. In particular, Hα proton chemical shifts have proven to be the most sensitive to
follow QKL10A helix unfolding. Hα curves of the 15 residues (Figure 5.8) show that the
4-12 helical structure is almost completely folded at 298K, even though residues 4, 11,
and 12 still weakly increase the global helical content in the 288-298K range.

At higher temperatures, helix unfolding initially involves, principally, the C-terminal
end (residues 10, 11, and 12) and also, to a lesser extent, the N-terminal end (residue 4).
The melting temperatures of this first part of the unfolding process are all between 308
and 309K and those residues conclude their transition to a random coil conformation
by 323K.

The central residues 5-9, during this first phase of the peptide unfolding, reduce their
helical content, but do not completely unfold, indicating that during the unwinding
of the terminal ends there is also a reduction of the helicity in the central turn. These
central aminoacids experience a second and definitive unfolding process, for which the
melting temperature is in the 321-327K range and that is completed around 333K.

To obtain higher resolution details of the whole unfolding mechanism, we deter-
mined the solution structure of QKL10A at 313K, the highest temperature allowing the
collection of enough NOEs for structure determination. On the basis of Hα temperature
dependence and ∆δHα plots (Figure 5.8), at this temperature the unfolding of terminal
ends is expected to be largely complete, whereas central residues should still be helical
conformation.

NMR spectroscopy structure of QKL10A at 313K (Figure 5.9) is based on 13 3JHNHα

coupling constants and 83 meaningful NOEs that were mostly observed in the 3-9
residue region, allowing, therefore, a reasonable resolution of this region of the peptide.
Comparison of structures at 298 and 313K clearly shows that QKL10A at 313K retains a
single turn of helix encompassing residues 6 to 9, whereas N-terminal tail folds in a
distorted turn and whole 10-15 residue region is mostly disordered.

Interestingly, MD analyses of the most populated clusters at higher temperatures
support the view that QKL10A structures preserve the central helix turn. Moreover, sim-
ulation data also are in agreement with the contention that the first part of the structure
to undergo thermal unfolding is the C-terminal tail, followed by the N terminus.
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Finally, MD analyses indicated that QKL10A is able to refold from an extended struc-
ture in 100ns, which is a typical time range reported for helix folding. The central
helix conformations are more frequently visited immediately before the peptide fully
forms its helical structure, therefore they are possible key intermediates for QKL10A helix
folding. These data suggest that the most representative folding-unfolding pathways
of QKL10A may actually involve the helical turn 6-9 as intermediate and necessary step
to drive the collapse of the full sequence to the native ensemble.

QKL10A peptide folding behaviour is different from QK, for which the formation of a
helix turn at the N-terminal was the first step leading peptide folding. The reason at the
basis of this fact is constituted by the absence of the leucine residue in position 10. As
an alanine has a side chain smaller than a leucine, the residue in position 10 in QKL10A is
not able to be part of the hydrophobic interaction network, which is instead present in
QK structure. As consequence there is not a complete formation of this contact network
and because of this in QKL10A peptide is not present the formation of a stable helix turn
at N-terminal region.

To conclude, the rational, MD-based design of QKL10A allowed us to turn the origi-
nal QK peptide, for which the accessible conformational space is limited only to helical
structures at different temperatures, into a molecule endowed with substantially higher
conformational freedom (QKL10A peptide). This, in turn, made possibile to carry out
experimental and theoretical characterization at atomic level of intermediate structures
that survive at temperatures slightly higher than 300K.

Both experimental and theoretical investigations detected a stable helical structure
spanning residues 6 to 9. This organized substructure defined a local elementary motif
that may act as a nucleus necessary to drive the subsequent collapse of the whole
peptide to the full helical structure.

It is important to underline that this is one of the first cases in which a real local
elementary structure is observed to be formed at an atomic resolution and stable in a
short peptide, at different temperatures by a consensus of different techniques.

Computational and experimental data presented herein allows us to draw a folding-
unfolding picture for the small peptide QKL10A, composed only of natural aminoacids,
compatible with a nucleation-propagation model. The central turn including residues
6 to 9 represents the most probable site for helix nucleation, which then propagates
toward the two terminal ends. The N terminus could already be prearranged in a
distorted turn, whereas the helix appears to propagate through a mostly disordered
C-terminal backbone.

This mechanism also provides a reasonable explanation for the extra stability of QK
compared with that of QKL10A. The side chain-side chain interaction between Leu7 and
Leu10, which the MD analyses already showed to be important for QK stability, could
play a crucial role in further stabilizing and enlarging the central helix nucleating turn.
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Leu10 mutation to Ala reduces the stability and the length of the central turn, therefore
strongly diminishing the global QKL10A thermal stability.

This study, besides contributing to the basic field of peptide helix folding, is useful
to gain an insight, in general, into the design of stable helical peptides, which could
find applications as molecular scaffolds upon which to graft functional residues to
modulate protein-protein interactions. In particular, it provides guidelines that are
helpful to modify the chemical and physical properties of the QK molecule, one of the
few peptides with pro-angiogenic activity in vivo.
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Chapter 6

Conclusion and final remarks

Proteins are organic compounds made of aminoacids organized in a linear chain and
folded into a globular form. They can perform a variety of tasks and participate in
virtually every process within cells.

Many proteins are enzymes that catalyze biochemical reactions and are vital to
metabolism, other proteins can have structural or mechanical functions, such as pro-
teins in the cytoskeleton forming a system of scaffolding that maintains the cell shape.
Proteins can play important roles in cell signaling, immune response, cell adhesion,
cell cycle, etc.

For all these reasons, it is worth to say that the study and the analysis of their char-
acteristics has a great relevance to understand biological life. Both experimental and
theoretical approaches can be combined to carry out general and complete studies to
obtain information on protein characteristics and functions.

In my thesis work I used Molecular Dynamics (MD) simulations applied to protein
and peptide structures to analyse their microscopic properties.

The first part of this thesis was focused on the characterization of antigenic proteins.
In particular, a new method for epitope prediction (MLCE, Matrix of Local Coupling
Energies) has been developed in order to improve vaccine design process.

MLCE is based on energetic and structural information contained in a protein struc-
ture. Through the calculation of non-bonded energetic interactions between each pair
of residues and taking into account only close residues in the protein architecture,
MLCE is able to identify with good approximation epitope regions, spanning from
loops (which are the most common type of structure for epitopes) to ordered segments
like α helices and β sheets. Importantly, MLCE method is not knowledge based and
does not require the use of any training set of known antigens.

Furthermore, to make MLCE available to the scientific community, a public web
server (BEPPE, Binding Epitope Prediction from Protein Energetics) has been imple-
mented with it (web-link: http://158.109.215.216/upload.php?UserName= 103). Only a
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protein structure file (in pdb format) is required to use BEPPE and the output is sent to
an email address specified by the user.

BEPPE performance has been compared with other public web-servers able to pre-
dict epitope locations. Results showed that BEPPE reached a better precision value
than all the others. In particular, on a set of known antigens, we saw that almost the
half of the residues identified by BEPPE has been found to be bound specifically by
antibodies.

Finally, as the innovative approach developed carries out predictions considering
only physical-chemical properties of each residue in a protein structure, it has the po-
tential to predict general protein interaction sites. In this context, we are currently
analyzing a number of protein complexes to evaluate the performance on these cases.

The second part of the thesis was related to the characterization of folding/unfolding
processes of small α helical polypeptides, homologue to VEGF protein binding re-
gion and showing a biological activity in solution. In particular, we have studied two
molecules, called QK and QKL10A, constituted by only 15 natural aminoacids. They
show the same sequence except for position 10, QK presents a leucine, while QKL10A

has an alanine. Several MD simulations have been carried out on both peptides using
different temperatures (ranging from 300 to 380K) in order to characterize the fold-
ing/unfolding steps of their structures.

In the case of QK we were unable to completely unfold it. Analyses allowed to
identify the residues responsible of the unsual peptide stability and how it folds into
the α helical shape. In special, the interaction between leucine residues in position 7
and 10 was importantly contributing to the thermal stability. As confirmation of this
fact QKL10A peptide was less stable at high temperatures.

In addition, we saw that the peptides have diverse folding pathways. In the case
of QK, N-terminal region forms a helix turn which is then followed by the rest of the
peptide, while for QKL10A only the central region folds into a α helix.

All these data were in agreement with experimental results, obtained with CD and
NMR, carried out on these two peptides by Dr. D’Andrea’s group at IBB-CNR institute.

To conclude, we applied and developed new theoretical approaches, based on Molecu-
lar Dynamics simulations, on two interesting but different biological cases: prediction
of epitopes on antigenic proteins and small peptide folding. Our final aim was to
obtain useful information on these two fields in order to integrate, support and drive
experimental studies. In both cases, we were able to gain relevant insight through
the implementation of classical and new analyses techniques whose application can be
transferred also to other systems, demostrating the importance of the combination of
theoretical and experimental methodologies in scientific research.

87



Bibliography

[1] Rinaudo C.D., Telford J.L., Rappuoli R., Seib K.L. Vaccinology in the genome era.
J Clin Invest. 2009 Sep;119(9):2515-25.

[2] Tiana G., Simona F., De Mori G. M., Broglia R. A., Colombo G. Understanding
the determinants of stability and folding of small globular proteins from their
energetics. Protein Sci. 2004 Jan;13(1):113-24.

[3] Ragona L., Colombo G., Catalano M., Molinari H. Determinants of protein stability
and folding: comparative analysis of beta-lactoglobulins and liver basic fatty acid
binding protein. Proteins. 2005 Nov 1;61(2):366-76.

[4] Colacino S., Tiana G., Colombo G. Similar folds with different stabilization mech-
anisms: the cases of Prion and Doppel proteins. BMC Struct Biol. 2006 Jul 21;6:17.

[5] Ponomarenko J., Bui H. H., Li W., Fusseder N., Bourne P. E., Sette A., Peters B.
ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC
Bioinformatics. 2008 Dec 2;9:514.

[6] Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment
search tool. J Mol Biol.1990 Oct 5;215(3):403-10.

[7] Amela I., Cedano J., Querol E. Pathogen proteins eliciting antibodies do not
share epitopes with host proteins: a bioinformatics approach. PLoS One. 2007
Jun 6;2(6):e512.

[8] Selkoe D.J. Folding proteins in fatal ways. Nature 2003 426:900-904.

[9] Bartlett A. I., Radford S. E. An expanding arsenal of experimental methods yields
an explosion of insights into protein folding mechanisms Nat Struct & Mol Bio
2009 16, 582-588.

[10] Huang C. Y., Klemke J. W., Getahun G., DeGrado W. F., Gai F. Helix formation via
conformation diffusion search 2002 Proc. Natl. Acad. Sci. USA 99 2788-2793.

[11] Clark R. J., Craik D. J. Native chemical ligation applied to the synthesis and
bioengineering of circular peptides and proteins. Biopolymers. 2010;94(4):414-22.

88



[12] Meli M., Colombo G. Molecular simulations of peptides: a useful tool for the
development of new drugs and for the study of molecular recognition. Methods
Mol Biol. 2009;570:77-153.

[13] Darden, T., York, D., Pedersen, L. Particle mesh Ewald: An N-log(N) method for
Ewald sums in large systems. J. Chem. Phys. 1993, 98, (10089-10092).

[14] Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., Pedersen, L. G. A
smooth particle mesh Ewald potential. J. Chem. Phys. 1995, 103, 8577-8592.

[15] Daura X., Gademann K., Jaun B., Seebach D., Gunsteren W. F. V., Mark A. E.
Peptide folding: when simulation meets experiment. Angew. Chemie Intl. Ed.
1999, 38, 236-240.

[16] Kabsch W., Sander C. Dictionary of protein secondary structure: Pattern recogni-
tion of hydrogen bonding and geometrical feature. Biopolymers 1983,22,2576-2637.

[17] Tama F. Normal mode analysis with simplified models to investigate the global
dynamics of biological systems. 2003 Protein Pept. Lett., 10, 119-132.

[18] Tirion M. M. Large amplitude elastic motions in proteins from a single-parameter,
atomic analysis. 1996 Phys. Rev. Lett., 77, 1905-1908.

[19] Colacino S., Tiana G., Broglia R. A., Colombo G. The determinants of stability in
the human prion protein: insights into folding and misfolding from the analysis of
the change in the stabilization energy distribution in different conditions. Proteins.
2006 Mar 15;62(3):698-707.

[20] Morra G., Baragli C., Colombo G. Selecting sequences that fold into a defined 3D
structure: A new approach for protein design based on molecular dynamics and
energetics. Biophys Chem. 2010 Feb;146(2-3):76-84. Epub 2009 Oct 31.

[21] Sharp K. A., Honig, B. Electrostatic interactions in macromolecules: Theory and
applications. Annu. Rev. Biophys. Biophys. Chem. 1990 19, 301-332.

[22] Davis M. E.,McCammon J. A. Electrostatics in biomolecular structure and dynam-
ics. Chem. Rev. 1990 90, 509-521.

[23] Borchardt J. K. The History of Bacterial Meningitis Treatment Drug. News Perspect.
2004, 17, 219-24.

[24] Cartwright K., Noah N., Peltola H. Meningococcal disease in Europe: epidemi-
ology, mortality, and prevention with conjugate vaccines. Report of a European
advisory board meeting Vienna, Austria, 6-8 October, 2000. Vaccine 2001 Aug
14;19(31):4347-56.

89



[25] Gotschlich E. C., Liu T. H., Artenstein M. S. Preparation and immunochemical
properties of the group A, group B, and group C meningococcal polysaccharides
J. Exp. Med.1969 129:1349-1365.

[26] Hayrinen J., Jennings H., Raff H. V., Rougon G., Hanai N., Gerardy-Schahn R.,
Finne J. J. Infect. Dis. Antibodies to polysialic acid and its N-propyl derivative:
binding properties and interaction with human embryonal brain glycopeptides.
1995, 171, 1481-90.

[27] Jodar L., Feavers I.M., Salisbury D., Granoff D.M. Development of vaccines against
meningococcal disease. Lancet 2002, 359, 1499-508.

[28] Seib K. L., Rappuoli R., Difficulties in developing neisserial vaccines. In: C.A.
Genco and L.M. Wetzler, Editors, Neisseria: molecular mechanisms of pathogen-
esis, Horizon Scientific Press, Norwich, UK 2010, pp. 195-226.

[29] Tettelin H., Saunders N. J., Heidelberg J., Jeffries A. C., Nelson K. E., Eisen J.
A., Ketchum K. A., Hood D. W., Peden J. F., Dodson R. J., Nelson W. C., Gwinn
M. L., DeBoy R., Peterson J. D., Hickey E. K., Haft D. H., Salzberg S. L., White
O., Fleischmann R. D., Dougherty B. A., Mason T. , Ciecko A., Parksey D. S.,
Blair E., Cittone H., Clark E. B., Cotton M. D., Utterback T. R., Khouri H., Qin
H., Vamathevan J., Gill J., Scarlato V., Masignani V., Pizza M., Grandi G., Sun
L., Smith H. O., Fraser C. M., Moxon E. R., Rappuoli R., Venter J. C. Complete
genome sequence of Neisseria meningitidis serogroup B strain MC58. Science. 2000
Mar 10;287(5459):1809-15.

[30] Pizza M., Scarlato V., Masignani V., Giuliani M. M., Aricò B., Comanducci M.,
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