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Preface

Time-dependent problems, that are frequently modelled by hyperbolic partial differ-
ential equations, can be dealt with the boundary integral equations (BIEs) method.
The ideal situation is when the partial differential equation is homogeneous with
constant coefficients, the initial conditions vanish and the data are given only on the
boundary of a domain independent of time. In this situation the transformation of
the differential problem to a BIE follows the same well-known method for elliptic
boundary value problems. In fact the starting point for a BIE method is the repre-
sentation of the differential problem solution in terms of single layer and double
layer potentials using the fundamental solution of the hyperbolic partial differential
operator.
There are, however, specific difficulties due to the additional time dimension: apart
from the practical problems of increased complexity related to the higher dimension,
new stability problems can appear [14, 26]. In the time-dependent case, instabilities
have been observed in practice and due to the absence of ellipticity, the stability
analysis is more difficult and fewer theoretical results are available.
For what concerns the discretization of the obtained BIEs, boundary element meth-
ods (BEMs) have been successfully applied to many time-dependent problems from
fields as electromagnetic wave propagation, computation of transient acoustic wave,
linear elastodynamics, fluid dynamics, etc. [7, 9, 24, 42, 49]. Frequently claimed ad-
vantages over domain approaches are the dimensionality reduction of the discretiza-
tion, the easy implicit enforcement for radiation conditions at infinity, the reduction
of an unbounded exterior domain to a bounded boundary, the high accuracy achiev-
able and simple pre- and post-processing for input and output data.
In the case of hyperbolic initial-boundary value problems, one can distinguish three
approaches to the application of boundary integral methods: Laplace-transform
methods, time-stepping methods and space-time integral equations. I refer to the
surveys [19, 20] for a more complete bibliography on the subject.
- Most earlier contributions concerned direct formulations of BEM in the frequency
domain, often using the Laplace or Fourier transforms. After this transformation a
standard boundary integral method for an elliptic (Helmoltz) problem is applied and
then the transformation back to time domain employs special techniques for the in-
version of Laplace or Fourier transforms.
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viii Preface

- Time-stepping methods start from a time discretization of the original initial-
boundary value problem via an implicit scheme and then use boundary integral
equations to solve the resulting elliptic problems for each time step. Here a diffi-
culty lies in the form of the problem for every simple time step which has non-zero
initial data and thus it is not in the ideal form for an application of the boundary
integral method, namely vanishing initial conditions and volume forces and non-
homogeneous boundary data.
The convolution quadrature method for the time discretization, that has been de-
veloped in [39, 40, 41], overcomes this problem providing a straightforward way
to obtain a stable time stepping scheme using the Laplace transform of the kernel
function.
- The consideration of the time-domain (transient) problem yields directly the
unknown time-dependent quantities. Usual numerical discretization methods in-
clude collocation methods in addition to some stabilization techniques and Laplace-
Fourier methods coupled with Galerkin boundary elements in space.
The application of Galerkin boundary elements in both space and time has been
implemented by several authors but in this direction only the weak formulation due
to Bamberger and Ha Duong [10, 11, 29, 30] furnishes genuine convergence re-
sults. They obtain the well-posedness of the retarded BIE and stability of the BEM
approximations thanks to a coerciveness property of a suitable quadratic form in
the unknown density closely related to the energy functional of the wave equation.
Their approach relies, via Laplace transform, on uniform estimates with respect to
complex frequencies of the corresponding Helmoltz problem.
The stability analysis for all known algorithms, for the space-time integral equation
methods as for the time-stepping schemes, passes through the transformation to the
frequency domain and uses corresponding estimates for the stability of BIE meth-
ods for elliptic problems.
The aim of this thesis is to developed an efficient procedure for the application of
BEM to transient scalar wave propagation problems, investigating the coerciveness
property of the related energy functional, avoiding the analysis in the frequency do-
main. Thus is of great interest both from the theoretical and the numerical point
of view. In fact, a formulation based on the direct analysis in time of the energy
functional would hopefully provide, even for the multidimensional problems, an
effective alternative to that proposed in [10], where the passage to complex frequen-
cies leads to stability constants that grow exponentially in time, as stated in [20].

In the first chapter, firstly I recall the analytical properties of the starting differential
problem that is the transient scalar wave equation in a domain Ω with homogeneous
initial conditions and Dirichlet and/or Neumann conditions on the boundary of Ω .
Then various tables summarize the wide range of possible retarded BIEs with time-
dependent densities as unknowns reformulating the wave problem at hand.
The technique used by Bamberger and Ha Duong to find the weak formulation and
to prove stability is described in section 1.2 and it can be resumed in the following
steps: Fourier-Laplace transform in time variable of the differential problem; uni-
form estimates with respect to complex frequencies of the corresponding Helmoltz
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problem; application of Paley-Wiener theorem and Parseval identity. In particular
this final step provides a space-time weak formulation closely related to the energy
functional of the wave equation, whose associated quadratic form turns out to be
coercive with respect to a suitable weighted Sobolev norm.
At this stage the passage to complex frequencies can be avoided exploiting the well-
known energy-flux relation that allows to infer a suitable space-time weak formula-
tion for the integral problems with a natural quadratic form aE .
For suitable geometries of the boundary, and thanks to the finite speed of propa-
gation property, the square root of the energy defines a norm, through which one
can study continuity and coerciveness properties of the energy functional in order to
verify the stability of further Galerkin approximation:
• In chapter 2, for the simple case of one dimensional problems, precise estimates
of continuity and coerciveness in L2 have been presented for every sort of bound-
ary conditions and consequently, unconditionally stable schemes with well-behaved
stability constants, even for large times, have been found.
• In chapter 3, considering the extension to two dimensional problems, there are
no difficulties concerning the continuity but only some partial results have been
obtained, via Fourier transform, in the case of a flat obstacle for what concern co-
ercivity. On the other hand the presented theoretical analysis of the energetic weak
formulation has its natural counterpart in the context of three dimensional problems:
in fact these theoretical results can be extended without modifications to any spatial
dimension n ≥ 3.
Further, with the “energetic” formulation, I have obtained several numerical results
which seem to be very interesting in comparison with other ones found in literature
either in one dimensional or two dimensional cases ([12, 26]): typical instability
phenomena are never present with the energetic procedure.
These numerical results have been obtained using the Galerkin discretization of the
energetic weak problems as reported in chapter 4. Representing the approximate
solution of the integral problem with piecewise polynomial functions in the space-
time domain, the applied element by element technique produces a linear system
with a Toeplitz block lower triangular matrix easily solvable with appropriate accu-
racy without high computational costs.
The implementation of this procedure implies, during the calculation of the ma-
trix elements, a double analytic integration in time variables and then numerical
integration of weakly singular, singular and hypersingular double integrals in space
variables with several troubles concerning their approximation. Therefore I have
developed some suitable quadrature techniques in order to achieve satisfactory pre-
cision. In particular some quadrature formulas illustrated in [5, 44, 45, 46], already
tested for the elliptic problems, have been coupled with a regularization technique
after a careful subdivision of the integration domain due to the presence of the Heav-
iside function in the integral kernels. The introduced numerical schemes are a valid
alternative to those proposed in [28, 53].
Numerical results, compared with literature benchmarks whenever possible, are
given throughout the thesis.

Milan, February 2010 Chiara Guardasoni
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Chapter 1
Basic theory

This first chapter has the aim to give an overview of the theoretical analysis present
in literature of the properties of the differential and integral transient wave problem
useful to investigate boundary integral methods. In this context I will focus only on
Bamberger and Ha Duong space-time weak formulation for the strictly connection
with the energetic weak formulation which is the subject of my research, leaving
out the other above cited methods.

1.1 The differential problem and the space-time integral
reformulation

The transient wave problem treated in this thesis describes the propagation of the
displacement field u with velocity equal to one without external forces action, be-
ginning from a state of rest (vanishing initial conditions) with Dirichlet and/or Neu-
mann boundary conditions.
The reference results about existence, uniqueness and regularity for the solution of
this differential problem are in [37] and [38], then there are some improvements in
recent papers as [35] for the Dirichlet problems, [33], [34] for Neumann problems
and [47], [16] for mixed boundary value problems.
Let Ω be an open set of Rn with infinitely differentiable boundary Γ of dimension
n−1 (Ω takes up locally only one side of Γ ).

• Dirichlet Problem

(PD )


utt(x, t)−∆u(x, t) = 0 x ∈ Ω , t ∈ (0,T )
u(x,0) = ut(x,0) = 0 x ∈ Ω
u(x, t) = gD (x, t) (x, t) ∈ Σ = Γ × [0,T ]

For the problem (PD ) with the compatibility condition gD |t=0 = 0, the basic theo-
retical result is

1



2 1 Basic theory

Theorem 1 If gD ∈ L2(Σ) then u ∈ C([0,T ];L2(Ω)) ∩C1([0,T ];H−1(Ω)) and
∂u/∂n ∈ H−1(Σ). If gD ∈ H1(Σ) then u ∈ C([0,T ];H1(Ω))∩C1([0,T ];L2(Ω))
and ∂u/∂n ∈ L2(Σ).

If we need to consider Γ non-smooth we can refer to [31].

• Neumann Problem:

(PN )


utt(x, t)−∆u(x, t) = 0 x ∈ Ω , t ∈ (0,T )
u(x,0) = ut(x,0) = 0 x ∈ Ω
∂u
∂n

(x, t) = gN (x, t) (x, t) ∈ Σ := Γ × [0,T ]

Theorem 2 If gN ∈ L2(Σ) then u ∈ C([0,T ];H1/2(Ω))∩C1([0,T ];H−1/2(Ω))1

and u ∈ L2(Σ). If gN ∈ L2(Σ) then u ∈ H3/5−ε([0,T ]×Ω)) and u ∈ H1/5−ε(Σ)
with ε > 0.

This last result can be extended also to the case of a parallelepiped Ω obtaining

Theorem 3 If gN ∈ L2(Σ) then u ∈ H3/4−ε([0,T ]×Ω)) and u ∈ H2/3−ε(Σ) with
ε > 0.

Defining ΓD and ΓN (the portions of the boundary Γ where Dirichlet or Neumann
data are respectively given) in a way such that Γ = Γ D ∪Γ N and ΓD ∩ΓN = /0 we
can cope with

• Problem with Mixed Boundary Conditions

(PDN )


utt(x, t)−∆u(x, t) = 0 x ∈ Ω , t ∈ (0,T )
u(x,0) = ut(x,0) = 0 x ∈ Ω
u(x, t) = gD (x, t) (x, t) ∈ ΣD := ΓD × [0,T ]
∂u
∂n

(x, t) = gN (x, t) (x, t) ∈ ΣN := ΓN × [0,T ]

Few of articles can be found in literature, referring to existence and uniqueness of
the solution of this kind of problems. I don’t describe here the related statements
because of the complexity of theory necessary to explain them, for reference look at
[47] and [16].

The same benchmark problems can be posed in exterior domains; the above re-
ported results can be naturally extended to problems whose domain is considered
outside the boundary Γ (Ω e := Rn \Ω ): thanks to well-known property of finite
velocity of wave propagation, with respect to time interval of observation [0,T ], we
can reduce all the problems to some interior problems.

1 A fortiori u ∈ H1/2([0,T ]×Ω).



1.1 The differential problem and the space-time integral reformulation 3

Talking about the integral reformulation of the differential wave problem, the crucial
point is the integral representation theorem that allows us to obtain an analytical ex-
pression of the solution by means of an unknown function on the boundary. In order
to apply this theorem we need the second Gauss-Green formula

Theorem 4 (Second Gauss-Green Formula) Let Ω be a bounded domain in Rn

with piecewise-smooth boundary Γ . Let n= (n1,n2, . . . ,nn) denote the outward unit
normal vector field on Γ which exists every where except at finitely many nonsmooth
points of Γ . Let f and g be sufficiently regular functions defined on Ω (e.g., f ,g ∈
H1(Ω)). then the integration-by-parts in multi dimensional space∫

Ω

∂ f (x)
∂xi

g(x)dx =
∫
Γ

f (x)g(x)ni(x)dxΓ −
∫
Ω

f (x)
∂g(x)

∂xi
dx

and, as a consequence, the second Gauss-Green formula∫
Ω

{ f (x)∆g(x)−g(x)∆ f (x)}dx =
∫
Γ

{
f (x)

∂g(x)
∂n

−g(x)
∂ f (x)

∂n

}
dxΓ

holds.

and the knowledge of the fundamental solution that is, by definition, the solution G
in the point x ∈ Rn at the time t > 0 of:

Gtt(x, t)−∆G(x, t) = δ (x− ξ)δ (t − τ) (1.1)

where δ is the Dirac distribution centered in the point ξ and in the time instant τ .
The solutions of (1.1) are respectively

• n = 1
G(x,ξ , t,τ) =

1
2

H[t − τ −|x−ξ |] (1.2)

• n = 2

G(x,ξ , t,τ) =
1

2π
H[t − τ −|x− ξ |]

[(t − τ)2 −|x− ξ |2]1/2 (1.3)

• n = 3

G(x,ξ , t,τ) =
1

4π
δ [t − τ −|x− ξ |]

|x− ξ |
(1.4)

with H[·], Heaviside step function.
Now, consider the wave equation and its initial conditions in a domain Ω ⊂ Rn

satisfying the hypothesis to apply the Gauss-Green formula{
utt(x, t)−∆u(x, t) = 0 , t ∈ R+

u(x,0) = ut(x,0) = 0 (1.5)

multiply the equation by the fundamental solution G and integrate in time and space
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t∫
0

∫
Ω

uττ(ξ ,τ)G(x,ξ , t,τ)dξdτ −
t∫

0

∫
Ω

∆u(ξ ,τ)G(x,ξ , t,τ)dξdτ = 0 (1.6)

then integrate by-parts twice in time, noticing that G and Gτ vanish when τ = t and
that the initial conditions are homogeneous

−
t∫

0

∫
Ω

∆u Gdξdτ +
∫
Ω

uτ Gdξ

∣∣∣∣t
0
−

t∫
0

∫
Ω

uτ Gτ dξdτ = 0 ,

−
t∫

0

∫
Ω

∆u Gdξdτ +
∫
Ω

uτ Gdξ

∣∣∣∣t
0
−
∫
Ω

uGτ dξ

∣∣∣∣t
0
+

t∫
0

∫
Ω

uGττ dξdτ = 0 ,

−
t∫

0

∫
Ω

∆u Gdξdτ +
t∫

0

∫
Ω

uGττ dξdτ = 0 .

Applying the second Gauss-Green formula and the equation (1.1)

−
t∫

0

∫
Ω

∆u Gdξdτ +
t∫

0

∫
Ω

uGττ dξdτ = 0 ,

t∫
0

∫
Γ

{
u

∂G
∂nξ

−G
∂u

∂nξ

}
dξΓ dτ −

t∫
0

∫
Ω

u∆Gdξdτ +
t∫

0

∫
Ω

uGττ dξdτ = 0 ,

t∫
0

∫
Γ

{
u

∂G
∂nξ

−G
∂u

∂nξ

}
dξΓ dτ +

t∫
0

∫
Ω

uδ (x− ξ)δ (t − τ)dξdτ = 0

we obtain an integral representation of the solutions u of (1.5) with x ∈ Ω and
t ∈ R+:

u(x, t) =
t∫

0

∫
Γ

{
G(x,ξ , t,τ)

∂u(ξ ,τ)
∂nξ

−u(ξ ,τ)
∂G(x,ξ , t,τ)

∂nξ

}
dξΓ dτ . (1.7)

An analogous representation can be found in the exterior problem defined for x ∈
Ω e := Rn \Ω and t ∈ R+ with a change in sign

u(x, t) =
t∫

0

∫
Γ

{
−G(x,ξ , t,τ)

∂u(ξ ,τ)
∂nξ

+u(ξ ,τ)
∂G(x,ξ , t,τ)

∂nξ

}
dξΓ dτ . (1.8)

The above expressions can be collected in the following theorem (see [13] and [20]):

Theorem 5 If u is a classical solution of (1.5) in the domain (Ω e ∪Ω)×R+ with
regular traces on Γ ×R+ then: ∀(x, t) ∈ (Ω e ∪Ω)×R+
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u(x, t) =
t∫

0

∫
Γ

{
G(x,ξ , t,τ)

[
∂u(ξ ,τ)

∂nξ

]
Γ
− ∂G(x,ξ , t,τ)

∂nξ

[
u(ξ ,τ)

]
Γ

}
dξΓ dτ (1.9)

where the square brackets [ ]Γ define the jump of their argument function on Γ .

Now I’m going to introduce some notations trough which I will formulate the
Boundary Integral Equations (BIEs) (for references see [13], [15], [16], [19] and
[20]).
When x ∈ Ω , introducing the single layer potential operator V

(V ψ)(x, t) =
t∫

0

∫
Γ

G(x,ξ , t,τ)ψ(ξ ,τ)dξΓ dτ (1.10)

and the double layer potential operator K

(K ψ)(x, t) =
t∫

0

∫
Γ

∂G(x,ξ , t,τ)
∂nξ

ψ(ξ ,τ)dξΓ dτ (1.11)

the representation formula (1.9) can be rewritten in a compact form as

u = V [∂nξ u]Γ −K [u]Γ (1.12)

with the classical jump relations

[V ψ]Γ = 0 [∂nxV ψ]Γ =−ψ ,
[K ψ]Γ = ψ [∂nxK ψ]Γ = 0 . (1.13)

It appears therefore natural to introduce the boundary operators by sums and differ-
ences of the one-sided traces on the exterior (Γ +) and interior (Γ −) of Γ :

V := V |Γ
K := 1

2 (K |Γ+ +K |Γ−)
K′ := 1

2 (∂nxV |Γ+ +∂nxV |Γ−)
D := ∂nxK |Γ

(1.14)

To interior or exterior differential problems with any of the boundary conditions
mentioned in this section can be associated one or more Representation Formulas
(RFs) for the solution u and, as consequence, making the point x of the domain
tending to a point on the boundary, the related BIEs. Typically one has a choice of
at least four BIEs for each problem: the first two come from taking the traces in the
representation formula (1.12) (“direct method”), the third one comes from a single
layer representation

u = V ψ with unknown ψ

and the fourth one from a double layer representation

u = K ω with unknown ω .
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Everything is resumed in the following tables:

• Dirichlet Problem

- Domain Ω × [0,T ]:
u|Γ = gD given and φ := ∂nu|Γ− , ψ , ω boundary unknowns

∀(x, t) ∈ Ω ×R+ ∀(x, t) ∈ Γ −×R+

RF ∂nxu = ∂nx(V φ −K u) BIE (− 1
2 +K′)φ = DgD (D1a)

RF u = V φ −K u BIE V φ = (K + 1
2 )gD (D1b)

RF u = V ψ BIE V ψ = gD (D1c)
RF u =−K ω BIE ( 1

2 −K)ω = gD (D1d)

- Domain Ω e × [0,T ]:
u|Γ = gD given and φ := ∂nu|Γ+ , ψ , ω boundary unknowns

∀(x, t) ∈ Ω e ×R+ ∀(x, t) ∈ Γ +×R+

RF ∂nxu = ∂nx(−V φ +K u) BIE ( 1
2 +K′)φ = DgD (D2a)

RF u =−V φ +K u BIE V φ = (K − 1
2 )gD (D2b)

RF u =−V ψ BIE V ψ =−gD (D2c)
RF u = K ω BIE ( 1

2 +K)ω = gD (D2d)

- Domain (Ω e ∪Ω)× [0,T ]:
u|Γ = gD given and φ := [∂nu]Γ boundary unknown

∀(x, t) ∈ (Ω e ∪Ω)×R+ ∀(x, t) ∈ Γ ×R+

RF u = V φ BIE V φ = gD (D3a)

• Neumann Problem

- Domain Ω × [0,T ]:
∂nu|Γ = gN given and ϕ := u|Γ− , ψ , ω boundary unknowns

∀(x, t) ∈ Ω ×R+ ∀(x, t) ∈ Γ −×R+

RF ∂nxu = ∂nx(V ∂nξ u−K ϕ) BIE Dϕ = (− 1
2 +K′)gN (N1a)

RF u = V ∂nξ u−K ϕ BIE (K + 1
2 )ϕ =V gN (N1b)

RF ∂nxu = ∂nxV ψ BIE ( 1
2 +K′)ψ = gN (N1c)

RF ∂nxu =−∂nxK ω BIE Dω =−gN (N1d)

- Domain Ω e × [0,T ]:
∂nu|Γ = gN given and ϕ := u|Γ+ , ψ , ω boundary unknowns

∀(x, t) ∈ Ω e ×R+ ∀(x, t) ∈ Γ +×R+

RF ∂nxu = ∂nx(−V ∂nξ u+K ϕ) BIE Dϕ = ( 1
2 +K′)gN (N2a)

RF u =−V ∂nξ u+K ϕ BIE (K − 1
2 )ϕ =V gN (N2b)

RF ∂nxu =−∂nxV ψ BIE ( 1
2 −K′)ψ = gN (N2c)

RF ∂nxu = ∂nxK ω BIE Dω = gN (N2d)
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- Domain (Ω e ∪Ω)× [0,T ]:
∂nu|Γ = gN given and ϕ := [u]Γ boundary unknown

∀(x, t) ∈ (Ω e ∪Ω)×R+ ∀(x, t) ∈ Γ ×R+

RF ∂nxu = ∂nxK ϕ BIE Dϕ = gN (N3a)

• Mixed Boundary Value Problems

Dealing with representation formulas and boundary integral equations for prob-
lems with mixed boundary conditions, we have to take into consideration the RF
u = V ∂nξ u−K u and its normal derivative and then couple in a system the limit
of the RF, for x tending to a point of ΓD and the limit of the derivative of the RF,
for x tending to a point of ΓN . Solving this system we obtain, as result, u|ΓN

and
∂nu|ΓD

that inserted in the RF are sufficient to get the solution u over the whole
domain. Resuming

- Domain Ω × [0,T ]:
∂nu|ΓN

= gN and u|ΓD
= gD given

ϕ := u|Γ−
N

and φ := ∂nu|Γ−
D

boundary unknowns

∀(x, t) ∈ Ω ×R+ ∀(x, t) ∈ Γ −×R+

RF u = V ∂nξ u−K u BIE

{
V ∂nξ u−Ku = 1

2 gD

−K′∂nξ u+Du =− 1
2 gN

(M1)

- Domain Ω e × [0,T ]:
∂nu|ΓN

= gN and u|ΓD
= gD given

ϕ := u|Γ+
N

and φ := ∂nu|Γ+
D

boundary unknowns

∀(x, t) ∈ Ω ×R+ ∀(x, t) ∈ Γ +×R+

RF u =−V ∂nξ u+K u BIE

{
−V ∂nξ u+Ku = 1

2 gD

K′∂nξ u−Du =− 1
2 gN

(M2)

As told in [16], during last decades, a number of paper dealing with the numeri-
cal solution of non-stationary boundary equations have appeared but without proofs
of convergence of approximate solutions to the exact ones. On the other hand, up
to very recently, existence theorems for the corresponding non-stationary boundary
equations were absent as well. This was connected to the fact that the boundary
operators that correspond to the boundary equations in the dynamic case differ es-
sentially from the analogous operators in the static (elliptic) case. In particular, their
ranges are not closed in some natural function spaces. This does not make it possible
to use the Fredholm alternative in studying their properties.
The earlier results can be found in [10] and in [11] where two theorems state
existence and uniqueness of solutions in a Sobolev type functional space respec-
tively for the BIEs (D1c)/(D2c)/(D3a) reformulations of the Dirichlet problem and
for the BIEs (N1d)/(N2d)/(N3a) reformulations of the Neumann problem in inte-
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rior/exterior domains of R3. The method introduced by the authors, Bamberger and
Ha Duong, has then been applied by Chudinovich in a wider variety of non station-
ary boundary equations in R3 as summarized in [16].
This method, thanks to its general nature, can be easily extended also to problems in
R1 and R2 and moreover it gives us a numerical stable scheme to perform numerical
implementations so I cannot prescind from going into details.

1.2 The Bamberger-Ha Duong method

The basic idea of the method can be outlined in four steps:

1. transform the starting differential transient wave problem into the Helmholtz
problem

2. reformulate the Helmoltz problem via BIEs
3. write the BIE in a continuous and coercive weak form
4. antitrasform it obtaining a time-space variational formulation for the transient

wave problem with stability and convergence properties.

To explain the procedure, I’ll take into consideration the exterior Dirichlet problem
(see [10])

(Pe
D )


utt(x, t)−∆u(x, t) = 0 x ∈ Ω e ⊂ Rn, t ∈ (0,T )
u(x,0) = ut(x,0) = 0 x ∈ Ω e

u(x, t) = gD (x, t) (x, t) ∈ Σ = Γ × [0,T ]

Suppose that extending gD and u to 0 for t < 0 on obtains Laplace transformable2

distributional functions with values in H1/2(Γ ) and H1(Ω e) respectively; so, con-
sidering

L [u](x,s) :=
+∞∫

−∞

u(x, t)e−stdt, s ∈ C, (1.15)

for every s such that s =−iω , ω = η + iσ and σ > σ0 we can define

û(x,ω) := L [u](x,ω) =

+∞∫
−∞

u(x, t)eiωtdt and ĝD (x,ω) :=
+∞∫

−∞

gD (x, t)eiωtdt

(1.16)
with the properties

L [∆u] (x,ω) = ∆ û(x,ω) L [utt ] (x,ω) =−ω2û(x,ω) (1.17)

and we can convert the problem (Pe
D ) into the Helmoltz problem:

2 It means that there exists a constant σ0 ∈R that is infimum of the set where the improper integrals
of e−σ0tgD and e−σ0tu defining the Laplace transforms converge.
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(Pω
D )

 û(x,ω) ∈ H1(Ω e)
∆ û(x,ω)+ω2û(x,ω) = 0 x ∈ Ω e

û(x,ω) = ĝD (x,ω) x ∈ Γ

It is well known that in the half space σ > 0 (we can always take σ0 ≥ 0) the problem
(Pω

D ) admits a unique solution provided that the Sommerfield radiation condition is
satisfied (here replaced by the condition û(x,ω) ∈ H1(Ω e)) and in [10] the follow-
ing proposition has been proved

Theorem 6 The problem (Pω
D ) has a unique solution in H1(Ω e) for every ω with

σ > 0. This solution verifies

∥û∥Ω e,ω :=
(∫

Ω

|∇û|2 + |ω û|2
)1/2

≤C
1

σ2 max
( 1

σ0
,1
)
|ω |3|gD |21/2 (1.18)

for every ω ∈ {σ ≥ σ0 > 0}. The constant C is dependent only on Γ .

Same results are obtained also considering the problem (Pe
D ) as a problem in the

interior domain (PD ) and, thus the classical single layer representation formula for
the Helmholtz problem gives us, for û ∈C1(Ω e)∩C1(Ω):

û(x,ω) =
∫
Γ

Gω(x,ξ)φ̂(ξ ,ω)dξΓ x ∈ Ω e ∪Ω (1.19)

with Gω fundamental solution of the Helmholtz equation in Rn and φ̂ :=
[ ∂ û

∂n
]

Γ
jump across the boundary.
Thanks to the continuity of this potential across Γ the integral equation for φ̂ is

ĝD (x,ω) =
∫
Γ

Gω(x,ξ)φ̂(ξ ,ω)dξΓ =: (Vω φ̂)(x,ω) x ∈ Γ (1.20)

and the operator Vω has the properties to be inverse of the isomorphisme from
H1/2(Γ ) to H−1/2(Γ ) that associates the jump φ̂ to the datum ĝD and it holds that

∥V−1
ω ∥ ≤C

1
σ0

max
(

1
σ0

,1
)
|ω|2 ∀ω ∈ {ℑω ≥ σ0 > 0}. (1.21)

So û has strictly one single layer representation as (1.19) and its density φ̂ is solution
of the variational problem{

φ̂ ∈ H−1/2(Γ )

⟨ψ,−iωVω φ̂⟩= ⟨ψ,−iω ĝD ⟩ ∀ψ ∈ H−1/2(Γ )
(1.22)

equivalent to (1.20) for which Bamberger and Ha Duong have proved a coerciveness
property (⟨...⟩ is the antiduality between H−1/2(Γ ) and H1/2(Γ )). Then, using the
Paley-Wiener theorem,
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Theorem 7 (Paley-Wiener Theorem) Let E be a Banach space, then the following
assertions are equivalent:

i) h(ω) = f̂ (ω) with f ∈ L ′(E)
ii) - h is holomorphic in a complex half plane {ℑω > σ0} with values in E

- ∃σ1 > σ0,C > 0 and k ≥ 0 s.t. ∥h(ω)∥E ≤C(1+ |ω|)k ∀ω : ℑω ≥ σ1.

the authors have proved that

Theorem 8 (Existence and Uniqueness) For every g∈L ′(H1/2(Γ ))3 the problem
(Pe

D ) has a unique solution in L ′(H1(Ω e)) that is representable in a unique way
with a simple layer retarded potential as in (D3a)

u(x, t) =
∫
Σ

G(x,ξ , t,τ)φ(ξ ,τ)dξΓ dτ := (V φ)(x, t) x ∈ Ω e, t ∈ [0,T ]

The density φ of this potential is in L ′(H−1/2(Γ )).

Proof. In consideration of the kernel of Vω the function ω 7→Vω , defined in C, with
values in L (H−1/2(Γ ),H1/2(Γ )) is holomorphic and the same is for V−1

ω on the
half plane {ℑω > 0}. So if ĝ is holomorphic in a half plane {ℑω > σ0} with values
in H1/2(Γ ), the solution φ̂ of (1.20), that exists for ℑω > 0, is an holomorphic func-
tion in the half plane {ℑω > (0∨σ0)} with values in H−1/2(Γ ). The representation
formula (1.19) implies that û is holomorphic in the same half plane with values in
H1(Ω e). Moreover, thanks to inequalities (1.18) and (1.21), û and φ̂ verify the sec-
ond statement of Paley-Wiener theorem and therefore they are Laplace transforms
of distributions in L (H1(Ω e)) and L ′(H−1/2(Γ )) that are the solution of problem
(Pe

D ) and its retarded potential density respectively.

But this result can be specified considering the definition below whenever E is an
Hilbert space

Hs
σ (R+,E) = { f ∈ L ′(E); e−σtΛ s f ∈ L2(R,E)} (1.23)

with the norm | · |σ ,s,r if E = Hr(Γ ), where σ > 0, s ∈ R and the operator Λ s :
L ′(E)→ L ′(E) is defined by Λ s f := L −1[(−iω)s f̂ (ω)], obtaining

Theorem 9 If it exists a constant σ0 > 0 such that gD ∈ H3/2
σ0 (R+,H1/2(Γ )), the

problem (Pe
D ) has a unique solution in H0

σ0
(R+,H1(Ω e)) verifying the energy in-

equality:
+∞∫

−∞

e−2σtE e(t)dt ≤C
1

σ2 max
(

1
σ0

,1
)
|gD |2σ ,3/2,1/2 (1.24)

for all σ ≥ σ0 > 0, where C is a constant dependent on Γ only and
3 Let the Laplace transform be L [ f ](σ) =

∫ +∞
−∞ f (t)e−σt dt, let E be a Banach space, then L ′(E)

denotes the set of distributions f : R→ E that are null in R− and that are Laplace transformable
for every σ ≥ σ0 with σ0( f ) ∈ R.
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E e(t) =
∫

Ω e

(
|∇u(t,x)|2 +

∣∣∣∣ut(t,x)
∣∣∣∣2)dx. (1.25)

The same result holds also for the interior problem (PD ). Therefore the solution u
of (Pe

D )∪ (PD ) is representable in a unique way as simple layer retarded potential
on Γ . The density φ of this potential, defined by φ = [∂u/∂n], is such that, for all
σ ≥ σ0 > 0

|φ |σ ,−1/2,−1/2 ≤C
1
σ

max
(

1
σ0

,1
)
|gD |σ ,3/2,1/2. (1.26)

With this theorem the mathematical expression of energy E , that will be very im-
portant in next chapters to introduce the energy space-time variational formulation,
makes the scene for the first time in this thesis.
Anyway, the variational formulation proposed by Bamberger and Ha Duong to find
the density φ for x ∈ Γ in the boundary integral equation (D3a) V φ = gD is ob-
tained anti-transforming the result (1.22) found in the frequencies domain, keeping
a coerciveness property. In fact, as

L
[
V φt

]
= L

[
(V φ)t

]
=−iωVω φ̂ (1.27)

and, thanks to the Parseval formula4,

1
2π

+∞+iσ∫
−∞+iσ

⟨φ̂,−iωVω φ̂⟩dω =

+∞∫
−∞

e−2σt⟨φ,(V φ)t⟩dt (1.28)

Theorem 10

- V : H1
σ (R+,H−1/2(Γ )) → H0

σ (R+,H1/2(Γ )) is a linear continuous operator
with bounded norm independent of the constant σ ≥ σ0 > 0. More precisely

+∞∫
−∞

e−2σt |V φ |21/2dt ≤C
1

σ2
0

max
(

1
σ4

0
,1
) +∞∫
−∞

e−2σt |φt |2−1/2dt. (1.29)

- Let φ ∈ {φ ∈ H1
σ (R+,H−1/2(Γ )) : V φ ∈ H1

σ (R+,H1/2(Γ ))} then it holds the
coerciveness inequality

+∞∫
−∞

e−2σt⟨φ,V φt⟩dt ≥C min(σ0,1)|φ|2σ ,−1/2,−1/2. (1.30)

4 Let f and g be two distributions in L ′(E)

1
2π

+∞+iσ∫
−∞+iσ

⟨ f̂ (ω), ĝ(ω)⟩E dω =

+∞∫
−∞

e−2σt⟨ f (t),g(t)⟩E dt .
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This allows to conclude that the boundary integral equation (D3a) connected to the
problem (Pe

D )∪ (PD ):

(V φ)(x, t) =
∫
Σ

G(x,ξ , t,τ)φ(ξ ,τ)dξΓ dτ = gD (x, t) x ∈ Γ , t ∈ [0,T ]

can be replaced by a variational equation:

Theorem 11 (Variational Formulation) If φ ∈ {φ ∈ H1
σ (R+,H−1/2(Γ )) : V φ ∈

H1
σ (R+,H1/2(Γ ))} is solution of (D3a) then is solution of

+∞∫
−∞

e−2σt⟨V φt ,ψ⟩dt =
+∞∫

−∞

e−2σt⟨gDt ,ψ⟩dt ∀ψ ∈ H1
σ (R+,H−1/2(Γ )). (1.31)

(1.31) has been the first one and anyway, at now, one of few variational formula-
tions for this time-dependent wave boundary integral problem whose stability and
convergence have been proven.
Then, considering ∆ t and x the discretization parameters ,in time and space respec-
tively and naming φ∆x,∆ t the standard Galerkin approximation of φ , a stability result
for the Galerkin scheme associated to (1.31) holds:

Theorem 12 (Stability) If g∆x,∆ t
Dt is an approximation of gDt in H1/2

σ (R+,H1/2(Γ )),
the scheme is stable, that is:

|φ∆x,∆ t |σ ,−1/2,−1/2 ≤C for ∆x,∆ t → 0. (1.32)

and a convergence result

Theorem 13 (Convergence) If the solution φ of the boundary integral equation
(D3a) is such that φ ∈ H1

σ (R+,Hd2+1(Γ ))∪Hd1+1
σ (R+,L2(Γ )) then

|φ −φ∆x,∆ t |σ ,0,0 ≤C
[ |g∆x,∆ t

Dt −gDt |σ ,1/2,1/2√
∆x∆ t

+∆xd2+
1
2
|φ|σ ,1,d2+1√

∆ t
+∆ td1− 1

2
|φ|σ ,d1+1,0√

∆x

]
.

(1.33)

In [11] the method has been applied to the Neumann problem

(Pe
N )∪ (PN )


utt(x, t)−∆u(x, t) = 0 x ∈ Ω e ∪Ω , t ∈ (0,T )
u(x,0) = ut(x,0) = 0 x ∈ Ω e ∪Ω
∂u
∂n

(x, t) = gN (x, t) (x, t) ∈ Σ = Γ × [0,T ]

Theorem 14 (Existence and Uniqueness) If gN ∈ Hr0
σ (R+,H−1/2(Γ )) with σ ≥

σ0 > 0, the problem (Pe
N )∪ (PN ) has a unique solution u ∈ Hr0−1

σ , representable
in a unique way by the double layer retarded potential
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u(x, t)=
∫
Σ

∂G(x,ξ , t,τ)
∂nξ

ϕ(ξ ,τ)dξΓ dτ := (K ϕ)(x, t) x ∈ Ω e ∪Ω , t ∈ [0,T ]

where ϕ is the function defined by the boundary integral equation (N3a):

gN (x, t) =
∫
Σ

∂ 2G(x,ξ , t,τ)
∂nx∂nξ

ϕ(ξ ,τ)dξΓ dτ := (Dϕ)(x, t) x ∈ Γ , t ∈ [0,T ] .

So, the scheme proposed by authors to calculate the approximate solution of the
problem is performed with the before illustrated passage through the Helmholtz
problem and then the use of the Laplace-Fourier anti-transform, obtaining the fol-
lowing coercive variational formulation

Theorem 15 (Variational Formulation) If gN ∈ H3
σ (R+,H−1/2(Γ )), the solution

ϕ of (N3a) is the unique solution of the variational problem
Find ϕ ∈ H2

σ (R+,H1/2(Γ )) such that
+∞∫

−∞

e−2σt⟨Dφ ,ψt⟩dt =
+∞∫

−∞

e−2σt⟨gN ,ψt⟩dt ∀ψ ∈ H2
σ (R+,H1/2(Γ ))

(1.34)

with favorable results of stability and convergence of the approximate solution
ϕ∆x,∆ t obtained as explained for the Dirichlet problem

Theorem 16 (Stability) If g∆x,∆ t
N is an approximation of gN in H1

σ (R+,H−1/2(Γ )),
the schema is stable, that is:

|ϕ∆x,∆ t |σ ,0,1/2 ≤C for ∆x,∆ t → 0. (1.35)

Theorem 17 (Convergence) If the solution ϕ of the boundary integral equation
(N3a) is enough regular then

|ϕ −ϕ∆x,∆ t |σ ,0,1/2 ≤C
[
|g∆x,∆ t

N −gN |σ ,1,−1/2

+
∆xd2+

1
2

∆ t
|φ|σ ,2,d2+1 +∆ td1−2|φ|σ ,d1+1,1/2

]
.

(1.36)

For completeness, numerical examples of how this method behaves, applied to a
problem with mixed boundary conditions, have been inserted in section 3.3.1 with a
comparison of the Bamberger-Ha Duong variational formulation depending on the
parameter σ with the variational formulation based on the energy expression that
I’m going to introduce.





Chapter 2
The one-dimensional wave problem

In this section I will take into consideration boundary problems for one dimensional
wave propagation reformulated in terms of boundary integral equations (BIEs) with
retarded potential. Then, starting from a natural energy identity, I will introduce a
space-time weak formulation for the BIEs with some theoretical results about the
continuity and coerciveness properties of the related bilinear form. All enriched with
some numerical results, obtained using different approximation techniques that will
be presented and discussed.

2.1 The Dirichlet problem

Let Ω = (0,L) ⊂ R with boundary Γ = {0,L} and let u(x, t) be the solution to the
wave problem

(Pe
D )∪ (PD )


utt(x, t)−uxx(x, t) = 0 x ∈ R\Γ , t ∈ (0,T ),
u(x,0) = ut(x,0) = 0 x ∈ R\Γ ,

u(x, t) = gD (x, t) (x, t) ∈ Σ = Γ × [0,T ]
(2.1)

where the subscript index x denotes the space-derivative. Note that u is considered as
the solution on the whole R, not only in Ω . Whenever necessary, I shall distinguish
the internal solution u−, i.e. for x ∈ Ω , from the external one u+, i.e. for x ∈ R\Ω .
In order to rewrite problem (2.1) as a boundary integral equation, I need to recall the
expression of the forward fundamental solution G(x, t) of the wave operator written
in (1.2):

G(x, t) =
1
2

H[t −|x|] = 1
2

H[t] (H[x+ t]−H[x− t]) . (2.2)

Using (2.2) one obtains the single layer representation formula (D3a) introduced in
page 6 for the solution of the wave equation, for t ∈ R, x ∈ R\Γ :

15
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u(x, t) = (V φ)(x, t) =
+∞∫

−∞

G(x, t − τ)φ(0,τ)dτ +
+∞∫

−∞

G(x−L, t − τ)φ(L,τ)dτ

=
1
2

t∫
−∞

H[t − τ −|x|]φ(0,τ)dτ +
1
2

t∫
−∞

H[t − τ −|x−L|]φ(L,τ)dτ

=
1
2

t−|x|∫
−∞

φ(0,τ)dτ +
1
2

t−|x−L|∫
−∞

φ(L,τ)dτ, (2.3)

where

φ =

[
∂u
∂n

]
:=

∂u−

∂n
− ∂u+

∂n
(2.4)

is the jump of the normal derivatives of u at x = 0 and x = L, and n is fixed as the
unitary outward normal with respect to the boundary of Ω .
Since problem (2.1) is formulated on the time interval [0,T ], in order to keep the
notations as simple as possible, hereafter I shall consider functions φ defined on
the whole real line but having support only in the fixed time interval [0,T ]. From
formula (2.3), taking the limits as x → 0 and x → L, on obtains the following system
of boundary integral equations at the endpoints of the interval (0,L):

(V φ)(0, t) =
1
2

[ t∫
0

φ(0,τ)dτ +
t−L∫
0

φ(L,τ)dτ
]
= gD (0, t)

(V φ)(L, t) =
1
2

[ t−L∫
0

φ(0,τ)dτ +
t∫

0

φ(L,τ)dτ
]
= gD (L, t)

t ∈ [0,T ]. (2.5)

The system (2.5) can be written with the compact notation

V φ = gD , (2.6)

where φ(t) = (φ(0, t),φ(L, t))⊤ and gD (t) = (gD (0, t),gD (L, t))⊤ represent the un-
known vector valued function and the given boundary function in x = 0 and x = L,
respectively. In order to formulate the equation (2.6) in a suitable functional frame-
work, assume V as defined in L2(Σ). With this choice, from (2.5) it is easy to verify
that the range of V lies in H1

{0}(Σ), the space of H1(Σ) functions vanishing at t = 0.
Hence hereafter I shall consider V : L2(Σ)→ H1

{0}(Σ).

2.1.1 Energetic weak problem related to the BIE

A classical way to introduce a weak formulation for the BIE (2.6) is to project the
BIE using L2(Σ) scalar product. Now, considering the bilinear form aL2(φ,ψ) :
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L2(Σ)×L2(Σ)→ R defined by

aL2(φ,ψ) :=<V φ,ψ >L2(Σ)=

T∫
0

ψ(0, t)(V φ)(0, t)dt +
T∫

0

ψ(L, t)(V φ)(L, t)dt ,

(2.7)
it’s possible to write the following weak problem:
given gD ∈ H1

{0}(Σ), find φ ∈ L2(Σ) such that

aL2(φ ,ψ) =< gD ,ψ >L2(Σ), ∀ψ ∈ L2(Σ). (2.8)

There are two major drawbacks in the above formulation: the bilinear form aL2(·, ·)
is not coercive, in fact choosing φ ≡ ψ , the formula (2.7) does not give a positive
definite expression1; further, it is implicit in problem (2.8) that the equation (2.6)
must be understood considering the compact operator V : L2(Σ) → L2(Σ), which
obviously cannot have continuous inverse. As a consequence, it is not surprising
that problem (2.8) gives rise to instability phenomena in the discretization phase, as
it will be shown in the next section.
An alternative approach is suggested by the well-known conservation law satisfied
by the (real-valued) solutions to the d’Alembert equation:

0 = ut(utt −uxx) =
∂
∂ t

(
1
2

u2
t +

1
2

u2
x

)
− ∂

∂x
(utux) . (2.9)

Integrating with respect to space-time in R× (0,T ) and taking into account that u
and ut vanish for t = 0, we get the energy identity

E (T ) =
1
2

+∞∫
−∞

(u2
t +u2

x)dx
∣∣∣
t=T

=

T∫
0

ut ·
[

∂u
∂n

]
dt =

T∫
0

(V φ)t ·φ dt , (2.10)

where the dot denotes the scalar product in R2.
The quadratic form appearing in the last term of (2.10) leads to a natural space-
time weak formulation of the corresponding boundary integral equation (2.6) with
robust theoretical properties. In fact, the main advantage of this approach is that the
quadratic form given by the energy, i.e.

E (T ) =< (V φ)t ,φ >L2(Σ) ,

is, in the one dimensional case, both continuous and coercive in the appropriate
spaces, i.e. exactly the functional spaces where the Dirichlet problem is well-posed
as reported at page 2. In order to derive continuity and coerciveness properties of the
total energy E (T ), the analysis has to be concentrated on the operator A : L2(Σ) →
L2(Σ), defined as

1 For example, choosing φ(0, t) = φ(L, t) = cos( πt
T ), aL2 (φ,φ)< 0 when T > L.
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Aφ(t) := (V φ)t(t)=

 (V φ)t(0, t)

(V φ)t(L, t)

= 1
2

φ(0, t)+H[t −L]φ(L, t −L)

H[t −L]φ(0, t −L)+φ(L, t)

, (2.11)

for t ∈ [0,T ]. By an application of the Cauchy-Schwarz inequality, it results imme-
diately that A is a continuous operator:

Theorem 18 For any given time T , the operator A : L2(Σ) → L2(Σ), defined in
(2.11) is bounded, with norm ∥A∥ ≤ 1.

More interesting are the positivity properties of the quadratic form associated to the
operator A. Instead of the non-symmetric operator A, consider its symmetric part

As =
A+A∗

2
,

where the asterisk denotes the adjoint of an operator. Having introduced the bilinear
form aE (φ,ψ) : L2(Σ)×L2(Σ)→ R defined by

aE (φ,ψ) :=< Aφ,ψ >L2(Σ)=

T∫
0

ψ(0, t)(V φ)t(0, t)dt +
T∫

0

ψ(L, t)(V φ)t(L, t)dt ,

(2.12)
for every φ ∈ L2(Σ), we have

aE (φ ,φ) =< Asφ,φ >L2(Σ) . (2.13)

Introducing the modified anticipated and retarded shift operators:

(S+ f )(t) := H[T −L− t] f (t +L), (S− f )(t) := H[t −L] f (t −L).

and denoting by R the reflection matrix, from a straightforward calculation on ob-
tains

A∗φ(t) =
1
2
[
φ(t)+S+Rφ (t)

]
.

Therefore the symmetric part of A has the following expression:

2Asφ(t) = φ(t)+
1
2
(S−+S+)Rφ(t) , t ∈ [0,T ]. (2.14)

Theorem 19 For every T > 0, there exists a positive constant c(T ) such that

aE (φ,φ)≥ c(T ) |φ|2L2(Σ), φ ∈ L2(Σ). (2.15)

Moreover, let N be the least positive integer such that T ≤ N L; then one has the
explicit bound:

c(T )≥ sin2
(

π
2(N +1)

)
. (2.16)
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Proof. There is a clear analogy between the formulation (2.14) of the operator As
and the usual second order finite differences scheme. In what follows I proceed to
make clear this analogy and eventually I shall reduce the action of As to that of
a matrix operator closely connected to finite differences. First of all assume T =
NL for some positive integer N otherwise trivially extend φ up to NL where N =
[T/L]+1. Then (2.14) can be reformulated in the following equivalent way:

2(Sk
+Asφ)(t) = Sk

+φ(t)+
1
2
(S−+S+)RSk

+φ(t), t ∈ [0,L] , k = 0,1, . . . ,N −1.
(2.17)

Let define, for k = 0,1, ...N −1,

Φk(t) := (Φk(0, t),Φk(L, t))⊤ := RkSk
+φ(t) , t ∈ [0,L],

that is

Φ(0, t) = (φ(0, t),S+φ(L, t),S2
+φ(0, t), . . . ,SN−1

+ φm1(L, t)), t ∈ [0,L] ,

Φ(L, t) = (φ(L, t),S+φ(0, t),S2
+φ(L, t), . . . ,SN−1

+ φm2(L, t)), t ∈ [0,L] ,

where: m1 = [(N − 1)− 2⌊N−1
2 ⌋] and m2 = m1 +(−1)N−1. Similarly, for the left-

hand side in (2.17), set

Ψk(t) := (Ψk(0, t),Ψk(L, t))⊤ := 2(RkSk
+Asφ)(t).

Finally, observe that multiplying both sides of formula (2.17) by Rk , we obtain
(Φ−1(t)≡ ΦN(t)≡ 0):

Ψk(t) =
1
2

Φk−1(t)+Φk(t)+
1
2

Φk+1(t), t ∈ [0,L], k = 0,1, . . .N −1.

Thus each component of Ψ(t) can be expressed as

Ψ0(t) = M Φ0(t), ΨL(t) = M ΦL(t),

where M = tridiag[ 1
2 ,1,

1
2 ] is a tridiagonal matrix of order N. Note that the only

difference between the matrix M and the usual finite difference matrix is the sign
of the 1

2 ’s. In fact, the two matrices are similar through the diagonal matrix which
alternates 1 and −1 along the principal diagonal. It is well known that the N ×
N finite difference matrix is positive definite and its spectrum is given by the N
eigenvalues [17]

ω2
k = 2sin2

(
kπ

2(N +1)

)
, k = 1, ...,N .

Now, having set Φ(t) = (Φ0(t), ΦL(t))⊤, the conclusion follows from the following
identity
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T∫
0

|φ(t)|2 dt =
N−1

∑
k=0

L∫
0

|RkSk
+φ(t)|2 dt =

N−1

∑
k=0

L∫
0

|Φk(t)|2 dt =
L∫

0

|Φ(t)|2 dt,

and from the inequality

2 < Asφ,φ >L2(Σ)=
N−1

∑
k=0

L∫
0

(RkSk
+Asφ)(t) · (RkSk

+φ)(t)dt

=
N−1

∑
k=0

L∫
0

Ψk(t) · Φk(t)dt =
L∫

0

M Φ0(t) · Φ0(t)dt+

+

L∫
0

M ΦL(t) · ΦL(t)dt ≥ ω2
1

L∫
0

|Φ(t)|2 dt = ω2
1 |φ|2L2(Σ) ,

remembering (2.13).

At this point we can write down the energetic weak problem related to the BIE (2.6),
which admits a unique, stable solution:

given gD ∈ H1
{0}(Σ), find φ ∈ L2(Σ) such that

aE (φ ,ψ) =< gD ,t ,ψ >L2(Σ), ∀ψ ∈ L2(Σ). (2.18)

2.1.2 Numerical results

Denoting by Pdk the space of algebraic polynomials of degree dk ≥ 0, consider the
standard finite element space

X−1,∆ t := {v∆ t(t) ∈ L2(0,T ) : v∆ t|[tk,tk+1] ∈ Pdk , dk ≥ 0, k = 0, · · · ,N∆ t −1} .

Then, considering the finite dimensional space W−1,∆ t = X−1,∆ t ×X−1,∆ t ⊂ L2(Σ),
we can write down the discrete form of the previously introduced weak problems.
For instance, referring to (2.18) we have:

given gD ∈ H1
{0}(Σ), find φ∆ t ∈W−1,∆ t such that

aE (φ∆ t ,ψ∆ t) =< gD ,t ,ψ∆ t >L2(Σ) , ∀ψ∆ t ∈W−1,∆ t . (2.19)

Denoting with {vk} a basis for X−1,∆ t , the unknown function φ∆ t can be expressed
as:

φ∆ t(0, t) = ∑
k

φ0
k vk(t), φ∆ t(L, t) = ∑

k
φL

k vk(t)
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and the discrete problems, associated to (2.8) and to (2.18) respectively, can be
equivalently written, respectively, as linear systems

EL2 αL2 = bL2 , EE αE = bE , (2.20)

in the unknowns the coefficients φ0
k and φL

k .

• As test problem, consider a one dimensional domain of length L = π
2 , subject

to the Dirichlet boundary conditions:

gD (0, t) = 0, gD (L, t) = sin2(t)H(t)H(
π
2
− t)+H(t − π

2
).

The observation time interval is (0,6L) = (0,3π). For the discretization, the time
steps considered are of the type ∆ t = π

2 p , p ∈ N+, such that the time π
2 required

by the wave, travelling with unitary speed, to cover the distance between the two
end-points of the domain is a multiple of ∆ t. Tractions in x = 0 and x = L have
been approximated by constant or linear shape functions. In figure 2.1 on the left
there is the numerical solution obtained with ∆ t = π

32 and constant shape functions,
solving EE αE = bE ; refining the time mesh, choosing ∆ t = π

128 , the numerical
approximation improves, as shown in figure 2.1 on the right. In figure 2.2 on the left
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Fig. 2.1: Piece-wise constant approximations of φ(0, t) above and φ(L, t) below,
obtained solving EE αE = bE with ∆ t = π

32 on the left and ∆ t = π
128 on the right.

instability phenomena arising solving EL2 αL2 = bL2 with the coarse time grid, are
presented. This instability still remains even using the smaller time step, as shown
in figure 2.2 on the right, while it disappears choosing an odd parameter p in the
time step ∆ t or if we use linear shape functions. The numerical solutions obtained
by any of the above linear systems, with ∆ t = π

30 and constant shape functions,
and with ∆ t = π

32 and linear shape functions, are reported in figures 2.3. If the
observation time interval is (0,10) it could be natural to choose the submultiple
time step ∆ t = 0.1, even if the time π

2 required by the wave to cover the distance
between the two end-points of the domain is not a multiple of it and in figure 2.4
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Fig. 2.2: Piece-wise constant unstable approximations of φ(0, t) above and φ(L, t)
below, obtained solving EL2 αL2 = bL2 with ∆ t = π

32 on the left and ∆ t = π
128 on the

right.
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Fig. 2.3: On the left piece-wise constant approximations of φ(0, t) and φ(L, t) with
∆ t = π

30 , on the right piece-wise linear approximations of φ(0, t) and φ(L, t) with
∆ t = π

32 obtained solving EL2 αL2 = bL2 .

there is the numerical solution obtained solving EE αE = bE , using this time step
and linear shape functions compared with the huge instability phenomena arising
solving EL2 αL2 = bL2 . At last, in figure 2.5, the sparsity structure of the above two
matrices are reported, together with their spectral condition number.

Remark. The energetic procedure appears to be unconditionally stable. In fact,
even though the stability constant 1/c(T ), with c(T ) given as in theorem 19, has
an asymptotic behavior of the type O(T 2) when T → ∞, the approximate solution
remains stable even for large times: in figure 2.6 the numerical solution of the test
problem, obtained with ∆ t = 0.1 and linear shape functions, has been calculated till
the final time T = 100.

• Further, figure 2.7 presents the numerical solution referred to another Dirichlet
test problem on the time interval (0,100), related to a one dimensional domain of
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Fig. 2.4: Piece-wise linear approximations of φ(0, t) and φ(L, t) obtained with
∆ t = 0.1 solving EE αE = bE on the left and EL2 αL2 = bL2 on the right with the
instability phenomena arising from classical L2 weak formulation.
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Fig. 2.5: Matrices EE , EL2 , with µ2(EE ) =≃ 15.3 and µ2(EL2)≃ 8.6107.

unitary length subject to the boundary conditions:

gD (0, t) = 0, gD (L, t) = H(t) sin(t).

The new challenging features of the datum gD (L, t) with respect to the previous
one are: the fact that it never collapses to a constant for t > t̄ > 0 and its jump
in the first derivative for t = 0, which is reproduced in the solution after reflection
at time intervals of unitary length. The approximation is carried out starting from
the energetic weak formulation, using ∆ t = 0.1 and constant shape functions in the
discretization phase. In this case, the analytical solution is

φ0(t)=−2
49

∑
k=0

H(t−2k−1) cos(t−2k−1), φL(t)= 2
50

∑
k=0

H(t−2k) cos(t−2k) .

and it is possible to evaluate the approximation error, which turns out to be
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Fig. 2.6: Numerical stability of the energetic approach approximate solution for
large times obtained with linear shape functions.

max
t∈(0,100)

|φ(t)−φ0.1(t)| ≈ 8.9810−4 .

Remark. The energetic weak formulation for one dimensional problems has been
introduced as a one-shot analysis till final time T . In fact, the linear system EE αE =
bE has a vector solution which allow to recover the whole time histories φ∆ t(0, t)
and φ∆ t(L, t) till the final instant of the observation time interval. If instead we
search the approximate solution step by step, for instance using constant or lin-
ear basis functions, i.e. we analyze the problem on each time interval of the type
(0,h∆ t), for h = 1, · · · ,N∆ t , we will have to solve N∆ t linear systems of order two,
with the same coefficient matrix, in the unknown vector (φ0

h φL
h )

⊤, using the ap-
proximate solutions obtained in the previous steps to update the right-hand sides.
This time marching procedure is formally equivalent to solve a global linear sys-
tem having a lower block triangular matrix, with coincident diagonal blocks, using
a block forward substitution algorithm.
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Fig. 2.7: Numerical stability of the approximate solution of the second test problem
for large times obtained with linear shape functions.

2.2 Neumann problem

Similar considerations as those developed in the section 2.1 can be done for the
wave problem with Neumann boundary condition:

(Pe
N )∪ (PN )


utt(x, t)−uxx(x, t) = 0 x ∈ R\{0,L}, t ∈ (0,T )
u(x,0) = ut(x,0) = 0 x ∈ R\{0,L},
∂u
∂n

(x, t) = gN (x, t) (x, t) ∈ Σ = {0,L}× [0,T ] .
(2.21)

In this case the solution u(x, t) can be expressed through the double layer represen-
tation (N3a) with the unknown retarded potential ϕ :

u(x, t) = (K ϕ)(x, t) = ∑
y=0,L

+∞∫
−∞

∂
∂ny

G(x− y, t − τ)ϕ(y,τ)dτ (2.22)

where G(· , ·) is given by (2.2).
After a straightforward calculation the more explicit formula is

u(x, t) =
1
2

x
|x|

ϕ 0(t −|x|)− 1
2

x−L
|x−L|

ϕ L(t −|x|),
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from which

[u](0, t) := u−(0, t)−u+(0, t) = ϕ 0(t), [u](L, t) := u−(L, t)−u+(L, t) = ϕ L(t).

By deriving formula (2.22), taking the limits as x → 0 and x → L and using the Neu-
mann data ∂nu(x, t) = gN (x, t), the boundary equations for the unknown potential
ϕ at the endpoints of the interval (0,L) are:

Dϕ := ∂nKϕ = gN , (2.23)

that is
(Dϕ)(0, t) =

1
2

[
ϕ 0

t (t)−ϕ L
t (t −L)

]
= g0

N (t)

(Dϕ)(L, t) =−1
2

[
ϕ 0

t (t −L)−ϕ L
t (t)

]
= gL

N (t) .

In order to derive a weak formulation of the equation (2.23), the starting point is
again the energy identity, that for the Neumann boundary condition assumes the
form

E (T ) =
T∫

0

∂u
∂n

· [u]t dt =
T∫

0

Dϕ · ϕt dt.

Thus, having defined the bilinear form

ãE : H1
{0}(Σ)×H1

{0}(Σ)→ R, ãE (ϕ ,ψ) :=< Dϕ , ψt >L2(Σ), (2.24)

the coerciveness of ãE (· , ·) follows at once from the observation that

ãE (ϕ ,ϕ) =
T∫

0

Aϕ̃t · ϕ̃t dt

where
ϕ̃(t) = (ϕ 0(t),−ϕ L(t))⊤,

and A is the operator defined in (2.11). Then from theorem 19 it follows that

Theorem 20 For every T > 0, there exists a positive constant c(T ) such that

ãE (ϕ ,ϕ)≥ c(T ) |ϕt |2L2(Σ), ϕ ∈ H1
{0}(Σ).

The constant c(T ) is bounded from below as in (2.16).

Since Dirichlet or Neumann boundary conditions are similar for what concerns the
analysis of the energetic weak formulations related to the corresponding BIEs I do
not give here numerical examples for one dimensional Neumann problems. These
will be presented in section 3.2 in the more significative context of two dimensional
problems.
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2.3 Mixed Boundary Value Problems

The one dimensional wave equation can be revised with suitable modifications as a
model for elastodynamics in one dimension. In literature there are several numerical
results related to this kind of problem ([24, 26, 25, 8]) to which compare. Therefore
it becomes relevant to deep investigate in this subsection the elastodynamic problem
(PEl) that describes the propagation of displacement field u(x, t) and traction field
p(x, t) along a weightless rod of finite length L and section area A, with no external
forces acting on it, when an initial configuration different from that one of statical
equilibrium is imposed, under small displacements hypothesis.

(PEl)



uxx(x, t)−
1
c2 utt(x, t) = 0 x ∈ (0,L), t ∈ (0,T )

u(x,0) = ut(x,0) = 0 x ∈ (0,L)
u(0, t) = ū(t) t ∈ [0,T ]

p(L, t) := EA
∂u
∂n

(L, t) = p̄(t) t ∈ [0,T ]

(2.25)

where c =
√

E/ρ is the assigned scalar wave velocity with E and ρ denoting
Young’s modulus and mass density of the material, respectively.
The rod under consideration can be represented by a structured 3D body, with a
dimension much larger than the remaining ones: the length L along the x-direction.
For this reason its geometry is describable by a line, the axial line of the rod, which
passes through the barycenters of all transversal sections, while displacements and
tractions are referred to the axial coordinates of the bar. The homogeneous linear-
elastic material constituting the rod follows Hooke’s law and no flexural moment is
considered.
In the one dimensional case, having defined the traction as p(x, t) := E A∂nu(x, t)
depending on a unitary (outward) normal vector with respect to the transversal sec-
tion of the rod, the problem with mixed boundary conditions (PDN ), as introduced
in page 2, can be seen as an elastodynamic problem (PEl) with constant parameter
c = A = E = 1 and all the considerations made about (PDN ) in chapter 1 can be
easily extended to (PEl).
In order to obtain a boundary integral formulation of the problem (2.25), we have to
use Love’s representation formula (the analogue of the representation formula (1.7)
for (PDN )), which depends on the fundamental solution of the wave hyperbolic
equation in (2.25). This fundamental solution corresponds to the displacements field
generated in an unbounded rod by an impulsive load applied in a point ξ at the time
instant τ , i.e. it is the solution of the differential problem

uxx(x, t)−
1
c2 utt(x, t) =− 1

E A
δ (x−ξ )δ (t − τ), x ∈ R, t > 0, (2.26)

where δ is Dirac distribution, and reads, having set r = |x−ξ |:

Guu(x,ξ ; t − τ) =
c

2E A
H(t − τ)H(c(t − τ)− r), (2.27)
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where H(t) is the Heaviside step function which assures the causality of the wave.
The function (2.27) is known in literature as the first Kelvin solution for the wave
problem applied to the rod.
Multiplying the partial differential equation in (2.25) by EAGuu(x,ξ ; t − τ), inte-
grating in space and time and using the integration by part technique, one obtains
the following Love’s representation formula for the solution of (2.25), for x ∈ (0,L)
and t ∈ (0,T ):

u(x, t) = ∑
ξ=0,L

Guu(x,ξ ; t)∗ p(ξ , t)− ∑
ξ=0,L

Gup(x,ξ ; t)∗ u(ξ , t) , (2.28)

where the asterisk denotes the time convolution product and Gup(x,ξ ; t) is the so
called Gebbia first fundamental solution, given by:

Gup(x,ξ ; t−τ) = EA
∂Guu

∂nξ
(x,ξ ; t−τ) =

c
2

H(t−τ)
∂H
∂ξ

(c(t−τ)−r)n1,ξ . (2.29)

At this stage, it is clear that in order to recover the solution of (2.25) there is the need
to know the time history for traction in the first end-point and for displacement in the
second end-point of the rod, i.e. p(0, t) and u(L, t) respectively. After the limiting
procedure in (2.28), for x tending to the end-points of the rod, the first BIE has the
form:

u(x, t)= ∑
ξ=0,L

Guu(x,ξ ; t)∗ p(ξ , t)− ∑
ξ=0,L

Gup(x,ξ ; t)∗u(ξ , t), x∈{0,L}, t ∈ (0,T ).

(2.30)
Then, remembering the definition of p(x, t), from (2.30) one can obtain a second
BIE, of the form:

p(x, t)= ∑
ξ=0,L

Gpu(x,ξ ; t)∗ p(ξ , t)− ∑
ξ=0,L

Gpp(x,ξ ; t)∗u(ξ , t), x∈{0,L}, t ∈ (0,T ).

(2.31)
In the BIE (2.31) there is the second Kelvin fundamental solution:

Gpu(x,ξ ; t−τ) = EA
∂Guu

∂nx
(x,ξ ; t−τ) =

c
2

H(t−τ)
∂H
∂x

(c(t−τ)−r)n1,x , (2.32)

which represents the stress field generated by an impulsive load applied to the rod,
and the derivative of Gebbia fundamental solution, i.e.:

Gpp(x,ξ ; t−τ)=EA
∂Gup

∂nx
(x,ξ ; t−τ)=

EAc
2

H(t−τ)
∂H

∂x∂ξ
(c(t−τ)−r)n1,ξ n1,x .

(2.33)
Of course, derivatives in (2.29), (2.32) and (2.33) have to be understood in a distri-
butional sense.
Using equations (2.30), (2.31) in x = 0 and x = L, respectively, the explicit expres-
sion of the kernels Guu, Gup, Gpu, Gpp and the boundary data, one obtains, after an
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integration by parts involving the kernel Gpp and some straightforward calculations,
the following integro-differential equation system for t ∈ (0,T ):

c
EA

t∫
0

p(0,τ)dτ +H(t − L
c
)u(L, t − L

c
) = fu(t)

−H(t − L
c
) p(0, t − L

c
)+

EA
c

ut(L, t) = fp(t)

(2.34)

having set:

fu(t) = ū(t)− c
EA

H(t − L
c
)

t− L
c∫

0

p̄(τ)dτ, fp(t) =
EA
c

H(t − L
c
)ūt(t −

L
c
)+ p̄(t).

(2.35)
In (2.34) the unknowns are the time history of traction in x = 0 and of displacement
in x = L, i.e. the two time functions p(0, t) and u(L, t).
Now, let me introduce the following operators:

(V g)(t) =
c

EA

t∫
0

g(τ)dτ , (Dg)(t) =
EA
c

gt(t) , (2.36)

and the anticipated and retarded shift operators:

(S+g)(t) := H(T − t − L
c
)g(t +

L
c
), (S−g)(t) := H(t − L

c
)g(t − L

c
). (2.37)

Using these operators, the system (2.34) can be rewritten in compact form as:[
V S−

−S− D

][
p0(t)

uL(t)

]
=

[
fu(t)

fp(t)

]
, t ∈ (0,T ) , (2.38)

where p0(t), uL(t) represent the unknown time functions p(0, t) and u(L, t), respec-
tively.

2.3.1 Energetic weak problem related to the BIEs

Also in this case a weak formulation derives from the consideration of the positive
energy for the hyperbolic wave problem (2.25) at the final time instant T inside the
rod that can be expressed as:
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E(0,L)(T ) :=
1
2

L∫
0

[(1
c

ut(x,T )
)2

+
(

ux(x,T )
)2]

dx=
1

EA

T∫
0

∑
x=0,L

ut(x, t)p(x, t)dt ≥ 0.

(2.39)
Since the first equation in (2.34) comes from (2.30), we have to differentiate it with
respect to time before projecting onto the space L2(0,T ), while the second equation,
coming from (2.31), has to be projected onto the space of time derivatives of func-
tions belonging to H1

{0}(0,T ). Hence the auxiliary problem deduced from (2.34)
is 

c
EA

p(0, t)+H(t − L
c
)ut(L, t −

L
c
) = fu,t(t)

−H(t − L
c
) p(0, t − L

c
)+

EA
c

ut(L, t) = fp(t)

(2.40)

Then, remembering the definitions (2.36) and (2.37) and having set W = L2(0,T )×
H1
{0}(0,T )

2, W̃ = H1
{0}(0,T )×L2(0,T ), define the bilinear form:

aE (·, ·) :=
⟨[ Vt S_t

−S− D

]
·, ·
⟩

: W × W −→ R , (2.41)

obtaining the following energetic weak formulation of the problem (2.38):

given ( fu fp)
⊤ ∈ W̃ , find (p0 uL)⊤ ∈W such that

aE

(( p0

uL
)
,
( ψ

φt

))
=
⟨( fu,t

fp

)
,
( ψ

φt

)⟩
, ∀(ψ φ)⊤ ∈W . (2.42)

The bilinear form aE (·, ·) is continuous and coercive on W ×W , thus assuring exis-
tence and uniqueness of the weak solution.
In order to derive these theoretical results, the attention has to be concentrated on
the operator A defined by:

A : L2(0,T )×L2(0,T )→ L2(0,T )×L2(0,T ) , A :=
[

αI S−
−S− 1

α I

]
, (2.43)

where α = c/EA > 0 and I is the identity operator. Recalling the definitions of
operators V , D and S−, with a straightforward calculations:

aE

(( p
u
)
,
( q

v
))

=
⟨( α p+S−ut

−S−p+ 1
α ut

)
,
( q

vt

)⟩
=
⟨
A
( p

ut

)
,
( q

vt

)⟩
. (2.44)

Now, introduce two new operators: the adjoint and the symmetric part of the opera-
tor A , i.e. respectively

2 H1
{0}(0,T ) is the space of functions belonging to H1(0,T ) and vanishing for t = 0.
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A ∗ :=

[
αI −S+

S+ 1
α I

]
, As :=

A +A ∗

2
=

[
αI 1

2 [S−−S+]
1
2 [−S−+S+] 1

α I

]
. (2.45)

From definitions (2.43) and (2.45), it follows:

⟨
A
( p

ut

)
,
( p

ut

)⟩
=
⟨
As
( p

ut

)
,
( p

ut

)⟩
, ∀(p u)⊤ ∈W . (2.46)

Proposition 1 The operator As : L2(0,T )× L2(0,T ) → L2(0,T )× L2(0,T ) is a
continuous, bijective and self-adjoint positive operator. Moreover

⟨
As
( p

ut

)
,
( p

ut

)⟩
≥ 1

∥A −1
s ∥

∥( p
ut

)
∥2

2 . (2.47)

Proof. From definitions (2.45) it follows directly that the operator As is continuous
and self-adjoint, therefore it suffices to prove that it is injective and surjective. For
what concerns the first point from (2.44) and (2.46), on has:

⟨
As
( p

ut

)
,
( p

ut

)⟩
=
⟨
A
( p

ut

)
,
( p

ut

)⟩
= α

T∫
0

p2(t)dt +
1
α

T∫
0

u2
t (t)dt +

T∫
L/c

p(t)ut(t −
L
c
)dt −

T∫
L/c

ut(t) p(t − L
c
)dt .

(2.48)

Considering the integrand functions in the last two integrals, it holds:

p(t)ut(t −
L
c
) =

1
2
[√

α p(t)+
1√
α

ut(t −
L
c
)
]2 − 1

2
α p2(t)− 1

2α
u2

t (t −
L
c
)

−ut(t) p(t − L
c
) =

1
2
[
−
√

α p(t − L
c
)+

1√
α

ut(t)
]2 − 1

2
α p2(t − L

c
)− 1

2α
u2

t (t)

and replacing in (2.48):

⟨
As
( p

ut

)
,
( p

ut

)⟩
=

α
2

L/c∫
0

p2(t)dt +
α
2

T∫
T−L/c

p2(t)dt +
1

2α

L/c∫
0

u2
t (t)dt +

1
2α

T∫
T−L/c

u2
t (t)dt +

1
2

T∫
L/c

[√
α p(t)+

1√
α

ut(t −
L
c
)
]2 dt +

1
2

T∫
L/c

[
−
√

α p(t − L
c
)+

1√
α

ut(t)
]2 dt ≥ 0,

because sum of positive terms. Now, suppose
⟨
As
( p

ut

)
,
( p

ut

)⟩
= 0. Then it hap-

pens that every integrand function in the previous equality identically vanishes. In
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particular, p(t) = ut(t)≡ 0 in the time interval (0,L/c) and

ut(t) = α p(t − L
c
) =−ut(t −2

L
c
) =−α p(t −3

L
c
) = ut(t −4

L
c
) ,

p(t) =− 1
α

ut(t −
L
c
) =−p(t −2

L
c
) =

1
α

ut(t −3
L
c
) = p(t −4

L
c
) ;

(2.49)

hence the functions ut(t) and p(t) are periodic with the same period: 4L/c. From
the above equalities (2.49), it follows that p(t) and ut(t) vanish on the whole time
interval (0,T ). Thus the positivity of As from which to deduce injectivity is proved.
An equivalent result holds for the operator A .
For what concerns the invertibility of operator As, having assigned ( f1 f2)

⊤ ∈
L2(0,T )×L2(0,T ), one has to search a function (p ut)

⊤ ∈ L2(0,T )×L2(0,T ) such
that:

As
( p

ut

)
=
( f1

f2

)
. (2.50)

Let the final time instant of analysis T be an even multiple of the time L/c, i.e.
T = 2mL/c, m∈N+. This is not against generality, because, if this does not happen,
we can extend by zero the given data till we reach the first even multiple of L/c
greater than T. Hence, the problem is reduced to find two functions p(t) and ut(t)
on (0,L/c) such that on the generic time interval (k L/c,(k+1)L/c), they and their
translated verify the equations:

α Sk
+ p+

1
2

Sk−1
+ ut −

1
2

Sk+1
+ ut = Sk

+ f1

1
α

Sk
+ ut −

1
2

Sk−1
+ p+

1
2

Sk+1
+ p = Sk

+ f2

k = 0, · · · ,2m−1 , (2.51)

with S−1
+ =O, S0

+ = I. Then, the operator As can be seen, with a suitable ordering of
the unknown functions, as a matrix Ms of order M = 4m(= 2T c/L), eptadiagonal,
with almost block diagonal structure, with m blocks on the principal diagonal, of
order four, separated by the vector [− 1

2 ,
1
2 ,

1
2 ,−

1
2 ]

⊤ lying, between a block and
another, parallel to the secondary diagonal of the matrix Ms, as follows:

Ms =



α 0 0 − 1
2

0 1
α

1
2 0

0 1
2 α 0 − 1

2
− 1

2 0 0 1
α

1
2

. . .
. . .

1
2 α 0 0 − 1

2
− 1

2 0 1
α

1
2 0

0 1
2 α 0

− 1
2 0 0 1

α



. (2.52)
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Matrix Ms is symmetric and positive definite, hence the surjective property (invert-
ibility) of operator As is proved.
More precisely, the spectrum of this matrix is constituted by M/2 distinct eigenval-
ues, each with double algebraic multiplicity, for α = 1 given by:

λk = 1− cos(
π k

M
2 +1

), k = 1, · · · , M
2
, (2.53)

or, in the general case α > 0, α ̸= 1, having set β = min(α,1/α) and γ =
max(α,1/α), with an asymptotic behavior for β → 0, of the type:

β
2 [1− cosζk]− (β

2 )
3 [1− cos2ζk]+O((β

2 )
5), k = 1, · · · , M

4 ;

γ + β
2 [1− cos χk]+ (β

2 )
3 [1− cos2χk]+O((β

2 )
5), k = M

4 +1, · · · , M
2 ;

(2.54)

where:

ζk =
2πk

M
2 +1

, χk =
(2(k− M

4 )−1)π
M
2 +1

.

Therefore, for the least eigenvalue (k = 1), which represents 1/∥A −1
s ∥ it holds:

λ1(As)≃
β

2δ1α

π2

(M
2 +1)2

= O(
1

M2 ) , M → ∞ , (2.55)

where δ1α is the Kronecker symbol.
At last, inequality (2.47) is a standard result of functional analysis.

At this stage we can prove the following conclusive result:

Theorem 21 The real bilinear form aE (·, ·) of the energetic weak formulation is
continuous and coercive on W ×W.

Proof. Observe that from (2.44) it will be sufficient to prove the continuity and co-
erciveness of the bilinear form aE (·, ·) for functions (p ut)

⊤ in L2(0,T )×L2(0,T ),
since ∥u∥H1

{0}(0,T )
and ∥ut∥L2(0,T ) are equivalent norms, owing to the homogeneous

initial condition in our hyperbolic problem (2.25).
For what concerns continuity:
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( p

u
)
,
( q

v
)
)
∣∣= ∣∣⟨A ( p

ut

)
,
( q

vt

)⟩∣∣
=
∣∣ T∫

0

[α q(t) p(t)+
1
α

vt(t)ut(t)]dt +
T∫

L/c

[q(t)ut(t −
L
c
)− v(t) p(t − L

c
)]dt

∣∣
≤

T∫
0

∣∣( α p(t)
1
α ut(t)

)
·
( q(t)

vt(t)
)∣∣dt +

T∫
L/c

∣∣( ut(t − L
c )

−p(t − L
c )

)
·
( q(t)

vt(t)
)∣∣dt

≤
T∫

0

∥
( α p(t)

1
α ut(t)

)
∥2 ∥
( q(t)

vt(t)
)
∥2 dt +

T∫
L/c

∥
( ut(t − L

c )
−p(t − L

c )

)
∥2 ∥
( q(t)

vt(t)
)
∥2 dt

and using the Cauchy-Schwarz inequality finally:

≤ ∥
( α p

1
α ut

)
∥L2(0,T ) ∥

( q
vt

)
∥L2(0,T )+∥

( p
ut

)
∥L2(L/c,T ) ∥

( q
vt

)
∥L2(L/c,T )

≤ [max(α,
1
α
)+1]∥

( p
ut

)
∥L2(0,T ) ∥

( q
vt

)
∥L2(0,T ) .

The proof of the coerciveness of the bilinear form aE (·, ·) follows easily from (2.44),
(2.46) and inequality (2.47). In fact, we have:

aE

(( p
u
)
,
( p

u
))

=
⟨
As
( p

ut

)
,
( p

ut

)⟩
≥ 1

∥A −1
s ∥

∥∥( p
ut

)∥∥2
2 , (2.56)

and for the coerciveness constant of the energetic bilinear form, remembering that
M = 2c

L T and (2.55), it holds

1
∥A −1

s ∥
= λ1(As) = O(T−2), T →+∞.

2.3.2 Numerical results

This kind of problem is a good occasion to compare this energetic weak formulation
with the one introduced by Bamberger and Ha Duong and reassumed in section 1.2.
Following the procedure explained in ([10, 11]) we can deduce the continuous and
coercive bilinear form:

aσ (·, ·) =
⟨[ Vt S_t

−S− D

]
·, ·
⟩

σ : W ×W → R (2.57)

where the scalar product is defined as:
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< f ,g >σ :=
+∞∫

−∞

e−2σt f (t)g(t)dt (2.58)

with σ a real strictly positive parameter that has to be fixed. Hence, the weak for-
mulation associate to (2.38) is:

given ( fu fp)
⊤ ∈ W̃ , find (p0 uL)⊤ ∈W such that

aσ

(( p0

uL
)
,
( ψ

φt

))
=
⟨( fu,t

fp

)
,
( ψ

φt

)⟩
σ , ∀(ψ φ)⊤ ∈W . (2.59)

From now on, problem (2.59) will be referred to as σ weak formulation of the wave
problem (2.38).
As already established in section 2.1.2, together with a uniform decomposition of
the time interval [0,T ] we can introduce the standard finite element spaces

X−1,∆ t := {ψ∆ t(t) ∈ L2(0,T ) : ψ∆ t|[tk,tk+1] ∈ Pdk , dk ≥ 0, k = 0, · · · ,N∆ t −1} .

and

X0,∆ t := {φ∆ t(t) ∈C0(0,T ) : φ∆ t|[tk,tk+1] ∈ Pdk+1 , dk+1 ≥ 0, k = 0, · · · ,N∆ t −1} .

Then, considering the finite dimensional space W∆ t = X−1,∆ t ×X0,∆ t , we can write
down the discrete form of weak problem (2.42):

given ( fu fp)
⊤ ∈ W̃ , find (p0

∆ t uL
∆ t)

⊤ ∈W∆ t such that

aE

(( p0
∆ t

uL
∆ t

)
,
( ψ∆ t

φ∆ t,t

))
=
⟨( fu,t

fp

)
,
( ψ∆ t

φ∆ t,t

)⟩
, ∀(ψ∆ t φ∆ t)

⊤ ∈W∆ t , (2.60)

Denoting with {ψk} a basis for X−1,∆ t and with {φk} a basis for X0,∆ t , the unknown
functions p0

∆ t(t), uL
∆ t(t) can be expressed as:

p0
∆ t(t) = ∑

k
p0

k ψk(t), uL
∆ t(t) = ∑

k
uL

k φk(t) (2.61)

and problem (2.60) can be equivalently written as a linear system:

EE αE = bE . (2.62)

The matrix EE has a 2×2 block structure, whose elements are of the form:
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(E11
E )k j =

c
EA

T∫
0

ψk(t)ψ j(t)dt, (E12
E )k j =

T∫
L
c

ψk(t)φ jt(t −
L
c
)dt,

(E21
E )k j =−

T∫
L
c

φkt(t)ψ j(t −
L
c
)dt, (E22

E )k j =
EA
c

T∫
0

φkt(t)φ jt(t)dt.

The discretization of weak problem (2.59) can be equivalently written as a linear
system, too:

Eσ ασ = bσ , (2.63)

where the elements of the four blocks of matrix Eσ are of the form:

(E11
σ )k j =

c
EA

T∫
0

e−2σt ψk(t)ψ j(t)dt, (E12
σ )k j =

T∫
L
c

e−2σt ψk(t)φ jt(t −
L
c
)dt,

(E21
σ )k j =−

T∫
L
c

e−2σt φkt(t)ψ j(t −
L
c
)dt, (E22

σ )k j =
EA
c

T∫
0

e−2σtφkt(t)φ jt(t)dt.

Observe that these elements depend on a real strictly positive parameter σ that has
to be fixed and greatly influences the condition number of matrix Eσ .

Remark. Matrices EE and Eσ are not symmetric; in fact the corresponding bilinear
forms aE (·, ·) and aσ (·, ·) are not symmetric and the related weak formulations can’t
be written as equivalent variational problems. Anyway, owing to the coerciveness
of aE (·, ·) and aσ (·, ·), their diagonal blocks are positive definite.

• As test problem, taken from [24], consider a rod of unitary length L = 1, fixed
in x = 0 and subjected to a uniform traction at the other end-point. Hence, we in-
troduce the following boundary conditions: u(0, t) = 0, p(L, t) = H(t). The wave
velocity is set c = 1; further A = 1, E = 1. The observation time interval is (0,20).
For the discretization, two time steps have been considered: the first, ∆ t = 0.1, is
such that the time L/c required by the elastic wave to cover the distance between
the two end-points of the rod is a multiple of it; the second, ∆ t = 0.08, has not this
property. Tractions in x = 0 are approximated by constant shape functions and dis-
placements in x = L by linear shape functions. In Figure 2.8 there is the numerical
solution obtained with ∆ t = 0.1, starting from the energetic weak formulation. The
same graph has been obtained with the σ weak formulation. The approximate so-
lution overlaps the analytical one and it is in perfect agreement with that reported
in [24], obtained with a collocation technique using the first BIE (2.30) alone. In
Figures 2.9 the sparse structure of matrices EE and Eσ are reported. For what con-
cerns their spectral condition number we have: µ2(EE ) = 6.82102 and in table 2.1
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Fig. 2.8: Numerical solution obtained with ∆ t = 0.1 using constant shape functions
to approximate p(0, t) and linear shape functions to approximate u(L, t).

the spectral condition number of Eσ for different values of the parameter σ , for two
different time steps. As one can see, the condition number of Eσ rapidly increases
even for small values of σ , however the solution is still stable. In Figure 2.10 there

σ 0 0.2 0.4 ∆ t
µ2(Eσ ) 6.82E +02 3.30E +05 8.40E +08 0.1
µ2(Eσ ) 1.04E +03 4.91E +05 1.31E +09 0.08

Table 2.1: Spectral condition number of matrix Eσ , for different values of σ and ∆ t.
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Fig. 2.9: The highly sparse structure of matrices EE and Eσ .

is the numerical solution obtained with ∆ t = 0.08, starting from energetic weak
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formulation, compared with the analytical one. Also in this case the approximate
solution is in perfect agreement with that reported in [24].
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Fig. 2.10: Comparison between the analytical solution and its numerical approx-
imation obtained using the energetic weak formulation with constant shape func-
tions to approximate p(0, t), linear shape functions to approximate u(L, t) and time-
discretization parameter ∆ t = 0.08.

• The theoretical analysis of given energetic weak formulation remains the same
considering slightly different differential model problems, such as

uxx(x, t)−
1
c2 utt(x, t) = ḡ(x, t) x ∈ (0,L), t ∈ (0,T ),

u(x,0) = ut(x,0) = 0 x ∈ (0,L),
u(0, t) = 0 t ∈ (0,T ),
p(L, t) = 0 t ∈ (0,T ),

(2.64)

where right-hand side in the wave equation is non-trivial and initial and mixed
boundary conditions are homogeneous, or

uxx(x, t)−
1
c2 utt(x, t) = 0 x ∈ (0,L), t ∈ (0,T ),

u(x,0) = u0(x) x ∈ (0,L),
ut(x,0) = v0(x) x ∈ (0,L),
u(0, t) = 0 t ∈ (0,T ),
p(L, t) = 0 t ∈ (0,T ),

(2.65)

where initial conditions are non-trivial in a rod with fixed and free endpoints, re-
spectively, with no external forces. Note that initial conditions have to be compatible
with the homogeneous boundary data, hence they have to satisfy the properties:
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u0(0) = v0(0) = 0,
du0

dx
(L) =

dv0

dx
(L) = 0 .

In the above cases, the energetic bilinear form aE (·, ·) does not change, while the
right-hand side in (2.42) can be deduced from the following functions depending on
the given data:

fu(t) =
c

EA

L∫
0

t− ξ
c∫

0

ḡ(ξ ,τ)dτ dξ , fp(t) =−
L∫

0

ḡ(ξ , t − L−ξ
c

)dξ (2.66)

for problem (2.64) and

fu(t) =− 1
cA

ct∫
0

v0(ξ )dξ − 1
A

u0(ct) , fp(t) =
E
c

v0(L− ct)−E
du0

dx
(L− ct)

(2.67)
for problem (2.65).
In figure 2.11 there is the numerical solution of the problem (2.64) with ḡ(x, t) =
H(t) related to the previous rod, obtained with energetic weak formulation and
using ∆ t = 0.1 as discretization time step, and the evaluated displacements in
x = L

4 ,
L
2 ,

3
4 L,L are presented. The approximated solutions overlap the analytical

ones, deducible from:

u(x, t) =
1
2

+∞

∑
k=0

(−1)k[H(t − x−2kL)(t − x−2kL)2+

+H(t + x−2(k+1)L)(t + x−2(k+1)L)2]− t2

2
.
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Fig. 2.11: Numerical solution of problem (2.64) and evaluated displacements in
different points of the rod, obtained using linear shape functions to approximate in
time.

At last, in figure 2.12 there is the numerical solution of problem (2.65) with
u0(x) = x(x − L)2, v0(x) = 0, obtained for the previous rod with energetic weak
formulation, using ∆ t = 0.1 as discretization time step. Also in this case the ap-
proximated displacement and traction overlap the corresponding analytical solutions
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deducible from:

u(x, t) =
+∞

∑
k=1

αk cos(
(2k−1)πc

2L
t)νk(x),

with

νk(x) =

√
2
L

sin(
(2k−1)π

2L
x), αk =

L∫
0

u0(x)νk(x)dx.
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Fig. 2.12: Numerical solution of problem (2.65), obtained with the energetic weak
formulation and using linear shape functions to approximate in time.

• The energetic weak formulation has been applied in the analysis of layered media
([2, 4]). Corresponding numerical results are not reported here for brevity.



Chapter 3
The two dimensional wave problem

In this section I will consider two dimensional wave propagation problems refor-
mulated in terms of boundary integral equations, extending the energetic space-time
weak formulation with some theoretical analysis. At last, various numerical sim-
ulations will be presented and discussed, showing the stability of the space-time
Galerkin boundary element method applied to the energetic weak problem.

3.1 Exterior Dirichlet problem

Consider the Dirichlet problem formulated over a domain exterior to an open arc
Γ ⊂ R2:

(Pe
D )


utt(x, t)−∆u(x, t) = 0 x ∈ R2 \Γ , t ∈ (0,T ),
u(x,0) = ut(x,0) = 0 x ∈ R2 \Γ ,

u(x, t) = gD (x, t) (x, t) ∈ Σ = Γ × [0,T ]
(3.1)

In this case the boundary datum gD (x, t) represents the value of the excitation field
over Γ . As seen for one dimensional problems, consider the single-layer represen-
tation (D2c) of the solution of (3.1):

u(x, t)=
∫
Γ

t∫
0

G(r, t−τ)φ(ξ ,τ)dτ dξΓ =(V φ)(x, t), x ∈R2 \Γ , t ∈ (0,T ), (3.2)

with r = ∥r∥2 = ∥x− ξ∥2, φ =

[
∂u
∂n

]
the jump of the normal derivative of u along

Γ and G the fundamental solution given in (1.3). After having derived the related
space-time BIE (see (D2c) introduced in page 6)

41
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gD (x, t) =
∫
Γ

t∫
0

G(r, t − τ)φ(ξ ,τ)dτ dξΓ =V φ(x, t), x ∈ Γ , t ∈ (0,T ). (3.3)

the energetic weak formulation of problem (3.3) is defined as in (2.18), with

aE (φ,ψ) =< (V φ)t ,ψ >L2(Σ)=
∫
Γ

T∫
0

(V φ)t (x, t)ψ(x, t)dt dxΓ , (3.4)

where ψ is a suitable test function, belonging to the same functional space of φ .
With an integration by parts and (3.1)

aE (φ ,ψ) =
∫
Γ

(V φ)(x,T )ψ(x,T )dxΓ −
∫
Γ

T∫
0

(V φ)(x, t)ψt(x, t)dt dxΓ . (3.5)

In order to apply the Fourier transform to the analysis of the bilinear form (3.4),
assume that the obstacle Γ is flat, that is Γ = {(x,0) : x ∈ [0,L]} ⊂ R. Then, for
a given regular function φ having support in Σ , the function u in (3.2) can be
reinterpreted as the solution of the jump problem:

utt −uxx −uyy = 0 (x,y) ∈ R2 \Γ , t > 0,[
∂u
∂y

]
(x,0, t) = φ(x, t) 0 ≤ x ≤ L, t > 0,

[u] (x,0, t) = 0 0 ≤ x ≤ L, t > 0,
u(x,y,0) = ut(x,y,0) = 0 (x,y) ∈ R2

(3.6)

For any f ∈ L2(Σ), define the Fourier transform with respect to a single variable,
either x or t, as follows

f̂ (ξ , t) := Fx( f )(ξ , t) =
1√
2π

+∞∫
−∞

e−ixξ f (x, t)dx,

f̂ (x,ω) := Ft( f )(x,ω) =
1√
2π

+∞∫
−∞

e−itω f (x, t)dt

while

f̃ (ξ ,ω) := F ( f )(ξ ,ω) =
1

2π

+∞∫
−∞

+∞∫
−∞

e−i(tω+ξ x) f (x, t)dt dx (3.7)

will denote the Fourier transform with respect to both variables. As it is well-known
by the Paley-Wiener theorem 7, f̃ (ω,ξ ) is an entire analytical function of exponen-
tial type.
Assume for the moment that φ ∈C∞

0 (Σ) and perform the transformation of the op-
erator φ 7→ (V φ)t into a multiplication operator in the frequency variables. Having
set
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û(ξ ,y, t) :=
1√
2π

+∞∫
−∞

e−ixξ u(x,y, t)dx , y ̸= 0, t > 0,

we obtain the following homogeneous Cauchy problem with a jump condition for
ûy in y = 0, for the Klein-Gordon equation with mass ξ 2:

ûtt − ûyy −ξ 2û = 0 y ̸= 0, t > 0, (3.8)[
∂ û
∂y

]
(ξ ,0, t) = φ̂(ξ , t) t > 0, (3.9)

[û] (ξ ,0, t) = 0 t > 0, (3.10)
û(ξ ,y,0) = ût(ξ ,y,0) = 0 y ̸= 0. (3.11)

In order to represent û as a single layer integral, use the expression of the funda-
mental solution of the Klein-Gordon equation which is given by (see [22])

Ĝ(ξ ,y, t) =
1
2

H[t −|y|]J0(|ξ |
√

t2 − y2) (3.12)

where J0 represents the Bessel function of order 0. Then

û(ξ ,y, t) =
1
2

t−|y|∫
0

J0(|ξ |
√
(t − τ)2 − y2) φ̂(ξ ,τ)dτ, ξ ∈ R, y ̸= 0, t > 0, (3.13)

and by taking the limit y → 0,

û(ξ ,0, t) =
1
2

t∫
0

J0(|ξ |(t − τ))φ̂(ξ ,τ)dτ , ξ ∈ R, t > 0. (3.14)

Since

ût =
∂
∂ t

Fx[u] = Fx [ut ] = Fx[(V φ)t ],

J0(0) = 1 and J′0(t) =−J1(t), deriving in (3.14) with respect to t,

Fx[(V φ)t ] = ût(ξ ,0, t) =
1
2

φ̂(ξ , t) − |ξ |
2

t∫
0

J1(|ξ |(t − τ))φ̂(ξ ,τ)dτ. (3.15)

We need the following result (see [21]) on the Fourier transform of H[t]J1(t):

G (ω) :=
√

2πF [H[t]J1(t)](ω) = 1+
iω χ{|ω |<1}√

1−ω2
−

|ω|χ{|ω |>1}√
ω2 −1

,

where χZ is the characteristic function of the set Z . Therefore



44 3 The two dimensional wave problem

√
2πFt [H[t]J1(|ξ |t)](ω)=

1
|ξ |

G

(
ω
|ξ |

)
=

1
|ξ |

[
1+

iω χ{|ω|<|ξ |}√
|ξ |2 −ω2

−
|ω|χ{|ω|>|ξ |}√

ω2 −|ξ |2
]
.

Finally, from (3.15), the desired expression of the Fourier transform of (V φ)t , when
φ ∈C∞

0 (Σ) is:

F [(V φ)t ](ξ ,ω) =
1
2

φ̃(ξ ,ω) − 1
2

G

(
ω
|ξ |

)
φ̃(ξ ,ω)

=
1
2
|ω|χ{|ω|>|ξ |}√

ω2 −|ξ |2
φ̃(ξ ,ω)− 1

2
iω χ{|ω|<|ξ |}√

|ξ |2 −ω2
φ̃(ξ ,ω) .(3.16)

Owing to the Parseval identity, for ψ, φ ∈ C∞
0 (Σ), the following representation of

the bilinear form is obtained

aE (φ ,ψ) =

+∞∫
−∞

+∞∫
−∞

(V φ)t(x, t)ψ(x, t)dtdx =

1
2

+∞∫
−∞

dξ
∫

|ω|>|ξ |

|ω|√
ω2 −ξ 2

φ̃(ξ ,ω)ψ̃(ξ ,ω)dω

− i
2

+∞∫
−∞

dξ
∫

|ω|<|ξ |

ω√
ξ 2 −ω2

φ̃(ξ ,ω)ψ̃(ξ ,ω)dω.

(3.17)

Of course, when the support of the function ψ lies in Σ , the double integral on
the left-hand side of (3.17) is restricted to Σ . In particular, for ψ = φ , from the
property E (T,φ) = ℜ(aE (φ ,φ)), or remembering that for real valued functions
φ̃(ξ ,−ω) = φ̃(ξ ,ω), on has

Proposition 2 For any φ ∈ C∞
0 (Σ), the energy at time T of the solution u to the

problem (3.6), is given by the following formula

E (T,φ)=aE (φ,φ)=
∫
Σ

(V φ)t(x, t)φ(x, t)dtdx =
1
2

+∞∫
−∞

dξ
∫

|ω|>|ξ |

|ω| |φ̃(ξ ,ω)|2√
ω2 −ξ 2

dω.

(3.18)

Let S (aE ) ⊂ L2(Σ) be the set of functions φ,ψ such that |aE (φ ,ψ)| < +∞. In
order to characterize S (aE ), assume for the moment that φ ,ψ are complex-valued
functions. In this case, also the imaginary part of aE (φ,φ) does not vanish, thus

aE (φ,φ) =
1
2

+∞∫
−∞

dξ
∫

|ω|>|ξ |

|ω| |φ̃(ξ ,ω)|2√
ξ 2 −ω2

dω − i
2

+∞∫
−∞

dξ
∫

|ω|<|ξ |

ω |φ̃(ξ ,ω)|2√
ω2 −ξ 2

dω.

(3.19)
It follows that



3.1 Exterior Dirichlet problem 45

S (aE ) =

φ ∈ L2(Σ) :
∫
R2

|ω| |φ̃(ξ ,ω)|2√
|ξ 2 −ω2|

dω dξ <+∞

 .

Now we can state the following

Proposition 3 The space L2((0,T );H1/4(Γ )), that is the closure of C∞
0 (Σ) with

respect to the norm

∥φ∥2
L2((0,T );H1/4(Γ ))

=

+∞∫
−∞

+∞∫
−∞

(1+ |ξ |)1/2 |φ̃(ξ ,ω)|2 dξ dω,

is contained in S (aE ). Moreover there exists a positive constant C such that, for
every φ , ψ ∈ L2((0,T );H1/4(Γ )),

aE (φ,ψ) ≤ C(1+T )∥φ∥L2((0,T );H1/4(Γ )) ∥ψ∥L2((0,T );H1/4(Γ ))

Proof. Obviously∫
R2

|ω| |φ̃(ξ ,ω)|2√
|ξ 2 −ω2|

dω dξ =
∫

{|ω|>|ξ |}

|ω| |φ̃(ξ ,ω)|2√
ω2 −ξ 2

dω dξ +
∫

{|ω|<|ξ |}

|ω| |φ̃(ξ ,ω)|2√
ξ 2 −ω2

dω dξ .

(3.20)
Estimating the first addendum, one has

+∞∫
−∞

dξ
∫

|ω|>|ξ |

|ω| |φ̃(ξ ,ω)|2√
ω2 −ξ 2

dω =

+∞∫
−∞

dξ
∫

|ξ |<|ω|<|ξ |+1

|ω| |φ̃(ξ ,ω)|2√
ω2 −ξ 2

dω +

+∞∫
−∞

dξ
∫

|ω|>|ξ |+1

|ω| |φ̃(ξ ,ω)|2√
ω2 −ξ 2

dω =: Ia
1 + Ia

2 .

From the definition of φ̃ and thanks to Cauchy-Schwarz inequality, one get

|φ̃(ξ ,ω)|2 ≤ T
2π

T∫
0

|φ̂(ξ , t)|2 dt.

Therefore, by a simple integration and thanks to the Parseval identity, one has

Ia
1 ≤ T

2π

+∞∫
−∞

 T∫
0

|φ̂(ξ , t)|2 dt

dξ
∫

|ξ |<|ω|<|ξ |+1

|ω|√
ω2 −ξ 2

dω

=
T
π

+∞∫
−∞

 T∫
0

|φ̂(ξ , t)|2 dt

√2 |ξ |+1dξ ≤
√

2T
π

∥φ∥2
L2((0,T );H1/4(Γ ))

.
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On the other hand, from the inequality

|ω|√
ω2 −ξ 2

≤
√
|ξ |+1 (|ω| > |ξ |+1),

one has the estimate

Ia
2 ≤

+∞∫
−∞

∫
|ω|>|ξ |+1

√
|ξ |+1 |φ̃(ξ ,ω)|2dωdξ ≤ ∥φ∥2

L2((0,T );H1/4(Γ ))
.

The estimate for the second term in (3.20) is quite similar. Also in this case the
integral can be splitted as follows:∫
{|ξ |>|ω|}

|ω| |φ̃(ξ ,ω)|2√
ξ 2 −ω2

dξ dω =

∫
|ξ |>1

dξ
∫

|ω|<|ξ |−1

|ω| |φ̃(ξ ,ω)|2√
ξ 2 −ω2

dξ dω +

+∞∫
−∞

∫
|ξ |−1<|ω|<|ξ |

|ω| |φ̃(ξ ,ω)|2√
ξ 2 −ω2

dξ dω =: Ib
1 + Ib

2 .

By an argument similar to the previous one, one get

Ib
1 ≤

∫
|ξ |>1

dξ
∫

|ω|<|ξ |−1

(|ξ |−1) |φ̃(ξ ,ω)|2√
2|ξ |−1

dω ≤ ∥φ∥2
L2((0,T );H1/4(Γ ))

.

On the other hand

Ib
2 ≤ T

2π

+∞∫
−∞

 T∫
0

|φ̂(ξ , t)|2 dt

dξ
∫

|ξ |−1<|ω|<|ξ |

|ω|√
ξ 2 −ω2

dω =

=
T
π

+∞∫
−∞

µ(|ξ |)

 T∫
0

|φ̂(ξ , t)|2 dt

dξ ,

where µ(|ξ |) = |ξ | for |ξ |< 1 and µ(|ξ |) =
√

2|ξ |+1 for |ξ |> 1. Thus

Ib
1 ≤

√
2T
π

∥φ∥2
L2((0,T );H1/4(Γ ))

.

Now I will try to answer to the question of the coerciveness of the energy functional.
Two simple considerations can be drawn by the fact that the domain of integration
in formula (3.18) is the cone C := {(ξ ,ω) : |ω| > |ξ |}. The first one is that the
energy is a strictly positive functional. This follows immediately from the fact that
φ̃ is an entire analytic function, therefore it cannot vanish in C unless it vanishes
on the whole R2. The second and more relevant consideration is that most of the
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information regarding oscillations in the space variable is not taken into account
by the energy. This crucial remark is made more precise by the following theorem
which states that the quadratic form aE (φ,φ) cannot be coercive with respect to any
Sobolev norm.

Theorem 22 There exists a sequence (φn)n∈N of non vanishing functions in C∞
0 (Σ),

such that, for any s ∈ R

lim
n→∞

aE (φn,φn)

∥φn∥2
s

= 0, (3.21)

where ∥ · ∥2
s stands for the norm in Hs(R2).

Proof. It suffices to show (3.21) for negative Sobolev exponents. The definition of
the sequence (φn)n∈N is very simple: let φ ∈ C∞

0 (Σ) be a non vanishing function.
We set

φn(x, t) = cos(nx)φ(x, t). (3.22)

It will be shown that

(i) ∀k ∈ N+ aE (φn,φn) = O
(

1
n2k

)
for n →+∞,

(ii) ∀s ≥ 0 ∃ c > 0 suchthat ∥ φn ∥2
−s≥

c
n2s .

It is clear that (i) and (ii) yield (3.21). From the definition of φn, one has

φ̃n(ξ ,ω) =
1
2

φ̃(ξ −n,ω)+
1
2

φ̃(ξ +n,ω),

then
|φ̃n(ξ ,ω)|2 ≤ 1

2
|φ̃(ξ −n,ω)|2 + 1

2
|φ̃(ξ +n,ω)|2.

From (3.18), it follows that

aE (φn,φn) =
1
2

+∞∫
−∞

dξ
∫

|ω|>|ξ |

|ω| |φ̃n(ξ ,ω)|2√
ω2 −ξ 2

dω

≤ 1
4

+∞∫
−∞

dξ
∫

|ω|>|ξ |

|ω| |φ̃(ξ −n,ω)|2√
ω2 −ξ 2

dω +
1
4

+∞∫
−∞

dξ
∫

|ω|>|ξ |

|ω| |φ̃(ξ +n,ω)|2√
ω2 −ξ 2

dω .

Estimate the second term in (3.23), the estimate of the first one being very similar.
By a simple change of variable, one get

+∞∫
−∞

dξ
∫

|ω|>|ξ |

|ω| |φ̃(ξ +n,ω)|2√
ω2 −ξ 2

dω =

+∞∫
−∞

dξ
∫

|ω|>|ξ−n|

|ω| |φ̃(ξ ,ω)|2√
ω2 − (ξ −n)2

dω . (3.23)

Since φ ∈ C ∞
0 (R2), its Fourier transform φ̃ is rapidly decreasing. Therefore for

every k ∈ N+ there exists Ck > 0 such that
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|φ̃(ξ ,ω)|2 ≤ Ck

(1+ω2 +ξ 2)k+2 .

Note that if (ξ ,ω) ∈ Cn := {(ξ ,ω) : |ω| > |ξ − n|} then ω2 + ξ 2 ≥ n2

2 ; it follows
that for every k ∈ N+ there exists Ck > 0 such that

|φ̃(ξ ,ω)|2 ≤ Ck

n2k
1

[1+ω2 +ξ 2]2
∀(ξ ,ω) ∈ Cn.

From this last inequality and owing to (3.23), one has∫
Cn

|ω| |φ̃(ξ ,ω)|2√
ω2 − (ξ −n)2

dωdξ ≤ Ck

n2k

∫
Cn

|ω |√
ω2 − (ξ −n)2

1
[1+ω2 +ξ 2]2

dωdξ .

(3.24)
This concludes the proof of (i) since, as it is not difficult to show, the last integral in
(3.24) is finite.
Turn to the property (ii). Having set B = {ω2 + ξ 2 ≤ 1} , by a simple change of
variable, one obtains

∥φn∥2
−s =

∞∫
−∞

∞∫
−∞

|φ̃n(ξ ,ω)|2

[1+ω2 +ξ 2]s
dωdξ =

1
4

∞∫
−∞

∞∫
−∞

|φ̃(ξ −n,ω)+ φ̃(ξ +n,ω)|2

[1+ω2 +ξ 2]s
dωdξ

≥ 1
4

∫
{ω2+(ξ−n)2≤1}

|φ̃(ξ −n,ω)+ φ̃(ξ +n,ω)|2

[1+ω2 +ξ 2]s
dωdξ

=
1
4

∫
B

|φ̃(ξ ,ω)+ φ̃(ξ +2n,ω)|2

[1+ω2 +(ξ +n)2]s
dωdξ

≥ 1
4(n−1)2s

∫
B

|φ̃(ξ ,ω)+ φ̃(ξ +2n,ω)|2 dωdξ .

(3.25)
Remark that

|φ̃(ξ ,ω)+ φ̃(ξ +2n,ω)|2 = |φ̃(ξ ,ω)|2 + |φ̃(ξ +2n,ω)|2 +2ℜ[φ̃(ξ ,ω)φ̃(ξ +2n,ω)]

≥ |φ̃(ξ ,ω)|2 −2|φ̃(ξ ,ω)||φ̃(ξ +2n,ω)|

≥ 1
2
|φ̃(ξ ,ω)|2 −2 |φ̃(ξ +2n,ω)| .

Since for every h > 0 there exists Ch > 0 such that

|φ̃(ξ +2n,ω)| ≤ Ch

[1+(ξ +2n)2]h
≤ Ch

n2h (|ξ | ≤ 1),

it follows that
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B

|φ̃n(ξ +2n,ω)|2dωdξ → 0 for n →+∞.

Thus, for n sufficiently large,∫
B

|φ̃(ξ ,ω)+ φ̃(ξ +2n,ω)|2dωdξ ≥ 1
4

∫
B

|φ̃(ξ ,ω)|2dωdξ . (3.26)

Owing to (3.25) and (3.26), one can conclude that there exists C > 0 such that

∥ φn ∥2
−s≥

C
n2s ,

which proves (ii).

The main consequence of theorem 22 is that in order to obtain satisfactory a priori
bounds on the energetic Galerkin approximated solutions of problem (3.3),the in-
formation coming from the quadratic form aE (φ,φ) has to be complemented with
some other arising from alternative arguments. In this respect, I present two possible
strategies:
1) to obtain a constraint on the oscillations in the space variable of the approxi-
mating solutions. In fact, as shawn below, under a suitable constraint, the energetic
bilinear form is coercive with respect to the L2(Σ) norm.
2) to fill the gap in the frequency space in formula (3.18), considering the ener-
getic bilinear form modified by an additional term which takes into account also the
skew-symmetric part of the operator φ 7→ (V φ)t . I shall briefly discuss this point at
the end of this subsection.

In order to investigate the first point, fix P > 0 and consider the following maximum
problem:

λ0 = max


P∫

−P

| f̂ (ω)|2 dω : f ∈ L2(0,T ),
T∫

0

| f (t)|2 dt = 1

 .

It is not difficult to see that λ0 = λ0(PT ) < 1, λ0(ρ) is an increasing function and
that limρ→0+ λ0(ρ) = 0, limρ→+∞ λ0(ρ) = 1. The number λ0(PT ) is the first eigen-
value of the so called time-band limited operator which has been deeply studied in
the sixties by Slepian, Landau and Pollack (see e.g. [50]). Fix ξ and set P = |ξ |,
f = φ̂(ξ , ·). On get

∫
|ω|>|ξ |

|φ̃(ξ ,ω)|2 dω =

∞∫
−∞

|φ̃(ξ ,ω)|2 dω −
|ξ |∫

−|ξ |

|φ̃(ξ ,ω)|2 dω

≥ (1−λ0(|ξ |T ))
∞∫

−∞

|φ̃(ξ ,ω|2 dω.

(3.27)
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Since |ω| >
√

ω2 −ξ 2 for |ω|> |ξ |, one obviously has from (3.18),

aE (φ ,φ) ≥
1
2

+∞∫
−∞

dξ
∫

|ω|>|ξ |

|φ̃(ξ ,ω)|2 dω, (3.28)

thus, integrating with respect to ξ in (3.28) and owing to (3.27),

aE (φ,φ) ≥
1
2

+∞∫
−∞

dξ
+∞∫

−∞

(1−λ0(|ξ |T ))|φ̃(ξ ,ω)|2 dω .

Unfortunately, when ρ → +∞, the function 1−λ0(ρ) tends to zero exponentially.
More precisely, Fuchs in [27] has shown that

1−λ0(ρ) ∼ 4
√

π
2
√

ρ e−ρ , ρ →+∞.

Therefore, by the properties of λ0(ρ), there exists a constant C > 0 such that

1−λ0(ρ) ≥ C
√

1+ρ e−ρ (ρ > 0). (3.29)

As a consequence, the following very poor coerciveness estimate holds

aE (φ,φ) ≥ C
+∞∫

−∞

dξ
+∞∫

−∞

√
1+ |ξ |T e−|ξ |T |φ̃(ξ ,ω)|2 dω.

Now, what can we say if the frequencies of the function φ are not spread over the
whole R2 and, for instance, φ̃ has “mass” concentrated on the strip |ξ | ≤ R, for
some R > 0?
I try to give a quantitative answer to this question in the following way. Fix R > 0
and consider the following closed set in L2(Σ):

KR :=

φ̃ ∈ L2(Σ) :
+∞∫

−∞

dξ
∫

|ξ |≤R

|φ̃(ξ ,ω)|2 dω ≥ 1
2

+∞∫
−∞

dξ
+∞∫

−∞

|φ̃(ξ ,ω)|2 dω

 .

From (3.27), (3.28), and the above mentioned properties of λ0, one get

aE (φ,φ) ≥
R∫

−R

dξ
∫

|ω|>|ξ |

|φ̃(ξ ,ω)|2 dω ≥
R∫

−R

(1−λ0(|ξ |T ))dξ
+∞∫

−∞

|φ̃(ξ ,ω)|2 dω

≥ (1−λ0(RT ))
R∫

−R

dξ
+∞∫

−∞

|φ̃(ξ ,ω)|2 dω. (3.30)
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Thus, owing to (3.29) and Parseval identity, the following theorem has just been
proved

Theorem 23 For every φ ∈ KR ∩S (aE ),

aE (φ,φ) ≥
C
2

√
1+RT e−RT ∥φ∥2

L2(Σ) . (3.31)

To summarize: if the approximating solutions φh satisfy the constraint φh ∈ KR for
some R > 0, from the inequality (3.31) one gets a stability estimate in L2(Σ).
As an application of this argument, fix an integer n ≥ 1, set ∆x = L/n and consider
the functions

φ(x, t) =
n−1

∑
k=0

fk(t)ψk(x)

where ψk(x) = H[(k+1)∆x−x]−H[k∆x−x] and fk(t) ∈ L2(0,T ), k = 0, ...,n−1.
Denote by Sn the (infinite dimensional) space of such functions and remark that
Sn ⊂ L2((0,T ),H1/4(Γ ))⊂ S (aE ).

Lemma 3.1. Sn ⊂ KR, provided R ≥ 8L
π∆x2 .

Proof. By computing the Fourier transform of φ ∈ Sn,

φ̃(ξ ,ω) =

√
2
π

e−i ∆xξ
2

sin
(

∆xξ
2

)
ξ

n−1

∑
k=0

e−i k∆xξ f̂k(ω),

thus

|φ̃(ξ ,ω)|2 = 2
π

sin2
(

∆xξ
2

)
ξ 2

∣∣∣∣∣n−1

∑
k=0

e−i k∆xξ f̂k(ω)

∣∣∣∣∣
2

≤ 2n
π

sin2
(

∆xξ
2

)
ξ 2

n−1

∑
k=0

∣∣ f̂k(ω)
∣∣2 .

Since, for φ ∈ Sn, ∥φ∥2
L2(Σ)

= ∆x ∑n−1
k=0

∫ T
0 | fk(t)|2 dt = ∆x ∑n−1

k=0
∫+∞
−∞ | f̂k(ω)|2 dω ,

+∞∫
−∞

dξ
∫

|ξ |>R

|φ̃(ξ ,ω)|2 dω ≤ 2n
π ∆x

 ∫
|ξ |>R

sin2
(

∆xξ
2

)
ξ 2 dξ

 ∥φ∥2
L2(Σ).

The conclusion follows by the elementary inequality

∫
|ξ |>R

sin2
(

∆xξ
2

)
ξ 2 dξ ≤ 2

R
.

Putting together the estimate (3.31) and Lemma 3.1 it follows that

Proposition 4 Every φ ∈ Sn satisfies inequality (3.31) with R = 8L
π ∆x2 .
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The theoretical value of the coerciveness constant in (3.31) is very small but it
should be probably improved by a subtler analysis.

Finally, I sketch a few considerations on the second strategy (point 2) above). In
general terms, there is the following situation: let A be a linear operator (bounded or
not) on a Hilbert space; consider the equation

Aφ = Asφ +Assφ = g, (3.32)

where As and Ass stand for the symmetric and the skew-symmetric part of A. Mul-
tiply by φ in (3.32), then

a(φ,φ) =< Aφ,φ >=< Asφ ,φ >=< g,φ > .

Now, if the quadratic form a(φ,φ) enjoys some reasonable coerciveness property,
one applies the usual arguments to prove the convergence of the Galerkin approxi-
mants, and eventually is allowed to neglect the skew-symmetric component of the
operator. Unfortunately, this is not the case for the BIE treated in this paper. Thus
we need an idea on how to resume information from the skew-symmetric part of the
operator.
A possibility could be that of choosing a suitable unitary operator J and consider-
ing an auxiliary bilinear form ā(φ ,ψ) =< Aφ ,Jψ >, in order to modify the weak
formulation of the problem introducing b(φ ,ψ) = a(φ ,ψ)+ ā(φ,ψ). In our case, a
natural choice is provided by the Hilbert transform H with respect to the time vari-
able. For our purposes, it is convenient to define the Hilbert transform as a Fourier
multiplier:

H : L2(R2) −→ L2(R2), F [H ] (ξ ,ω) := isign(ω) φ̃(ξ ,ω).

As it is well-known, one has

H −1 = H ∗ =−H ; ∥H φ∥Hs(R2) = ∥φ∥Hs(R2) , with s ∈ R.
(3.33)

Moreover, as a consequence of formula (3.17), one has, for φ ∈C∞
0 (R2),

ā(φ ,φ) =
+∞∫
0

L∫
0

(V φ)t(x, t)(H φ)(x, t)dxdt = −1
2

+∞∫
−∞

dξ
∫

|ω|<|ξ |

|ω| |φ̃(ξ ,ω)|2√
ξ 2 −ω2

dω.

(3.34)
From (3.17) and (3.19) we can conclude that, in our case, the modified quadratic
form would read
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b(φ ,φ) :=
+∞∫
0

L∫
0

(V φ)t(x, t)(φ(x, t)− (H φ)(x, t)) dxdt

=
1
2

+∞∫
−∞

dξ
+∞∫

−∞

|ω| |φ̃(ξ ,ω)|2√
|ξ 2 −ω2|

dω. (3.35)

Regarding the coerciveness of the quadratic form b(φ ,φ), it holds, for instance

2b(φ ,φ) ≥
+∞∫

−∞

+∞∫
−∞

ν(|ω|, |ξ |)|φ̃(ξ ,ω)|2 dξ dω, ν(|ω|, |ξ |) :=
|ω|∧ |ξ |

|ξ |
.

Starting from here, the coerciveness with respect to L2((0,T );H−1/2(Γ )) norm can
be obtained. In fact, for every 0 < r ≤ 1, evidently one has ν(|ω|, |ξ |)> r/(|ξ |+1)
for |ω|> r; hence

2b(φ,φ) ≥ r
+∞∫

−∞

∫
|ω|>r

|φ̃(ξ ,ω)|2

|ξ |+1
dξ dω. (3.36)

On the other side, remembering inequalities on band limited functions, one has, for
every ξ ∈ R,

∫
|ω|>r

|φ̃(ξ ,ω)|2 dω ≥ (1−λ0(rT ))
+∞∫

−∞

|φ̃(ξ ,ω)|2 dω;

in particular choosing r = 1∧ (1/T ), and applying (3.36),

2b(φ,φ) ≥ [1∧ (1/T )] (1−λ0(1))
+∞∫

−∞

+∞∫
−∞

|φ̃(ξ ,ω)|2

|ξ |+1
dξ dω.

Hence, to conclude it follows that

Theorem 24 There exists a positive constant C such that, for every φ ∈C∞
0 (Σ)

b(φ,φ) ≥ C
1+T

∥φ∥2
L2((0,T );H−1/2(Γ ))

. (3.37)

Note that, unless φ ≡ 0, it is impossible to have both φ and H φ supported on the
finite time interval [0,T ]. However, thanks to (3.33), one can define, denoting by I
the identity operator, the new bilinear form:

b(φ,ψ) =< (I +H )(V φ)t ,ψ >L2(R2) ,
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from which, one can derive, for test functions supported in Σ , the modified energetic
weak formulation of the problem (3.3)

< (I +H )(V φ)t ,ψ >L2(Σ)=< (I +H )gDt ,ψ >L2(Σ) .

The hope is that, starting from these suggestions, one can achieve a relevant progress
towards a complete theory for the convergence of the energetic Galerkin BEM ap-
plied to the BIE (3.3).

Remark. In the past years and in different contexts, several authors [29, 36, 43]
have dealt with the properties of the Neumann pseudo-differential operator

V :
[∂u

∂n

]
7−→ u , (x, t) ∈ Γ × (0,+∞), (3.38)

related to the wave equation in the case of a flat boundary Γ . Due to an obvious
division problem in the symbol of the operator, any analysis has been done by re-
curring to a Fourier-Laplace transform with non vanishing imaginary part σ in the
phase variable τ + iσ . In particular in reference [29], devoted to the transient BIE
for the acoustic equation, Ha Duong performs a detailed analysis of the symbol and
obtains, under the restriction σ ≥ σ0 > 0, optimal results in terms of regularity and
stabilty of the associated bilinear form. As shown in the same paper, this turns out
to be equivalent to a coerciveness property of the functional

T∫
0

E (s,u)ds.

On the other side, it should be noted that, as far as we know, in any numerical
implementation of energy related Galerkin methods for the transient wave equation,
the parameter σ has always been set equal to 0.
So, at now, we can refer to [29, 30] for the analysis of the operator (3.38) and to [3]
for the just reported properties of the associated quadratic form E (T,u) (the energy
at a fixed time T ) in the Dirichlet case; note that the main difference between this
work and the cited Ha Duong papers is that here σ = 0 and that, even in this case, it
is possible to obtain some stability results, as stated in theorems 23 and 24.

3.1.1 Numerical results

The following numerical results are obtained applying the standard Galerkin BEM
discretization with time step ∆ t and space step ∆x to the energetic weak formulation
as it will be explained in chapter 4.

• As first two dimensional test problems consider (3.1) with Γ = {(x,0),x ∈ [0,1]}
and Dirichlet boundary datum
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gD (x, t) = H[t − kx] f (t − kx), where f (z) =


sin2

(ωz
2

)
i f 0 ≤ z ≤ π

ω

1 i f z ≥ π
ω

(3.39)
with ω = 8π , k = cosθ and θ ∈ (0,π). For this problem the decomposition of Γ
is uniform and constituted by 40 nods (∆x = 0.025) and a subdivision of the time
interval [0,2] operated by 160 instants (∆ t = 0.0125). In figure 3.1 there is the
numerical solution of BIE (3.3), that in the sequel will be indicated with φ(x, t),
obtained in some points of Γ for different values of the angle θ and considering
spatial constant shape and test functions. When θ = π/2, the excitation field is
uniform on Γ at initial time, hence symmetric points of Γ behave in the same way;
further, note that points x = 1/4, x = 3/4 and x = 1/2 are excited till the time instant
π/ω = 1/8, but while the first two are influenced at t = 1/4 by the wave coming
from the endpoints of Γ and travelling with unitary velocity, the midpoint of Γ is
influenced at t = 1/2. When θ = π/4, the excitation field is not uniform on Γ at
initial time; hence, differently from the previous case, symmetric points of Γ do not
behave in the same way at the beginning of the simulation.
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Fig. 3.1: Density φ(x, t) in some points of Γ for different values of θ approximated,
in space and in time, by constant shape functions.

• Now, on the same domain of the previous test problem, the Dirichlet datum ap-
plied is the one shown in figure 3.2, and the observation time interval is [0,10]. The
uniform temporal and spatial discretization steps are ∆ t = 0.1 and ∆x = 0.0125 re-
spectively and I adopted spatial constant shape and test functions. In figure 3.3 it is
shown the time history of the density φ obtained in the point x = 1

2 . As one can note,
it has the same form of the derivative of the boundary datum and hence it vanishes
for long times. In figure 3.4 there is represented a section of the solution u(x,y, t)
of the problem (3.1), in the same point x = 1

2 , for t ∈ [0,10]: as one can observe,
the wave travelling away from the boundary Γ assumes the same structure of the
Dirichlet boundary datum but with diminishing intensity. Figure 3.5 shows the time
dependent behavior of the solution u(x, t) outside Γ .
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gD (x, t)=



t − 1
2 , t ∈ [0.5,0.6]

−30 t+19
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40 t−30
10 , t ∈ [0.7,0.8]
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10 , t ∈ [0.8,0.9]

t −1 , t ∈ [0.9,1]
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Fig. 3.2: Dirichlet boundary condition.
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Fig. 3.3: Density φ( 1
2 , t) obtained for ∆ t = 0.1 and ∆x = 0.0125 approximated, in

space and in time, by constant shape functions.
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Fig. 3.4: Section of the solution u(x,y, t) in x = 1
2 in some time instants.
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Fig. 3.5: Solution u(x, t) outside Γ in some time instants.

• Further, let us consider problem (3.1) assigned on the semi-circular arc

Γ =
{

x ∈ R2 : x = (cosα,sinα),α ∈ [0,π]
}
,

depending on the clockwise angle α , and with Dirichlet boundary datum

gD (α, t) = H[t] f (t) cosα,

where f has been already given in (3.39) with ω = 8π . The observation time interval
is [0,10]. The uniform temporal discretization step is ∆ t = 0.1 and Γ is uniformly
approximated by 40 straight boundary elements where constant shape and test func-
tions have been adopted. In figure 3.6, there is the approximate solution φ(α ,10) at
the final instant of analysis. Since the Dirichlet datum becomes independent of time,
the transient solution on Γ tends to the stationary one φ∞(α), which is the solution
of the BIE related to the following problem:{

−△u∞ = 0 in R2 \Γ , u(x) = O(1) for ∥x∥2 → ∞
u∞ = cosα on Γ . (3.40)
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Also φ∞(α) has been reported in figure 3.6 and, as one can observe, the two curves
overlap. In figure 3.7 the graph of ∥φ(·, t)− φ∞(·)∥L1(Γ ) , which is a function of
time, emphasizes this phenomenon.
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Fig. 3.6: Densities φ(α ,10), obtained
on Γ at final time T = 10, and φ∞(α).
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Fig. 3.7: Graph of the time function
∥φ(·, t)−φ∞(·)∥L1(Γ ).

Remark. In figure 3.8, we show the typical behavior of the minimum eigenvalue of
the symmetric part of matrices E, which is related to the coercivity constant of the
energetic bilinear form, for fixed ∆ x and vanishing ∆ t; the graphs are presented for
Dirichlet problems outside rectilinear obstacles of length L = 0.2, L = 0.4 respec-
tively, having fixed ∆ x= 0.1 for the spatial discretization and space-time piece-wise
constant shape and test functions; in these cases, the final observation time is T = 1.
The obtained curves are in agreement with theoretical result stated in Proposition 4.

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

L=0.2, ∆
x
=0.1, T=1

∆
t

λ m
in

/∆
t

10
−4

10
−3

10
−2

10
−1

10
0

10
−6

10
−5

10
−4

10
−3

L=0.4, ∆
x
=0.1, T=1

∆
t

λ m
in

/∆
t

Fig. 3.8: Typical behavior of the minimum eigenvalue of E symmetric part.
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3.2 Exterior Neumann problem

Consider the scattering problem by a crack Γ represented through an open arc in an
unbounded elastic isotropic medium that occupies R2 \Γ . Let Γ − and Γ + denote
the lower and upper faces of the crack and n the normal unit vector to Γ , oriented
from Γ − to Γ +. As usual, the total displacement field can be represented as the
sum of the incident field (the wave propagating without the crack) and the scattered
field. In a three-dimesional elastic isotropic medium, there are three plane waves
propagating in a fixed direction: the P wave, the SH wave and the SV wave. The
two-dimesional antiplane problem corresponds to an incident SH wave, when all
quantities are independent of the third component z (in particular, the crack must be
invariant with respect to z).
The scattered wave satisfies the following Neumannn problem for the wave operator
(without loss of generality consider a dimensionless problem which can be obtained
after an appropriate scaling of the units):

(Pe
N )


utt(x, t)−∆u(x, t) = 0 x ∈ R2 \Γ , t ∈ (0,T )
u(x,0) = ut(x,0) = 0 x ∈ R2 \Γ
∂u
∂n

(x, t) = gN (x, t) (x, t) ∈ Σ = Γ × [0,T ]

(3.41)

In (3.41) the unknown function u stands for the third component of the displacement
field and gN is the datum, which is the opposite of the normal derivative of the
incident wave along Γ , i.e. gN =− ∂uI

∂n .
Consider the double-layer representation of the solution of (3.41):

u(x, t) =
∫
Γ

t∫
0

∂
∂nξ

G(r, t−τ)ϕ(ξ ,τ)dτ dξΓ =K ϕ(x, t), x∈R2 \Γ , t ∈ (0,T )

(3.42)
where G is given in (1.3) and ϕ = [u] is the jump of u along Γ . After having derived
the hypersingular space-time BIE (N2d) already introduced in page 6

gN (x, t)=
∫
Γ

t∫
0

∂ 2

∂ nx∂nξ
G(r, t−τ)ϕ(ξ ,τ)dτ dξΓ =Dϕ(x, t), x∈Γ , t ∈ (0,T )

(3.43)
the energetic weak problem related to (3.43) will be of the form:

ãE (ϕ ,η) =< gN ,η t >L2(Σ)

where

ãE (ϕ ,η) :=< Dϕ , η t >L2(Σ)=
∫
Γ

T∫
0

(Dϕ)(x, t)η t(x, t)dt dxΓ
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and η is a suitable test function belonging to the same functional space of ϕ . The
hypersingular integral operator D can be equivalently expressed in the following
way:

Dϕ(x, t) =
∫
Γ

∂ 2r
∂nx∂nξ

t∫
0

G(r, t − τ)
[

ϕτ(ξ ,τ)+
ϕ(ξ ,τ)

(t − τ + r)

]
dτ dξΓ

+
∫
Γ

∂ r
∂nx

∂ r
∂nξ

t∫
0

G(r, t − τ)
[

ϕττ(ξ ,τ)+2
ϕτ(ξ ,τ)
(t − τ + r)

+3
ϕ(ξ ,τ)

(t − τ + r)2

]
dτ dξΓ .

(3.44)

3.2.1 Numerical results

The following numerical results are obtained applying the standard Galerkin BEM
discretization with time step ∆ t and space step ∆x to the energetic weak formula-
tion, as it will be explained in chapter 4.

• For the first numerical example related to the two dimensional Neumann exte-
rior problem (3.41), consider Γ = {(x,0) : x ∈ [0,1]}. The incident wave uI(x, t) is
a plane wave propagating in direction k = (cosθ ,sinθ) with unitary amplitude:

uI(x, t) = f (t −k ·x). (3.45)

Hence, the Neumann datum on Γ is:

gN (x, t) =− ∂
∂nx

f (t −k ·x)
∣∣∣
Γ
. (3.46)

The shown results have been obtained for two different functions, chosen for the
known asymptotic behavior of the solution, which allows to validate the approxi-
mate solution, in the sequel indicated with ϕ(x, t).

Plane harmonic wave. Consider a wave which becomes harmonic after a fixed time
(see [12]):

f (t) =


0 if t < 0,
1
2
(1− cosωt) if 0 ≤ t ≤ π

ω
,

sin
(ωt

2

)
if t ≥ π

ω
,

(3.47)

where ω represents the frequency. In this case the solution has to become harmonic
too, with the same period as the incident wave, i.e. P = 2π/ω̃ , where ω̃ = ω/2. The
fixed circular frequency ω = 8π is such that the wave length λ = 2π/ω is equal to
a quarter the crack length.
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The decomposition of the crack Γ is made of 20 uniform subintervals (∆x = 0.05)
and the observation time interval [0,10] is decomposed in 400 equal parts (∆ t =
0.025). For this numerical simulation spatial linear shape and test functions have
been chosen.
In figure 3.9 there is the time harmonic behavior for θ = π

2 of the crack opening
displacement (COD) ϕ at x = 0.4, obtained starting from the energetic weak for-
mulation. Note that the solution becomes immediately not trivial since the incident
wave strikes the whole crack simultaneously. In figure 3.10 the approximated COD
at instants 2,4,5,10 are presented: the four curves overlap each other since the pe-
riod is P = 0.5.
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Fig. 3.9: Density ϕ(0.4, t) approxi-
mated by linear shape functions for θ =
π/2.
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Fig. 3.10: COD at t = 2,4,5,10 approx-
imated by linear shape functions for
θ = π/2.

In figure 3.11 there is the time harmonic behavior for θ = π
3 of the crack open-

ing displacement ϕ at x = 0.4. Note that the COD is zero till the time instant
t∗ = cos(θ)x = x/2, since the incident wave, differently from the previous case,
doesn’t invest the whole crack simultaneously.
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Fig. 3.11: Density ϕ(x, t) approximated, in space and in time, by linear shape func-
tions calculated in x = 0.4 for θ = π/3, with a zoom.
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In order to verify that the period of ϕ coincides with the period of the incident wave,
in figure 3.12 the approximate solution ϕ on Γ is plotted in time instants separated
by multiples of the time period.
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Fig. 3.12: Solution ϕ(x, t) approximated, in space and in time, by linear shape func-
tions, is here displayed in different time instants separated by 5P.

Plane linear wave. Always in [12], a Neumann boundary condition comes from this
choice of f :

f (t) = t H[t].

In this case, the Neumann datum (3.46) tends to the constant value gθ = sinθ when
t tends to infinity. The solution u tends to the solution of the static problem−△u∞ = 0 in R2 \Γ , u(x) = O(∥x∥−1

2 ) for ∥x∥2 → ∞
∂u∞

∂n
= gθ on Γ

(3.48)

and the associated jump ϕ ∞
θ (x) = [u∞] across Γ can be computed explicitly:

ϕ ∞
θ (x) = sinθ

√
x(1− x).

Hence, the solution ϕ(x, t) can be compared with the static solution ϕ ∞
θ (x).

The crack Γ is decomposed in 20 subintervals (∆ x = 0.05), the final observation
time is T = 10, the time step is ∆ t = 0.025 and spatial linear shape and test func-
tions have been adopted. Also in this case, the numerical solution obtained for large
times and reported in figure 3.13 for θ = π

3 is in perfect agreement with the cor-
responding one reported in [12]. Note that points of Γ , symmetric with respect to
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Fig. 3.13: Density ϕ(x, t) approximated, in space and in time, by linear shape func-
tions, is here evaluated in some points of Γ for θ = π/3.

x = 0.5 behaves in different ways at the beginning of the simulation, since the inci-
dent wave does not strike simultaneously the crack; then they assume a symmetric
behavior for sufficiently large times. Finally, to verify that the whole numerical so-
lution ϕ(x, t) stabilizes itself, in figure 3.14 there is the COD on Γ in different time
instants t ≥ 4. Numerical results are in agreement with those reported in [12], but
differently from what is said in that paper, they seem to be independent of the ratio
∆ t
∆ x as can be seen in figure 3.15.
In figure 3.16, analogous numerical results are obtained for θ = π

4 , and in figure
3.17 the approximate COD for T = 4,5,10 are plotted together with the analytical
solution of the corresponding static problem: the four curves overlap each other.

At last, to complete numerical simulations, there are some results involving the total
displacement field u(x, t) obtained by the superposition of the incident wave uI(x, t)
and the reflected and diffracted waves caused by the presence of a crack Γ ⊂ R2.
The temporal profile of the incident wave, that strikes the crack and from which the
Neumann datum on Γ is deduced, is shown in figure 3.18 and it’s similar to that one
considered in [48] and [32].
• In the first simulation the crack Γ = {(x,0),x ∈ [−1,1]} is struck perpendicularly
by the incident wave. The observation time interval is [0,4]. For the discretization,
Γ is subdivided in 40 uniform elements (∆ x = 0.05), the time step is ∆ t = 0.1 and
spatial linear shape and test functions have been adopted.
Figure 3.19 shows the total recovered displacement in a square around the crack for
different time instants. These results illustrate how the plane wave reaches the crack
and how the diffraction caused at the edges of the crack degenerates the wavefront.
The effect of the diffraction on the upper half of the square creates a shadow. On the
other hand, diffraction can be observed on the lower half of the square, too. Note
that at the beginning of the simulation, the reflected wave on the upper half of the
square cancel out with the incident wave. As time increases, the wavefront recovers
and the scattering effect caused by the crack on the plane wave diminishes.
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Fig. 3.14: Solution ϕ(x, t) approximated, in space and in time, by linear shape func-
tions, is displayed in different time instants.
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Fig. 3.15: Density ϕ(x, t) for θ = π/3 approximated, in space and in time, by linear
shape functions, with different time parameters of discretization.

• In the second simulation the obstacle is the semi-circular arc

Γ =
{

x ∈ R2 : x = (cosα,sinα),α ∈ [0,π]
}
,

depending on the clockwise angle α , struck by the plane wave with an incident
angle of amplitude π

3 . The observation time interval is [0,4]. The uniform tempo-
ral discretization step is ∆ t = 0.1 and Γ is uniformly approximated by 40 straight
boundary elements where spatial linear shape and test functions have been adopted.
In figure 3.20 there is shown the total recovered displacement in a square around the
crack for different time instants. We are able to identify at t = 0.1 the incident wave,
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Fig. 3.16: Density ϕ(x, t) approximated, in space and in time, by linear shape func-
tions, is evaluated in some points of Γ for θ = π/4.
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Fig. 3.17: COD at t = 4,5,10 compared with static solution for θ = π/4.
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Fig. 3.18: Temporal profile of the incident wave in the last two examples.

at t = 1.0 the reflected wave, at t = 1.6 the first circular diffracted wave generated
at the left edge of the crack, at t = 2.5 the first diffracted wave generated at the right
edge of the crack.
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Fig. 3.19: Total recovered displacement u(x, t) around the straight crack.
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Fig. 3.20: Total recovered displacement u(x, t) around the semicircular crack.

3.3 Mixed Boundary Value Problems

Consider a mixed boundary value problem (PDN ) for the wave equation in a domain
Ω ⊂ R2 with boundary Γ

(PDN )


utt(x, t)−∆u(x, t) = 0 x ∈ Ω , t ∈ (0,T )
u(x,0) = ut(x,0) = 0 x ∈ Ω
u(x, t) = gD (x, t) (x, t) ∈ ΣD = ΓD × [0,T ]
∂u
∂n

(x, t) = gN (x, t) (x, t) ∈ ΣN = ΓN × [0,T ]

The boundary integral representation of its solution is: ∀(x, t) ∈ Ω × (0,T )

u(x, t) =
∫
Γ

t∫
0

[
G(r, t,τ)

∂u
∂nξ

(ξ ,τ)− ∂G
∂nξ

(r, t,τ)u(ξ ,τ)

]
dτdξΓ . (3.49)
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and, as explained in section 1.1 at page 7 the system of space-time BIE (M1) is
1
2

u(x, t)=
∫
Γ

t∫
0

G(r, t,τ)
∂u

∂nξ
(ξ ,τ)dτdξΓ −

∫
Γ

t∫
0

∂G
∂nξ

(r, t,τ)u(ξ ,τ)dτdξΓ ,

−1
2

∂u
∂nx

(x, t)=−
∫
Γ

t∫
0

∂G
∂nx

(r, t,τ)
∂u

∂nξ
(ξ ,τ)dτdξΓ +

∫
Γ

t∫
0

∂ 2G
∂nx∂nξ

(r, t,τ)u(ξ ,τ)dτdξΓ ,

(3.50)
compactly written, applying the boundary conditions,[

VD −KN

−K′
D DN

][
∂nu
u

]
=

[
−VN

1
2 I +KD

− 1
2 I +K′

N −DD

][
gN

gD

]
,
(x, t) ∈ ΣD

(x, t) ∈ ΣN
, (3.51)

where the boundary integral operator subscripts β = D ,N define their restriction
to Σβ . Then, the energetic weak formulation of the system (3.51) is defined (see
[2, 3]) as described at page 30 for the one dimensional case

< (VD∂nu)t ,ψ >L2(ΣD ) −< (KN u)t ,ψ >L2(ΣD )=< fD ,t ,ψ >L2(ΣD )

−< K′
D∂nu,ηt >L2(ΣN ) +< DN u,ηt >L2(ΣN )=< fN ,ηt >L2(ΣN )

, (3.52)

where fD ,t =−(VN gN )t +(( 1
2 I+KD )gD )t , fN = (− 1

2 I+K′
N )gN −DD gD and

ψ , η are suitable test functions, belonging to the same functional space of ∂nu, u,
respectively. Note that the operator K′ is the adjoint of the Cauchy singular operator
K, which can be expressed as

(Ku)(x, t) =
∫
Γ

∂ r
∂nξ

t∫
0

G(r, t,τ)
[

ut(ξ ,τ)+
u(ξ ,τ)

(t − τ + r)

]
dτdξΓ , (3.53)

while the hypersingular integral operator D is that one shown in (3.44).

3.3.1 Numerical results

Results below have been obtained applying the standard Galerkin approximation
with time step parameter ∆ t and space step parameter ∆x as explained in chapter 4.

• At first I have considered a standard benchmark (see for instance [26] and [52])
involving a strip Ω of height L = 1, unbounded in horizontal direction, fixed in the
inferior part where the Dirichlet boundary datum gD = 0 is assigned, and subject
to a uniform traction gN = H[t] in its superior part, as shown in figure 3.21. A fi-
nite portion of the strip is taken into account, in such a way that vertical dimension
of the resulting rectangle is five times the other one. On the “cut” sides of the do-
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main the equilibrium condition gN = 0 has been assigned. This is the scalar version
of a traditional elastodynamic problem, so, in this particular case, I will talk about
“traction” and I will use the letter p when I refer to the quantity ∂nu to uniform my
notation with the standard elastodynamic one.
In order to apply energetic Galerkin BEM, Γ is discretized with uniform mesh with
24 elements (∆x = l = 0.125) and, in spatial variable, constant shape functions for
the approximation of p and linear shape functions for the approximation of u have
been used. The time interval of analysis [0,8] has been discretized with different
time steps.
In figure 3.22 there is the recovered numerical solution obtained with ∆ t = 0.0875.
In particular for this ratio β := ∆ t

∆x = 0.7, time history of traction in the point A,
p(A, t), is shown on the left, together with the corresponding analytical solution,
while displacements in the points B,C, D, respectively u(B, t), u(C, t), u(D, t) are
shown on the right: here the three curves overlap with their respective analytical
solutions. Note that the oscillations in the graph of p(A, t) are due to the difficulty
of approximating the jump discontinuities of the analytical solution; anyway, the
obtained numerical solution is substantially better with respect to those found in
literature, which present much more instabilities (see e.g. [26]).

Fig. 3.21: Domain and mixed boundary conditions for the first test problem.
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Fig. 3.22: Numerical solution for p and u of the first test problem. p has been
approximated by constant shape functions both in time and space. u has been ap-
proximated by linear shape functions in space and by “ramp” functions in time
(see (4.2)).

In the following sequence of figures 3.23, I show the stability of these results also
changing the ratio β as in [52], that is decreasing to rather small time parameters ∆ t.
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Due to the substantial invariancy of the displacement plots, here I have reproduced
only the graphics of traction p in x = A.
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Fig. 3.23: Numerical solution p(A, t) approximated by constant shape functions both
in time and space, varying ∆ t.

Then, even for β = 1.0, that seems to be one of the worst ratios, we can observe in
figure 3.24 that the solution behavior for long time is stable and that it can be also
improved refining the mesh of discretization as shown in figure 3.25.
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Fig. 3.24: Numerical solution for p and u obtained for the ratio β = 1.0 with
∆x = ∆ t = 0.125. p has been approximated by constant shape functions both in
time and space. u has been approximated by linear shape functions in space and
by “ramp” functions in time (see (4.2)).
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Fig. 3.25: Numerical solution for p and u obtained for the ratio β = 1.0 with
∆x = ∆ t = 0.0625. p has been approximated by constant shape functions both in
time and space. u has been approximated by linear shape functions in space and
by “ramp” functions in time (see (4.2)).

• As second simulation, I have considered a unitary disk, whose upper semi-circular
boundary is subject to the Neumann boundary datum gN = H[t], while its lower
semi-circular boundary is fixed. Domain and mixed boundary conditions are shown
in figure 3.26 on the left.
For the discretization phase, the boundary Γ has been approximated introducing a
uniform mesh with 24 straight elements and, in spatial variable, constant shape func-
tions for the approximation of p and linear shape functions for the approximation of
u have been used. The time interval of analysis [0,10] has been discretized with dif-
ferent uniform time meshes. In figure 3.27 the approximate solution obtained with
the energetic approach, fixing ∆ t = 0.2, is presented. In particular, on the left the
time history p(E, t), p(F, t) of p on the elements E, F is shown and one can note
that while the element E near the Neumann boundary is immediately affected by
the wave, the solution on the element F is trivial till the time instant t ≃ 1.5. On
the right the time history of the solution u at nodes A, B,C, D is shown: of course,
the nearer these nodes are to ΓD , which is fixed, the lower is the value of the corre-
sponding solution.
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• For the last test problem, the same domain of the previous simulation has
been taken into consideration but subject to pure Neumann boundary conditions
gN = H[t] (see figure 3.26 on the right). For the discretization phase, the bound-
ary Γ has been approximated introducing a decomposition in 24 straight elements,
equipped with linear shape functions. The time interval of analysis [0,12π] (that is
much longer than anyone I found in articles such as [1] or [52]) has been discretized
with ∆ t = π/10. In figure 3.28, on the left, the time history of the approximate
solution u(A, t) in the point A of the mesh, obtained with the energetic approach,
is presented for this interior problem. For the sake of completeness, the approxi-
mate solution u(A, t) of the exterior wave propagation problem (Pe

DN ), defined in
Ω e = R2 \Γ with the same Neumann boundary conditions, obtained with the same
discretization parameters, is shown on the right. This latter is in perfect agreement
with that one reported in [1].
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Fig. 3.26: Domains and boundary conditions of the second (left) and of the third
(right) simulation.
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Fig. 3.27: Numerical solution of the second simulation. p has been approximated by
constant shape functions both in time and space. u has been approximated by linear
shape functions in space and by “ramp” functions in time (see (4.2)).
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Fig. 3.28: Solutions u of the interior (left) and exterior (right) problem on the unitary
circle with Neumann boundary conditions approximated by linear shape functions
in space and by “ramp” functions in time (see (4.2)).





Chapter 4
Discretization

In this chapter I will describe the numerical techniques used to obtain the energetic
Galerkin approximated solution starting, as a model problem, from an interior wave
propagation problem with vanishing initial and mixed boundary conditions refor-
mulated in terms of the boundary integral equations with retarded potential (3.51),
as described in section 3.3. In this equation one finds all the kernels involved in
the problems treated till now in this thesis. The integral problem is set in the weak
form based on the energy identity. The related energetic Galerkin boundary element
method used in the discretization phase both in space and in time, after a double
integration in time variables, has to deal with weakly singular, singular and hyper-
singular double integrals in space variables. Efficient quadrature schemes for the
numerical evaluation of these integrals are here proposed.
The stability of the obtained numerical results, illustrated in section 3.3.1, empha-
size the efficiency of the numerical schemes involved in this approximation process.

4.1 Galerkin BEM discretization

Start considering the mixed boundary value problem (PDN ) for the wave equation
and its energetic weak formulation 3.52 just introduced in section 3.3 at page 68.

For time discretization a uniform decomposition of the time interval [0,T ] have been
considered with time step ∆ t = T/N∆ t ,N∆ t ∈N+, generated by the N∆ t +1 instants

tk = k ∆ t, k = 0, · · · ,N∆ t ,

and temporally piecewise constant shape functions for the approximation of ∂nu and
piecewise linear shape functions for the approximation of u, although higher degree
shape functions can be used. Note that, for this particular choice, temporal shape
functions, for k = 0, · · · ,N∆ t −1, will be defined as

75
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vD
k (t) = H[t − tk]−H[t − tk+1] (4.1)

for the approximation of ∂nu, or as

vN
k (t) = R(t − tk)− R(t − tk+1), (4.2)

for the approximation of u, where R(t − tk) =
t−tk
∆ t H[t − tk] is the ramp function.

For the space discretization, I have employed a Galerkin boundary element method.
The boundary mesh on ΓD is constituted by MD straight elements {eD

1 , · · · ,eD
MD

},

with eD
i ∩ eD

j = /0 if i ̸= j and such that
∪MD

i=1 eD
i = Γ D , 2lDi := length(eD

i ), lD =

maxi{2lDi },. The same is done for the Neumann part of the boundary ΓN with obvi-
ous change of notation. Let l = max{lD , lN }. The functional background compels
one to choose spatially shape functions belonging to L2(ΓD ) for the approximation
of ∂nu and to H1(ΓN ) for the approximation of u. Therefore, having defined Pdi

the space of algebraic polynomials of degree di, consider, respectively, the space of
piecewise polynomial functions

X−1,l := {wD (x) ∈ L2(ΓD ) : wD
|eD

i
∈ Pdi , ∀eD

i ⊂ ΓD } ; (4.3)

and the space of continuous piecewise polynomial functions

X0,l := {wN (x) ∈ C0(ΓN ) : wN
|eN

j
∈ Pd j , ∀eN

j ⊂ ΓN } . (4.4)

Hence, denoted with MD , MN the number of unknowns on ΓD and ΓN , respectively,
and having introduced the standard piece-wise polynomial boundary element basis
functions wD

j (x), j = 1, · · · ,MD , in X−1,l and wN
j (x), j = 1, · · · ,MN in X0,l , the

solutions of the problem at hand will be approximated as follows:

∂u
∂n

(x, t)≈
N∆ t−1

∑
k=0

MD

∑
j=1

α(k)
D j wD

j (x)vD
k (t) and u(x, t)≈

N∆ t−1

∑
k=0

MN

∑
j=1

α(k)
N j wN

j (x)vN
k (t).

(4.5)
The Galerkin BEM discretization coming from energetic weak formulation pro-
duces the linear system

Eα = b , (4.6)

where matrix E has a block lower triangular Toeplitz structure, since its elements
depend on the difference th−tk and in particular they vanish if th ≤ tk. Each block has
dimension M := MD +MN . Indicating with E(ℓ) the block obtained when th − tk =
(ℓ+1)∆ t, ℓ= 0, . . . ,N∆ t −1, the linear system can be written as


E(0) 0 0 · · · 0
E(1) E(0) 0 · · · 0
E(2) E(1) E(0) · · · 0
· · · · · · · · · · · · 0

E(N∆ t−1) E(N∆ t−2) · · · E(1) E(0)




α(0)

α(1)

α(2)

...
α(N∆ t−1)

=


b(0)

b(1)

b(2)

...
b(N∆ t−1)

 (4.7)
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where

α(ℓ) =
(

α(ℓ)
j

)
and b(ℓ) =

(
b(ℓ)j

)
, with ℓ= 0, . . . ,N∆ t −1; j = 1, . . . ,M.

(4.8)
Note that each block has a 2×2 block sub-structure of the type

E(ℓ) =

[
E(ℓ)

DD E(ℓ)
DN

E(ℓ)
N D E(ℓ)

N N

]
(4.9)

where diagonal sub-blocks have dimensions MD , MN , respectively and

α(ℓ) =
(

α(ℓ)
D1, · · · ,α

(ℓ)
DMD

,α(ℓ)
N 1, · · · ,α

(ℓ)
N MN

)⊤
.

In the case of a Dirichlet problem, the block E(ℓ) written in (4.9) is equal to E(ℓ)
DD

only. In the case of a Neumann problem, the block E(ℓ) written in (4.9) is equal to
E(ℓ)

N N only.

Proposition 5 If vD
k and vN

k are chosen as in (4.1) and (4.2) respectively, it holds

E(ℓ)
DN = (E(ℓ)

N D )⊤.

Proof. Here the proof for the two dimensional case:

[E(ℓ)
DN ]i j =

T∫
0

∫
ΓD

wD
i (x)vD

k (t)(Kt [wN
j vN

h ])(x, t)dxΓD
dt =

=

T∫
0

∫
ΓD

wD
i (x)vD

k (t)
t∫

0

∫
ΓN[

∂ r
∂nξ

1
2π

H[t − τ − r]
[(t − τ)2 − r2]1/2

(
[wN

j (ξ)vN
h (τ)]τ +

wN
j (ξ)vN

h (τ)
(t − τ + r)

)]
t

dξΓN
dτdxΓD

dt =

=
1

2π

T∫
0

∫
ΓD

wD
i (x)vD

k (t)
t∫

0

∫
ΓN

∂ r
∂nξ{

−
[

H[t − τ − r]
[(t − τ)− r]1/2

]
τ

1
[(t − τ)+ r]1/2

(
[wN

j (ξ)vN
h (τ)]τ +

wN
j (ξ)vN

h (τ)
(t − τ + r)

)
+

+
H[t − τ − r]

[(t − τ)− r]1/2

[
1

[(t − τ)+ r]1/2

(
[wN

j (ξ)vN
h (τ)]τ +

wN
j (ξ)vN

h (τ)
(t − τ + r)

)]
τ

}
dξΓN

dτ dxΓD
dt =
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integrating internally by parts in time the first addend and taking into account that
when τ = t it vanishes (because the argument of the Heaviside function is negative)
and vN

h (0) = 0

=
1

2π

T∫
0

∫
ΓD

wD
i (x)vD

k (t)
t∫

0

∫
ΓN

∂ r
∂nξ{

H[t − τ − r]
[(t − τ)− r]1/2

[
1

[(t − τ)+ r]1/2

(
[wN

j (ξ)vN
h (τ)]τ +

wN
j (ξ)vN

h (τ)
(t − τ + r)

)]
τ

+

+
H[t − τ − r]

[(t − τ)− r]1/2

(
−1

2

[wN
j (ξ)vN

h (τ)]τ
[(t − τ)+ r]3/2 − 3

2

wN
j (ξ)vN

h (τ)
[(t − τ)+ r]5/2

)}
dξΓN

dτ dxΓD
dt =

=
1

2π

T∫
0

∫
ΓD

wD
i (x)vD

k (t)
t∫

0

∫
ΓN

∂ r
∂nξ{

H[t − τ − r]
[(t − τ)− r]1/2

(
[wN

j (ξ)vN
h (τ)]ττ

[(t − τ)+ r]1/2 +
3
2

[wN
j (ξ)vN

h (τ)]τ
[(t − τ)+ r]3/2 +

3
2

wN
j (ξ)vN

h (τ)
[(t − τ)+ r]5/2

)
+

+
H[t − τ − r]

[(t − τ)− r]1/2

(
−1

2

[wN
j (ξ)vN

h (τ)]τ
[(t − τ)+ r]3/2 − 3

2

wN
j (ξ)vN

h (τ)
[(t − τ)+ r]5/2

)}
dξΓN

dτ dxΓD
dt =

=

T∫
0

∫
ΓD

wD
i (x)vD

k (t)
t∫

0

∫
ΓN

∂ r
∂nξ

G(r, t,τ)

(
[wN

j (ξ)vN
h (τ)]ττ +

[wN
j (ξ)vN

h (τ)]τ
[(t − τ)+ r]

)

dξΓN
dτ dxΓD

dt =

=−
T∫

0

∫
ΓN

[wN
j (x)vN

k (t)]t

t∫
0

∫
ΓD

∂ r
∂nx

G(r, t,τ)

(
[wD

i (ξ)vD
h (τ)]τ +

wD
i (ξ)vD

h (τ)
(t − τ + r)

)

dξΓD
dτ dxΓN

dt =

=−
T∫

0

∫
ΓN

wN
j (x)vN

k (t)(K′[wD
i vD

h ])(x, t)dxΓN
dt = [E(ℓ)

N D ] ji

in fact ∂nξ r =−∂nxr and vD
k (t)[vN

h (τ)]ττ = [vN
k (t)]t [vD

h (τ)]τ as vD
k (t) = [vN

k (t)]t .

The solution of (4.7) is obtained with a block forward substitution, i.e. at every time
instant tℓ = (ℓ+1)∆ t, ℓ= 0, · · · ,N∆ t −1, one computes

z(ℓ) = b(ℓ)−
ℓ

∑
j=1

E( j)α(ℓ− j)
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and then solves the reduced linear system:

E(0)α(ℓ) = z(ℓ) . (4.10)

Procedure (4.10) is a time-marching technique, where the only matrix to be inverted
is the positive definite E(0) diagonal block, while all the other blocks are used to
update at every time step the right-hand side. Owing to this procedure one can con-
struct and store only the blocks E(0), · · · ,E(N∆ t−1) with a considerable reduction of
computational cost and memory requirement.

Having set ∆hk = th − tk, the matrix elements in blocks of the type E(ℓ)
DD , E(ℓ)

DN

and E(ℓ)
N N , after a double analytic integration in the time variables, are of the form,

respectively

•
1

∑
α ,β=0

(−1)α+β
∫

ΓD

wD
i (x)

∫
ΓD

H[∆h+α ,k+β − r]V(r, th+α , tk+β )w
D
j (ξ)dξΓD

dxΓD
,

(4.11)
where

V(r, th, tk) =
1

2π

[
log
(

∆hk +
√

∆ 2
hk − r2

)
− log r

]
; (4.12)

•
1

∑
α ,β=0

(−1)α+β
∫

ΓD

wD
i (x)

∫
ΓN

H[∆h+α,k+β − r]K(r, th+α , tk+β )wN
j (ξ)dξΓN

dxΓD
,

(4.13)
where

K(r, th, tk) =
1

2π ∆ t

r ·nξ
r2

√
∆ 2

hk − r2 ; (4.14)

•
1

∑
α,β=0

(−1)α+β
∫

ΓN

wN
i (x)

∫
ΓN

H[∆h+α,k+β − r]D(r, th+α , tk+β )wN
j (ξ)dξΓN

dxΓN
,

(4.15)
where

D(r, th, tk)=
1

2π (∆ t)2

{r ·nx r ·nξ
r2

∆hk

√
∆ 2

hk − r2

r2 +

+
(nx ·nξ )

2

[
log(∆hk +

√
∆ 2

hk − r2)− logr−
∆hk

√
∆ 2

hk − r2

r2

]}
.(4.16)

In the sequel I will refer to one of the double integrals in (4.11), (4.13) or (4.15),
indicating it by ∫

Γ

wi(x)
∫
Γ

H[∆hk − r]S(r, th, tk)w j(ξ)dξΓ dxΓ , (4.17)
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where S represents one of the kernels (4.12), (4.14) or (4.16) and where redun-
dant apices D ,N in the notation have been dropped, being clear which parts of the
boundary and which test and shape functions are involved in the double integration,
in relation to the fixed kernel. In the following, this simplification will be operated
whenever possible.
Using the standard element by element technique, the evaluation of every double
integral of the form (4.17) is reduced to the assembling of local contributions of the
type ∫

ei

w̃(di)
i (x)

∫
e j

H[∆hk − r]S(r, th, tk) w̃
(d j)
j (ξ)dξΓ dxΓ , (4.18)

where w̃(di)
i (x) defines one of the local lagrangian basis function in the space vari-

able of degree di defined over the element ei of the boundary mesh.
Looking at (4.12), (4.14) and (4.16), observe space singularities of type log r,
O(r−1) and O(r−2) as r → 0, which are typical of two dimensional static kernels.
Hence, there is particular interest in the efficient evaluation of double integrals of
type (4.18) when ei ≡ e j and when ei ,e j are consecutive. Further, notice that when
the kernel is hypersingular and ei ≡ e j both the inner and the outer integrals are
defined as Hadamard finite parts, while if ei and e j are consecutive, only the outer
integral must be understood in the finite part sense. The correct interpretation of
double integrals is the key point for any efficient numerical approach based on ele-
ment by element technique (see [5]).

4.2 Evaluation of Galerkin matrix elements

Let start with an analysis of the double integration domain in (4.18), that can be
rewritten in local variable of integration as

2 li∫
0

w̃(di)
i (s)

2 l j∫
0

H[∆hk − r]S(r, th, tk) w̃
(d j)
j (z)dzds . (4.19)

Due to the presence of the Heaviside function H[∆hk − r], the double integration
domain is constituted by the intersection between the rectangle [0,2 li]× [0,2 l j] and
the two dimensional domain ∆hk − r > 0. Let me specify this issue with respect to
the geometrical disposition of the mesh elements ei, e j.

Coincident boundary elements (ei ≡ e j).
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In this case, the distance between the source and the field point can be written as
r = |s− z|; hence the double integration domain is represented by the intersection
between the square [0,2 li]× [0,2 li] and the strip |s− z| < ∆hk where the Heaviside
function is not trivial. In figure 4.1 these intersections for different values of ∆hk =
th − tk and fixed length 2li are shown. Having set

Fig. 4.1: Double integration domain (coincident elements) for different values of
∆hk. Splitting vertical lines are plotted in s = s1 and s = s2.

Ms = max(0,s−∆hk), ms = min(2li,s+∆hk) ,

double integral (4.19) in this case becomes

2 li∫
0

w̃(di)
i (s)

ms∫
Ms

S(r, th, tk) w̃
(d j)
j (z)dzds . (4.20)

The numerical quadrature in the outer variable of integration s has been optimally
performed subdividing, when necessary, the outer interval of integration. In fact, the
derivative with respect to s of the outer integrand function, after the inner integration,
presents jumps in correspondence to possible subdivision points given by

s1 = ∆hk, s2 = 2li −∆hk .

Note that in this simple geometrical case, if ∆hk > 2li these points do not belong
to the integration interval [0,2li]; if ∆hk = 2li these points coincide with the end-
points of the integration interval [0,2li]; when 0 < ∆hk < 2li, ∆hk ̸= li both points
belong to [0,2li]; at last, when ∆hk = li only one point belong to the integration
interval. Almost all these geometrical situations are shown in figure 4.1. Further, as
an example, in figure 4.2, there is the behavior of the derivative

d
ds

[ ms∫
Ms

log(∆hk +
√

∆ 2
hk −|s− z|2) w̃(0)

j (z)dz
]
,

referred to the domains of the previous figure. Hence, (4.20) will be eventually de-
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Fig. 4.2: Behavior of outer integrand function derivative for different values of ∆hk.

composed into the sum of double integrals of the form

b∫
a

w̃(di)
i (s)

ms∫
Ms

S(r, th, tk) w̃
(d j)
j (z)dzds , (4.21)

where [a,b] ⊂ [0,2li]. Without this subdivision, one should use a lot of quadrature
nodes for the outer numerical integration in order to achieve the single precision
accuracy. Of course when no subdivision is needed, we will have to deal with only
one double integral (4.21) where [a,b]≡ [0,2li].
In tables 4.1-4.3 the fewer number of nodes needed to achieve single precision when
using the suggested splitting is displayed in the numerical evaluation of the integral

2li∫
0

w̃(0)
i (s)

ms∫
Ms

log(∆hk +
√

∆ 2
hk −|s− z|2) w̃(0)

j (z)dzds , (4.22)

with 2li = 0.1 and different values of ∆hk as reproduced in figures 4.1 and 4.2.

Consecutive aligned boundary elements (e j ≡ ei+1).1

In this case, the distance between the source and the field point can be written as
r = 2li−s+z ; hence the double integration domain is represented by the intersection
between the rectangle [0,2 li]× [0,2 li+1] and the half plane: z < ∆hk −2li+s, where
the Heaviside function is not trivial. This intersection will be not empty if: s >
2li −∆hk . Therefore, having set

1 Analogous considerations can be done for e j ≡ ei−1 taking into account that the expression of
the distance will be r = 2l j − z+ s.
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nodes relative error
22 2.561123 ·10−4

42 2.225379 ·10−7

Table 4.1: Relative error in numerical integration of (4.22) when ∆hk = 0.15, w.r.t.
the approximated value of Mathematica −1.22392749 ·10−2.

nodes relative error
162 1.209583 ·10−3

642 8.024902 ·10−5

2562 5.120121 ·10−6

10242 3.123420 ·10−7

nodes relative error
2 · (82) 1.254465 ·10−4

2 · (162) 1.685511 ·10−5

2 · (322) 2.185629 ·10−6

2 · (642) 2.693816 ·10−7

Table 4.2: Relative error in numerical integration of (4.22) when ∆hk = 0.05, w.r.t.
the approximated value of Mathematica −1.80100286 · 10−2, on the left, without
splitting and, on the right, with the foreseen splitting in two subintervals.

nodes relative error
162 2.409610 ·10−3

642 2.141951 ·10−5

2562 2.029314 ·10−6

10242 6.630974 ·10−7

nodes relative error
3 · (82) 1.652040 ·10−4

3 · (162) 2.300028 ·10−5

3 · (322) 3.500234 ·10−6

3 · (642) 9.424377 ·10−7

Table 4.3: Relative error in numerical integration of (4.22) when ∆hk = 0.025, w.r.t.
the approximated value of Mathematica −1.35973737 · 10−2, on the left, without
splitting and, on the right, with the foreseen splitting in three subintervals.

s0 = max(0,2li −∆hk) , ms = min(2li+1,∆hk −2li + s) ,

double integral (4.19) in this case becomes

2 li∫
s0

w̃(di)
i (s)

ms∫
0

S(r, th, tk) w̃
(d j)
j (z)dzds . (4.23)

The numerical quadrature in the outer variable of integration s has been optimally
performed subdividing, when necessary, the outer interval of integration. In fact, the
derivative with respect to s of the outer integrand function, after the inner integration,
presents a jump in correspondence to a possible subdivision point given by

s1 = 2li+1 +2li −∆hk .
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Note that in this geometrical case, is simple to verify that if ∆hk < 2li+1 ∨∆hk >
2li + 2li+1 this point does not belong to the integration interval [s0,2li] , while if
2li+1 < ∆hk < 2li+2li+1 , s1 breaks in two subintervals the outer integration interval
[s0,2li] . Some of these geometrical situations are shown in figure 4.3 for for different
values of ∆hk and fixed lengths 2li+1 > 2li . Further, as an example, in figure 4.4 there
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Fig. 4.3: Rectangle [0,2 li]× [0,2 li+1] (consecutive aligned elements) and straight
line z = ∆hk −2li + s for different values of ∆hk.

is the behavior of the derivative

d
d s

[ ms∫
0

log(∆hk +
√

∆ 2
hk −|s− z|2) w̃(0)

j (z)dz
]
,

referred to the domains of the previous figure. Hence, (4.23) will be eventually de-
composed into the sum of double integrals of the form

b∫
a

w̃(di)
i (s)

ms∫
0

S(r, th, tk) w̃
(d j)
j (z)dzds , (4.24)
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Fig. 4.4: Behavior of outer integrand function derivative for different values of ∆hk.

where [a,b] ⊂ [s0,2li]. Of course when no subdivision is needed, we will have to
deal with only one double integral (4.24) where [a,b]≡ [s0,2li].

Consecutive not aligned boundary elements (e j ≡ ei+1).2

In this case, having set ω = α +β , 0 < ω < π , the distance between the source and
the field point can be written as

r2 = (2li − s)2 + z2 +2(2li − s)zcosω ;

2 Analogous considerations can be done for e j ≡ ei−1 taking into account that the equation for the
distance will be r2 = (2l j − z)2 + s2 +2(2l j − z)scosω .
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hence the double integration domain is represented by the intersection between the
rectangle [0,2 li]× [0,2 li+1] and the elliptic domain r2 −∆ 2

hk < 0 centered in the
unique singularity point (2 li,0), where the Heaviside function is not trivial. The
directions of the two axes of the ellipsis are (1,1) and (−1,1) with semi-length
respectively (1− cosω)−1/2 and (1+ cosω)−1/2. Of course, when 0 < cosω < 1
the major axis will be oriented in direction (1,1), when −1 < cos ω < 0 the major
axis will be oriented in direction (−1,1), when cosω = 0 the ellipsis becomes a
circle. Note that the angle θ = π −ω between contiguous elements determines the
eccentricity, while the increasing parameter ∆hk determines a dilation of the ellipsis.
In figure 4.5, there are various types of intersections, i.e. double integration domains,
for different values of ∆hk and different angles θ between contiguous elements. Note
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Fig. 4.5: Double integration domain (contiguous elements) for different values of
∆hk and different angles θ .

that the inequality z2 +2(2li − s)zcosω +(2li − s)2 −∆ 2
hk < 0 can be satisfied if and

only if

∆ 2
hk − (2li − s)2 sin2 ω > 0 ⇔ 2li −

∆hk

sinω
< s < 2li +

∆hk

sinω
.

For s ∈ (0,2li) the upper limitation for the outer variable of integration is always
satisfied; then, under the restriction

s > 2li −
∆hk

sinω
,

the inequality will be satisfied for

zs
1 < z < zs

2 ,

where
zs

1,2 =−(2li − s)cosω ∓
√

∆ 2
hk − (2li − s)2 sin2 ω.
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Therefore, having set

s0 = max(0,2li −
∆hk

sinω
), Ms = max(0,zs

1), ms = min(2li+1,zs
2) ,

double integral (4.19) in this case becomes

2 li∫
s0

w̃(di)
i (s)

ms∫
Ms

S(r, th, tk) w̃
(d j)
j (z)dzds . (4.25)

The numerical quadrature in the outer variable of integration s has been optimally
performed subdividing, when necessary, the outer interval of integration. In fact,
also in this case, the derivative with respect to s of the outer integrand function,
after the inner integration, presents a jump in correspondence to possible subdivision
points to be searched among the solutions of the equations

zs
1 = 0, zs

2 = 2li+1 ,

formally given by

s1,2
1 = 2li ∓∆hk, s1,2

2 = 2li +2li+1 cosω ∓
√

∆ 2
hk − (2li+1)2 sin2 ω .

Note that s2
1 /∈ [s0,2ℓi] and solutions s1,2

2 are real under the restriction
∆hk > 2li+1 sinω .
With a deeper analysis, one obtains that:
• for 0 < ω < π/2
only s1

2 breaks the outer integration interval [s0,2li] in two subintervals when:

2li+1 < ∆hk <
√
(2li)2 +(2li+1)2 +2(2li)(2li+1)cosω;

• for π/2 < ω < π , it happens that:

−s1
1 ∈ [s0,2li] when ∆hk < 2li ;

−s1
2 ∈ [s0,2li] if cosω >− 2li

2li+1
, when

2li+1 sinω < ∆hk < min{2li+1 tanω,
√
(2li)2 +(2li+1)2 +2(2li)(2li+1)cosω};

−s2
2 ∈ [s0,2ℓi] when 2ℓi+1 sinω < ∆hk < 2ℓi+1, if cosω >− 2ℓi

ℓi+1
otherwise

when max{2li+1 sinω,
√
(2li)2 +(2li+1)2 +2(2li)(2li+1)cosω}< ∆hk < 2li+1.

Hence, (4.25) will be eventually decomposed into the sum of double integrals of the
form
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b∫
a

w̃(di)
i (s)

ms∫
Ms

S(r, th, tk) w̃
(d j)
j (z)dzds , (4.26)

where [a,b] ⊂ [s0,2li]. Of course, when no subdivision is needed, one will have to
deal with only one double integral (4.26) where [a,b]≡ [s0,2li] . Note that for some
values of s it could happen that ms −Ms ≤ 0: in this case the inner integral does not
give any contribution to the final result and its evaluation has to be avoided.

Disjoint elements (ēi ∩ ē j = /0) are investigated in appendix A.2.

4.3 Basic quadrature rules

To numerically evaluate double space integrals we need to use certain basic quadra-
ture rules here briefly recalled.

1. A quadrature formula widely used to generate Galerkin matrix elements is a rule
introduced in [46], that efficiently integrates functions with weak singularities at the
end-points of the integration interval. In fact classical Gauss-Legendre formula, very
accurate for regular integrands, looses its efficiency in presence of mild singularities
of the integrand functions.
Let consider an integral of the form

∫ 1
0 f (s)ds where f (s) presents weak singular-

ities at the end-points of the integration interval. Introducing a change of variable
s = φ(s̃) mapping (0,1) onto itself, with φ ′(s̃)≥ 0, then

1∫
0

f (s)ds =
1∫

0

f (φ(s̃))φ ′(s̃)ds̃ ≡
1∫

0

F(s̃)ds̃. (4.27)

Further if

φ(i)(0) = 0, φ( j)(1) = 0, i = 1, ..., p−1, j = 1, ...,q−1 (4.28)

the function F(s̃) in (4.27) can be made as smooth as we like, simply choosing
integers p,q sufficiently large, to then use for the last integral in (4.27) the Gauss-
Legendre rule. In the following the transformation considered will be the one pro-
posed in [46]

φ(s̃) =
(p+q−1)!

(p−1)!(q−1)!

s̃∫
0

up−1(1−u)q−1du, p,q ≥ 1. (4.29)

Integral in (4.29) can be efficiently evaluated by a n−points Gauss-Legendre for-

mula, with n =
⌊ p+q

2
⌋
.

The convergence rates related to this formula depends on convergence theorems for
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the Gauss-Legendre formula when the integrand function is particularly regular at
the endpoints of the domain of integration. For a deeper analysis refer to [46].

2. Another kind of quadrature rules used in the following section is the interpolatory
type one, based on the zeros of Legendre polynomials. They are of the form

1∫
−1

S(y,x) f (x)dx =
n

∑
k=1

wk(y) f (xk)+Rn( f ;y) , (4.30)

and are obtained by replacing f (x) by its Lagrange polynomial, of degree n− 1,
associated with the nodes {xk}, which are the very familiar zeros of the Legendre
polynomial Pn(x), of degree n [51]. For the coefficients {wk} the following expres-
sion can be easily derived [23]:

wk(y) =
1
2

λk

n−1

∑
i=0

(2i+1)µi(y)Pi(xk) (4.31)

where {λk} denote the classical Christoffel numbers associated with the n−points
Gauss-Legendre formula

1∫
−1

f (x)dx ≈
n

∑
k=1

λk f (xk), (4.32)

Pi(x) is the i− th degree Legendre polynomial, and µi(y) is the so-called modified
moment of the kernel S(y,x):

µi(y) =
1∫

−1

S(y,x)Pi(x)dx. (4.33)

The rule (4.30) has degree of exactness n− 1, i.e. it is exact whenever f (x) is a
polynomial of degree n−1. Expression (4.31) reduces the evaluation of wk(y) to the
knowledge of modified moments recurrence relationships which stem from the well-
known three-term recurrence satisfied by Legendre polynomials [5]. The kernels
S(y,x) of interest in this paper are: ln(| x− ay |), ln[(x− ay)

2 + b2
y ], with by ̸= 0,

rational function containing factors of the type (x−ay) and divisors of the type (x−
ay) and [(x−ay)

2 +b2
y ]. Recurrence relations giving (4.33) are reported in appendix

A.3.
For convergence properties of product rules, one can refer to the theorem in [6]:
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Theorem 25 Let f ∈ Cp[−1,1] with f (p) ∈ Hµ [−1;1]3 for some 0 < µ ≤ 1. Then,
if
∫ 1
−1 |S(y,x)|2dx ≤C for all y ∈ [−1,1],

Rn( f ;y) = O(n−p−µ)

uniformly for y ∈ [−1,1]. When S(y,x) = 1/(x− y),

Rn( f ;y)≤ cn−p−µ logn

{
(1− y2)−1/4 log 1

1−y2 |y|< 1
(y2 −1)−1/4 |y|> 1

where the constant c is independent of n and y.

3. A third type of rule we shall need in the following is a quadrature formula for
Hadamard finite-part integrals [45]:

=

1∫
0

f (s)
s

ds = wGR
0 f (0)+

n

∑
k=1

wGR
k f (sGR

k )+RGR
n ( f ) (4.34)

sGR
k =

1+ xk

2
wGR

k =
λk

2sk
k = 1, ...,n wGR

0 =−
n

∑
k=1

wGR
k ,

where xk, λk are in (4.32). This rule is obtained by replacing f (x) by its n− th de-
gree interpolation polynomial associated with the nodes {0,s1, ...,sn}. It is a Gauss-
Radau type quadrature formula, i.e. it is exact whenever f (x) is a polynomial of
degree ≤ 2n. The convergence property of this HFP quadrature rule can be found in
[45]:

Theorem 26 Let f ∈Cp[0,1], p ≥ 1, with f (p) ∈ Hµ [0;1] for some 0 < µ ≤ 1. Then

RGR
n ( f ) = O(n−p−µ).

4.4 Numerical integration schemes

Before going into the details of numerical quadrature schemes used to integrate
singular kernels, observe that in (4.12) and (4.16) there is also another function,

i.e. log(∆hk +
√

∆ 2
hk − r2) which of course is not singular for r → 0: nevertheless

the inner numerical integration of this function has to be performed carefully even
on couples of disjoint elements, when the boundary of the two dimensional region
r < ∆hk, where the Heaviside function is not trivial, is contained in the rectangle
[0,2li]× [0,2l j].
The problem we have to deal with is due to the presence of the square root function

3 Hµ denotes the space of Hölder continuous functions of order µ .
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∆ 2

hk − r2. I’m going to illustrate this issue for the case of the double integration
over a couple of coincident elements ei ≡ e j of length 2li, where r = |s− z| in the

local variables of integration s,z ∈ (0,2li). The argument of
√

∆ 2
hk −|s− z|2 is al-

ways positive but it can assume very small values and in the limit for the argument
tending to zero the derivative of the square root with respect to the inner variable of
integration z becomes unbounded. This behavior happens along the oblique bound-
ary of the double integration domain, as shown in figure 4.6 for different values of
∆hk, and produces a bad performance in the evaluation of
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Fig. 4.6: Behavior of ∂
∂ z

√
∆ 2

hk −|s− z|2 for ∆hk = 0.15,0.05,0.025.

b∫
a

w̃(0)
i (s)

ms∫
Ms

log(∆hk +
√

∆ 2
hk −|s− z|2) w̃(0)

j (z)dzds , (4.35)

even of classical Gauss-Legendre quadrature formula, in the sense that one should
use a lot of quadrature nodes to achieve the single precision accuracy. To overcome
this difficulty, consider, for the inner integration, the regularization procedure (4.27),
which suitably pushes the Gaussian nodes towards the end-points of the interval
[Ms,ms] and modify the Gaussian weights in order to regularize integrand functions
with mild boundary “singularities”. The outer integral is performed with a classical
Gauss-Legendre rule. In figure 4.7, the computational costs of Gaussian quadrature
formula alone and regularization procedure just explained are shown in relation to
the achievement of the single precision accuracy (horizontal line) in the evaluation
of the double integral (4.35) for ∆hk = 0.15,0.05,0.025. The presence of the square
root function together with singular kernels forces to adopt the above procedure for
the numerical treatment of double integrals of those kernels on disjoint elements,
while on coincident and consecutive elements we will have to treat strong singular-

ities and hyper singularities together with the “mild” singularities of
√

∆ 2
hk − r2.

Looking at (4.12), (4.14) and (4.16), I have here to consider, up to suitable con-
stants, the numerical treatment of kernels of the type
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Fig. 4.7: Computational cost of Gaussian quadrature and regularization procedure,
for ∆hk = 0.15,0.05,0.025.

logr,
r ·nξ

r2

√
∆ 2

hk − r2,
[r ·nx r ·nξ

r2 −
nx ·nξ

2

]√∆ 2
hk − r2

r2 , (4.36)

which present weak, Cauchy type and hyper singularities respectively when r → 0;
hence these types of singularities arise in the double integration over coincident or
adjacent boundary elements, while they haven’t to be considered on a couple of
disjoint elements.

CASE I: log(r) kernel

Coincident boundary elements:
we have to numerically evaluate

b∫
a

w̃(di)
i (s)

ms∫
Ms

log(|z− s|) w̃
(d j)
j (z)dzds . (4.37)

Outer integral: regularization procedure (4.27)
Inner integral: (d j +1)-points product rule (4.30) for logarithmic kernel

Consecutive aligned boundary elements:
defining as = s−2li, we have to numerically evaluate

b∫
a

w̃(di)
i (s)

ms∫
0

log(|z−as|) w̃
(d j)
j (z)dzds . (4.38)

• If b = 2li

Outer integral: regularization procedure (4.27)
Inner integral: (d j +1)-points product rule (4.30) for logarithmic kernel

• if b ̸= 2li
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Outer integral: Gauss-Legendre formula
Inner integral: Gauss-Legendre formula

Consecutive not aligned boundary elements:
having set as = −(2li − s)cosω and bs = (2li − s)sinω , we have to numerically
evaluate

1
2

b∫
a

w̃(di)
i (s)

ms∫
Ms

log[(z−as)
2 +b2

s ] w̃
(d j)
j (z)dzds . (4.39)

• If b = 2li and Ms = 0

Outer integral: regularization procedure (4.27)
Inner integral: (d j +1)-points product rule (4.30) for logarithmic kernel

• if b ̸= 2li or Ms ̸= 0

Outer integral: Gauss-Legendre formula
Inner integral: Gauss-Legendre formula

CASE II:
r ·nξ

r2

√
∆ 2

hk − r2 kernel

Note that, due to the presence of the scalar product r ·nξ , the coincident and con-
secutive aligned elements cases have not to be considered.

Consecutive not aligned boundary elements:
having set as = −(2li − s)cosω and bs = (2li − s)sinω , we have to numerically
evaluate

b∫
a

w̃(di)
i (s)

ms∫
Ms

−bs

(z−as)2 +b2
s

√
∆ 2

hk − ((z−as)2 +b2
s ) w̃

(d j)
j (z)dzds . (4.40)

Two subcases arise:

a) the boundary of the two dimensional region r < ∆hk is not contained in the
rectangle [a,b]× [Ms,ms], i.e. Ms = 0, ms = 2li+1

• If b = 2li

Outer integral: regularization procedure (4.27)
Inner integral: product rule (4.30) for [(z−as)

2 +b2
s ]
−1 kernel.

• If b ̸= 2li

Outer integral: Gauss-Legendre formula
Inner integral: Gauss-Legendre formula
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b) the boundary of the two dimensional region r < ∆hk is contained in the rect-
angle [a,b]× [Ms,ms]

• If b = 2li and Ms = 0
we can rewrite the double integral (4.40) adding and subtracting in the interior inte-
gral the Taylor expansion of second order centered in (s,z) = (2li,0) of the function√

∆ 2
hk − ((z−as)2 +b2

s ) w̃
(d j)
j (z):

−
2li∫

a

bs w̃(di)
i (s)

ms∫
0

√
∆ 2

hk−((z−as)2+b2
s ) w̃

(d j)
j (z)−∆hk w̃

(d j)
j (0)−∆hk w̃

′(d j)
j (0)z

(z−as)2 +b2
s

dzds

+ ∆hk w̃
(d j)
j (0)

2li∫
a

−bs w̃(di)
i (s)

ms∫
0

1
(z−as)2 +b2

s
dzds

+ ∆hk w̃
′(d j)
j (0)

2li∫
a

−bs w̃(di)
i (s)

ms∫
0

z
(z−as)2 +b2

s
dzds

=:I1 + I2 + I3 .

For the numerical evaluation of I1

Outer integral: Gauss-Legendre formula
Inner integral: regularization procedure (4.27), because of the square root “mild”
singularity

For I2, after an analytical inner integration:

I2 =−∆hk w̃
(d j)
j (0)

2li∫
a

w̃(di)
i (s)[arctan(

ms −as

bs
)+ arctan(

as

bs
)]ds

and we can use a Gauss-Legendre formula.

For I3, after an analytical inner integration:

I3 = −∆hk w̃
′(d j)
j (0)

2li∫
a

w̃(di)
i (s)as [arctan(

ms −as

bs
)+ arctan(

as

bs
)]ds

−∆hk w̃
′(d j)
j (0)

2li∫
a

w̃(di)
i (s)

bs

2
[log((ms −as)

2 +b2
s )− log(a2

s +b2
s )]ds

=: I1
3 + I2

3 .
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For the numerical evaluation of I1
3 we can use a Gauss-Legendre formula, while for

I2
3 we can use regularization procedure (4.27), because of the logarithmic “mild”

singularities.
Tables 4.4 and 4.5 are referred to the discretization parameters ω = π/2, 2li =
2li+1 = 0.1, ∆hk = 0.05, di = 0, d j = 1 (in the considered case, I2 = 0 because
ω̃(1)

j (0) = 0 and I1
3 = 0 because cosω = 0).

nodes p = q = 1 p = q = 2 p = q = 3
42 1.098022 ·10−6 2.118745 ·10−7 4.748094 ·10−8

82 1.824366 ·10−7 7.264172 ·10−9 7.741366 ·10−9

162 2.558711 ·10−8 2.437165 ·10−10 2.444638 ·10−10

322 3.379819 ·10−9 3.301006 ·10−12 3.299448 ·10−12

Table 4.4: Relative Error w.r.t. the integral value I1 = 3.315728 ·10−4 evaluated with
Mathematica.

nodes p = 1,q = 1 p = 1,q = 2 p = 1,q = 3
8 1.956603 ·10−4 6.938891 ·10−7 1.205578 ·10−7

16 1.372090 ·10−5 1.132429 ·10−7 1.105648 ·10−7

32 1.011936 ·10−6 1.105737 ·10−7 1.105621 ·10−7

64 1.686180 ·10−7 1.105622 ·10−7 1.105621 ·10−7

Table 4.5: Relative Error w.r.t. the integral value I2
3 = 9.947183 ·10−4 evaluated with

Mathematica.

• Otherwise, i.e. the singularity point is not contained in the domain of integration,
for the numerical evaluation of (4.40) we can proceed as follows:

Outer integral: Gauss-Legendre formula
Inner integral: regularization procedure (4.27), because of the square root “mild”
singularity.

CASE III:
[r ·nx r ·nξ

r2 −
nx ·nξ

2

]√∆ 2
hk − r2

r2 kernel

Coincident boundary elements:
note that in this configuration r ·nx = r ·nξ = 0 and nx ·nξ = 1; we have to numer-
ically evaluate

b∫
a

w̃(di)
i (s)

ms∫
Ms

−

√
∆ 2

hk − r2

2r2 w̃
(d j)
j (z)dzds . (4.41)
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Two subcases arise:

a) the boundary of the two dimensional region r < ∆hk is not contained in the
rectangle [a,b]× [Ms,ms], i.e. Ms = 0, ms = 2li

we can rewrite the double integral (4.41) adding and subtracting in the interior
integral the Taylor expansion of first order centered in z = s of the function√

∆ 2
hk −|z− s|2 w̃

(d j)
j (z)4:

−
b∫

a

w̃(di)
i (s)

ms∫
Ms

√
∆ 2

hk −|z− s|2 w̃
(d j)
j (z)−∆hk w̃

(d j)
j (s)

2|z− s|2
dzds+

− ∆hk

2

b∫
a

w̃(di)
i (s)w̃

(d j)
j (s)

ms∫
Ms

1
|z− s|2

dzds =: I1 + I2 .

For the numerical evaluation of I1

Outer integral: regularization procedure (4.27)
Inner integral: product rule (4.30) for [(z−as)

2 +b2
s ]
−1 kernel

For I2, after an analytical inner integration:

I2 =−∆hk

2

b∫
a

w̃(di)
i (s) w̃

(d j)
j (s)

[
1

s−ms
− 1

s−Ms

]
ds =: I1

2 + I2
2 .

If ms = 2li and b = 2li then I1
2 can be evaluated by the HFP formula (4.34) otherwise

with the Gauss-Legendre formula.

If Ms = 0 and a = 0 then I2
2 can be evaluated by the HFP formula (4.34) otherwise

with the Gauss-Legendre formula.

b) the boundary of the two dimensional region r < ∆hk is contained in the rect-
angle [a,b]× [Ms,ms]

we can rewrite the double integral (4.41) adding and subtracting in the interior in-
tegral the Taylor expansion of second order centered in z = s of the two variables

function
√

∆ 2
hk −|z− s|2 w̃

(d j)
j (z):

4 Note that here, and in the following cases a), the expansion subtracted has order one to satisfy for
the difference the hypothesis of theorem 25; in cases b) one or two more terms will be subtracted,
this because it is important to have the interior integral with at most weak singularities at the
endpoints of the domain of integration for the convergence of the regularization procedure (4.27).
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−
b∫

a

w̃(di)
i (s)

ms∫
Ms

√
∆ 2

hk −|z− s|2 w̃
(d j)
j (z)−∆hk w̃

(d j)
j (s)−∆hk w̃

′(d j)
j (s)(z− s)

2|z− s|2
dzds

−∆hk

2

b∫
a

w̃(di)
i (s)w̃

(d j)
j (s)

ms∫
Ms

1
|z− s|2

dzds

− ∆hk

2

b∫
a

w̃(di)
i (s)w̃

′(d j)
j (s)

ms∫
Ms

1
|z− s|

dzds

=:I1 + I2 + I3 .

For the numerical evaluation of I1

Outer integral: Gauss-Legendre formula
Inner integral: regularization procedure (4.27), because of the square root “mild”
singularity

For I2, after an analytical inner integration:

I2 =−∆hk

2

b∫
a

w̃(di)
i (s) w̃

(d j)
j (s)

[
1

s−ms
− 1

s−Ms

]
ds =: I1

2 + I2
2 .

If ms = 2li and b = 2li then I1
2 can be evaluated by the HFP formula (4.34) otherwise

with the Gauss-Legendre formula.

If Ms = 0 and a = 0 then I2
2 can be evaluated by the HFP formula (4.34) otherwise

with the Gauss-Legendre formula.

For I3, after an analytical inner integration:

I3 =−∆hk

2

b∫
a

w̃(di)
i (s) w̃

′(d j)
j (s) [log |ms − s|− log |Ms − s|] ds =: I1

3 + I2
3 .

If ms = 2li and b = 2li then I1
3 can be evaluated by the regularization procedure

(4.27) otherwise with the Gauss-Legendre formula only.

If Ms = 0 and a = 0 then I2
3 can be evaluated by the regularization procedure (4.27)

otherwise with the Gauss-Legendre formula only.

Consecutive aligned boundary elements:
defining as = s−2li, we have to numerically evaluate
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b∫
a

w̃(di)
i (s)

ms∫
0

−

√
∆ 2

hk − (z−as)2

2(z−as)2 w̃
(d j)
j (z)dzds . (4.42)

Two subcases arise:

a) the boundary of the two dimensional region r < ∆hk is not contained in the
rectangle [a,b]× [Ms,ms], i.e. b = 2li, Ms = 0, ms = 2li+1

we can rewrite the double integral (4.42) adding and subtracting in the interior in-
tegral the Taylor expansion of first order centered in (s,z) = (2li,0) of the function√

∆ 2
hk − (z−as)2 w̃

(d j)
j (z):

−
2li∫

a

w̃(di)
i (s)

ms∫
0

√
∆ 2

hk − (z−as)2 w̃
(d j)
j (z)−∆hk w̃

(d j)
j (0)

2(z−as)2 dzds+

− ∆hk

2
w̃
(d j)
j (0)

2li∫
a

w̃(di)
i (s)

ms∫
0

1
(z−as)2 dzds =: I1 + I2 .

For the numerical evaluation of I1

Outer integral: regularization procedure (4.27)
Inner integral: product rule (4.30) for [z−as]

−1

For I2, after an analytical inner integration:

I2 =−∆hk

2
w̃
(d j)
j (0)

2li∫
a

w̃(di)
i (s)

[
1

2li − s
− 1

2li − s+ms

]
ds =: I1

2 + I3
2

I1
2 can be evaluated by the HFP formula (4.34) and I2

2 with the Gauss-Legendre
formula.

b) the boundary of the two dimensional region r < ∆hk is contained in the rect-
angle [a,b]× [Ms,ms]

• If b = 2li
we can rewrite the double integral (4.42) adding and subtracting in the interior in-
tegral the Taylor expansion of second order centered in (s,z) = (2li,0) of the two

variables function
√

∆ 2
hk − (z−as)2 w̃

(d j)
j (z):
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−
2li∫

a

w̃(di)
i (s)

ms∫
0

√
∆ 2

hk − (z−as)2 w̃
(d j)
j (z)−∆hk w̃

(d j)
j (0)−∆hk w̃

′(d j)
j (0)z

2(z−as)2 dzds

+
∆hk

2
w̃
(d j)
j (0)

2li∫
a

− w̃(di)
i (s)

ms∫
0

1
(z−as)2 dzds

+
∆hk

2
w̃
′(d j)
j (0)

2li∫
a

− w̃(di)
i (s)

ms∫
0

z
(z−as)2 dzds

=:I1 + I2 + I3 .

For the evaluation of I1

Outer integral: Gauss-Legendre formula
Inner integral: regularization procedure (4.27), because of the square root “mild”
singularity

For I2, after an analytical inner integration:

I2 =−∆hk

2
w̃
(d j)
j (0)

2li∫
a

w̃(di)
i (s)

[
1

2li − s
− 1

2li − s+ms

]
ds =: I1

2 + I3
2

I1
2 can be evaluated by the HFP formula (4.34) and I2

2 with the Gauss-Legendre
formula.

For I3, after an analytical inner integration:

I3 = −∆hk

2
w̃
′(d j)
j (0)

2li∫
a

w̃(di)
i (s)

[
(ms −as) log(ms −as)−ms

ms −as
− log(−as)

]
ds

=: I1
3 + I2

3 .

For the numerical evaluation of I1
3 we can use a Gauss-Legendre formula, while for

I2
3 we can use the regularization procedure (4.27).

• Otherwise, i.e. the singularity point is not contained in the domain of integration,
for the numerical evaluation of (4.42) we can proceed as follows:

Outer integral: Gauss-Legendre formula
Inner integral: regularization procedure (4.27), because of the square root “mild”
singularity.
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Consecutive not aligned boundary elements:
having set as = −(2li − s)cosω and bs = (2li − s)sinω , we have to numerically
evaluate

b∫
a

w̃(di)
i (s)

ms∫
Ms

[
−

nx ·nξ
2

+
r ·nx r ·nξ

r2

] √∆ 2
hk − r2

r2 w̃
(d j)
j (z)dzds (4.43)

=

b∫
a

w̃(di)
i (s)

ms∫
Ms

−cosω
2

√
∆ 2

hk − ((z−as)2 +b2
s )

((z−as)2 +b2
s )

w̃
(d j)
j (z)dzds (4.44)

+

b∫
a

w̃(di)
i (s)

ms∫
Ms

(−bszsinω)

√
∆ 2

hk − ((z−as)2 +b2
s )

((z−as)2 +b2
s )

2 w̃
(d j)
j (z)dzds (4.45)

=: Ĩ + I

Here I will describe the numerical treatment of Ĩ; that one used for I is analogous
and it is reported in appendix A.4. Two subcases arise:

a) the boundary of the two dimensional region r < ∆hk is not contained in the
rectangle [a,b]× [Ms,ms], i.e. Ms = 0, ms = 2li+1

• If b = 2li and Ms = 0
we can rewrite the double integral (4.44) adding and subtracting in the interior in-
tegral the Taylor expansion of first order centered in (s,z) = (2li,0) of the two vari-

ables function
√

∆ 2
hk − ((z−as)2 +b2

s ) w̃
(d j)
j (z):

Ĩ = −cosω
2

2li∫
a

w̃(di)
i (s)

ms∫
0

√
∆ 2

hk − ((z−as)2 −b2
s ) w̃

(d j)
j (z)−∆hk w̃

(d j)
j (0)

(z−as)2 +b2
s

dzds+

+
∆hk cosω

2
w̃
(d j)
j (0)

2li∫
a

− w̃(di)
i (s)

ms∫
0

1
(z−as)2 +b2

s
dzds =: Ĩ1 + Ĩ2 + Ĩ3 .

For the numerical evaluation of Ĩ1

Outer integral: Gauss-Legendre formula
Inner integral: product rule (4.30) for [(z−as)

2 +b2
s ]
−1 kernel

For Ĩ2, after an analytical inner integration:

Ĩ2 =−∆hk cosω
2

w̃
(d j)
j (0)

2li∫
a

w̃(di)
i (s) [ f (ms)− f (0)] ds
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with

f (s) =
1
bs

atan
(

z−as

bs

)
that can be evaluated by the HFP formula (4.34).

• Otherwise, i.e. the singularity point is not contained in the domain of integration,
for the numerical evaluation of (4.44) we can proceed as follows:

Outer integral: Gauss-Legendre formula
Inner integral: Gauss-Legendre formula.

b) the boundary of the two dimensional region r < ∆hk is contained in the rect-
angle [a,b]× [Ms,ms]

• If b = 2li and Ms = 0
we can rewrite the double integral (4.44) adding and subtracting in the interior in-
tegral the Taylor expansion of second order centered in (s,z) = (2li,0) of the two

variables function
√

∆ 2
hk − ((z−as)2 +b2

s ) w̃
(d j)
j (z):

Ĩ = −cosω
2

2li∫
a

w̃(di)
i (s)

ms∫
0

1
(z−as)2 +b2

s

0
[√

∆ 2
hk − ((z−as)2 −b2

s ) w̃
(d j)
j (z)−∆hk w̃

(d j)
j (0)−∆hk w̃

′(d j)
j (0)z

]
dzds

+
∆hk cosω

2
w̃
(d j)
j (0)

2li∫
a

− w̃(di)
i (s)

ms∫
0

1
(z−as)2 +b2

s
dzds

+
∆hk cosω

2
w̃
′(d j)
j (0)

2li∫
a

− w̃(di)
i (s)

ms∫
0

z
(z−as)2 +b2

s
dzds

=: Ĩ1 + Ĩ2 + Ĩ3 .

For the numerical evaluation of Ĩ1

Outer integral: Gauss-Legendre formula
Inner integral: regularization procedure (4.27), because of the square root “mild”
singularity

For Ĩ2, after an analytical inner integration:
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Ĩ2 =−∆hk cosω
2

w̃
(d j)
j (0)

2li∫
a

w̃(di)
i (s) [ f (ms)− f (0)] ds

with

f (s) =
1
bs

atan
(

z−as

bs

)
that can be evaluated by the HFP formula (4.34).

For Ĩ3, after an analytical inner integration:

Ĩ3 =−∆hk cosω
2

w̃
′(d j)
j (0)

2li∫
a

w̃(di)
i (s) [ f (ms)− f (0)] ds

with
f (s) =−cosω

sinω
atan

( z−as

bs

)
+

1
2

log((z−as)
2 +b2

s )

that can be evaluated by the regularization procedure (4.27) for the logarithm and
with the Gauss-Legendre formula.

• Otherwise, i.e. the singularity point is not contained in the domain of integration,
for the numerical evaluation of (4.44) we can proceed as follows:

Outer integral: Gauss-Legendre formula
Inner integral: Gauss-Legendre formula.



A
Appendix

A.1 Remarks on energy coerciveness in 1D

The coerciveness of the quadratic form aE (φ ,φ), defined in (2.12), asserts a coer-
civeness property of the total energy of the solution u to problem (2.1). This follows
at once from the equality

aE (φ ,φ) = E (T ) .

Thus, remembering (2.4), theorem 19 assures that

E (T )≥ c(T )
∣∣∣∣[∂u

∂n

]∣∣∣∣2
L2(Σ)

. (A.1)

The purpose of this section is to point out some interesting facts about the differ-
ent contributions to inequality (A.1) of the external and internal energies, defined
respectively as

E+(t) :=
1
2

∫
R\(0,L)

(ut(x, t)2+ux(x, t)2)dx, E−(t) :=
1
2

L∫
0

(ut(x, t)2+ux(x, t)2)dx.

We shall see that the main contribution to inequality (A.1) is provided by the external
energy. Indeed, for any given time T , one may replace in (A.1) the global energy
E (T ) with E+(T ), provided a slightly larger coerciveness constant c̃(T ) takes the
place of c(T ). On the contrary, interactions of reflected waves make the contribution
of the internal energy E−(T ) almost negligible at least for large times T ≫ L. More
precisely, for any T greater than L, we have (see (A.4) below):

E−(T ) =
1
4

T∫
T−L

|φ(t)|2dt, (A.2)

103
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thus E−(T ) vanishes provided φ(t) = 0 in the “small” interval (T −L,T ).
Although these arguments rely upon particular features of the one dimensional
d’Alembert equation, they could suggest a possible approach even for the much
more difficult cases of the two or three dimensional wave equation. In fact also in the
n-dimensional case, at least for non trapping domains, the external energy at a given
time is strictly positive and thus may be viewed as a possible coercive quadratic
form in the single layer potential variable φ with respect to a suitable norm | · |W . Of
course, in the n-dimensional case the main open problem is the identification of the
functional space W .
Start by observing that the solution u+ to problem (2.1), on each external interval is
a simple progressive wave, that is

u+(x, t) =

{
gL

D (t +L− x) for x > L,

g0
D (t + x) for x < 0 .

Thus, at the boundary points x = 0, x = L, on has

∂u+

∂n
=−gD ,t =−(V φ)t , t ∈ [0,T ].

On the other hand, from the energy identity on the external domain and remember-
ing the definition of the operator A,

E+(T ) =−
T∫

0

∂u+

∂n
·gD ,t dt =

T∫
0

|(V φ)t |2dt =< Aφ,Aφ >L2(Σ)=< A∗Aφ,φ >L2(Σ) .

(A.3)
Therefore, as claimed before, E+(T ) may be viewed as a coercive quadratic form
with coerciveness constant c̃(T ) = 1/∥A−1∥2.
Let consider the internal energy. From a simple computation,

A∗Aφ(t) = Asφ(t)−
1
4

H[t −T +L]φ(t),

which, owing to (A.3), yields for E−(T ) the following simple expression:

E−(T ) = E (T )−E+(T ) =< (As −A∗A)φ,φ >L2(Σ)=
1
4

T∫
0

H[t −T +L]|φ(t)|2dt ,

(A.4)
and (A.2) is proved.
I’m going to conclude this section with other two remarks. Even though the internal
energy is in general only nonnegative, it still enjoys some coerciveness property
adding to E−(T ) its integral with respect to time as in the following

Theorem 27 For every T > 0, one has
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|φ|2L2(Σ) ≤ 4E−(T ) +
8
L

T∫
0

E−(t)dt. (A.5)

Proof. Instead of using directly the identity (A.4), derive (A.5) from a simple appli-
cation of the multipliers technique. Let define the function

q(x) =
2
L

(
x− 2

L

)
, 0 < x < L ,

and evaluate through integrations by parts the integral

T∫
0

L∫
0

(
utt(x, t)−uxx(x, t)

)
q(x)ux(x, t)dxdt = 0

in terms of space and space-time integrals of quadratic forms, either on the boundary
or on the interval (0,L). The function u will be assumed regular enough to perform
all the integration by parts; the estimate (A.5) then will follow by a density argu-
ment.

T∫
0

L∫
0

utt(x, t)q(x)ux(x, t)dxdt =

T∫
0

L∫
0

[
ut(x, t)q(x)ux(x, t)

]
tdxdt −

T∫
0

L∫
0

q(x)ut(x, t)uxt(x, t)dxdt =

L∫
0

q(x)ut(x, t)ux(x, t)dx
∣∣∣
t=T
− 1

2

T∫
0

L∫
0

[
q(x)u2

t (x, t)
]

xdxdt +
1
2

T∫
0

L∫
0

qx(x)u2
t (x, t)dxdt =

L∫
0

q(x)ut(x, t)ux(x, t)dx
∣∣∣
t=T
− 1

2

T∫
0

|gt(t)|2dt +
1
2

T∫
0

L∫
0

qx(x)u2
t (x, t)dxdt.

(A.6)
On the other hand

T∫
0

L∫
0

uxx(x, t)q(x)ux(x, t)dxdt =

1
2

T∫
0

L∫
0

[q(x)u2
x(x, t)]x dxdt − 1

2

T∫
0

L∫
0

qx(x)u2
x(x, t)dxdt =

1
2

T∫
0

(
u2

x(0, t)+u2
x(L, t)

)
dx− 1

2

T∫
0

L∫
0

qx(x)u2
x(x, t)dxdt.

(A.7)

Thus, summing the equalities (A.6) and (A.7), we get the identity
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L∫
0

q(x)ut(x, t)ux dx
∣∣∣
t=T

+
2
L

T∫
0

E−(t)dt =
1
2

T∫
0

|gt(t)|2 dt +
1
2

T∫
0

∣∣∣∣∂u−

∂n
(t)
∣∣∣∣2 dt,

(A.8)
and taking into account (A.3),

L∫
0

q(x)ut(x, t)ux(x, t)dx
∣∣∣
t=T

+
2
L

T∫
0

E−(t)dt =
1
2

T∫
0

(∣∣∣∣∂u+

∂n

∣∣∣∣2 + ∣∣∣∣∂u−

∂n

∣∣∣∣2
)

dt.

(A.9)
By applying the Cauchy-Schwarz inequality in the term of (A.9) containing the
product utux, and using the following inequality

|φ|2 =
∣∣∣∣∂u−

∂n
− ∂u+

∂n

∣∣∣∣2 ≤ 2

(∣∣∣∣∂u−

∂n

∣∣∣∣2 + ∣∣∣∣∂u+

∂n

∣∣∣∣2
)
,

the inequality (A.5) is proved.

Finally, by combining the identity (A.3), the energy identity (2.10) and the inequal-
ity (A.5), we obtain an alternative proof of the coerciveness estimate (2.15) which
does not rely on the algebraic features of the operator As. In fact, by an application
of the Cauchy-Schwarz inequality in (2.10),

E (t)≤

 t∫
0

|φ(τ)|2 dτ

1/2  t∫
0

|gD ,t(τ)|2 dτ

1/2

≤ |φ |L2(Σ) |gD ,t |L2(Σ).

Therefore, since E−(t)≤ E (t), we get from (A.5) and (A.3)

|φ|2L2(Σ) ≤ 4E−(T )+
8T
L

|φ |L2(Σ)

√
E+(T ),

which yields the following inequality where the internal and external energies play
a distinguished role:

|φ |2L2(Σ) ≤ 8E−(T )+
64T 2

L2 E+(T ).

Note that the constant (8+ 64T 2/L2)−1 is not optimal, nevertheless as function of
the ratio T/L has the same asymptotic behavior of c(T ) in (2.16).
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A.2 Integration over disjoint elements (ēi ∩ ē j = /0)

Having indicated with (x1
i−1,x

2
i−1), (x1

i ,x
2
i ) the end-points of ei and with

(ξ 1
j−1,ξ 2

j−1), (ξ 1
j ,ξ 2

j ) the end-points of e j, the distance between the source and the
field points can be written as

r2 = [A+Bs−Cz]2 +[D+Es−Fz]2 ,

where

A = x1
i−1 −ξ 1

j−1, B =
x1

i − x1
i−1

2ℓi
, C =

ξ 1
j −ξ 1

j−1

2ℓ j
,

D = x2
i−1 −ξ 2

j−1 E =
x2

i − x2
i−1

2ℓi
, F =

ξ 2
j −ξ 2

j−1

2ℓ j
.

The double integration domain is the intersection between the rectangle [0,2li]×
[0,2l j] and the two dimensional domain

r < ∆hk ⇔ [A+Bs−Cz]2 +[D+Es−Fz]2 < ∆ 2
hk, (A.10)

where the Heaviside function is not trivial. Using the relations

B2 +E2 = 1 , C2 +F2 = 1 ,

with a straightforward calculation, the result is that the inequality (A.10) is satisfied
if and only if

∆ 2
hk − ((BF −EC)s+FA−CD)2 > 0,

that implies restriction on the outer variable of integration s when BF −EC ̸= 0;
more precisely:

if BF −EC > 0, m :=
−∆hk − (FA−CD)

BF −EC
< s <

∆hk − (FA−CD)

BF −EC
=: M

if BF −EC < 0, m :=
∆hk − (FA−CD)

BF −EC
< s <

−∆hk − (FA−CD)

BF −EC
=: M .

Under these restrictions, the inequality (A.10) will be satisfied for
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zs
1 < z < zs

2,

where

zs
1,2 = (AC+FD)+(BC+EF)s∓

√
∆ 2

hk − ((BF −EC)s+FA−CD)2. (A.11)

Therefore, having set

s0 = max(0,m), s1 = min(2li,M),

Ms = max(0,zs
1), ms = min(2l j,zs

2),

double integral (4.19) in this case becomes

s1∫
s0

w̃(di)
i (s)

ms∫
Ms

S (r, th, tk) w̃
(d j)
j (z)dzds . (A.12)

The numerical quadrature in the outer variable of integration s has been optimally
performed subdividing, when necessary, the outer interval of integration. In fact, the
derivative with respect to s of the outer integrand function, after the inner integration,
presents a jump in correspondence to possible subdivision points to be searched
among the solutions of the equations

zs
1 = 0, zs

2 = 2l j,

formally given by

s1,2
1 =−(AB+ED)∓

√
∆ 2

hk +(AB+ED)2 −A2 −D2 ,

s1,2
2 = G∓

√
∆ 2

hk +G2 − (FA−CD)2 − (2l j −AC−FD)2 ,

where G = (BC+EF)(2l j −AC−FD)− (BF −EC)(FA−CD).
When one or more of these solutions are real and belong to the outer interval of
integration, (A.12) will be decomposed into the sum of double integrals of the form

b∫
a

w̃(di)
i (s)

ms∫
Ms

S(r, th, tk) w̃
(d j)
j (z)dzds , (A.13)

where [a,b] ⊂ [s0,s1] . Of course, when no subdivision is needed, one will have to
deal with only one double integral (A.13) where [a,b]≡ [s0,s1] . Note that for some
values of s it could happen that ms −Ms ≤ 0: in this case the inner integral does not
give any contribution to the final result and its evaluation has to be avoided.
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A.3 Recurrence relations for product rules

• S(y,x) = ln(| x−ay |)
In [18] the following recursive relation has been derived to compute the modified
moments: 

µ0(y) = (1+ay) ln(1+ay)+(1−ay) ln(1−ay)−2

µ j(y) =
1
2 j

Q(1,1)
j−1 (ay) , j ≥ 1

where the quantities:

Q(1,1)
0 (ay) = (1−a2

y) ln
1−ay

1+ay
−2ay

Q(1,1)
1 (ay) = 2ay Q(1,1)

0 (ay)+
8
3

Q(1,1)
j (ay) =

j+1
j( j+2)

[(2 j+1)ay Q(1,1)
j−1 (ay)− j Q(1,1)

j−2 (ay)] , j ≥ 2

are Jacobi functions of second kind [51].

• S(y,x) = ln[(x−ay)
2 +b2

y ] , by ̸= 0
Here:

µ0(y) = (1−ay) ln[(1−ay)
2 +b2

y ]+ (1+ay) ln[(1+ay)
2 +b2

y ]+

+ 2by[arctan
1+ay

by
+ arctan

1−ay

by
]−4

µ j(y) =
1
j

1∫
−1

(1− x2)(x−ay)

(x−ay)2 +b2
y

P(1,1)
j−1 (x)dx , j ≥ 1 ,

where {P(1,1)
j (x)} are Jacobi polynomials [51], which are related to Legendre poly-

nomials through:

Pj(x) =− 1
2 j

d
dx

[(1− x2)P(1,1)
j−1 (x)] , j ≥ 1 .

Having defined:

m j(y) =
1∫

−1

(1− x2)(x−ay)P
(1,1)
j (x)dx =


− 4

3 ay j = 0
8
15 j = 1
0 j ≥ 2
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modified moments µ j(y) follows from these latter quantities by means of the proce-
dure described in (2iii) below.

• rational function containing factors of the type (x− ay) and divisors of the type
(x−ay) and [(x−ay)

2 +b2
y ].

Let assume to know the quantities:

m j(y) =
1∫

−1

S(y,x)p j(x)dx

associated with a given set of polynomials satisfying a recurrence relation of the
form: 

p0(x) = 1

p1(x) = k(1)1 x+ k(1)0

p j+1(x) = α j x p j(x)−β j p j−1(x) , j ≥ 1.

Then, in the case of new kernels of the form:

(2i) S(y,x) = S(y,x)(x−ay)

(2ii) S(y,x) =
S(y,x)
(x−ay)

, ay ̸=±1

(2iii) S(y,x) =
S(y,x)

[(x−ay)2 +b2
y ]

,by ̸= 0 ,

one has, respectively:

(2i)


m0(y) =

1

k(1)1

m1(y)−
(

k(1)0

k(1)1

+ay

)
m0(y)

m j(y) =
1

α j
m j+1(y)−aym j(y)+

β j

α j
m j−1(y) , j ≥ 1

(2ii) m j(y) = q j(ay), with
q0(z) =

1∫
−1

S(y,x)
x− z

dx

q1(z) = p1(z)q0(z)+ k(1)1 m0(y)

q j+1(z) = α j zq j(z)−β jq j−1(z)+α jm j(y) , j ≥ 1 ,
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when z ∈ (−1,1) the integral defining q0(z) ought to be defined in the Cauchy prin-
cipal value sense;

(2iii)


m0(y) , m1(y) must be computed explicitly

m2(y) = α0α1(m0(y)+aym1(y))− [α0α1(a2
y +b2

y )+β1]m0(y)

m j(y) =
qI

j(ay + iby)

by
, j ≥ 3

where

qR
0 (zy) =

1
α0

m1(y)−aym0(y)

qI
0(zy) = bym0(y)

qR
1 (zy) =

1
α1

m2(y)−aym1(y)+
β1
α1

m0(y)

qI
1(zy) = bym1(y)

qR
j+1(zy) = α jayqR

j (zy)−α jbyqI
j(zy)−β jqR

j−1(zy)+α jm j(y)

qI
j+1(zy) = α jayqI

j(zy)+α jbyqR
j (zy)−β jqI

j−1(zy) , j ≥ 1 .

Remark. The considered kernels have real or complex poles outside (except for the
logarithmic kernel and (2ii) above, if ay ∈ (−1,1)) the interval of integration. When-
ever these singularities are very close to the interval of integration, the correspond-
ing kernels cannot be considered smooth, in the sense that any standard quadrature
rule, for instance the Gauss-Legendre formula, would perform poorly. Therefore it
would require a large number of points to achieve the required accuracy [44]. For
this reason, unless the poles are sufficiently far away from the region of integration,
one should use the product rules presented in subsection 4.3.



112 A Appendix

A.4 Numerical integration of (4.45)

For the evaluation of I the standard two subcases arise:

a) the boundary of the two dimensional region r < ∆hk is not contained in the
rectangle [a,b]× [Ms,ms]

• If b = 2li and Ms = 0
we can rewrite the double integral (4.45) adding and subtracting in the interior in-
tegral the Taylor expansion of first order centered in (s,z) = (2li,0) of the two vari-

ables function
√

∆ 2
hk − ((z−as)2 +b2

s ) w̃
(d j)
j (z) because in this term the singularity

in the interior integral is stronger:

I=−
2li∫

a

w̃(di)
i (s)

ms∫
0

(bszsinω)
[
w̃
(d j)
j (z)

√
∆ 2

hk − ((z−as)2 +b2
s )−∆hkw̃

(d j)
j (0)

]
((z−as)2 +b2

s )
2 dzds

+∆hk w̃
(d j)
j (0)

2li∫
a

−w̃(di)
i (s)

ms∫
0

z(bs sinω)

((z−as)2 +b2
s )

2 dzds =: I1 + I2 .

For the numerical evaluation of I1

Outer integral: regularization procedure (4.27)
Inner integral: product rule (4.30) for [(z−as)

2 +b2
s ]
−1 kernel

For I2, after an analytical inner integration:

I2 =−∆hkw̃
(d j)
j (0)

2li∫
a

w̃(di)
i (s)(bs sinω)[ f (ms)− f (0)]ds

with

f (s) =
zas − (a2

s +b2
s )

2b2
s ((z−as)2 +b2

s )
− cosω

2b2
s sinω

atan
(

z−as

bs

)
that can be evaluated by the HFP formula (4.34) and the Gauss-Legendre formula.

• Otherwise, i.e. the singularity point is not contained in the domain of integration,
for the numerical evaluation of (4.45) we can proceed as follows:

Outer integral: Gauss-Legendre formula
Inner integral: Gauss-Legendre formula.

b) the boundary of the two dimensional region r < ∆hk is contained in the rect-
angle [a,b]× [Ms,ms]
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• If b = 2li and Ms = 0
we can rewrite the double integral (4.45) adding and subtracting in the interior inte-
gral the Taylor expansion of third order centered in (s,z) = (2li,0) of the two vari-

ables function
√

∆ 2
hk − ((z−as)2 +b2

s ) w̃
(d j)
j (z) because in this term the singularity

in the interior integral is stronger:

I=−
2li∫

a

w̃(di)
i (s)

ms∫
0

(bszsinω)

((z−as)2 +b2
s )

2

[
w̃
(d j)
j (z)

√
∆ 2

hk − ((z−as)2 +b2
s )

−∆hkw̃
(d j)
j (0)− ∆hkw̃

′(d j)
j (0)z− z2

2

w̃
′′(d j)
j (0)∆hk −

w̃
(d j)
j (0)

∆hk

dzds

+∆hk w̃
(d j)
j (0)

2li∫
a

−w̃(di)
i (s)

ms∫
0

z(bs sinω)

((z−as)2 +b2
s )

2 dzds

+∆hkw̃
′(d j)
j (0)

2li∫
a

−w̃(di)
i (s)

ms∫
0

z2(bs sinω)

((z−as)2 +b2
s )

2 dzds

+∆hk

w̃
′′(d j)
j (0)∆hk −

w̃
(d j)
j (0)

∆hk

 2li∫
a

−w̃(di)
i (s)

ms∫
0

z3(bs sinω)

((z−as)2 +b2
s )

2 dzds

=:I1 + I2 + I3 + I4 .

For the numerical evaluation of I1

Outer integral: Gauss-Legendre formula
Inner integral: regularization procedure (4.27), because of the square root “mild”
singularity

For I2, after an analytical inner integration:

I2 =−∆hkw̃
(d j)
j (0)

2li∫
a

w̃(di)
i (s)(bs sinω)[ f (ms)− f (0)]ds

with

f (s) =
zas − (a2

s +b2
s )

2b2
s ((z−as)2 +b2

s )
− cosω

2b2
s sinω

atan
(

z−as

bs

)
that can be evaluated by the HFP formula (4.34) and the Gauss-Legendre formula.

For I3, after an analytical inner integration:
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I3 =−∆hkw̃
′(d j)
j (0)

2li∫
a

w̃(di)
i (s)(bs sinω)[ f (ms)− f (0)]ds

with

f (s) =
−as + z(cos2 ω − sin2 ω)

2sin2 ω((z−as)2 +b2
s )

− 1
2bs

atan
(

z−as

bs

)
that can be evaluated with the Gauss-Legendre formula.

For I4, after an analytical inner integration:

I4 =−∆hk

w̃
′′(d j)
j (0)∆hk −

w̃
(d j)
j (0)

∆hk

 2li∫
a

w̃(di)
i (s)(bs sinω)[ f (ms)− f (0)]ds

with

f (s) =
1
2

log((z−as)
2 +b2

s )−
(cos3 ω +3sin2 ω cosω)

2sin3 ω
atan

(
z−as

bs

)
+

a4
s −b4

s − za3
s −3zasb2

s

2b2
s ((z−as)2 +b2

s )

that can be evaluated by the product rule (4.30) for log((z− as)
2 + b2

s ) kernel and
the Gauss-Legendre formula.
Tables A.1-A.4 show the efficiency of the adopted quadrature techniques and in
particular the convenience in using the regularization procedure (4.27) in evaluating
I1 as underlined by the decreasing of relative errors with the varying of p and q
parameters in table A.1 (to fix p = q = 1 means to use the standard Gauss Legendre
formula).
The sequence of the following four tables A.1-A.4 is referred to the discretization
parameters ω = π/2, 2li = 2li+1 = 0.1, ∆hk = 0.05.

• Otherwise, i.e. the singularity point is not contained in the domain of integration,
for the numerical evaluation of (4.45) we can proceed as follows:

Outer integral: Gauss-Legendre formula
Inner integral: regularization procedure (4.27), because of the square root “mild”
singularity.



A.4 Numerical integration of (4.45) 115

nodes p = q = 1 p = q = 2 p = q = 3
82 1.051507 ·10−3 1.804700 ·10−3 2.610697 ·10−3

162 3.925552 ·10−5 3.467667 ·10−5 1.969021 ·10−5

322 2.071282 ·10−6 2.857438 ·10−7 2.749069 ·10−8

Table A.1: Relative Error w.r.t. the exact integral value I1 = 6.156878 ·10−3.

nodes 1 2
1.068267 ·10−2 1.232387 ·10−15

Table A.2: Relative Error w.r.t. the exact integral value I2 = 3.476736 ·10−1.

nodes 2 4 8
3.427467 ·10−5 1.183973 ·10−5 3.091870 ·10−6

Table A.3: Relative Error w.r.t. the exact integral value I3 = 2.261957 ·10−2.

nodes 8 16 32
4.801363 ·10−4 3.318646 ·10−5 2.193332 ·10−6

Table A.4: Relative Error w.r.t. the exact integral value I4 = 8.178796 ·10−3.
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