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Abstract The genomic resources of small grain cereals
that include some of the most important crop species
such as wheat, barley, and rye are attaining a level of
completion that now is contributing to new structural
and functional studies as well as refining molecular
marker development and mapping strategies for increas-
ing the efficiency of breeding processes. The integration
of new efforts to obtain reference sequences in bread
wheat and barley, in particular, is accelerating the ac-
quisition and interpretation of genome-level analyses in
both of these major crops.
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Introduction

For many years, the size and complexity of the Triticeae
genomes, namely, wheat (17Gb, hexaploid), barley (5Gb,
diploid), and rye (8Gb, diploid), have hampered the develop-
ment of genomics and its application to breed crops with
improved composition and characteristics designed to satisfy
the needs of consumers, processors, and producers. Despite
the recognition that a reference genome sequence is key to
accelerating crop improvement, the Triticeae are the last major
crops for which a complete genome sequence is not available
(Feuillet and Eversole 2007). Thus, the establishment of ge-
nome sequence enabled technology platforms for the Triticeae
has lagged behind advances in other cereal crops such as corn
and rice. In the past decade, however, extensive efforts to
develop whole-genome and chromosome-specific bacterial
artificial chromosome (BAC) libraries (Allouis et al.
2003; Safar et al. 2004), extensive EST collections (ITEC
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http://avena.pw.usda.gov/genome/; Lazo et al. 2004; Zhang et
al. 2004), transformation systems, wild germplasm and mu-
tant collections, as well as DNA chips have permitted the
establishment of large-scale genomics resources and research
programs aimed at enabling high-quality sequencing of the
Triticeae genomes. Given their complexity, in particular that
of the hexaploid wheat genome, physical maps must be estab-
lished as a scaffold for sequence assembly as it is simply not
possible to achieve a reference genome sequence using whole
genome shotgun approaches (Feuillet et al. 2011; Ariyadasa
and Stein 2012). In the past 4 years, a number of initiatives
such as the International Wheat Genome Sequencing Consor-
tium (www.wheatgenome.org; Feuillet and Eversole
2007), the International Barley Sequencing Consortium
(www.barleygenome.org), the UK wheat consortium
(http://www.wheatbp.net/WheatBP/Documents/DOC_
Research.php), and the European TriticeaeGenome FP7 proj-
ect (www.triticeaegenome.eu) have developed a suite of ge-
nomic resources and knowledge to provide the foundation for
physical mapping and sequencing the wheat and barley
genomes. Before the development of these resources, map-
based cloning was quite laborious and time-consuming, and
consequently, only a few genes have been isolated in the
Triticeae (Büschges et al. 1997; Brueggeman et al. 2002;
2008; Huang et al. 2003; Yan et al. 2003; Charles et al.
2009; Fu et al. 2009; Turner et al. 2005; Komatsuda et al.
2007; Taketa et al. 2008; Nair et al. 2010; Faris et al. 2010;
Breen et al. 2010a; Bulgarelli et al. 2010; Yuo et al. 2012; for
reviews see Stein and Graner 2004 and Krattinger et al. 2009).
This was due in part to the challenge of walking efficiently
along the chromosomes in repetitive sequence regions with
the difficulty of identifying unique probes for screening BAC
libraries. With more than 80 % of the sequence identified as
transposable elements, the issues are acute in the Triticeae
genomes, although the deployment of markers that cross the
often unique boundaries between repetitive elements has re-
duced the problem to some degree (Flavell et al. 1998; Paux et
al. 2010). With physical maps in hand, chromosome walking
is no longer necessary and, assuming the genetic resolution is
high enough, physical maps enable direct landing at the target
site thereby enabling more efficient gene cloning.

In the absence of complete genome sequences and given
the relatively high gene order conservation (collinearity)
observed in the grass genomes, genomics studies in the
Triticeae have utilized comparative genomics approaches
with other grass genomes. To date, five genomes relevant
to the Triticeae have been sequenced, namely rice, Brachy-
podium, sorghum, maize, and foxtail millet (IRGSP 2005;
IBI 2010; Paterson et al. 2009; Schnable et al. 2009;
Bennetzen et al. 2012; Zhang et al. 2012). Comparisons
between these different genomes enable the identification
of conserved gene regions that can support molecular mark-
er design and identify candidate genes for traits that are well

conserved between species. Hence, the high-quality rice ge-
nome sequence (IRGSP 2005) combinedwith the sequences of
a number of genomes from the other grasses (Brachypodium,
sorghum, maize) was used to develop molecular markers such
as the Conserved Orthologous Set (COS) molecular markers
(Bertin et al. 2005; Quraishi et al. 2009) and to accelerate
discovery of wheat and barley genes (Fu et al. 2009; Breen
and Bellgard 2010; Rustenholz et al. 2010; Krattinger et al.
2011; Distelfeld et al. 2012). However, genes such as very
recently duplicated genes and those involved in end use quality
(for example bread, pasta), rapidly evolving genes such as
disease resistance genes, as well as genes involved in large
regulatory networks are more species-specific, and thus, it is
crucial to have access to genomic resources and a reference
sequence of the target genome.

Establishment of genome resources for physical
mapping in the Triticeae

While for barley, whole genome BAC libraries have been
produced (Schulte et al. 2011), the generation of BAC
clones from flow-sorted chromosomes (Safar et al. 2004;
Šafář et al. 2010) and chromosome arms (reviewed in
Dolezel et al. 2012) has been key to reducing the complexity
of the hexaploid wheat genome analyses. Typically, libraries
of 30,000–90,000 BAC clones are generated from the flow
sorting of approximately a million chromosomes (http://
olomouc.ueb.cas.cz/dna-libraries/cereals) to give a coverage
of over 10× for the predicted chromosome size (Dolezel et
al. 2007). The BAC libraries are then fingerprinted using
SnapShot labelling and analysis (Luo et al. 2003), using five
restriction endonucleases, and BAC contigs are assembled
generally using the FingerPrinted Contig (FPC) software
(Soderlund et al. 2000). Although efficient guidelines and
methodologies were established (Appels et al. 2010) and
good results were obtained in wheat, as exemplified by the
construction of the first physical map of the 1Gb wheat
chromosome 3B (Paux et al. 2008), the length of the phys-
ical contigs was slightly lower than in small model
genomes. Sequencing BAC contigs (Choulet et al. 2010)
revealed a number of systematic errors in the FPC assem-
blies. In fact, due to the high level of repetitive DNA in the
Triticeae genomes, very stringent criteria must be used to
ensure a reliable assembly with the FPC software. This, in
turn, often results in short contig lengths as well as an
unreliable assembly in some difficult regions. To address
these problems, Frenkel et al. (2010) developed a novel
algorithm called Linear Topology Contig (LTC). The LTC
algorithm reduces the rate of false connections and Q-clones
by systematically exploring the topological contig structure
and performing iterative clone clustering and ordering so
that highly reliable and contigs longer than in FPC are
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recovered. The LTC detects “weak” connections in con-
tigs obtained by FPC and through iterative steps under-
takes their “repair.”

A further improvement in the reliability of physical map
construction can be obtained using the power of next-
generation sequencing technologies. KeyGene (www.
keygene.com) recently developed a new approach called
Whole Genome Profiling (WGP, van Oeveren et al. 2011)
that is based on the sequencing of the ends of restriction
endonuclease fragments after digestion of BAC pools. The
application of WGP to a subset of the wheat chromosome
3B physical map (Philippe et al. 2012) demonstrated that
this is a viable approach for a complex genome such as
wheat and that it reduces the amount of chimeric and mis-
assembled clones compared to the SNAPshot method while
providing sequence tag information that can be used to
support pooling strategies for sequencing. Thus, robust
methodologies and protocols are now in place for assem-
bling reliable physical maps in the Triticeae genomes.

Construction of anchored physical maps

The full potential of physical maps in supporting map-based
cloning and marker development for breeding can only be
achieved when the BAC contigs are linked sufficiently to
genetic and phenotypic maps. Thus, once physical maps
have been assembled, it is essential that the BAC contigs
are anchored at high density with molecular markers. This
requires the development of thousands of markers followed
by their assignation to the genetic and physical maps. In the
Triticeae, large collaborative efforts have been deployed in
the past 15 years to develop EST and SSR markers for
genetic mapping enabling the construction of genetic maps
that carry several hundreds of markers (wheat.pw.usda.gov/
GG2/index.shtml). However, it is only with the advent of
NGS technologies that high throughput development and
genotyping of SNP markers progressed to a significant
degree in wheat and barley. This has opened up new per-
spectives in anchoring strategies (Sorrells et al. 2011; Paux
et al. 2012; Allen et al. 2011; Poland et al. 2012). The
deployment of KASpar-based assays for SNPs in wheat
provided the basis for a map of Avalon×Cadenza with
2,923 SNPs (Allen et al. 2011) and Savannah×Rialto with
1,412 SNPs (http//www.wheatisp.org). Recently, large tran-
scriptome sequencing and resequencing efforts in Australia
and the USA enabled the development of a 9K Infinium
wheat SNP-chip (Akunov, personal communication). In bar-
ley, comprehensive sets of several thousands of SNP
markers have been successfully developed and mapped in
numerous populations (Close et al. 2009; Muñoz-Amatriaín
et al. 2011; Comadran et al. 2012). With additional gene-
based SNP datasets originating from programs in the UK

(http://www.wheatisp.org; Allen et al. 2011) and from 5,000
COS-SNPs designed in the TriticeaeGenome project, a 90K
SNP-chip is currently under design and should be available
in the near future (Akhunov, personal communication). Fo-
cusing on the transcriptome enables a reduction in complex-
ity that also can be achieved by the digestion of genomic
DNA with restriction enzymes and sequencing of selected
fragments. Genotyping by sequencing (GBS) technologies,
developed originally in maize, have been applied to wheat
and barley (Elshire et al. 2011; Poland et al. 2012) thereby
providing another platform for DNA sequence-based order-
ing of reference points along the Triticeae genomes. With
this approach, 34,396 SNPs were mapped by GBS in the
Oregon Wolfe barley reference population, while 19,720
SNPs were mapped in the synthetic W97846×Opata85 ref-
erence wheat population. Because they rely on sequence
information, the SNP- and GBS-based approaches provide
thousands of sequence tags that can be integrated into phys-
ical maps in silico thereby increasing the efficiency of
anchoring strategies. This more direct integration of BAC
sequencing and anchoring to genetic maps was carried out
successfully in the rice genome sequencing program using
BAC-end sequences (reviewed in Ariyadasa and Stein
2012), and it is currently being applied in wheat and barley
(IBSC 2012). The in silico, sequence-based anchoring com-
plements the well-established process of identifying known
molecular markers in BAC pools using PCR (Paux et al.
2008) as well as the broad range of hybridization array
technologies that are available (reviewed in Ariyadasa and
Stein 2012).

Genetic mapping in the Triticeae genomes is difficult
partly as a result of the very low rate of recombination
observed in the centromeric and pericentromeric regions
that can represent up to one half of an entire chromosome
(Birchler et al. 2009; Kanisay and Dawe 2009). On wheat
chromosome 3B, it was estimated that 90 % of crossing over
occur in only 40 % of the chromosome, mostly in the
telomeric regions, whereas 27 % of the chromosome did
not show any crossing over (Saintenac et al. 2009). In the
recombinogenic regions, sufficient resolution in ordering
physical contigs to genetic maps using molecular markers
can be obtained when utilizing mapping populations with
high recombination frequencies. This can be achieved using
recombinant inbred line (RIL) populations of several thou-
sand individuals. Two populations of 2,600 and 4,000 RILs
have been produced for this purpose in wheat (Renan×
Chinese Spring) and barley (Barke×Morex), respectively,
in the TriticeaeGenome project with the rationale of using
parents that are the references for genome sequencing and
physical mapping, i.e., Chinese Spring in wheat and Morex
in barley. This complements the continued efforts of the
International Triticeae Mapping Initiative to develop a ref-
erence population for genetic mapping in wheat using a
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cross between the synthetic wheat W7984×Opata M85
population. A new population of 2,039 RILs has been
established recently with a core set of 42 SSR markers used
to genotype the lines and facilitate a community-base effort
to build a detailed map (Sorrells et al. 2011). In addition,
Sorrells et al. (2011) reported 215 doubled haploid lines that
were genotyped with 1,446 molecular markers. Further-
more, multi-parent advanced generation intercross popula-
tions originating from multiple founder lines (typically 8 to
16) and therefore relying on a larger diversity and amount of
recombination events than bi-parental populations have
been established in wheat (Mackay and Powell 2007; Huang
et al. 2012). These are currently being tested for anchoring
physical maps in different projects.

In the regions near the centromeres or within large blocks
of heterochromatin where little if any recombination occurs,
it is not possible to reliably anchor and order a physical map.
Targeting these regions is important, however, as it is now
clear that genes are present all along the physical maps
(Choulet et al. 2010; Rustenholz et al. 2011), including in
BAC clones assigned to the centromeres and to retrotrans-
posable element-rich regions of chromosomes. Genes, in-
cluding the important vernalisation gene Vrn-D4, have been
mapped to the centromere region (Yoshida et al. 2010). In
another study, the characterization of a 0.8-Mb DNA seg-
ment from chromosome 3B that was composed almost en-
tirely of transposable elements except for a small gene
island of three conserved genes (Breen et al. 2010b). Thus,
an alternative strategy for targeting centromeres and other
repetitive sequence-rich regions of the chromosomes where
recombination is low has been established following radia-
tion hybrid mapping approaches that are widely used in
animal genetics. Radiation hybrid mapping relies on assay-
ing radiation-induced chromosomal fragments with molec-
ular markers defined by the physical map under study
(Riera-Lizarazu et al. 2010). The frequency of markers
remaining together on the same chromosome fragment
defines a measure of how physically close the markers are
to each other. RH mapping was evaluated during the con-
struction of the 3B physical map using a panel of 184 RH
lines tested with 65 ISBP markers. A resolution of approx-
imately 263 kb per break was observed (Paux et al. 2008). In
particular, for the terminal bin of chromosome 3BL (3BL7-
0.63-1.00), 35 loci corresponding to 32 loci were ordered
and confirmed the physical map established using markers
ordered by standard recombination-based mapping (Paux et
al. 2008). More recently, the same panel was used to estab-
lish a high density RH map with 541 marker loci anchored
to chromosome 3B spanning a total distance of 1871.9 cR
(Kumar et al. 2012).

The observations on the existence of a core set of coding
genes that is conserved among the grass genomes (Salse et
al. 2009) have also provided a basis for anchoring

chromosome (arm) specific DNA sequences to genetic and
physical maps (Mayer et al. 2009; Berkman et al. 2011;
Berkman et al. 2012). The so-called chromosome zipper
approach was developed originally in barley to determine
a virtual order of genes using inference of synteny informa-
tion along the grass genomes (Mayer et al. 2009, 2011).
Incorporation of chromosome arm-specific microarray hy-
bridization information is providing an important cross-
reference for the positioning of genes in this framework.
In addition, cross-referencing to BAC clones that contain
particular genes identified by DNA hybridisation helps in
ordering BAC and FPC contigs. Typically 4,000–9,000
genic sequences per chromosome are found for wheat chro-
mosomes, with some likely to represent gene fragments and
pseudogenes (Choulet et al. 2010; Wicker et al. 2011).
Following their identification, genes conserved between
wheat, Brachypodium, rice, sorghum, and barley (Hernandez
et al. 2012) can then be clustered into syntenic groups and,
along with dense genetic marker information, used to define
an estimated gene order in wheat and barley. The analysis also
identifies predicted genes that may be unique to wheat and
barley and thus might be significant in accounting for the
specific agronomic attributes of these crops.

High throughput hybridization platforms can be used for
anchoring physical maps if arrays of mapped markers are
hybridized to labelled pools of BACs (Rustenholz et al.
2010; Hui et al. 2011; Ariyadasa and Stein 2012). The
hybridization of DNA from complex genomes to micro-
arrays with long oligonucleotides that assay different clus-
ters of multiple SNPs, small deletion/insertion differences,
copy number variants, and presence/absence variation in
genomic DNA rather than single SNPs have also been used
to assay polymorphisms for genotyping (Fu et al. 2010). In
the case of chromosome 3B, pools of BACs were hybridised
to a barley Agilent 15 K expression microarray and allowed
738 barley orthologous genes to be located to their respec-
tive BAC clones (Rustenholz et al. 2010). The study showed
that 68 % of the genes identified in the study were syntenic
between wheat chromosome 3B and barley 3H.

Comparative genomics reveals unique features
of the Triticeae genomes

Analyses of the grass genomes have pioneered the field of
comparative genomics in plants. Early analyses of ribosom-
al DNA loci in the Triticeae (Dubcovsky and Dvorak 1995)
indicated that despite a good conservation between the
genomes, specific rearrangements occurred. Indications for
this conclusion were already evident in BAC sequencing
and comparison during map-based cloning projects. More
recently, the construction of physical maps and whole chro-
mosome analyses demonstrated that 30–40 % of the gene
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complements in wheat and barley do not reside in the
conserved syntenic gene order space (Choulet et al. 2010;
Mayer et al. 2011; Wicker et al. 2011; Berkman et al. 2012).

Rearrangements including deletions and expansions in
the genomes of wheat have been frequent (Dubcovsky and
Dvorak 2007; Wicker et al. 2011) and are considered to be
the result of waves of retrotransposable elements’ move-
ments assumed to have occurred in the recent evolutionary
history of wheat (Charles et al. 2008; Choulet et al. 2010). In
the case of the rDNA loci in the Triticeae, a further variable
includes amplification events that increase the number of
tandem copies of the genes at a given locus (Dubcovsky and
Dvorak 1995). Additional mechanisms for rearrangements
suggested by Wicker et al. (2011) include the repair of
double-strand breaks in DNA which can include a DNA
segment (plus or minus a gene sequence) from elsewhere
in the genome. Although Wicker et al. (2011) argued that
pseudogenes mostly arise from genome rearrangements,
unique gene-domain fusions have been reported to be im-
portant in generating a gene that confers temperature-
dependent resistance to wheat stripe rust wheat (Fu et al.
2009) and sensitivity to the tan spot pathogen (Faris et al.
2010). In both of these examples, protein kinase domains
were fused with domains that could be recognized as being
important in disease resistance gene networks.

The instability of the wheat genome was dramatically
illustrated by Wicker et al. (2011) in an analysis of the short
arm of chromosome 1D (1DS) which exists as a ditelosomic
chromosome in a standard genetic stock of wheat used for
chromosome sorting. Gene sequences for 1DS were
assigned to two regions of Brachypodium chromosome 2,
syntenic regions 1S and 1L, even though these Brachypo-
dium regions are clearly differentiated when alignments
with gene sequences from the ditelosomics 1AS, 1BS and
1AL, 1BL are carried out. In addition, the wheat ESTs
mapping to the proximal region of 1DS in independent
studies were also missing from the ditelo 1DS sequence
dataset (Wicker et al. 2011).

In addition to providing the basis for analyzing conserved
gene orders on a large scale (as described earlier), compar-
ative genomics has been important in wheat and barley to
define conserved features of genes, and several examples
are now available for the identification of candidate genes
for the phenotypes being studied. The characterization of the
Vrn genes in wheat and barley (Yan et al. 2003, 2004, 2006;
Yoshida et al. 2010) was facilitated by comparative analyses
across wheat, barley, and rice. The importance of modifica-
tions in intron 1 for variation in expression of the Vrn genes
was established through the analysis of allelic variants. A
comparison to variants in Lolium perenne (Asp et al. 2011)
showed that INDELS in several different locations within
intron 1 could modify Vrn1 expression. Additional exam-
ples include the identification of the bract suppression gene

Trd1, a GATA transcription factor, on barley 1H through
fine mapping and anchoring of the phenotype to a syntenic
region in rice (Houston et al. 2012), the boron toxicity
tolerance gene on barley 4H (Sutton et al. 2007), the Rht-
D1 gene region on 4D (Duan et al. 2012), and the NAC
transcription factor on wheat 6B (Distelfeld et al. 2004,
2012). In the case of the NAC transcription factor, the
functional attributes appeared to be quite different in rice
and wheat (Distelfeld et al. 2012) and indicated extrapolat-
ing function based on shared DNA sequence structure may
not always be possible.

Gene isolation and new allele discovery

The unique features of the Triticeae genomes emphasize the
importance of high-resolution mapping populations and
physical maps developed in the target species to enable the
de novo identification of genes that are unique to wheat and
barley biology, as well as genes underlying QTLs. As genes
and gene regions of interest are identified, targeted re-
sequencing (Saintenac et al. 2011; Winfield et al. 2012)
provides a valuable methodology for identifying new alleles
in related varieties or wild relatives. The recent progress in
high throughput marker development combined with new
association genetics panels, physical maps, and survey
sequences represent a breakthrough in map-based cloning
in the Triticeae. In wheat, physical maps of chromosome
1A, 1B, 3A, 3B, and 3D (http://urgi.versailles.inra.fr/gb2/
gbrowse/wheat_phys_pub/) as well as survey sequences of
all 21 individual bread wheat chromosomes are already
available on line (http://urgi.versailles.inra.fr/Species/
Wheat/Sequence-Repository). In barley, a physical map,
survey sequences of sorted chromosomes, several thousand
of shotgun sequenced BAC clones and whole genome shot-
gun sequence assemblies were integrated to a physical/ge-
netic genome scaffold providing an excellent template for
accelerated map-based cloning and comparative genome-
based candidate gene identification (IBSC 2012) (http://mips.
helmholtz-muenchen.de/plant/triticeae/barleyDisclaimer.jsp;
http://webblast.ipk-gatersleben.de/barley). As an example, in
the Triticeae more than 15 gene and QTL projects are benefit-
ing already from access to these resources (Table 1) and, since
the reference sequence of chromosome 3B is underway, 343
scaffolds accounting for 29 Mb targeting 74 BAC-contigs
sequences have already been provided to laboratories world-
wide. Once candidate genes are identified, functional valida-
tion is needed to ascertain the function of the candidate. Both
reverse and forward genetics approaches are now well estab-
lished for wheat and barley. Stable (Agrobacterium, biolistic)
and transient (VIGS) transformation systems are performed
routinely in many laboratories worldwide, and mutagenized
collections have been produced in both wheat and barley. In
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wheat, several mutant populations have been produced in
diploid, tetraploid, and hexaploid genetics backgrounds, and
projects are underway to establish TILLING by sequencing
(Tsai et al. 2011). In barley, TILLING resources have been
established (Caldwell et al. 2004; Talamè et al. 2008; Gottwald
et al. 2009) that show a wide range in phenotype diversity for
the discovery of genes contributing to the complex networks
that underpin plant phenotypes. In parallel, natural allelic
variation can also be explored by EcoTILLING approaches
and associated to phenotypic variation (Xia et al. 2012).

In Table 1, a summary is provided for traits and their respec-
tive genes that have been defined in wheat and barley. The table
focuses on a list of genes on the group 1 and 3 chromosomes in
wheat and barley. At a broader level, in addition to identifying
the genes for disease resistance, grain quality traits have also
been well defined at the DNA level. Examples include the low
and high molecular weight glutenin subunit loci on the group 1

chromosomes important for flour processing quality, and the Ha
locus on 5D defining the soft/hard attributes of the grain
(Chantret et al. 2005; Charles et al. 2009).

Application in molecular breeding

Increased density of markers along genetic and physical
maps using array-based techniques for genes and insertion
sequence-based polymorphism markers as well as GBS in
wheat and barley enable breeders to perform accurate asso-
ciation mapping studies (Heffner et al. 2010; Liu et al.
2012). Association genetics has only been recently applied
to crop plants, (Mackay and Powell 2007) yet it is an
exciting alternative to conventional QTL mapping in bi-
parental crosses. It draws on the principle that linkage disequi-
librium (LD) tends to be maintained over many generations

Table 1 Examples of gene and QTL projects benefiting from the access to wheat and barley physical maps and sequences

Locus Trait Chromosome Species Organization PI Use of physical map/sequence
information

YrH52 Stripe rust resistance 1BS Emmer wheat University of
Haifa- Israel

T. Fahima 2 physical non-overlapping contigs
identified (total of 3.7 Mb with
estimated gap of 0.4 Mb)

PV-QTL Fiber content (QTL) 1BL Bread wheat INRA - France J. Salse 1 physical map contig (645 kb)
anchored to co-segregating COS
CG marker

QSng.sfr Glume blotch
resistance (QTL)

3BS Bread wheat University of
Zurich—
Switzerland

B. Keller 3 sequenced contigs identfied(1.58 Mb)

QYld.idw Yield (QTL) 3BS Durum wheat University of
Bologna—Italy

R. Tuberosa Region <200 kb in the physical map
containing 4 candidate genes

Sr2 Stem rust resistance 3BS Bread wheat CSIRO and Murdoch
University

W. Spielmeyer 1 sequenced contig (1.26 Mb) spanning
the Sr2 genetic interval

SV2 Leaf rust resistance 3BS Bread wheat INTA-Argentina MJ. Dieguez 2 sequenced contigs (1, 2, and 3 Mb)
identified with flanking markers used
for marker development, screening of
BAC library from resistant cultivar
and candidate gene identification

SSt1 Solid stem (saw
fly resistance)

3B Durum wheat University of
Saskatchewan—
Canada

C. Pozniak 17 sequenced contigs identified for
marker development, 8 new
cosegrating markers developed

QFt-3B Flowering time (QTL) 3BS Bread wheat IEB-Czech republic J. Safar 38 sequenced contigs identified for
marker development

Qcrs.cpi-3B Crown rot (QTL) 3BS Bread wheat CSIRO—Australia C. Liu 53 sequence contigs identified for
marker development

Pm41 Powdery mildew 3BL Bread wheat China Agricultural
University—China

Z. Liu/Z. Wang 9 sequence contigs identified for marker
development

qDHY.3BL Drought tolerance
(QTL)

3BL Bread wheat ACPFG-INRA P. Langridge-
C. Feuillet

9 sequence contigs identified for marker
development and candidate gene
identification

Yr49 Yellow rust resistance 3DS Bread wheat CSIRO—Australia W. Spielmeyer Contig at the proximal side identified,
contig at distal side not identified yet,
and cosegregating contig identified

cul4 Tillering 3H Barley University of Milan
—Italy

L. Rossini One BAC spanning the cul4 genetic
interval and candidate gene
identified and sequenced
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between loci which are physically linked to one another. Panels
of non-related lines represent many cycles of historical recom-
binations compared to typical QTL mapping populations. LD
will likely decay very rapidly with genetic distance if the panel
used consists of very diverse lines; thus, correlations between
marker and QTL will be identified only if the marker is tightly
linked to the QTL (Paux et al. 2012; Miedaner and Korzun
2012). The number of markers needed to accomplish such
studies therefore increases with the diversity of the panel, and
a balance must be found between the resolution of the panel
and the power to detect associations. Barley and wheat can
now rely on the genomics tools described above to develop
large quantities of molecular markers.

However, to take the full advantage of these resources, it
is essential that adapted association panels are developed. In
the past years, several elite panels have been developed for
wheat and barley, notably for European germplasm. Le
Couviour et al. (2011) described a panel of 195 French-
grown elite winter wheat varieties. Reif et al. (2011) used a
455 central European winter wheat varieties panel for asso-
ciation mapping of QTL for grain yield, heading date and
Fusarium Head Blight resistance, while Cockram et al.
(2010) studied a 500 barley cultivar panel for 15 morpho-
logical traits. In the TriticeaeGenome project, breeders from
France, the UK, and Germany established a panel of 376
varieties based on (1) general phenotypic levels of adapta-
tion to field conditions, (2) phenotypic homogeneity, and (3)
genotypic diversity. This panel has been used for genotyp-
ing and phenotyping adaptive traits such as yield, heading
date, and plant height. It has been distributed to colleagues
in India and Argentina who are interested in identifying new
alleles in European winter wheat and is accessible for fur-
ther collaboration. Thus, most of the material currently
grown in Europe for wheat and barley is represented in
one panel or another. The TriticeaeGenome panel and the
one developed by Reif et al. (2011) are complementary
resources to investigate traits in western and central Euro-
pean wheat germplasm that could be used to cross-validate
QTL regions. Reif et al. (2011) identified QTL underlying
grain yield on chromosomes 1B, 1D, 2A, 4A, 4D, 5A, 5B,
and 7A and heading date on chromosomes 1B, 2B, 4B, 4D,
5A, 5D, and 7D. Moreover, the potential favorable alleles
identified in these panels are more likely to be taken up by
breeders as they will be already available in elite germplasm
and more amenable for introduction into marker-assisted
recurrent selection. Finally, genomic selection (GS) has
been proposed as an alternative to use marker data in breed-
ing that could correct some of the deficiencies in classical
marker-assisted selection (Meuwissen 2009) and is the sub-
ject of further development in crop plants (Heffner et al.
2010). The TriticeaeGenome panel (376 individuals) repre-
sents a good example of the diversity in west European
wheat, and it could be used to study GS in wheat. Indeed,

the size of the TriticeaeGenome panel is sufficient to be
divided into a training set and a validation set, and pheno-
typic data have already been gathered over 2 years in a total
of seven locations. The panel itself is not linked to any
commercial breeding programme, so it can be envisaged
that both researchers and breeders use the resource.

Bioinformatic tools and databases

The Triticeae community established a unique database,
GrainGenes (http://wheat.pw.usda.gov/), to provide a suite
of services for the Triticeae and oat communities, including
databases, documents, tools, data files, announcements,
curation, and community assistance. To date, GrainGenes
stores 76 wheat genetic maps, more than 100,000 genetic
markers, and approximately 271,000 wheat ESTs. These
sequences can be searched through a BLAST server or by
using queries to get additional information on genetic map-
ping data. GrainGenes also hosts the Triticeae Repeat data-
bank that comprises 1,717 sequences of wheat transposable
elements. Another database, HarvEST (http://harvest.
ucr.edu/) that is highly frequented by users of the Triticeae
community provides access to curated EST assemblies of
wheat and barley as well as meta data linking to marker
resources and orthologs of related grasses (Close et al.
2008). With the developments in physical mapping and
sequencing activities, new databases have emerged to inte-
grate outputs from studies on wheat and barley. For
example, the INRA URGI Wheat database (http://urgi.
versailles.inra.fr/Species/Wheat) provides access to the
physical maps of The TriticeaeGenome chromosome 1BL,
1AS, 3B, and 3D as well as to the 3A physical map which is
hosted at the WGGRC. Physical maps of cv. Chinese Spring
chromosomes that are constructed under the framework of
the IWGSC are being integrated regularly into the database
(http://www.wheatgenome.org/Projects/IWGSC-Bread-
Wheat-Projects/Physical-mapping/). A GBrowse displays
the physical maps in relation with other datasets (e.g., ge-
netic markers, reference sequences, QTLs, and SNPs). To
date, the database stores 26 wheat genetic maps, 19,029
markers, 324 QTLs, 10,819 SNPs, and 544,529 ESTs. In
addition, URGI hosts the IWGSC sequence repository that
provides access to the survey sequence assemblies of the 21
chromosomes of Chinese Spring (http://urgi.versailles.
inra.fr/Species/Wheat/Sequence-Repository). The URGI da-
tabase is mirrored at the MIPS which host equivalent data-
sets for the barley genome (http://mips.helmholtz-
muenchen.de/plant/barley/index.jsp).

In support of the international efforts to obtain reference
sequences from rice (riceGAAS; http://ricegaas.dna.affrc.
go.jp/) and the Triticeae, a versatile, easy-to-use online auto-
mated tool for annotation, a semi-automated annotation
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pipeline called TriAnnot has been developed (Leroy et al.
2012). Its modular architecture allows for the annotation and
masking of transposable elements, the structural and functional
annotation of protein-coding genes with an evidence-based
quality indexing, and the identification of conserved non-
coding sequences and molecular markers. To date, the TriAn-
not pipeline is parallelized on a 712 CPU computing cluster
that can run a 1-Gb sequence annotation in less than 26 h.
When evaluated on rice and wheat data sets, TriAnnot system-
atically showed a higher level of reliability than other annota-
tion pipelines that are not improved for wheat. As it is easily
adaptable to the annotation of other plant genomes, TriAnnot
should become a useful resource for the annotation of large and
complex genomes in the future.

The rapid advances in wheat and barley provide the basis
for the next steps in the efficient exploitation of the newly
available resources for research and breeding. The interna-
tional consortia discussed in this review have been success-
ful in establishing an interface of cooperation to facilitate the
exchange of genome sequence data and to increase the
impact of advances on growers and breeding programs.
Emerging technological advances in physical and genetic
mapping, marker development and association genetics,
bioinformatics and map-based cloning provide a foundation
for step changes in germplasm development that would
otherwise take a much longer period of time.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution License which permits any use, distribution,
and reproduction in any medium, provided the original author(s) and
the source are credited.
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