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Introduction

In the last decade, the ab-initio approach has become a standard theoretical tool
to investigate the excited states of solids and molecules. Most ab-initio methods are
based on the DFT (the Hohenberg-Kohn-Sham density-functional theory) [1], which
is an exact method to predict the ground state properties. However, methods on the
many body perturbation theory (MBPT) can also be based on standard Hartree-Fock
descriptions. Several approaches are suitable to interpret different experimental results:
for example, the GW approximation and the TDDFT (the time-dependent extension
of the DFT) [2]. The GW approach describes the single quasiparticle excitation more
accurately than the Kohn-Sham eigenvalues: the agreement with photoemission exper-
iments is improved and, in addition, also finite quasiparticle lifetimes can be described.
Similarly, TDDFT permits the theoretical interpretation of dielectric properties of a
wide range of materials: from atoms, to surfaces and nanostructures. For these reasons
a quite large effort has been spent in the simulation of dielectric properties of semicon-
ductors. The successes obtained in describing bulk silicon [3, 4, 5] (usually chosen as
benchmark system) pushed toward the application of these method to more complex
systems, like surfaces or materials of technological applications.

The homogeneous electron gas (HEG) [6, 7] is a system widely studied by the scien-
tific community. The simplicity of this model of electrons moving in an uniform positive
background (the jellium) allows one to investigate very complex theories and approx-
imations. By exploiting the translational invariance the equations can be strongly
simplified. Although the HEG does not exist in nature, the possibility to perform com-
plex calculations that can be compared with the realistic nearly free-electron metals
makes this system of crucial importance.

The HEG does not take into account the presence of the periodic ionic structure
typical of real metals. This applies to system with a complex electronic structure like
the transition metals, and also to simple metals like Al, Na or K. Band structure ef-
fects are able to introduce new features not described by the HEG already when the
correlation are dealt at the simplest level. This explains the reason of the interest
in performing full ab initio calculation of excited-state properties of realsistic metallic
systems. Despite they are close to the HEG the calculations for metals are more com-
plicated than the ones of semiconductors. The main challenge is due to the presence of
electronic transitions between states very close to the Fermi surface (intraband transi-
tions), which add an additional difficulty compared to the case of semiconductors. The
inclusion of these transitions in the response function is a still debated problem and
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a standard solution has not been proposed yet. The few available studies introduce
the intraband metallic contribution to the dielectric response mainly using a simplified
Drude model, where only the plasma frequency is computed ab initio [8].

I faced this problem for the first time during my master thesis [9], where I was
interested in jellium surface as a model for metallic surfaces. This project could not
be completed, because, while performing a serie of tests, I discovered the unexpected
and unphysical opening of a gap in the band structure of the metallic surface. We
traced back this effect to the incorrect evaluation of the screening that was lacking of
the intraband contributions. This motivated our interest in understanding how these
systems can be simulated and how calculations compare with experiments.

In this thesis I propose a detailed discussion of the calculation of the dielectric
response of metallic systems. We mainly performed simulations of Al and Na, since
their near free-electron like behaviour permits also a comparison with the results of
the HEG model. On the other hand, we also explored the possibility that our methods
could be applied to more complex system. In this direction we performed calculation
of the optical properties of ferromagnetic Fe, which includes the additional complexity
of the presence of the 3d electrons. We also tried to understand if the accuracy of ab

initio calculations in the case of semiconductors can be extended to metallic systems.

The present thesis focuses on the frequency-dependent dielectric function ǫ(q, ω).
In the first part of this thesis we review briefly the GW and TDDFT approaches used
in our calculations. We will also motivate the study of bulk metals. In the second
part of this thesis the new methods developed in this work do deal with the intraband
contributions will be described. We will finally analyze the obtained results.

In the discussion of the GW calculations for metals, we propose a method to deal
with the intraband term based on a fit of the finite-momentum screened interaction.
This methods works efficiently when the plasmon pole approximation is an accurate
assumption.

In addition to optical adsorption, other experiments permit to access the dielectric
properties of metals, including the energy-loss spectroscopy and inelastic X-ray scatter-
ing spectroscopy (IXSS). In the present thesis we performed a systematic calculation of
the dynamic structure factor of Na and Al to understand the role of electronic correla-
tion beyond the random phase approximation (RPA). We perform TDDFT simulations
using several exchange and correlation kernels and including quasiparticle effects, to
understand how they are important to provide a satisfactory theoretical description of
the experimental measurements. TDDFT is not only able to predict loss function mea-
surements, but also optical properties. This thesis address also that problem proposing
a new method to deal with the intraband transitions, method applied to Al chosen as
benchmark and to ferromagnetic Fe.

In Chapter 1 we introduce the many-body problem, which is described in detail in
Chapter 2, where we review the many-body perturbation theory and the GW approx-
imation. In Chapter 3 the TDDFT and the linear response formalism are presented.
We introduce the dielectric function and briefly discuss its main features in Chapter
4. In Chapter 5 we show the applications, by presenting the problem of the fictitious
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gap introduced by the GW corrections and by proposing a fit on the polarizability to
deal with the intraband transitions. We apply finally TDDFT, by discussing the IXSS
spectra of Na and of Al in Chapter 6. Optical properties are discussed in Chapter 7.
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Theoretical framework
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Chapter 1

The many-body problem

To describe ab initio the macroscopic properties of condensed matter, one needs
the following Hamiltonian which depends on a large number of degrees of freedom:

H({R}, {r}) = Te + TI + Vee + VeI + VII =

=
Ne
∑

i=1

−∇2
i

2
+

NI
∑

I=1

− ∇2
I

2MI
+

1

2

∑

i6=j

1

|ri − rj |
+

−
Ne
∑

i=1

NI
∑

n=1

Zn

|Rn − ri|
+

1

2

∑

n 6=m

ZnZm

|Rn −Rm|
. (1.1)

where atomic units has been adopted: ~ = e = me = 4πǫ0 = 1. In such an
Hamiltonian there are five contributions: the kinetic energy of the electrons (whose
coordinate are labelled by r) Te , that of the ions (R) TI , the electron-electron Coulomb
repulsion Vee, the electron-ion attraction VeI and the repulsion of the ions VII .

The determination of the eigenstates of H constitutes a formidable task because
of the very high number of variables involved1. Moreover the interaction between
particles makes impossible to separate the original problem in a set of simpler ones.
For these reasons one must introduce several approximations in order to make such a
problem treatable, and to obtain reliable theoretical predictions of electronic properties
of condensed matter.

1.1 The Born-Oppenheimer separation

The first approximation that is widely used aims to separate the ionic problem
from the electronic one. This is possible because the electronic mass is three orders of
magnitude smaller than the ionic one. From this it follows that the characteristic time
connected with the electronic motion is of the order of 10−15 s÷10−16 s, smaller than
the one for the ionic motion, of the order of 10−12 s.

1One passes from a few tens degrees of freedom for an atom or a small molecule to a number
comparable to the Avogadro number for a real solid.
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1.2. The electronic problem

These arguments motivate the use of the Born-Oppenheimer separation where the
eigenfunction of the entire many-body problem is written as the product of an electronic
part (depending only parametrically on the ions position) times a ionic one:

Υ({R}, {r}) = ΦI({R})Ψ{R}({r}). (1.2)

This assumption neglects the electron-ion overlap in the original problem, in such a
way to introduce two partially separate equations of motion:

[

Te + Vee + Vext {R}

]

Ψ{R}({r}) = Ee
{R}Ψ{R}({r}) (1.3)

TIΦI({R}) + [VII({R}) + Ee
{R}]ΦI({R}) = ETOT ΦI({R}), (1.4)

where we have called Vext the electron-ion interaction at fixed ions position.

1.2 The electronic problem

Although the problem is largely simplified thanks to the reduction of the number
of the degrees of freedom due to the exclusion of the ionic motion, it still remains
challenging. The electronic wave functions are still depending on the electronic coordi-
nates, which make the problem impossible to be treated by using brute force methods.
To overcome this difficulty other approximations have been proposed. Two of the most
used approaches are the Hartree-Fock approximation and the density functional theory
(DFT), which are sketched in the following sections.

1.2.1 The Hartree-Fock approximation

One of the standard approximation used to treat the fully interacting electronic
Hamiltonian is the Hartree-Fock approximation. In this approach one makes the as-
sumption that the electrons moves in a mean filed generated by all electrons with, in
addition, the correlations induced by the Pauli principle. Under these assumptions, the
electronic many-body eigenfunction reduces to a Slater determinant of single-electron
wavefunctions:

Ψ({r}) =
1√
N !

N !
∑

i=1

(−1)Piφ1(rPi(1))φ2(rPi(1)).....φN(rPi(N)) (1.5)

where Pi is a permutation of the single-particle wavefunction indexes and the factor
(−1)Pi takes in account the sign due to odd or even permutations.

With this assumption it is possible to write the total energy of the system as:

Ee (HF ) =

N
∑

i=1

∫

d3rφ∗
i (r)

(

−∇2

2
φi(r)

)

+

N
∑

i=1

∫

d3r|φi(r)|2Vext(r) +

+
1

2

∑

i,j

∫

d3rd3r′
|φi(r)|2|φj(r

′)|2
|r − r′| − 1

2

∑

i,j

∫

d3rd3r′
φ∗

i (r)φi(r
′)φj(r)φ

∗
j(r

′)

|r− r′| =

= T + Eext + EH + EX . (1.6)
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Chapter 1. The many-body problem

In this expression the first term is the kinetic contribution, the second is the interaction
with the external potential, EH is the Hartree energy (interaction of an electron with
the field generated by all electrons) and EX is the exchange one (the term that takes
into account the Pauli principle).

By applying the variational principle, imposing the orthonormality of the φi or-
bitals, it is possible to deduce the following set of equations for the single electron
wavefunctions:

−∇2

2
φi(r) + Vext(r)φi(r) + VH([n], r)φi(r) +

∫

d3r”φi(r”)VX(r, r”, [ñ]) = ǫiφi(r).(1.7)

where VH =
∫

d3r′ n(r′)
|r−r′|

and VX =
∫

d3r′ ñ(r′)
|r−r′|

are the Hartree and the exchange poten-
tial coming from the functional derivatives of the corresponding energies with respect
to φ∗

i (r), n(r) is the electron density n(r) =
∑

j |φj(r)|2 and ñ(r, r′) =
∑

j φj(r)φ
∗
j(r

′).
It is important to notice that the total energy of the system is not the mere sum-

mation of the eigenvalues since the Hartree and the exchange contributions would be
counted twice; the total energy is given instead by:

Ee (HF ) =
∑

i

ǫi −
1

2
EH − 1

2
EX . (1.8)

1.2.2 The Density Functional Theory

The Density Functional Theory (DFT) [1] is based on a completely different ap-
proach to the many-body problem. Instead of considering the electronic ground-state
eigenfunction as key quantity, the central role is assumed by the ground-state density
n(r). This permits a great simplification of the problem since n(r) depends only on
one set of spatial coordinates.

The starting point of this framework is the Hohenberg and Kohn (HK) theorem that
states the existence of a biunivocal correspondence between the ground-state electron
density and the corresponding external potential [10]. A consequence of this theorem
is the possibility of writing the ground-state energy as a functional of the density only,
once an external potential Vext(r) is chosen:

Ee (HK)[n(r); vext(r)] = 〈ψG[n(r)]|T + Vee + Vext|ψG[n(r)]〉. (1.9)

This is because the ground-state wavefunction is univocally identified once the density
is given. Moreover it is possible to rewrite the HK functional as:

Ee (HK)[n(r); vext(r)] = T [n(r)] + Vee[n(r)] +

∫

d3r[n(r)]ext(r)n(r). (1.10)

The peculiarity of this functional is that the first two terms are universal, i.e. indepen-
dent on the specific system. To this functional it is possible to apply the variational
principle which implies that E(HK) assumes the minimum value when ψG[n(r)] is in
the ground state.
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1.2. The electronic problem

This theorem makes also possible the introduction of an auxiliary system of non
interacting electrons [11] with the same density (and by consequence the same ground-
state energy) of the real system, since it establishes the existence and unicity of an
unknown external potential for the non interacting case that produces a density equal
to the one of the original problem. The advantage of this operation is due to the fact
that the eigenfunction of this auxiliary system is nothing else that a Slater determinant
of single-electron orbitals. This auxiliary system permits also to simplify the energy
functional, which becomes:

Ee (HK)[n(r); vext(r)] = T0[n(r)] + EH + EXC [n(r)] +

∫

d3rVext(r)n(r), (1.11)

where in the exchange and correlation energy EXC are placed all the differences between
the kinetic term of non interacting particles and the kinetic energy of real electrons and
between the Hartree energy and the actual electron-electron interaction. By applying
the variational procedure to this functional one deduces the following Kohn-Sham set
of equations

[

−∇2

2
+ Vext(r) + VH(r) + VXC(r)

]

φi = ǫiφi, (1.12)

where VXC is the functional derivative of EXC with respect to the density.
Once this set of equations is solved, it is possible to compute the total energy:

Ee (KS) =
∑

i

ǫi −
1

2

∑

i,j

〈

φiφj|
1

|ri − rj|
|φiφj

〉

+ EXC [n(r)] −
∫

d3rVXC(r)n(r).(1.13)

However the functional EXC is still unknown. In practice, although DFT is in principle
exact, one needs to make an approximation for EXC in order to get an expression
for this functional. One simple and widely used approximation is the local density
approximation (LDA). In the LDA the EXC chosen is taken locally equal to the one of
an homogeneous electron gas with the same density:

E
(LDA)
XC [n(r)] =

∫

d3rǫXC [n(r)]n(r). (1.14)

Here, ǫXC [n(r)] is the many-body exchange and correlation per particle of a uniform
electron gas. This approximation is particularly well justified in systems with slowly
varying densities.

To determine ǫXC it is necessary to solve accurately the fully interacting uniform
electron gas problem, and this is far from being trivial: in practice the starting point for
its evaluation usually are the simulations made by Ceperley and Adler with Monte Carlo
methods [12]. Based on these computations, different parameterizations of ǫXC have
been proposed, e.g. the one given by Perdew and Zunger [13]. Other parameterizations
consider spin polarized systems [14, 15]. In addition, more complex approximation for
EXC are available, like the generalized gradient approximations (GGA) [16]. The DFT
formalism is reviewed in Ref. [1] and the numerical algorithm used for simulations can
be found in Ref. [17]
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Chapter 1. The many-body problem

Table 1.1: Wigner-Seitz radius for selected metals [18].

element Li Na K Cu Al
rS (a0) 3.25 3.93 4.86 2.67 2.07

1.3 The homogeneous electron gas

The simplest model, that can be used as a first approximation to model the prop-
erties of a metal, is the homogeneous electron gas (HEG) or jellium model. The HEG
model consists of a gas of electrons immerged in a uniform positive charge. In prac-
tice this charged background removes the q 6= 0 component of the external potential
Vext produced by the ionic lattice. The resulting interacting system is translational
invariant which permits to determinate analytically different properties.

In the HEG the electron density is constant, and it is often described by the pa-
rameter rS (the Wigner-Seitz radius). rS is related to background density (which in
the homogeneous case is equal to the electron one) n = N

V
through the relation:

1

n
=

4πr3
S

3
(1.15)

By considering only the conduction electron, rS usually varies between 2 a0 and 4 a0.
It can be as large as 6 a0 for the heavy alkalis. In table 1.1 we report the rS value for
a few metals.

The presence of the uniform positive background with the same density of the elec-
trons induces a cancellation of the electron-background with background-background
interaction and the Hartree term. This means the resulting energy being only kinetic,
therefore positive. As a consequence in the Hartree approximation the HEG is not
bounded. The exchange and correlation energy comes to be necessary to yield negative
energies per particle. Specifically in the Hartree-Fock approximation the total energy

per particle is 3
10

(

9π
4

)2/3 1
r2
S

− 3
4π

(

9π
4

)1/3 1
rS

. On the other hand in DFT A constant den-

sity implies that a constant exchange and correlation potential with a resulting total

energy per particle equal to the free electron kinetic term 3
10

(

9π
4

)2/3 1
r2
S

, diminished by

ǫXC . By definition TDLDA is exact for the HEG.
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1.3. The homogeneous electron gas
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Chapter 2

The many-body perturbation

theory

In this chapter we present a different way approach to the many body problem ed on
a perturbation theory. In such a scheme the Hartree-Fock approximation corresponds
to the 1st order term of the expansion in the bare Coulomb potential. In this case
the key variable is not the complicate many-body wave function, but a quantity that
contains less informations: the Green’s function.

2.1 The Green’s function

The single particle Green’s function is defined as the ground-state |ΨGS〉 expectation
value ground state of the time-ordered product of a creation and of an annihilation field
operator:

iG(1, 2) = 〈ΨGS|T [ψ̂(1)ψ̂†(2)]|ΨGS〉 =

= θ(t1 − t2)〈ΨGS|ψ̂(1)ψ̂†(2)|ΨGS〉 +

− θ(t2 − t1)〈ΨGS|ψ̂†(2)ψ̂(1)|ΨGS〉 (2.1)

where generalized index 1 refers to the spatial, temporal and spin coordinates (r1, t1, σ1),
T is the time ordering operator and ψ(1) and ψ†(2) are the annihilation and creation
field operators respectively. The Green’s function can be interpreted as the amplitude
connected with the propagation of an electron created at (r2, t2) and annihilated at
(r1, t1) if t1 > t2, when t1 < t2 G describes the propagation of a hole.

Once G is known it is possible to calculate the expectation values of any single
particle operator Ô =

∫

d1d2 δ(t2 − t1)ψ̂
†(1)O(1, 2)ψ̂(2):

〈ΨGS|Ô|ΨGS〉 =

∫

d1d2δ(t2 − t1)O(1, 2)〈ΨGS|ψ̂†(1)ψ̂(2)|ΨGS〉 =

= −i
∫

d1d2δ(t2 − t+1 )O(1, 2)G(2, 1) (2.2)

9



2.2. The Lehmann representation of the Green’s function

where t+1 = t1 + η with η an infinitesimum. It is also possible to compute the total
energy thanks to the Galitskii-Migdal equation [19]:

Ee = − i

2

∑

σ1,σ2

δσ1,σ2

∫

lim
r2→r1

lim
t2→t+1

[

i
∂

∂t1
+ h0(r1)

]

G(1, 2)d3r1 (2.3)

where h0 = ∇2

2
+ Vext is the single-particle Hamiltonian.

2.1.1 The independent particle Green’s function

In case of non interacting fermions the Green’s function can be calculated exactly.
In this case the field operators, comparing in the definition, can be rewritten in the
basis of creator and annihilator operators of the single particle states of h0, |n〉 with
energy En :

ψ̂σ(r, t) =
∑

n

ĉn(t)〈r, σ|n〉. (2.4)

Thanks to this transformation the Green’s function becomes:

iG(1, 2) =
∑

n,m

〈r1, σ1|n〉〈m|r2, σ2〉e−iEnt1+iEmt2
[

θ(t1 − t2)〈ΨGS|ĉnĉ†m|ΨGS〉+

− θ(t2 − t1)〈ΨGS|ĉ†mĉn|ΨGS〉
]

(2.5)

In the more special case non interacting HEG the natural space where describe the
system is the momentum one and the matrix element 〈r, σ|n〉 are nothing else than
plane waves. This permits to simplify further the expression (2.5) becomes:

iG0(1, 2) =
eik·(r1−r2)−iǫk(t1−t2)

(2π)3
[θ(t1 − t2)θ(|k| − kF ) − θ(t2 − t1)θ(kF − |k|)] . (2.6)

2.2 The Lehmann representation of the Green’s func-

tion

If the Hamiltonian does not contain any term which depends explicitly on the time,
it can be shown that the Green’s function will depend only on the difference of the
time coordinates (t1 − t2). This makes it possible to write G in frequency space by
means of a Fourier transform [20].

The starting point is Eq. (2.1) that we rewrite as:

iG(1, 2)=
∑

ΨN+1
n

θ(t1 − t2)e
−i(EN+1

n −EN
GS

)(t1−t2)〈ΨN
GS|ψ̂α(r1)|ΨN+1

n 〉〈ΨN+1
n |ψ̂†

β(r2)|ΨN
GS〉 +

+
∑

ΨN−1
n

θ(t2 − t1)e
−i(EN−1

n −EN
0 )(t1−t2)〈ΨN

GS|ψ̂†
β(r2)|ΨN−1

n 〉〈ΨN−1
n |ψ̂α(r1)|ΨN

GS〉(2.7)

10



Chapter 2. The many-body perturbation theory

where ΨN
GS is the N particles ground state and ΨN+1

n and ΨN−1
n are general states

respectively of N + 1 and N − 1 particles, with energies EN
GS, EN+1

n and EN−1
n .

At this point we observe that θ(t1 − t2) = limη→0
i

2π

∫ ∞

−∞
dω eiω(t1−t2)

ω+iη
. As a conse-

quence the Fourier transform of G is:

G(r1, r2, ω) =
∑

ΨN+1
n

〈ΨN
GS|ψ̂α(r1)|ΨN+1

n 〉〈ΨN+1
n |ψ̂†

β(r2)|ΨN
GS〉

ω − (EN+1
n − EN

0 ) + iη
+

+
∑

ΨN−1
n

〈ΨN
GS|ψ̂†

β(r2)|ΨN−1
n 〉〈ΨN−1

n |ψ̂α(r1)|ΨN
GS〉

ω + (EN−1
n − EN

0 ) − iη
(2.8)

which is known as Lehmann representation of the Green’s function. By redefining the
matrix elements and the energy differences [6]:

{

fj(r) = 〈ΨN
GS|ψ̂σ(r)|ΨN+1

n 〉 ǫj = EN+1
n − EN

0 ǫj ≥ µ

fj(r) = 〈ΨN−1
n |ψ̂σ(r)|ΨN

GS〉 ǫj = EN
0 − EN−1

n ǫj < µ,
(2.9)

Eq. (2.8) can be further simplified as:

G(r1, r2, ω) =
∑

j

fj(r)f
∗
j (r′)

ω − ǫj + iη
+

∑

j

fj(r)f
∗
j (r′)

ω − ǫj − iη
. (2.10)

2.3 The Green’s function expansion and the Dyson’s

equation

As pointed out before the knowledge of the full interacting Green’s function per-
mits to calculate exactly different observables. Nevertheless the determination of G
is as complicate as the solution of the full interacting Hamiltonian. The advantage in
approaching the many-body problem by means of the Green’s function formalism is
the possibility of write a perturbative expansion for this function. In this section the
basics for writing such expansion will be presented.

2.3.1 The Gell-Mann and Law theorem

In the Shrödinger picturethe time evolution of an eigenfunction ψ(0) is expressed
as Û(t)ψ(0), where U(t) is the time evolution operator. In the interaction picture a
slightly different approach is preferred: only the evolution due the external perturbing
potential V is included in the operatorial part, while the evolution due to the unper-
turbed Hamiltonian is retained on the eigenfunction. It is than possible to introduce
a generalized time evolution operator Û(t, t′) which satisfies the following equation of
motion:

∂

∂t
Û(t, 0) = −iV (t)Û(t, 0), (2.11)

11



2.3. The Green’s function expansion and the Dyson’s equation

with initial condition Û(0, 0) = I. The solution of Eq. (2.11) can be formally written
as:

Û(t, 0) = I +
∞

∑

k=1

(−i)k

∫ t

0

dt1

∫ t1

0

dt2...

∫ tk−1

0

dtk [T (V (t1)V (t2)...V (tk))] =

= T exp

[

−i
∫ t

t′
dτV (τ)

]

. (2.12)

From Eq. (2.12) it can be shown that the generic evolution is Û(t, t′) = Û(t, 0)Û †(t′, 0).
We consider now the Hamiltonian

H = H0 + e−ǫ|t|V, (2.13)

that connects with a slow time evolution (one is interested in the limit ǫ → 0) the
unperturbed Hamiltonian (t → ±∞) with the full interacting one (t → 0). We are
interested a state |Ψ±〉 which evolves from ±∞ to 0:

|Ψ±〉 =
Û(0,±∞)|Ψ0〉

〈Ψ0|Û(0,±∞)|Ψ0〉
(2.14)

where Ψ0 is an eigenstate of the unperturbed Hamiltonian H0. The Gell-Mann and
Law theorem [21] states that |Ψ±〉 is an eigenstate of the full interacting Hamiltonian
H = H +0 V . Under the assumption the evolution is adiabatic, and that the ground
state is reasonably lower in energy than the excited ones, the ground state of H0 has
no other choice than evolve to the ground state of the interacting system.

In conclusion it is possible to write the Green’s function as:

iG(1, 2) =
〈Ψ0

GS|T [Û(−∞, t1)ψ̂(1)Û(t1, t2)ψ̂
†(2)Û(t2 + ∞)]|Ψ0

GS〉
〈Ψ0

GS|S|Ψ0
GS〉

, (2.15)

where S = Û(−∞,+∞). With some algebra the previous equation can be simplified
as:

iG(1, 2) =
〈Ψ0

GS|T [Sψ̂(1)ψ̂†(2)]|Ψ0
GS〉

〈Ψ0
GS|S|Ψ0

GS〉
. (2.16)

2.3.2 The Wick’s theorem

If we consider the expansion of the operator S according to Eq. (2.12) it is possible
to write an expansion for the Green’s function, Eq. (2.16), as:

iGσ,σ′(rt, r′t′) =

=

∑∞
n=0

(−i)n

n!

∫ ∞

−∞
dt1..dtn〈Ψ0

GS|T [V (t1)..V (tn)ψ̂σ(rt)ψ̂†
σ′(r′t′)]|Ψ0

GS〉
∑∞

n=0
(−i)n

n!

∫ ∞

−∞
dt1..dtn〈Ψ0

GS|T [V (t1)..V (tn)]|Ψ0
GS〉

. (2.17)

12



Chapter 2. The many-body perturbation theory

If we replace the interaction potential with its second quantization expression:

V (t) =
1

2

∑

σ1,σ2

∫

d3r1d
3r2ψ̂

†
σ1

(r1, t)ψ̂
†
σ2

(r2, t)vC(r1 − r2)ψ̂σ2(r2, t)ψ̂σ1(r1, t). (2.18)

Eq. (2.17) generates an expansion of the Green’s function in terms of the Coulomb
potentials and of the field operators. For example the numerator Num of Eq. (2.17)
results:

Num = 〈Ψ0
GS|T [ψ̂σ(rt)ψ̂†

σ′(r
′t′)]|Ψ0

GS〉 + (2.19)

− i

∫ ∞

−∞

dt1
∑

σ1,σ2

∫

d3r1d
3r2vC(r1 − r2)

〈Ψ0
GS|T [ψ̂†

σ1
(r1, t)ψ̂

†
σ2

(r2, t)ψ̂σ2(r2, t)ψ̂σ1(r1, t)ψ̂σ(rt)ψ̂†
σ′(r

′t′)]|Ψ0
GS〉 + ...

which requires to evaluate the expectation value of the field operators.

The Wick’s theorem provides a method to perform the evaluation of these expec-
tation values. The basic idea underlying this theorem is to move all the annihilation
operators coming from the field operators to the right1, so that, when applied at the
independent-particle ground state they will give 0. Similarly the creation operators
will be moved to the left. For this reason the normal ordering is introduced as the
permutation that permit to have all the annihilation operator on the right. Since in
general in the passage from the time ordering to the normal ordering one must take
into account the anticommutation rules, we need to define the contraction between
two field operators as the difference between the time ordering and the normal order-

ing: ψψ = T [ψψ] − N [ψψ]. The link between the Wick’s theorem and many body

perturbation theory is given by the fact that ψψ† = iG0.

The Wick’s theorem [22] states that the time ordering of a serie of field operators is
equal to the sum of the normal ordering of the fields operator with increasing number
of contracted operator:

T [ψψψ..ψ] = N [ψψψ..ψ] +
∑

N [ψψψ ..ψ] +
∑

N [ψψ ψψ ..ψ] (2.20)

2.3.3 The self-energy and the Dyson’s equation

When Wick’s theorem is applied to the Green’s function the only non zero contribu-
tion comes from the terms where all the field operators are contracted, as 〈N [..]〉 = 0.

1This is always possible since thanks to a canonical transformation the field operators can be
written as sum of a creation and annihilation part.
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2.4. The equation of motion for the Green’s function

The Green’s function at the first order can, therefore, be written as2:

G(1, 2) = G0(1, 2) + (2.21)

− i

∫

d3d4G0(1, 3)vC(r3 − r4)G0(3, 2)G0(4, 4)

+ i

∫

d3d4G0(1, 3)vC(r3 − r4)G0(3, 4)G0(4, 2) + ...

Eq. (2.21) can be summarized as:

G(1, 2) = G0(1, 2) +

∫

d3d4G0(1, 3)Σ̃(3, 4)G0(4, 2) (2.22)

where Σ̃(3, 4) defines the reducible self-energy which is defined by comparing Eq. (2.21)
and Eq. (2.22).

Eq. (2.22) can be further simplified by observing that Σ̃ can be expressed as a
product of a series of simpler functions (the irreducible self-energy Σ) separated by
non interacting Green’s functions. Thanks to this observation Eq. (2.22) becomes:

G(1, 2) = G0(1, 2) +

∫

d3d4G0(1, 3)Σ(3, 4)G0(4, 2) +

+

∫

d3d4d5d6G0(1, 3)Σ(3, 4)G0(4, 5)Σ(5, 6)G0(6, 2) + ... (2.23)

By some manipulation the previous equation becomes:

G(1, 2) = G0(1, 2) +

∫

d3d4G0(1, 3)Σ(3, 4) ×

×
[

G0(4, 2) +

∫

d5d6G0(4, 5)Σ(5, 6)G0(6, 2) + ...

]

(2.24)

G(1, 2) = G0(1, 2) +

∫

d3d4G0(1, 3)Σ(3, 4)G(3, 4), (2.25)

which is the Dyson’s equation for the Green’s function.

2.4 The equation of motion for the Green’s function

Starting from the equation of motion for the field operators it is possible to write
a similar equation also for the Green’s function [23]:

[

i
∂

∂t1
− h0(r1)

]

G(1, 2) − i

∫

d3 vC(1, 3)G2(1, 3
+; 2, 3++) = δ(1, 2). (2.26)

2At first order only two addends appear since the remaining simplify with the denominator in Eq.
(2.17).
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Chapter 2. The many-body perturbation theory

This equation connects the one particle Green’s function G(1, 2) with the two particle
Green’s function G2 defined as G2(1, 2; 3, 4) = 〈ΨGS|T [ψ(1)ψ(2)ψ†(4)ψ†(3)]|ΨGS〉. In
the same way it is possible to write an equation of motion for the two-particle Green’s
function which will involve the three-particle Green’s function and so on.

A different approach to introduce the self-energy is based on the Schwinger deriva-
tive technique [24]. One introduces a small perturbation U(r1, r2, t) in the Hamiltonian,
which will be vanished at the end of the calculation.

Starting from Eq. (2.16) and by taking the functional derivative of the Green’s
function with respect to U (which affects the S-matrix only) it is possible to write:

iδG(1, 2) =
〈ΨGS|T [δSψ(1)ψ†(2)]|ΨGS〉

〈ΨGS|T [S]|ΨGS〉
− iG(1, 2)

〈ΨGS|T [δS]|ΨGS〉
〈ΨGS|T [S]|ΨGS〉

. (2.27)

Since the variation of S can be written as:

T [δS] = −iT [S

∫ ∞

−∞

dt

∫

d3r3d
3r4ψ

†(r3, t
+)δU(r3, r4, t)ψ(r4, t), (2.28)

we rewrite Eq. (2.27) as:

iδG(1, 2) = −
∫ ∞

−∞

dt

∫

d3r3d
3r4δU(r3, r4, t) [ G2(1, r4t; 2, r3t

+) +

− G(1, 2)G(r4t, r3t
+)]. (2.29)

Since the previous equation can be extended to the case t3 6= t+ the result is:

δG(1, 2)

δU(3, 4)
= −G2(1, 4; 2, 3) +G(1, 2)G(4, 3). (2.30)

Applying the previous result to the special case of a local potential U(3, 4) =
U(3)δ(3, 4) the equation of motion (2.26) can be rewritten as:

[

i
∂

∂t1
− h0(r1)

]

G(1, 2) − i

∫

d3vC(1, 3)G(3, 3+)G(1, 2) +

− i

∫

d3vC(1+, 3)
δG(1, 2)

δU(3)
= δ(1, 2), (2.31)

or equivalently:
[

i
∂

∂t1
− h0(r1) + i

∫

d3vC(1, 3)G(3, 3+)

]

G(1, 2) +

−i
∫

d5

[
∫

d3d4v(1+, 3)
δG(1, 4)

δU(3)
G−1(4, 5)

]

G(5, 2) = δ(1, 2). (2.32)

In Eq. (2.32) it is possible to recognize the Hartree potential VH(1) = −i
∫

d3vC(1, 3)
G(3, 3+) and to define the self-energy as:

Σ(1, 2) = i

∫

d3d4v(1+, 3)
δG(1, 4)

δU(3)
G−1(4, 2) =

= −i
∫

d3d4v(1+, 3)G(1, 4)
δG−1(4, 2)

δU(3)
. (2.33)
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2.5. The quasiparticle approximation

Thanks to these definitions Eq. (2.32) becomes:

[

i
∂

∂t1
− h0(r1) − VH(r1)

]

G(1, 2) − i

∫

d3Σ(1, 3)G(3, 2) = δ(1, 2). (2.34)

The self-energy defined in Eq. (2.33) is the same quantity appearing in Eq. (2.25),
rewritten in term of a new function δG−1/δU .

2.5 The quasiparticle approximation

In an interacting systems the concept of single-particle states can be recovered by
using the quasiparticle concept. Quasiparticles can be interpreted as single electrons
surrounded by a screening cloud created by the polarization of the electronic substrate.
Quasiparticles can interact with each other through the screened Coulomb interaction
instead of the bare one. Since these states are just approximations of the real eigen-
values of the problem, their energy will be complex, thus implying a finite lifetime
proportional to the inverse of the imaginary part of the self-energy. The aim of the
present section is to formally introduce this concept.

2.5.1 The spectral representation of the Green’s function

We start by defining the spectral function as

A(r1, r2, ω) =
1

π
sign(µ− ω)ℑG(r1, r2, ω) =

∑

j

fj(r1)f
∗
j (r2)δ(ω − ǫj), (2.35)

where fj are the Lehmann amplitudes defined in Eq. (2.9), µ is the chemical potential,
and ǫj the single particle energies. The A(r1, r2, ω) function is real and contains all the
informations included in the Green’s function. Indeed by its knowledge it is possible
to determine the full Green’s function thanks to the relation:

G(r1, r2, ω) =

∫ µ

−∞

dω′A(r1, r2, ω)

ω − ω′ − iη
+

∫ ∞

µ

dω′A(r1, r2, ω)

ω − ω′ + iη
(2.36)

In addition several observables can be calculated in terms of A, which satisfies the
following sum-rule:

∫ ∞

−∞

dωA(r1, r2, ω) = δ(r1 − r2). (2.37)

The spectral function can also be used to calculate the ground state density:

∫ µ

0

dωA(r1, r1, ω) = n(r1). (2.38)
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Chapter 2. The many-body perturbation theory

In the case of non-interacting electrons the spectral function simplifies toA(r1, r2, ω) =
∑

j φj(r1)φ
∗
j(r2)δ(ω − ǫj) and 〈j|A(r1, r2, ω)|j′〉 = δj,j′δ(ω − ǫj).

In the interacting case, assuming that both G and Σ are diagonal operators when
projected in the basis of the single particle states we have that:

〈j|A(r1, r2, ω)|j〉 = Ajj(ω) =
1

π
ℑ

{

1

(ω − ǫj) − Σjj(ω)

}

=

=
1

π

|ℑΣjj(ω)|
|ω − ǫj −ℜΣjj(ω)|2 + |ℑΣjj(ω)|2 ≈ (2.39)

≈ 1

π

ℑΣjjℜZj + (ω − ǫj −ℜΣjj)ℑZj

|ω − ǫj −ℜΣjj(ω)|2 + |ℑΣjj(ω)|2 (2.40)

where Zj = 1
1−∂Σ/∂ω|ω=Ej

In this case the spectral function present a sharp peak at energy Ej = ǫj + Σ(Ej),
which can be interpreted as the quasiparticle energy, and width given by |ℑΣ| which
corresponds to the inverse lifetime of the quasiparticle state. In addition, due to the en-
ergy dependence of Σ, the interacting spectral function will not only exhibit the quasi-
particle peak, but it can also show one or more additional structures, called satellites,
that cannot be interpreted in terms of single-particle excitations. The renormalization
factor Zj estimates the relative weight of the quasiparticle peaks to the satellites, be-
cause it represents the area below the quasiparticle peak. This quantity is smaller than
1 (see Eq. (2.37)) and gives an hint of the importance of correlation in the system. If
Zj ≈ 1 it means that most of the spectral weight is in the quasiparticle peak, while
a smaller Zj indicates that a fraction of the spectral weight moved to the satellites,
which makes the quasiparticle approximation less accurate.

2.5.2 The quasiparticle equation

A different way to introduce the quasiparticle concept starts from the equation of
motion of the Green’s function (2.34). It is possible to replace the Green’s function by
its Lehmann expansion, Eq. (2.10) [23]. The result is:

∫

d3r3 {[ω − h0(r1) − VH(r1)] δ(r1 − r3) − Σ(r1, r3, ω)}
∑

j

fj(r3)f
∗
j (r2)

ω − ǫj + iη sign(ǫj − µ)
= δ(r1 − r2) (2.41)

By focusing the attention to just one state i, and assuming that Σ has no poles for
ω = ǫj , the previous equation can be rewritten as in the limit for ω → ǫj :

[h0(r1) + VH(r1)] fj(r1) +

∫

d3r3Σ(r1, r3, ω)fj(r3) = ωfj(r1), (2.42)

which provides the quasiparticle equation, i.e. a Schrödinger like equation for the
Lehmann amplitudes, where the self-energy plays the role of a complex, non-local,
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dynamical and non-Hermitian potential. This implies that the corresponding eigenval-
ues are complex, implying a finite lifetime of the quasiparticles.

2.6 Hedin’s equations

The perturbative expansion presented in Sec. 2.3 diverges when it is written in term
of the bare vC . In the HEG case already the second order is infinite. A more efficient
scheme has been proposed in 1965 by Hedin. Its approach is based on a close set of
five equations [25] written in term of the screened Coulomb interaction. This section
reviews this approach.

To derive Hedin’s equation we consider the external interaction screened by the
Hartree term3

V (1) = U(1) − VH(1) (2.43)

where U corresponds to the interaction introduced in Sec. 2.4 and VH(1) = −i
∫

d2vC(1, 2)
G(2, 2+). In this case the self-energy in Eq. (2.33) can be rewritten as:

Σ(1, 2) = −i
∫

d3d4d5vC(1+, 3)
δG−1(1, 4)

δV (5)

δV (5)

δU(3)
G(4, 2) (2.44)

By defining the time-ordered inverse dielectric function ǫ−1, the screened interaction
W and the irreducible vertex function Γ as

ǫ−1(1, 2) =
δV (1)

δU(2)
(2.45)

W (1, 2) =

∫

d3vC(1, 3)ǫ−1(3, 2) (2.46)

Γ(1, 2; 3) = −δG
−1(1, 2)

δV (3)
(2.47)

Eq. (2.44) becomes:

Σ(1, 2) = i

∫

d3d4G(1, 4)W (3, 1+)Γ(4, 2; 3). (2.48)

The inverse dielectric function can be rewritten in terms of the polarizability χ by
using:

ǫ−1(1, 2) =
δ[U(1) − i

∫

d3v(1, 3)G(3, 3+)]

δU(2)
= δ(1, 2) +

∫

d3vC(1, 3)χ(3, 2) (2.49)

3In the case one starts from the DFT Green’s function one must also take care of the exchange
and correlation potential.
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Chapter 2. The many-body perturbation theory

where χ(1, 2) = −i δG(1,1+)
δU(2)

is the reducible polarizability. In the same way it is possible
to define the irreducible polarizability by taking the derivative of G with respect to V
instead of U :

χ̃(1, 2) = −iδG(1, 1+)

δV (2)
. (2.50)

By definition the two quantities are related through the following relation:

χ(1, 2) = −i
∫

d3
δG(1, 1+)

δV (3)

δV (3)

δU(2)
= χ̃(1, 2) +

∫

d3d4χ̃(1, 3)vC(3, 4)χ(4, 2). (2.51)

In addition by applying to Eq. (2.50) the chain-rule property of the functional derivative
it is possible to write:

χ̃(1, 2) = i

∫

d3d4G(1, 3)
δG−1(3, 4)

δV (2)
G(4, 1) = −i

∫

d3d4G(1, 3)G(4, 1)Γ(3, 4; 2).(2.52)

and as a consequence the screened interaction is:

W (1, 2) = vC(1, 2) +

∫

d3d4vC(1, 3)χ̃(3, 4)W (4, 2). (2.53)

By using the Dyson’s equation G−1 = G−1
0 − V − Σ the vertex can be expressed as:

Γ(1, 2 : 3) = δ(1, 2)δ(1, 3) +
δΣ(1, 2)

δV (3)
=

= δ(1, 2)δ(1, 3) +

∫

d4d5
δΣ(1, 2)

δG(4, 5)

G(4, 5)

δV (3)
=

= δ(1, 2)δ(1, 3) +

∫

d4d5d6d7
δΣ(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Γ(6, 7; 3). (2.54)

In summary, we obtain a formally closed set of five coupled equation (including
the Dyson’s equation for the Green’s function) which constitutes the Hedin’s equations
[25]:

G(1, 2) = G0(1, 2) +

∫

d3d4G0(1, 3)Σ(3, 4)G(4, 2) (2.55)

W (1, 2) = vC(1, 2) +

∫

d3d4vC(1, 3)χ̃(3, 4)W (4, 2) (2.56)

Σ(1, 2) = i

∫

d3d4G(1, 4)W (3, 1+)Γ(4, 2; 3) (2.57)

χ̃(1, 2) = −i
∫

d3d4G(1, 3)G(4, 1)Γ(3, 4; 2) (2.58)

Γ(1, 2; 3) = δ(1, 2)δ(1, 3) +

∫

d4d5d6d7
δΣ(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Γ(6, 7; 3). (2.59)
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2.7. Technical implementation of the GW approximation

This set of equations can be in principle solved iteratively: starting from some guess
for the Green’s function and for the self-energy it is possible to evaluate the vertex
from Eq. (2.59). then one can solve Eq. (2.58) for the polarizability, and Eq. (2.56) for
the screened interaction. Now one owns all the ingredients to update the self-energy
via Eq. (2.57) followed by the Green’s function, Eq. (2.55), and start a new cycle
until self-consistency is achieved. If one starts from the DFT Green’s function the
Hedin’s equations are modified by the replacement of the self-energy with Σ(1, 2) −
VXC(1)δ(1, 2).

2.6.1 The GW approximation

The main difficulty in the solution of Hedin equations is due to the presence of the
vertex function. On the other hand, the choice of using as perturbative potential W
insted of v is expected to lead to a faster convergence. This is the reason why for most
calculations a standard approximation is to retain just the zeroth order contribution
to the vertex Γ(1, 2 : 3) = δ(1, 2)δ(1, 3) in order to simplify Hedin’s equations:

G(1, 2) = G0(1, 2) +

∫

d3d4G0(1, 3)Σ(3, 4)G(4, 2) (2.60)

W (1, 2) = vC(1, 2) +

∫

d3d4vC(1, 3)χ̃(3, 4)W (4, 2) (2.61)

Σ(1, 2) = iG(1, 2)W (2, 1+) (2.62)

χ̃(1, 2) = −iG(1, 2)G(2, 1). (2.63)

This is the so called GW approximation [6, 25] for the self-energy. Although there
is no rigorous theoretical justification of the GW approximation, the improvement it
usually produces over DFT results layed down the success of this approximation.

2.7 Technical implementation of the GW approxi-

mation

To calculate quasiparticle energies with the GW approximation, we should solve
the simplified Hedin’s equations (2.60-2.63) in a self-consitsent way. This means that
from the non interacting Green’s function G0 deduced by a DFT calculation one must,
first of all, calculate the polarizability thanks to Eq. (2.63). Its knowledge perimts to
solve Eq. (2.61) to obtain the screened interaction. With the already computed Green’s
function one is allowed to calculate the self energy via Eq. (2.62). Its knowledge permits
to update the Green’s function, thanks to Eq. (2.60) and iterate this procedure until
self-consistency is reached.

An equivalent method is the so called quasiparticle self-consistent GW where one
uses the spectral representation of the response functions appearing in Hedin’s equa-
tions [26, 27]. In this case the calculation starts from the computation of χ0. This is
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Chapter 2. The many-body perturbation theory

used to calculate the GW self-energy, which is then diagonalized. Thanks to the eigen-
functions and eigenvectors obtained in this way it is possible to compute the second
step polarization function using its spectral representation. The procedure is iterated
until self-consistency is reached.

Nevertheless the computational weight of the fully self-consistent GW remains pro-
hibitive and a simpler approach is preferred. A well established method is, for the
reasons just explained, the so called G0W0 approximation [3, 28], which avoids self-
consistency, by using the first iteration of Hedin’s equations. This approach is justified
by the fact that the Kohn-Sham equation and the quasiparticle equation are formally
similar. Approximate corrections of the Kohn-Sham eigenvalues are, therefore, ob-
tained applying the perturbation theory in Σ − VXC , where Σ is the one obtained at
the first iteration. In practice, the G0W0 corrected quasiparticle energies are given by
the following equation:

Ei ≃ ǫj +
〈Σ(ǫj)〉 − 〈VXC〉
1 − 〈∂Σ(ǫj)

∂ω

∣

∣

ω=ǫj
〉
, (2.64)

where ǫj is the Kohn-Sham eigenvalue and each expectation value is taken on the
corresponding Kohn-Sham state |j〉. In Eq. (2.64) the denominator comes from the
linearization of the self-energy frequency dependence around the bare energy ǫj .

This approximation is currently used since the fully self-consistent GW often leads
to a worst treatment of electron correlations in prototypal systems such as the uniform
electron gas (bandwidth larger than DFT bandwidth [29]) and solid silicon (where it
produces a too large band gap [30]), pointing to a crucial role of the neglected vertex
corrections [31]. As the vertex corrections are important in correlated materials, the
simple G0W0 approach is usually considered well suited to study the effect of weak
electron-electron correlations.

To further simplify the nontrivial problem of calculating the self-energy, different
solutions are available. The most common are the plasmon-pole approximation, which
models the frequency dependence of ǫ−1, and the contour deformation approach.

2.7.1 The plasmon pole approximation

To calculate the ω-convolution between G and W in Eq.(2.62) the inverse dielectric
matrix ǫ−1 must be calculated on at a fine frequency mesh extending over a significantly
wide energy interval. Since this procedure is very cumberstone, a faster approach is
often preferred. The idea of the plasmon-pole approximation is to fit the frequency
dependence of ǫ−1 by a Drude like expression:

ǫ−1
GG′(q, ω) = δGG′ +

Ω2
GG′(q)

ω2 − ω̃2
GG′(q)

. (2.65)

The model parameters Ω2
GG′(q) and ω̃2

GG′(q) can be computed in different ways. A first
possibility [3] is to compute the inverse dielectric matrix only at ω = 0 and to impose
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Figure 2.1: Schematic
representation of the path
used in the contour defor-
mation technique.

the fulfilment of the f-sum rule (see appendix C). A completely different approach
computes ǫ−1 at two frequencies, which are often chosen to be ω = 0 and ω = iωP

(where ωP corresponds to the plasma frequency of that specific material) and using the
expression (2.65) to fit the two numerical values. In this thesis we will use this second
approach.

The advantages of this approximation is a simplification of the calculation of the
screened interaction, and the possibility of performing analytically all frequency inte-
grations. By separating the contributions to the the self energy coming from the first
and the second addend of the plasmon-pole inverse dielectric function, Eq. (2.65), we
introduce the exchange and the correlation part of the self-energy:

〈kj|ΣX |kj〉 = − 4π

VBZ

∫

BZ

d3q
∑

j′

f(ǫj(k))
∑

G

(2.66)

〈k − q, j′|e−i(q+G)·̂r|k, j〉〈k, j|ei(q+G′)·̂r|k − q, j〉
|q + G|2

〈kj|ΣC |kj〉 =
1

2πVBZ

∫

BZ

d3q
∑

j′

∑

G,G′

(2.67)

−4π〈k − q, j′|e−i(q+G)·̂r|k, j〉〈k, j|ei(q+G′)·̂r|k − q, j〉
|q + G′|2

2πΩ2
GG′(q)

2ω̃2
GG′(q)

[

f(ǫj(k))

ω + ω̃2
GG′(q) − ǫj(k) − iη

+
1 − f(ǫj(k))

ω − ω̃2
GG′(q) − ǫj(k) + iη

]

.

2.7.2 The contour deformation technique

The main problem in dealing with a numerical integration along the real ω axis
is the presence of poles of both the Green’s function and the screened interaction
W . To overcome this difficulty the integration can be moved on the much smoother
imaginary axis by calculating the integral on a complex contour to which the real axis
belongs. The contour chosen, represented in Fig. 2.1, is composed by the real and the
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Chapter 2. The many-body perturbation theory

imaginary axes closed by two semicircles in the top-right and bottom left quadrants.
This trick permits to write the original integral over the real axis, thanks to the Cauchy
theorem, as an integration over the imaginary axis plus a summation of poles, since
the integration vanishes on the arcs:

ΣC(r, r′, ω)=
i

2π



2πi
∑

zp,poles of G or W in the contour

lim
z→zp

G(r, r′, ω + z)W (r, r′, z)(z − zp)+

−
∫ ∞

−∞

d(iω′)G(r, r′, ω + iω′)Wp(r, r
′, iω′)

]

. (2.68)

where Wp(r, r
′, ω) = W (r, r′, ω) − vC(r, r′) is the screened interaction minus the bare

one. The exchange part of the self-energy is calculated by Eq. (2.66) with this method,
too.

The contribution due to the poles can be further simplified since the screened in-
teraction has no poles inside the integration region and only part of the poles of the
Green’s function fall inside it. In particular in the case that we are interested to a fre-
quency smaller than the chemical potential ω < µ the poles due to the occupied state
in the Green’s function will fall in the upper-right part of the contour. The resulting
pole contribution to ΣC is:

∑

poles in the upper-right region

... =
∑

j

φj(r)φ
∗
j(r

′)θ(µ− ǫj)θ(ǫj − ω)Wp(r, r
′, ǫj − ω + iη).(2.69)

In the same way, in the case ω > µ the contribution will be from the empty-states
poles in the Green’s function falling in the lower-left part giving:

∑

poles in the lower-left region

... =
∑

j

φj(r)φ
∗
j(r

′)θ(ǫj − µ)θ(ω − ǫj)Wp(r, r
′, ǫj − ω − iη).(2.70)

Since W is even in the frequency and odd in the broadening η, the total contribution
can be summarized as:

∑

zp,poles of G or W in the contour

...=
∑

j

φj(r)φ
∗
j(r

′) [−θ(µ − ǫj)θ(ǫj − ω) + θ(ǫj − µ)θ(ω − ǫj)]

Wp(r, r
′, |ǫj − ω| − iη) (2.71)

In a similar way the symmetry Wp(r, r
′, iω) = Wp(r, r

′,−iω) implies:

∫ ∞

−∞

d(iω′)... = iφj(r)φ
∗
j(r

′)

∫ ∞

−∞

dω′ ω − ǫj − iω′

(ω − ǫi)2 + ω′2
Wp(r, r

′, iω′) =

= 2iφj(r)φ
∗
j(r

′)

∫ ∞

0

dω′ ω − ǫj
(ω − ǫj)2 + ω′2

ℜWp(r, r
′, iω′) (2.72)
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2.7. Technical implementation of the GW approximation

Accordingly the expression used in practice for the calculations is:

ΣC(r, r′, ω) =
1

π

∑

j

φj(r)φ
∗
j(r

′)

∫ ∞

0

dω′ ω − ǫj
(ω − ǫj)2 + ω′2

ℜWp(r, r
′, iω′) +

+
∑

j

φj(r)φ
∗
j(r

′) [−θ(µ− ǫj)θ(ǫj − ω) + θ(ǫj − µ)θ(ω − ǫj)]

Wp(r, r
′, |ǫj − ω| − iη). (2.73)

This method allows to perform more accurate calculations than the ones obtained by
using the plasmon-pole approximation. Moreover, the contour deformation technique
is more efficient than a direct evaluation of the ω-convolution. This is due to the fact
that the integrands are smooth on the imaginary axis and only few frequencies are
needed to converge the integral. On the other hand, also the contribution coming from
the poles close to the real axis simplifies since the screened interaction is evaluated
only for a relatively small number of frequencies.
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Chapter 3

The TDDFT

A more recent approach to the many body problem is the time dependent density
functional theory [32, 33] (TDDFT). This theory can be viewed as an extension of
the Hohenberg-Kohn-Sham DFT to a time-dependent phenomena. As a consequence
TDDFT can go beyond the standard DFT by accessing excited states.

3.1 The Runge Gross theorem and the time depen-

dent Kohn-Sham scheme

TDDFT is based on the Runge-Gross (RG) theorem [34] that proves the existence of
a biunivocal correspondence between the time-dependent density of the system n(r, t)
and the external potential Vext(r, t) under two mild assumptions. The first is the
assumed knowledge of the initial state Ψ(r, t = t0). This condition is automatically
fulfilled when the system evolves starting from its ground state computed accordingly
to the ordinary Hohenberg-Kohn theorem. On the other hand the RG theorem takes
into account also the case when the system evolves starting from an arbitrary excited
state. However in this case the knowledge of the status of the system at t = t0 becomes
necessary. The second assumption of this theorem is that the external time dependent
potential must be Taylor expandable around t = t0. This condition is in general fulfilled
by any well behaving potential appearing in physical problems.

When the Runge-Gross theorem applies it is possible to extend the Kohn-Sham set
of equation (1.12) in the time-dependent case:

i
∂

∂t
φi(r, t) = HKS(r, t)φi(r, t) =

=

[

−∇2

2
+ Vext(r, t) + VH(r, t) + VXC(r, t)

]

φi(r, t) (3.1)

where the time dependence in the Hartree and exchange-correlation potentials comes
through the density. In this scheme the single particle wavefunctions have the only
property of generating the correct density n(r, t) =

∑

i |φi(r, t)|2.
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3.2. The linear response regime

While for the static DFT a variational principle permits to deduce the Kohn-Sham
equations by the minimization of the total energy, in TDDFT the energy functional is
replaced by the quantum mechanical action A, which describes the time evolution of
the interacting systems from t1 to t2

1. The stationary condition of A yields the time
dependent Schrödinger equation:

A[Φ] =

∫ t2

t1

dt〈Φ(t)|i ∂
∂t

− Ĥ(t)|Φ(t)〉. (3.2)

3.2 The linear response regime

Within the linear response regime it is possible to study the response of the system
to a small time-dependent perturbation [36]:

Ĥ = Ĥ0 + F (t)Ô (3.3)

where Ĥ0 is the unperturbed Hamiltonian and F (t)Ô is the weak perturbation switched
on at t = t0.

We are interested in calculating the average of a generic operator Â after the per-
turbation is switched on. By considering all the operators in their interaction repre-
sentation and using the Dyson’s expansion of the time evolution operator (2.12) it is
possible to write the following expansion for the average of Â at a generic time t [36]:

〈A(t)〉 = 〈A(t0)〉0 − i

∫ t

t0

dt′〈[Â(t), Ô(t′)]〉0F (t′) + ... , (3.4)

where the notation 〈...〉0 means that the average is computed on a state of the unper-
turbed Hamiltonian. Equation (3.4) permits to define the response function:

χAO(t, t′) = −iθ(t− t′)〈[Â(t), Ô(t′)]〉0. (3.5)

Equivalently, the time invariance of the unperturbed Hamiltonian permits to shift the
time variables τ = t− t′ so that the response function becomes:

χAO(τ) = −iθ(τ)〈[Â(τ), Ô]〉0. (3.6)

Using this definition, the change in the average value of A with and without the per-
turbation can be written at first order as:

∆A = 〈A(t)〉 − 〈A(t0)〉 =

∫ ∞

0

dτχAO(τ)F (t− τ). (3.7)

A particular case involves periodic perturbations. In these cases it can be useful to
write the previous result in reciprocal space. The evaluation of the Fourier transform

1This kind of expression for the action A does not respect the causality requirement, since it is
symmetric with respect to the two time arguments. This problem is circumvented by the Kledysh
contour technique [35].
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presents problems similar to the one encountered in the Sec. 2.2 for the evaluation of
the Lehmann representation of the Green’s function2. Since the perturbation does not
vanish for t→ −∞ a factor eηt is introduced in order to permit the evaluation of Fourier
transformations. This trick can be justified only if the results will be independent on
η when, in the end of the calculation, η → 0. Aftere Fourier transforming Eq. (3.7)
becomes:

∆A(ω) = χAO(ω)F (ω) (3.8)

where χAO(ω) is the Fourier transformed of χAO(τ):

χAO(ω) = −i lim
η→0

∫ ∞

0

dτ〈[Â(τ), Ô]〉0ei(ω+iη)τ . (3.9)

Expanding the commutator and introducing a identity between the two operators the
matrix element in the previous equation can be rewritten as:

〈[Â(τ), Ô]〉0 =
∑

n,m

Pm − Pn〈Ψn|Â|Ψm〉〈Ψm|Ô|Ψn〉e−i(En−Em)τ . (3.10)

where Pm is the average population of the state |Ψm〉 with energy Em. Performing the
Fourier transform, the response function in reciprocal space can be expressed as:

χAO(ω) =
∑

n,m

Pm − Pn

ω − (En −Em) + iη
〈Ψn|Â|Ψm〉〈Ψm|Ô|Ψn〉. (3.11)

3.2.1 Response to an external field

In this section we consider the response to an external scalar potential coupled to
the density through the perturbation

∫

d3rVext(r, t)n̂(r). Applying the linear response
formalism to calculate the average of the electronic density n̂(r) =

∑

j δ(r − rj) we
obtain:

n(r, t) − n(r) = ∆n(r, t) =

∫ ∞

0

dτ

∫

d3r′χn,n(r, r′, τ)Vext(r
′, t− τ) (3.12)

where the density-density response function is defined as:

χn,n(r, r′, τ) = −iθ(τ)〈[n̂(r, τ), n̂(r′, 0)]〉. (3.13)

If the external potential is also periodic it can be convenient to Fourier transform this
response function to reciprocal space:

χ(q,q′, ω) =
1

V

∫

d3re−iq·r

∫

d3r′e−iq′·r′
∫

dτeiωτχ(r, r′, τ). (3.14)

2The difference is that in this case we deal with retarded correlators while in the many-body
perturbation theory with time-ordered ones.
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3.2. The linear response regime

By using the TDDFT it is also possible to define the density response function of the
time-dependent Kohn-Sham system, which possesses by construction the exact density.
In this case the total field composed by the external potential plus the Kohn-Sham
effective potential. This is the sum of the Hartree contribution and of the exchange
and correlation one. The non interacting density response function is defined, then, by

∆n(r, t) =

∫ ∞

0

dτ

∫

d3r′χ0(r, r
′, τ)Vtot(r

′, t− τ) =

=

∫ ∞

0

dτ

∫

d3r′χ0(r, r
′, τ)[Vext + VH + Vxc](r

′, t− τ). (3.15)

χ0 can be written, for the case of a system in its ground state, in terms of the single
particle orbitals as:

χ0(r, r
′, ω) =

∑

j,j′

δσj ,σ′

j
(fj′ − fj)

φj(r)φ
∗
j(r

′)φj′(r
′)φ∗

j′(r)

ω − (ǫj − ǫj′) + iη
(3.16)

where fi are the occupations of the Kohn-Sham orbital. In addition one must consider
that in the presence of continuous spectra (like in the case of Bloch wavefunction) the
summation is replaced by an integral.

From Eq. (3.12) it follows:

χ(r, r′ω) =
δn(r, ω)

δVext(r′, ω)
(3.17)

=

∫

d3r1
δn(r, ω)

δVtot(r1, ω)

δVtot(r1, ω)

δVext(r′, ω)
.

It is possible to recognize the definitions of χ0 given in Eq. (3.15), so that the previous
equation can be further manipulated to give:

χ(r, r′ω) =

∫

d3r1χ0(r, r1, ω)

[

δ(r − r1) +
δVH(r1, ω)

δVext(r′, ω)
+
δVxc(r1, ω)

δVext(r′, ω)

]

= (3.18)

= χ0(r, r
′, ω) +

∫

d3r1d
3r2χ0(r, r1, ω)

[

δVH(r1, ω)

δn(r2, ω)
+
δVxc(r1, ω)

δn(r2, ω)

]

χ(r2, r
′ω).

Since the functional derivative of the Hartree potential is vC and defining as exchange
and correlation kernel fXC = δVxc/δn it is possible to write a Dyson-like equation,
connecting the interacting response functions with the non-interacting one:

χ(r, r′ω) = χ0(r, r
′ω) +

+

∫

d3r1d
3r2χ0(r, r1ω) [vC(r1 − r2) + fXC(r1, r2, ω)]χ(r, r′ω). (3.19)

While everything else in this equation is straightforward, the exchange-correlation ker-
nel fXC(r1, r2, ω) is far from trivial, and only approximations of it are available.
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3.2.2 The exchange and correlation kernel

The less trivial ingredient of the TDDFT linear response approach is the exchange
and correlation kernel, which must be approximated. Several functionals have been
proposed in literature, while only few are commonly used.

The simplest approximation (the random phase approximation or RPA) consists in
neglecting fXC :

fXC(r1, r2, ω) = 0. (3.20)

There exists also an extension of the static LDA to the time-dependent problem,
known as TDLDA [37]. In this case fXC is assumed to be a functional local in space
and in time:

fXC(r1, r2, ω) = δ(r1 − r2)f
HEG
XC [n(r1, ω)] (3.21)

where fHEG
XC is the kernel for the homogeneous electron gas evaluated at the correspond-

ing time-dependent density. Nevertheless the commonly used the fXC in the TDLDA
corresponds to Eq. (3.21) with n(r1, ω) ≈ n(r1, ω = 0).

Other more complex kernels arising from the many-body perturbation theory will
be discussed later in Sec. 4.2.

3.3 Dielectric properties of a solid

In general the description of the response of a solid to an external electromagnetic
field for anisotropic systems [38] requires the introduction of the dielectric tensor, the
current-density and current-current correlation functions. The full description of this
problem is beyond the aim of this thesis. In this section we will consider only the
special case of the response to a longitudinal field. This case can be described using a
scalar potential and the density-density response function previously introduced.

3.3.1 Response to a longitudinal field

When a system of electrons is perturbed by a scalar potential Vext(r, ω) the potential
screened by the electrons in the system can be written as the sum of the external
potential plus the one induced by the modification of the density,

Vtot(r, ω) = Vext(r, ω) + Vind(r, ω) = Vext(r, ω) +

∫

d3r′
∆n(r′, ω)

|r − r′| . (3.22)

By using Eq. (3.12) the previous equation can be written as

Vtot(r, ω) =

∫

d3r′ǫ−1(r, r′, ω)Vext(r
′, ω), (3.23)
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3.3. Dielectric properties of a solid

which defines the inverse dielectric function:

ǫ−1(r, r′, ω) = δ(r − r′) +

∫

d3r1
1

|r − r1|
χ(r1, r

′, ω). (3.24)

In the case of a periodic system it is convenient to rewrite the above equations in
reciprocal space, taking advantage of the properties discussed in Appendix A. In this
case Eq. (3.12) becomes:

∆n(q + G, ω) =
∑

G′

χ(q + G,q + G′, ω)Vext(q + G′, ω), (3.25)

or using a matricial notation:

∆nG(q, ω) =
∑

G′

χG,G′(q, ω)VextG′(q, ω). (3.26)

Similarly Eq. (3.23) becomes:

Vtot,G(q, ω) =
∑

G′

ǫ−1
G,G′(q, ω)Vext,G′(q, ω) (3.27)

where the inverse dielectric function is:

[ǫ−1]G,G′(q, ω) = δG,G′ + vCG(q)χG,G′(q, ω) (3.28)

where vCG(q) = 4π
|q+G|2

is the Fourier transformed of the coulomb potential vC(r, r′) =
1

|r−r′|
. In the RPA presented in Sec. 3.2.2 the dielectric function is approximated as:

ǫG,G′(q, ω) = δG,G′ − vCG(q)χ0G,G′(q, ω) (3.29)

3.3.2 The Macroscopic average and the local fields

By using different experimental techniques it is possible to measure the dielectric
properties of a solid. For example, optical absorption permits to determine the imag-
inary part of the refractive index (the square root of ǫ for null momentum transfer).
Reflectivity measurements are also related to the refraction index. On the other hand
it is also possible to measure the finite-momentum dielectric function by means of the
electron energy loss spectroscopy, which measures the loss function −ℑ1

ǫ
, or by inelastic

X-ray scattering spectroscopy (see Appendix B).
The external fields used in optical experiments have usually a wavelength larger

than the typical lattice spacing. Nevertheless the induced perturbations can acquire
rapidly oscillating components. As a consequence a macroscopic description of dielec-
tric properties requires an average over the periodic unit cell [39, 40]. In reciprocal
space this average procedure is equivalent to consider the G = G′ = 0 component of
the dielectric matrix, so that the macroscopic dielectric function will be defined as:

ǫM(q, ω) =
1

[

ǫ−1
G,G′(q, ω)

]

0,0

. (3.30)
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Chapter 3. The TDDFT

Particular care must be taken in evaluating Eq. (3.30), as it involve matrices in the
G indices. This means that one must first perform the inversion of the full dielectric
matrix, and then to consider its 0, 0 element. This procedure is not equivalent to take
only the 0, 0 element of the ǫ matrix, which constitutes an approximation that neglects
the ”local fields”. These local fields are microscopic fields arising from the anisotropies
of the charge density.

3.4 Numerical calculation of the dielectric matrix

The state-of-the-art approach to calculate the dielectric response of a periodic solid
involves, as initial step, the solution of the Kohn-Sham equations, and the evaluation
of the independent-particle polarizability χ0 by Eq. (3.16) Fourier transformed into the
momentum space [41]:

χ0G,G′(q, iω) = − 1

VBZ

∑

j,j′

∫

BZ

d3kδσj ,σj′

f(ǫj′(k + q)) − f(ǫj(k))

ω − [ǫj′(k + q) − ǫj(k)] + iη
·

· 〈k, j|e−i(q+G)·̂r|k + q, j′〉〈k + q, j′|ei(q+G′)·̂r|k, j〉. (3.31)

where the kets |k, j〉 represent Bloch Kohn-Sham states for the point k and band j.
Eq. (3.31) requires to perform a double summation over the bands plus an integra-

tion on the Brillouin zone, which can be numerically heavy. To mitigate the numerical
difficulties, different algorithms have been devised to speed up the calculations [42].

3.4.1 The q → 0 limit

To describe optical adsorption one needs to evaluate the q → 0 limit of the dielectric
function. By naively performing the q → 0 limit of the G = G′ = 0 of Eq. (3.31) we
have that

lim
q→0

〈k, j|e−i(q+G)·̂r|k + q, j′〉 = δj,j′ (3.32)

lim
q→0

f(ǫj(k + q)) − f(ǫj(k)) = 0. (3.33)

As a consequence the resulting χ0 would be 03. A more careful analysis of Eq. (3.31)
reveals, for example, that for a metal at ω = 0 the χ0 limit is a constant. Anyway in
all the remaining cases, a correct evaluation of the asymptotic behaviour is necessary
to calculate this limit, because χ0 ∼ q2 is multiplicated by vC ∼ q−2 to calculate ǫ.

To deal with semiconductors [41] we expand the operatorial part of the matrix
elements of Eq. (3.31) in the small-q limit, which leads to the expression

〈k, j|e−iqr|k + q, j′〉 ≃
q→0

δj,j′ − iq · 〈k, j|r|k, j′〉 . (3.34)

3If j = j′ the difference of the occupancies will make the contribution to χ0 to vanish, while if
j 6= j′ the same effect is provided by the matrix elements.
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3.4. Numerical calculation of the dielectric matrix

The δ function does not contribute in semiconductors. Since the position operator
depends on the choice of the origin and it is ill-defined in a periodic system, it must
be replaced with the momentum operator thanks to the relation

〈k, j|r|k, j′〉 =
〈k, j|[H, r]|k, j′〉
ǫj(k) − ǫ′j(k)

. (3.35)

Finally we obtain:

〈k, j|e−iqr|k + q, j′〉 ≃
q→0

q · 〈k, j| − ∇ + i[VNL, r]|k, j′〉
(ǫ′j(k) − ǫj(k))

(3.36)

where VNL is the non local part of the pseudopotential and in general any part of the
Hamiltonian, besides the kinetic energy, which does not commute with the position
operator. By substituting this expansion into Eq. (3.31), one obtains the q → 0 limit
for the polarizability, which must be evaluated at a small but non zero q.

As already pointed this approach is accurate when applied to semiconductors, but
gives rise to substantial difficulties in describing the metals. This is due to the fact that
Eq. (3.36) does not include intraband transitions j = j′, since the eigenfunctions are
evaluated at the same k-point. For metals there is no well established method and only
few calculations with the full inclusion of intraband transitions are available [8, 43, 44].
These are generally taken into account by calculating the metal plasma frequency and
adding an approximate Drude like contribution to χ0.

3.4.2 Inclusion of quasiparticle effects

The independent-particle Kohn-Sham response function χ0 is the natural starting
point for a TDDFT calculation and to be rigorous, it should be calculated using DFT
eigenstates. Indeed, the kernel is in principle expected to take into account all the
many-body physics leading to the combined effects of the quasiparticle shift of the
poles and of the particle-hole interaction (excitonic effects). Despite the efforts spent
to construct a kernel cable to describe correctly all this physics [45, 46], the standard
approximations used in numerical calculations do not take into account some of these
effects. To overcome these difficulties several techniques are used to include some of
the missing physics.

One of these approaches requires the use a slightly modified equation for χ0 in order
to include already at this stage the quasiparticle corrections or their finite lifetimes.
Self-energy corrections can be introduced by replacing the Kohn-Sham dispersion with
the GW corrected band structure in Eq. (3.31) [4]. In general, even if this inclusion
can be in principle always performed, in practice it should be done only when the χ0

thus obtained is used in the RPA approximation. Indeed in a TDDFT calculation also
the kernel contribute to drive the poles from the Kohn-Sham energy toward the correct
quasiparticle ones, thus inducing an uncontrolled superposition of the two effects.

A second effect of the inclusion of quasiparticle effects is some accounting of the
finite lifetimes through the imaginary part of the self-energy [4, 47]. In this case their
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Chapter 3. The TDDFT

inclusion is done by replacing the imaginary infinitesimum η with the absolute value of
the difference of the imaginary parts of the self-energies |ℑΣ(ǫj′(k+q))−ℑΣ(ǫj(k))|.
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Chapter 4

The dielectric function

As described in the previous chapters, the basic task in a GW or in a TDDFT
calculation is the computation of the independent-particle polarizability χ0. χ0 is the
key ingredient needed to evaluate the frequency-dependent screened interaction and
the dielectric function ǫ. For this reason the present chapter aims to summarize the
basic properties of χ0 and of ǫ.

4.1 The Lindhard dielectric function

The simplest system one can use to study χ0 and ǫ is the HEG model, introduced
in Sec. 1.3 where it is possible to perform analytically all integrations [7].

The calculation starts from the RPA expression of the dielectric function Eq. (3.29):

ǫ(q, ω) = 1 − 4π

q2
χ0 = 1 +

1

q2π2

∫

d3k
θ(kF − |k + q|) − θ(kF − |k|)

ω −
(

(k+q)2

2
− k2

2

)

+ iη
, (4.1)

Due to the translational invariance, the dielectric function depends only on the wave
vector modulus.

Thanks to the Cauchy principal value theorem it is possible to separate the real and
the imaginary part of ǫ, and to performe the integrations. The resulting expression for
the real part of the dielectric function ǫ is:

ℜ ǫ(q, ω) = 1 +
q2
TF

2q2

{

1 +
1

2kF q3

[

k2
F q

2 −
(

q2

2
+ ω

)2
]

log

∣

∣

∣

∣

q2/2 + qkF + ω

q2/2 − qkF + ω

∣

∣

∣

∣

+

+
1

2kF q3

[

k2
F q

2 −
(

q2

2
− ω

)2
]

log

∣

∣

∣

∣

q2/2 + qkF − ω

q2/2 − qkF − ω

∣

∣

∣

∣

}

, (4.2)

where qTF = 2
√

kF

π
is the Thomas-Fermi wavevector. The calculation of ℑǫ(q, ω)
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4.2. Beyond the RPA approximation

involves the following integration:

ℑ ǫ(q, ω) =
1

q22π

∫

d3kθ(kF − |k|)θ(|k + q| − kF )

[

δ

(

ω +
k2

2
− (k + q)2

2

)

+

+ δ

(

ω − k2

2
+

(k + q)2

2

)]

. (4.3)

The imaginary part of ǫ is connected with the electron-hole electronic transitions, that
to conserve the momentum and the energy, are permitted only in the region delimited
by the parabolas ω = q2

2
+ qkF and ω2 = q2

2
− qkF (see Fig. 4.1). The resulting

expression is:
for q < 2kF :

ℑ ǫ(q, ω) =



















2ω
q3 0 < ω ≤ − q2

2
+ qkF

1
q3

[

k2
F − 1

q2

(

ω − q2

2

)2
]

− q2

2
+ qkF < ω ≤ q2

2
+ qkF

0 ω > q2

2
+ qkF

(4.4)

for q ≥ 2kF :

ℑ ǫ(q, ω) =







1
q3

[

k2
F − 1

q2

(

ω − q2

2

)2
]

q2

2
− qkF < ω ≤ q2

2
+ qkF

0 ω ≤ q2

2
− qkF and ω > q2

2
+ qkF

(4.5)

4.1.1 The plasmon

The loss function −1
ǫ

shows a sharp pole with energy ωP when ℑǫ(q, ω) = ℜǫ(q, ω) =
0, see Fig. 4.11. This peak corresponds to a collective oscillation of the electrons that
can be classically described as the oscillation of the negatively charged electrons with
respect to the positive jellium background [18]. For q → 0, this simple model leads to
a collective harmonic oscillation of the charge density at a frequency ωP = 4πn.

The dispersion relation of this excitation can be determined by imposing the con-
dition that the real part of the Lindhard function should vanish. This equation can be
solved only numerically, but an explicit expression at the second order in q is available:

ΩP (q) = ωP

[

1 +
9

10

(

q

qTF

)2

+ ...

]

. (4.6)

4.2 Beyond the RPA approximation

The random phase approximation discussed in the previous section constitutes the
simplest approximation to the response function for the HEG. In the framework of

1A small broadening is added to widen the peak.
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Figure 4.1: Dielectric function and loss function for the HEG rS = 4 for different momenta
transfer. Panel (a) 0.5kF , (b) 1kF , (c) 1.5kF and (d) 2kF . Panel (e) region where the single
particle excitation are permitted and plasmon dispersion.

many-body perturbation theory this approximation corresponds to build the screened
interaction W as a summation of an infinite class of χ0 = −iG0G0 “bubble“ terms
However, in case of an high electronic density the RPA fails, giving incorrect positive
values of the correlation energy per particle [7]. Similarly the RPA is not expected to
work correctly in the case of a large momentum longitudinal response function, due to
the fact that it does not describe properly parallel spins electronic correlations (they
cannot have short range interaction because kept far away by the Pauli principle).
Modeover, being ǫ real at the plasmon energy for momenta smaller qC where the
plasmon enters in the particle-hole continuum, the HEG RPA plasmon is not dumped.

To go beyond the RPA in the HEG it is common wisdom to add a local effective

potential vCG(q, ω)n(q, ω) to the Hartree term, thus modifying the dielectric function
as:

ǫ(q, ω) = 1 − vCχ0(q, ω)

1 + vCG(q, ω)χ0(q, ω)
(4.7)

where G(q, ω) is the local field factor. This approach for the jellium model is equivalent
to the TDDFT and it can be easily shown that fXC(q, ω) = −vCG(q, ω).

Different local field factors, have been proposed in literature. In the following we
will consider the Hubbard and the Corradini expressions.

4.2.1 The Hubbard local field factor

The Hubbard local field factor is the simplest analytic and static expression which
satisfies the constrains due to the exchange effects [36]2. this implies the local effective
potential must vanish for small-q since the exchange hole must be well screened for large
distances. This implies G(q) ∝ q2 for small-q. On the other hand the impossibility for

2Two electrons of the same spin cannot come too close each other (exchange hole).
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4.2. Beyond the RPA approximation

electrons of the same spin to interact at short distance implies the exchange term due
to the local field factor to cancel the Hartree term of the effective potential, so that
limq→∞G(q) = 1 (in the response function of Eq. (3.31) a δ-function selects transition
only between states with parallel spin).

The simplest expression which respect these constrains and scales with kF defines
the Hubbard local field factor:

G(q) =
q2

q2 + k2
F

(4.8)

4.2.2 The Corradini local field factor

A slightly more complex local field factor has been proposed by Corradini et al.
[48] by performing a simple analytical fit of the QMC results by Moroni et al. [49].
Their local field factor is given by the following parameterization:

G(q) = CQ2 +
BQ2

g +Q2
+ αQ4e−βQ2

(4.9)

where Q = q/kF and the parameters are defined as follow:

B =
1 + 2.15

√
rS + 0.435r

3/2
S

3.+ 1.57
√
rS + 0.409r

3/2
S

(4.10)

C = − π

2kf

d(rSǫC)

rS
(4.11)

g =
B

A− C
(4.12)

α =
1.5

r
1/4
S

A

Bg
(4.13)

β =
1.2

Bg
(4.14)

A =
1

4
− k2

F

4π

d2(nǫC)

dn2
(4.15)

where ǫC is the correlation energy per particle of the HEG.

4.2.3 The plasmon dispersion beyond RPA

To compare the behaviour of the different kernels described in the previous section
we consider, as an example, the modification of the plasmon dispersion induced by
different kernels. A more complete discussion about how these kernels perform when
applied to a solid system can be found in Chapter 6 and 7, while a discussion about
other kernels can be found in Ref. [50]
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First of all, similarly to the case of, RPA is possible to calculate a second order
expansion of the dispersion law for the plasmon frequency ΩP (q):

ΩP (q) = ωP

[

1 +

(

9

10q2
TF

+
fXC(0, ωP )

8π

)

q2 + ...

]

. (4.16)

From this equation it is possible to observe that in the long-wavelength limit, if the
kernel does not diverge, the plasmon dispersion converges to the RPA plasma frequency.

When the condition ǫ(q, ω) = 0 is solved numerically to obtain the plasmon energy
one gets the results shown in Fig. 4.2. As expected all curves tend to the RPA long
wavelength limit. All kernels presented here slow down the dispersion with respect to
RPA. In particular the TDLDA, the Gross and Kohn kernel, and the Corradini one
provide comparable results, while the Hubbard local field factor decreases even more
the dispersion.

In addition, in the HEG case, all kernels with the exception of the Gross and Kohn
one are real which means that they do not introduce any plasmon damping. Only the
Gross and Kohn kernel does it but its effect is very small.

4.3 The dielectric function in presence of a periodic

lattice

The simple HEG model allows to treat the electronic correlations at different lev-
els or approximations. Nevertheless it does not include band-structure effects, which
modify the dielectric function with respect to the Lindhard expression. For this rea-
son in this section we illustrate, at least qualitatively, the peculiar modifications of
the dielectric function induced by the presence of the band structure and of interband
transitions, even at the simple RPA level.
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Figure 4.3: Comparison of the long range HEG Lindhard function (dashed, for rS = 2.07a0

corresponding to the density of Al) with the calculated response for aluminum (solid, for the
details of its numerical evaluation see Sec. 7.2). A broadening of 0.05 eV has been added to both
the calculations. Notice the main differences introduced in the RPA dielectric function by the
presence of interband transition as the 1.5 eV peak in the imaginary part of ǫ with the consequent
structure in the real part. The loss function shows the broadening and the shift of the plasmon
peak.

The main additional feature is the presence of interband transitions which introduce
new poles in the response function. As a consequence new peaks appear in the q → 0
imaginary part of dielectric function (see Fig. 4.3 b), which substantially differs from
the Lindhard function.

Band effects induce modifications also in the plasmon resonance [51, 52]. The
interband transitions prevent the imaginary part of the dielectric function to vanish at
the plasma frequency. For this reason the plasmon peak becomes a Lorentzian with a
finite width also in the case of small wave vectors. This feature is absent in the jellium
case where ΩP falls outside the region where the creation of particle-hole excitation
is allowed. In addition the interband contributions modify the real part of ǫ causing
also a shift in the plasmon peak position with respect to the HEG one at the same
electron density. Band effects originate also a dependence of the plasmon dispersion on
the direction of the momentum q which of course does not appear in the HEG. These
effects can be seen in Fig. 4.3 (c) where the loss functions of jellium and of aluminum
are compared in the long wavelength limit: notice that the plasmon peak of aluminum
appears at smaller energy than in the HEG and it is broad.

4.3.1 The zone boundary collective states

Interband and intraband transitions are not the only differences that the band
structure introduces in the density response of a periodic system when compared to
the HEG model. In particular in this section we will discuss a new collective excitation
clearly visible in the loss function for non vanishing momentum transfer. These collec-
tive states, called zone-boundary collective states (ZBCS), are induced by the periodic
potential which, as demonstrated by using a nearly free electron model, is responsible
for the opening of a gap in the band structure close to the Brillouin zone boundary
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[18].
To understand, at least qualitatively, the origin of these new collective excitations

we consider a system where a perturbative periodic potential modifies the HEG in
such a way to open a gap at the zone boundary (for a more quantitative description
see [53, 54]). This gap modifies the region where the creation of particle-hole excitations
is allowed, and reduces the overall energy concentration of electron-hole pairs. This
causes the imaginary part of the dielectric function of the system with periodic lattice
to be smaller than the Lindhard function3 (see Fig. 4.4 a and b). When looking at
the loss function (Fig. 4.4 c) this effect induces a weak, low energy, peak, that can be
interpreted as a new collective excitation induced by a zone boundary effect.

3By consequence also the real part is modified.

41



4.3. The dielectric function in presence of a periodic lattice

42



Part II

Numerical applications
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Chapter 5

Intraband transitions in the G0W0

approximation for metals

More than 20 years of successful applications have established Hedin’s GW approach
[6, 25] and its numerical implementations [28, 3] as the state-of-the-art theoretical
method and most widely used for ab-initio many-body bandstructure calculations.
Efficient algorithms have been devised to encompass the major numerical bottlenecks
in the GW calculations: e.g. by avoiding k-space convolutions by a space-time method
[55], avoiding summations over empty states in the evaluation of the polarizability
[56, 57], and using localized basis functions [58], and/or model screening functions [59,
60, 61]. However, systems with metallic screening present an additional, challenging,
difficulty due to the evaluation of the k-space integrals appearing in the intraband
contribution to the electronic screened interaction. These transitions, occurring at the
Fermi surface, can dramatically slow down the convergence with respect to the k-space
sampling. As a consequence, the possibility to perform such ab-initio GW calculations
in metallic systems with a large unit cell is hindered. Even worse, when calculations
are performed using an unconverged k-point sampling, a spurious gap at the Fermi
level may appear. The gap vanishes only in the limit of infinitely dense sampling, and
is shown to close very slowly as the number of k-points increases. Solutions based on
explicit Fermi surface integration [44] are effective but result in cumbersome coding
and substantial increase of computation time.

In this chapter we present a numerically stable and efficient method, based on a
Taylor expansion of the polarizability matrix in the small-q region, which includes
intraband contributions and avoids explicit Fermi-surface calculations. The method
has been implemented successfully into the abinit [62, 63] package, and is shown to
remove the spurious gap at the Fermi level already with a limited number of k-points.

The present chapter follows the discussion published in Ref. [64].
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Figure 5.1: Self-energy
corrected G0W0 band struc-
ture of Na (110 direction),
showing the appearance of
an unphysical gap, and its
dependence on different nu-
merical convergence param-
eters. Panel (a) shows the
dependence with respect to
the number of empty states
in Eq. (3.31); (b) with re-
spect to the smearing tem-
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the k-point mesh. Panel (d)
shows the dependence of the
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5.1 Naive application of a standard G0W0 code to

metallic systems

When a standard G0W0 code for semiconductor or insulator is used to calculate
the self-energy correction for metals, the incorrect small-q values of χ0 induce the
opening of an unphysical gap at the Fermi energy in the G0W0 band dispersion, as
shown in Fig. 5.1. The figure shows the convergence properties of the width of this
unphysical gap, computed by extrapolation from the two sides of the band dispersion.
The spurious gap is essentially independent on most numerical convergence parameters,
such as the number of empty states and the smearing temperature, as shown in Fig.
5.1(a,b). The only dependence is on the number Nkpt of sample points in the k-space
mesh: Fig. 5.1(c,d) shows that the unphysical gap does tend to close for increasing

mesh size, but only extremely slowly, as N
− 1

3
kpt , as it will be explained later. Therefore,

it is practically impossible to close the gap by brute-force mesh refinement, especially
because the computation time of the dielectric matrix grows as N2

kpt. A larger smearing
temperature for electronic occupancy would reduce this unphysical gap, but it is a mere
technical device, and convergence should be checked in the limit of vanishingly small
smearing, where the actual metallic state is recovered.

The origin of the unphysical gap is the incorrect q = 0 screening function, due
to the missing intraband contribution. At first sight, as χ0 enters the calculation of
Σ through a Nkpt-discretized q-convolution in reciprocal space, one might think that
this single incorrect value should affect the energy corrections 〈Σ − VXC〉, with an
error of order N−1

kpt. However, the singular behaviour of the Coulomb repulsion vC near

46



Chapter 5. Intraband transitions in the G0W0 approximation for metals

0.4 0.6

|k| (a
0

-1
)

-4

-3

-2

-1

0

en
er

gy
 (

eV
)

DFT-LDA
G

0
W

0
 band with standard implementation

G
0
W

0
 with Lindhard screening

ε
F

LDA

HEG r
S
=3.5 a

o

Figure 5.2: Self-energy
corrected bandstructure for
the HEG (rs = 3.5 a0) com-
puted with the standard im-
plementation of the G0W0

method and with the Lind-
hard screening compared to
the DFT dispersion. The
spurious gap, caused by the
lack of the intraband term
in the screening, is removed
when the computed polar-
izability is replaced by the
Lindhard one (dot-dashed
line). The Kohn-Sham band
is also displayed for refer-
ence (dotted line).

q = 0 requires an explicit integration around the singular point, which makes the final

outcome sensitive to the incorrect χ00,0(0, iω) with an error of order N
− 1

3
kpt . Fig. 5.2

shows this effect in the HEG, where the gap is shown to disappear when the numerical
dielectric matrix is replaced by the Lindhard function described in Sec. 4.1.

In metals, the dielectric function ǫ is expected to diverge when both ω → 0 and
q → 0 (by contrast, it goes to its finite static limit in semiconductors and insulators).
The expression (3.36) vanishes exactly for the HEG and q = 0 since, for free electrons,
only intraband transitions can contribute to the sum in Eq. (3.31), and the latter vanish
due to the occupancy factors fi. The resulting incorrect null value of χ0(q → 0, iω)
yields ǫ−1(q → 0, iω) = 1, rather than the correct ǫ−1(q → 0, iω) = ω2

ω2+ω2
P

, as shown

in Fig. 5.3 where numerical results are compared with the Lindhard function.
A similar discontinuity in G0W0 corrections occurs for real metals such as Na and

Al. Differently from the HEG, we find ǫ−1(0, ω) < 1, due to the nonzero interband
contributions. In particular we obtain ǫ−1

Na(q = 0, 0) ≃ 0.94, similar to the incorrect
HEG value, and ǫ−1

Al (q = 0, 0) ≃ 0.008. The latter nears the proper Drude value, due
to a substantial part of the aluminum Fermi surface being very close to a Brillouin-
zone boundary. The so originated interband transitions makes ǫ to be large for small
frequencies. Thus the error induced by neglecting the intraband term is so small that
the unphysical gap is almost invisible.

5.2 Extrapolated small-q polarizability

The solution we propose avoids the explicit integration over the Fermi surface that
is required in a straightforward inclusion of the intraband term. We prefer to compute
the small q polarizability by a fit of the expected asymptotic behaviour of χ0. The time-
reversal invariance implies the polarizability matrix to respect the following symmetry

47



5.2. Extrapolated small-q polarizability

0 1 2
0

0.2

0.4

0.6

0.8

1

in
ve

rs
e 

di
el

ec
tr

ic
 f

un
ct

io
n 

ε-1

Lindhard abinit GW

ω=0 ω=iω
P

q [a
0

-1
] / k

F

0 1 2

HEG r
s
=3.5 a

0

Figure 5.3: Numeri-
cally computed HEG screen-
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rect points –pointed at by
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of empty states included in
the sums of Eq. (3.31).

(see Appendix A):

χ0G,G′(q, ω) = χ0−G′,−G(−q, ω) . (5.1)

Therefore, the small-q expansion of χ00,0(q, iω) includes only even powers of q.
The asymptotical trend of the diagonal element of Eq. (3.31) in the small wavevector

limit can be easily derived using a Taylor expansion in powers of q:

χintra
00,0 (q, iω) ≃

q→0

2

VBZ

∑

j

∫

d3k

df(ǫj)

dǫj
q · ∇kǫj

iω − q · ∇kǫj

|1 + q · 〈k, j|∇k − ir|k, j〉|2. (5.2)

By simplifying the previous equation we get the intraband contribution to χ0 to be:

χintra
00,0 (q, iω) ≃

q→0

2

VBZ

∑

j

∫

d3k δ(µ− ǫj(k))
q · ∇kǫj

iω − q · ∇kǫj

|1 + q · 〈k, j|∇k − ir|k, j〉|2 (5.3)

The diagonal matrix element in Eq. (5.3) is purely imaginary, therefore the last factor
is 1 plus a q-quadratic contribution. For ω = 0 the intraband term is then a constant
proportional to the density of states at the Fermi energy, plus corrections quadratic in
q. For ω 6= 0 the term linear in q cancels because ∇kǫj is odd (time reversal implies
ǫj(k) = ǫj(−k)) and the integral vanishes: the expansion begins with quadratic terms.
The expansion of the interband j 6= j′ term is easily seen to be no less than quadratic
in q. To sum up, we use the following expression:

χfit
00,0(q, ω|ω=0;ω=iωP

) = Aω +
∑

rs

Bω
rsqrqs , (5.4)
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Figure 5.4: The parabolic polarizability χfit
0 , Eq. (5.4), fitted to the computed χ00,0(q, ω) of

the HEG restricted to q-points within in a sphere of radius qc centered at q = 0, and compared
to the computed polarizability itself, for (a) ω = 0 and (b) ω = iωP . The computation involves a
cut-off energy of 3 Ha, Nkpt = 16×16×16 and a smearing temperature Tsmear = 0.005 Ha. Panels

(c)-(f): convergence of the fitted values χfit
0 (qs, ω) (where the tiny qs = (7, 14, 21) 10−6 a−1

0 ) as
a function of the cutoff radius qc, for different k-points sampling, and with (c) ω = 0 and (d)
ω = iωP , and for different smearing temperature, and with (e) ω = 0 and (f) ω = iωP . Horizontal
lines: the exact (Lindhard) values.

where Aω, Bω
rs are real adjustable parameters, and AiωP = 0 for ω = iωP . The ma-

trices Bω are symmetric, and may have further symmetries depending on the crystal
geometry.

The off-diagonal elements G = 0 G′ 6= 0 of χ0 (the so-called “wings” of the matrix)
are affected by a similar error, since they also contain the contributions of Eq. (3.36).
We also fit the intraband contribution to

χfit
00,G′(q, ω|ω=0;ω=iωP

) = Cω G′

+
∑

r

Dω G′

r qr , (5.5)

where Cω G′

, Dω G′

r are complex adjustable parameters, and CiωP G′

= 0 for ω = iωP .

5.3 Results

We determine the parameters Aω, Bω
rs, C

ω G′

, and Dω G′

r in Eqs. (5.4) and (5.5) by a
standard linear regression on values χ00,0(q, ω) and χ0 0,G′(q, ω) computed for nonzero
q-points inside a sphere of radius qc centered in Γ. We implement this procedure
within the abinit [62] package. To test the effectiveness of the method, we apply it to
the HEG in a simple-cubic cell geometry, and to bulk sodium and aluminum in their
experimental crystal structures (bcc a = 8.107 a0, and fcc a = 7.652 a0, respectively).

Figure 5.4 displays the fitting of the computed polarizability χ0 of the HEG. Panels
(a) and (b) compare the computed χ0 and its small-q fitted parabolic expansion, for
different cut-off radii qc. Panels (c)-(f) display the resulting extrapolated small-q values
of the polarizability as functions of the main parameters involved in the simulations
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5.3. Results

Table 5.1: Occupied bandwidth for the metals studied in this paper. The present results are
compared to similar calculations and experimental data. For the HEG, the DFT-LDA result
coincides with the free-electron model Fermi energy EF = EHa (9π/4)2/3(rs/a0)

−2. All energies
are in eV.

HEG Na Al
rs/a0 3 3.5 4 3.93 2.07
DFT-LDA 5.57 4.09 3.13 3.15 11.01
HEG G0W0 [25] 5.24 - 2.86 - -
HEG [65] 5.19 3.71 2.77 - -
G0W0 for metals [66] - - - 2.52 10.0
present work 5.17 3.84 2.89 2.81 10.03
experiment - - - 2.65 [67] 10.6 [68]

and the fit. In these fits, the cut-off radius qc cannot be chosen too small, otherwise
the number of q-points becomes insufficient to perform a reliable fit. Likewise, if qc is
increased so much that it becomes comparable with the Fermi momentum kF, the outer
points are affected by the non-parabolic q-dependency of χ0. Thus, an intermediate
reasonably qc must be used. This is especially important for ω = iωP , where the fit is
comparably more sensitive to the value of qc, as shown in Fig. 5.4(d,f).

As Fig. 5.5 shows, the corrected screening closes successfully the unphysical gap. Of
course in aluminum, where the fictitious gap is almost invisible, we see no significant
difference in the G0W0 corrections computed with and without the fit. The resulting
curves are not very sensitive to the fit details, such as the value of qc, or Nkpt. For
the HEG we can compare the obtained bands with those computed via the Lindhard
screening. The tiny and almost uniform shift is due to the truncation in the number
of empty states included in the summations of Eq. (3.31), which makes the screening
different in the large-q region, as illustrated in Fig. 5.3.

Table 5.1 reports the occupied bandwidths of the metals studied in this work com-
pared to previous calculations and experimental values. The comparison with the
DFT-LDA values shows the well-known bandwidth reduction. The results for the
HEG are close to Hedin’s computations [25], while in the case of Na and Al the numer-
ical value are comparable with data in the literature [66] and are in agreement with
the experimental values.
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Chapter 6

The inelastic X-ray scattering

spectra in metals

The non-resonant inelastic X-ray scattering spectroscopy (IXSS) technique permits
to access the dynamical dielectric response of solids through the measurement of the
dynamical structure factor (see Appendix B). Although this kind of spectroscopy is
complementary to the electron energy loss (EEL), it presents the advantage of being
less surface sensitive allowing access large momenta transfer. For these reasons this
technique is particularly appealing for studying the electronic excitation is solid systems
[69].

From the introduction of this experimental method, several theoretical and experi-
mental studies have been realized on a large variety of solids, including the prototypical
semiconductor: bulk silicon [4, 70, 71]. Metallic systems are particularly appealing, and
alkali metals, in particular, permit a direct comparison of experimental results with
the HEG calculations. The interest in the HEG is due to the fact that in such a system
it is possible to treat the electronic correlations beyond the simplest RPA or TDLDA
approaches [50, 72, 73]. Anyway the HEG calculation cannot describe all the features
appearing in the experiments as already pointed out in Sec. 4.3. For this reason full
band structure calculations have been performed for both elementary metals such as
aluminum [74, 75, 76], beryllium [77], and transition metals [78, 79].

In this chapter we compare both measured and calculated spectra for sodium and
aluminum, considered as paradigmatic systems for nearly free-electron metals. The ex-
periment considered here has been performed at ID16 at the ESRF by Giulio Monaco’s
group [73, 80]. Experimental curves have been normalized to absolute units by means
of the f-sum rule (Appendix C). The calculations are performed in the TDDFT-linear
response, as described in chapter 3, using different exchange and correlation kernels.
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Figure 6.1: Comparison of our results with the ones in Refs. [74, 75, 76] for aluminum for two
different momenta transfer along the (100) direction.

6.1 The dynamical structure factor for sodium and

aluminum

The calculations presented here have been performed starting from a DFT-LDA
band structure calculated with the abinit code [62] and taken as input for the TDDFT
linear response dp code [81]. All the integrations on the Brillouin zone required for the
calculation of the independent-particle polarizability χ0 have been performed using
4096 shifted k-point mesh and including 40 bands. An electronic temperature of 5
10−4 Ha is needed to provide a correct evaluation of the Fermi energy and of the
independent particle polarizability. For the smaller momenta, transfer a temperature
of 5 10−5 Ha is required to converge the plasmon energy.

Despite the simplicity of these systems only few experiments and calculations have
already been published. In particular, to our knowledge, some experimental results and
calculated spectra are availabe for aluminum [74, 75, 76], while an electron energy loss
measurement is available for sodium [82] and the comparison with theory is limited to
the plasmon dispersion [83]. To be consistent with the available result we compared the
measurement used for this thesis and our calculation with the ones already published.
We perform such a comparison for two momenta transfer in the case of aluminum (Fig.
6.1). The two measurements reveal some differences while the calculations are very
close each other. In both cases there is a good agreement between the calculations and
the experiments.

6.1.1 RPA and TDLDA results

It is now possible to analyze the complete q dependence of the dynamical structure
factor for both sodium and aluminum comparing RPA and TDLDA calculations to
the IXSS measurements. Due to its similarity with the HEG we approximate sodium
as an isotropic system neglecting the direction of the momenta transfer. Indeed a
calculation for the same |q| but oriented in two different directions provided spectra
with negligible differences. On the other hand aluminum, despite its simplicity, presents
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Chapter 6. The inelastic X-ray scattering spectra in metals

some important anisotropy and the q direction becomes relevant. For this thesis we
concentrate on q directed along the (100) direction. The results (Fig. 6.2, 6.3) show a
sharp plasmon peak at small momenta whose energy is blueshifted even if compared
with experiment. In all cases studied here TDLDA improves the agreement. On the
other hand, as soon as the momentum transfer q increases and the plasmon falls in
the electron-hole creation region (qC ≃ 0.4 a−1

0 for Na and qC ≃ 0.6 a−1
0 for Al) the

agreement in the case of sodium worsens and the shape of the spectra starts to be
different. TDLDA improves only slightly the agreement with the experiment which
remains unsatisfactory. In the case of aluminum, instead, we observe smaller differences
between experiment and calculations. The small peak observed in the experimental
curves at intermediate momenta transfer, with energy that is twice the plasmon energy
is not present at all in our numerical calculations. This feature is explained [73, 84]
as a double plasmon excitation, and is not present in our results because we consider
only first order polarization contributions.

6.1.2 The inclusion of quasiparticle lifetimes

We already discussed in Sec. 2.5 that the DFT energies are just a first approximation
of the quasipartile energies. In particular DFT completely misses the description of
the finite lifetime of the single quasiparticle states. To take into account quasiparticle
lifetimes in our calculations we proceed by applying the approach described in Ref.
[47], where lifetimes are introduced in χ0 by replacing the infinitesimal broadening
with the imaginary part of the self-energy (see Sec. 3.4.2).

The TDLDA together with the inclusion of lifetime effects, provides an improvement
in the results for bulk silicon (Ref. [4]), although for larger frequencies the agreement
becomes less clear. Such an improvement suggest that their effect is missing in TDLDA.
The inclusion of the lifetimes in the calculation for both sodium and aluminum has
been done by using the imaginary part of the self-energy for the HEG of Ref. [85]. At
each state of the bulk solid the lifetime has been associated as imaginary part of the
HEG self-energy for a state at the same energy (taking as reference the Fermi energy).

We find that also for alkali metals the effect of the lifetimes is to drive the calculation
to a better agreement with the experiment (see Fig. 6.4, 6.5). In particular their effect
is practically negligible for the smallest momenta since the main contributions to the
spectra come from transitions close to the Fermi energy where the quasiparticles have
a long lifetime. As soon as q increases the inclusion of lifetime turns to be decisive
to provide a improvement in the results with respect to standard TDLDA. The case
of sodium for very large q constitutes an exception, as neither standard TDLDA nor
the inclusion of lifetimes are capable to provide a satisfactory agreement with the
experiment. Moreover, it is not easy to pin down the reason for this disagreement as
the use of the HEG lifetimes for a solid, or to a general shortcoming of this approach.
In addition, as one expects, quasiparticle lifetimes just introduce a energy dependent
broadening in the spectra and are not able to originate the additional double plasmon
peak.
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For aluminum the calculations of lifetimes present in literature, with the full inclu-
sion of band structure, focus only on a rather limited energy range [86, 87]. For this
reason the result of these calculations are not useful as starting point for the calcu-
lation of our TDDFT spectra. On the contrary, in the case of sodium a calculation
of quasiparticle lifetimes for a wide energy range is available [88]. The authors show
some differences in the lifetimes with respect to the HEG ones attributed to the plas-
mon broadening typical of real systems. In figure 6.6 the spectra calculated with the
lifetimes of Ref. [88] are plotted. Despite the differences in the lifetimes the resulting
spectra does not differ significantly.

6.1.3 Calculations with different kernels

The simplicity of the alkali metals permits us to evaluate the effect due to more
complex kernels which exhibit a frequency or a momentum dependence.

A frequency dependent kernel is the one proposed by Gross-Kohn [37], which is a
generalization of the usual static TDLDA (see Sec. 3.2.2). In this case in addition to the
frequency dependency the kernel presents also an imaginary part, which is expected
to broad the resulting response function spectra in similar way as the quasiparticle
lifetimes. The implementation of this kernel has been performed in the same way as
standard TDLDA. First of all one calculates the real space density which determines
the kernel (accordingly to the assumption of locality in space the kernel depends on
one spatial coordinate and on one frequency). Finally the kernel is transformed in
reciprocal space using a Fourier transformation. The results are represented in Fig.
6.7. The Gross-Kohn kernel are very close to static TDLDA ones, and the differences
are limited to a slight broadening of the spectra.

To test the effect of a q-dependent kernel we considered the Hubbard local field
factor [7] and the Corradini one [48]. In these cases we implemented both the kernels
as if they would be applied to jellium with the density of sodium. The kernel matrix
in reciprocal space is diagonal in G and G′ and with the diagonal term dependent
on |q + G|. The results of the calculation are plotted in Fig. 6.7. In the case of the
Hubbard kernel, when we consider small momenta transferred, the plasmon dispersion
is moved in the right direction. On the other hand, as soon as the q increases the
kernel moves the spectra towards a better agreement with experiment compared to the
RPA, while showing a poor agreement compared to TDLDA. Similar conclusions apply
to the results with the Corradini kernel, which does not improve the TDLDA results.
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Figure 6.2: Comparison of experimental (stars) and calculated dynamical structure factor
for sodium and different momentum transfer. Calculation are performed in RPA (dashed) and
TDLDA (solid).
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Figure 6.4: Comparison of experimental (stars) and calculated dynamical structure factor for
sodium. Calculation are performed in TDLDA with (dot-dashed) and without (solid) lifetime
effects.
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Figure 6.5: Comparison of experimental (stars) and calculated dynamical structure factor for
aluminum; q along the (100) direction. Calculation are performed TDLDA with (dot-dashed)
and without (solid) lifetime effects.
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Figure 6.6: Comparison of experimental (stars) and calculated dynamical structure factor for
sodium. Calculations compare the results by approximating the lifetimes with the HEG ones
(dot-dashed) or with the ones calculated with the inclusion of band structure (dashed). For
reference are plotted also the results for TDLDA without lifetimes (solid).
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Figure 6.7: Comparison of experimental and calculated dynamical structure factor for sodium.
Calculation are performed in TDLDA (solid), Gross-Kohn (brown dashed), Hubbard (black
dashed) and Corradini kernels (dot-dashed).
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6.2 The plasmon dispersion for sodium

To summarize the results with different kernels we present the plasmon dispersion
of sodium in Fig. 6.8. The plasmon energy is defined as the energy corresponding
to the maximum of the loss function, which merges with the particle-hole continuum
for qc ≃ 0.4 a−1

0 . For q ≫ qC the plasmon mixes with the single particle excitations
becoming less coherent. Similarly to what already observed for the HEG (Ref. [50]
and Sec. 4.2.3) we observe that the TDLDA, the Gross-Kohn and Corradini kernels
improve upon the RPA result for all the momentum transfers. The Hubbard kernel
performs even better only for q < qC , while for q > qC it provides result poorer than
the TDLDA. The inclusion of quasiparticle lifetimes, calculated for the HEG, leads to
a drastic improvement in the agreement with experiment especially for q > qC . The
approximation of lifetimes with the HEG ones is not crucial for the quality of the
results.
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6.3. A TDDFT kernel including lifetimes

6.3 A TDDFT kernel including lifetimes

In the previous section we have shown how the inclusion of quasiparticle finite
lifetimes in χ0 yields good agreement between the calculations and the experiment.
Strictly speaking, this approach is not rigorous in the framework of TDDFT, that is
supposed to start from a response function built with the Kohn-Sham eigenfunction
and eigenvectors, instead of the quasiparticle corrected ones (this means that all the
quasiparticle effects should be described by the kernel and not by χ0). For this reason
we are interested studying the main features of a kernel able to provide the same
accuracy as the TDLDA plus lifetimes.

At this aim we invert the problem trying to determine the kernel once the density
response function χ is known. If we consider the Dyson’s equations for the independent-
particle polarizabilities built with and without lifetimes:

{

χ = χ0 + χ0[vC + fXC LT + fTDLDA]χ
χ = χLT + χLT [vC + fTDLDA]χ

(6.1)

by imposing the resulting χ to be equal, we formally obtain the kernel as:

fXC LT = χ−1
0 − χ−1

TDLDA (6.2)

In Fig. 6.9 we show the resulting fXC LT for different q along the (111) direction for
Si. It is interesting to note that the kernel is both energy and q dependent. Moreover,
the lifetime description in this way does not only introduce an imaginary part to the
kernel, but also modifies the real part, as compared with the TDLDA kernel. While the
q dependence reflects the nonlocality of the kernel in real space, the energy dependence
is linked with the non-locality in time. The latter dependence is of course expected
to describe lifetime effects. By contrast, the TDLDA kernel is local in space and time
independent.

The independent-particle polarizability χ0 is, rigorously speaking, not invertable.
However, inversion using similar matrix sizes as used in the calculation of the spectra,
is possible. Differently, the kernel should be better defined since due to the difference
in Eq. (6.2) the singular value of χ−1

0 and χ−1
LT are expected to simplify each other.

In Fig. 6.10 we represent χ−1
0 inverted with different matrix sizes. χ−1

0 . χ−1
0 as well

as χ−1
LT , are relatively unstable with respect to the number of G vector used for the

calculation and the inversion. However, this dependence on the number of G vectors
cancels out when the difference of Eq. (6.2) is taken. The kernel itself is much more
stable than the χ−1

0 and χ−1
LT alone. The spectra produced with the resulting kernels

are virtually indistinguishable (see Fig. 6.11).
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Chapter 7

The optical properties of metals

In this chapter discuss the ab initio calculation of the optical properties of metals.
The description of the small-q dielectric properties of a metallic system is a difficult task
since it presents the same problems already described in Chapter 5 due to the descrip-
tion of intraband transitions. Even for semiconductors, standard TDDFT calculations,
e.g. of bulk silicon, describes the loss function better than the optical absorption. The
simple RPA and TDLDA are not able to describe the optical spectra and the inclusion
of quasiparticle corrections (the difference of the DFT eigenvector are affected by the
underestimation of the gap) and electron-hole interaction (excitonic effect included by
solving the more complex Bethe-Salpeter equation) becomes necessary to provide good
results [89]. This means that more complex kernels are necessary within the framework
of TDDFT. Particular effort has been spent in building a kernel able to reproduce the
effects coming from the quasiparticle correction and excitonic effects [46].

When dealing with metals, the effects which make RPA fail in the case of silicon
are negligible. The GW corrections for a metal induce only a small reduction of the
bandwidth, while excitons are not present since electrons and holes are better screened
than in a semiconductor.

On the other hand metallic systems present the additional problem of the contribu-
tions to the response function due to intraband transitions. Despite the problem is the
same as for the calculation of G0W0 correction we believe that the method applied in
Chapter 5 is not efficient for dealing with optical properties. If that method would be
applied to optical properties, it would require the evaluation of χ0 for a large number
of frequencies at finite q used only to perform the fit, with a not negligible computing
effort.

The standard approach used in literature is essentially the description of the diver-
gence due to the intraband transition thanks to the inclusion in the dielectric function
of a Drude like contribution [8, 43]:

ǫ(q → 0, ω) = 1 − ω2
P

ω(ω + i/τ)
(7.1)

where ωP is the plasma frequency and τ is a parameter that describes the finite lifetimes
of the quasiparticle due to the excitation induced by phonons or impurities. The
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nontrivial part of this procedure is the evaluation of the plasma frequency ωP , for
calculating which, heavy integrations near the Fermi surface are required:

ωP = lim
q→0

8π

q2

∑

j

∫

BZ

[fj(k − q) − fj(k)]θ[fj(k − q) − fj(k)]

|〈k, j|eiq·r|k − q, j〉|2[ǫj(k) − ǫj(k − q)]. (7.2)

The main disadvantage we find in such a solution is the difficulty to extend the method
to highly anisotropic systems due to the fact that the Drude formula does not present
any information on the direction of the small wavevector used for the calculations. A
more complex method which models the anisotropies is also available [44].

Therefore, to deal with this problem we propose an approach different from the
ones available in literature. The idea is to treat the intraband transitions by means of
a perturbative expansion of the energies, which become treatable in the same way as
for the interband ones. In the next section we will present the details of the method
and in the rest of the chapter we will test the method on Al and ferromagnetic Fe.

7.1 Description of the method

In order to describe simple and complex metals, by going beyond the Drude model,
we propose a direct implementation of the intraband contribution in the building of χ0.
Instead of using the transitions across the Fermi surface to evaluate ωP we put them
directly into the independent-particle polarizability. Of course since χ0 is defined as
summation over the transition one is allowed at any time to separate the inter- from
the intra-band contribution and to sum them at a later time, so that Eq. (3.31) can
be rewritten as:

χ0 G,G′(q, ω) = χinter
0 + χintra

0 = (7.3)

= − 1

VBZ

∑

j 6=j′

∑

σ,σ′

∫

BZ

d3kδσ,σ′ [f(ǫj′(k + q)) − f(ǫj(k))]
ρ̃j,j′,σ,σ′G(k,q)ρ̃∗j,j′,σ,σ′G′(k,q)

ω − [ǫj′(k + q) − ǫj(k)] + iη
+

− 1

VBZ

∑

j

∑

σ,σ′

∫

BZ

d3kδσ,σ′ [f(ǫj(k + q)) − f(ǫj(k))]
ρ̃j,j,σ,σ′G(k,q)ρ̃∗j,j,σ,σ′G′(k,q)

ω − [ǫj(k + q) − ǫj(k)] + iη
.

where ρ̃j,j′,σ,σ′G(k,q) is the matrix element 〈k, j, σ|e−i(q+G)·̂r|k + q, j′, σ′〉,
The method we choose to add the intraband contributions is based on a first-order

Taylor expansion of the dispersion law around the momenta for which the Kohn-Sham
wavefunctions and eigenenergies are known; a schematic representation of this approach
is sketched in Fig. 7.1. This expansion permits to approximate the energies of the states
at k − q/2 and k + q/2 where q is a very small momentum. This choice is due to the
interest in preserving the time reversal symmetry of the problem, because proceeding
in this way the transition at the point −k will be perfectly symmetric.
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Figure 7.1: Graph-
ical description of the
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the band structure to
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contribution in χ0.
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2
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2
.

To estimate the difference of the energies of the initial and final state we evaluate
directly the first term of the expansion of the difference by using the Hellmann-Feynman
theorem which sets that, considering an Hamiltonian dependent on a parameter, the
derivative of the eigenenergy with respect to that parameter is the expectation value
of the derivative of the Hamiltonian:

dEλ

dλ
= 〈Ψ|dHλ

dλ
|Ψ〉 (7.4)

For a Bloch periodic system the parameter is k and the derivative of the energy dis-
persion relation is the expectation value of the momentum operator1. For this reason
the difference of energies can be approximated as:

∆ǫj(k) = ǫj

(

k +
q

2

)

− ǫj

(

k − q

2

)

≃ q · ∂ǫ(k)

∂k
= q · 〈k, j|k̂|k, j〉. (7.5)

The other ingredients that are required to build χ0 are the difference of the occu-
pancies, and the matrix elements. The firsts can be easily evaluated as difference of
the occupancies calculated at the energies corresponding to the initial and final state

f
(

ǫj

(

k +
q

2

))

− f
(

ǫj

(

k − q

2

))

=f

(

ǫj(k) +
∆ǫj(k)

2

)

− f

(

ǫj(k) − ∆ǫj(k)

2

)

.(7.6)

This reveals to be an easier solution than performing an expansion also for the occupan-
cies, because the Fermi-Dirac distribution can be evaluated with arbitrary precision,
with much more accuracy than the Kohn-Sham energies.

The zeroth-order expansion of the matrix elements ρ̃j,j,σ,σ′G(k,q) is the orthonor-
malization between the wavefunctions of the initial and final states for the G = 0

Fourier component, while a direct evaluation is possible in case of finite G. Since also
in the case of G = 0 the condition of normalization for the eigenfunction is achieved by

1In principle, due to our pseudopotential approximation, there is also a term due to its non local
part, but at this stage we neglect this contribution.
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Fourier transform the product of the two wavefunctions in real space, this solution is
used to calculate also the G = 0 component neglecting further corrections. In formula
this means:

ρ̃j,j,σ,σ′G(k,q) = F
[

φ∗
j,σ(r)φj,σ′(r)

]

. (7.7)

Finally the Drude contribution χintra
0 can be expressed as follow:

χintra
0G,G′(q, ω) = − 1

2VBZ

∑

j

∑

σ

∫

BZ

d3k · (7.8)

·
{

[

f

(

ǫj(k) +
∆ǫj(k)

2

)

−f
(

ǫj(k) − ∆ǫj(k)

2

)] F
[

φ∗
j,σ(r)φj,σ′(r)

]

F∗
[

φ∗
j,σ(r)φj,σ′(r)

]

ω − ∆ǫj(k) + iη

+

[

f

(

ǫj(k) − ∆ǫj(k)

2

)

−f
(

ǫj(k) +
∆ǫj(k)

2

)] F
[

φj,σ(r)φ
∗
j,σ′(r)

]

F∗
[

φj,σ(r)φ
∗
j,σ′(r)

]

ω + ∆ǫj(k) + iη

}

This approach to deal with intraband transitions has been implemented in the dp

code [81] and we applied it to bulk aluminum as benchmark system, and to ferromag-
netic iron.

7.2 Optical properties of metallic aluminum

To test the present approach to the description of the intraband contribution to the
response function we consider aluminum due to its jellium like behaviour. We will also
compare our results with previous calculations [8] and with experimental measurements
[90, 91].

7.2.1 The interband term and the random k-point sampling

The first problem one has to deal with in the case of metals is the slow convergence
with the k-point mesh. A possible approach to improve the convergence is to use a
shifted mesh of k-points, which converges faster because the mesh does not have the
symmetries of the lattice [92]. Since optical properties involve transitions at the same
k-point there is no need to use a regular spaced mesh. Indeed we found that an uniform
random sampling performs even better than the shifted mesh due to the disappearence
of the fictitious structures originated from the regular spacing (see Fig. 7.2), providing
good results already with a limited number of k-points.

Another advantage of random meshes is the fact that to improve the accuracy of
the Brillouin zone sampling it is not necessary to perform the calculations from the
beginning but it is sufficient to add the new contributions in χ0

2:

χnk 1+nk 2
0 =

nk 1χ
nk 1
0 + nk 2χ

nk 2
0

nk 1 + nk 2
. (7.9)

2This can be done taking care of the normalizations due to the total number of k-points and at
condition that the mesh is generated respecting the constrain of mapping uniformly the Brillouin zone.
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For these reason in what follow a random sampling of the Brillouin zone will be used.
The resulting interband contribution to the dielectric function ǫ is plotted in Fig.

7.3. It is possible to see the presence of two structures at 0.5 eV and 1.5 eV in agreement
with the result of Ref. [8]. The origin of these structure can be understood by looking
at the band structure shown in Fig. 7.4. It si possible to attribute the 0.5 eV peak to
the transitions between the two parallel bands close to the W point, while the other
peak is due to the parallel bands close to the K point.

7.2.2 The inclusion of the Drude contribution into the dielec-

tric function

Before comparing our results with the experiment, we present in this section the
calculations performed for bulk aluminum, in order to test the accuracy and the lim-
itations of the method used in this thesis. In particular we look at the effects of the
convergence parameters on the resulting spectra and on the plasma frequency. We will
neglect the convergence with respect to the cut-off energies and the k-points since they
behave in a similar way as the well known case of semiconductors.

One crucial point is the dependence of the results with respect to the small imagi-
nary part η added to the denominator of χ0 necessary to avoid the divergencies at the
poles. It has been already shown that this parameter has the effect of smoothing the
peaks improving the k-point convergence. Calculations with different values of η are
plotted in Fig. 7.5. While interband peaks becomes simply smoother for increasing η,
this is decisive on the Drude peak. To discuss this point let us refer to the HEG case
where the Lindard function computed in Sec. 4.1, is evaluated in the limit η → 0. Its
long wavelength limit is real and gives the Drude formula ǫ = 1−ω2

P/ω
2. This implies

that for describing optical absorption the presence of an imaginary infinitesimum is
necessary. That is exactly what can be observed in the results of Fig. 7.5: the smallest
value of η introduces a very thin peak at low frequencies, while only by using a rather
large value for η it is possible to make the intraband peak to overlap with the first in-
terband transition as it is evident in the experiment (see next section). In a similar way
previous calculations of the optical properties use Eq. (7.1) to describe the intraband
transitions, in order to provide the correct ℑǫ. In Eq. (7.1) the parameter τ introduces
the requested imaginary part in the dielectric function and it is interpreted as the
quasiparticle lifetime due to phonons and impurities. Of course from the point of view
of the formalism applied in this thesis we have no way to determine ab-initio its value,
so we are forced to tune it in order to have a good agreement with the experiment.

Another effect related to this issue is the way we introduce the intraband tansition in
χ0. Since the transitions are directly included in χ0 the resulting spectra corresponds
to a finite but very small-q calculation. This means that the computed imaginary
part of the dielectric function presents an intense, but not diverging, peak at very low
frequency (not visible in the figures). Similarly the real part of ǫ does not tend to −∞
when ω → 0, as in the model function, but it will present an huge negative peak, which
grows to its positive finite limit for ω = 0. This make difficult to conclude something
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Figure 7.5: Calculation for the dielectric function of aluminum with different imaginary broad-
ening η in the building χ0.
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Figure 7.6: Calculation for the dielectric function of aluminum with different smearing tem-
peratures.
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Figure 7.7: Calculation for the dielectric function of aluminum with and without time reversal
symmetry for the k-point sampling.

73



7.2. Optical properties of metallic aluminum

Table 7.1: Palsmon energy of aluminum calculated as the zero of the real part of the dielectric
function. The calculation are performed as function of the smearing temperature for two different
broadenings. All values are in eV.

Tsmear (Ha) 1 · 10−3 5 · 10−4 1 · 10−4 5 · 10−5 1 · 10−5

η = 0.05 eV
ωP 15.73 15.58 15.29 14.96 16.94

η = 0.005 eV
ωP 15.73 15.58 15.28 14.96 16.94

for frequencies smaller than ≈ |q|kF , but also from an experimental approach this part
of the spectra is not accessible.

Another parameter that must be carefully converged in metallic systems is the
electronic temperature. This parameter is fundamental because of the finiteness of the
k-point mesh. Indeed it is very difficult to find a suitable number of k-points with
energy so close to the Fermi level such as to give a non zero contribution to χ0. In
Fig. 7.6 we present the effect of temperature on the calculated long wavelength limit
of the dielectric function. Only small differences are present between the curves. The
general trend is that by decreasing the electronic temperature the real part moves to
lower frequencies (this is the same as what discussed in the previous chapter about
the small-q convergence properties of the loss function). On the other hand, when the
smearing temperature is too low the evaluation of the Fermi energy becomes difficult
with a finite set of k-points and the spectra becomes meaningless.

In order to understand the effect of the smearing on the calculated spectra it is pos-
sible to compare the plasma frequency calculated for different electronic temperatures.
The plasmon has been defined to be the zero of the real part of ǫ (table 7.1), since
the local field effects are negligible in Al. The results show that the plasma frequency
decreases with the electronic temperature until the plasmon becomes meaningless for
a too low temperature.

A last comment deals with satisfying the time reversal invariance of the transitions
contributing to the Drude peaks. As pointed out in section 7.1, we want to include
in our calculation both the transitions at k and −k. The reason is to preserve the
symmetry ǫ(ω) = ǫ∗(−ω) which cannot be satisfied if the resonant transition is not
compensated with the antiresonant one. In fig 7.7 we show the results of a calculation
of ǫ with or without the contributions coming from antiresonant transition. The result
shows the crucial role played by the inclusion of both terms in order to give a correct
evaluation of the dielectric function.
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Figure 7.8: Comparison of calculated and experimental long wavelength limit of the dielectric
function for aluminum. Green solid the calculated RPA results compared with the data tabuled by
Palik [90] (dotted) an by Ehrenreich [91] (dash-dotted). Calculation are performed with η = 0.05
eV and Tsmear = 5 10−5 Ha.

7.2.3 Comparison with the experiment

To compare our results with the experiment we compute the response function using
105 random k-points, 20 states (occupied and empty), an electronic temperature of 5
10−5 Ha, and a broadening η = 0.05 eV. In Fig. 7.8 the comparison of the RPA results
with two sets of experimental measurements tabuled by Palik [90] an by Ehrenreich
[91] is represented. It is possible to observe a good agreement between the calculation
and experiment. Only the interband peak is located at a slightly too low energy and
it is not broad enough.

We also perform calculation with the same kernels used in chapter 6 for the IXS
spectra to investigate their effect on the optical properties. We performed calculation
with TDLDA, the Gross and Kohn kernel, the Hubbard local field factor and the
Corradini kernel. In Fig. 7.9 we plot the comparison between RPA and the calculation
performed with these kernels. We observe that the kernels does not produce differences
with respect to RPA. This can be explained with the fact that fXC is smaller than the
Coulombian potential vC (which diverges for small q), so that the sum of the two is
practically equal to vC .

7.2.4 The loss function

Starting from the results just discussed it is possible to easily obtain the loss func-
tion of aluminum. We already discussed its properties for finite momentum transfer
in Chapter 6. On the other hand, measurements are possible also in the long wave-
length limit [93], which is addressed in this section. Figure 7.10 reports the calculated
and experimental loss function of aluminum for q = 0. The calculation is in good
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Figure 7.9: Calculation for the imaginary part of the dielectric function of aluminum with
different kernel. Panel (a) shows the compartison with RPA and TDLDA, (b) the one with RPA
and the Gross and Kohn kernel, (c) the one with RPA and the Hubbard local field factor and (d)
the one with RPA and the Corradini kernel.

agreement with the experimental plasmon, except for a small underestimation of its
energy. In addition, the weak 7 eV structure present in the experiment is not described
by our calculation. For comparison Fig. 7.10 reports also the loss function calculated
considering only the interband contributions. This calculation is very different from
the other two results, showing the crucial role played by the Drude.

7.3 Optical properties of ferromagnetic iron

In the previous section we have shown that our method works well in bulk alu-
minum. On the other hand we want to test its performance on a more complex metal
like ferromagnetic iron. The complexity of this system is not related to geometrical
properties and anisotropies since it has a bcc lattice. The electronic structure, plotted
in Fig. 7.11, however, presents more difficulties than in the case of aluminum: this ma-
terial is magnetic and the Fermi energy crosses the narrow 3d band. The availability of
a fair number of spectroscopic measurements makes this metal particularly appealing
as a test case.

7.3.1 Optical absorption

The calculation of optical properties of bulk Fe is performed in the same way as for
aluminum. First we perform a ground-state calculation with the abinit code in the
LSDA approximation as discussed in Ref. [94], obtaining the band structure, plotted in
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Fig. 7.11. Beyond this we computed the dielectric response with the dp code, applying
the method presented in Sec. 7.1 for dealing with the Drude contribution. We map
the Brillouin zone with a mesh of 40000 random k-points. For the calculation of
the optical properties we include 40 bands. In this section we discuss a calculation
performed with η = 0.05 eV and an electronic temperature of 1·10−5 Ha. This set
of parameters, according to the discussion of Sec. 7.2.2, is the one providing the best
converged results.

The comparison of the calculated results with the experiments [90, 95], plotted in
Fig. 7.12, is not so convincing as in the case of aluminum. The imaginary part of the
calculated dielectric function of iron looks quite close to both the experimental data.
The main differences are a slight overestimation of the energy interband peak, which
the calculation puts at 2.7 eV while in the experiment is placed at lower energy an
is much broaden. In addition there is some disagreement in the region between 0.5-1
eV where the Drude tail overlaps the interband part of the spectra. This mismatch
is more evident in the real pert of ǫ. Indeed the calculated dielectric function become
positive between 0.4 and 2.7 eV.

To understand weather these differences can be attributed to the evaluation of the
intra- or the inter-band contribution to χ0, we analyze the two terms separately. They
are plotted in Fig. 7.13. The imaginary part of ǫ for small energies is dominated by the
Drude term. For intermediate energies both terms contribute to the total spectra, while
at high energy the main contribution is the interband one. It is anyway interesting to
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notice the rapid decrease of the Drude peak due to the small average Fermi velocity
in this system, and the presence of nonzero interband contributions even at very small
energies, due to the presence of electronic bands very close to the Fermi energy3. The
analysis of the real part leads to similar shows that the responsible for ℜǫ becoming
positive is the interband contribution which is not compensated by the Drude tail.

We also checked the effect of local fields. Since metallic iron is very different from
the HEG, their effect is not obvious. The resulting RPA calculations with and without
local field effects are plotted in Fig. 7.14 , showing substantially no effect.

The calculation presented here leaves still some questions about the origin of the
discrepancies in the comparison of our results with experiments. The main point is
to understand why the real part of the calculated dielectric function becomes positive
in the region 0.4 - 2.7 eV, while in the experiment it is negative. Our impression
is that there is some missing physics in the simple RPA calculation. For example
in this treatment the constant η used for the present calculation is kept constant.
Accordingly to what already discussed in this work it plays the role of the quasiparticle
finite lifetimes, which is in fact energy dependent and, moreover, has been shown to be
different for the two spin components [96]. A more accurate treatment of their effect
is, therefore, to be evaluated. On the other hand another point to be investigated is
the effect of the small q used in these calculations: the weak dispersion at the Fermi
surface make us suspect that the q used in the calculation may be too small. Of course
iron is not as simple as aluminum and it is not obvious how much the problem affecting
the silicon optical properties can be relevant also for this case. In conclusion there are
still open questions regarding our results and a more accurate investigation is therefore
required.

7.3.2 The loss function

Analogously to the case of aluminum we also compare our EEL results with the
experiment. The parameters used for the calculation are the same used in the previous
section, but a Gaussian broadening of 2 eV has been added to the computed spectra.
The spectra for this systems are more complex due to the more complex iron band
structure. As a consequence, when comparing the calculated spectra with and without
the intraband contributions (Fig. 7.15 panel a), the differences are very small and
located in the small-frequency region. Consequently the main features of the loss
function are due to interband transitions. The agreement with the calculations is
rather good considering the complexity of the system. The main structure at 23.5 eV
in the experimental spectrum corresponds to a collective excitation of the 4s and 3d
electron. In the calculation we overestimate the energy of this plasmon by less than 1
eV. The other structures present in the experimental and theoretical spectra have been
attributed to single particle excitation, but the complexity of the band structure makes

3See for example in Fig. 7.11 the spin down component around the Γ-H direction or the spin up
around the N-point.
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Figure 7.12: Optical properties of bulk iron. Experiment tabled by Palik [90] (crosses) or
performed by Johnson and Christy [95] (plus) are compared with our RPA calculation (solid
line).

0 1 2 3
-200

-150

-100

-50

0

50

ε(
ω

)

Experiment Palik -Ordal
Experiment Johnson
Full calculation
Only intraband
Only interband

0 1 2 3
0

50

100

energy (eV)

Real part Imaginary part

Figure 7.13: Individual inter- (dot-dashed) and intra-band (dashed) contributions to the total
(solid) dielectric function of iron. Experimental points are also plotted for reference.

0 1 2 3
-200

-150

-100

-50

0

50

ε(
ω

)

Experiment Palik -Ordal
Experiment Johnson
With local fields
Without local fields

0 1 2 3
0

50

100

energy (eV)

Real part Imaginary part

Figure 7.14: Calculated RPA dielectric function for iron with (solid) and without (dashed)
local field effects. Experimental points are also plotted for reference.
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Figure 7.15: Comparison of measured and calculated electron energy loss spectra for iron at
zero momentum transfer. The calculation is performed with η = 0.05 eV, Tsmear = 1 10−5 Ha.
An additional Gaussian broadening of 2 eV is added to the spectrum. The experiments from Ref.
[97, 98]. (a) comparison of calculations with/without the Drude contribution and (b) inclusion
of the semicore.

it difficult and not univocal the attribution of these structures to specific transitions
[97, 99]

In the spectra it is also visible a structure at 55-60 eV which can be attributed
to transitions involving a core state which is implicitly included in our calculation,
trough the pseudopotential. To demonstrate the origin of this structure we performed
a calculation including explicitly the 3s and 3p semicore electrons in the calculation.
The calculation was performed with the same k-point mesh, smearing temperature
and broadening η. A larger number of plane waves is required to reach convergence
due to the high localization of the semicore states. For the pseudopotential details
see Ref. [94]. The resulting spectrum is plotted in Fig. 7.15 (b). Our calculation with
the semicore states correctly reproduces the 55 eV peak with a slightly overestimated
intensity. In addition there are some differences in the calculated spectra also in the
low energy region. These differences are due to the differences in the valence band
structure induced by the introduction of the semicore states.
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Appendix A

Symmetry consideration for the

response functions

In the present appendix we point out a few properties of the many body response
function under the main symmetries of a periodic solid. In what follows we refer in
general to χ0, χ, and ǫ, pointing out the differences whenever present.

A.1 Lattice periodicity

The Bloch theorem on the wavefunctions implies that they can be written as a
plane wave times a function with the lattice periodicity. The translational invariance
for the two-particle response function reads:

χ(r, r′, ω) = χ(r + R, r′ + R, ω), (A.1)

where R is a lattice vector and it is crucial that the invariance applies with a translation
of both the two arguments by the same vector.

Passing in reciprocal space by Fourier transform this invariance implies that:

χ(q1,q2, ω) =

∫

d3rd3r′e−iq1reiq2r
′

χ(r, r′, ω) = (A.2)

=

∫

d3rd3r′e−iq1reiq2r
′

χ(r + R, r′ + R, ω) (A.3)

By a shift of the integration variables and collecting the exponential one deduces:

χ(q1,q2, ω) =

∫

d3rd3r′e−iq1reiq2r
′

ei(q2−q1)Rχ(r, r′, ω) (A.4)

By comparing Eq. A.4 with Eq. A.2 we obtain the condition ei(q2−q1)R = 1. This implies
that the two arguments q1 and q2 must differ by a reciprocal lattice vector, and since
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we can always write a vector in reciprocal space as sum of a contribution q inside the
Brillouin zone plus a reciprocal lattice vector G we get the following dependence for χ:

χG,G′(q, ω) (A.5)

where q is inside the first Brillouin zone and G and G′ are two reciprocal lattice vectors.
For any q and ω, χ can therefore be thought as a matrix whose indexes are G and G′

A.2 Time reversal invariance

Time reversal symmetry is a property of isolated physical systems due to the fact
that the Shrödinger equation is invariant by replacing the time variable t with −t,
inverting the momenta, flipping the y component of spin and taking the complex con-
jugate of Ψ. For a system of electrons it implies that, in the absence of magnetic field
and with spin degeneracy, the Bloch wavefunction of opposite momentum are one the
complex conjugate of the other Ψk,j(r) = Ψ∗

−k,j(r) and they are degenerate.
This symmetry implies the invariance of the correlator χ0 and χ under the exchange

of the spatial coordinates. We report the demonstration for χ0. We start from the
expression for the polarizability in direct space with inverted variables r and r′:

χ0(r
′, r, ω) =

=
2

VBZ

∑

i,j

∫

BZ

∫

BZ

d3kd3k′ (fk′,i − fk,j)
Ψ∗

k,j(r
′)Ψk′,i(r

′)Ψ∗
k′,i(r)Ψk,j(r)

ω − (ǫj(k) − ǫi(k′)) + iη
. (A.6)

By using time reversal on the wavefunctions:

χ0(r
′, r, ω) =

=
2

VBZ

∑

i,j

∫

BZ

∫

BZ

d3kd3k′ (f−k′,i − f−k,j)
Ψ−k,j(r

′)Ψ∗
−k′,i(r

′)Ψ−k′,i(r)Ψ
∗
−k,j(r)

ω − (ǫj(−k) − ǫi(−k′)) + iη
=

(A.7)
By replacing the integration variable k ↔ −k and k′ ↔ −k′ and reordering the
eigenfunctions in the numerator we obtain

χ0(r
′, r, ω) =

=
2

VBZ

∑

i,j

∫

BZ

∫

BZ

d3kd3k′ (fk′,i − fk,j)
Ψ∗

k,j(r)Ψk′,i(r)Ψ
∗
k′,i(r

′)Ψk,j(r
′)

ω − (ǫj(k) − ǫi(k′)) + iη
=

= χ0(r, r
′, ω). (A.8)

In reciprocal space the symmetry property (A.8) implies that:

χG,G′(q, ω) = χ−G′,−G(−q, ω) (A.9)
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Such property does not carry forward simply to ǫ−1 = 1− vCχ because of the presence
of the Coulombian potential term vC = δG,G′

4π
|q+G|2

.
An other consequence of time reversal invariance applies for purely imaginary fre-

quency: in this case χ0 and, depending on the kernel, even χ and ǫ are real functions
in direct space. Here follows the demonstration for χ0:

χ∗
0(r, r

′, iω) = χ0(r, r
′,−iω) = χ0(r

′, r, iω) = χ0(r, r
′, iω) (A.10)

In reciprocal space this will imply that χ0 is an Hermitian matrix of G and G′ for
every q. The same applies to χ, but does not apply to ǫ−1.

A.3 Point group

In general a crystal often has other symmetries in addition to the ones already
cited. The disposition of atoms in the unit cell makes the crystal invariant under a
set of transformation originating the so called point group. These operation are in
general unitary transformations (inversions, rotations or a combination of the two);
sometimes it is necessary to introduce a translation to have the crystal invariance (non
symmorphic operation). These symmetries permit in general to reduce to study the
original problem in a region of the reciprocal space smaller than the first Brillouin zone
that is called the irreducible Brillouin zone.

The polarizability presents the following invariance under these symmetries:

χ(Rr + τ, Rr′ + τ, ω) = χ(r, r′, ω) (A.11)

where R is theappropriate rotation matrix and τ is the translation vector. The relation
corresponding to (A.11) but in reciprocal space is:

χG,G′(q, ω) = eiR−1T (G−G′)·τχR−1T G,R−1T G′(R−1Tq, ω). (A.12)
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Appendix B

The dynamic structure factor

B.1 Definition

We consider in this appendix the description of the process inelastic scattering of
a particle by a solid system [100, 101]. The Fermi golden rule permits us to write the
differential cross section of such a process in a perturbation theory framework. This
quantity, in both when the perturbing system is a charged particle or when it is x-ray
radiation, is proportional to suitable combination of the matrix elements of the density
operator:

d2σ

dΩdE
∝

∑

j,j′

Pj′
∣

∣< Ψj′|eiq·rn̂(r)|Ψj >
∣

∣

2
δ(ω − (Ej − Ej′)). (B.1)

where Pj′ = e−Ej′/kBT are the Boltzmann weights. This relation which defines the
dynamical structure factor as:

S(q, ω) =
1

n

∑

j,j′

Pj′
∣

∣< Ψj′|eiq·rn̂(r)|Ψj >
∣

∣

2
δ(ω − (Ej − Ej′)). (B.2)

B.2 The fluctuation and dissipation theorem

By substituting the Lehmann expansion for the density-density response function
into Eq. (3.11), the microscopic dielectric function will be expressed as:

ǫ−1
G,G′(q, ω) = 1 +

4π

(q + G)2

1

VBZ

∑

j,j′

Pj′ − Pj

ω − (Ej − Ej′) + iη

< Ψj |e−i(q+G)·rn̂(r)|Ψj′ >< Ψj′|ei(q+G′)·r′n̂(r′)|Ψj >, (B.3)

where the energies and the wave-functions are the ones of the interacting system and
n̂(r) is the density operator. When passing to the macroscopic one through the proce-
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dure explained in Sec. 3.3 it becomes:

ǫ−1
M (q, ω) = 1 +

4π

q2

1

VBZ

∑

j,j′

Pj′ − Pn

ω − (Ej −Ej′) + iη

∣

∣< Ψj′|eiq·rn̂(r)|Ψj >
∣

∣

2
. (B.4)

By separating the real and imaginary part by the principal values it is possible to
write the imaginary part of ǫM :

ℑǫ−1
M (q, ω) = −4π2

q2

∑

j,j′

(Pj′ − Pj)
∣

∣< Ψj′|eiq·rn̂(r)|Ψj >
∣

∣

2
δ(ω − (Ej − Ej′)) =

= −4π2

q2

∑

j,j′

Pj′

[

∣

∣< Ψj′|eiq·rn̂(r)|Ψj >
∣

∣

2
δ(ω − (Ej −Ej′))+

−
∣

∣< Ψj′|e−iq·rn̂(r)|Ψj >
∣

∣

2
δ(ω + (Ej − Ej′))

]

(B.5)

Comparing Eq. (B.5) with the definition of the dynamic structure factor one gets
(B.2):

ℑǫ−1
M (q, ω) =

4π2n

q2
[S(q, ω) − S(q,−ω)] = (B.6)

=
4π2n

q2
[1 − e−ω/kBT ]S(q,−ω)

which is the conclusion of the fluctuation and dissipation theorem [100].
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Appendix C

The f-sum rule

The deduction of this sum rule for the dynamic structure factor starts from the
following commutation relation [100, 102]:

[

e−iqr
∑

i

δ(r − ri),

[

H, eiqr
∑

i

δ(r − ri)

]]

= Nq2. (C.1)

By taking the matrix element over a state |Ψα〉 and inserting appropriately the repre-
sentation of the identity

∑

β |Ψβ〉〈Ψβ| the previous relation becomes:

∑

β

∣

∣

∣

∣

∣

〈Ψβ|eiqr
∑

i

δ(r − ri)|Ψα〉
∣

∣

∣

∣

∣

2

(Eβ − Eα) = N
q2

2
. (C.2)

Summing up over the states |Ψα〉 and dividing by the cell volume Eq. (C.2) becomes:

1

VBZ

∑

α,β

Pα

∣

∣

∣

∣

∣

〈Ψβ|eiqr
∑

i

δ(r − ri)|Ψα〉
∣

∣

∣

∣

∣

2

(Eβ − Eα) = n
q2

2
. (C.3)

It can be easily observed that the left term of Eq. (C.3) is proportional to the loss
function. This permit to write the f-sum rule:

∫ ∞

0

−ℑ 1

ǫ(q, ω)
ωdω =

4π2

q2

nq2

2
=

4π2n

2
(C.4)

In particular, it is possible to recognize on the right term of the previous equation the
expression for the plasma frequency ωP for the HEG of density n. In this sense the
sum rule can be written as

∫ ∞

0

−ℑ 1

ǫ(q, ω)
ω.dω =

ωP

2
(C.5)

In addition by definition of S(q, ω) the sum rule can be equivalently written in the
limit T → 0

∫ ∞

0

S(q, ω)ωdω =
q2

2
. (C.6)
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Appendix D

The Kramers-Kronig relation

The Lehamn representation of the retarded response functions shows clearly that,
when the frequency domain is extended to the whole complex plane, their poles are
placed just below the real axis, implying the analyticity in the upper half-plane. This
is the basis for the deduction of the Kramers-Kronig relation [36].

D.1 The relations

The deduction starts by considering that the shown analyticity of χ implies that
the following contour integration vanishes

∫

Γ

1

2πi

χ(q, z)

z − ω
dz = 0, (D.1)

where the countour Γ is composed by the real axis with a small semicircle in the upper
half plane to skip the pole at z = ω, and is closed with the semicircle of radius going
to infinity. If this contour is separated into its single segments and the integration is
performed separately, the contribution due to the semicircle at infinite is zero due to
the integrand vanishing in such a limit. The remaining contributions yield

∫ ∞

−∞

1

2πi

χ(q, ω′)

ω′ − ω
dω′ − 1

2
χ(q, ω) = 0. (D.2)

Rearranging the previous result and separating real and imaginary part we get:

ℜχ(q, ω) =
1

π
P

∫ ∞

−∞

ℑχ(q, ω′)

ω′ − ω
dω′ (D.3)

ℑχ(q, ω) = −1

π
P

∫ ∞

−∞

ℜχ(q, ω′)

ω′ − ω
dω′ (D.4)

91



D.2. Numerical evaluation

which are the Kramers-Kronig relations By using the property χ(q, ω) = χ∗(q,−ω)
the previous relations can be written in a different form:

ℜχ(q, ω) =
2

π
P

∫ ∞

0

ω′ℑχ(q, ω′)

ω′2 − ω2
dω′ (D.5)

ℑχ(q, ω) = −2ω

π
P

∫ ∞

0

ℜχ(q, ω′)

ω′2 − ω2
dω′. (D.6)

These relation for the dielectric functionimply that

ℜǫ(q, ω) = 1 +
2

π
P

∫ ∞

0

ω′ℑǫ(q, ω′)

ω′2 − ω2
dω′ (D.7)

ℑǫ(q, ω) = −2ω

π
P

∫ ∞

0

ℜǫ(q, ω′) − 1

ω′2 − ω2
dω′. (D.8)

D.2 Numerical evaluation

The presence of a pole in the integrand makes the numerical evaluation of the
principal value integration required by the Kramers-Kronig relation not possible with
standard discrete algorithms. The simplest solution one can think at is just to perform
the integration with the rectangular method just skipping the contribution at the pole.
This method reveals too simple and is not able to provide particularly accurate results.
In this thesis we choose the algorithm described in the following.

We start by separating separate the part contributing to the pole so that the relation
becomes:

∫ ∞

0

f(ω′)

ω2 − ω′2
dω′ =

∫ ∞

0

f(ω′)

ω + ω′

1

ω − ω′
dω′ =

∫ ∞

0

g(ω, ω′)

ω − ω′
dω′ (D.9)

We perform the integration with a regular sampling which contains ω = ω′ and stop
the integration at a large frequency where the integrand is practically zero.

The total integral is estimated by the sum of many contributions computed on the
individual intervals [ωj, ωj+1] of width ∆. In the case the pole is not at one extremum
of the integration interval, the contribution to the result is evaluated by estimating
g(ω, ω′) as its average at the extrema (since it is evaluated numerically it is known only
at those points) and performing analytically the remaining integration; in formula:

∫ ωj+1

ωj

g(ω, ω′)

ω − ω′
dω′ =

g(ω, ωj) + g(ω, ωj+1)

2
log

(

ω − ωj+1

ω − ωj

)

. (D.10)

The remaining case, with the pole at one of the integration extremum is more
complicated. To perform which we proceed by calculating the contribution of both the
intervals [ω − ∆, ω] and [ω, ω + ∆] together since it requires to evaluate

P

∫ ω+∆

ω−∆

g(ω, ω′)

ω − ω′
dω′ = lim

η→0

∫ ω−η

ω−∆

g(ω, ω′)

ω − ω′
dω′ +

∫ ω+∆

ω+η

g(ω, ω′)

ω − ω′
dω′ = (D.11)
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Performing the integration by parts this contribution becomes:

= lim
η→0

g(ω, ω′ − η) log(η) − g(ω, ω′ + η) log(η) − g(ω, ω′ − ∆) log(∆) +

+ g(ω, ω′ + ∆) log(∆) −
∫ ω−η

ω−∆

g′(ω, ω′) log |ω − ω′|dω′ +

+

∫ ω+∆

ω+η

g′(ω, ω′) log |ω − ω′|dω′ = (D.12)

where g′(ω, ω′) is the derivative of g with respect to ω′. The first two addends simplify
in the limit η → 0. By changing the variable in the first integral as ω′′ = 2ω − ω′ and
recalling ω′′ + ω′ it becomes:

= lim
η→0

−g(ω, ω′ − ∆) log(∆) + g(ω, ω′ + ∆) log(∆) +

+

∫ ω+∆

ω+η

[g′(ω, ω′) − g′(ω, 2ω − ω′)] log |ω − ω′|dω′ = (D.13)

approximating the derivative g′(ω, ω′) ≃ [g(ω, ω + ∆) − g(ω, ω)]/∆, g′(ω, 2ω − ω′) ≃
[g(ω, ω)− g(ω, ω−∆)]/∆ and performing the remain integration analytically the con-
tribution of the two intervals results:

P

∫ ω+∆

ω−∆

g(ω, ω′)

ω − ω′
dω′ = g(ω, ω + ∆) − g(ω, ω − ∆) (D.14)
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Conclusions

In this work we have developed new numerical methods and performed ab initio sim-
ulations aimed to improve our understanding of experiments probing single quasiparti-
cle excitations and dielectric properties of materials, focusing our attention on metallic
systems. We investigated the properties of these systems by using two well established,
but still challenging, methods: the GW approximation and the TDDFT-linear response
formalism. Our attention has been devoted mainly to the dielectric/density-response
of metals, which is the fundamental ingredient for all calculations presented in this
thesis and to understand the excited state properties of a solid.

As first application we devoted our attention to single quasiparticle excitations of
metals. At this aim we performed G0W0 calculations for the HEG, sodium and alu-
minum. We found the opening of an unphysical gap in the G0W0 dispersion attributed
to the omission of the intraband contribution in the screened interaction. To correct
this problem we proposed a simple, costless, method based in the determination of
the small wavevector contribution to the polarizability by fitting the finite-q asymp-
totic. The so obtained results close the unphysical gap. In addition our results provide
comparable bandwidths compared to previous calculation and with photoemission ex-
periments.

We devoted our attention also to the interpretation of dielectric spectroscopies
starting from the inelastic X-ray scattering spectroscopies. We compared numerical
calculation of the dielectric response in TDDFT linear response formalism with mea-
sured dynamical structure factor for sodium and aluminum. The calculations were
performed with electronic correlations treated at different level by the use of different
exchange and correlation kernels (RPA, TDLDA, Gross-Kohn kernel, Hubbard local
field factor and Corradini kernel). The best agreement was obtained with TDLDA
with the inclusion of finite quasiparticle lifetimes. While the plasmon is described
quite well by all the kernels (with the exception of RPA which slightly overestimate
it), as soon as the momentum transfer enter in the particle hole creation region the
agreement worsens and the inclusion of lifetimes becomes decisive to improve the agree-
ment theory-experiment. For the larger q the agreement remain unsatisfactory and at
this stage the reason is not clear.

In this framework we tried to discuss also the problem originated by the fact that
lifetimes effects should not be inserted by hand in χ0, but the kernel should take them
into account. Such effects are described by the TDLDA kernel. To move into the
direction of a kernel describing also the effects coming from the imaginary part of the
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quasiparticle energy, we inverted the problem to have some hints on the aspect of the
unknown kernel. Despite the conceptual problems in performing the inversions, we
showed how the kernel should be far from trivial, sine it has to present not only an
expected imaginary part and a non locality in time, but it is relevant also its real part
and a nonlocality in space (dependence on the wavevector).

The last application of ab initio techniques we analyzed is devoted to the calculation
of optical properties of metallic systems. At this aim we introduced a new approach
to deal with the intraband term based on the direct inclusion of the transition in the
building χ0, by evaluating the difference of energies appearing at the denominator by
the Helmann-Feynman theorem. We tested the performance of our approach on bulk
aluminum calculating both the dielectric properties and the loss function. In both cases
we obtained good agreement withe experiments.The description of the broadening of
the spectra which remains an adjustable parameters remain missing in the theory. We
applied this approach also to bulk iron. We calculated the same quantities as for
aluminum with an additional calculation with semicore due to the clear visibility of
the edge in the energy loss experiment. While the agreement for the loss function
remains satisfactory also for this system, there are still some open point to understand
the behaviour of the optical spectra.
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