
Probabilistic and full-chain risk assessment of the chemical 

accumulation on human body 

using an integrated modelling tool 

 

By 

 

Taku Tanaka 

 

 
UNIVERSITÀ DEGLI STUDI DI MILANO 

 

FACOLTÀ DI AGRARIA 

 

DIPARTIMENTO DI SCIENZE E TECNOLOGIE AGROALIMENTARI E 

MICROBIOLOGICHE 

 

CORSO DI DOTTORATO DI RICERCA IN 

CHIMICA, BIOCHIMICA ED ECOLOGIA DEGLI ANTIPARASSITARI. CICLO XXIII 

 

 

Matriculation number:  R07760 

 

Tutor:  Prof. Ettore Capri 

 

Coordinator:  Prof. Claudia Sorlini 

 

 

ANNO ACCADEMICO 2009/2010 



2 
 

Abstract 

Mathematical models have been developed to address diverse issues. Especially environmental 

multimedia models are now well recognized as useful tools for environmental and health risk 

assessment and management. This dissertation consists of three main pillars: (i) the introduction 

of the newly developed integrated modelling tool (2-FUN tool) that deals with environmental 

and health risk assessment, (ii) the investigation of statistical approaches to derive density 

functions (PDFs) of input parameters of interest, and (iii) the application of the 2-FUN tool for a 

designed case study. 

 

Chapter 1 presents general roles of mathematical models for health and environmental risk 

assessment of chemicals, the importance to consider parametric uncertainty, and the extensive 

review on existing modelling methodologies. At the end of the model review, main features of 

the 2-FUN tool are pointed out as follows: (i) Its capability to conduct a full-chain risk 

assessment on a common system, which allows linking the simulation of chemical fate in the 

environmental media, multiple pathways of exposure, and the detailed analysis for multiple 

effects in different target tissues in human body, (ii) it contains a wide range of methods for 

sensitivity and uncertainty analyses, and (iii) it can be user-friendly because of its effective 

graphical simulation interface and its flexibility, which facilitates users to design scenarios for 

target regions and arrange the tool on their own ways.  

 

The conceptual and theoretical aspects of the 2-FUN tool are summarized in Chapter 2. The 

focus of Chapter 3 is set at the detailed presentation of two advanced statistical approaches to 

derive probabilistic density function (PDF) for the two parameters used in the freshwater 

compartment of the 2-FUN tool: the settling velocity of particles that is a driving factor 

influencing the transfer of particles at the water-sediment interface in fresh-water system, and 

the fish bioconcentration factor (BCF) for metal that represents the accumulation of a given 

chemical in organisms arising by water uptake. 

 

Finally, Chapter 4 depicts how the 2-FUN tool can be applied based on a designed case study 

and shows the feasibility of the integrated modelling approach to couple an environmental 

multimedia and a PBPK models, considering multi-exposure pathways, and thus the potential 

applicability of the 2-FUN tool for health risk assessment.  
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1 GENERAL INTRODUCTION 

1.1 Overview of environmental and health risk assessment 

Many of environmental problems caused by anthropogenic factors, i.e., increases in human 

population, energy consumption, agricultural land, and deforestation have been certainly 

increasing. According to the belief that our health and ecosystems are greatly influenced by 

such environmental problems, the efforts to control and regulate the environment become 

primary standards of public health policy throughout the world. The relationship between 

environmental problems and human health (and also ecological activities) has become one of 

major concerns of international, regional, and domestic organizations such as the World Health 

Organization (WHO), the European Environment Agency (EEA), the US Environmental 

Protection Agency (USEPA), and the Ministry Of Environment in Japan (MOE).   

 

WHO issued the report describing the progress made by the WHO European Member States in 

improving their health and the environment situation over the last 20 years (WHO, 2010). Based 

on the Children Environment and Health Action Plan for Europe (CEHAPE) agreed in 2004, the 

assessment focuses on the aspects of health related to clean water and air, to environments 

supporting safe mobility and physical activity, chemical safety, noise and safety at work. Main 

conclusions drawn from the comprehensive assessment are summarized as follows;  

 The improvement in the European health situation over the last two decades can be seen in 

many relevant issues, including better accessibility to improved water, reduced incidence of 

injuries, improved air quality and reduced exposure to lead and persistent organic pollutants.  

 Despite the overall progress, significant disparities in health risks remain in the European 

region in relation to all priority issues listed in CEHAPE. These disparities are seen both 

between and within the countries. Several old issues remain unresolved, posing a significant 

public health problem in parts of the region, i.e., (i) poor access to improved water for the 
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rural population, (ii) population exposure to inhalable Particulate Matter (PM) remains stable 

after a substantial fall in the 1990s, (iii) 80 % of children are regularly exposed to 

Second-Hand tobacco Smoke (SHS) at home, and more than 20% of households live in 

houses subject to damp and mould, and (iv) many countries in Europe continue to use leaded 

petrol. 

 

The key messages concerning agricultural ecosystems were posed by EEA (EEA 2010) as 

follows; 

 Within the framework of the Common Agricultural Policy (CAP), the last 50 years have seen 

increasing attention to biodiversity, but without clear benefits up to present. 

 With agriculture covering about half of EU land area, Europe‟s biodiversity is deeply linked 

to agricultural practices, creating valuable agro-ecosystems across the whole Europe. 

 Biodiversity in agro-ecosystems is under considerable pressure as a result of intensified 

farming and land abandonment. 

 

The management of the environment and any associated human health impacts using such 

science-based tools as toxicological evaluation, risk assessment, and economic evaluation has 

become widely recognized in professional circles. Environmental risk assessment (ERA) has 

been developing as a technique and a profession since the 1970s (Ball 2002). According to 

IPCS and OECD (2003), “risk assessment” is a process to calculate or estimate the risk to a 

target organism, system or population following exposure to an agent. It includes hazard 

identification, hazard characterization, exposure assessment, and risk characterization. The 

presence of variety of the concepts and definitions on “risk assessment” implies that risk 

assessments are given specific meanings in concrete uses.  

 

“Integrated risk assessment” has been defined as “a process that combines risks from multiple 

sources, stressors, and routes of exposure for humans, biota, and ecological resources in one 

assessment” (USEPA 2002). Related concepts include cumulative, holistic and comparative risk 

assessment (Power and McCarty 1998). The cumulative risk assessment of USEPA (1997 and 

2003) addresses mixtures of chemicals, long-term risks, and various endpoints. IPCS (2001) 

focused on integrating risks to human and non-human receptors. In the EU environment and 

health strategy, the concept is treated broadly, seeking to integrate information; research; 

environmental, health and other policies; cycles of pollutants; interventions; and stakeholders 

(CEC 2003). Table 1.1 presents key types of integration in risk assessment identified in IPCS 

(2001). 
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“Risk management” includes technical and non-technical aspects (IPCS and OECD 2003) in 

various stages from risk prevention, avoidance and reduction to compensation.  The borderline 

between risk assessment and management is not clear (Assmuth and Hilden 2008). They are 

interacting and partly overlapping parts of a process. Management includes interventions to alter 

the risks and involves greater intentionality and associated value judgments than “pure 

assessments”, for these interventions to take place. This means that the management 

frameworks, especially on a policy level, can be more loosely structured than the assessment 

frameworks and more open to a diverse set of information. 

 

“Risk” has been defined as “the probability of an adverse effect in an organism, system or 

population caused under specified circumstances by exposure to an agent” (IPGS and OECD 

2003). In quantitative analyses risk is defined as a function (usually the product) of the 

probability and consequences of an adverse event or process. A chain of events or stages of risk 

formation can be separated from exposures to effects. Risk concepts are used in a wide range of 

meanings, and different uses and users emphasize different aspects of risks (Assmuth and 

Hilden 2008).  

 

Table 1.1: Key types of integration in risk assessment identified in IPCS (2001) 

Integration dimension Description and recommendation by IPCS (2001) 

Agents Integrate risks from all relevant agents, e.g., risks to aquatic life from pesticides 

are routinely considered but for the  restoration in agricultural areas, silting, 

fertilization, and channel destruction should also be considered  

Routes Integrate risks from all relevant routes of exposure, e.g., assessments of 

pesticides may need to consider routes of exposure other than diet 

Endpoints Consider all relevant potentially significant endpoints; mechanistic 

understanding allow multiple endpoints to be assessed in a common and 

consistent manner; multiple endpoints may also be integrated into common 

units such as quality adjusted life years 

Receptors Consider all relevant classes of receptors, e.g., the entire exposed population, 

including all age classes, not just maximally exposed individuals, and the 

distribution of risks across the exposed biotic community 

Scales Extrapolations in risk assessment can occur in various dimensions including 

time, place, space, biological scale, or mechanisms; integration of various 

scales and dimensions may be necessary 

Life cycle stages May need to integrate the risks from the entire life cycle of a chemical or 

product, including production of raw materials, manufacturing, use, and 



8 
 

disposal of both the product and associated byproducts 

Management options When decisions are based on comparison of alternatives, assessments should 

consider the risks from relevant alternatives in an integrated manner; e.g., an 

assessment of risks from waste water should consider both the risks from the 

untreated effluent and the risks from alternative treatment technologies 

including disposal of sludge 

Socioeconomics and 

risks 

If effects on economics and social processes are relevant to the decision as well 

as those on human health and the environment, the effects should be assessed in 

an integrated manner. Beyond balancing costs of a management action against 

benefits, integration may require consideration of services of nature, values and 

preferences, and non-market mechanisms 

  

1.2 Roles of mathematical models for health and environmental risk 

assessment of chemicals 

Mathematical models that predict the transport and transformation of contaminants in 

environmental media have been developed both for scientific purposes and as applied tools for 

policy making, implementation, and management. In recent years, these models have been used 

to address the following diverse tasks (Mackay et al. 2001): 

 Comparison of relative fates of different chemicals 

 Identification of important fate processes 

 Estimation of overall persistence and residence time 

 Estimation of potential for long-range transport (LRT) 

 Estimation of environmental concentrations and exposures 

 Determination of bioaccumulation in organisms and food web 

 Evaluation of likely recovery times of contaminated environments 

 Checking the consistency of monitoring data 

 Screening and prioritizing chemicals 

 In general, as a decision support tool documenting the sources and nature o 

contamination and feasible remedial strategies 

 

The models to estimate environmental contaminant transport and transformation are based on 

mass balance equations which account for the production, loss, and accumulation of the 

contaminant within a specified control volume. Transport phenomena and physical, chemical, 

and biological transformations are represented within the framework of this fundamental 
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concept. The mass balance principle is expressed mathematically as a time-dependent 

differential equation: 

  

  
 

   

  
                                               

where M is the mass of the contaminant within the control volume, V is its volume, C (=M/V) is 

the concentration, t is time, Min and Mout are the transport rates across the boundaries of the  

control volume from and to the surrounding environment, respectively, S is the source emission 

rate, and Rxn is the rate of internal reactions that may either produce or consume the 

contaminant. Figure 1.1 illustrates the mass-balance principle within a well-defined control 

volume. 

 

In general contaminant transport and transformation models can be classified according to a 

number of contrasting characteristics (Ramaswami et al. 2005; Mackay et al. 2001): 

 Single-media versus Multimedia models: To address media-specific problems, 

single-media models for air, surface water, groundwater, and soil pollution have been 

used by different disciplines. Although these models generally provide a more detailed 

description of the pollutant distribution in space and time and incorporate mass transfer 

from other media as boundary conditions, they are not capable of characterizing the 

total environmental impact of a pollutant release. Multimedia fate, transport, and 

Transport 

Inflow 

Chemical transportations 

 in Medium 1 

Medium 2 

Direct Source 

Emission to 

Medium 1 

Transport 

outflow 

Inter-media pollutant 

transfer 

Humans 

Medium 3 

Multimedia 

human exposure 

pathways 

Figure 1.1: The schematic of mass-balance principle (based on Ramaswami et 

al. 2005) 
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exposure models have been currently developed. These either link a number of 

single-media models for multiple exposure pathways within a single computing 

platform, or model the simultaneous partitioning of chemicals among multiple 

compartments. 

 Dynamic versus Steady state: Dynamic models predict changes in environmental 

concentrations over time and consider temporal variations in source release and other 

model inputs. Steady-state models consider constant inputs and conditions where the 

reaction, transport, and mass-transfer terms are in equilibrium. 

 Eulerian (or box) versus Lagrangian models: Eulerian models consist of a number of 

volumes or boxes, which are fixed a space and are usually treated as being 

homogeneous, i.e., well-mixed, in chemical composition. Lagrangian modes are to 

follow mathematically a pollution parcel in air or water as the parcel moves from place 

to place. These models consider the situation of heterogeneity in concentration and are 

suitable to set up diffusion/advection/reaction differential equations. 

 Analytical versus Numerical models: Models that have analytical solutions generally 

require significant simplifying assumptions, e.g., steady-state conditions and spatial 

homogeneity. Models that need numerical solution consider significant spatial 

heterogeneity, temporal variability, or nonlinear transformation processes. These 

numerical techniques solve differential equations accounting for the chemical mass 

balance over discrete cells in space and/or discrete time steps. 

 Deterministic versus Stochastic models: In deterministic models, a single concentration 

for each location and time in the model is calculated. Stochastic models produce a range 

or distribution of values for each prediction. This distribution may represent variability 

reflecting the temporal or spatial variation occurring in the environment, or uncertainty 

reflecting the imperfect knowledge on model inputs. 

 

Currently multimedia mass balance models are increasingly being used to understand and 

evaluate the fate of chemicals in the environment, including the regulatory community (Webster 

et al. 2004b). In the context of the environmental health risk assessment, the multimedia models 

have been developed as essential tools, e.g., CalTOX (McKone 1993a), USES-LCA (Van Zelm 

et al. 2009), and 2-FUN tool (documents are available at www.2-fun.org). The integrated study 

of contaminant release, transport, fate, exposure, dose, and response is the basis for the 

environmental health risk assessment paradigm. The multimedia models can be used in line 

with the exposure and risk assessment paradigm, illustrated in Figure 1.2. 
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The first step in a health risk assessment is the estimation of ambient concentrations in each 

media (i.e., air, water, soil, vegetation, and etc) based on pollutant emissions, considering the 

fate and transformation processes of the pollutants. The 

calculated environmental concentrations are linked to exposure by using exposure models or 

exposure assessments. Principal pathways of exposure include inhalation of ambient air (both 

outdoor and indoor), ingestion of drinking water, contaminated foods, or contaminated soil, and 

dermal exposure to the air, soil, and domestic or recreational waters. The exposure for each 

pathway is calculated by the product of the pollutant concentration in the contact medium and 

an intake factor representing, for example, the breathing rate, water ingestion rate, food 

consumption rate, soil ingestion rate, or dermal contact rate.  Some multimedia models, e.g., 

CalTOX, USES-LCA, and 2-FUN tool, have integrated systems to model both the 

environmental concentration of a pollutant in each medium and its exposure to humans via 

multi-pathways.  

 

The actual effective dose received by a human body depends on how much of the pollutant is 

retained in the body and how much of it reaches target organs or tissues. There are some cases 

where the calculation involving the transformation from exposure to effective dose is made by 

simple statistical or conservative assumptions. For example, the modelling scheme of CalTOX 

and USES-LCA applies such simple statistical or assumptions. Using sophisticated 

physiologically based pharmacokinetic (PBPK) models allows the prediction of distribution and 

accumulation of contaminants in humans, considering their respiratory, digestive, and 

Risk 

Source characterization 

emissio 

Fate and transport modelling 

Exposure modelling 

PBPK modelling 

Dose-response modelling 

Release medium concentration 

Applied dose 

Environmental medium concentration 

Delivered dose 

Figure 1.2: Integrated environmental health risk assessment scheme (based 

on Ramaswami et al. 2005) 
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circulatory systems to target organs and tissues. 2-FUN tool incorporates the PBPK models into 

its integrated system. 

 

The final step of the health risk assessment is to link the effective dose to target organs and 

tissues with the health impact through dose-response functions. Functional relationships can 

range from a simple linear to more sophisticated relationships. These relationships can be 

estimated from past human exposures or high occupational doses, animal experiments, or 

epidemiological studies 

  

1.3 Consideration of parametric uncertainty/variability in health and 

environmental risk assessment 

Environmental systems contain highly variable properties. There is a great deal of uncertainty 

about these properties, inputs, and then responses. In definition, variability denotes inherent 

differences in environmental properties that exist over space and time (e.g., the differences in 

exposure, vulnerability, and risk that occur between one individual to another in a target 

population). On the other hand, uncertainty refers to a lack of knowledge about environmental 

processes and properties. Currently, many tools of probability and statistics are applied to 

characterize variability and uncertainty. 

 

When modelling studies deal with health and environmental risk characterization of toxic 

chemicals, the consideration of parametric uncertainty/variability can be important and its 

importance has been well recognized (Solomon et al. 2000; Dubus et al. 2003; and Gutièrrez et 

al. 2009). A method commonly used to account for parametric uncertainty/variability is to 

characterize a targeted variable (parameter) by a Probability Density Function (PDF). In 

probability theory, the PDF of a continuous random variable describes the relative chance for 

this random variable to occur at a given point (value) in the observation space. The PDF must 

be integrated over a given range to find the probability of occurrence over that range: 

                      
  

  
      (1.2) 

where θ denotes the name of the random variable (parameter, hereafter) and x is the particular 

value of θ. Common forms of the probabilistic density functions include the uniform, 

exponential, gamma, normal, and log-normal distribution.  

 

In general, derivation of a PDF for a parameter requires a great deal of effort for the data 

collection. When the information about a given parameter is searched for, several situations can 
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come out, e.g., the situations where a large set of homogeneous data is available, where a large 

dataset of data is available but the data quality is heterogeneous (e.g., data obtained under 

different experimental protocols), where only a limited set of data is available, where no data is 

available for the specific substance and analogies and/or regression models must be used, and 

etc.  

 

When a large set of data with homogeneous quality is available: For some chemical substances 

and their transfer factors in the environment, a large set of data can be obtained from the 

literature. In such cases, the collected abundant data can be directly fit to a PDF by classical 

statistical approaches.  

 

When a large set of data with heterogeneous quality is available: Durrieu et al (2006) described 

a procedure to treat the „quality‟ of data to derive a PDF. This procedure can be subdivided into 

the following stages: 

i) Each of data is given the score that indicates the quality of data. Several criteria quantify 

the score given to each of data. The criteria include, for example, number of data 

replicates, physico-chemical characteristics measured in the experiment, and quality of 

the publication (e.g., a project report VS an article published in a peer-reviewed 

journal). On the basis of expert judgement integrating all the criteria, a database 

containing both collected data and their associated scores is built up. 

ii) A direct weighted bootstrap procedure (detailed descriptions of the bootstrapping 

method can be found in Cullen and Frey (1999), Davison et Hinkley (1997), and Efron 

and Tibshirani (1993)) is then used to perform a weighted-sampling based on collected 

data. The probability of drawing data depends on their scores previously defined.  

iii) The generated samples by the bootstrap procedure is then fitted to a theoretical 

distribution (e.g., Log-normal distribution). The goodness of fit can be tested by 

different criteria such as the Kolmogorov-Smirnov test with a Dallal-Wilkinson 

approach and the multiple r-square coefficient (r
2
). 

 

When only a limited set of data is available: Bayesian approaches can be of great interest to 

estimate a PDF when only a limited set of data is available for an investigated parameter. The 

Bayesian approaches require the prior knowledge of the parameter (e.g., the information 

obtained from previous studies) with actual data of the parameter (in this case, a poor dataset) 

and then calculate the posterior distribution (the posterior PDF). A couple of Bayesian 

approaches are described in detail in Chapter 3. 
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1.4 Model review 

The current methodologies to assess the impacts on the human health and ecosystems of 

toxicants emitted to the environment are reviewed in this section. Main focus of this review is 

set at the approaches using mathematical models. However, non-modelling approaches are also 

described here to allow a more comprehensive review. Each of these approaches is summarized 

and evaluated by a fixed number of principal characteristics: 

 Impact categories (model outputs): eco-toxicity impacts and/or human toxicity impact 

 Exposure routes: ingestion, inhalation, dermal  

 Fate, exposure and effect: if fate, exposure and effect analyses are included or not 

 Chemicals considered: organic pollutants and/or metals 

 Media considered: air, water (fresh, ground, sea...), soil, sediment, vegetation, food 

chain and etc 

 Spatial variation: regional scale, continental scale, global scale, country and seas 

boundaries 

 Source code availability 

 Model availability: pay model or free model 

 Availability for sensitivity and uncertainty analyses  

 Population category: if the differences in man/woman and adult/child are considered 

or not 

 

CalTOX 

The CalTOX model was originally developed as a set of spreadsheet models and spreadsheet 

data sets for assessing human exposures from continuous releases to air, soil, and water 

(Mckone 1993a). Hertwich (Hertwich 1999; Hertwich et al. 2001) applied the CalTOX model 

for the assessment of human toxicity in LCA. Ecotoxicicity is not evaluated in the model.  

 

The current version of CalTOX (CalTOX4) is an eight-compartment regional and dynamic 

multimedia fugacity model. CalTOX comprises a multimedia transport and transformation 

model, multi-pathway exposure scenario models, and add-ins to quantify and evaluate 

variability and uncertainty. To conduct the sensitivity and uncertainty analyses, all input 

parameter values to CalTOX are given as distributions, described in terms of mean values and a 

coefficient of variation, instead of point estimates or plausible upper values. 

 

1. Fate and exposure analysis 
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The multimedia transport and transformation model is a dynamic model that can be used to 

assess time-varying concentrations of contaminants that are placed in soil layers at a time-zero 

concentration or contaminants released continuously to air, soil, or water. This model is used for 

determining the distribution of a chemical in the environmental compartments  

The exposure model encompasses 23 exposure pathways, which are used to estimate average 

daily doses (inhalation, ingestion of foods, and dermal contact) within human population linked 

geographically to a release region.  

 

2. Effect analysis 

The human toxicity potential (HTP), a calculated index that reflects the potential harm of a unit 

of chemical released into the environment, is a indicator to present the individual lifetime risk. 

This indicator is based on both the inherent toxicity of a compound and its potential dose. The 

CalTOX scheme can calculate cancer and non-cancer HTP values for air and surface water 

emissions of 330 compounds. 

 

The overview of the partitioning among the liquid, solid and/or gas phases of individual 

compartments is presented in Figure 1.3. 

 

 

Figure 1.3: The overview of the partitioning among the liquid, solid and/or gas phases of individual 

compartments (Mckone 1993b). In the current version of CalTOX (CalTOX4), the plant compartment 

comprises two sub-compartments (plant surfaces (cuticle) and plant leaf biomass (leaves)) 

 

Table 1.2: Principal characteristics of Caltox model (based on Koning et al. 2002) 

Principal characteristics Multimedia model for fate analysis and extensive 
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IMPACT 2002+ 

Based on the generalised framework established by the Society of Environmental Toxicology 

and Chemistry for Life Cycle assessment LCA (Jolliet et al. 1996b), IMPACT2002+ was 

developed to connect, as far as possible, each life cycle inventory (LCI) result (emissions or 

other intervention) to the corresponding environmental impacts (Jolliet et al. 2003a).  The 

IMPACT 2002+ life cycle impact assessment methodology proposes a feasible implementation 

of a combined midpoint/damage approach, linking all types of LCI results via 14 midpoint 

categories to four damage categories (Figure 1.4). For IMPACT 2002+, new concepts and 

methods have been developed, especially for the comparative assessment of human toxicity and 

ecotoxicity. 

 

Human toxicity 

Human Damage Factors (HDF) are calculated for carcinogens and non-carcinogens, employing 

intake fractions, best estimates of dose-response slope factors, as well as severities. Indoor and 

outdoor air emissions can be compared and the intermittent character of rainfall is considered. 

The intake fraction accounts for a chemical‟s fate with respect to multimedia and spatial 

transport as well as human exposure associated with food production, water supply, and 

inhalation. This is then combined with an effect factor characterizing the potential risks linked 

to the toxic intakes. Severity characterizes the relative magnitude of the damage due to certain 

illness in the end. The Human Damage factor of substance i is then calculated as the production 

of intake fraction i and the corresponding exposure factor. The complete fate and exposure 

analysis of exposure pathways 

Impact categories Human toxicity  

Exposure routes  Inhalation, ingestion, and dermal contact 

Fate, exposure and effect Fate, exposure, and effect are considered (the effect 

analysis is effect based)  

Chemical considered Organics and inorganics 

Media considered Air, water, sediments, 3 soil layers, vegetation 

Spatial variation Not considered 

Source code availability Yes, as Excel spreadsheet 

Model availability Yes 

Dynamic or steady-state dynamic 

Availability for sensitivity and uncertainty analyses Yes 

Population category  Not considered 
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assessment in IMPACT2002+ enables the estimation of a chemical‟s mass (or concentration) in 

the environmental media at a regional or at a global scale using the same basic model. Latest 

developments include the calculation of pesticide residues in food due to direct applications. 

 

Ecotoxicity (aquatic and terrestrial) 

Impacts on aquatic ecosystems are in many aspects considered in a similar manner with human 

toxicity concerning fate and effect. The difference is that fate enables to relate emissions to the 

change in concentration in the pure aqueous phase of freshwater and exposure is implicitly 

considered in the effect factor that represents the risk s at species level, finally leading to a 

preliminary indicator of damages on ecosystems. Terrestrial ecotoxicity potentials are calculated 

in a similar way with aquatic one. 

 

Figure 1.5 shows the general scheme of the impact pathway for human toxicity and ecotoxicity. 

 

 

Figure 1.4: Overall scheme of the IMPACT 2002+, linking Life Cycle Impact (LCI) results via the 

midpoint categories to damage categories (Jolliet et al. 2003a) 
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Figure 1.5: General scheme of the impact pathway for human toxicity and ecotoxicity (Jolliet et al. 

2003b) 

 

Table 1.3: Principal characteristics of IMPACT 2002+ model (based on Koning et al. 2002) 

Principal characteristics Multimedia chemical fate model combined with an 

exposure model for human health and 

potency/severity based effect analyses for human 

and ecotoxicological impacts 

Impact categories Human toxicity and ecotoxicity 

Exposure routes  Inhalation and ingestion 

Fate, exposure and effect Fate, human exposure and toxicological effects are 

considered  

Chemical considered Predominantly for non-polar organics, but with 

adaptation to include metals, primary pollutants, 

particulate matter, and dissociating compounds 

Media considered Air, water (fresh and oceanic), soil, sediments, 

plants, and urban 

Spatial variation Regional and global scale 

Source code availability Logic and calculation procedure are fully 

documented 

Model availability Yes 

Dynamic or steady-state dynamic 

Availability for sensitivity and uncertainty analyses Yes 

Population category  Not considered 

 

USES-LCA 
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The model USES-LCA is a multimedia fate, exposure, and effects model. USES-LCA has been 

recently updated to USES-LCA 2.0 and contains a database of 3396 chemicals (Van Zelm et al. 

2009). The model USES-LCA is based on the EUSES model family applied for risk assessment 

purposes in the European Union (Vermeire et al. 2005). This model is used to calculate 

characterization factors for ecotoxicity and human toxicity on both the midpoint and endpoint 

level. Characterization factors are used to determine the relative importance of a substance to 

toxicity related impact categories, such as human toxicity and freshwater ecotoxicity. The 

characterization factor accounts for the environmental persistence (fate) and accumulation in the 

human food chain (exposure), and toxicity (effect) of a chemical. In this method, for human 

toxicity, characterization factors for carcinogens, for non-carcinogens, and overall 

characterization factors are provided. Separate ecotoxicological characterization factors are 

provided for terrestrial, freshwater, and marine ecosystems. To obtain an overall 

ecotoxicological characterization factor on endpoint level they are further aggregated on the 

basis of species density of terrestrial, freshwater, and marine ecosystems separately. 

 

For ten emission compartments, including urban air, rural air, freshwater, and agricultural soil, 

USES-LCA 2.0 calculates by default environmental fate and exposure factors in multiple 

compartments and human intake factors concerning air inhalation and oral ingestion via food 

and water intake by an infinite time horizon. 

 

The nested multimedia fate model Simplebox 3.0 developed by Den Hollander et al. (2004) and 

included in EUSES 2.0 (EC 2004) is used for fate and exposure analysis of substances. The 

model structure of Simplebox has been slightly adapted to meet LCA-specific demands. For 

example, USES-LCA approach uses two geographic scales „continental‟ and „global‟, 

discarding „local‟ and „regional‟ scales (Huijbregts et al. 2005). Figure 1.6 presents schematic 

representation of Simplebox 3.0.  

 

For human effect and damage analyses, USES-LCA 2.0 calculates Human toxicological Effect 

and Damage Factors (HEDFs) per chemical with information related to exposure route 

(inhalation and ingestion), and disease type (cancer and non-cancer). HEDFs on endpoint level 

express the change in damage to the total human population, expressed as disability adjusted life 

years (DALY), due to a change in steady-state exposure of the total human population. The 

HEDF consists of a disease-specific slope factor, and a chemical-specific toxic potency factor 

that reflects the average toxicity of a chemical towards humans. 
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For ecological effect analysis, Ecotoxicological effect factors (EEFs) on the endpoint level are 

used to express the change in overall toxic pressure due to a change in the concentration in a 

chemical. The EEF consists of a slope factor and a chemical-specific toxic potency factor that 

reflects the average toxicity of a chemical towards ecosystems. 

 

Overview of USES-LCA 2.0 approach is presented in Figure 1.7. 

 

 

Figure 1.6: Schematic representation of Simplebox (Brandes et al. 1996). In USES-LCA 2.0, regional 

scale is not considered.  

 

Figure 1.7: Overview of USES-LCA 2.0 approach (Van Zelm et al. 2009) 

 

Table 1.4: Principal characteristics of USES-LCA methodology (based on Koning et al. 2002) 

Principal characteristics Multimedia model based on Simplebox 3.0  

Impact categories Human toxicity and ecotoxicity 

Exposure routes  Inhalation and ingestion 

Fate, exposure and effect Fate, human exposure and toxicological effects are 

considered  

Chemical considered Organic and inorganic 
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Media considered Global: air, (sea)water, and soil 

Continental: air, fresh water, seawater, natural soil, 

agricultural soil, industrial soil, fresh water 

sediment and marine water sediment 

Spatial variation Distinction between continental and global scale 

and between three climate zones (arctic, moderate, 

and tropic zones of the Northern hemisphere) 

Source code availability Yes, as Excel program 

Model availability Yes 

Dynamic or steady-state Steady-state 

Availability for sensitivity and uncertainty analyses Uncertainty analysis is available 

Population category  Not considered 

 

GLOBOX 

As in the case of USES-LCA method, the GLOBOX is based on the EUSES 2.0 model 

(Sleeswijk and Heijungs 2010). It has primarily been constructed for the calculation of spatially 

differentiated LCA characterization factors on a global scale. Compare with the USES-LCA 

method (and EUSES model), the GLOBOX has a higher level of spatial differentiation in such a 

way that the GLOBOX is spatially differentiated with respect to fate and human intake on the 

level of separated, interconnected countries, and oceans/seas, whereas in the USES-LCA 

method, the evaluative region at the continental level (Western Europe) is not spatially 

differentiated. A main goal of the GLOBOX is to construct location-specific characterization 

factors for any emissions at any locations over the world, considering summed impacts of such 

emissions in different countries and seas/oceans. 

 

The GLOBOX consists of the following three main modules: 

 An impact-category independent fate module: 

Multimedia transport and degradation calculations are largely based on EUSES 2.0, and 

enhanced by site-specific (different countries/seas) equations to account for environmental 

advective air and water transport. Twelve distribution compartments are distinguished. 

Compared to EUSE 2.0, salt lakes, salt lake sediments, and groundwater are additional 

compartments. 

 A human-intake module, applicable to all impact categories that are related to human intake 

of chemicals: 
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In this method, the values for the human body weight are taken into account to represent 

regional differences (e.g., difference between African countries and Vatican City). For 

determining the intake by humans, a consumption-based approach accounting for the intake 

per kilogram of body weight is considered, instead of a production (chemical)-based 

approach. 

 An effect module, in which toxicity-related parameters can be introduced for every separate 

impact category: 

In this method, two new, both chemical- and impact category-specific parameters are 

introduced; the sensitivity factor (SF) for ecotoxicity and the threshold factor (TF) for both 

ecotoxiciy and human toxicity. The SF reflects the fraction of area that is sensitive to a 

certain chemical, whereas the TF reflects the fraction of sensitive area where a predefined 

no-effect level for the ecosystem concerned, e.g. the hazardous concentration 5%. 

 

In the end the GLOBOX combines fate-, intake and effect factors to calculate region-specific 

toxicity characterisation factors.  

 

Table 1.5: Principal characteristics of Globox model (based on Sleeswijk and Heijungs 2010) 

Principal characteristics Multimedia model based on EUSES 2.0  

Impact categories Human toxicity and ecotoxicity 

Exposure routes  Inhalation and ingestion 

Fate, exposure and effect Fate, human exposure and toxicological effects are 

considered  

Chemical considered Organic chemicals and metals 

Media considered Air, rivers, freshwater lakes, salt lakes, 

groundwater, sea water, freshwater lake sediment, 

salt lake sediment, sea sediment, natural soil, 

agricultural soil, urban soil 

Spatial variation Distinction between 239 different countries and 50 

different seas (global scale) 

Source code availability For internal use only 

Model availability Yes 

Dynamic or steady-state Dynamic and steady state (Dynamic calculations 

for the estimation of toxicity potentials for different 

time hozizons) 

Availability for sensitivity and uncertainty analyses Not specified 

Population category  Not considered 
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ECOSENSE 

ECOSENSE is an integrated atmospheric dispersion and exposure assessment model which 

performs the Impact Pathway Approach developed in the framework of the ExternE project 

(Krewitt et al. 1995; Krewitt et al. 1998). ECOSENSE was developed to support the assessment 

of priority impacts resulting from the exposure to airborne pollutants, i.e., impacts on health, 

crops, building materials, forests and ecosystems. The current version of ECOSENSE 4.01 

covers 14 pollutants, including the „classical‟ pollutants SO2, NOx, particulates, CO and ozone, 

as well as some of the most important heavy metals and hydrocarbons, but does not include 

impacts from radioactive nuclides. Impacts of „classical‟ pollutants are calculated on local 

(50km around the emission source), regional (Europe-wide) and (northern) hemispheric scale. 

 

The ECOSENSE model uses a reference environment database which, on the 10×10 km
2
 and 

50×50 km
2
 grids for the local and regional scales, respectively grid, provides data on 

population distribution and crop production (obtained from the EUROSTAT REGIO database), 

total agricultural area, building materials. Based on a comparison between the data relating to 

the receptors for the analysed territory and the pollutant distribution, the ECOSENSE model can 

calculate the exposition level of receptors and the resulting impact. Finally, ECOSENSE 

determines the total monetary damage by assigning the corresponding monetary value to each 

estimated impact. 

 

ECOSENSE model makes fate analysis with the help of three air quality models. Each of them 

is used for different modelling scales, i.e., local and regional scales. Therefore, among various 

existing exposure pathways, ECOSENSE considers only inhalation.  

 

 

Figure 1.8: Modular structure of Ecosense model (Krewitt et al. 1995) 
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Table 1.6: Principal characteristics of Ecosense model (based on Koning et al. 2002) 

Principal characteristics Mixture of air transport models with impact 

analysis based on slopes of exposure-response 

relationship 

Impact categories Human toxicity  

Exposure routes  Inhalation  

Fate, exposure and effect Fate (for air), human exposure and effect are 

considered  

Chemical considered Organic and inorganic chemicals 

Media considered Air, water, and soil 

Spatial variation Local and regional scales 

Source code availability No 

Model availability Yes 

Dynamic or steady-state Dynamic for air transport model 

Availability for sensitivity and uncertainty analyses Yes 

Population category  Not considered 

 

Ecopoints 

The Ecopoints, or environmental scarcity, approach (Ahbe et al. 1990; Braunschweig et al. 

1993) relates the concept of economic scarcity (relation between supply and demand) to scarcity 

of environmental absorption capacity. The scarcity of the environmental absorption capacity is 

given by the ratio between the actual anthropogenic emissions of a substance and the critical 

emission of the substance. 

The equation to calculate the Ecofactor for a substance i comprises the normalization by the 

critical flow and the valuation using the linear relation between actual and critical as follows; 

 

           
 

   
 

  

   
      (1.3) 

 

Fki: the critical flow of substance i in a country, in a time period; 

Fi: the actual flow of substance i, in a country, in a time period; 

c: a dimensionless factor (10
12

) to avoid large negative exponent values 
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F and Fk are given in tons, kWh, m
3
 or other physical units per year. The unit of the Ecofactor is 

expressed as Ecopoints per physical unit of emitted substance. The critical flow (Fk) represents 

the absorption capacity of an environmental compartment for a particular substance. The actual 

flow (F) is the current total emission, independent of the investigated process or product.  

For determination of the critical flow, the method uses politically defined and scientifically 

supported standards as bases of valuation. Those standards may be set nationally (clean air 

policy, clean water policy, acidification policy, eutrophication policy, and etc.) or 

internationally (international treaties and protocols). 

 

The environmental index I (Ecopoints) is simply calculated as multiplying all emissions (which 

occur during the life cycle of the product P under investigation) by their corresponding 

Ecofactors and then adding them up: 

                       (1.4) 

Where Ei represents the quantity of the substance I emitted. 

 

There are no fate and exposure analyses in the Endpoints method. The method has been 

elaborated for 10-30 different emissions into air and water. 

 

Table 1.7: Principal characteristics of Ecopoints methodology (based on Koning et al. 2002) 

Principal characteristics No modelling; distance-to-target method using 

policy standards 

Impact categories No separate categories distinguished; only 

Ecopoints 

Exposure routes  Not considered 

Fate, exposure and effect Only effect through policy standards 

Chemical considered Organic and inorganic chemicals 

Media considered Not considered 

Spatial variation Different sets of ecofactors for different countries 

Source code availability Not specified 

Model availability Not specified 

Dynamic or steady-state Not considered 

Availability for sensitivity and uncertainty analyses Not considered 

Population category  Not considered 
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Eco-indicador 99 

The Eco-indicator 99 methodology has been developed by Hofstetter (1998) and Goedloop and 

Spriensma (1999). The most critical and controversial step in the Life Cycle Impact Assessment 

(LCIA) is the weighting step. With this in mind the Eco-indicator methodology has been 

developed top-down regarding the weighting step as a starting point. Two important 

requirements for the weighting step need to be considered, if the weighing has to be conducted 

by a panel: 

1. The number of impact categories (environmental damages) to be weighted should be as 

small as possible. 

2. The impact categories should be concrete and easy to be explained to a panel.  

 

Three environmental damages (end-points) to be weighted were selected based on two 

requirements above: 

 Damage to human health 

 Damage to ecosystem quality 

 Damage to resources 

The following damage models have been established to link these impact categories with the 

inventory result that is presented by resources, land-use, and emission of chemical substances.  

 

Damages to human health are expressed as the Disability Adjusted Life Years (DALY). Models 

have been developed for respiratory and carcinogenic effects, the effects of climate change, 

ozone layer depletion, and ionising radiation. There are four sub steps in the models for human 

health: 

i) Fate analysis; linking an emission (expressed as mass) to a temporary change in 

concentration 

ii) Exposure analysis; linking the temporary change to a dose 

iii)  Effect analysis; linking the dose to a number of health effects, i.e., the number and types 

of cancers 

iv)  Damage analysis; linking health effects to DALYs 

 

Damages to ecosystem quality are represented by two different expresssions: 

 For ecotoxicity, the Potentially Affected Fraction (PAF) is used. The PAF that can be 

interpreted as the fraction of species that is exposed to a concentration equal to or higher 
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than the No Observed Effect Concentration (NOEC). PAFs are based on 

substance-specific species-sensitivity distributions. 

 For acidification, eutrophication, and land-use/transformation, the Potentially 

Disappeared Fraction (PDF) is used. The PDF indicates the effects on vascular plant 

populations in an area, i.e., the fraction of species that has a high probability of 

disappearance in a region due to unfavourable conditions. 

 

For ecotoxicity, acidification, and eutrophication, the following sub steps are considered in the 

similar manner as for human health: 

i) Fate analysis; linking emissions to concentrations 

ii) Effect analysis; linking concentrations to toxic stress (PAF) or increased nutrient/acidity 

levels 

iii)  Damage analysis; linking the effects to the increased potentially disappeared fraction for 

plants (PDF) 

 

Land-use/transformation is modelled on the basis of empirical data of the effect on vascular 

plants, as function of the land-use type and the area size.  

 

Damages to resources is modelled in two steps 

i) Resource analysis; which can be regarded as a similar step as the fate analysis, as it links 

an extraction of a resource to a decrease of the resource concentration 

ii) Damage analysis; linking the decreased resource concentration to the increased effort to 

extract the resource in the future 
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Figure 1.9: General representation of the Eco-indicator 99 

Table 1.8: Principal characteristics of ECO indicator 99 model (based on Koning et al. 2002) 

 

EDIP-Characterisation 

EDIP97 is a thoroughly documented midpoint approach covering most of the emission-related 

impacts, resource use and working environment impacts (Hauschild and Wenzel 1998) with 

normalization based on person equivalents and weighting based on political reduction targets 

for environmental impacts and working environment impacts, and supply horizon for resources. 

Principal characteristics Multimedia model based on EUSES using the 

DALY and PAF concepts 

Impact categories Human toxicity and ecotoxicity 

Exposure routes  Inhalation and ingestion 

Fate, exposure and effect All are considered + damage analysis 

Chemical considered Organic and inorganic chemicals 

Media considered Air, water, natural soil, agricultural soil, and 

industrial soil 

Spatial variation Regional scale 

Source code availability Not specified 

Model availability Yes 

Dynamic or steady-state Steady-state 

Availability for sensitivity and uncertainty analyses Uncertainly analysis is available 

Population category  Not considered 
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Without using integrated, quantitative models, ecotoxicity and human toxicity are estimated 

using a simple key-property approach where the most important fate characteristics such as 

inter-media transport and atmospheric degradation/biodegradation, intake, and effect are 

included in a simple modular framework requiring relatively few substance data for calculation 

of characterization factors.  

 

The update version of EDIP methodology (EDIP2003) (Hauschild and Potting 2005) supports 

three levels of spatial differentiation in characterization modelling; site-generic (no spatial 

differentiation), site-dependent (the level of countries or regions within countries), and 

site-specific (local scale) modelling. Apart from the feature of spatial differentiation, the 

EDIP2003 characterization factors take a larger part of the causality chain into account for all 

the non-global impact categories. Thus it includes the modelling of the dispersion and 

distribution of the substance, the exposure of the target systems to allow assessment of the 

exceedance of thresholds.   

 

Table 1.9: Principal characteristics of EDIP-Characterisation methodology (based on Koning et al. 2002) 

 

USETOX 

In 2005, a comprehensive comparison of life cycle impact assessment toxicity characterisation 

models was initiated by the United Nations Environment Program (UNEP)–Society for 

Principal characteristics Integrated quantitative models focusing on 

independent environmental key properties 

Impact categories Human toxicity and ecotoxicity 

Exposure routes  Inhalation and ingestion 

Fate, exposure and effect All but only partially 

Chemical considered Organic and inorganic chemicals 

Media considered Air, water, natural soil, agricultural soil, industrial 

soil 

Spatial variation Not considered 

Source code availability No 

Model availability Not specified 

Dynamic or steady-state Not specified 

Availability for sensitivity and uncertainty analyses Not considered 

Population category  Not considered 
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Environmental Toxicology and Chemistry (SETAC) Life Cycle Initiative. The main objectives 

of this effort were (Rosembaum et al. 2008): 

 

  To identify specific sources of differences between the models‟ results and structure 

  To detect the indispensable model components 

  To build a scientific consensus model from them, representing recommended practice 

 

This led to the development of USETOX, a scientific consensus model that contains only the 

most influential model elements. These were, for example, process formulations accounting for 

intermittent rain, defining a closed or open system environment or nesting an urban box in a 

continental box. 

 

Table 1.10: Models compared to build USETOX consensus models 

Model Strong point(s) Weak point(s) 

CalTOX 

Most encompassing in terms of exposure 

pathways 

Advanced modelling of soil (several layers) 

Monte Carlo uncertainty estimation 

No severity measure for human toxicity, 

only partly compatible with damage 

approach 

Ecosystem toxicity not assessed (e.g., 

marine environment and coastal zone not 

included for fate modelling) 

IMPACT 

2002 

Continental average characterization factors 

available for different global regions 

Considering indoor air exposure 

Direct application of pesticides considered 

HC50 approach for effect modelling 

Marine environment poorly represented 

so far 

USES-LCA 

Marine environment included 

Global coverage, however, not spatially 

resolved 

HC50 approach for effect modelling 

One-dimensional uncertainty factors 

available 

 

BETR 

Flexible structure allows for spatially explicit 

chemical fate assessment at a variety of 

scales. 

Chemical fate model only. 

No integrated ecotoxicity assessment. 

No multi-pathway human exposure 

assessment 

EDIP Key property based Mainly representative for Europe 
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Normalization and weighting methods 

provided 

No explicit fate results available 

No severity measure for human toxicity 

WATSON 

European-wide spatially resolved fate, 

exposure and impact assessment (bottom-up 

analysis) 

Monetary valuation as weighting method 

Confined to Europe 

Open system boundaries 

Ecosystem toxicity not assessed 

At present, confined to non-volatile 

compounds 

EcoSense 

Most reliable modelling of classical air 

pollutants amongst the chosen models 

Bottom-up, i.e., spatially resolved, 

assessment capabilities for Europe, Russia, 

China/Asia, and Brazil/South America 

Monetary valuation as weighting method 

Open system boundaries  

Organic chemicals mostly not considered 

Only inhalation exposures with respect to 

toxic impacts (additionally impacts on 

crops and building materials) 

Ecosystem toxicity not assessed 

 

USETOX was developed following a set of principles including (Rosenbaum et al. 2008): 

 

 Parsimony: as simple as possible, as complex as necessary 

 Mimetic: not differing more from the original models than these differ among 

themselves 

 Evaluated: providing a repository of knowledge through evaluation against a broad set 

of existing models 

 Transparent: being well-documented, including the reasoning for model choices 

 

USETOX calculates characterisation factors for human toxicity and freshwater ecotoxicity. 

Assessing the toxicological effects of a Chemical emitted into the environment implies a 

cause–effect chain that links emissions to impacts through three steps: environmental fate, 

exposure and effects. Linking these steps, a systematic framework for toxic impacts modelling 

based on matrix algebra was developed within the OMNITOX project (Rosenbaum et al. 2007). 

USETOX covers two spatial scales (Figure 1.10). 
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Figure 1.10: Compartments setup of USETOX (Rosembaum et al. 2008) 

USETOX provides a parsimonious and transparent tool for human health and ecosystem 

characterization factor (CF) estimates. It has been carefully constructed as well as evaluated via 

comparison with other models and falls within the range of their results whilst being less 

complex.  

 

Table 1.11: Principal characteristics of USETOX 

Principal characteristics A scientific consensus model based on comparison 

of seven models 

Impact categories Human toxicity and freshwater ecotoxicity 

Exposure routes  Inhalation and ingestion 

Fate, exposure and effect All considered 

Chemical considered Organic chemicals  

Media considered Continental scale: Urban air, rural air, agricultural 

soil, industrial soil, freshwater, and coastal marine 

water 

Global scale: same structure as the continental 

scale (without urban air) 

Spatial variation Continental and global scales 

Source code availability Not specified 

Model availability Yes 

Dynamic or steady-state An algorithm estimating the effect of intermittent 

rain events is included to overcome the 

overestimation by steady-state scheme  

Availability for sensitivity and uncertainty analyses Not considered 
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WMPT  

The Waste Minimization Prioritization Tool (WMPT) is a computerized system developed by 

the U.S. EPA to assist in the ranking of chemicals for pollution prevention efforts in terms of 

their persistence, bioaccumulation and toxicity (PBT) properties (USEPA 1997b). WMPT 

contains screening level information on several thousand chemicals and can be used for a 

variety of prioritization applications. 

 

The WMPT scoring algorithm provides chemical-specific scores that can be used for 

screening-level risk-based ranking of chemicals (the results from the algorithm should not be 

treated as a substitute for a detailed risk assessment). Figure 1.11 illustrates that the scoring 

algorithm is designed to generate an overall chemical score that reflects a chemical‟s potential 

to pose risk to either human health or ecosystems. A measure of human health concern is 

derived by jointly assessing the chemical‟s human toxicity and potential for exposure. In a 

similar manner, a measure of the ecological concern is derived from jointly assessing the 

chemical‟s ecological toxicity and potential for exposure.  

 

As shown in Figure 1.11, scores are first generated at sub-levels. These scores at sub-levels are 

then aggregated upward to generate an overall chemical score. A score for a given “subfactor” 

(i.e. cancer effects) is derived by evaluating certain “data elements” that appropriately represent 

the subfactor. For example, one of the subfactors, “persistence”, is scored by using a 

steady-state, non-equilibrium multimedia partitioning model to estimate regional half-life. 

 

Population category  Not considered 
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Figure 1.11: Overview of the WMPT scoring (USEPA 1997b)  

 

Table 1.12: Principal characteristics of WMPT 

Principal characteristics Screen-level/ risk-based ranking tool 

Impact categories Human toxicity and ecotoxicity 

Exposure routes  Not specified 

Fate, exposure and effect The  method is performed by summing scores 

Chemical considered Organic compounds and inorganic compounds 

Media considered air, water, soil, sediment  

Spatial variation Not considered 

Source code availability No 

Model availability Yes 

Dynamic or steady-state Steady-state 

Availability for sensitivity and uncertainty analyses No 

Population category  Not considered 

 

ChemCAN model 

The ChemCAN model describes the fate of a chemical in a region, assuming steady state 

conditions in the environment. The model estimates average concentrations in four primary 

environmental media consisting of air, surface water, soil, and bottom sediment, and three 
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secondary media consisting of groundwater, coastal water, and terrestrial plants. Chemical fate 

is determined through the solution of the set of mass balance equations for the primary media as 

described by Mackay (1991).  The model is intended to assist in human exposure assessment 

where a specific target population may be identified.  

 

Originally designed for use in Canada, a database of 24 regions of Canada is available. Other 

regions can be defined by the user. In the model, the appropriate dimension of surface areas is 

set between 100×100 km
2
 and 1000×1000 km

2
. The regional divisions of Canada were based 

on the eco-zones identified by Environment Canada and with consideration of the distribution of 

population and industrial activity, political boundaries, drainage basins, and climate to give 

areas of sufficiently homogeneous ecological conditions such that meaningful assessments of 

chemical fate can be conducted.  

 

The transparency of this model was achieved by making it possible for the user to view the 

equations within the model. By viewing the section of program code, the user can know how 

this steady-state model mimics the physical reality. The model is intended to provide 

regionally-specific estimates of chemical concentrations in the primary media. These estimates 

can be compared to monitoring data and used for exposure estimation. 

 

A current application of this model was presented in Webster et al. (2004b) 

 

Table 1.13: Principal characteristics of ChemCAN 

Principal characteristics Multimedia model with steady-state condition 

Impact categories Human toxicity  

Exposure routes  Not specified 

Fate, exposure and effect Fate  

Chemical considered Organic compounds and involatile compounds 

Media considered air, surface water, soil, bottom sediment, 

groundwater, coastal water, and terrestrial plants 

Spatial variation Regional 

Source code availability Yes 

Model availability Yes 

Dynamic or steady-state Steady-state 

Availability for sensitivity and uncertainty analyses No 

Population category  No 
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XtraFOOD model 

The XtraFood model was developed in the research project initiated by VITO (Seuntjens et al. 

2006). The model calculates transfer of contaminants in the primary food chain (Figure 1.12). In 

the project, the transfer model was coupled with historical food consumption data to estimate 

human exposure to contaminated food products. The model focuses on the terrestrial food chain. 

The XtraFOOD model consists of three modules, which are inter-linked: 

 

 A mass balance model at the farm level: calculation of inputs and outputs; 

 Bio-transfer module: calculation of the transfer of contaminants to vegetable products 

(vegetables, cereals, animal feed) and animal products (meat, milk dairy products, poultry, 

eggs); 

 Exposure and impact module: calculation of the exposure from food (and other exposure 

routes) and comparison with reference values. 

 

The XtraFOOD model calculates as output the food intake and resulting contaminant intake, 

independently for age and gender categories. Exposure can be calculated as being representative 

for a population or separately for local and background intake. All these intakes are linked to the 

model output. Additional intakes are provided to add concentration data in non-farm related 

foods (e.g., fruit juice, fish, and so on). Eventually human exposure can be calculated and 

compared to the available toxicological levels (thresholds) to estimate impacts on human health. 

 

 

Figure 1.12: Overview of contaminant flows in a model agro-ecosystem to the food chain (Seuntjens et al. 

2006) 
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Table 1.14: Principal characteristics of XtraFOOD  

Principal characteristics Multimedia model focused on the primary food 

chain 

Impact categories Human toxicity 

Exposure routes  Ingestion 

Fate, exposure and effect Fate and exposure are considered 

Chemical considered Organic and heavy metals 

Media considered Air, soil, farm-related crops, animal  

Spatial variation Not considered 

Source code availability Not considered 

Model availability Not specified 

Dynamic or steady-state Steady-state 

Availability for sensitivity and uncertainty analyses Yes 

Population category  Age and gender are considered 

 

2-FUN tool 

2-FUN tool is new integrated software based on an environmental multimedia model, 

physiologically based pharmacokinetic (PBPK) models, and associated databases. The tool is a 

dynamic integrated model and is capable of assessing the human exposure to chemical 

substances via multiple exposure pathways and the potential health risks (Figure 1.13). 2-FUN 

tool has been developed in the framework of the European project called 2-FUN (Full-chain and 

UNcertainty Approaches for Assessing Health Risks in FUture ENvironmental Scenarios: 

information is available at www.2-fun.org).  

 

The environmental multimedia model contained in 2-FUN tool was developed based on the 

extensive comparison and evaluation of existing multimedia models such as CALTOX, 

SimpleBox, XtraFood, and etc. The multimedia model comprises several environmental 

modules, i.e., air, fresh water, soil/ground water, several crops, and animal (cow and milk). It is 

used to simulate chemical distribution in the environmental modules, taking into account the 

manifold links between them. The PBPK models were developed to simulate the body burden of 

toxic chemicals throughout the entire human lifespan, integrating the evolution of the 

physiology and anatomy from childhood to advanced aged. These models are based on a 

detailed description of the body anatomy and include a substantial number of tissue 

compartments to enable detailed analysis of toxicokinetics for diverse chemicals that induce 
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multiple effects in different target tissues. The key input parameters used in both models were 

given in the form of probability density function (PDF) to allow the exhaustive probabilistic 

analysis and sensitivity analysis in terms of simulation outcomes.  

 

The environmental multimedia and PBPK models were built and linked together on the 

common platform software called Ecolego
®
(www.facilia.se). One of the main characteristic of 

Ecolego system is the use of „Interaction matrix‟ (described in the section 2.1) to build and 

visualize models (Figure 1.14). The effective graphical simulation interface presented in the 

Ecolego system can facilitate a comprehensive identification and visualization of the exposure 

pathways and allow classification of the role of different environmental modules (subsystem) in 

terms of transfer relationship. In the Ecolego system, advanced methods concerning 

probabilistic and sensitivity analyses can be selected: (i) Monte Carlo methods for the 

propagation of parametric uncertainties, (ii) an optimization function to correlate input 

parameters with simulated outputs in the Monte Carlo process and then to optimize the values of 

input parameters, and (iii) several regression and Fourier approaches for conducting sensitivity 

analysis. 

The complete 2-FUN tool is capable of realistic and detailed lifetime risk assessments for 

different population groups (general population, children at different ages, pregnant women), 

considering human exposure via multiple pathways such as drinking water, inhaled air, ingested 

vegetables, meat, fish, milk, and etc. In the scheme of an integrated environmental health risk 

assessment presented in Figure 1.2 (Section 1.2), 2-FUN tool can cover the scheme from 1
st
 to 

4
th
 steps.  

 

 

Figure 1.13: Multi-pathways that the substances can take into the human (The part enclosed by a dashed 

line emphasizes the indirect pathways into the human via food chains)   

http://www.facilia.se/
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Figure 1.14: The schematic of interaction matrix (on the left) and the representation of interaction matrix 

in the Ecolego system (on the right) 

 

Table 1.15: Principal characteristics of 2-FUN tool                                                     

Principal characteristics Integrated tool coupling an environmental 

multimedia model and PBPK models 

Impact categories Human toxicity 

Exposure routes  Ingestion, Inhalation, and dermal intake (planned) 

Fate, exposure and effect Fate, exposure, and potential effect are considered 

Chemical considered Organic and inorganic 

Media considered Air, fresh water, soil/ground water,  farm-related 

crops, and animal (cow and milk) 

Spatial variation Not considered (mainly used for regional scale) 

Source code availability Yes 

Model availability Yes in the near future 

Dynamic or steady-state Dynamic 

Availability for sensitivity and uncertainty analyses Yes 

Population category  Age and gender are considered 

 

2-FUN tool has the following prominent features, which differentiate it from other models: 

 Its capability to conduct a full-chain risk assessment on a common system, which 

allows linking the simulation of chemical fate in the environmental media, multiple 

pathways of exposure, and the detailed analysis for multiple effects in different target 

tissues in human body (by PBPK models) 

 Its capability to assess the health risk of specific human groups vulnerable to toxicants, 

i.e., for woman, infant 

Comp. 1

Comp. 2

Inputs 1 to 2

Inputs 2 to 3

Outputs 3 to 1
Comp. 3
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 It contains a wide range of methods for sensitivity and uncertainly analyses.   

 It contains an exhaustive database of PDF for input parameters. 

 It can be user-friendly because of its effective graphical simulation interface and its 

flexibility, which facilitates users to design scenarios for target regions and arrange the 

tool on their own ways, i.e., users can select only the environmental modules necessary 

for their regional scenarios. 

 

Selection of the models to perform risk assessments of human health and ecosystems should 

depend on the purposes and scenarios designed by model users. For example, the selection will 

be different depending on if the models are used for screen-level or detailed-level risk 

assessment, and if the scenarios are designed with large scale (global or continental) or small 

scale (regional or local). 

 

1.5 General objective 

As described in the former sections, modelling tools have been widely used for the 

environmental and health risk assessment, and the importance to consider the parametric 

uncertainty for environmental and health risk assessment has been well recognized. This 

dissertation then addresses three subjects. The first is the introduction of 2-FUN tool, where 

conceptual models defined in 2-FUN tool are described together with their mass balance 

equations (Chapter 2). The second is the investigation of statistical approaches to derive 

probabilistic density functions (PDFs) of the input parameters that are defined in 2-FUN tool 

(freshwater compartment), where Bayesian methods are mainly discussed (Chapter 3). The third 

is the application of 2-FUN tool for a designed case study in regional scale, where the chemical 

exposure to humans via multiple pathways is considered and the uncertainty and sensitivity 

analyses for model outputs (internal concentrations in organs in our case study) are discussed 

(Chapter 4).  

 

2 STRUCTURE OF 2-FUN TOOL  

2.1 Conceptual description of 2-FUN tool 

As described in the section 1.4, 2-FUN tool consists of an environmental multimedia model, 

PBPK models, and associated databases. The first step in the development of the 2-FUN tool 

was the construction of a conceptual model defining the biosphere compartments, e.g., air, 

water, soil, crops, animals etc, which were eventually sub-divided in several sub-compartments, 
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and the relations between these compartments (i.e. transfers governed by physical, chemical 

and/or biological processes). The environmental multimedia model included in 2-FUN tool 

comprises five environmental compartments and a PBPK model corresponds to a human 

compartment: 

 Air compartment 

 Freshwater compartment 

 Soil / groundwater compartment 

 Plant compartments (representing edible plants compartments such as root, potato, leaf, 

grain and fruit) 

 Animal compartment (representing meat and milk cows) 

 Human compartment (PBPK model) 

The 2-FUN tool considers the mass balance principle in the whole system as well as in each 

compartment. Interaction matrix is an expert qualitative method to identify multiple interactions 

among the multiple compartments, which facilitates the comprehensible identification and 

visualization of exposure pathways and allows the classification of roles of compartments in 

terms of transfer relationships. 

The interaction matrix is a table which describes the conceptual model by tabulating the 

interactions between the compartmental media. The main compartments of the biosphere system 

are identified and listed in the leading diagonal elements (LDEs, green color) of the table, and 

the interactions between the LDEs are listed in the off-diagonal elements (ODEs, yellow color) 

(Figure 2.1). 

 

             Figure 2.1: Schematic of interaction matrix 

The 2-FUN conceptual model was defined independently for each constituent compartment, 

by reviewing existing models, frameworks and methodologies currently used for assessing 

Comp. 1

Comp. 2

Inputs 1 to 2

Inputs 2 to 3

Outputs 3 to 1
Comp. 3
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transfer of chemicals. The review a priori selected two types of models, frameworks, and 

methodologies: 

 Integrated multimedia models, covering all the water, soil, and biota compartments and 

aiming at calculating generic human exposures 

 Fate models, providing a detailed description of the behaviour of chemicals in a 

specific compartment 

 

For example, the conceptual model of freshwater compartment was built up based on the 

following existing models: 

 AQUATOX (USEPA 2004): Ecological food-web freshwater model kinetically 

describing transfer of chemicals in various abiotic and biotic compartments 

 OURSON (Ciffroy 2006): Dynamic transfer initially developed for simulating the 

human exposure to radionuclides and metals discharged in freshwater 

 OWASI (Mackay 1983; Di Guardo 2006; Warren et al 2007): Model simulating the 

steady-state chemical concentration in a lake or river segment 

 SimpleBox: Steady-state multimedia model incorporated in the EUSES system 

 TRIMFate (USEPA 2002): Compartmental mass balance model providing exposure 

estimates for ecological receptors (plants and animals), in particular in freshwater 

systems 

 

In order to cover different approaches for the pollutant transfer in a given compartment, some 

contrasting tools were selected for the review (e.g., from screening models to detailed 

mechanistic ecological models). The analysis over the selected models raised some key issues in 

model mechanism and then permitted building an appropriate conceptual model by addressing 

those key issues. Figure 2.2 presents the 2-FUN interaction matrix for the freshwater 

compartment.  

 

The detailed descriptions of the model review and development for all the conceptual models 

(i.e., air, freshwater, soil/groundwater, plants, and animal) are present in the deliverables of 

2-FUN project (available at www.2-fun.org).    
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Figure 2.2: The 2-FUN interaction matrix for the freshwater compartment 

 

2.2 Mass balance equations 

As a next step, the conceptual models were translated into mathematical expressions. 

Time-dependent pollutant concentrations of different phases in each biosphere compartment 

(i.e. dissolved phase, suspended particulate matter, bottom sediments, and fish for freshwater 

compartment) were derived from the inputs, outputs, and transformation processes defined in 

conceptual models and mathematically described by mass balance systems. Only principal mass 

balance equations are presented in this section. All the detailed mathematical expressions for 

environmental compartments are described in the deliverables of 2-FUN project. Those for 

human compartment are described in detail in Beaudouin et al. (2010). 

 

Freshwater compartment: It consists of two phases, i.e., raw river water and bottom sediments. 

The mass balance equation of a chemical in the water phase is given as follows:  
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(2.1) 

The equation for bottom sediments is given as follows: 
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          (2.2) 

Each term in Equation (2.1) and (2.2) represents: 

 Mrw: chemical mass in raw river water (mg) 

 Dpoint_sources: time-dependent flux of pollutant into the freshwater system from point 

sources (mg d
-1

) 

 Crw_upstream: chemical concentration in the upsteram of river (mg m
3
) 

 Crw: chemical concentration in raw river water (mg m
3
) 

 Q(t): time-dependent flow rate of river (m
3
 s

-1
) 

 Mrw,dry_dep: chemical mass associated with dry deposition of atmospheric particles in raw 

river water (mg) 

 Mrw,wet_dep,part: chemical mass associated with wet deposition of atmospheric particles in 

raw river water (mg) 

 Mrw,wet_dep,gas: chemical mass associated with wet deposition of gaseous pollutants (rain 

dissolution) in raw river water (mg) 

 Mair,diff_gas: chemical mass associated with diffusion of gaseous pollutant in air (mg) 

 Mrw,diff_gas: chemical mass associated diffusion of gaseous pollutant in raw river water 

(mg) 

 Mrw,wash-off: chemical mass associated with soil wash-off in raw river water 

 Mrw,sed_resus,dep: chemical mass associated with resuspention and deposition between raw 

water and bottom sediment in raw river water (mg) 

 Mrw,diff_sed: chemical mass associated with diffusive exchanges of dissolved contaminant 

in surface water and sediment pore water in raw river water (mg) 

 Rechargeground: time-dependent recharge of pollutant from ground water (mg d
-1

) 

 Qfish: time-dependent fish quantity (mg) 

 Eliminationfish: elimination ratio of fish quantity (d
-1

) 

 Uptakefish: uptake of pollutant by fish (mg d
-1

) 

 Irrigationrate: irrigation rate (m
3
 d

-1
) 

 λdegradation,water: degradation rate in water (d
-1

) 

 Msed: chemical mass in bottom sediments (mg) 

 λdegradation,sed: degradation rate in bottom sediments (d
-1

) 

 

Air compartment: The mass balance equation of a chemical in air compartment is given as 

follows: 
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   (2.3) 

Each term in Equation (2.3) represents: 

 Mair: chemical mass in air (mg) 

 Cair_out: chemical concentration in external atomospheric area (mg m
3
) 

 Vwind: wind velocity (m d
-1

) 

 Areaside: profile area of atomospheric zone (m
2
) 

 Cair: chemical concentraiton in air (mg m
3
) 

 Mtotal,diff_gas: sum of chemical mass associated diffusion of gaseous pollutant in raw river 

water, top layer in soil, and fruit/leaf/grain compartments (mg) 

 Mair,dry_dep: chemical mass associated with dry deposition of atmospheric particles in air 

(mg) 

 Mair,wet_dep,part: chemical mass associated with wet deposition of atmospheric particles in air 

(mg) 

 Mair,wet_dep,gas: chemical mass associated with wet deposition of gaseous pollutants (rain 

dissolution) in air (mg) 

 

Soil compartment: It consists of three zones, i.e., surface soil zone, vadose zone, and groundwater 

zone. The surface soil and vadose zones comprise several layers from „top layer‟ to „bottom 

layer‟. The number of layers can be defined by model users. The mass balance equation of a 

chemical in surface soil zone is given as follows: 

          

  
 

             

         
                                     

 
                  

           
                                     

 
                 

           
                             

 

             

         
                  

 
              

         
                   

 
               

           
                       

                                     
                     

 

                                   
                               

                                         
                          

                                        
                            

 

                                                  
                             

     (2.4) 

The equation for vadose zone is given as follows: 
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     (2.5) 

The equation for ground water zone is given as follows: 

             

  
                                                 

                           

                               
                                 

  (2.6) 

 

Water balance in root zone is defined as follows: 

dW(t)/dt = Precipitation (t) + Irrigation (t) + Groundwater (t) - Evapotranspiration (t) - 

Percolation (t)       (2.7) 
 

Each term in Equation (2.4) to (2.7) represents: 

 Msoil,top: chemical mass in top layer of surface soil (mg) 

 Msoil,bottom: chemical mass in bottom layer of surface soil (mg) 

 Mvadose,top: chemical mass in top layer of vadose zone (mg) 

 Mvadose,bottom: chemical mass in bottom layer of vadose zone (mg) 

 Mgrondwater: chemical mass in groundwater (mg) 

 Msoil,dry_dep: chemical mass associated with dry deposition of atmospheric particles in top 

layer of surface soil (mg) 

 Msoil,wet_dep,part: chemical mass associated with wet deposition of atmospheric particles in 

top layer of surface soil (mg) 

 Msoil,wet_dep,gas: chemical mass associated with wet deposition of gaseous pollutants (rain 

dissolution) in top layer of surface soil (mg) 

 Msoil,diff_gas: chemical mass associated with diffusion of gaseous pollutant in top layer of 

surface soil (mg) 

 Msoil,wash-off: chemical mass associated with soil wash-off in top layer of surface soil 

(mg) 

 Dtransfer: transfer coefficient by diffusion (d
-1

) 

 Advtransfer: transfer coefficient by advection (d
-1

) 

 λdegradation,soil: degradation rate in soil (d
-1

) 

 W(t): amount of water storage in root zone (mm d
-1

) 

 Precipitation (t): time-dependent precipitation rate (mm d
-1

) 

 Irrigation (t): time-dependent irrigation rate (mm d
-1

) 

 Groundwater (t): time-dependent groundwater contribution (mm d
-1

) 

ref://ecolego/Root_Field.Water_Storage.W
ref://ecolego/Root_Field.Water_Storage.RainFlux
ref://ecolego/Root_Field.Water_Storage.Irrigation
ref://ecolego/Root_Field.Water_Storage.GW_u
ref://ecolego/Root_Field.Water_Storage.Evapotranspiration
ref://ecolego/Root_Field.Water_Storage.Percolation
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 Evapotranspiration (t): time-dependent evapotranspiration rate (mm d
-1

) 

 Percolation (t): time-dependent percolation rate (mm d
-1

) 

 

Plant compartments (for organic chemicals) 

(1) Root compartment 

The change of chemical concentration in thick roots can be described as follows: influx with 

xylem water minus outflux with xylem water, growth and degradation. 

  

  
 

 

  
      

 

     
         (2.8) 

where: 

 CR (mg kg fw
-1

) is the concentration of chemical in root 

 Q (L d
-1

) is the transpiration stream 

 MR (kg fw) is mass of the root 

 KWS (kg ww L
-1

) is the partition coefficient between soil pore water and bulk soil (KWS 

= CW / CS)  

 CS (mg kg ww
-1

) is the concentration of chemical in bulk soil 

 KRW (L kg fw
-1

) is the partition coefficient between root and water 

 k (d
-1

) is the sum of kG (d
-1

) the growth rate and kdeg (d
-1

) the degradation rate 

 

(2) Potato compartment 

A potato model that considers diffusion from soil into spherical potatoes, dilution by growth and 

degradation is applied as follows: 

  

  
                  (2.9) 

where: 

 CP (mg kg fw
-1

) is the concentration of chemical in potato 

 k1 (d
-1

) is the uptake rate 

 k2 (d
-1

) is the depuration rate 

 k (d
-1

) is the sum of kG (d
-1

) the growth rate and kdeg (d
-1

) the degradation rate 

 

(3) Leaf compartment 

The change of chemical concentration in leaves is influx with transpiration water plus gaseous 

and particulate deposition from air plus soil attachment minus diffusion to air, growth and 

degradation. 
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           (2.10) 

where: 

 CL (mg kg fw
-1

) is the concentration of chemical in leaves 

 CR,L (mg kg fw
-1

) is the concentration of chemical in influx from root to leaves 

 ML (kg fw) is the mass of leaves 

 AL (m
2
) is the area of leaves 

 gL (m d
-1

) is the conductance of leaves 

 CA,gas (mg m
-3

) is the gaseous concentration of chemical in air 

 CA,part (mg g
-1

) is the concentration of chemical at particles in air 

 TSPA (g m
-3

) is the total amount of particles in air 

 Λpart (m
3
 air m

-3
 rain) is the rainfall scavenging ratio for particles 

 Rain (m d
-1

) is rainfall 

 vdep,dry (m d
-1

) is the dry deposition velocity of particles 

 Sfield (m
2
) is the surface area of the field 

 Irr (mm d
-1

) is the irrigation rate 

 CRiver (mg L
-1

) is the concentration of chemical in river water 

 ρL (kg fw m
-3

) is the density of leaves 

 KLA (m
3
 kg fw

-1
) is the partition coefficient between leaves and air 

 k (d
-1

) is the sum of kG (d
-1

) the growth rate and kLoss (d
-1

) the degradation rate 

 

(4) Grain compartment 

The change of chemical concentration in grains is influx with transpiration water plus gaseous 

deposition from air plus soil attachment minus diffusion to air, growth and degradation. 

   

  
 

  

     
     

    

  
       

              

  
       

    

     
          (2.11) 

where: 

 CG (mg kg fw
-1

) is the concentration of chemical in grains 

 CR,G (mg kg fw
-1

) is the concentration of chemical in influx from root to grains 

 QG (L d
-1

) is the transpiration stream in grain 

 MG (kg fw) is the mass of grains 

 AG (m
2
) is the area of grains 
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 gG (m d
-1

) is the conductance of grains. ρG (kg fw m
-3

) is the density of grains 

 KGA (m
3
 kg fw

-1
) is the partition coefficient between grains and air.  

 k (d
-1

) is the sum of kG (d
-1

) the growth rate and kdeg (d
-1

) the degradation rate 

 

(5) Fruit compartment 

The change of chemical concentration in fruits is influx with xylem and phloem plus gaseous 

and particulate deposition from air minus diffusion to air, growth and degradation. 

   

  
 

  

     
     

    

  
       

                                  

  
            

    

     
         

(2.12) 

where: 

 CF (mg kg fw
-1

) is the concentration of chemical in fruits 

 CR,F (mg kg fw
-1

) is the concentration of chemical in influx from root to fruits 

 QF (L d
-1

) is the sum of xylem and phloem flow to fruits 

 MF (kg fw) is the mass of fruits 

 AF (m
2
) is the area of fruits 

 gF (m d
-1

) is the conductance of fruits 

 KFA (m
3
 kg fw

-1
) is the partition coefficient between fruit and air  

 k (d
-1

) is the sum of kG (d
-1

) the growth rate and kdeg (d
-1

) the degradation rate 

 

Animal compartment: 

The change of chemical mass in animals is from input with diet, drinking water and inhalation 

minus outflux with lipids, urination and exhalation. For milk cattle there is also outflux by 

lactation. The mass in cattle fat is found by division with the lipid content of the cattle. 

   

  
          (2.13) 

where: 

 mC (mg) is the mass of chemical in cattle 

 I  (mg d
-1

) is the sum of daily intake of chemical 

 k (d
-1

) is the loss rate constant 

The concentration of chemical in milk is found by assuming equilibrium partitioning between 

milk cattle and milk. 

            (2.14) 

where: 

 CM (mg kg
-1

) is the concentration of chemical in milk 
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 KMC (kg kg
-1

) is the partition coefficient between milk and cattle body 

 CC (mg kg
-1

) is the concentration in milk cattle found from Equation (2.13) by division 

with bodyweight of milk cattle and with parameters for milk cattle 

 

The general description of the mass balance equations for human compartment (PBPK model) is 

described in Chapter 4.  

 

3 PROBABILISTIC PARAMETERIZATION  

The general depiction about probabilistic parameterization is presented in the previous section 

(1.3). The focus of this chapter is set at the detailed presentation of two advanced statistical 

approaches to derive probabilistic density function (PDF) for the two parameters used in the 

freshwater compartment of the 2-FUN multimedia model: the settling velocity of particles that 

is a driving factor influencing the transfer of particles at the water-sediment interface in 

fresh-water system, and the fish bioconcentration factor (BCF) for metal that represents the 

accumulation of a given chemical in organisms arising by water uptake. The third section 

summarizes the other approaches used to estimate probabilistically the parameters associated 

with chemical transfer between water and sediment phases in the freshwater compartment. The 

detailed description for it is available in a deliverable of 2-FUN project and Ciffroy et al 

(2010b). 

3.1 Probabilistic estimation of the settling velocity of particles using a 

Bayesian approach 

3.1.1 Introduction 

The deposition and resuspension of particles occurring at the water-sediment interface in 

fresh-water systems are the main transfer processes concerning the exchange of contaminants 

between the water phase and the bottom sediment. These transfer processes are commonly 

considered as key processes for the environmental risk assessment of chemicals because these 

processes strongly affect the residence time of contaminants associated with particles in 

fresh-water.  

 

In most existing multi-media models such as SimpleBox (Brandes et al. 1996), QWASI 

(Mackay 1983; Di Guardo et al. 2006; Warren et al. 2007) and Trim.Fate (USEPA 2002), the 

processes of deposition and resuspension are each represented by a steady-state rate and 

expressed as the downwards and upwards velocities of particles, occurring simultaneously. Thus, 
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the mass balance of particles at the water-sediment interface in the steady-state scheme is 

defined by the net sedimentation rate which is calculated as the deposition rate minus the 

resuspension rate. The main drawback of this steady-state representation is that it assumes a 

permanent net deposition rate when the deposition rate is greater than the resuspension rate. 

This assumption may be not realistic for many freshwater systems where there are temporal 

cycles of deposition/resuspention caused by the seasonal variations in the flow rate.   

 

Mechanistic time-dependent deposition/resuspension equations have been proposed for use in 

hydraulic models (e.g. Krone 1962; Partheniades 1965; Blom and Aalderink 1998; Sanford and 

Maa 2001; Winterwerp 2006) and can be assumed to be a more realistic representation of the 

physical processes. Critical analysis of such equations is beyond the scope of our study, 

however, Ciffroy et al (2010a) evaluated these equations and selected the simultaneous 

deposition/resuspension model recommended by Winterwerp (2006). We focus a priori on 

these mechanistic time-dependent equations which are based on the parameters having physical 

meaning such as the settling velocity of particles, the critical shear stress of 

deposition/resuspention, and the erosion rate, while remaining mathematically simple. 

Therefore these equations can be incorporated into the scheme of multi-media models.  

 

In those equations accounting for the deposition process described in Krone (1962) and Blom 

and Aalderinki (1998), the settling velocity of particles is defined as one of the key parameters 

in transferring contaminants from the water phase to the bottom sediment (Droppo et al. 2000). 

The parameter values are related to the natural conditions such as particle size and density, and 

therefore tend to be highly variable and site specific. Especially in the context of multi-media 

modelling, using a representative (single) value of the parameter for a fresh-water system such 

as river, lake or pond, regardless of site-specific natural conditions, is likely to ignore the 

potential parametric variation seen among different sites.  

 

A probabilistic representation of the settling velocity of particles should instead be preferred to 

capture the parametric uncertainty with which values of the settling velocity occur in the natural 

environment. A PDF for the settling velocity of particles can be estimated from two types of 

knowledge as follows; 

 A theoretical formula, taking into account some physical characteristics of particles (i.e. 

size and density). 

  Measurements taken from the literature.  

Neither of these approaches can be considered as „the best‟ approach because they both present 

advantages but also drawbacks (discussed in the next section).The aim of our study was to 
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derive an improved generic (global) PDF for the settling velocity of particles by a statistical 

method which integrates two types of information. Furthermore, our study also aimed to 

demonstrate how the statistical method can update the estimated generic PDF, when new 

site-specific measurement data of the settling velocity are incorporated into the generic PDF. 

3.1.2 Materials and methods 

Estimation of the settling velocity of particles by a simple theory 

When the water flow around the particles is laminar (not turbulent) and particles are not subject 

to aggregation under low suspended concentrations, the settling velocity of particles Wc can be 

described by Stokes‟ law. The equation describing the settling velocity of small spheres 

(diameter <0.1 mm) with uniform density in the particle Reynolds number regime 

(Mantovanelli et al, 2006) is as follows:  

When    
       

 
   then,

 

 

           
       

   
   (3.1)

 

 

All the variables in Equation (3.1) are shown with their values in Table 3.1.  

 

Table 3.1: Variables and parameters used in Equation (3.1) 

Parameter Description of parameter Given value and unit  

cW  Settling velocity of particles m d
−1

 

w  Water density  998 kg m
-3

(at 20°C) 

d  Diameter of particles m 

e  Excess density (or effective density) of particles, equivalent 

to ρe = ρs - ρw where ρs is particle density. The particle 

density was set to the average value (2300 kg m
-3

) typical of 

clay minerals as seen in Khelifa and Hill (2006). 

2300 kg m
-3

 

  Dynamic molecular viscosity of water 10
-3 

kg m
-1

 s
-1

(at 20°C) 

Re Particle Reynolds number - 

  Kinematic viscosity of water 10
-6 

m
2
 s

-1
(at 20°C)

 
 

g  Gravity acceleration 9.8 m s
-2
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In the natural aquatic environment, fine-grained particles tend to aggregate into larger porous 

aggregates, known as flocs, due to particle collisions mainly caused by Brownian and turbulent 

motion, and surface electro-chemical forces (Winterwerp, 1998; Liu et al. 2002). As a result of 

this aggregation process, cohesive sediments settle as flocs rather than as individual particles 

(Liu et al. 2002). Various experiments indicate that large suspended particles that emerge as 

aggregates of much smaller particles play a key role in determining the fate of fluvial 

contaminants such as heavy metals and pesticides (Lick and Rapaka, 1996; Leppard et al. 

1998).Therefore, analyzing the settling of flocs is essential to understand the transfer of 

contaminants from the water phase to the bottom sediment.   

Two models (Khelifa and Hill, 2006; Winterwerp, 1998) have been proposed to estimate the 

settling velocity of flocs. These models are based on the concept of floc fractal dimension F, 

and it was demonstrated that they matched the observed data adequately. However, these 

models require the derivation of the key parameter F from the relationship between the 

measurements of excess floc density and floc size. The processes of parameterization of the 

fractal dimension F and estimation of the settling velocity of flocs are discussed in Fettweis 

(2008). Furthermore, estimation of the particle Reynolds number Re in these models seems to 

require a series of measurements of the settling velocity. 

 

Calculation of the settling velocity of flocs by Stokes‟ law (Equation (3.1)) entails a certain 

inaccuracy, as Stokes‟ law was derived without consideration of turbulence and the fractal 

geometry of flocs. Nevertheless, we selected Stokes‟ law as a theoretical model to estimate the 

settling velocity because: (i) in two studies (Liu et al. 2002; Fox et al. 2004), Stokes‟ law was 

used to estimate the parameter under natural conditions, and (ii) in the scheme of our study, the 

parameter values roughly estimated by Stokes‟ law are defined as prior information and the 

inaccuracy contained in the prior information is assumed to be compensated for by combining 

this information with the other information from the measurements. In addition, an advantage of 

using this model is that it requires consideration of only two variables viz the diameter and 

density of flocs.  

 

Based on Stokes law, a Monte Carlo approach was applied to build a theoretical prior PDF of 

settling velocities, considering a range and distribution of particle sizes and a typical density of 

particles. In the Monte Carlo calculation, the particle diameter d was selected as the input 

parameter with a variable value, whereas other parameters were given fixed values, because the 

particle size is a variable to which the settling velocity could have great sensitivity. The range of 

particle sizes (flocs) in natural aquatic conditions ranges over three to four orders of magnitude 
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(Lartiges et al. 2001; Mikkelsen et al. 2005) and can be really site-specific, and thus defining a 

full range of particle sizes remains an open question. In constructing a theoretical prior PDF for 

this study, we focused on the range of the smaller particle sizes because it can be assumed that 

the presence of a lower range of particle sizes is not site-specific but is commonly seen in any 

natural conditions, whereas the higher range is highly variable depending on the natural 

conditions at each location. An upper value of the range of d was set at 63 m based on a 

finding by Sverdrup et al. (1942) that Stokes‟ law can be considered valid for spheres of 

diameter <62.5 m in quiescent waters. The bottom of the range was set at 1 m because, unlike 

submicron colloidal particles, suspended particles >1 m should be recognized as a significant 

vector for the transport of anthropogenic contaminants in surface waters (Lartiges et al. 2001). 

According to some scientific reports, the particle-size distribution of a finely divided system is 

often found to be log-normal (Kiss et al. 1999; Wagner and Ding 1994; Kim et al. 1995). 

Furthermore, in sedimentary research, the log-normal model for grain-size distribution was 

developed by Krumbein (1938), and empirical evidence and a possible explanation have been 

offered for this model (Purkait 2002; Ghosh 1988; Clarke and Ghosh 1995). This log-normal 

model for the particle-size distribution may not fully match the realistic distribution considering 

the presence of flocs in the natural environment. Nevertheless, we assigned a log-normal 

distribution to the particle size in order to simplify the parameterization of the variable.  A 

log-normal distribution for the variable was built by arbitrarily defining the range between 1 and 

63 m as the 99.8 % interval of the distribution, i.e. setting these values at the 0.1 and 99.9 

percentile, respectively. 

Collection of experimental and in-situ measurements of the settling velocity of particles 

Measurements of the settling velocity of particles were obtained from the literature review. For 

each such experiment or in situ measurement, we present a representative measured value of the 

parameter, the range of the observed particle diameters and a short description of the 

experimental method employed (Table 3.2). These measurements were taken from differing 

aquatic systems such as an experimental flume, river, estuary, and gulf. In our study, we 

focused on the settling velocity observed in fresh-water systems, especially rivers. However, 

due to the scarcity of measurements for riverine systems and the aim to derive a „generic‟ PDF, 

we decided to aggregate all the data from differing aquatic systems in order to give a certain 

parametric uncertainty which must be taken into consideration in the natural environment. 

 

The experimental and measurement approaches seen in the literature review are mainly 

categorized into three types: (i) laboratory flume experiments (Beaulieu et al. 2005; El Ganaoui 

et al. 2004; Graham and Manning 2007), using channels where sediments can be deposited and 

where initiation of resuspension is observed under increasing stream velocity; (ii) indirect in situ 
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measurements, where parameters are fitted from suspended particulate matter (SPM) monitoring 

in surface water (Blom and Aalderink 1998; Luck 2001; Voulgaris and Meyers 2004), and (iii) 

direct in situ measurements with sediment traps or other sensors (Graham and Manning 2007; 

Kozerski 2002). In total, 13 values were obtained for the parameter (Table 3.2). When more 

than one value of the settling velocity was found in each paper or each different experimental 

and measurement method, their mean values were taken in order to give an equivalent weight to 

each source of information.  

 

Table 3.2: Database of experimental and in-situ measurement for the settling velocity of particles 

Reference Settling velocity of particles 

– Wc (m d-1) 

Particle size  (μg) Experimental method 

 

Beaulieu et al. 

(2005) 

a. 11.23 (rough estimate) 

 

b. 25.92 (rough estimate at flow 

speed 3 cm s-1) 

 

No data in this study, but 

a range 1 – 100 is cited 

from Archambault et al. 

(2003) which made 

similar flume 

experiments  

Two types of flume experiments considering 

clay/algal flocculation  

a. Straight-channel 17 m flume experiment 

(without flow speed) 

b.  Racetrack flume experiment (with flow 

speed) 

Blom and Aalderink 

(1998) 

a. Not estimated because of 

resuspension conditions 

b. Mean value 19 [range: 13-26] 

 a. Flume experiment with natural sediments 

from Lake Ketel (The Netherlands) – A 

stepwise increasing bottom shear stress was 

applied. 

b. Six hourly in situ monitoring of SPM 

concentrations over 1 week 

Ciffroy et al. (2000) 34.56, 25.92, 25.92, and 8.64 

(These values are used only for  

calculation of the site-specific 

PDF ) 

 Measurements of SPM vertical gradients and 

application of the Rouse profile theory (The 

Seine river, France) 

Curran et al. (2007) 

 

15.5 

 

 Estimation of particle settling velocity by the 

measurement of particle mass distributions 

using an in situ column tripod equipped with 

floc camera, video camera, and laser 

scatterometer (Gulf of Lions, France) 

De Jesus Mendes et 

al. (2007) 

Mean value 13.25 [range: 

12.96-13.82] 

28 - 213 Measurement of the settling velocity of 

sampled organo-mineral aggregates in a 

container maintained under in situ 

temperatures and using a settling cylinder with 
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a video camera (sampling place: Setùbal 

Canyon, Portugese west continental margin) 

El Ganaoui et al. 

(2004) 

a.  Mean value: 2.43 [range: 

0.99-3.89] 

b.  Mean value: 5.76 [range: 

4.32-7.78] 

 Flume experiment with sediments from three 

stations of the Rhône river and the Gulf of 

Lion (France) – Two-class model with 

a. easily erodable particles (fluff layer) 

b. classical cohesive particles  

Fettweis (2008) Mean value 6.45[range: 

0.26-17.28*1] 

44 - 160 Estimation of the excess density and the 

settling velocity of mud flocs by measurement 

using an optical sensor, SPM siltration and 

laser scatterometer (Belgian near-shore zone) 

Graham  

and Manning (2007) 

Mean value 47.52 [range: 0.34 

-290.3] 

 

20 - 1265 Flume experiments with macrophytes - 

Measurements of full spectral floc size and 

particle settling velocity variability using floc 

camera  

Hill et al. (2000) Mean values 7.43 [range: 5.18- 

8.64*2]  

370 ± 100 (mean and 

standard deviation) 

Estimation of the effective settling velocity by 

along-shelf measurements of water salinity 

and sediment concentration within t Niskin 

bottles and by point measurements of plume 

velocity  (sampling place: Eel river mouth 

and along-shore points, California, USA) 

Kozerski (2002) 4.3  Use of plate sediment traps deployed in the 

Spree river and evaluation of trapping rates (in 

gDW m-2 d-1)  

Luck (2001) 1  Long-term monitoring of SPM and calibration 

of a hydro-sedimentological model (The Loire 

river, France) 

Voulgaris and 

Meyers (2004) 

Mean value 23.62[range: 

8.64-31.97] 

25 - 75 In situ measurements of SPM concentration 

and particle-settling velocity variability using 

laser scatterometer, optical sensors, and 

Doppler velocimeter (Bly Creek, South 

Carolina, USA) 

*1: Five mean tidal values with relatively low standard deviation (  0.015 – 0.18) were chosen and averaged 

*2: The five effective settling velocities were chosen and averaged, which are significantly different from zero at the 

95% confidence interval. 
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In many cases, the parametric PDFs have been derived only from measurements, even if they 

are scarce and often contain measurement errors, for the reason that measurements can give 

„real‟ values in contrast to the „estimated‟ values obtained from theoretical considerations. 

However, when the measurement information is poor, the variation that measurements contain 

may not cover the potential variation seen under natural conditions. The settling velocity 

measured in the considered literature is associated with the following ranges of particle size (in 

diameter): (i) 28 to 213 m (De Jesus Mendes et al. 2007), (ii) 44 to 160 m (Fettweis 2008), 

(iii) 20 to 1265 m (Graham and Manning 2007), (iv) 370  10 m (mean and standard 

deviation) (Hill et al. 2000), and (v) 20 to 75 m (Voulgaris and Meyers 2004). These ranges of 

particle size are higher than the range we assigned, 1 to 63 m, for estimating a theoretical prior 

PDF. Considering that the settling velocity generally increases with increasing particle size, the 

settling velocity measured under conditions with the particle sizes described above probably 

takes the higher range of values than that of the theoretical values. It is thus important to 

combine both the theoretical information and the measurements in order to allow coverage of 

non-measured situations, i.e. to take into account the potential variation of parameter values as 

much as possible. 

A Bayesian approach to combine the theoretical and measurement information 

A Bayesian approach was selected to combine the two sources of information because it is well 

adapted to build a PDF when theoretical prior knowledge is available and when only a limited 

set of measurements can be collected for a parameter. This approach calculates the posterior 

distribution by assuming a log-normal measurement model with unknown parameters µ and ζ
2
 

(representing the mean and variance of logarithmic data, respectively), knowing a prior 

distribution (here derived from Stokes‟ law) and given the measurements (Data) of the 

parameter. According to Bayes‟ theorem, the posterior PDF is given by: 

    ζ        
          ζ       ζ  

       
   (3.2)               

On the right side of Equation (3.2), the parameter p(Data│µ, ζ
2
), also known as the data 

likelihood, is the probability of observing the data vector conditional on the parameter vector µ, 

ζ
2
). The function pµ, ζ

2
) does not involve the data vector; it represents the uncertainty of the 

parameter vector µ, ζ
2
) before data are observed and is called the prior distribution of µ, ζ

2
). 

The denominator is a function of „Data‟ which is observed and is completely known. In 

practical calculations, all constant factors can be ignored and thus Bayes‟ theorem can be 

re-written using proportionality as:  

                                    (3.3)                 
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This theorem updates a given prior distribution with information contained in measurements 

and gives a posterior distribution which corresponds to the required PDFs. The successive steps 

of the Bayesian approach are illustrated in the next sections. 

Derivation of a generic PDF of the settling velocity of particles by a Bayesian approach  

The following procedure was applied to the settling velocity of particles (hereafter Wc) in order 

to build its posterior distribution. A theoretical prior PDF for Wc estimated by Stokes‟ law can 

be described as                   
   where N denotes normal distribution, and µFC and    

  

represent respectively the logarithmic mean and variance of the theoretical prior PDF. In our 

approach, these parameters are regarded as the mean and variance of a „fictional‟ sample from a 

normal distribution, and used to provide a priori information for both the logarithmic mean µWc 

and variance    
 of Wc. In general, the prior distribution obtained from such definite 

information is called informative prior. Using the information of µFC and    
 , the prior 

distribution for µWc is expressed as          
     where N indicates a normal distribution 

with mean µFC and variance    
   . On the other hand, the prior distribution of    

  is 

expressed as          
     

             where         denotes the Chi square 

distribution with n-1 degrees of freedom. In this approach, n is defined as the fictional number 

of observations and given by the actual number of measurement data (i.e. n = 13) in order to 

give an equivalent weight („belief‟) to both the theoretical and measurement information of Wc 

for calculation of its posterior distribution. The reason to give them an equivalent weight is that 

they can potentially cover different ranges of parameter values, and there is no rationale to 

evaluate differentially the qualities of the two sets of information. 

 

In other words, the a priori knowledge of the distribution from which each value of Wc  is 

assumed to be drawn is represented by a normal distribution centered around the sample mean 

and scaled by the number of measurements, and the distribution from which each value of 2
Wc  

is assumed to be drawn is a Scaled Inverse Chi Square distribution centered around the sample 

variance and with n-1 degrees of freedom.   

 

Bayes‟ theorem (Equation (3.3)) incorporating the collected dataset and the prior distributions 

       
and      

   defines the joint (i.e. two-dimensional) posterior distribution 

         
         of µWc 

and    
 , where ln(y) denotes the natural logarithm of the dataset 

(measurements). Simulation from this distribution was performed using the Gibbs Sampler 

algorithm (Gelfand et al. 1990) programmed in MATLAB using BABAR
®
 software 

(www.facilia.se). Briefly, the algorithm draws µWc and    
  from their two-dimensional 

posterior distribution by drawing iteratively from the one-dimensional conditional posterior 
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distribution          
          and      

               respectively, until the sampling 

reaches convergence.  

 

Given draws of     
 and    

   
, the posterior predicted distribution of Wc was then simulated by 

drawing each value of Wc
k

 k=1,…,n (n = the number of samples: 50,000 in the present study) 

from the log-normal distribution LN(   
     

   
) where each    

  and    
   

 is taken as the kth 

value obtained from the joint posterior distribution          
         . 

Derivation of a site-specific PDF of the settling velocity of particles by a Bayesian approach 

Since the generic PDF of Wc was estimated updating the theoretical prior PDF with the 

aggregation of measurement data which represents a „generic‟ parametric variation seen among 

differing natural conditions,  the uncertainty contained in the generic PDF tends to be high. 

Due to the potentially high uncertainty, the generic information of the parameter can be suitable 

for modelling studies dealing with a generic (regional or continental) scenario but not for 

modelling studies dealing with a site-specific (local) scenario. Therefore, in our study, a 

site-specific PDF of Wc was derived utilizing knowledge of the generic PDF and site-specific 

measurements, aiming at observing the effect on the uncertainty contained in the generic PDF. 

The Bayesian approach updated the generic PDF which is regarded as prior information with 

site-specific measurements of the parameter, and estimated a site-specific PDF as a posterior 

distribution. 

 

We selected a different way for prior setting in the Bayesian approach to emphasise our „belief‟ 

in the information from site-specific measurements containing substantive information 

associated with a specific location as opposed to the a priori knowledge given by the generic 

PDF potentially containing high variation associated with multiple locations. In this method, the 

logarithmic mean µge and logarithmic variance    
 of the generic PDF give a priori information 

as an informative prior only for the logarithmic mean µWc of Wc. Furthermore, the a priori 

knowledge of the distribution from which each value of µWc is assumed to be drawn can be 

represented by a normal distribution with hyper-parameters µ0 and   
  (i.e.,             

  ). 

Under the interpretation that the generic PDF is representing a priori knowledge of probable 

values of µWc, the hyper-parameters were chosen as µ0 = µge
 
and   

     
  

 
For the logarithmic 

variance     
 of Wc, on the other hand, no such definite a priori knowledge can be extracted 

from the theoretical prior PDF. One non-informative prior is obtained by assigning an 

unbounded uniform prior distribution for ζWc on logarithmic scale. That is 

                                     which can be shown to be equal to using       

     in Equation (3). This distribution is sometimes used as a non-informative prior for the 

variance parameter of normal models when the data likelihood provides substantive information 
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(Detailed description is in Gelman et al. 2004). Subsequent procedures to estimate the posterior 

predicted distribution of Wc were carried out in the same manner.  

 

Local measurements of Wc were taken from Ciffroy et al (2000). In the study, the local 

measurements were monitored at four sampling points located upstream and downstream in the 

Seine River in France. The four best estimates of the parameter were 34.6, 25.9, 25.9 and 8.6 m 

d
-1

 for each sampling point. 

3.1.3 Results and Discussion 

A theoretical prior distribution for the settling velocity of particles 

The generation of a random sample from the log-normal distribution of the particle diameter d 

was conducted by a Latin Hypercube Sampling (LHS) scheme because it gives better coverage 

of the parameter space than random Monte Carlo sampling (Helton 1993). The forecast values 

of Wc were generated by 50,000 runs. Their range meets the condition of a laminar-flow regime 

which is described by the Reynolds number Re < 1. A log-normal distribution was fitted to 

forecast values of Wc and chosen as a theoretical prior PDF of Wc where 

                         
       . On the normal scale, these µFC and     

 can be converted 

into geometric mean (GM) and geometric standard deviation (GSD) 

as                     
      . The given GM and GSD representing the theoretical 

prior PDF on a normal scale are 4 and 3.7, respectively. The corresponding values for the 13 

measurements are 9.3 and 2.9. They were calculated as                        

              , where SD and y denote standard deviation and measurements, respectively. 

From their GM values, the value of measurements is more than twice as high as that of the 

theoretical prior PDF.  

A generic PDF of the settling velocity of particles (1
st
 simulation) 

The joint (two-dimensional) posterior distribution of µWc and    
  for settling velocity of 

particles (Wc) was defined by Bayes‟ equation which combines the obtained prior distributions 

for µWc and    
  and experimental data for Wc. Values from the posterior distribution for 

50,000 samples were generated by the Gibbs sampling method. Mean values of simulated 

posterior estimates of µWc and    
  are 1.81 and 1.71, respectively. The prediction of posterior 

estimates of Wc was performed based on both µWc and    
  posterior distributions as described 

in the previous section.  

 

The GM and GSD representing the distribution of posterior predicted samples for Wc were 

calculated as                                                        , where 
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        denotes predicted samples of Wc. Note that the distribution of sampled Wc estimates 

approximately follows log-normality. Table 3.3 presents all the geometric means (GMs) and 

geometric standard deviations (GSDs) of the distributions for posterior predicted samples, the 

theoretical prior and the measurements.  

A site-specific PDF of the settling velocity of particles (2
nd

 simulation) 

The generic PDF estimated as a posterior distribution was used with the logarithmic form, µge 

and    
 , in the simulation procedure, and then updated with site-specific measurement data in 

order to calculate a site-specific PDF for Wc. Mean values of simulated posterior estimates of 

µWc and    
 are 2.94 and 1.21, respectively. The distributions of posterior predicted samples, 

prior given by the generic PDF and site-specific measurements for Wc are presented as their GM 

and GSD values (Table 3.3). 

 

Table 3.3: Statistical descriptors of prior PDFs, data sets and posterior PDFs for Wc 

 Geometric 

mean (GM) 

(m d
-1

) 

Geometric 

standard 

deviation (GSD) 

(m d
-1

) 

Coefficient 

of variation 

(CV) 

1
st
 simulation for estimating a generic PDF 

Theoretical prior PDF (log-normal) 4 3.7 0.94 

Measurements 9.3 2.9 0.48 

Posterior distribution (log-normal)
 
: (Generic PDF) 6.1 3.8 0.74 

2
nd

 simulation for estimating a site-specific PDF 

Generic PDF as prior distribution 6.1 3.8 0.74 

Site-specific measurements in Seine River (France) 21.2 1.8 0.19 

Posterior distribution (log-normal) : (Site-specific 

PDF) 

19 3 0.37 

 

Comparison reveals that the GMs of both generic and site-specific PDFs of Wc (Table 3.3) take 

values somewhere between the values of their corresponding prior distributions and the 

measurements. In the simulation for the generic PDF (1
st
 simulation), the absolute difference 

between GMs of the prior distribution and of the posterior distribution is 2.1 whereas the 

difference between GMs of the measurements and of the posterior distribution is 3.2. For 

simulation of the site-specific PDF (2
nd

 simulation), on the other hand, the corresponding 

absolute differences are 12.9 and 2.2. From the 2
nd

 simulation, the GM of the posterior 

distribution was simulated much more closely to that of the measurements than the prior 

distribution, whereas GM of the posterior distribution in the 1
st
 simulation was estimated 
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roughly in the middle of GMs for the global measurements and the theoretical prior distribution. 

This is because in the 1
st
 simulation, the prior knowledge obtained from Bayes‟ theory 

contributed to deriving the posterior distribution almost as significantly as the measurement 

information. In the 2
nd

 simulation, however, the prior knowledge coming from the generic PDF 

is not weighted with the number of measurements and thus the contribution for calculating the 

posterior distribution was relatively weighted toward the site-specific measurement information. 

All the distributions were drawn based on their GM and GSD values (Figs. 3.1a and 3.1b) to 

visualize how the distributions are located. 

 

Figure 3.1a: Distributions of posterior predicted samples, theoretical samples and measurements (for Wc 

1
st 

simulation for estimating a generic PDF) 

 

Figure 3.1b: Distributions of posterior predicted samples, theoretical samples and measurements (for Wc 

2
nd

 simulation for estimating a site-specific PDF) 
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The coefficient of variation (CV) was used to compare the degree of variation that each 

distribution contains. This statistic is generally defined as the ratio of the standard deviation to 

the mean; thus in this study, the CV was calculated in the form of the ratio of the logarithmic 

standard deviation (ζ = ln(GSD)) to the logarithmic mean (µ = ln(GM)) for each distribution 

(Table 3.3). Comparison of CVs shows the variations of both generic and site-specific PDFs of 

Wc become lower than those of the corresponding prior distributions because of the 

incorporation of measurement information which contains less variation than prior distributions. 

Especially, in the 2
nd

 simulation, the variation was drastically reduced from 0.74 in the prior 

distribution to 0.37 in the posterior distribution. This is because the incorporated site-specific 

measurements have much lower variation (0.19), i.e., give much more informative knowledge 

on Wc, compared with the prior distribution, and also because the Bayes‟ approach in the 2
nd

 

simulation gave more importance to the measurement information than to the prior information; 

thus the posterior distribution can get close to the measurement information in terms not only of 

its GM but also its variation. The posterior distribution comes close to the measurement 

distribution (Figure 3.1b), while being away from the prior distribution. In the 1
st
 simulation, 

variation for the posterior distribution was estimated almost in the middle of two variations for 

prior distribution and measurement data, as seen in the case of their GMs (Figure 3.1a).  

3.1.4 Conclusion 

The proposed mechanistic equations consist of parameters having physical meaning and 

represent time-dependent (dynamic) sediment behavior. Thus these equations characterize the 

physical and natural phenomena at the water-sediment interface better than the current 

multimedia-modelling scheme assuming steady-state sediment behavior, and can be used in a 

new multimedia-modelling scheme. When the parameters are set probabilistically in the form of 

PDF, the mechanistic equations can provide a range of output taking into account parametric 

uncertainties. In order to grasp realistically the sediment behavior by modelling, it is important 

to consider both the temporal variation of sediment behavior by mechanistic expressions and the 

parametric uncertainties by PDFs.   

Our study focused on the derivation of the parametric uncertainty of the settling velocity of 

particles in the form of PDF. A Bayesian method was found to be useful to derive updated 

probabilistic density functions (PDFs) of the investigated parameter Wc, by integrating both 

their theoretical and measured information, when neither information is assumed to cover all the 

potential variation that the parameter may contain. Therefore, the simulated posterior 

distributions of Wc can be assumed to be more comprehensive PDFs than either prior or 

measurement information. 
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The generic or site-specific PDF of Wc can be used in different ways, depending on the 

modelling scheme to be chosen. When a modelling study is conducted on a large target area 

with a continental or regional scenario, the generic PDF can be used because it contains a 

relatively high and „comprehensive‟ parametric uncertainty derived from the general theoretical 

assumption and also from global measurement information. On the other hand, when a small 

area with a local scenario is considered, i.e. the Seine River in our case, the site-specific PDF 

can be more practical than the generic PDF because it is more specialized for local measurement 

information than for generic prior information. 

 

In the present study, a Bayesian approach was used to derive posterior generic and site-specific 

PDFs for the settling velocity of particles. For further research, it will be necessary to consider 

all the parametric uncertainty contained in the critical shear stress of deposition/resuspension 

and in the erosion rate, which are the parameters associated with the dynamic 

deposition/resuspension equations. Through the literature review, some measurements of those 

parameters have been located. Thus, potentially, the Bayesian approach is applicable to estimate 

posterior PDFs of those parameters if theoretical models for those parameters are established.  

 

3.2 Regression approaches to derive generic and fish group-specific 

probability density functions of bioconcentration factors for metals 

3.2.1 Introduction 

The bioconcentration factor (BCF), especially that for fish, is a parameter commonly considered 

in environmental multi-media models dedicated to environmental and health risk assessments of 

chemicals, such as Caltox (Mckone 1993a), QWASI (Mackay et al. 1983; Di Guardo et al. 

2006; Warren et al. 2007), and Trim.Fate (U.S.EPA 2002). It represents the ratio, at 

equilibrium, of a chemical concentration in an organism to the concentration in water and is 

used in single-compartment models. Bioconcentration factor describes the accumulation of a 

given chemical in organisms arising by uptake from water only and is generally determined 

under laboratory conditions, whereas the Bioaccumulation Factor (BAF) represents 

accumulation from both water and diet and is derived from in situ observations.  

 

The BCF concept was originally developed for hydrophobic organic substances and several 

quantitative structure-activity relationship (QSAR) techniques were proposed to predict BCF 

from chemical descriptors of hydrophobicity such as octanol-water partition coefficients (Barber 

2003; Schüürmann et al. 2007; Zhao et al. 2008). Simple passive diffusion across the lipid 

biomembranes is believed to be the key process for the accumulation of neutral hydrophobic 
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substances in biota, which ensures that BCF is independent of exposure concentrations (McGeer 

et al. 2003). In the case of metals, however, the assumption of BCF being independent of 

exposure concentrations was found to be erroneous. As a result of complex physiological 

processes such as sequestration, detoxification, storage and branchial elimination, biota are 

actively able to regulate metal bioconcentration via dynamic reaction systems that respond to 

environmental loading and maintain homeostasis (Hamilton and Mehrle 1986; Chapman et al. 

1996). Based on the factors influencing metal uptake and accumulation, it can be assumed that 

BCF values for metals are not independent of exposure. In addition, DeForest et al. (2007) 

hypothesized the trend by which metal uptake increases at lower exposure concentrations, 

according to the basis that organisms actively uptake essential metals at low concentrations to 

satisfy metabolic requirements. Non-essential metals would also be regulated because the 

mechanisms for regulating essential metals are not metal-specific (Phillips and Rainbow 1989).  

 

The variation of BCF values for metals (Cd, Cu, Pb, Hg, Zn, As, etc) reported in the literature 

(McGeer et al. 2003; DeForest et al. 2007) was found to range over several orders of magnitude. 

The linear regression analysis in those studies observed inverse relationships between BCF 

values and aquatic-exposure concentrations for various aquatic species and metals. The United 

States Environmental Protection Agency (U.S.EPA) underlined that the current science does not 

support the use of a single, generic BCF or BAF value as an indicator of metal hazard for 

regulatory applications and made some recommendations to risk assessors for alternative 

approaches for using the BCF concept (U.S.EPA 2007). In particular, the U.S.EPA suggested 

that risk assessors use regression relationships between tissue and exposure concentrations 

instead of single values such as mean or median values. Besides, we can presume that the trend 

in BCF values significantly depends on fish species. For example, McGeer et al. (2003) 

observed that the slopes of the BCF-exposure regression line vary among different fish species 

for each metal. Therefore, it can be a practical approach for the risk assessment relevant for the 

specific investigation site and fish group to use an independent BCF for each specific fish group, 

i.e., fish family or fish species. 

 

When referring to risk assessment, one must distinguish between screening level assessments 

where generic and/or worst-case scenarios can be considered and detailed level assessments 

where more realistic scenarios should be taken into account. Concerning detailed level 

assessments, the importance of probabilistic techniques, such as a Monte Carlo analysis, to the 

realistic characterization of environmental risk has been well recognized, especially in the 

studies using environmental simulation models (Solomon et al. 2000; Dubus et al. 2003; 

Gutiérrez et al. 2009). In the process of stochastic approaches by the simulation models, 



66 
 

assigning appropriate distributions to input parameters, e.g., the BCF for metals, is a key step in 

probabilistic analyses as it influences the final results of simulation, i.e. the potential levels of 

environmental risk for target substances. The distributions assigned to input variables can be 

described by probability density function (PDF). When the uncertainty contained in the 

BCF-exposure regression relationship is statistically analyzed, the PDF of BCF can be derived 

at given exposure metal concentrations. In modelling studies dedicated to the environmental and 

health risk assessment, the PDF will be used as an input to the probability analysis (such as a 

Monte Carlo analysis) conducted in the model simulation. Then the result of the model 

simulation will be expressed by an integrated distribution of potential risk levels for the metal 

and allow risk assessors to quantify the uncertainty associated with model prediction and also 

conduct the sensitivity analysis to know how much the parameter (BCF) will influence the 

result such as the potential risk level of the metal.    

 

The objectives of the present study were, then, to examine the regression model that correlates 

collected data of fish BCF and the corresponding exposure concentrations for each metal; and to 

derive the PDF of fish BCF for each metal at a given exposure level in order to test how much 

the data variation can be reduced by taking into account the uncertainty contained in the 

regression model. To build the regression model and derive the PDF of fish BCF, we applied 

two different statistical approaches: ordinary regression analysis was chosen to estimate the 

regression model which does not consider the variation of data among different fish groups; and 

hierarchical Bayesian regression analysis was selected to estimate fish group-specific regression 

models which are calculated independently for different fish groups, taking into account the 

variation of data among the different groups. 

3.2.2 Materials and Methods 

Construction of BCF datasets 

Datasets of fish BCF with metal exposure in fresh water were constructed for Cu, Zn, Cd, Pb 

and As independently. For the purpose of this study, As is included as a metal in convenience 

although it is a metalloid. Following the process by which McGeer et al. (2003) reviewed data, 

we did not distinguish between BCF and BAF and lumped them for the data collection because 

these two types of data are calculated in an identical manner and considered similarly in the 

regulatory context. The fish BCF database consists of different sources of data. One of the main 

sources is the ECOTOX Database built on the website of U.S.EPA 

(http://cfpub.epa.gov/ecotox). The data in the source were filtered by several search parameters 

(e.g. chemical, taxonomic group, endpoints, exposure medium) to customize our final ECOTOX 

dataset. The endpoints selected on sorting were BCF, BAF, and BCDF (dry weight basis). To 
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harmonize the data of BCDF into BCF and BAF, the original values of BCDF were divided by a 

conversion factor. The factor contains potential variation among different fish species and the 

variation should be treated carefully. Nevertheless, in the present study the factor 5 was chosen 

as a representative value according to the approach used in McGeer et al. (2003) where BCDF 

values were multiplied by a conversion ratio 0.2 (for fish) and also the description in Burger et 

al. (2003). 

 

The other main source is the BCF dataset established by McGeer et al. (2003). They reviewed a 

wide range of literature, evaluating the data suitability in such a way that both exposure and 

whole-body metal levels should be measured by accepted analytical techniques and an exposure 

assessment based on standard BCF test methodologies. The rest of the BCF data come from 

individual papers (Balasubramanian et al. 1995; De Conto Cinier et al. 1999; Wepener et al. 

2000; Coetzee et al. 2002; Velcheva 2002; Huang et al. 2003; Vinot and Pihan 2005; Arain et 

al. 2008; Shah et al. 2009; Vicente-Martorell et al. 2009). If the literature did not contain 

calculated BCF values, these were estimated mainly by the fish-body concentration divided by 

exposure data. 

 

All the collected data were filtered by the response sites in the fish body where metals were 

accumulated. Conventionally, the chemical concentration has been expressed on a whole body 

basis and McGeer et al. (2003) compiled metal BCF data for a variety of aquatic organisms on 

this basis. For these reasons, we took the BCF data for fish whole body in the cases of Cd, Cu, 

and Zn. However, for Pb and As, due to scarce data for the fish whole body, those data were 

supplemented with the BCF data for the fish muscle which is assumed to be the main edible part 

for the humans and thus the most relevant for human health risk assessment (HHRA). In terms 

of environmental risk assessment (ERA), those two types of data need to be treated separately 

for their data analyses. In that sense, it can be interpreted that the analyses made for Pb and As 

are more relevant for HHRA rather than for ERA. In addition, the collected data were filtered by 

the exposure duration of the experiment. In the present study, the BCF data with more than 28 d 

of experimental exposure are regarded as acceptable because 28 d can be needed to reach the 

equilibrium of the metal concentration in fish (McGeer et al. 2003). The metal concentrations of 

fish sampled from the natural environment and accounted for as BAF are assumed to be at 

equilibrium. 

 

The total numbers of BCF-exposure concentration data used for the analyses in the present 

study are 89, 40, 72, 31 and 25 for Cd, Cu, Zn, Pb and As, respectively. The variability in the 

collected BCF data for each metal is presented by full range (between minimum and maximum 
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values) and 90% interval (between the values at 5th percentile and at 95th percentile) in Table 

3.4. It should be noted that certain limitations in data validity for Pb and As exist because the 

BCF-exposure concentration data for both fish whole body and fish muscle are combined for 

regression analysis under the rough assumption that there is no significant difference between 

the BCF – exposure correlations for fish whole body and fish muscle. The constructed dataset 

for each metal was divided into different fish family groups. For example, the data originally 

collected for the fish species such as Salvelinus fontinalis and Oncorhynchus mykiss were 

categorized into the same fish family group, Salmonidae. The fish species such as Lepomis 

macrochirus, Lepomis gulosus, and Micropterus salmonides were categorized together into the 

fish family group, Centrarchidae. 

 

Table 3.4: Orders of magnitude (by full range and 90% interval) for the collected data of bioconcentration 

factor (BCF) for each metal 

 Orders of magnitude 

(full range) 

Orders of magnitude 

(90% interval ) 

Cd 4.70 3.48 

Cu 1.89 1.69 

Zn 3.58 2.39 

Pb 3.87 3.42 

As 4.66 3.74 

 

Ordinary regression analysis  

According to the findings of an inverse relationship between the collected data of BCF for fish 

and corresponding metal exposure (McGeer et al. 2003; DeForest et al. 2007), ordinary 

regression analysis was chosen to correlate BCF values with exposure concentrations in the 

dataset and to estimate the regression coefficients and residual error. In this analysis, all the data 

are jointly analyzed without considering the grouping of the data by fish families. The natural 

logarithms of both the BCF and the exposure concentration (hereafter ln(BCF) and ln(Cw), 

respectively) are set as the response variable and explanatory variable, respectively. The 

ordinary regression model is defined as follows, 

                            (3.4) 

                   

where α and β are the regression coefficients (intercept and slope, respectively) of the regression 

line. Cwi 
is the total metal concentration in water (µg/L) for data i and resSD 

is residual standard 
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deviation. The linearity and normality of Equation (3.4) were analyzed by residual and 

normality plots. 

Estimation of a generic PDF of BCF from the ordinary regression analysis 

In the present study, as an example, an exposure concentration of each metal was chosen to test 

how much the variation contained originally in collected BCF data can be reduced when the 

correlation between the BCF and metal exposure is taken into account by the regression 

analysis. The selection of the exposure concentration was made by analyzing the data of 

ecotoxicological chronic NOECs (No-Observed Effect Concentrations) for several fish species. 

The data were collected from three databases: the ECOTOX, EAT (ECETOC aquatic toxicity: 

http://www.ecetoc.org/), and RIVM databases (RIVM 1999). The variability contained in the 

NOECs data were statistically analyzed by estimating a chronic Species Sensitivity Distribution 

(SSD) for each metal according to the method described in Duboudin et al. (2004) and Brock et 

al. (2009). In this method, a log-normal distribution was fitted to the NOECs data for each metal 

and confidence limits of the SSD were derived from bootstrap sampling. From the confidence 

limits of the SSD, the best estimate SSD (50% confidence) was chosen and the exposure 

concentration used in our study was taken from the hazardous concentration 5% (HC5%) defined 

in the best estimate SSD because the concentration is assumed to be low-level contamination in 

water and so will not strongly influence the fish behaviour and their bioaccumulation. By 

definition, this HC5% 
could affect 5% of fish species, i.e. 95% of the fish species could be 

protected with 50% confidence. The HC5% 
gained from the best estimate SSDs for metals are 

0.55, 1.0, 17.3, 18.8 and 98.6 µg/L
 
for Cd, Cu, Zn, Pb and As, respectively. 

 

A generic PDF of BCF at the HC5% 
defined for each metal was estimated based on the 

prediction interval of ln(BCF). The 90% prediction interval at the HC5% 
was estimated by the 

equation as follows;  

                                             
 

 
 

                    
 

                     
  

   
        

(3.5) 

where t(0.95, n - 2) denotes the 95th percentile of the Student‟s t-distribution with n - 2  

degrees of freedom. n is the number of data points (e.g., n = 89 for Cd), and ln(Cwall) is the 

average value of all the logarithmic Cwi i data points. The rationale to use a prediction interval 

estimated from Equation (3.5) rather than use the interval gained from Equation (3.4) is that we 

need to consider the sources of uncertainty in α, β
 
and resSD 

for predicting the response variable 

ln(BCF). 

Hierarchical Bayesian regression analysis 
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Using the same dataset as in ordinary regression analysis, hierarchical Bayesian regression 

analysis was used to derive the PDFs for different fish groups. Unlike analyzing all the 

BCF–exposure dataset together and estimating only a set of the coefficients α and β, the 

hierarchical Bayesian regression approach is capable of estimating separately the sets of 

coefficients αj, βj
 

corresponding to different fish family groups j (hereafter fish groups); 

moreover, it also permits them to be partially connected to each other with regard to the 

variability between the fish groups and the individual data size within each fish group. In this 

way, the coefficients for fish groups with a small number of observations can be affected to a 

higher extent by the data in other groups. On the other hand, the coefficients for fish groups 

with higher precision are dominated by their own observations. The hierarchical structure for 

data i within fish groups j is defined in Equation (3.6), 

                                     (3.6) 

                   

                         

     
  

     
       

       
   

The intercept αj
 
and slope βj

 
for fish groups j

 
are modelled as independent outcomes of a 

multivariate normal population distribution (MV in Equation (3.6)) which functions as first 

level prior distribution thereby interconnecting the fish groups. The hyper parameter µ
 

is 

defined in terms of the population intercept µα 
and slope µβ 

while ∑ models the variability 

between the groups for the intercept and slope and also the correlation between them.  

 

To make the model in Equation (3.6) fully specified, top-level prior distributions must also be 

assigned to the unknown hyper parameters. Because no prior knowledge was available at this 

level, non-informative distributions were required. The unconstrained parameters µα 
and µβ 

were assigned uniform distributions, ζα 
and ζβ 

were assigned uniform distributions bounded 

below by zero, and the residual standard deviation resSD a uniform distribution on log scale. The 

correlation ρ
 
was assigned a uniform distribution with bounds (-1, 1). These assigned prior 

distributions correspond to the ones used for this model in Gelman and Hill (2007). 

The posterior distribution 

The joint likelihood of the unknown parameters from the fish groups conditioned on observed 

data is given (due to the independency of the groups and of outcomes within them) by 

multiplication of the normal probability density functions (fN) of each group and of each nj data 

within each group j = 1,….,J
 
according to Equation (3.7). 
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     (3.7)  

where L stands for the likelihood function. The joint population distribution of the coefficients 

αj, βj, j = 1,…,J
 
is given by multiplication of J multivariate normal distribution functions 

according to Equation (3.8). 

               
 
                (3.8) 

The joint posterior is given by multiplication of the joint likelihood in Equation (3.7), the 

population distribution in Equation (3.8) and the prior distributions of resSD, µ and ∑. 

                                                                        

                     (3.9) 

The WinBUGS software package (freely available at http://www.mrc-bsu.com.ac.uk/bugs/) was 

used to draw inferences on unknown parameters in the model in Equation (3.6) by sampling 

from the joint posterior in Equation (3.9). WinBUGS requires proper prior distributions (i.e. 

distributions with finite integrals) and for this reason finite bounds were used for the uniform 

prior distributions of the top level parameters. The bounds were chosen to be large enough to 

include the probable values of the parameters. To assure that these arbitrary bounds did not 

seriously influence the results, the bounds were also assessed and made even wider if needed 

after obtaining the results. 

Estimation of species-specific PDFs of BCF from hierarchical Bayesian regression analysis 

Species-specific PDFs of BCF were estimated at the HC5% defined previously. Fish 

group-specific PDFs of BCF at the HC5% can be estimated by the following process. Ten 

thousand samples of αj
 
and βj are drawn randomly from their posterior distributions. The 

distribution of ln(BCF) at HC5% was simulated by drawing each value of        
     

         
 

from the normal distribution     
    

               
  

 
where 

each  
    

       
 is taken as kth sampled value taken from the posterior distribution. 

3.2.3 Results and Discussion 

Ordinary regression analysis  

Table 2 presents 90% confidence intervals of coefficients α, β gained from the ordinary 

regression analysis of the full dataset for each metal together with the residual standard 

deviation (resSD) and the coefficient of determination R
2
. Figure 3.2 visualizes the regression 

line made for all the data points with the boundaries of 90% prediction interval. In Table 3.5, 

the highest R
2
 seen for Zn (0.85) indicates that the regression model for Zn have the potential to 

estimate more accurately the BCF at a certain exposure concentration, compared with the 

http://www.mrc-bsu.com.ac.uk/bugs/
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regression models for other metals. In the next section, the regression models for metals are 

compared at given exposure concentrations (HC5%). 
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Figure 3.2: The regression line made for all the dataset with the boundaries of 90% prediction interval for 

each metal 

 

Table 3.5: 90% intervals and means of coefficients α and β, residual standard deviation (resSD) and the 

coefficient of determination (R
2
) for each metal 

 

 

 

 

 

 

Estimation of a generic PDF of BCF from the ordinary regression analysis 

The 90% prediction interval of ln(BCF) at the HC5% was transformed into that of a 

normal-scaled BCF (Table 3.6) with the orders of magnitude over the interval and the geometric 

mean (GM) and geometric standard deviation (GSD) which represent the PDF of BCF. The 

smallest GSD and 90% interval are seen in the BCF distribution for Zn compared to the GSD 

for other metals, which reflects the highest accuracy of the regression model estimated for Zn. 

Compared with the orders of magnitude (90% interval) that the data of BCF range over, those of 

90% prediction interval of BCF have the narrower range at the given exposure concentration. 

The relative differences between them for Cd, Cu, Zn, Pb and As are 0.28, 0.34, 0.56, 0.51, and 

0.09, respectively. In the present study, the relative difference was calculated as (data90 – pred90) 

/ data90, where data90 and pred90 indicate 90% interval of data variation and 90% prediction 
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   α  β   

  5% mean 95% 5% mean 95% resSD  R
2  

Cd 4.66 4.99 5.31 -0.62 -0.53 -0.43 1.73  0.49  

Cu 6.23 6.53 6.84 -0.74 -0.62 -0.50 0.74  0.66  

Zn 9.92 10.25 10.59 -0.94 -0.87 -0.79 0.72  0.85  

Pb 4.58 5.20 5.82 -0.98 -0.85 -0.73 1.11 0.81 

As 4.67 6.83 8.98 -1.38 -0.96 -0.54 2.24 0.40 
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interval, respectively. This indicates that, for most of the metals (Cd, Cu, Zn, Pb), when a 

specific exposure concentration of metal is known, the PDFs of the current and future 

observations of BCF can be estimated more informatively, i.e., less uncertainly by using the 

regression models than by directly analyzing BCF data regardless of the corresponding 

exposure concentrations. Such PDFs with less uncertainty can be useful for the probability 

analysis conducted in the modelling studies dedicated to environmental and health risk 

assessment since they can provide accurate model predictions for the potential risk of metals.    

 

Table 3.6: 90% prediction interval (with orders of magnitude for the interval) and generic probability 

density function (PDF) of bioconcentration factor (BCF) at the hazardous concentration 5% (HC5%) for 

each metal  

  

HC5%( g/L) 

 

90% Interval of BCF 

Orders of 

magnitude 

Generic PDF of 

BCF (log normal) 

  5% 95%   GM
b
   GSD

b
 

Cd 0.55 11.1 3627  2.51 (3.48)
a
 201 5.7 

Cu 1 192 2462 1.11 (1.69) 687 2.1 

Zn 17.3 716 8103 1.05 (2.39) 2408 2.1 

Pb 18.8 2.2 101 1.67 (3.42) 14.9 3.1 

As 98.6 0.2 559 3.40 (3.74) 11.2 9.8 

GM and GSD denote geometric mean and geometric standard deviation, respectively. 

a 
The values in bracket are the orders of magnitude (90% interval) for the collected BCF data.   

b 
GM and GSD were calculated as;  

                               

            
 

 
 

                    
 

                    
  

   

  

Hierarchical Bayesian regression analysis 

The posterior estimates of coefficients αj, βj, j = 1,…,J for each metal are presented in the form 

of 90% intervals (Figure 3.3). Table 3.7 shows the names of fish groups corresponding to the 

numbers on the horizontal axis in Figure 3.3 and the number of data points (set of BCF- metal 

exposure data) for each fish family. For each metal, the posterior 90% intervals of coefficients 

αj
 
and βj (Figure 3.3) are found to be much wider than the common intervals of the coefficients 

α and β (Table 3.5). For example, the average posterior 90% intervals of coefficients αj
 
and βj 

over J for Cu are respectively more than 3 and 4 times as wide as the common interval of the 

coefficients α and β. This significant gap between these intervals is because the estimation by 
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hierarchical Bayesian regression analysis takes into account the variability between the 

coefficients of different fish groups. 

 

Table 3.7: Names of fish families and their data points 

           Name of fish family / data points 

N Cd Cu Zn Pb As 

1 Anguillidae / 1 Anguillidae / 1 Atherinopsidae / 1 Anguillidae / 1 Bagridae / 2 

2 Atherinopsidae / 1 Atherinopsidae / 1 Catostomidae / 2 Catostomidae / 1 Cichlidae / 6 

3 Balitoridae / 1 Catostomidae / 1 Centrarchidae / 9 Centrarchidae / 3 Cyprinidae / 11 

4 Catostomidae / 2 Centrarchidae / 4 Clariidae / 3 Channidae / 1 Percichthyidae / 4 

5 Centrarchidae / 26 Clupeidae / 1 Clupeidae / 1 Cichlidae / 2 Soleidae / 1 

6 Cichlidae / 3 Cyprinidae / 2 Cyprinidae / 3 Clariidae / 3 Sparidae / 1 

7 Clariidae / 3 Esocidae / 2 Cyprinodontidae / 11 Cyprinidae / 9  

8 Clupeidae / 1 Gasterosteidae / 3 Esocidae / 1 Esocidae / 1  

9 Cyprinidae / 3 Percidae / 2 Fundulidae / 3 Osteichthyes / 3  

10 Cyprinodontidae / 13 Salmonidae/ 23 Percidae / 2 Percidae / 2  

11 Esocidae / 1  Poeciliidae / 6 Salmonidae / 3  

12 Gasterosteidae / 1  Salmonidae / 30 Soleidae / 1  

13 Percidae / 2   Sparidae / 1  

14 Poeciliidae / 3     

15 Salmonidae / 28     

 

It is shown in this analysis that the coefficients for the fish groups with rich information, i.e., 

more than 10 data points, have narrower posterior intervals than those with poor information, 

i.e., only 1 or 2 data points. For example, in the case of Zn, the ratio of average 90% interval of 

β
 
for the groups with 10 or more data points to the average intervals for the groups with 1 or 2 

data points is 41 %. The ratios for Cd, Cu, Pb and As are 77, 12, 54 and 31%, respectively. For 

Pb, the interval for the group with 9 data points was compared with the average interval for the 

rest of groups with less than 9 data points. These results track the description above about how 

hierarchical Bayesian regression analysis estimates the coefficients for the groups with a poor 

dataset and for those with a rich dataset with high precision. 
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Figure 3.3: Posterior 90% intervals and mean values of coefficients αj and βj (j denotes the number of fish 

family) for each metal. The points in the middle of interval lines indicate mean values. The top and 

bottom in the lines correspond to the values at 95th
 
percentile and 5th percentile, respectively. The 

numbers at horizontal axis in the figure correspond to the numbers given to fish families in Table 3.7. 

 

Estimation of group-specific PDFs of BCF from hierarchical Bayesian regression analysis 

Fish group-specific PDFs of BCF at the HC5% 
were simulated by the process discussed in the 

previous section. Table 3.8 shows the fish group-specific PDFs of BCF for metals with the 90% 

posterior intervals. As seen in the difference of coefficient intervals estimated among fish 

groups, it is found for each metal that the 90 % posterior intervals of BCF estimated for the fish 

groups with more information tend to have narrower ranges than those with less information. 

The average orders of magnitude over the 90% posterior intervals of BCF for different fish 

groups are 2.37, 1.09, 0.93, 1.67 and 2.75 for Cd, Cu, Zn, Pb and As, respectively. The relative 

differences from the 90% interval of BCF data range for Cd, Cu, Zn, Pb and As are 0.32, 0.35, 

0.61, 0.51 and 0.27, respectively. The estimated average 90% posterior intervals are found to be 

almost equal to or narrower than those derived from ordinary regression analysis (Table 3.6) 

although the posterior intervals of the coefficients are found to be much wider than those 

calculated by ordinary regression analysis. The main reason for this lower uncertainty in the 

posterior BCF intervals is that, in this simulation for each metal, estimated values of the residual 

standard deviation (resSD) in Equation (3.6) that accounts for the within-fish-group variation 

were lower than the residual standard deviation given in Equation (3.4) which represents the 

high variation contained in all the data. When looking into the PDF estimated for each fish 

group, the PDFs estimated for some fish groups were found to have low uncertainty, and thus 

can be useful for the probability analysis in order to make accurate model predictions for the 

potential risk of metals. For example, in the cases of Cu and Zn, the orders of magnitude in the 

90% intervals are less than one for two fish groups and ten fish groups, respectively.  
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Table 3.8: 90% prediction interval (with orders of magnitude for the interval) and fish group-specific 

probability density function (PDF) of bioconcentration factor (BCF) at the hazardous concentration 5% 

(HC5%) for each metal 

(1) Cd 

   90% Interval of 

BCF  

Group-specific PDF of BCF (log 

normal) 

N 

Data 

points 5% 95% 

Orders of 

magnitude  GM GSD 

1 1 5.8 1808 2.50 95.6 5.5 

2 1 10.4 2981 2.46 172 5.5 

3 1 6.1 1808 2.47 97.5 5.5 

4 2 6.4 2208 2.54 107 5.5 

5 26 14.4 1636 2.05 159 4.5 

6 3 2.9 1097 2.58 62.2 6.0 

7 3 4.4 1212 2.44 73.7 5.5 

8 1 8.0 1636 2.31 136 5.0 

9 3 6.1 1097 2.25 84.8 5.0 

10 13 65 12088 2.27 796 5.0 

11 1 9.5 2697 2.45 155 5.5 

12 1 8.5 2208 2.41 144 5.5 

13 2 7.2 1480 2.31 103 5.0 

14 3 5.6 1480 2.42 92.8 5.5 

15 28 16.0 1998 2.10 183 4.5 

* 89 11.1 3627 2.51 201 5.7 

GM and GSD denote geometric mean and geometric standard deviation, respectively. 

*The values in the last row present the total data poinnts, the 90% prediction interval of BCF (with orders 

of magnitude for the interval), and the generic PDF of BCF being estimated by ordinary regression 

analysis (see Table 3.6). 

(2) Cu 

  90% Interval of 

BCF  

Group-specific PDF of BCF (log 

normal) 

N 

Data 

points 5% 95% 

Orders of        

magnitude GM GSD 

1 1 156  2303 1.17 639  2.5 

2 1 158  2294 1.16 626  2.7 
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3 1 145  2319 1.20 659  2.6 

4 4 126  2169 1.23 596  2.6 

5 1 109  2156 1.30 578  2.7 

6 2 237  2768 1.07 854  2.2 

7 2 161  2500 1.19 665  2.6 

8 3 204  2340 1.06 742  2.1 

9 2 255  1760 0.84 652  1.8 

10 23 412  1953 0.68 863  1.6 

* 40 192 2462 1.11 687 2.1 

 

(3) Zn 

  

  

90% Interval of 

BCF  

Group-specific PDF of BCF (log 

normal) 

N 

Data 

points 5% 95% 

Orders of 

magnitude GM GSD 

1 1 863  8185  0.98 2670  2.0 

2 2 528  4770  0.96 1652  1.9 

3 9 679  4770  0.85 1863  1.8 

4 3 665  6063  0.96 1978  2.0 

5 1 596  5541  0.97 1863  2.0 

6 3 880  7187  0.91 2566  1.9 

7 11 1525  9897  0.81 3790  1.8 

8 1 685  7115  1.02 2231  2.1 

9 3 742  5943  0.90 2080  1.9 

10 2 361  3429  0.98 1108  2.0 

11 6 1164  11731  1.00 3866  2.0 

12 30 889  5943  0.83 2231  1.8 

* 72 716 8103 1.05 2408 2.1 

 

(4) Pb 

  90% Interval of 

BCF  

Group-specific PDF of BCF (log 

normal) 

N 

Data 

points 5% 95% 

Orders of 

magnitude GM GSD 

1 1 1.3 55.3 1.64 8.7 3.2 

2 1 1.2 67.4 1.76 8.9 3.5 
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3 3 2.1 65.9 1.50 11.5 2.8 

4 1 1.2 71.8 1.78 9.7 3.5 

5 2 3.1 99.7 1.51 17.5 2.9 

6 3 4.4 176 1.61 28.2 3.0 

7 9 3.6 155 1.63 24 3.2 

8 1 1.1 50.9 1.68 7.5 3.4 

9 3 2.8 118 1.62 19.5 3.1 

10 2 1.7 144 1.92 15.3 3.7 

11 3 5.2 202 1.59 33.4 3.0 

12 1 1.1 60.9 1.73 8.2 3.2 

13 1 0.9 59 1.80 7.8 3.4 

* 31 2.2 101 1.67 14.9 3.1 

 

(5) As 

  90% Interval of 

BCF 

Orders of 

magnitude 

Group-specific PDF of BCF (log 

normal) 

N 

Data 

points 5% 95%   GM GSD 

1 2 1.3 270 2.32 20.1 5.0 

2 6 4.6 545 2.07 49.4 4.1 

3 11 1.1 99.5 1.97 11 4.1 

4 4 0.02 3.0 2.17 0.2 4.5 

5 1 0.3 2981 3.98 36.6 22.2 

6 1 0.7 6634 3.95 49.4 22.2 

* 25 0.2 559 3.40 11.2 9.8 

 

3.2.4 Conclusion 

The generic PDF for fish BCF given by ordinary regression analysis for each metal does not 

present detailed information of how the BCF distribution corresponding to individual fish 

families is shown differently from others. However, this general information can be useful, for 

example, when it is required as an input parameter in multi-media modelling studies where the 

real environmental system with much complexity is often considerably simplified and the 

simplified model may require generalized input information rather than a detailed or specific 

one.  
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On the other hand, fish group-specific PDF estimated by hierarchical Bayesian regression 

analysis can tell us more exhaustive information considering the differences residing among 

different fish groups, and thus this information can be helpful, for instance, when environmental 

modelling studies deal with the site-specific (local) scenario where an individual trend on BCF 

for the site-specific fish group may be necessary. A remarkable feature of this analysis is that it 

is capable of the estimation of BCF range and distribution even for a fish group with scarce 

information, i.e., 1 or 2 data points by partially relating it to the data for other fish groups. 

 

The present study shows that in both ordinary regression and hierarchical Bayesian regression 

analyses, the estimated PDF and range of BCF for each metal have less uncertainty than the 

variation of collected BCF data, when an exposure concentration is given. This signifies that the 

BCF ranges and PDFs estimated for metals by both statistical approaches can tell us more 

informative knowledge about current and future BCF observations, correlating them to the 

exposure concentrations, and thus use of such PDFs for the probability analysis conducted in the 

modelling studies dedicated to environmental and health risk assessment will lead to the 

accurate predictions of the potential risk concerning metals.  

 

Two databases were used for the data collection without deeply reviewing each of the references 

listed on the databases because of the limitation of the information we could access at the 

moment and also combined the data of BCF and BAF for the data analyses; thus, a certain 

vagueness may occur in the validity of collected data and estimated regression models. In the 

present study, we assume such vagueness is considered in the uncertainty the estimated 

regression models contain. Nevertheless, in the future study, in order to improve the quality of 

data to analyze and regression models, it may be important to conduct a deep review of each 

source in the databases and also to analyze separately the data of BCF and BAF.    

 

3.3  Probabilistic parameterization for the other input parameters used 

in freshwater compartment 

 

In freshwater compartment, the partition of contaminants between water and suspended 

particulate matter (SPM) can be considered as one of main transfer factors for chemical 

pollutants. The ratio of neutral organic compound in SPM to that in water is expressed by the 

distribution coefficient Kd,SPM (m
3
/g). The Kd, SPM is defined by the substance-dependent organic 

carbon partition coefficient KOC and the time-dependent fraction of organic carbon in SPM, 

yOC,SPM(t): 
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                                  (3.10) 

In many cases, a point value (i.e., mean) of riverine organic fraction in SPM (yOC,SPM) is used for 

modelling studies. Since fluvial dynamics are characterized by significant spatial and temporal 

variations especially caused by rainy events, their influence on the organic carbon fraction in 

SPM (yOC,SPM) should be considered. In the framework of a project called SCOPE (Ittekot and 

Lane 1991), riverine particulate organic carbon (POC) was monitored for major rivers located 

all around the world, and the observed relations between POC and SPM for these rivers were 

found to be similar. The variation of SPM concentration between 0–50 mg/L corresponds to low 

water discharge, whereas the SPM variation between 50–300 mg/L is often associated with the 

intermediate water discharge and resuspension processes of materials into the river bed. The 

SPM concentration greater than 300 mg/L corresponds to the intensive soil erosion caused by 

running water flow and by the increase of the number of flood events. These different origins of 

SPM lead to the fact that for low SPM concentrations, the organic fraction in SPM tends to be 

high (3-25 % of SPM) and is essentially phytoplanktonic. For higher SPM concentrations, the 

organic fraction tend to be low (2-3 % of SPM) and is essentially allochthonous (Veyssy et al. 

2004). According to results reported in the SCOPE project, it was thus proposed to use the 

following function to correlate yOC, SPM(t) and total SPM (g/m
3
) : 

           
 

      
        (3.11) 

where α and β are empirical calibration parameters. The probability density function (PDF) for 

α and β were derived from the values proposed in Ittekot and Lane (1991) (minimum, mean and 

maximal values of the fraction of POC for each range of SPM level).  

 

The time-dependence of the Suspended Particulate Matter SPM(t) can be obtained from the 

empirical relationship called sediment rating curve (Asselman 2000; Syvitski et al. 2000; 

Morehead et al. 2003): 

               (3.12) 

where a and b are empirical calibration parameters and Q(t) is time-dependent flow rate ( m
3
/s). 

In this section, the approach to derive the PDF of the empirical calibration parameters, a and b is 

described. The empirical calibration parameters, a and b in Equation (3.12) were estimated using 

a Bayesian approach. The Bayesian approach used for the estimation of these parameters is 

elaborated in Ciffroy et al (2010b). As a starting point, the database set by Syvitski et al. (2000) 

was used for this approach. The database contains the values of log10(a) and b for 57 rivers 

which were collected by long-term monitoring. For each of these rivers, Syvitski et al. (2000) 

provided best estimates for log10(a) and b, as well as geographical and physical characteristics of 
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the river watersheds (latitude, longitude, mean annual discharge, minimum and maximum 

temperatures, peak flow, and etc). The study also tested with the database several relationships 

to relate log10(a) and b to some of these characteristics, and found, for instance, that latitude and 

mean annual discharge are reliable predictors of log10(a) and b. Based on this knowledge, the 

PDFs of log10(a) and b were defined by using the information of the Seine watershed 

characteristics. In the Bayesian approach of this study, the PDFs were used as prior distributions 

and were updated by the actual monitoring data, i.e., monthly data of SPM and flow rates 

measured at the same date during the period 1985-1995, which was obtained from the database 

of Seine-Normandy Water Management Agency (SNWMA).  

 

The dataset was subdivided into two part: 10% of data were used to update the log(a) and b 

distributions by the Bayesian approach, and 90% of data were used as a validation dataset for 

the SPM estimation made based on the posterior distributions of log(a) and b. The estimated 

posterior distributions for log10(a) and b are N(-4.19, 0.33) and N(0.99, 0.13), respectively. 

Based on Equation (3.12), the distribution of SPM was estimated by generating random values 

from these posterior distributions. It was observed that there is a good agreement between mean 

values of the estimated distribution and the validation dataset with a bias (median of relative 

errors) of 31%. Almost all the SPM values in the validation dataset were found to be contained 

in the 90% confidence interval of the estimated SPM distribution. 

 

The other approaches to estimate PDFs for the other input parameters used in freshwater 

compartment are presented in a deliverable in 2-FUN project. 

 

4 Application of 2-FUN tool based on a case study 

4.1 Introduction 

The paradigm of health risk assessment may consist of two main pillars, i.e., the exposure and 

dose-response assessments. Exposure assessment frequently involves the process of estimating 

or measuring the magnitude, frequency and duration of exposure to chemicals, along with the 

number and characteristics of the population exposed. Human exposure to chemicals via 

multiple pathways such as drinking water, inhaled air, foods, and etc) can be estimated by the 

multimedia models that calculate the distribution of chemicals in the component media, i.e., air, 

water, soil, plants, cattle, and human media (e.g., SimpleBox (Brandes et al. 1996), QWASI 

(Mackay 1983; Di Guardo et al. 2006; Warren et al. 2007), Trim.Fate (USEPA 2002), and etc). 

Combined with the information about human behaviors such as dietary habits, time spent 
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outside, and etc, the multimedia models can provide an estimation of the daily chemical intake 

by inhalation or ingestion by the population of interest.  

 

Once the exposure scenario is identified, the dose-response assessment is typically achieved by 

comparing exposure outputs (e.g., the daily intake) to the reference doses estimated from 

toxicological data. Currently, risk assessment methodologies involve simple dose-response 

models that link the external dose (e.g., environmental concentration) to the adverse effects. 

However, the use of such simple dose-response models does not reflect the current 

understanding of the mode of action of a chemical and does not facilitate extrapolations to other 

scenarios (species, exposure routes...). Thus the determination of internal effective 

concentrations, i.e., in the target tissues where toxic effects arise, is required to characterize 

accurately the link between an external exposure and the internal dosimetry that may be 

associated with the observed effects (Andersen and Dennison 2002). Physiologically based 

pharmacokinetic (PBPK) models have been developed to predict the internal effective 

concentrations, i.e., in the target internal tissues where toxic effects arise (d'Yvoire et al. 2007). 

Moreover, these models are well-suited for integrating available information on age- or 

gender-dependent changes and then evaluating the influence of these changes on the internal 

dosimetry (Clewell et al. 2004; Beaudouin et al. 2010). A dose-response model is then applied 

to link the effective concentration to the adverse effects. 

 

Coupling of a multi-media model for different exposure pathways with a generic PBPK model 

for the human population allows assessing directly the impact of the exposure scenarios on the 

chemical‟s concentration in the target tissues. To our best knowledge, environmental 

multimedia and PBPK models have never been systematically integrated in a common platform. 

These models are usually developed on different software, which makes it difficult to perform 

the integrated analysis coupling both of models. In the framework of the European project 

called 2-FUN project (Full-chain and UNcertainty Approaches for Assessing Health Risks in 

FUture ENvironmental Scenarios), an integrated „multimedia-PBPK‟ model (called 2-FUN 

tool) was developed. The integrated modelling tool was also designed for performing 

uncertainty and inter-individual variability analyses using Monte Carlo simulations, and several 

kinds of sensitivity analyses by several regression and Fourier approaches. The 2-FUN tool is 

capable of conducting lifetime risk assessments for different human populations (general 

population, children at different ages, pregnant women, and etc) taking into account the 

exposure to chemicals via multiple pathways such as drinking of water, inhalation of air, and 

ingestion of foods.  
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This kind of modelling tool is specially designed for compounds that are ubiquitous in our 

environment in order to identify the contribution of the different sources (e.g., food, air or 

drinking water) to the total intake and their contributions to the internal dosimetry. In this study, 

a special attention is paid to Polycyclic Aromatic Hydrocarbons (PAHs). PAHs are products of 

incomplete combustion of fossil fuels, wood, and other organic materials at temperatures 

between 300 and 600 °C. PAHs exert a variety of toxic responses toward human health, 

including carcinogenic, immunotoxic, neurodevelopmental and cardiovascular effects, and are 

likely to contribute to smoking-related diseases (Sorensen et al. 2003; Slotkin and Seidler 2009). 

Their carcinogenic activity is typically exerted after the metabolic activation to reactive 

intermediates that can damage DNA through adduct formation. Major sites of toxicity are the 

sites of absorption. For example, forestomach tumors have been observed in rodents after 

ingestion. Other sites of toxicity can be lungs in case of inhalation, skin for dermal exposure, 

and the sites of metabolism (e.g., the liver). Constituents of blood (e.g., white blood cells) are 

also of interest to detect early markers of toxicity. Benzo(a)pyrene (B(a)P), a five ring PAH, is 

usually used as a marker of effects of complex mixtures including PAHs, either directly (as a 

surrogate for the PAH fraction of complex mixtures) or using toxicity equivalency factors to 

relate the toxicity of each PAH to the one of B(a)P (Pufulete et al. 2004). 

 

The aims of this study were then to perform an integrated modelling approach by the newly 

developed 2-FUN tool to assess the human exposure to a toxic chemical and the potential health 

risks due to the exposure; and to identify the input parameters and exposure pathways that are 

sensitive to specified model outputs, i.e., chemical concentration and accumulation in target 

tissues (liver and lungs), integrating uncertainty and sensitivity analyses. A case study was 

designed for a region situated on the Seine River watershed, downstream of the Paris megacity 

and for B(a)P emitted from industrial zones in the region.  

4.2 Materials and methods 

Case study 

As a case study, a region situated on the Seine River watershed, just downstream of the Paris 

megacity was selected. The region is characterized by strong industrialization and urbanization, 

with industries and domestic anthropogenic activities potentially releasing toxicants. B(a)P was 

selected as a target chemical. This case study considers the chemical exposure to humans via the 

ingestion of water, fish, vegetables (root, potato, and leaf), grain, fruit, meat (beef), milk, and 

the inhalation of out-door air. The drinking water is assumed to be sourced from river water in 

this scenario.  
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In this case study, there are two model inputs associated with B(a)P levels; one is B(a)P 

concentration in river water at the upstream zone, and the other is B(a)P concentration in the air 

flow entering the target region. Temporal dynamics is retained in this modelling approach to 

allow an assessment of the impact of temporal variations of these model inputs. The data of 

B(a)P concentration in the upstream zone were obtained from the database made by the 

Seine-Normandy Water Management Agency (SNWMA) that is the organization in charge of 

environmental monitoring in this region. Database of the monitoring station at Poissy (the place 

located in the upstream about 20 km from Paris and in the downstream of the The Achères 

wastewater treatment plant) includes annual measurements of B(a)P concentration in bottom 

sediments (from 1993 to 2008, except for 1995 and 2002) and monthly measurements of B(a)P 

concentration in raw river water (in 2007 and 2008). The magnitude of B(a)P levels in the air 

flow in Paris region was found in Quéguiner et al. (2010). Long-term time series of B(a)P 

concentrations in the upstream and the air flow were made up based on those two kinds of 

information sources. The methods to make up them are described in the following section.  

 

Other main model inputs include flow rates of the Seine River (m
3
/s) and meteorological data 

such as air temperature (°C), precipitation (m/day), and wind velocity (m/day). Monthly flow 

rates were selected from the measurements monitored by SNWMA during the period of 

1985-1995. Monthly datasets of air temperature and wind velocity were selected from the 

statistics based on observations taken between 7/2002 - 9/2010 daily from 7am to 7pm at 

Paris-CDG (available at http://www.windfinder.com/windstats). Daily dataset of precipitation 

was chosen from annual observations (monitored in 1999) at the meteorological station located 

in Orléans (about 120 km from the center of Paris).  

  

Generally, the raw-river water is treated by water purification processes before it is supplied to 

houses as tap water, and thus removal of certain amount of B(a)P through water purification 

processes must be considered. The raw-river water used for the tap water passes though several 

treatment processes (e.g. clarification, disinfection, activated carbon filtration). Stackelberg et al 

(2004 and 2007) observed the efficiency of conventional water treatment processes for the 

removal of contaminants such as PAHs. Measurements on Anthracene, Fluoranthene, 

Phenanthrene and Pyrene indicated that the processes of clarification and disinfection are poorly 

efficient for removing PAHs, while activated carbon filtration is highly efficient. The studies 

estimated the removal rates for the raw water including both its dissolved and particulate phases, 

and thus it is difficult to estimate the removal efficiency for the dissolved phase alone. 

Therefore, as a worst scenario, this case study simply assumes that the particulate fraction of 

http://www.windfinder.com/windstats
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B(a)P in raw-river water is completely removed by the water treatment processes, while the 

dissolved fraction is not. 

 

Model outputs of interest chosen for this case study are B(a)P concentrations in liver and lungs, 

and also accumulated quantities of metabolites formed in liver and lungs. 

Reconstruction of long-term time series of B(a)P levels in river and air  

As described in the previous section, the case study requires long-term time series of B(a)P 

concentrations in the upstream river water, and were made up using the limited measurements 

of B(a)P concentrations in bottom sediments and raw river water. The annual monitoring data of 

B(a)P concentration in bottom sediments from 1993 to 2008 (except for 1995 and 2002) show 

that there is no clear time-evolution of B(a)P levels over the period. Thus, from the observation 

in bottom sediments, it can be assumed that the B(a)P levels in raw river water does not have 

the trend of their increase or decrease over the period. In this study, 23 data values of B(a)P 

concentration in river water, which were monitored in 2007 and 2008, were used to reconstruct 

daily B(a)P concentration in river water over the period from 1993 to 2008.  

 

However, a significant fraction (56%) among these 23 available data of the concentration in 

river water was found to be below the limit of detection (LOD). In order to give a realistic range 

of B(a)P levels in river water, it is dispensable that the range of non-detects under LOD is 

provided with actual values. Up to now several approaches have been proposed to address this 

issue. The most common (and easy-to-use) approach may be simply ignoring the part of 

non-detection or giving substitutes for the non-detect part. The substitutes can be selected from 

zero, LOD itself, LOD/2 or        (Helsel 2006). However, such approaches can cause 

over- or underestimation of the mean of data distribution, and inversely under- or 

overestimation of the standard deviation. For example, USEPA provided a critical guidance of 

the reliable use of such methods in Data Quality Assessment (USEPA 2000) and suggested that 

substitute methods are useful if the fraction of non-detect data contained in a total dataset is 

fewer than 15 %. Instead of using the approaches of substitution, the present study focused on 

distributional methods (Baccarelli et al. 2005). The methods require defining an attribution of 

data distribution, e.g., Normal, Log-normal, Gamma or Gumbel distribution (Zhang et al 2004), 

and the parameters of the selected distribution (e.g., a set of mean and standard deviation for a 

normal distribution) are obtained from the maximum-likelihood estimation (Cohen 1961 and 

1991). Such distributional methods can also be extended to reconstruct a complete dataset 

considering non-detect values. This study selected the Cohen‟s approach (described in detail by 

Zhang et al (2004) and Kuttatharmmakul et al (2001)), assuming that contamination level in raw 

river water follows a normal distribution. The mean    and standard deviation    of the „true‟ 
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distribution including non-detect values were calculated based on the mean and variance of the 

detected values, using a correction factor: 

                     (4.1) 

                   

Where    and s
2 

are the mean and variance of the detected values and   is a correction factor 

tabulated by Cohen (1961), which is defined in function of the proportion of non-detect values 

and the gap between    and LOD value. This approach gave the following distribution for 

B(a)P levels of in raw river water (µg/L): N(4.2 10
-3

, 2.3 10
-2

). This distribution was used for 

reconstructing a long-term time series of contamination levels in raw river water over the period 

from 1993 to 2008. 

 

Long- term time series of B(a)P levels in the air flow entering Paris region were given referring 

to the range of values (maximum: 4.0
-6

 mg/m
3
, minimum: 1.0

-6
 mg/m

3
) that is indicated in 

Quéguiner et al. (2010). Temporal variation of B(a)P concentration in the air flow were made up 

in such a way that the maximum and minimum values come in the middle of winter time and in 

the middle of summer time, respectively. The trend in which predominant air pollution of PAHs 

occurs in the wintertime is reported in Gusev et al. (2006). A sinusoidal function was then 

considered for long-term time series of B(a)P levels in air, given those high and low values: 

             
         

 
 

         

 
       

 

   
 

 

 
      (4.2) 

where Cair_flow (t) (mg/m
3
) is the time-dependent B(a)P concentration in air flow entering the 

target region, and Cmax and Cmin are the maximum and minimum B(a)P concentrations, 

respectively.  

 

2-FUN environmental multimedia and PBPK models  

The complete description of the 2-FUN multimedia environmental model consisting of 

freshwater, air, soil/groundwater, plants, and animal compartments is presented in the project 

deliverables (available at www.2-fun.org). Mass balance equations for each compartment are 

shown in the former section 2.2. 

 

A PBPK model for men and women has been developed to simulate the body burden of various 

xenobiotics throughout the entire human lifespan, integrating the evolution of the physiology 

and anatomy from childhood to advanced aged. The complete description of the PBPK model is 

present in Beaudouin et al. (2010). That model is based on a detailed description of the body 
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anatomy and includes a substantial number of tissue compartments to enable the analysis of 

toxicokinetics for diverse chemicals that induce multiple effects in different target tissues. The 

model structure is identical for men and women. This model proposes a detailed 

compartmentalization of the human body with 22 organs. Only two compartments integrate 

several entities: the urinary tract (including the bladder, the ureters and the urethra) and the 

sexual organs (the testes, the epididymes and the prostate for men, and the ovaries, the fallopian 

tubes and the uterus for women). The lungs were separated into two compartments to 

distinguish the pulmonary functions from the lungs anatomy (the tissues). The main processes 

were modeled as follows: 

 Absorption: Adsorption of PAHs occurs through different routes, but primarily occurs 

via food or water intake and via inhalation. For the purpose of this study, the intake was 

modelled as a direct input into the venous blood compartment, since most of the B(a)P 

ingested is assumed to be absorbed.  

 Distribution: B(a)P is distributed into the various compartments by the blood flow and 

the partitioning from blood to tissues. All tissue compartments are assumed to be 

well-mixed and blood flow-limited. Distribution in tissue is then described by: 

      

  
             

     

   
     (4.3) 

where Qi is the amount of chemical in compartment i (mg), Ci the concentration (mg/L), 

Cart the concentration in arterial blood (mg/L), Fi the blood flow entering in compartment 

i (L/min), and PCi the tissue i - blood partition coefficient. 

 Metabolism: Metabolism of B(a)P was limited to lungs and liver. The 

Michaelis-Menten relationship was used to describe B(a)P metabolism. The rate of 

metabolism (RAM) is then given by: 

        
               

             
    (4.4) 

where Vmax is the maximal velocity (mg/min), Km the Michaelis constant (mg/L) and 

Cven,i the concentration of B(a)P leaving the compartment i (mg/L) . The quantity of 

B(a)P in the liver and the lungs is obtained by: 

      

  
             

     

   
             (4.5)  

 Excretion: Since B(a)P is highly metabolized, no excretion was assumed.  

Integration of models in the Ecolego® platform 
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The multimedia and PBPK models were coupled on the common platform called Ecolego® (the 

information is available at www.facilia.se) to facilitate integrated full-chain assessment and to 

conduct the sensitivity and uncertainty analyses. An overall diagram depicting these coupled 

models is shown in Figure 4.1. Advanced methods for probabilistic and sensitivity analyses are 

available in the Ecolego system, such as: (i) Monte Carlo method for the propagation of 

parametric uncertainty; and (ii) several regression and Fourier approaches for conducting 

sensitivity analysis. 

Parameterization for 2-FUN tool 

Many input parameters are included in the 2FUN tool, and thus the parameterization for them is 

an important process to implement the tool. Some of these input parameters assumed to be 

highly uncertain. Giving probabilistic forms to those input parameters permits uncertainty and 

sensitivity analyses targeting investigated model outputs. The present study used probabilistic 

density function (PDF) to represent the probabilistic forms of those input parameters. As for the 

parameters defined in the environmental multimedia model, site-specific PDFs were obtained 

when actual monitoring datasets in a specific site (in this study, at the Seine River) are available. 

When there were no site-specific data for the parameters of interest, instead, global (generic) 

PDFs were derived based on the global datasets of the parameters. 

 

The PDFs were assigned to several parameters that are assumed to be highly uncertain. These 

parameters were selected from those included in the compartments which are directly linked 

with the PBPK model through digestion of drinking water, foods, and milk (i.e., the freshwater, 

plant, and animal compartments). The detailed description about the probabilistic 

parameterization for plant and animal compartments is shown in a deliverable in 2-FUN project. 

It should be noted that the parameters contained in the air and soil/groundwater compartments 

were set by point estimates based on the information in relevant documents and expert 

judgments. All the main parameters used in the 2-FUN environmental multimedia model are 

listed with their PDFs or point estimates in Appendix of this thesis. 

 

To simulate B(a)P internal dosimetry in humans throughout their lifetime, quantitative 

relationships were derived for the parameterization of the PBPK model to describe the changes 

of the human anatomy and physiology over their lifetime. The full description of the model 

parameterization is available in Beaudouin et al. (2010). Relationships were defined according 

to the data available (International Commission on Radiological Protection, 2002; Altman and 

Dittmer 1962; Lexell et al. 1988; Haddad et al. 2001; National Health and Nutrition 

Examination Survey 1995), and the associated inter-individual variability in key parameters was 

also assessed. For volumes, we modeled the changes during childhood and adolescence but also 
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the effects of aging on muscle (atrophy) and adipose tissues (increase in adulthood and decrease 

in advanced age). Due to the lack of data on blood flow changes with age, regional blood flows 

were assumed to change proportionally to tissue volumes, as proposed by Clewell et al. (2004). 

The adult fractional tissue blood flows referenced by ICRP (International Commission on 

Radiological Protection 2002) were used along with the age-specific tissue volumes and the 

adult tissue volumes. To maintain mass balance for the blood flows, the age-specific fractional 

blood flows were normalized, so they sum to one.  

 

Metabolism was assumed to be dependent on age but not gender. The cytochrome P450 

activity/expression in infants was related to the adult level given the functions developed by 

Johnson et al. (2006). The maximal velocity was then apportioned to the relative activity of the 

cytochrome P450 1A2 that displays the highest affinity towards B(a)P. The maximal velocities 

for adults were set to 4.4 mg/min in liver and to 0.00173 mg/min in lungs (Chiang and Liao 

2006). The Michaelis constants were set to 1.36 mg/l in liver and to 0.06 mg/l in lungs (Chiang 

and Liao 2006). The blood-air partition coefficient was set to 590 (Chiang and Liao 2006). The 

tissue-blood partition coefficients were calculated based on published data (Poulin and Krishnan 

1996; Poulin and Theil 2002). 

Determination of influential parameters to model outputs  

To perform a global sensitivity analysis and an uncertainty analysis for the defined model 

outputs in this case study, only the key parameters potentially influential to the model outputs 

were in advance selected and assigned their corresponding probability density functions (PDFs). 

The key parameters in each different compartment were independently chosen in the following 

ways: 

 Parameter selection in freshwater compartment: A global sensitivity analysis was 

conducted for an intermediate model output, i.e., the concentration of B(a)P in drinking 

water (dissolved water sourced from freshwater compartment) (mg/m
3
). 

 Parameter selection in plant compartments: A global sensitivity analysis was conducted 

for an intermediate model output, i.e., sum of the concentration of B(a)P in each plant 

(root, potato, grain, leaf, and fruit) (mg/kgfw). 

 Parameter selection in animal compartment: A global sensitivity analysis was conducted 

for an intermediate model output, i.e., sum of the concentrations of B(a)P in beef (beef 

cow) and milk (milk cow) (mg/kg). 

 Parameter selection in human compartment (PBPK model): A global sensitivity 

analysis was conducted for B(a)P concentrations in liver and lungs (mg/L), and the total 

quantity of metabolites formed in the liver and lungs (mg).  

All the selected parameters are presented in Table 4.1. 
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Figure 4.1: Overall diagram of 2-FUN tool for the case study 
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Figure 4.1: (Continued) 

Irrigation* indicates a chemical transfer to plants via irrigation water (only to leaf and grain 

compartments) 
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Table 4.1: The parameters used for the sensitivity and uncertainty analyses for the model outputs 

Parameter Unit PDF Relevant transport 

mechanism 

Parameters in freshwater compartment 

1
st
 empirical parameter for the rating 

curve relating suspended particulate 

matter (SPM) and flow rate in river 

(log(a) ) 

- N(-4.19, 0.33) Concentration of 

time-dependent SPM (in 

freshwater compartment) 

2
nd

 empirical parameter for the rating 

curve relating SPM and flow rate in 

river (b) 

- N(0.99, 0.13) Concentration of 

time-dependent SPM (in 

freshwater compartment) 

Settling velocity of particles (Wc) m/d LN2(18.9, 3.0) Deposition from water to 

bottom sediments phase (in 

freshwater compartment) 

1
st
 empirical parameter for the 

relationship between time-dependent 

organic fraction in SPM and 

time-dependent SPM (αyoc, SPM) 

- Tri(0.15, 0.96, 

0.55) 

Time-dependent organic 

fraction in SPM (in 

freshwater compartment) 

Parameters in plant compartments  

Octanol-water partition coefficient in 

grain compartment (KOW,graiin) 

- LN(10
6.38

, 0.70) Chemical partitions between 

leaf tissue and water, between 

root and water, between pore 

water in soil and bulk soil, 

and etc 

Leaf area per field area in leaf 

compartment (Aleaf) 

m
2
/m

2
  Chemical diffusion between 

leaf and atmosphere 

Partition coefficient between air and 

water in leaf compartment (KAW,leaf)  

- Tri((0.86, 3.7, 

1.78)10
-4

) 

Chemical partitions between 

leaf and air, between root and 

water, between leaf tissue and 

water, pore water in soil and 

bulk soil, and etc  

Mass of leaf per field area in leaf 

compartment (Mleaf) 

 

kgfw/m
2
  LN(1.0, 0.017) Chemical diffusion between 

leaf and atmosphere (only 

upward diffusion),  and 

chemical transfer into leaf by 

leaf interception  
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Growth rate of leaf in leaf 

compartment (Kg, leaf) 

d
-1

 LN(0.035, 0.006) 
 

 

Relative reduction of 

chemical in leaf by the 

growth of leaf 

Parameters in animal compartment 

Lipid content of milk cow per 

bodyweight of milk cow (Lmilk) 

kg/kg Tri(0.06,0.31,0.21) Partition coefficient between 

milk cow and water in milk 

cow 

Bodyweight of milk cow (Mmilk) kg N(447.0, 76.0)  Chemical outflux by lipid 

excretion, lactation, urination 

and exhalation 

Metabolism rate of cow (KM, cow)  d
-1

 Tri(5.5, 11.0, 8.25)  Chemical degradation by 

metabolism in both milk and 

beef cows 

Parameters in human compartment (PBPK model) 

Percentage of the chemical absorbed 

(Abs) in human compartment 

- Uni(0.8, 1)  

Michaelis constant for metabolism in 

liver (Kmliver) in human compartment 

mg/L N(1.39, 1.39) Chemical metabolism in liver 

Michaelis constant for metabolism in 

lungs (Kmlung) in human 

compartment 

mg/L N(0.06, 0.06) Chemical metabolism in 

lungs 

Maximal velocity for metabolism in 

liver in human compartment 

(Vmaxliver) 

mg/min N(4.42, 4.42) Chemical metabolism in liver 

Maximal velocity for metabolism in 

lungs in human compartment 

(Vmaxlung) 

mg/min N(0.0017, 0.0017) Chemical metabolism in 

lungs 

Partition coefficient between blood 

and air in human compartment (Kblood, 

air) 

- N(590, 295) Inhalation and exhalation of 

chemical 

*N, LN, LN2, Tri, and Uni indicate normal (mean, standard deviation), lognormal (mean, standard 

deviation), lognormal (geometric mean, geometric standard deviation), triangular (minimum, maximum, 

mode), uniform (minimum, maximum) distributions, respectively. 
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4.3  Results and Discussion 

As described previously, the main model inputs in this case study are the long-term time series 

of B(a)P levels (from 1993 to 2008) in the river water at upstream zone and in the air flow 

entering the target region. Figure 4.2 and 4.3 show these time series of B(a)P levels.  

 

Figure 4.2: Time-dependent B(a)P concentration in the river water at upstream zone ( g/L) (Time 0 in 

horizontal axis corresponds to 1
st
 January, 1993) 

 

The deterministic and probabilistic calculations by the coupled models (2FUN-tool) were 

performed over the period corresponding to that for these model inputs. All the model outputs 

were given on monthly basis. 

 

Figure 4.3: Time-dependent B(a)P concentration in the air flow entering the target region (mg/m
3
)  
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The 2-FUN tool performed a probabilistic calculation for uncertainty/variability and sensitivity 

analyses. For this calculation, Monte Carlo approach randomly drew samples from the PDFs of 

parameters selected (Table 1) and generated the integrated distributions of specified outputs.  

Quantity of the ingestion and inhalation of B(a)P through different pathways  

Figure 4.4 presents the simulated quantities of ingested B(a)P via water, root, potato, grain, leaf, 

fruit, beef, and milk over the simulation period. This simulation result shows that the ingestion 

of leaf contributes the most to the exposure of B(a)P to humans, followed by fruit, milk 

ingestions. The quantity of B(a)P intake is calculated by multiplying the B(a)P concentration in 

each compartment by the corresponding daily ingestion rate (g/d). It was found in the result that 

the higher accumulation (concentration) of B(a)P in leaf is solely responsible for the higher 

quantity of leaf ingestion, considering that the daily ingestion rate of leaf is lower than those of 

other ingested foods and drinks except for fish. This simulation calculated the higher 

accumulation of B(a)P in leaf and fruit, probably because more pathways for B(a)P into leaf and 

fruit compartments are defined in 2-FUN tool than into other compartments (See Figure 4.1). 

Figure 4.5 presents cumulative quantities of ingested (leaf, fruit, milk, and total ingestions) and 

inhaled B(a)P. The cumulative ingestion via leaf (0.20 mg) accounts for 66 % of cumulative 

total ingestion (0.30 mg) at the end of time, whereas the cumulative ingestion via fruit (0.067 

mg) does 22 %. It indicates that about 90 % of total quantity of B(a)P ingestion is covered by 

the ingestions of leaf and fruit. The cumulative quantity of inhaled B(a)P (0.005 mg) accounts 

for only 1.7 % of total quantity of B(a)P ingestion at the end of time. 

 

Table 4.5: Cumulative quantity of ingested and inhaled B(a)P (mg) 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

C
u

m
u

lt
iv

e
 q

u
a

n
ti

ty
 o

f 
in

g
e
s
te

d
 a

n
d

 

in
h

a
le

d
 B

(a
)P

 (
m

g
)

Time (years)

by leaf ingestion

by fruit ingestion

by milk ingestion

Total ingestion

Inhalation



101 

 

 

Time series of B(a)P concentrations in human liver and lungs 

Figure 4.4 presents B(a)P concentrations in human liver and lungs over the simulation period, 

with values at mean, 5
th
 and 95

th
 percentiles. It can be assumed that the values at 95

th
 percentile 

represent „pessimistic‟ scenarios in the context of health risk assessment. It was found that there 

is no clear accumulation of B(a)P in both liver and lungs over the period (after 2
nd

 year). This 

can be explained by the fact that B(a)P is rapidly metabolized in those organs. The results show 

that the mean concentration in liver is almost five times higher than that in lungs over the 

Figure 4.4: Time-dependent quantity of B(a)P entering humans through the 

ingestions of different food and drink items (mg/d) 
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simulation period. Average ranges between B(a)P concentrations at 5
th
 and 95

th
 percentile over 

the simulation period, for liver, lungs, are 2 and 0.9 orders of magnitude, respectively. It 

indicates that the parametric uncertainties and variability contained in input parameter 

contribute significantly to propagation of such gaps in outputs.  

 

 

 

Figure 4.4: B(a)P concentrations in liver and lungs (mg/L) (Time 1 in horizontal axis corresponds to 1
st
 

January, 1994) 

Cumulative quantity of metabolites formed in liver and lungs 

Figure 4.5 shows the accumulated quantity of B(a)P metabolites formed in liver and lungs over 

the simulation period, with values at mean, 5
th
 and 95
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can be an important indicator in health risk assessment as the toxicity of B(a)P is related to the 

formed metabolites. It can be said from the results that the accumulated quantity of metabolites 

formed in both organs is almost linearly increased over the simulation period. The ranges 

between the quantities of metabolites at 5
th
 and 95

th
 percentile at the end of time, for liver and 

lungs, are factors 2.0 and 80 (equivalent to 1.9 orders of magnitude), respectively. 

 

 

 

Figure 4.5: Quantity of metabolites formed in liver and lungs. 

Global sensitivity analysis 

A global sensitivity analysis was performed for specified model outputs in this study, i.e., the 

concentration of B(a)P in the liver and lungs, and the total quantity of metabolites formed in the 

liver and lungs (Figure 4.6) . The magnitude of sensitivity is shown by relative sensitivity index. 
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Figure 4.6 presents the average index value over the simulation period for each parameter. The 

result for each output is as follows: 

 Concentration of B(a)P in liver: The most influential parameter is maximal velocity for 

metabolism in liver (Vmaxliver), followed by growth rate of leaf (Kg, leaf), and maximal 

velocity for metabolism in lungs (Vmaxlung). 

 Concentration of B(a)P in lungs: Maximal velocity for metabolism in liver (Vmaxliver), 

followed by growth rate of leaf (Kg, leaf), and Michaelis constant for metabolism in lungs 

(Kmlung). 

 Metabolites in liver: Partition coefficient between air and water in leaf (KAW,leaf), 

followed by Octanol-water partition coefficient in grain (KOW,graiin) and growth rate of 

leaf (Kg, leaf). 

 Metabolites in lungs: Maximal velocity for metabolism in lungs (Vmaxlung), followed by 

Michaelis constant for metabolism in lungs (Kmlung) and liver (Kmliver) 

 

Figure 4.6: A global sensitivity analysis for specified model outputs 

These results indicate that the parameters used in human and leaf compartments have relatively 

high sensitivity to all the specified model outputs. The high accumulation of B(a)P seen in leaf 

reflects the high sensitivity of leaf parameters to the model outputs. 
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concluded that 2-FUN tool has the potential applicability for health risk assessment, taking into 

account multiple exposure pathways via inhalation and ingestion. 

4.4 Conclusion 

This study demonstrated the feasibility of the integrated modelling approach to couple an 

environmental multimedia and a PBPK models, considering multi-exposure pathways, and thus 

the potential applicability of the 2-FUN tool for health risk assessment. The global sensitivity 

analysis performed in this study effectively discovered the input parameters and exposure 

pathways sensitive to the specified model outputs, i.e., B(a)P concentrations and accumulated 

quantities of metabolites in liver and lungs. This information allows us to focus on predominant 

input parameters and exposure pathways, and then to improve more efficiently the performance 

of the modelling tool for the risk assessment.  

 

Nevertheless, the following issues should be considered in future studies to make the 2-FUN 

tool more practical and comprehensive for health risk assessments:  

 To compare simulated results (internal B(a)P concentrations and accumulated quantities 

of metabolites in the target organs) with the correspoinding biomonitoring data, and to 

evaluate the model peformance 

 To incorporate dose-response functions into 2-FUN tool to facilitate the evaluation of 

potential risks of human disease occurrances 

 To add new compartmental media, e.g., the indoor compartment, which should be 

included to evaluate the exposure via inhalation of indoor air 

 To add dermal intake as a main exposure pathway 

 To add soil ingestion as a specific exposure pathway into children 

 To conduct parameter estimations in depth (either for point estimates or probability 

density functions) for the parameters of interest included in air and soil/groundwater 

compartments, referring to a wide range of information source in local (e.g., Paris 

region) and global scale 

 To consider processing procedures, such as smoking and drying, and cooking of food, 

which are commonly thought to be the major source of food contamination by PAH (EC 

2002) 
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5 GENERAL CONCLUSION 

The conceptual and theoretical aspects of 2-FUN tool are briefly summarized in Chapter 2. 

Presenting the general roles of mathematical models for health and environmental risk 

assessment of chemicals and the extensive review on existing modelling approaches, prominent 

features of the 2-FUN tool are well identified in Chapter 1.  

 

Although it is still in process of development, the 2-FUN tool at this stage of development is 

capable to address overall scheme of environmental health risk assessment, except for the step 

of evaluating actual health risks by dose-response functions. Chapter 4 shows the feasibility of 

the integrated modelling approach to couple an environmental multimedia and a PBPK models, 

considering multi-exposure pathways, and thus the potential applicability of the 2-FUN tool for 

health risk assessment.  

 

Oreskes et al. (1994) stated that numerical models can never be “verified”, meaning as 

established as true, because they are necessarily imperfect representations of the real world, e.g., 

the complexity of environmental systems and human activities/customs. Nonetheless, model 

evaluation is a critical process of model development, through not only benchmarking the 

mathematical solution of a model or comparison with observations, but also sensitivity and 

uncertainty analyses. Since model inputs and parameters can never be known accurately, 

assessment of the effect of uncertainty and variability in these variables is inevitable if model 

outputs (predictions) are to be used for decision making by policy makers or risk assessors. 

Chapter 3 presents novel statistical approaches (i.e., Bayesian methods) to derive probabilistic 

density functions for the parameters used in the 2-FUN tool. Such probabilistic parameterization 

allows performing the uncertainty and sensitivity analyses.  

 

The development of modelling approaches for environmental and health risk assessment and its 

relevant studies, e.g. parameter estimations, require a great deal of effort and interdisciplinary 

knowledge, and thus are time-consuming. It is essential that scientists and engineers from 

different scientific fields collaborate closely to establish more practical and comprehensive 

modelling approaches. Finally it can be concluded that the studies made for this dissertation 

would contribute to stimulating the study fields relevant for the environmental and health risk 

assessment and facilitating the progress of such study fields.  
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7 APPENDIX  

Main input parameters in 2-FUN tool 

 

1. Chemical specific parameters for Benzo(a)pyrene 

Parameter (Unit) 2-FUN  

Symbol 

Value 

(& PDF) 

Source  

Organic carbon–water partition 

coefficient (Logarithm) (L /kg) 

Log(KOC) 6.01 (in log10) 1 

Octanol-water partition coefficient (-) KOW 10
6.38

  

LN(10
6.38

, 0.70)  

 

2 

Air water partition coefficient (-) KAW 1.78 10
-4

 

Tri((0.86, 3.7, 1.78) 10
-4

) 

3 

Molar weight (g/mol)   4 

Henry‟s law constant (P m
3
 /mol) H 0.046 1 

Degradation rate in water (d
-1

) λdeg,water 0.3 4 

Degradation rate in sediment (d
-1

) λdeg,sed 0.0006 4 

Degradation rate in soil (d
-1

) λdeg,soil 0.003 4 

 

1:  Earl N, Cartwright CD, Horrocks SJ, Worboys M, Swift S, Kirton JA, Askan AU, Kelleher H, 

Nancarrow DJ (2003) Review of the Fate and Transport of Selected Contaminants in the Soil 

Environment. Draft Technical report P5-079/TR1, published by Environment Agency, Rio House, 

Waterside Drive, Aztec West, Almondsbury, Bristol, UK. 

2:  Jager T, Rikken MGJ, van der Poel P (1997) Uncertainty analysis of EUSES: Improving risk 

management by probabilistic assessment. 6791020 039. RIVM Report. 

(http://rivm.openrepository.com/rivm/bitstream/10029/10274/1/679102039.pdf) 

3:  Hilal SH, Ayyampalayam SN, Carreira LA (2008) Air-liquid partition coefficient for a diverse set 

of organic compounds: Henry's law constant in water and hexadecane. Environ Sci Technol, 42: 

9231-9236. 

4:  Mckone TE, Currie RC, Chiao FF, Hsieh PPH (1995) Intermedia Transfer Factors for 

Contaminants Found at Hazardous Waste Sites. Executive Report, a report prepared by the Risk Science 

Program, University of California, Davis for the State of California. Department of Toxic Substances 

Control, Sacramento, CA, US.  
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2. Parameters in freshwater compartement 

Parameter (Unit) 2-FUN  

Symbol 

Value 

(& PDF) 

Source  

1
st
 empirical parameter for the 

relationship between time-dependent 

organic fraction in SPM and 

time-dependent SPM (-) 

αyoc, SPM  0.55 

Tri(0.15, 0.96, 0.55) 

5  

1st parameter of the linear relationship 

betweeen log(BAF) and log(KOW) (-) 

α0,fish 0.85 6  

2nd parameter of the linear relationship 

betweeen log(BAF) and log(KOW) (-) 

α1,fish -0.70 6 

2
nd

 empirical parameter for the rating curve 

relating SPM and flow rate in river (m/d) 

b 0.99 

N(0.99, 0.13) 

5 

Diffusion coefficient of oxygen in water BO2,water 0.000165 5 

Biomass of fish in the river (gww/m
2
) Biomassfish 20 E.J. 

Boundary layer thickness above sediment 

(m) 

δsed 0.015 

Uni(0.0, 0.03) 

5 

Boundary layer thickness below sediment 

(m) 

δwater 0.00045 

Uni((2.0, 7.0)10
-4

) 

5 

Maximum erosion rate (g/m
2
/d) emax 2673 

LN2(2673, 5.4) 

5 

Daily ingestion rate (1) of fish by humans 

(kgfw/d) 

(Age: 3 - 12) 

fishing,rate 0.02 

 

7  

Daily ingestion rate (2) of fish by humans 

(kgfw/d) 

(Age: 13 - ) 

fishing,rate2 0.021 7 

Gravity acceleration (Pa m
2
/kg) g 9.8  

Depth of river (m) Hriver 3.0 

LN(3.0, 1.0) 

Default 

Sediment consolidation rate constant (d
-1

) λc 0.004 Sanford and 

Maa (2001) 

Elimination rate constant in fish (d
-1

) λelim,fish 0.001 E.J. 

Length of river (m) Lriver 3000 Default 

1
st
 empirical parameter for the rating curve Log(a) -4.19 5 
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relating suspended particulate matter (SPM) 

and flow rate in river (-) 

N(-4.19, 0.33) 

Molar mass of CO2 (g/mol) MCO2 44  

Molar mass of water (g/mol) MH2O 18  

Molar mass of dioxygen (g/mol) MO2 32  

Manning's coefficient (m
1/3 

/s) nMa 0.045 

Uni(0.02, 0.07) 

5 

Power coefficient of the diffusivity 

relationship (-) 

nwater 0.6 

Uni(0.5, 0.7) 

5 

Porosity of sediment (-) θsed 0.37 

Uni(0.33, 0.41) 

5 

Universal gas constant (Pa.m
3
/mol/K) R 8.205  

Density of water (kg/m
3
) ρwater 1000  

Critical shear stress for resuspension (N/m
2
) ηr 0.18 

LN2(0.18, 3.78) 

5 

Settling velocity of particles (m/d) Wc 18.9 

LN2(18.9, 3.0) 

Tanaka et al. 

(2010) 

Daily ingestion rate of tap water by humans 

(L/d
-1

) 

watering,rate 0.283 8 

Width of the river (m) Wriver 300 Default 

Fraction of organic matter in sediment (-) yOC,sed 0.034 

LN2 (0.034, 2.25) 

5 

*N, LN, LN2, Tri, and Uni indicate normal (mean, standard deviation), lognormal (mean, standard 

deviation), lognormal (geometric mean, geometric standard deviation), triangular (minimum, maximum, 

mode), uniform (minimum, maximum) distributions, respectively. 

* E.J. denotes Expert Judgment 

 

5:  Ciffroy P, Tanaka T (2009) Intermediate database on parameters included in the freshwater 

sub-model. Prepared for 2-FUN project (Full-chain and Uncertainty Approaches for Assessing Health 

Risks in Future Environmental Scenarios), D2.3 (available at www.2-fun.org). 

6:  EC (1996) Technical Guidance Document in support of Commission Directive 93/67/EEC on risk 

assessment for new notified substances and Commission Regulation (EC) 1488/94 on risk assessment 

for existing substances. PARTS I, II, III and IV. Document. ISBN 92-827-8011-2. Luxembourg: Office 

for Official Publications of the European Communities. 
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7:  The data were obtained from the 2
nd

 National Individual Survey on Food Consumption (INCA 2) 

conducted between the end of 2005 and April 2007, which contains food consumption data gathered 

over 7 days for over 4,000 participants, adults and children, living in mainland France (Available at 

www.afssa.fr) 

8: Volatier JL (2000) Enquéte INCA Individuelle et Nationale sur les Consommations Alimentaires. 

Tec & Doc Lavoisier ed. Paris. 

 

3. Parameters in air compartement 

Parameter (Unit) 2-FUN  

Symbol 

Value 

(& PDF) 

Source 

Height of atmosphere (m) hatm 10,000 E.J. 

Rainfall scavenging ratio for gas 

(Ratio between the concentration in 

rainwater (mg/m3) and in gas (mg/m3)) (-) 

 

Λscavenging,gas 45800 9  

 

Rainfall scavenging ratio for particles (Ratio 

between the concentration in rainwater (in 

mg/m3 rainfall) and in aerosols (mg/m3     

air)) (-).  

Λscavenging,part 5440 9 

Octanol-air partition coefficient for PAHs 

(-) 

Log(KOA,PAH) 10.77 10  

 

Total surface area of target region (m
2
) Satm 1000,000 Default 

Area of the region side (m
2
) Sfrontier 1000,000 Default 

Total suspended particles in atmosphere  

(g/m
3
) 

TSPatm 3.5 10
-5

 11  

Dry deposition velocity (m/d) Vdry,atm 1680 12  

 

9:  Sahu SK, Pandit GG, Sadasivan S (2004) Precipitation scavenging of polycyclic aromatic 

hydrocarbons in Mumbai, India. Sci Total Environ 318: 245-249. 

10:  Finizio A, Mackay D, Bidleman T, Harner T (1997) Octanol-air partition coefficient as a predictor 

of partitioning of semi-volatile organic chemicals to aerosols. Atmos Environ 31: 2289-2296. 

11.  Granier LK, Chevreuil M (1997) Behavior and spatial and temporal variations of polychlorinated 

biphenyls and lindane in the urban atmosphere of the Paris area, France. Atmos Environ 31: 3787-3802 

12.  Wang XL, Tao S, Dawson RW, Wang XJ (2004) Uncertainty analysis of parameters for modeling 

the transfer and fate of benzo(a)pyrene in Tianjin wastewater irrigated areas. Chemosphere 55: 525-531. 
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4. Parameters in soil / groundwater compartement 

Parameter (Unit) 2-FUN  

Symbol 

Value 

(& PDF) 

Source 

Diffusion coefficient in surface soil 

and vadose zones (m
2
/d) 

Dsoil 0.1 E.J. 

Gas phase mass transfer coefficient at the 

interface between air and soil  

 (m/d) 

Dsoil,atm 0.24 E.J. 

Porosity in the aquifer (-) ε 0.5 E.J. 

Faction of organic carbon in soil (-) fOC 0.02 E.J. 

Air content in soil (-) Gsoil 0.1 E.J. 

Depth of root zone (m) hroot 1.0 E.J. 

Distribution coefficient in the aquifer 

(m
3
/kg) 

Kd,aquifer 1.0 E.J. 

Bulk mass density of the aquifer (kg/m
3
) ρaquifer 2000 E.J. 

Dry density of soil (kg/m
3
) ρsoil,dry 1600 E.J. 

Wet density of soil (kg/m
3
) ρsoil,wet 2000 E.J. 

Fraction of soil water storage at field 

capacity in the root zone (-) 

θfc 0.3 E.J. 

Fraction of soil water storage corresponding 

to the depletion fraction for no stress in 

plants (-) 

θp 0.2 E.J. 

Fraction of soil water storage at wilting 

point in the root zone (-) 

θwp 0.15 E.J. 

Maximum groundwater contribution (mm/d) Vu,max 1.0 E.J. 

Water content in soil (-)  0.35 E.J. 

 

5. Parameters in plant compartements 

All the information about the parameters in plant compartments is present in the following 

document: 

13:  Legind CN, Trapp S (2010) Review of features, events and processes incorporated in existing 

models for chemical uptake into plants and animals – Proposal of the conceptual and mathematical 

2-FUN model for assessing transfer of chemicals to plants and animals. Prepared for 2-FUN project, 

D2.4 (available at www.2-fun.org). 
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Environ Toxicol Chem 29: 2417-2425. 

Tanaka T, Ciffroy P, Stenberg K, Capri E (2010) Probabilistic estimation of the settling 

velocity of particles using a Bayesian approach. Submitted to Chemosphere. 

Ciffroy P, Tanaka T, Marang L, Johansson E, Capri E (2010a) Simulation of time-dependent 

deposition/resuspension of contaminants to and from sediments in multimedia models: model 

and parametric uncertainty analysis. Submitted to J. Soil Sed. 

[Posters] 

Tanaka T, Ciffroy P, Stenberg K, Capri E (2010) A statistical method to estimate the 

probabilistic uncertainty of the settling velocity of particles - a Bayesian method. SICA 2010 

XXVIII Convegno Nazionale della Società Italiana di Chimica Agraria. September 20-21 

2010, Piacenza, Italy.  

Tanaka T, Ciffroy P, Stenberg K, Capri E (2009) Regression analyses to derive exposure-and 

species-specific probability density functions of bioconcentration factors for metals. SETAC 

Europe 19
th
 Annual Meeting. May 31-June 4 2009, Gothenburg, Sweden. 

 

Original publications relevant for Chapter 4 

[Paper on peer reviewed journals] 

Ciffroy P, Tanaka T, Johansson E, Brochot C (2010) Linking multimedia environmental and 

PBPK models to assess health risks of B(a)P associated to drinking water – A case study. 

Submitted to Environ Geochem Hlth. 

[Poster and Abstract] 

Brochot C, Tanaka T, Johansson E, Beaudouin R, Zeman F, Bois FY, Ciffroy P (2010) 

Integrating multimedia environmental models and effect models on a common platform for 

risk assessment. IUTOX 2010 XII International Congress of Toxicology. July 19-23 2010, 

Barrcelona, Spain [Awarded for „ECETOC Young Scientist Award‟ as best poster 

presentation recognition, given to Brochot C and Tanaka T]. 
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Ciffroy P, Tanaka T, Maurau S, Brochot C, Johansson E, Roustan Y, Capri E 2010 Linking 

multimedia environmental and PBPK models on a common platform to assess health risks of 

PAHs : a case study including uncertainty/sensitivity analysis. SEGH 2010 International 

Conference and Workshops. June 27-July 2 2010, Galway, Ireland. 

  

 


