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ABSTRACT 

 

CHROMOSOME AND GENOTYPE CHARACTERIZATION IN SOME RICE BIOTYPES 

SHOWING GRAIN SHATTERING 

 

Red rice (Oryza sativa var. silvatica L.) is a common weed in rice crop, very troublesome 

to control due to high shattering. The aim of the present research was to analyse the 

genome of some biotypes of red rice in order to promote innovatives methods for its 

control.  

In the first year, morphological and karyotypical analysis of some phenotypically different 

red rice biotypes in comparison with the rice cultivar ‘ Loto’  were carried out. The seeds 

of rice and red rice were sown in greenhouse and afterwards the root tips of the seedlings 

were employed for the cytological analysis. The chromosome preparations were made by 

the standard air-drying technique, after enzymatic maceration, and stained with a 4% 

Giemsa solution for 20 min., according to Fukui and Iijima’ s method (1992). 

The analysis, by means of a computerized chromosome image method (CHIA– EA), 

showed that in red rice various translocations occur, which always involve a chromosome 

of the first pair together with other elements of the set. Previous results clearly indicated 

that each red rice biotype is characterized by a specific translocation, showing a 

relationship among different phenotypes and karyotypes. It is important to note that in 

Oryza sativa one gene for shattering maps to the long arm of chromosome 1, which is 

always involved in the translocations. The project is divided into three phases: the field 

growing and observations, the laboratory analysis and the computer analysis. The first 

results that we have obtained support the proposed assumption. An increase in the dose 

of the genes frequently alters the phenotype, depending upon the effect of the genes 

involved.  

In the second year, the research was based on the molecular analysis. Since the 

shattering gene is located on the long arm of the chromosome 1, which is involved in the 

translocation process, I have analyzed this genomic locus by both cytogenetic and 

molecular biology techniques.  

The shattering character relies on the presence of a single-nucleotide polymorphism 

(SNP) which can explain about 70% of the non-shattering character associated to this 

gene whereby this SNP probably affects a regulatory region. In my experimental results, 

the CDS of the eight biotypes of Oryza sativa var. silvatica coincides with a rice genome 



presenting a high non- shattering character, except for the case of the qSH1-SNP, located 

outside the CDS, coinciding with the low non-shattering genome rice.  

In the third year,  in order to ascertain if the shattering gene is displaced, breaks or 

remains on chromosome 1, we made use of the FISH method. The FISH cytogenetic 

method is employed in order to identify specific sequences of nucleic acids in the 

chromosome. It represents a significant contribution to standard cytogenetic for the 

identification of chromosome numerical  and structural anomalies. It led however to an 

encouraging result for two different biotypes: the discovery that the shattering gene does 

not undergo translocation. Other QTLs for shattering character were noticed on 

chromosomes 1, 3, 4, 7, 8 and 11, in other cultivated rice species which partially explain 

the shattering character, although the responsible gene was identified only in three of 

these QTLs: 1, 4 and 7. 

The analysis of the involved genes of chromosomes 4 and 7 in our eight red rice biotypes 

has revealed that the QTLs found on these chromosomes are probably not involved in the 

shattering character. 

These analysis provide a wide overview of a possible correlation between the different 

phenotypes of the eight biotypes, shattering level, karyotypic differences connected with a 

specific translocation for each biotype and the fact that both these translocations and the 

gene responsible for the shattering of the eight biotypes are always present in 

chromosome 1. The investigation of the relationship between the various translocations 

and the expression of the shattering gene would require further and more sophisticated 

analyses. 
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THE ORIGIN AND TAXONOMY OF RICE 

 

Rice is the most important cereal in the world and the main crop in almost all tropical 

and sub-tropical regions. Twenty-two species belonging to the genus Oryza (fam. 

Poaceae) are known nowadays, but only two of them (Oryza sativa L. and Oryza 

glaberrima Steud) are currently cultivated. Because of its economic and social 

importance, rice is one of the most studied plant, both from the genetic and from the 

cytological standpoint. 

The wide botanical variability of rice is the result of an evolution process due both to 

natural factors and to the long selection performed by the growers. 

The two cultivated annual species are supposed to derive from a common perennial 

progenitor (Oryza perenne Moench). It is believed that the basic differentiations 

occurred in South-Eastern Asia (Oryza sativa) and in the inner delta of Niger, in West 

Africa (Oryza glaberrima), while Oryza sativa evolved in quite different environments 

and gave rise to ecological forms belonging to three sub-species: indica, japonica, 

javanica. 

The sub-species indica is widespread in South-Eastern Asia. The indica varieties 

present tall size, wide and drooping leaves, latent seeds and tendency to grain 

shattering (i.e. to drop the kernel before maturing). 
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The sub-species japonica evolved in China and spread in Korea, Japan and temperate 

countries, where genotypes with short grains, low amylose content, low grain shattering 

and tolerance to low temperatures were selected. 

The sub-species javanica evolved in Indonesia and spread in Philippines, Japan and 

Formosa. Its characteristics are intermediate between the previously mentioned ones: 

tall size, low grain shattering, wide and upright leaves and seeds with awn (Bandino and 

Russo., 1989). 

Rice needs a hot, humid climate and a large availability of water: rice crops are usually 

flooded during its entire period of growth. 

Because of the steady increase of the world population, the future food production 

efficiency per unit area must be improved (Labrada., 1996). The yield of rice crop is 

strongly conditioned by the presence of weeds, which may reduce it even by 10-20 %. 

One of the main weeds is Oryza sativa subspecies japonica var. sylvatica, commonly 

called “red rice”. In the whole of the Korean peninsula, 22 red rice varieties are found 

and is also found in the Philippines, Vietnam, Nepal, Cambodia and other Asian 

countries. In Korea, most of red rice varieties/germplasms are classified by categories, 

such as plant type, panicle type and rice color. Many studies suggested that 

temperature is an important factor controlling the germination characteristics of red rice 

and it could be useful to classify red rice cultivars (Cho, Y.S., 2010). 
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RED RICE 

 

GENERAL FEATURES 

Red rice is an annual weedy form of Oryza sativa, classified as Oryza sativa L. var. 

sylvatica. It’s morphological characteristics before the grain ripening phase are quite 

similar to the cultivated rice, and it is hardly distinguishable. 

Red rice presents in general a greater size and heading earliness than the cultivated 

rice. 

Among its main peculiarities we recall the tendency to grain shattering, the red colour of 

the pericarp and the presence of awns of different colour and length. 

 

GRAIN SHATTERING 

The tendency to drop kernels before maturity is called “shattering”, and it is associated 

to a “shattering gene”. Plants homozygous for the recessive allele (shsh) have no 

shattering aptitude, while plants heterozygous (Shsh), or homozygous for the dominant 

allele (ShSh) show a grain shattering phenotype. The sh gene affects the development 

of the three abscission layers between kernel and rachilla. In fact, this gene causes the 

suberization and the subsequent lignification of the abscission layers, leading to the 

grain shattering phenomenon (Nagao and Takahashi., 1963). 
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A pool of seeds is therefore created, from which red rice quickly spreads. Nevertheless, 

its reproduction is mainly due to self-pollination and cleistogamy, and only a small part 

gives rise to hybridation with the cultivated rice. In the process of rice domestication, 

human selection was likely to have favored mutations that reduced grain shattering but 

did not eliminate the formation or function of the abscission layer. In this way, grain loss 

due to shattering was largely prevented during harvest while a certain level of grain 

abscission was maintained so that the yield increase was not offset by creating 

difficulties in threshing. Rice was domesticated from wild grass species. Because wild 

grasses naturally shed mature grains, a necessary early step toward rice domestication 

was to select plants that could hold on to ripe grains to allow effective field harvest. The 

selection process might have been mainly unconscious because grains that did not fall 

as easily had a better chance of being harvested and planted in the following years. 

Consequently, nonshattering alleles had an increased frequency and eventually 

replaced the shattering alleles during domestication. 

  

RED  PERICARP 

A frequently observed character of red rice is the presence of 

a red pericarp of the grains, causing the name of the rice 

itself. The kernel colour, however, may range between red 

Figure 1. Kernels of red 

rice 
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and brown-black, and may even be white (Ferrero., 1994) (Fig. 1). 

The pericarp coloration is due to the concurrence of two complementary dominant 

genes, Rc and Rd (Bandino and Russo., 1989). Rc determines the basic pigment, while 

Rd increases its action, and controls the pigment distribution over the surface of the 

pericarp. The usual condition of cultivated varieties is determined, however, by the 

double recessive genes (rcrd), deleting the surface pigment of the pericarp. The brown 

pericarp kernels have a Rcrd genotype. 

The red kernel colour may also appear in some cultivated rice varieties, because of a 

spontaneous retro-mutation phenomenon (rd  Rd), or as a consequence of the 

hybridation with species bearing such trait. 

 

AWNS 

When awns are present, their colour may 

range between white and black-violet, and they 

may have a variable length (Fig. 2) 

The awn formation is due to some polygenes 

with additive effect (An1, An2, An3). 

 

 

 

Figure 2. Red rice awns 
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THE PHYSIOLOGY OF RED RICE SEEDS  

The biologic characteristics of red rice are quite different from the ones of cultivated 

rice. 

The weed control is helped by the knowledge of the seed biology. Beyond, in fact, the 

aforementioned morphologic characteristics (that make red rice a dangerous weed), we 

must take into account: 

- the timing and the persistence of the germinative capacity of the seeds, 

- the duration of seed dormancy after harvesting (almost absent in cultivated 

varieties), 

- the grain shattering level. 

The high variability of these characters found in the various ecotypes of red rice, may 

have important agronomic consequences. 

The knowledge of the dynamics of the germinative capacity and shattering of grains of 

red rice is fundamental for pointing out the correct period to control such weedy rice. 

According to some studies carried out in Italy , the red rice seeds may already 

germinate 9 days after blooming. Three weeks after blooming, the number of seeds 

able to germinate ranges between 55% and 70% of the total amount (Balsari and 

Tabacchi, 1997; Ferrero et al., 1998). 

Unlike cultivated rice, the seeds of red rice, as well as those of other spontaneous 

species, present a more or less high dormancy level (Russo, 1995). From an agronomic 
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standpoint, this phenomenon allows red rice with delayed germination to escape both 

chemical and mechanical control (Ferrero and Vidotto, 1997). The strong selective 

pressure exerted by the control strategies applied for many years may even favour the 

diffusion of delayed emergence. 

Dormancy is progressively lost by the seeds after maturing, at a rate depending on the 

biotype (Cohn and Hughes, 1981). 

The mechanisms determining the appearance or loss of dormancy are still not clear. 

The break of dormancy is always accompanied by a pH reduction of the tissues of the 

seeds, especially of the embryo (Footitt and Cohn, 1992). 

The dormancy is influenced by growing conditions (Delatorre, 1999), and the humidity 

and temperature during storage (Leopold et al., 1988; Ferrero, 1994). 

The planning of any weed control strategy requires the knowledge of the seed vitality 

persistence, i.e. the rate at which the stock of seeds in the soil gradually loses its 

germinative capacity. This information is fundamental when (as in the case of red rice) 

control criteria based also on crop rotation are adopted. In a series of long lasting 

experiments (more than 7 years) performed in the USA on pools of red and cultivated 

rice seeds conserved in flooded or in dry soil, a germination rate larger than 90% (for 

certain sites and populations) was observed for the red rice seeds. An even longer 

longevity, reaching 12 years (Diarra et al., 1985), was found in more recent works 

(Ferrero and Finassi, 1995). 
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EMERGENCE CAPACITY 

The emergence capacity is another feature making red rice more competitive than 

cultivated rice. In fact, the number of seeds giving rise to seedlings is inversely 

proportional to the depth where the seeds are placed (Roberts and Feast, 1972), and to 

the layer of water on the surface of the soil (Ferrero and Finassi, 1995; Saldain et al., 

1996; Saldain et al., 1997; Gealy et al., 2000). 

In the cultivated species, the seedlings may emerge only when the depth is not higher 

than 3-4 cm, while in red rice they may emerge from quite deep layers, since its growing 

capacity may reach even 12-14 cm. 

 

CROP DAMAGES 

Red rice raises a serious problem in almost all the rice crops around the world, and 

even more where a direct sowing is performed. 

The damage due to weeds mainly consists in the yield lowering caused by their 

competitive absorption of light and nutrients and in the higher processing cost. 

The weed kernels not yet fallen down before rice threshing, in fact, are harvested with 

rice itself and  pollute the commercial lots. 

The elimination of these kernels in the rough crop requires a great effort, leading to a 

longer processing and to a greater reject at sorting. Because of the competition 

affecting the crop, the observed processing losses range, in fact, between 40 and 50%. 
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In order to provide a feeling of the  weed aggressiveness and diffusion potential we 

recall that in the usual rice growing conditions weedy rice produces at least 3-4 fertile 

culms by plant, with 80-100 seeds for each panicle; in case of low competition capacity 

by the cultivated varieties  (because of their small size, low density and so on) even 6-8 

fertile culms per plant may occur. 

 

DIFFUSION IN ITALY 

Red rice has always worried Italian farmers. As we know, such a problem is certainly 

present in Italian rice crops since the beginning of the XIX century (Biroli, 1807). 

The Experimental Institute of Rice Growing of Vercelli ( which successively became the 

CRA-RIS) organized contests, since 1911, for the production of red rice-free seeds, 

aiming to limit the diffusion of this noxious weed.  

One of the factors favouring the weed diffusion is certainly given by a permissive seed 

legislation. Red rice is present, with various degrees of infestation, in all the  rice crops. 

 

DIFFUSION IN EUROPE 

Red rice represents a problem in all European countries where rice is grown. 

In France, it infests about 70% of the rice crops and is faced with the so-called “false 

sowing” (to be described later on). 
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In Spain it is limited to the Catalan region, where it infests 60-70% of the 20000  ha 

dedicated to rice growing. The most common control method is the “puddling”, which is 

a kind of false-sowing, with a final phase performed by tractors endowed with cage 

wheels. 

In Portugal the control is performed by means of false-sowing (and a final treatment with 

glyphosate), hand weeding and crop rotation (mainly with tomato and sunflower). 

In Greece  no specific control method is employed, because of the low diffusion of this 

weed. 

 

RED RICE CONTROL 

Red rice control is quite harder than that of other 

weeds because of its high morphologic variability 

and its affinity with cultivated rice. 

Neglecting transgenic rice cultivars improved to 

overcome this difficulty, selective herbicides 

would  protect red rice as well as cultivated rice. 

The control is further entangled by the continuous emergence of red rice, although its 

main germination flux occurs between half april and half may (Ferrero and Vidotto, 

1996). 

Figure 3. Red rice experimental plots 
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The high adaptability of the germination process enhances the competitive aggression 

power of the red rice forms emerging earlier (or later) than the cultivated varieties 

(Ferrero and Vidotto, 1997). 

Because of the impossibility to rely on chemicals alone, and the absence of a specific 

control method allowing to keep the weed below an acceptable level, red rice must be 

faced by means of an integrated approach (Fig. 3). No single method, in fact, appears 

to be decisive by itself. 

 

PREVENTIVE CONTROL 

Such a control consists of all the devices employed to reduce as much as possible the 

provision of seeds of the weed due to human activities. It is mainly obtained by using 

certified selected seeds and careful cleaning of machinery and farm implements 

employed during the harvesting, in order to avoid the weed diffusion into the weed-free 

lots. 

 

AGRONOMIC CONTROL 

Soil tilling 

In an integrated control of red rice the choice of the soil tilling method depends on the 

seed bank (both overall and at different depths) and the other control method to be 

applied. Weedy rice control methods that can be applied in rice crops are expensive, 
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time-consuming and usually do not lead to a total eradication of the weed infestation. 

Incomplete control of the weed for a given year could lead to eliminating the results of 

several years of good control. Weedy rice escapes of 5 percent or less can produce 

enough seeds to restore original soil seed bank population levels. 

 

Water management 

The presence of a water layer on the field surface strongly affects the emergence and 

the development of rice weeds. Just like other weeds, as green bristle-grass 

(Echinochloa spp.), red rice is fostered by a very thin water layer. 

Also for water, the best management method must be selected in relation to the other 

ones. 

In the case of false seedbed, for instance, in order to stimulate emergence, the rice field 

is flooded only at the beginning of the seed dressing, leaving then the water level to be 

gradually lowered by percolation and evaporation. 

When on the contrary herbicides are employed before sowing, a high water level is 

employed, in order to restrain the emergences. 

 

Use of early varieties 

The application of false seedbed, delaying by about 30 days the usual sowing time, 

requires the use of early varieties. 
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Crop rotation 

Crop rotation is the most efficient agronomic technique for a long lasting weed 

abatement. In fact, one of the main causes of the dramatic diffusion of red ice is the 

almost complete absence of crop rotations in the Italian rice fields. When the infestation 

is particularly serious, crop rotation is the only possible solution. 

Corn and soya are the most usually employed cultivations for rice crop rotation. Red 

rice may then be controlled either by means of chemical weeding (before or after the 

red rice emergence) or mechanical techniques.  

 

False seedbed 

False seedbed is probably the most widespread technique in Italian rice crops. Its aim is 

to induce a plentiful and possibly uniform emergence of the weed before rice sowing.  

The emergent seedlings are then removed by means of mechanical or chemical 

methods. The main factors for the success of the practice are: 

- the type of soil preparation: the less the soil is tilled, the larger is the emergence 

rate; 

- water dose during the false seedbed: although the lowering of the water level 

causes a larger emergence rate, the seedlings grown in a thick water layer 

appear more sensitive to chemicals; 
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- false seedbed duration: it must be a compromise between the need of a high 

emergence rate of red rice seeds and the need to conclude early the crop cycle.  

 

Hand weeding 

Red rice hand removal (Fig. 4) presents very 

high costs, it is nowadays applicable only in case 

of low infestation levels, and requires skilled 

seasonal labour (Cerina et al., 1994). 

 

 

 

Chemical weeding 

In red rice control, because of the high affinity 

between weed and cultivation, chemical 

treatments are applicable almost only before 

sowing (Fig. 5).  

The use of chemical products after rice sowing is 

limited to assistance by bar wetting.  

The treatments to be performed before sowing are 

red rice pre-emergence, 

Figure 4. Red rice hand removal. 

Figure 5. Total weeding. 
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red rice post-emergence, together with false sowing. 

 

Genetic control 

Biotechnologies are widely applied to rice improvement, mainly aiming at inducing 

resistance to adverse climatic conditions (such as drought), to insects (Fujimoto et al., 

1993) and to herbicides (Rathore et al., 1993). The researches concerned mainly the 

resistance induced by plant transformation. Transgenic varieties are mostly cultivated in 

the USA. 

The possibility of an efficient red rice control in transgenic rice cultivars was soundly 

demonstrated (Sujatha et al., 1997; Wheeler et al., 1997; Wheeler et al., 1998; 

Chambers and Childs, 1999), but it presents a few potential risks, whose most 

dangerous one is the passage of the herbicide resistance-inducing gene to red rice 

itself. Resistant offsprings were indeed observed in situations of crossbreeding between 

red rice and transformed variety. 

 

Mechanical control 

The mechanical control of red rice is always matched to false seedbed,  it is applied by 

means of harrows of different kinds, but its results are less satisfactory than the 

chemical weeding. In spite of these limitations, it has the advantage  of a low cost and a 

lower dependance on climatic conditions. 
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RICE KARYOTYPICAL ANALYSIS  

 

Kuwada in 1910 analyzed the rice karyotype, defining its chromosomic number (2n=24).  

The analysis and identification of the chromosomes were hindered, however, by the 

following factors:  

-the small size of chromosomes at the metaphasic stage: chromosomes, in fact, appear 

in a quite contracted form, and are similar one to another, so that their identification is 

impossible, in spite of their different length; 

-the presence of thick cell walls hinders to obtain efficient preparations, because of the 

absence of dispersion of the chromosomes on the slide by means of the usual crushing  

techniques;  

-the absence of reproducible bands, such as the ones employed in animal cytogenetics: 

the bands obtained on each chromosome, in fact, turned out to be heterogeneous, and 

therefore unfit to ensure the chromosome identification. 

More suitable methods were therefore employed in order to get good preparations, such 

as enzymatic maceration and air-drying (Fukui and Mukai, 1988). 

Rice chromosomic analysis must be performed, moreover, on prometaphasic 

chromosomes, because in this phase they are more elongated, showing therefore 

different lengths and chromatin condensations. 
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Since the usual stains carmine and acetic orcein turned out to give unsatisfactory 

results, a new dye was adopted: the Giemsa dye, that allows to get a colour varying 

along the chromosome, according to the different chromatin condensation level. 

Euchromatin leads to zones with low intensity colour, while eterochromatin leads to a 

more intensely coloured zones (Fukui, 1986 b). 

Many authors analyzed the rice karyotype both in germinal tissues at the pachitene 

stage (Shastry et al., 1960; Kurata et al., 1981 b; Chen et al., 1982; Chung and Wu, 

1987), and in prometaphases of somatic cells (Nandi, 1936; Hu, 1958; Kurata and 

Omura, 1978; Kurata et al., 1981 b; Fukui, 1986 a; Chung and Wu, 1987). 

The analyses of the rice karyotype were mainly based on the differences about 

chromosome length, centromere position, chromatin density along the chromosome and 

the arm ratio (Kurata and Omura, 1978; Wu and Chung, 1989; Fukui and Iijima, 1991). 

Because of the subjectivity of the chromosome identification, there were many 

disagreements, and therefore did not existe an encoded chromosome identification 

system. 

In order to balance the absence of an objective chromosome classification method, 

Iijima et al. (1991) developed a new method, called CHIAS (Chromosome Image 

Analysis System), based on the image analysis of chromosomes, and allowing an 

objective characterization of each chromosome. This system may provide quantitative 

information on each chromosome in a standard and fast way, and it is based on fixed 
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procedures, concerning chromosome length, arm ratio and, above all, "Condensation 

Pattern" (CP), i.e. the density profile of chromatin distribution along the chromosome. 

 

CHIAS ANALYSIS  

 

CHIAS is an interactive analysis system of the chromosome image, which was mainly 

employed for the “Condensation Pattern" (CP). CP is the third parameter (besides 

chromosome length and arm ratio) employed by Fukui (1986 a) for the  chromosome 

identification. 

This system was mainly developed for the plant chromosomes, in order to obtain a 

standard method for the karotype analysis. Plants, in fact, are often characterized by a 

very large and variable number of chromosomes presenting also cases of polyploidy 

and aneuploidy. 

Three versions were worked out for CHIAS. 

The first one (CHIAS I, Fukui, 1986) makes use of a system operating only with images 

having a specific format. 

The second one (CHIAS II, Fukui and Najayama, 1996) makes use of images in a 

format compatible with the main operative systems, but requires a large amount of 

memory in the system. 
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The third  version (CHIAS III, Fukui and Kato, 1998) was contrived to bypass the 

previous difficulties. 

 

CHIAS IDENTIFICATION OF THE CHROMOSOMES OF A HAPLOID VARIETY OF 

JAPANESE RICE: KOSHIHIKARI , n = 12 

 

The CHIAS chromosome identification system 

was applied to the prometaphases of a haploid 

rice variety (‘Koshihikari’ var. japonica), obtained 

by means of enzymatic maceration and air-

drying, with a final colouring by means of the 

Giemsa 4% solution (Fukui and Mukai, 1988; 

Fukui et al., 1988; Iijima and Fukui,1990; Fukui 

and Iijima,1991; Fukui and Iijima,1992; Fukui, 1998). 

Prometaphases were selected with straight 

chromosomes and no superposition. 

Microscope pictures were taken with three different 

exposures: plain, overexposed, and underexposed. 

Plain and overexposed pictures, processed with CHIAS, 

are employed to extract the chromosome profiles.  

Figure 6.  Image pseudocoloring  (CHIAS 

III Manual Online). 

 

Figure 7. Centromere 

identification (CHIAS III Manual 

Online). 
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Underexposed pictures are employed, in their turn, to sharpen the cromatin density 

distribution along the chromosomes. 

The picture is saved in the computer memory by means 

of a TV camera. It is then handled with CHIAS, thus 

obtaining a digital image with 256 grey ranges. The 

grey range, in its turn, is transposed into a fictitious 

coloration, so that a different colouring (defined 

“pseudocolouring”) is obtained for each different 

coloration range, making the chromatin identification 

easier also to human eye (Fig. 6). 

The narrowest chromosome region (corresponding to the centromere) is successively 

identified, and a line dividing the chromosome into two arms is traced and assigned a 

zero grey value (Fig.7). 

A median line is finally traced along each chromatid, along which the chromatin density 

distribution (CP) is determined  for each chromosome (Fig. 8). 

Figure 8. Middle axis of 

chromatid. (CHIAS III Manual 

Online) 
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Data concerning chromosome length, arm ratio and 

chromatin density along the chromosome are therefore 

acquired. This information is graphically represented by 

plotting  the grey values (on a scale from 0 to 256) versus 

the chromosome length (expressed in pixels), showing also 

the centromere position and the arm length.  

The regions with higher grey intensity are the less 

condensed ones, while the more condensed ones 

correspond to the minima of the plot (Fig. 9). 

By means of  the CHIAS analysis of each chromosome, we get  four different images, 

each leading to different data (Fig. 10): 

- the first image displays the chromosome in white and black;  

- the second (pseudocolored) image allows to visualize the most condensed parts; 

- the third is a 3-D image; 

-the fourth image graphically represents the CP, which is unique and typical for each 

chromosome, because it defines the real chromatin density distribution along the 

chromosome, which would be hardly perceived from the white and black image alone. 

 

 

 

Figure 9. 

Condensation Pattern 

of a rice chromosome 

(Fukui  and Iijima, 

1990). 
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Figure 10.  Chromosome  images, digitally handled with the CHIAS system (Fukui K. e Iijima K., 1991). 
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CYTOLOGIC MAPPING OF THE HAPLOID RICE KOSHIHIKARI   (n = 12) 

 

Starting from the CP plot, we may build the 

chromosome ideogram (Fig.11) in three 

different chromatin condensation intensities 

along the chromosome. 

Grey ranges with values between 0 and 123 

represent te most condensed regions, shown 

in black in the figure. 

Grey ranges between 123 and 199 are zones 

with an intermediate condensation, checked 

in the figure 11.  

Human perception of different colours ranges 

between 123 and 199. No difference is 

perceived above and below these limits. 

The CHIAS method allowed the identification 

and characterization of all the prometaphase 

chromosomes, providing therefore the 

Figure 11. CP plot, and ideogram of 

the chromosome n°. 9 (Kamisugi et al., 

1993) 

Figure 12 Cytologic map of the  

chromosomes of the haploid cv ‘Koshihikari’ 

of Oryza sativa var. japonica (Fukui and 

Iijima, 1991). 
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possibility of building a complete cytologic map for the cv ‘Koshihikari’ of rice (Fig. 12). 

 

DESCRIPTION OF RICE CHROMOSOMES 

 

By means of CHIAS and direct observation of prometaphases, some key characters 

were found for the identification of rice chromosomes (Iijima et al., 1991; Fukui and 

Iijima, 1992). 

The twelve rice chromosomes are numbered in order of decreasing length, and are 

subdivided into metacentric, submetacentric and acrocentric. 

Chromosome 1 

It is the longest one, and it is submetacentric. The two arms present wide euchromatic 

zones, and the zones of the long arm are about twice as long as those of the short one. 

The pericentromeric regions are mildly condensed.  

Chromosome 2 

It is a large metacentric; its two arms are symmetric, and have little condensed 

pericentromeric zones of average length. The tips of the two chromatids are often 

separate. 

Chromosome 3 

It is a large submetacentric. The euchromatic zone of the long arm is twice as long as 

the short one. The pericentromeric regions are mildly condensed and symmetric. 
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Chromosome 4 

It is the largest acrocentric.  The euchromatic zone on the long arm is very extended, 

while the short arm is almost entirely condensed, with a small distal euchromatic zone. 

The pericentromeric zones are strongly condensed and of uniform length. 

Chromosome 5 

It’s a small metacentric, with symmetric arms. Both the extended pericentromeric 

condensed zones and the euchromatic zones have the same arm structure. 

Chromosome 6 

It is submetacentric. The pericentromeric zone is more extended and condensed  in the 

short arm. The euchromatic zone of the long arm is five times as long as that of the 

short arm. The chromatids often converge in the distal zone.  

Chromosome 7 

It is quite similar to chromosome 6, since it is almost metacentric, and has 

eterochromatic symmetric zones, with an analogous condensation level. The 

euchromatic zone in the long arm is almost four times larger than in the short arm. 

Chromosome 8 

It is a small metacentric. The pericentromeric eterochromatic zones are symmetric and 

extend to a large part of the chromosomic arms. The short arm is almost entirely 

eterochromatic, with a small euchromatic zone, while the long arm presents an 

euchromatic zone almost double with respect to the short one.  
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Chromosome 9 

It is almost metacentric. Most of the chromosome is condensed: three strongly 

condensed blocks may be seen, in fact, one of them on the long arm and one on the 

short one. The euchromatic zones are quite small.  

Chromosome 10 

It is almost metacentric. The pericentromeric zones are quite extended and condensed, 

especially on the long arm. The euchromatic zones on both arms are quite small. 

 Chromosome 11 

It is acrocentric. It is endowed with a probe (seat of the nucleolar organizer) attached to 

the short arm, or apparently detached from it. The (very small) short arm, and more than 

half of the long arm, are strongly condensed, especially in the pericentromeric zones. A 

small euchromatic zone may be seen on the long arm. 

Chromosome 12 

It is the smallest acrocentric. Its morphology is analogous to that of chromosome 4, but 

the euchromatic zone is quite smaller.  

 

METHODS FOR CHROMOSOME  IDENTIFICATION 

 

Iijima, Kakeda. and Fukui (1991) have established the following sequence of 11 steps 

for the identification of the 12 rice chromosomes. 
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1. Can visual inspection alone allow to identify chromosomes 4,11,12 ? 

In case of negative answer, stop here! 

2. In case of positive answer, select chromosomes 4, 11, 12. 

3. Identify the longest remaining chromosomes, i.e. chromosomes 1, 2 and 3.  

4. Find the most metacentric of the three longest chromosomes. It’s 

chromosome 2. 

5. Select the chromosome with the smallest short arm, selecting it between the 

longest remaining ones: it’s chromosome 3.  

6. In case chromosomes 1,2,3 could not be completely identified, the analysis 

must be interrupted. 

7. Select a chromosome with three condensed blocks: two on the long arm and 

one on the short arm: it is chromosome 9. 

8. Select, between the three shortest chromosomes of the remaining five, that 

with a condensation on the long arm greater than on the short arm: it is 

chromosome 10. 

9. Discard now, from the remaining four chromosomes, the one with the shortest 

long arm, and remove the chromosome with the longest short arm from the 

other ones: the last ones are chromosomes 5 and 8. 

10. The longest of the two chromosomes is  number 5; the other one is 

chromosome 8. 
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11. Select finally a chromosome with very different condensation levels between 

long and short arm: it is chromosome 6. The last one is chromosome 7. 

These steps are summarized in Figure 13. 

 

The number of the relevant step is placed inside the rectangles and rhombuses, while 

the numbers pointed out by the arrows are the ones of the chromosomes selected at 

each step. 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 13. Scheme of the chromosome identification sequences (Fukui  and Iijima, 1992). 
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KARYOTYPES OF ITALIAN CULTIVARS OF RICE 

 

The first analyses of diploid Italian rice karyotypes based on methods analogous to the 

CHIAS III system first employed by Fukui and Kato in 1998 were performed by 

Sparacino et al. (2003, 2004) at the Faculty of Agriculture of the University of Milan. 

Such a method, based on the Visual Basic programming environment for the 

Application of Microsoft Excel (VBA), was called CHIA-EA (Chromosome Image 

Analysis - Excel Application). 

The karyotype analysis was applied to somatic chromosomes of two varieties of Oryza 

sativa subsp. japonica: 

•  the cultivar ’Loto’ (2n=24), employed as control;  

• the varietas sylvatica (2n=24), generally defined “red rice”.  

The results of this  research, compared with the aploid cv ‘Koshihikari’ (var. japonica, x 

= 12) - analyzed with the CHIAS system - pointed out no substantial difference 

concerning the chromosome characteristics in terms of morphology, arm ratio and 

eterochromatin density distribution (Fig. 14). 
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Figure 14. Quantitative ideogram of the somatic chromosomes of  the ‘Loto’ 

variety (Sparacino et al., 2004). The condensed regions are shown in black; 

the mildly condensed ones, in grey; the euchromatic ones, in white. 
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The analysis of the red rice karyotype has shown, however, the presence of mutations 

both at a chromosomic and at a genomic level. 

As far as chromosome mutations are concerned, in fact, different translocations were 

observed, always involving both a chromosome pertaining to the first pair (presenting a 

marked deficiency on the long arm) and another element of a pair of the entire set: 

either 2, or 3, or 4, or 5, or 6, or 7, or 8, or 9, or 12. 

Also the second chromosome involved in the translocation turns out to be anomalous, 

because of an additional segment on one of the two arms, either the long or the short 

one, modifying therefore its arm ratio. All the translocations observed so far are 

summarized in the quantitative ideogram of Figure 15. 

As far as genomic mutations are concerned, on the other hand, eteroploid cells were 

occasionally observed with 23 chromosomes (2n-1) and with 25 chromosomes (2n+1), 

due to a non-disjunction at the meiosis. 
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Figura 15. Quantitative ideogram of the somatic chromosomes of red rice. 

The most condensed regions are marked in black; the mildly ones, in grey and the 

euchromatic ones in white. The long arm of the anomalous chromosome of the first 

pair and the additive segment of chromosomes involved in anomalies, finally, are 

marked in yellow (Sparacino et al., 2004).  
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RICE MOLECULAR ANALYSIS 

 

Linkage studies revealed the presence of rice shattering loci on chromosome 11 (Nagao 

and Takahashi, 1963), chromosome 1 (Oba et al., 1990), chromosome 4 (Eiguchi and 

Sano, 1990; Nagai et al., 2002) and chromosome 3 (Fukuta and Yagi, 1998). Moreover, 

rice shattering QTLs have been reported on chromosomes 1, 3, 4, 7, 8 and 11 (Xiong et 

al., 1999; Cai and Morishima, 2000; Bres-Patry et al., 2001; Thomson et al., 2003). 

However, only two rice shattering genes have been identified through map-based 

quantitative trait loci (QTL) cloning. The qSH1 gene, a major QTL on chromosome 1 

causes loss of expression only at the abscission layer. 

A work published on Science (Konishi et al., 

2006), reported the existence of a QTL region 

proven by the analysis both of the shattering-

type indica cultivar ‘Kasalath’ and of a 

nonshattering-type japonica cultivar 

‘Nipponbare’. Located at 12 kb from SNP there 

is one ORF similar to the RPL gene of the 

Arabidopsis involved in the abscission layer 

alongside the valve of the Arabidopsis fruit. This 

ORF represents the gene of the non- shattering 

degree (Fig.16). 

Figure 16. The abscission layer alongside 

the valve of Arabidopsis fruit. 
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A single-nucleotide polymorphism (SNP) in the 5’ regulatory region of the qSH1 gene 

caused loss of seed (i.e. shattering), due to the absence of abscission layer formation. 

The Authors, Konishi  et al, also found other SNP and AT repeat, A repeat and T repeat. 

The qSH1-SNP responsible for the shattering is a T nucleotide in the non-shattering-

type japonica cultivar ‘Nipponbare’, and a G nucleotide in the shattering-type indica 

cultivar ‘Kasalath’. The Authors also represented the non-shattering degree for different 

rice typologies in association with the relevant SNP, as shown in  Figure 17. 

 

 

Figure 17: The SNP of Kasalath and Nipponbare found on chromosome 1 by Konishi et al. (2006) are 

shown in the upper part  of the figure; the results of Kasalath (first line) and Nipponbare (second line) are 

shown in the lower part. The column on the right shows the relevant shattering degrees.  

 

They also represented in a table the non-shattering level for different rice typologies in 

association with the relevant SNP (Fig. 18). 
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Figure 18. The non-shattering level for different rice typologies in association with the relevant SNP. 
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Figure 19  presents the sequenced regions containing the qSH1- SNP and all the SNP, 

AT, T and A repeats found by Konishi et al. 

 

Chromosome 1 

 

 

 

Figure 19. From up to down:  

blue: chromosome 1;  

yellow and brown: the 4 sequenced zones in the region containing the shattering gene; 

green and brown: the 4 exons into which the region containing SNP3 and SNP4 was subdivided. 
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Hyeonso et al. (2010) identified a recessive shattering locus sh-h in the artificial obtened 

mutant line Hsh of shattering rice, that carries an enhanced abscission layer. They 

mapped sh-h in a 34 kb region on chromosome 7 by analyzing 240 F2 plants and five F3 

lines from the cross between Hsh and ‘Blue&Gundil’. The Hsh has a SNP where A 

becomes T (Fig. 20). This causes the production of a mutant protein, shorter by 5 

amino-acids than the ‘Hawacheong’ wild type in the acceptor site of 7th intron of the 

OsCPL1 gene, responsible for the shattering character (QTL). These results 

demonstrate that OsCPL1 represses differentiation of the abscission layer during 

panicle development. 

Moreover, the insertion of transferred DNA (T-DNA) into a mutant line has a SNP where 

G changes into T in the 8th exon of OsCPL1 gene; this mutation leads to the substitution 

of an amino-acid, so that a serine is replaced by an isoleucine. The obtained protein 

abolishes the phosphatase activity, thus enhancing the abscission and seed shattering. 

 

 

 

 

 

 

Figure 20. AT and GT  mutations in  the OsCPL1 gene of the Hwacheong and Hsh lines. 
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Another major QTL on chromosome 4, named sh4 is described by Changbao Li et al., 

(2006) which found that human selection of an amino acid substitution in the predicted 

DNA binding domain encoded by a gene of previously unknown function was primarily 

responsible for the reduction of grain shattering in rice domestication.  

They mapped a region of  Chr4, 1.7kb wide, where they found  mutations responsible 

for the non-shattering character in some cultivars of rice. The comparison of two such 

sequences in rice cultivars revealed seven mutations, one of which is located in an 

intron. The important mutations turn out to be located in an exon, and are represented 

in Figure 21.  Here (b) represents the insertion (or deletion) of 5 amino-acids (TGGAA); 

(c) represents the insertion (or deletion) of the amino-acid Valine, and (d) represents an 

amino-acid substitution where T mutates to G, so that  Asparagine mutates to Lysine. 

The substitution undermined the gene function necessary for the normal development of 

an abscission layer that controls the separation of a grain from the pedicel. The 

increased expression of sh4 in the late stage of seed maturation suggests that the gene 

may also play a role in the activation of the abscission process. 

 

 

 

Figure 21. This figure shows the sh4 protein sequence of Oryza sativa. Mutations between the mapping 

parents are indicated by (b), ( c) and (d). For Oryza sativa (non-shattering rice) N = AAT; for Oryza nivara 

(shattering rice) N is replaced by K = AAG. The mutations (c) and (b) are present only  in Oryza nivara. 
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AIM OF THE WORK  
 

One of the main factors affecting the rice yield is the presence of weeds, one of which is 

represented by Oryza sativa sub. japonica var. sylvatica, commonly called ‘red rice’.  

Kuwada (1910) first reported the chromosome number of cultivated rice, using both 

mitotic and meiotic cells, while no information about red rice genome is reported in 

literature. 

The cytologic study of red rice is important because it allows:  

- to study the anomalies in the chromosome structure and number;  

- to try to establish the relation between karyotype and phenotype;  

- to explore the main points to be deepened by molecular methods. 

The red rice peculiarity is the grain shattering before its full physiological maturity: this 

phenomenon is regulated by a  gene (Konishi et al., 2006). Genetic studies reveal the 

existence of several QTLs presenting shattering character. These QTLs are localized on 

rice chromosomes 1, 3, 4, 7, 8, 11 (Hyeonso Ji et al., 2010). The responsible genes 

have been identified for three of them: the chromosomes 1 (Konishi et al., 2006), 4 

(Changbao et al., 2006) and 7 (Hyeonso et al., 2010) . Previous studies (Sparacino et 

al., 2003) have pointed out that chromosome 1 is implied in some chromosome 

anomalies and we wanted to clear this point by applying the FISH technique. 

The aim of the present work is to perform a comparative analysis of the morphological 

and karyotypical characteristics of different biotypes of red rice. This comparison could 

give more information about the determinism of the grain shattering character and help 

both the biotype classification and the control of red rice. The location of the grain 

shattering gene in different biotypes of red rice could indicate a correlation between the 

translocation phenomenon and the activation of the shattering gene. 

I considered eight biotypes of Oryza sativa var. sylvatica that show a high degree of 

shattering. In the eight biotypes I investigated both the chromosome complement, and 

the genome sequence around the non-shattering locus. 
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The expected results may be summarized as follows: 

- information about possible chromosomic differences between red rice biotypes and the 

cultivated rice; 

- information about possible genomic differences between the red rice biotypes and the 

cultivated rice varieties bearing the grain shattering character;  

- genetic analysis of the shattering gene on the chromosomes 1, 4 and 7. 
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BIOLOGICAL MATERIAL 

 

The experiments were carried out on eight phenotypically different weedy rice biotypes 

(Oryza sativa subsp. japonica var. silvatica, 2n=24) which were collected in 92 Italian 

rice fields. The Italian cv ‘Loto’ of rice (Oryza sativa subsp. japonica, 2n=24) was 

considered as control. 

Morphological characterization of the biotypes was primarily based on the following 

seed traits: length, shape, weight, pericarp and kernel colour, and the presence and 

colour of awns. In addition, plant height was measured at maturity from the surface of 

the soil to the tip of the panicle. In order to assess the shattering degree, failing to 

provide a valid scientific method, we limited ourselves to the simple visual observation. 

Every year, in May, germination of seeds occurred in a growth chamber, and seedlings 

were then transplanted into pots in a peat-based substrate in a greenhouse (Fig. 22).  

 

 
 

Figure 22. Red rice biotypes in greenhouse. 

 

At the 3rd leaf stage, the young plants were transplanted into containers (100x50x50 

cm) filled with a medium texture soil, arranging six plants of the same biotype per 

container, in open air (Fig.23). 
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Figure 23. Red rice biotypes into large containers. 

 

At flowering, panicles of each biotype were isolated with cellulose bags in order to 

prevent the cross pollination (Fig.24) 

 

 

           

Figure  24. Isolation of panicles at flowering 

 

The irrigation was performed according to the Italian rice growing system, consisting of 

periodical flooding. 
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CYTOLOGICAL ANALYSIS 

 

The cytological preparations were made by using the root tips of red rice biotypes and 

cv ‘Loto’ of rice, performing their enzymatic maceration, then the standard air-drying 

technique, and finally staining with 4% Giemsa solution (pH 6.8) for 20 min (Fukui and 

Iijima, 1992). 

At the prometaphase the chromosomes were elongated and identifiable. 

Detailed analyses of images of chromosomes at prometaphase, which is the best stage 

to detect morphological differences, were performed using the computerized 

methodology named Chromosome Image Analysis-Excel Application-CHIA-EA 

(Sparacino et al., 2004). The prometaphasic chromosome images were imported into 

the application. First each chromosome image appeared in black and white, then it was 

converted into a pseudo-coloured image. This fact enabled us to determine all the 

parameters necessary to characterize each chromosome, that is: a) length, b) 

centromere position, c) arm ratios, d) distribution of chromatin density. 

The CP (Condensation Pattern) profiles identify and characterize the somatic 

chromosomes; the vertical axis gives the grey values from 0 to 255 defining the 

chromatin density distribution along the length of the chromosome, and the horizontal 

axis gives the chromosome length, the centromere position and the arm ratios by 

means of the pixel number. 

The data were converted into graphs, or CP profiles, which enabled the characterisation 

of each chromosome and the construction of the corresponding cytological map. 

 

DNA ANALYSIS 

 

DNA EXTRACTION FOR PCR (Polymerase Chain Reaction) 

The leaves from 8 biotypes were crumbled in liquid nitrogen with mortar and pestle, 

preserving then the obtained material in a few test tubes for 24 hours at -70°C.  

The DNA extraction was performed by means of a DNeasy Plant Kit, which is a mini-kit 

for the mini-prep purification of total cellular DNA (www.qiagen.com). The DNeasy Plant 

http://www.qiagen.com/
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Kit uses advanced silica-gel–membrane technology and simple spin procedures to 

isolate highly pure total cellular DNA from plant tissues and cells or fungi. The DNA is 

conserved at -4°C.  

DNA was extracted from 100 mg of leaves, thus obtaining 150 µl of DNA, with a 

average concentration of 50 ng/µl. 

 

PCR 

 

Choice of the Primer 

The primers for the genetic analysis of qSH1, qSH4 and qSH7 are shown in Table 1. 

 

Table 1 - Primer used  

Loci Name FP Forward Primer (5’ – 3’) Name RP Reverse Primer (5’ – 3’) Amplified region 

qSH1 

qSH1-F 

106.5K-U 

TTACTTGGCGGCTTTGAAGT 

qSH1-R 

107.2K-L 

TATGGTTGGATTGGGACGAT qSH1-SNP 

qSH1 RBEL-E1-U ATCATGCAGCAAGTGACCAC RBEL-E2-L2 TCACAACCTAGAGATGAGGC SNP3-SNP4 

qSH1 con24-13U CAATGGAAAAGCCGCTGATG con24-13L CGTTGCATGAATTGTAGCAC 

SNP1-SNP2-(AT)1-

(AT)2-(T)1 

qSH1 108.9K-U ACAGGGTGATCCCAACAGTT 109.8K-L TAACCGGTGATGGTTGTGCA 

SNP5-SNP6-SNP7-

SNP8-(A)-(T)2 

qSH4 qSH4-F GGACTACCGCAAGGGGAAC qSH4-1R AGAGCGCGTCGTAGACCTC qSH4-SNP (d) - b - c 

qSH4 qSH4-2F GGGCGGAGTGAGTAATTGAT qSH4-2R TACATCGATCGTCCTTGCTG Exon 2 

qSH7 qSH7-F TTGCTATTGGCTTTCACTGG qSH7-R TGGGATCATCAAACCAGCTT qSH7-SNP (Exon 8) 

qSH7 qSH7-1F TGATCCAGATGGTTTGGAGA qSH7-1R TGATTTTGCATTAACATACACATCAT Exon 3 

qSH7 qSH7-2F TGGCTGTATTTGGTTCTTTGC qSH7-3R GGCATCAAAAGATGAATTCAAAA Exon 4 

qSH7 qSH7-4F TTTTGCTCTCCATACCATGTTG qSH7-4R TGGAACAGAAGGCTCCTTAG Exon 5 

qSH7 qSH7-5F CGAAATTGTCTTTTCCTTTCTCC qSH7-5R GAATACAAACCACTAAAACCAGGA Exon 6 

qSH7 qSH7-F TTGCTATTGGCTTTCACTGG qSH7-6R CATACCAGCCCTTCTGCATT Exon 7 
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PCR amplification 

PCR amplifications were performed in a final volume reaction of 30 µl (Table 2). 

 

Table 2  - PCR Standard Mix 

 

Reagent Concentration Volume 

Template DNA 50 ng/µl 1 µl 

Forward primer 5 µM 1 µl 

Reverse primer 5 µM 1 µl 

dNTPs mix 150 µM 3 µl 

PCR Buffer 10x 3 µl 

Taq gold polymerase 5U/µl 0.3 µl 

Nuclease free water Water DEPC up to 30 μl 

 

 

PCR purification 

The PCR products  were purified with UltraClean DNA BloodSpin Kit of MO BIO 

Laboratories. 

 

DNA EXTRACTION FOR THE C0T PRODUCTION 

The C0t value is the product of C0 (the initial concentration of DNA), t (time in sec), and 

a constant that depends on the concentration of cations in the buffer. 

The DNA was extracted from 12 g of leaves, thus obtaining 1600 µl, with a 

concentration of 0.64 µg/µl. The leaves were crumbled with mortar and pestle, adding 

liquid nitrogen.  

The material was conserved in a few Eppendorf tubes, at -70°C, for a few days. 

Two different extraction methods were employed:  

1) DNeasy Plant Maxi Kits uses advanced silica-gel–membrane technology and simple 

spin procedures to isolate highly pure total cellular DNA from plant tissues and cells or 

fungi (www.qiagen.com); 

http://en.wikipedia.org/wiki/Cation
http://www.qiagen.com/
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2) The protocol reported by Dellaporta et al. (1983) modified as follows: 

 Samples in groups of 300mg of milled leaves  

 Pre-heating of the buffer (Solution 1) at 65 °C for 20’ 

 Adding 0.6 ml of buffer, and incubating at 65 °C for 15’ and at 4°C for 1h 

 Centrifuging at 5200 rpm for 25’ at 15°C 

 Recovering the supernatant 

 Adding 5 µl RNAsi (100mg/ml) and incubating at 37 °C for 1h 

 Adding 1 vol of phenol : chloroform (500-600µl) and centrifuging at 5200 rpm for 

15’ 

 Recovering the supernatant 

 Adding 1 vol of chloroform (500µl) and centrifuging at 5200 rpm for 15’ 

 Recovering the supernatant 

 Adding 0.6 vol of isopropanol (300µl) and 1/10 vol of NaAc (50µl) 3M pH 5.2, and 

precipitating at -80 °C either for 90’ or overnight 

 Centrifuging at 5200 rpm for 30’ at 4 °C 

 Throughing away the supernatant 

 Washing pellet with 500 µl per sample of cold EtOH 70%  

 Centrifuging at 5200 rpm for 5’ at 4 °C 

 Throughing away the supernatant 

 Re-suspending in water DEPC up to 100µl 

 Storing at -20 °C 

 

Extraction buffer for each sample: 

 100mM  Tris HCl pH 8 

 100mM  NaCl   

 5mM  EDTA 

 1%  SDS 

 2.5%  ß-mercaptoethanol  
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C0T PREPARATION   

This preparation was carried out according to Zwick et al. (1997): 

 

 Step 1. Quantify with care the concentration of genomic DNA: 0.64 µg/ul. 

 Step 2. Dilute the genomic DNA at a concentration of 470 ng/µl with 5 M NaCl 

and H2O, reaching a final concentration of 0.3 M NaCl and a final DNA volume of 

1.089 ml. 

 Step 3. Aliquot 1 ml of DNA in tubes with screw cap. 

 Step 4. Autoclave thrice for 5’ in liquid cycle. 

 Step 5.Take 500 ng and put on agarose gel 1% (the DNA must range between 

100 and 1000 bp: otherwise, autoclave again in order to reach this range). 

 Step 6. Put all samples in a Falcon tube of 15 ml, and keep in ice. 

 

Reannealing 

1) The time required by the reannealing phase is provided by the formula: 

    C0t = 1 = mol/L x Ts 

 where the initial concentration (C0) is expressed in nucleotid moles per liter, and 

           time (Ts) in seconds. 

 An average of 339 g/mol of a deoxynucleotid monophosphate is assumed. 

 The fragmented DNA is at a concentration of 470 ng/µl = 0.470 g/L. 

 Since 1 mole of dNTP = 339 g/mol, the moles of fragmented DNA are given by: 

  0.470 g/L /339 g/L = 13.8 x 10 -4 mol/L. 

 The value C0t = 1 is therefore obtained if the reaction lasts 721 sec (about 12 

           min). 

2) From the volume of DNA, we obtain 5.1 µl of S1 nuclease, with a concentration of 1 

    U/µg DNA. 

3) The DNA must be now denatured by putting the Falcon 15 at 95 °C for 10 min. 

4) Place first the Falcon in ice for 10 sec, and then at 65 °C for the time computed by 

    means of the formula given above (reannealing time), i.e. for 12 min. 
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Digestion with S1 nuclease 

1. After the reannealing time, add to the tube 5 µl of S1 10X nuclease and 218.8 µl 

of buffer 5X and put at 37 °C for 8 min.  

2. Stop the reaction, add 30 µl of EDTA, put at -70 ° C for 10 minutes, keep in ice 

for 10 min and storage at -20°C.  

3. Re-precipitate with sodium acetate 0.3 M and a volume of isopropanol amounting 

to 0.8 of the total at -20°C, for 2 hours. 

4. Centrifuge at 13000 GPM for 25 min. 

5. Remove the liquid, while keeping the pellet, and dry at 37 °C.  

6. The following day add 100 µl of DEPC water, and make use of vortex. 

7. Make an agar gel 1%. 

8. The concentration of the COT is 0.8 µg/µl. 

 

S1 10x Buffer Solution:  

 0.5 M       NaO Ac  pH 4.5 

 45 mM     ZnSO4 

 sterilized filter 

 

S1 Nuclease:  

 Produced by Boeringher man, 10.000 U [400 U/µl]. 

 

FISH METHOD 

 

We followed the Fish method reported by De Lorenzi et al. (2007). 

FISH analysis makes use of a rice-specific BAC clone provided by NIAS (National 

Institute of Agrobiological Sciences) of the Genome Resource Center. This BAC is 

denominated P0005H10, and it overlaps the shattering gene region of chromosome 1. 

The required methodology is the following: 

 [P0005H10] = 66,7 µl = 667 ng/µl 

 Prepare in an Eppendorf this mixture of bases:    
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- 2.5 µl  buffer 10x  

- 2.5 µl   ß-mercaptoethanol (0,1M) 

- 0.5 µl   other bases  

- 0.3 µl Cy3 – dUTP (1mM) 

 Prepare the probe with 1 µl DNAbac and 16,2 µl H2O 

 Add 2 µl mix enzymes and vortex (Vtot = 25 µl) 

 Incubate at 15 °C for 45’ 

 Add 1 µl EDTA and put in the refrigerator 

 The probe is precipitated by adding 9 µl COT, 3 µl ssDNA (salmon sperm) and 

3.7 µl of sodium acetate. Then, vortex 

 Add 130 µl of frozen EtOH, and vortex 

 Put Eppendorf at -20 °C for 4h 

 Pre-heat hybridation at 37 °C  

 Centrifuge the probe at 13000 cycles per minute for 30’ 

 Dry the liquid and  put it at 37 °C for 10’ 

 Add 8 µl of bases and keep at 37 °C for 30’ 

 Pass the slide through alcohol bowls at 70%-80%-95%, 6 min for each step 

 Leave the slide to dry in air  

 Vortex the probe 

 Pre-heat the slides for 2’ at 60 °C on the plate 

 Place a drop of the probe at the center of the slide  

 Place the slide on the plate at 75 °C for 4’ and wind with parafilm 

 Place in moist chamber at 37 °C for a night 

 Flush three times for 5’ in SSC kept at 60 °C 

 Put on the slide 250 µl mix (BSA, SSC, Tween), and cover with coverslip, and put 

in moist chamber at 37 °C for 30’ 

 Remove coverslip  

 Put on slide 100 µl detection solution, add 5 µl avidin FITCH and cover with 

coverslip  

 Put at 37 °C for 30’ 
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 Gently remove coverslip and flush three times for 5’ in the solution 4x SSC, 0.1 

Tween 20 at 42 °C 

 Wash with PBS for 1’ 

 Dip in 100µl DAPI for 5’ 

 Quick flush of PBS 

 Quick flush in distilled H2O  

 Dry in the dark 

 Place coverslip with Vectashield Mounting Medium and keep in dark  

 

Employed solutions:   

 Buffer 10x: 

- 0,5 M TRIS HCl pH 7,2 

- 0,1 M MgSO4 

- 1 mM DTT 

- 500 µg/µl BSA 

 Other bases: 

- 0,5 mM dATP 

- 0,5 mM dGTP 

- 0,5 mM dCTP 

 Detection: 1% BSA, 4x SSC, TWEEN20  0.1 

 SSC  0.1x 

 EDTA  0.5M   pH 8 

 SSDNA  10 µg/µl 

 NaAc (sodium acetate) 3M 

 EtOH (ethanol) 100% 

 BSA  3% e 1% 

 TWEEN20  0.1 

 DAPI  1µl [0,2mg/ml] + 1ml  SSC 2x  
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MICROSCOPES 

 

The chromosomic analysis was performed by means of two microscopes: 

1. LEICA DM-RB Microscope with LEICA DC 300 Camera 

2. LEICA DMR Microscope with LEICA DC 250 Camera 
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RESULTS 
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MORPHOLOGY 
 

The main qualitative traits of the grains of red rice biotypes are summarized in Table 3. We 

may observe that only in biotype 1 the awn was absent. Biotype 2 differs from the other 

ones both for the awn length and for the color of the caryopsis. The seed color is the same 

for all biotypes, while some differences may be noticed both in the form of the caryopsis 

and in the awn color and length. 

                          

 

 

Table 3. Main traits of the eight red rice biotypes. The awns are considered short when they range between 

0-2 cm; medium for 2-3 cm; long > 4 cm. 

 

Average values and standard deviations concerning seed length, width and thickness of 

red rice biotypes are reported, respectively, in Figure 25, 26 and 27.  
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Figure 25. Average seed length (with standard deviation) in different biotypes. 

 

 

 

Figure 26. Average seed width (with standard deviation) in different biotypes. 
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Figure 27. Average seed thickness (with standard deviation) in different biotypes. 

  

A remarkable difference may be observed about the biotype lengths (biotype 1 is the 

shortest and biotype 5 the longest one). Biotype 3 is the narrowest, while the others have 

quite similar widths. The thickness, on the other hand, is almost the same for all biotypes.  

About the shattering level, results are reported in Figure 28. We observe that the 

shattering degree is proportional to the length (including awns) of the seeds, ranging from 

50% in biotype 1 to 90% in biotype 2. 

 

 
 

Figure 28. Shattering degree (with standard deviation) in different biotypes. 
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As far as qualitative parameters is concerned (Table 4), they turned out to remain 

unchanged during the three years of the trial, and we may observe the differences 

between biotype 6 and all the others. Biotype 8, in its turn, has a different color of the 

collar. 

 

Biotypes 
Culm color  

Collar Nodes Internodes Sheath 

1 light red green green green 

2 light red green green green 

3 dark red green green green 

4 light red green green green 

5 light red green green green 

6 red red red green 

7 light red green green green 

8 red green green green 

 

Table 4. Culm color of the biotypes 

 

Figure 29, on the other hand, shows that the average size of all the biotypes was higher in 

the first year. Probably climatic and growing conditions caused these differences.  

Biotypes 1 and 8 were the lowest and the tallest, respectively, while biotypes 3, 5, 6 and 7 

had similar heights and biotypes 2 and 4 differed from all the others. 

 

 

 

Figure 29. Average plant height at maturity stage during the three years of the trial. 



63 

 

CYTOGENETICS 

 

At the prometaphase the chromosomes were elongated and easily identifiable (Fig. 30). 

 

 

 

Figure30. Prometaphase in cv ‘Loto’ 

 

In Figure 31 is reported the pseudo-color image obtained from the black and white image. 

In this way we have determined all the parameters necessary to characterize each 

chromosome, i.e.: 1) length differences, 2) centromere position, 3) arm ratios, 4) 

distribution of chromatin density. 
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Figure 31. Image analysis of chromosome 1 of cv ‘Loto’ 

 

The Condensation Pattern (CP) profile identifies and characterizes the somatic 

chromosomes; the vertical axis gives the grey values from 0 to 255 defining the chromatin 

density distribution along the length of the chromosome in pixels, and the horizontal axis 

gives the chromosome length in pixels, the centromere position and the arm ratios by 

means of the pixel number (Fig. 32). 

 

  

Figure 32. CP profiles of the first pair of ‘Loto’ chromosomes (a and b). 

 

Crom 1 a 

0,00 
50,00 

100,00 
150,00 
200,00 
250,00 
300,00 

1 15 29 43 57 71 85 99 113 127 141 155 169 183 197 211 225 239 253 267 281 295 

Crom 1 b 

0,00 
50,00 

100,00 
150,00 
200,00 
250,00 
300,00 

1 15 29 43 57 71 85 99 113 127 141 155 169 183 197 211 225 239 253 267 281 295 



65 

 

The cytogenetic map (Fig. 33) of the Italian rice cultivar ‘Loto’ (Oryza sativa ssp. japonica) 

does not reveal any substantial difference in chromosomal characteristics between it and 

the other rice cultivars belonging to the ssp. japonica.  

 

 

 

Figure 33. Cytogenetic map of the Italian rice cv ‘Loto’. The three different colors correspond to different 

condensation degrees of chromatin along the chromosome. The black regions are the most condensed 

ones; the grey regions feature an intermediate condensation; the white regions are the less condensed ones. 

Chromosome images and CP profiles of 10 prometaphase karyotypes, which were 

produced using the CHIA-EA method, provide evidence of the presence of many 

translocations in weedy red rice. In addition, this method clearly demonstrates that each 

biotype is characterised by a specific translocation. Given that chromosome 1 is involved 

in all the observed translocations, all the karyotypes share the same anomaly, i.e. deletion 

of an element of chromosome pair 1, which is shorter than its homologue, because of a 

considerable deletion of the distal segment on its long arm. In addition, taking into account 

that the distal segment of chromosome 1 may be displaced by translocation to the 
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terminus of either the short (S) or the long (L) arm of another chromosome, a second 

anomalous chromosome containing an additional segment at one of its two extremities is 

present in all karyotypes. Both anomalies are observable in the CP profiles of three 

prometaphases for each biotype (from Figure 34 to 81), where we can see the pixel extent 

of each chromosome arm, as well as an altered ratio of the length of the chromosome 

arms. 

 

Biotype 1 

 

 

 

Figure 34. Prometaphase of red rice biotype 1. The chromosome couples involved in the translocation are 1 

and 5. The red numbers label anomalous chromosomes.  
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Figure 35. Computer-aided characterization of a pair of homologues of chromosome 1 (a and b) and 

chromosome 5 (a and b) from biotype 1. The grey images (left) show a normal (up) and an anomalous 

(down) Giemsa-stained chromosome. The Pseudo-color images (centre) given by CHIA-EA are shown for 

the same chromosomes. Moreover, the CP profiles (right) for the normal chromosome (a; black) and for the 

anomalous chromosome (b; red) are shown, and the differences in long arm length and centromere position 

are clearly visible.  
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Figure 36. Prometaphase of red rice biotype 1. The chromosome couples involved in the translocation are 1 

and 5. The red numbers label anomalous chromosomes. 
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Figure 37. Computer-aided characterization of a pair of homologues of chromosome 1 (a and b) and 

chromosome 5 (a and b) from biotype 1. The grey images (left) show a normal (up) and an anomalous 

(down) Giemsa-stained chromosome. The pseudo-color images (centre) given by CHIA-EA are shown for 

the same chromosomes. Moreover, the CP profiles (right) for the normal chromosome (a; black) and for the 

anomalous chromosome (b; red) are shown, and the differences in long arm length and centromere position 

are clearly visible. 
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Figure 38. Prometaphase of red rice biotype 1. The chromosome couples involved in the translocation are 1 

and 5. The red numbers label anomalous chromosomes. 
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Figure 39. Computer-aided characterization of a pair of homologues of chromosome 1 (a and b) and 

chromosome 5 (a and b) from biotype 1. The grey images (left) show a normal (up) and an anomalous 

(down) Giemsa-stained chromosome. The pseudo-color images (centre) given by CHIA-EA are shown for 

the same chromosomes. Moreover, the CP profiles (right) for the normal chromosome (a; black) and for the 

anomalous chromosome (b; red) are shown, and the differences in long arm length and centromere position 

are clearly visible. 
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Biotype 2 

 

Figure 40. Prometaphase of red rice biotype 2. The chromosome couples involved in the translocation are 1 

and 2. The red numbers label anomalous chromosomes. 
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Figure 41. Computer-aided characterization of a pair of homologues of chromosome 1 (a and b) and 

chromosome 2 (a and b) from biotype 2. The grey images (left) show a normal (up) and an anomalous 

(down) Giemsa-stained chromosome. The pseudo-color images (centre) given by CHIA-EA are shown for 

the same chromosomes. Moreover, the CP profiles (right) for the normal chromosome (a; black) and for the 

anomalous chromosome (b; red) are shown, and the differences in long arm length and centromere position 

are clearly visible. 
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Figure 42. Prometaphase of red rice biotype 2. The chromosome couples involved in the translocation are 1 

and 2. The red numbers label anomalous chromosomes. 
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Figure 43. Computer-aided characterization of a pair of homologues of chromosome 1 (a and b) and 

chromosome 2 (a and b) from biotype 2. The grey images (left) show a normal (up) and an anomalous 

(down) Giemsa-stained chromosome. The pseudo-color images (centre) given by CHIA-EA are shown for 

the same chromosomes. Moreover, the CP profiles (right) for the normal chromosome (a; black) and for the 

anomalous chromosome (b; red) are shown, and the differences in long arm length and centromere position 

are clearly visible. 
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Figure 44. Prometaphase of red rice biotype 2. The chromosome couples involved in the translocation are 

the ones of chromosomes 1 and 2. The red numbers label anomalous chromosomes. 
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Figure 45. Computer-aided characterization of a pair of homologues of chromosome 1 (a and b) and 

chromosome 2 (a and b) from biotype 2. The grey images (left) show a normal (up) and an anomalous 

(down) Giemsa-stained chromosome. The pseudo-color images (centre) given by CHIA-EA are shown for 

the same chromosomes. Moreover, the CP profiles (right) for the normal chromosome (a; black) and for the 

anomalous chromosome (b; red) are shown, and the differences in long arm length and centromere position 

are clearly visible. 
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Biotype 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 46. Prometaphase of red rice biotype 3. The chromosome couples involved in the translocation are 1 

and 12. The red numbers label anomalous chromosomes. 
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Figure 47. Computer-aided characterization of a pair of homologues of chromosome 1 (a and b) and 

chromosome 12 (a and b) from biotype 3. The grey images (left) show a normal (up) and an anomalous 

(down) Giemsa-stained chromosome. The pseudo-color images (centre) given by CHIA-EA are shown for 

the same chromosomes. Moreover, the CP profiles (right) for the normal chromosome (a; black) and for the 

anomalous chromosome (b; red) are shown, and the differences in long arm length and centromere position 

are clearly visible. 
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Figure 48. Prometaphase of red rice biotype 3. The chromosome couples involved in the translocation are 1 

and 12. The red numbers label anomalous chromosomes. 
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Figure 49. Computer-aided characterization of a pair of homologues of chromosome 1 (a and b) and 

chromosome 12 (a and b) from biotype 3. The grey images (left) show a normal (up) and an anomalous 

(down) Giemsa-stained chromosome. The pseudo-color images (centre) given by CHIA-EA are shown for 

the same chromosomes. Moreover, the CP profiles (right) for the normal chromosome (a; black) and for the 

anomalous chromosome (b; red) are shown, and the differences in long arm length and centromere position 

are clearly visible. 
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Figure 50. Prometaphase of red rice biotype 3. The chromosome couples involved in the translocation are 1 

and 12. The red numbers label anomalous chromosomes. 
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Figure 51. Computer-aided characterization of a pair of homologues of chromosome 1 (a and b) and 

chromosome 12 (a and b) from biotype 3. The grey images (left) show a normal (up) and an anomalous 

(down) Giemsa-stained chromosome. The pseudo-color images (centre) given by CHIA-EA are shown for 

the same chromosomes. Moreover, the CP profiles (right) for the normal chromosome (a; black) and for the 

anomalous chromosome (b; red) are shown, and the differences in long arm length and centromere position 

are clearly visible. 
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Biotype 4 

 

 

 

Figure 52. Prometaphase of red rice biotype 4. The chromosome couples involved in the translocation are 1 

and 3. The red numbers label anomalous chromosomes. 
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Figure 53. Computer-aided characterization of a pair of homologues of chromosome 1 (a and b) and 

chromosome 3 (a and b) from biotype 4. The grey images (left) show a normal (up) and an anomalous 

(down) Giemsa-stained chromosome. The pseudo-color images (centre) given by CHIA-EA are shown for 

the same chromosomes. Moreover, the CP profiles (right) for the normal chromosome (a; black) and for the 

anomalous chromosome (b; red) are shown, and the differences in long arm length and centromere position 

are clearly visible. 
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Figure 54. Prometaphase of red rice biotype 4. The chromosome couples involved in the translocation are 1 

and 3. The red numbers label anomalous chromosomes. 
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Figure 55. Computer-aided characterization of a pair of homologues of chromosome 1 (a and b) and 

chromosome 3 (a and b) from biotype 4. The grey images (left) show a normal (up) and an anomalous 

(down) Giemsa-stained chromosome. The pseudo-color images (centre) given by CHIA-EA are shown for 

the same chromosomes. Moreover, the CP profiles (right) for the normal chromosome (a; black) and for the 

anomalous chromosome (b; red) are shown, and the differences in long arm length and centromere position 

are clearly visible. 
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Figure 56. Prometaphase of red rice biotype 4. The chromosome couples involved in the translocation are 1 

and 3. The red numbers label anomalous chromosomes. 
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Figure 57. Computer-aided characterization of a pair of homologues of chromosome 1 (a and b) and 

chromosome 3 (a and b) from biotype 4. The grey images (left) show a normal (up) and an anomalous 

(down) Giemsa-stained chromosome. The pseudo-color images (centre) given by CHIA-EA are shown for 

the same chromosomes. Moreover, the CP profiles (right) for the normal chromosome (a; black) and for the 

anomalous chromosome (b; red) are shown, and the differences in long arm length and centromere position 

are clearly visible. 
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Biotype 5 

 

 

 

Figure 58. Prometaphase of red rice biotype 5. The chromosome couples involved in the translocation are 1 

and 7. The red numbers label anomalous chromosomes. 
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Figure 59. Computer-aided characterization of a pair of homologues of chromosome 1 (a and b) and 

chromosome 7 (a and b) from biotype 5. The grey images (left) show a normal (up) and an anomalous 

(down) Giemsa-stained chromosome. The pseudo-color images (centre) given by CHIA-EA are shown for 

the same chromosomes. Moreover, the CP profiles (right) for the normal chromosome (a; black) and for the 

anomalous chromosome (b; red) are shown, and the differences in long arm length and centromere position 

are clearly visible. 
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Figure 60. Prometaphase of red rice biotype 5. The chromosome couples involved in the translocation are 1 

and 7. The red numbers label anomalous chromosomes. 
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Figure 61. Computer-aided characterization of a pair of homologues of chromosome 1 (a and b) and 

chromosome 7 (a and b) from biotype 5. The grey images (left) show a normal (up) and an anomalous 

(down) Giemsa-stained chromosome. The pseudo-color images (centre) given by CHIA-EA are shown for 

the same chromosomes. Moreover, the CP profiles (right) for the normal chromosome (a; black) and for the 

anomalous chromosome (b; red) are shown, and the differences in long arm length and centromere position 

are clearly visible. 
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Figure 62. Prometaphase of red rice biotype 5. The chromosome couples involved in the translocation are 1 

and 7. The red numbers label anomalous chromosomes. 

 

 

 

 

 

 

 

 

 

 

 

 



95 

 

Chromosome 
Black and white 

image 

Pseudo-color 

image 
PC Profile 

Normal 

Chr 1 

  

crom 1a

0,00

50,00

100,00

150,00

200,00

250,00

300,00

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281

pixel

p
ix

e
l

 

Anomalous 

Chr 1 

  

crom 1b

0,00

50,00

100,00

150,00

200,00

250,00

300,00

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281

pixel

p
ix

e
l

 

Normal 

Chr 7 

  

crom 7a

0,00

50,00

100,00

150,00

200,00

250,00

300,00

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281

pixel

p
ix

e
l

 

Anomalous 

Chr 7 

  

crom 7b

0,00

50,00

100,00

150,00

200,00

250,00

300,00

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281

pixel

p
ix

e
l

 

 

Figure 63. Computer-aided characterization of a pair of homologues of chromosome 1 (a and b) and 

chromosome 7 (a and b) from biotype 5. The grey images (left) show a normal (up) and an anomalous 

(down) Giemsa-stained chromosome. The pseudo-color images (centre) given by CHIA-EA are shown for 

the same chromosomes. Moreover, the CP profiles (right) for the normal chromosome (a; black) and for the 

anomalous chromosome (b; red) are shown, and the differences in long arm length and centromere position 

are clearly visible. 
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Biotype 6 

 

 

Figure 64. Prometaphase of red rice biotype 6. The chromosome couples involved in the translocation are 1 

and 8. The red numbers label anomalous chromosomes. 
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Figure 65. Computer-aided characterization of a pair of homologues of chromosome 1 (a and b) and 

chromosome 8 (a and b) from biotype 6. The grey images (left) show a normal (up) and an anomalous 

(down) Giemsa-stained chromosome. The pseudo-color images (centre) given by CHIA-EA are shown for 

the same chromosomes. Moreover, the CP profiles (right) for the normal chromosome (a; black) and for the 

anomalous chromosome (b; red) are shown, and the differences in long arm length and centromere position 

are clearly visible. 
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Figure 66. Prometaphase of red rice biotype 6. The chromosome couples involved in the translocation are 1 

and 8. The red numbers label anomalous chromosomes. 
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Figure 67. Computer-aided characterization of a pair of homologues of chromosome 1 (a and b) and 

chromosome 8 (a and b) from biotype 6. The grey images (left) show a normal (up) and an anomalous 

(down) Giemsa-stained chromosome. The pseudo-color images (centre) given by CHIA-EA are shown for 

the same chromosomes. Moreover, the CP profiles (right) for the normal chromosome (a; black) and for the 

anomalous chromosome (b; red) are shown, and the differences in long arm length and centromere position 

are clearly visible. 
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Figure 68. Prometaphase of red rice biotype 6. The chromosome couples involved in the translocation are 1 

and 8. The red numbers label anomalous chromosomes. 
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Figure 69. Computer-aided characterization of a pair of homologues of chromosome 1 (a and b) and 

chromosome 8 (a and b) from biotype 6. The grey images (left) show a normal (up) and an anomalous 

(down) Giemsa-stained chromosome. The pseudo-color images (centre) given by CHIA-EA are shown for 

the same chromosomes. Moreover, the CP profiles (right) for the normal chromosome (a; black) and for the 

anomalous chromosome (b; red) are shown, and the differences in long arm length and centromere position 

are clearly visible. 
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Biotype 7 

 

 

Figure 70. Prometaphase of red rice biotype 7. The chromosome couples involved in the translocation are 1 

and 10. The red numbers label anomalous chromosomes. 
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Figure 71. Computer-aided characterization of a pair of homologues of chromosome 1 (a and b) and 

chromosome 10 (a and b) from biotype 7. The grey images (left) show a normal (up) and an anomalous 

(down) Giemsa-stained chromosome. The pseudo-color images (centre) given by CHIA-EA are shown for 

the same chromosomes. Moreover, the CP profiles (right) for the normal chromosome (a; black) and for the 

anomalous chromosome (b; red) are shown, and the differences in long arm length and centromere position 

are clearly visible. 
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Figure 72. Prometaphase of red rice biotype 7. The chromosome couples involved in the translocation are 1 

and 10. The red numbers label anomalous chromosomes. 
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Figure 73. Computer-aided characterization of a pair of homologues of chromosome 1 (a and b) and 

chromosome 10 (a and b) from biotype 7. The grey images (left) show a normal (up) and an anomalous 

(down) Giemsa-stained chromosome. The pseudo-color images (centre) given by CHIA-EA are shown for 

the same chromosomes. Moreover, the CP profiles (right) for the normal chromosome (a; black) and for the 

anomalous chromosome (b; red) are shown, and the differences in long arm length and centromere position 

are clearly visible. 
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Figure 74. Prometaphase of red rice biotype 7. The chromosome couples involved in the translocation are 1 

and 10. The red numbers label anomalous chromosomes. 
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Figure 75. Computer-aided characterization of a pair of homologues of chromosome 1 (a and b) and 

chromosome 10 (a and b) from biotype 7. The grey images (left) show a normal (up) and an anomalous 

(down) Giemsa-stained chromosome. The pseudo-color images (centre) given by CHIA-EA are shown for 

the same chromosomes. Moreover, the CP profiles (right) for the normal chromosome (a; black) and for the 

anomalous chromosome (b; red) are shown, and the differences in long arm length and centromere position 

are clearly visible. 



108 

 

Biotype 8 

 

 

 

Figure 76. Prometaphase of red rice biotype 8. The chromosome couples involved in the translocation are 1 

and 11. The red numbers label anomalous chromosomes. 
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Figure 77. Computer-aided characterization of a pair of homologues of chromosome 1 (a and b) and 

chromosome 11 (a and b) from biotype 8. The grey images (left) show a normal (up) and an anomalous 

(down) Giemsa-stained chromosome. The pseudo-color images (centre) given by CHIA-EA are shown for 

the same chromosomes. Moreover, the CP profiles (right) for the normal chromosome (a; black) and for the 

anomalous chromosome (b; red) are shown, and the differences in long arm length and centromere position 

are clearly visible. 

 

 

 



110 

 

 

 

Figure 78. Prometaphase of red rice biotype 8. The chromosome couples involved in the translocation are 1 

and 11. The red numbers label anomalous chromosomes. 
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Figure 79. Computer-aided characterization of a pair of homologues of chromosome 1 (a and b) and 

chromosome 11 (a and b) from biotype 8. The grey images (left) show a normal (up) and an anomalous 

(down) Giemsa-stained chromosome. The pseudo-color images (centre) given by CHIA-EA are shown for 

the same chromosomes. Moreover, the CP profiles (right) for the normal chromosome (a; black) and for the 

anomalous chromosome (b; red) are shown, and the differences in long arm length and centromere position 

are clearly visible. 
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Figure 80. Prometaphase of red rice biotype 8. The chromosome couples involved in the translocation are 1 

and 11. The red numbers label anomalous chromosomes. 
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Figure 81. Computer-aided characterization of a pair of homologues of chromosome 1 (a and b) and 

chromosome 11 (a and b) from biotype 8. The grey images (left) show a normal (up) and an anomalous 

(down) Giemsa-stained chromosome. The pseudo-color images (centre) given by CHIA-EA are shown for 

the same chromosomes. Moreover, the CP profiles (right) for the normal chromosome (a; black) and for the 

anomalous chromosome (b; red) are shown, and the differences in long arm length and centromere position 

are clearly visible. 
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The CP profiles of the normal (black) and anomalous (red) chromosomes reveal an 

additional segment on the arm of the anomalous chromosome. The translocation involves 

(Table 5): 

 for biotype 1, the long arm of one element of chromosome pair 1 and the short arm 

of one element of chromosome pair 5; 

 for biotype 2, the long arm of one element of chromosome pair 1 and the long arm 

of one element of chromosome pair 2; 

 for biotype 3, the long arm of one element of chromosome pair 1 and the long arm 

of one element of chromosome pair 12; 

 for biotype 4, the long arm of one element of chromosome pair 1 and the short arm 

of one element of chromosome pair 3; 

 for biotype 5, the long arm of one element of chromosome pair 1 and the long arm 

of one element of chromosome pair 7; 

 for biotype 6, the long arm of one element of chromosome pair 1 and the short arm 

of one element of chromosome pair 8; 

 for biotype 7, the long arm of one element of chromosome pair 1 and the long arm 

of one element of chromosome pair 10; 

 for biotype 8, the long arm of one element of chromosome pair 1 and the short arm 

of one element of chromosome pair 11. 

 

Biotypes 
Phenotypic 

shattering degree (%) 

Chromosome involved in 

translocation 
Arm anomalous 

1 50% T1-5 Short 

2 90% T1-2 Long 

3 70% T1-12 Long 

4 70% T1-3 Short 

5 70% T1-7 Long 

6 60% T1-8 Short 

7 80% T1-10 Long 

8 60% T1-11 Short 

 

Table 5. Shattering degree observed on the plants, chromosome number and anomalous arm involved in the 

translocations.  
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The following Table 6 summarizes the arm ratios of normal and anomalous somatic 

chromosomes from weedy red rice. 

 

Chromosome 
Arm ratio 

Normal Anomalous 

1 2.02 ± 0.99 1.40 ± 0.39 

2 1.40 ± 0.37 1.55 ± 0.29 

3 2.73 ± 0.66 1.72 ± 0.57 

4 2.92 ± 0.59 -- 

5 1.05 ± 0.01 0.67 ± 0.08 

6 1.98 ± 0.42 -- 

7 1.46 ± 0.25 1.62 ± 0.17 

8 1.28 ± 0.22 0.77 ± 0.15 

9 1.36 ± 0.19 -- 

10 1.29 ± 0.18 2.96 ± 0.01 

11 1.73 ± 0.82 0.75 ± 0.44 

12 1.72 ± 0.53 2.46 ± 0.34 

 

Table 6. The average arm ratios (with their standard deviations) 

are shown only for the chromosomes that are involved in the 

translocations. 10 normal and 10 anomalous chromosomes 

were measured for each biotype. 
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All the observed translocations are summarized in Figure 82. 

 

 
 

Figure 82. Quantitative ideogram of the somatic chromosomes of weedy red rice, showing the eight different 

types of translocation between chromosome 1 and other chromosomes in the genome: biotype 1 (light-blue); 

biotype 2 (yellow); biotype 3 (orange); biotype 4 (green); biotype 5 (blue); biotype 6 (violet); biotype 7 (pink); 

biotype 8 (red). 

 

EVALUATION OF THE BREAK POINT POSITION ON CHROMOSOME 1 

 

The length of the normal Chr1 is of 43261 Kb, and since we found (see Fig. 83 a) that it is 

measured by 253 px,  we deduce that 1 px corresponds to 171 Kb. 

Moreover, since we found for the anomalous Chr1 a length measured by 218 px (see Fig. 

83 b), it obviously turns out to correspond to about 37278 Kb. 
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Figure 83. a) CP of Normal Chr1; b) CP of anomalous Chr1  
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It is well known, on the other hand, that the shattering locus qSh1 is approximately located 

at 36.7 Mb from the telomere region of the short arm of chromosome 1: the qSH1 locus 

appears to be very close to the estimated break point on chromosome 1. 

It was important, therefore, to know if the genomic region containing the shattering locus 

on chromosome 1 is altered or not by the translocation. In order to make this point clear 

we applied the FISH technique, which required a probe BAC, covering the region 

containing the shattering gene (Fig. 84). 

 

 

 

Figure 84. BAC, qSH1 and break point positions along Chr1. 

 

We encountered various problems: 

1) because of the small and condensed size of the rice chromosomes, and of the difficulty 

to get mitoses, a new and more complex methodology was assessed to improve both the 

quality and the quantity of mitotic prometaphases (i.e. 40 prometaphases per slide at 

least); 

2) because of the large number of the FISH signals, the DNA competitor (C0t) was 

employed in order to suppress stray signals. The main problems were due to the use of a 

new methodology; moreover, about 2 mg of DNA were required to produce rice C0t, and 

rice turned out to allow a quite low yield (0.6 ug/ul for 600 g of leaves); 

3) a FISH methodology originally developed for other species was transferred to rice. 

The FISH analysis of the red rice biotypes 3 (Fig. 85) and 5 (Fig. 86) provided many 

pictures, the most representative of which are the following. 
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Figure 85. Biotype 3. The yellow line identifies the couple of Chromosomes 1; the red points represent the 

BAC probe; the blue points show the centromere position of Chr1. 

 

 

 

Figure 86. Biotype 5. The yellow line identifies the couple of Chromosome 1; the red points represent the 

BAC probe; the blue points show the centromere position of Chr1. 

 

These FISH analyses clearly show that the shattering gene does neither break nor 

translocate, but remains  located on chromosome 1.   
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GENOMICS 

 

Genetic studies revealed the existence of several QTLs presenting shattering character. 

These QTLs are localized on rice chromosomes 1, 3, 4, 7, 8, 11. 

The responsible genes have been identified for three of them: qSH1 (Konishi et al., 2006), 

qSH4 (Changbao et al., 2006), qSH7 (Hyeonso et al., 2010) 

 

CHROMOSOME 1 – qSH1 

The red rice peculiarity is the shattering before the full physiological maturity. This 

character is controlled by a gene.  

The non-shattering character is under the major control of a locus located on the 

chromosome 1, and the responsible gene is now well known (qSH1). 

In recent years it was realized that one of the shattering gene activation on chromosome 1 

is due to a single-nucleotide polymorphism (SNP) which can explain about 70% of the 

non-shattering character associated to this gene whereby this SNP probably affects a 

regulatory region. 

Konishi et al. (2006) proved the existence of a QTL region by means of the analysis both 

of the shattering-type indica cultivar (‘Kasalath’) and of a non-shattering-type japonica 

cultivar (‘Nipponbare’).  

It may be observed that the CDS of the eight biotypes of Oryza sativa sub. japonica var. 

silvatica exactly coincides with the genome of the non-shattering rice cv ‘Nipponbare’ (ssp. 

japonica) except for the qSH1-SNP, coinciding with the shattering-type indica cv 

‘Kasalath’. Konishi et al. in their paper on Science (2006) observed a shattering process in  

cv ‘Nipponbare’ occurring when the genomic fragment of cv ‘Kasalath’ containing qSH1-

SNP was inserted into its chromosome 1. As far as AT repeat 2 (‘(AT)2’) is concerned, the 

red rice biotypes differ both from ‘Nipponbare’ and from ‘Kasalath’, because they have an 

(AT)5. 

Morover, in the biotypes 1 and 4 I found a new SNP (SNP8) which turns out to be different 

both from japonica and from indica subspecies. 

In my experiment two other cultivar of rice were also employed as control: the non-

shattering cv ‘Perla’ and the shattering cv ‘Sprint’. ‘Perla’ gave the same results as 
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‘Nipponbare’, while the characteristics of ‘Sprint’ coincide with those of red rice, except for 

the absence of SNP8. 

These experimental results are summarized in Table 7. 

 

 
 

Table 7. From the left: primers employed; mutations looked for; observed results for: ‘Nipponbare’ (non-

shattering), ‘Kasalath’ (shattering), eight biotypes (shattering), ‘Perla’ (non-shattering), ‘Sprint’ (shattering). 

 

Konishi et al. (2006) also represented in a table the non-shattering degree for different rice 

typologies in association with the relevant SNP, AT repeat, A repeat and T repeat.  

The eight analyzed biotypes are shown (red points) in the following Figure 87, according to 

the SNP, AT repeats, A repeat and T repeats discovered. The biotypes show a low non-

shattering degree. Moreover, cv ‘Perla’ (blue points) presents a high non-shattering 

degree, whereas cv ‘Sprint’ (black points) shows a low non-shattering degree and is 

placed, as expected, near the red rice.  
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Figure 87. Classification of some cultivars of rice according to the non-shattering degree, adapted from 

Konishi et al., 2006. 
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CHROMOSOME 7 – qSH7 

 

Table 8 summarizes our results and shows that the QTLs of qSh7 is not involved in the 

shattering character of the eight biotypes analyzed in our experiment. 

 

Biotypes AT GT 

1 A G 

2 A G 

3 A G 

4 A G 

5 A G 

6 A G 

7 A G 

8 A G 

cv ‘Perla’ A G 

 

Table 8. The QTLs of qSH7 in each biotype and in the cv ‘Perla’. 
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CHROMOSOME 4 – qSH4 

 

We didn’t observe any mutation in red rice biotypes and the cv ‘Perla’, without observing 

any mutation, since they all shared the same sequence of the non-shattering cultivar (Fig. 

88). 

 

 

 

 

Figure 88. Seven mutations found among the mapping parents. These mutations were scored in different 

rice cultivars and wild species. Sequences of Oryza sativa and Oryza nivara parents were labeled by ‘s’ and 

‘n’, respectively. The yellow circles mark the eight biotypes and ‘Perla’ sequences adapted from Changbao 

et al., 2006 
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One of the main factors affecting the yield of rice is the presence of weeds, and red rice is 

a particularly dangerous weed in Italian rice crops. 

Red rice (Oryza sativa subspecies japonica var. silvatica, 2n = 24) is a spontaneous form 

of cultivated rice (2n = 24) presenting a wide spread of morphologic and biologic 

characteristics with a negative impact on growth rate and quality of cultivated rice.  

The grain shattering, the presence of awns, and red color of seeds are the main 

peculiarities of red rice. 

A previous research (Sparacino et al., 2004), performed by the analysis of the 

computerized chromosome image (CHIA-EA = Chromosome Image Analysis – Excel 

Application) has revealed the presence of chromosomal anomalies, including the 

occasional presence of cells with 23 chromosomes (2n - 1) and 25 chromosomes (2n + 1) 

was observed as the result of a meiotic nondisjunction. 

Morphologic and genotypic differences could turn out to be a useful diagnostic tool for red 

rice classification and biology understanding. 

Moreover information about the genetic differences among red rice biotypes could provide 

suitable techniques for the limitation of the weed growth. 

In order to investigate this problem, first, we employed seeds from single plants of different 

biotypes, for the karyotypic analysis. Then, we started a comparative and systematic 

analysis aiming at identifying morphologic characteristics correlated with karyotypic 

differences. 

The present work represents a morphologic, karyotypic and genomic characterization of 

eight phenotypically distinct red rice biotypes, in comparison with the rice cultivars 

employed as control.  

In the three years of experiment, we concluded that the biotypes differ for many 

parameters. 

As far as the length of the seed is concerned, biotype 1 is the shortest one, and biotypes 

2, 3, 6 turned out to be shorter than 5 and 7. 

Concerning width, biotype 3 is quite narrow, while the others are larger and very similar. 

Concerning thickness, biotype 2 is thicker than the others. 

Because of these quantitative differences, the shape of the seeds is quite various - from 

the semi rounded shape of biotype 1 to the oval shape of biotype 2. 
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These quantitative data, together with the qualitative ones - such as color and awn length - 

show a considerable phenotypic variability in the eight biotypes. 

About the qualitative traits of plants at full maturity, biotype 6 differs from the others for its 

red collar, nodes and internodes, biotype 8 has only red collar and the other biotypes have 

green collar, nodes and internodes. 

Concerning quantitative features, biotype 1 is the lowest one, biotype 8 is the tallest one, 

biotypes 3, 5, 6, 7 are similar and biotype 4 is taller than biotype 1 and lower than all the 

others. 

During the harvest we observed that the shattering degree appears to be related to the 

seed length (including its awn). 

Biotype 1 (presenting the shortest seed) has a shattering degree about 50%, while 

biotypes 2 and 7 (with the longest seeds) have a shattering level about 90% and 80%, 

respectively.  

Both biotypes 6 and 8 feature around 60% of shattering, and biotypes 3, 4, 5 around 70%. 

The analysis of karyotype compared biotypes and the rice cv ‘Loto’, employed as control. 

The homogeneous results obtained within each biotype agree with previous observations 

of various translocations in red rice, which always involve the distal segment of the long 

arm of chromosome 1 and one of the other chromosomes (Sparacino et al. 2004). In 

addition, it has been demonstrated that each phenotypic red rice biotype is characterized 

by a specific translocation. In fact, a detailed longitudinal examination of the structure of 

prometaphase chromosomes, which are still quite elongated, by the use of a computerized 

image method (CHIA-EA), revealed two types of anomalous chromosomes in each 

biotype, each of which showed a variation in size.  

Evidence for the differences in length between two homologous chromosomes is 

unequivocally shown in the CP profiles, which allow individual members of a pair to be 

distinguished. The first anomaly, which is always present, involves chromosome 1. In this 

case, the anomalous chromosome 1 appears somewhat shorter than the normal one, due 

to a deletion of the distal segment of the long arm. In contrast, the second structural 

anomaly, which exhibits a remarkable difference in chromosome length, varies among 

biotypes. This is due to the addition of the distal segment, which has been displaced by 

translocation to the extremity of either the long or the short arm of another chromosome. In 
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this case, the two arms of the rearranged chromosomes vary in their relative length 

according to the position of the centromere, and are characterized by a different arm ratio. 

Both chromosomal and genomic plant mutations, as it is well known, are quite widespread, 

both in nature and in induced mutations, provided they are compatible with life, because 

they do not involve the loss of genetic material and cause therefore even striking 

phenotypic effects. 

These phenomena are well known in the subspecies indica, japonica and javanica of 

Oryza sativa, and may even involve all the twelve chromosomes pairs. 

These data, however, do not allow to assess if the red rice translocations are simple or 

reciprocal. 

Reciprocal translocations are the most frequent ones: two non-homologous chromosomes 

exchange portions of their arms, whose length depends on the break points. 

Heterozygous translocations not involving a considerable loss of genetic material should 

not cause, in general, phenotypic effects in plants, except for semi-sterility. 

A phenotypic effect could be due, however, to the formation of new association groups for 

those genes, belonging to the translocated segment, which are displaced from their 

original position. 

A break close to or within a gene (with loss of a DNA segment), or a gene displacement 

close to the heterochromatic zone, may cause the change of the functions of one or more 

genes (“position effect”). 

In this connection, in order to ascertain if one of the shattering gene is displaced, breaks or 

remains on chromosome 1, the FISH cytogenetic method was used. 

FISH is employed in order to identify specific sequences of nucleic acids in the 

chromosomes. It represents a significant contribution to standard cytogenetics for the 

identification of chromosome numerical and structural anomalies. 

Its application to rice chromosomes presented various problems, at first due to the small 

and condensed size of the rice chromosomes, and the difficulty to get mitoses. To this goal 

a new and more complex methodology was employed to improve both the quality and the 

quantity of mitotic prometaphases (in order to get at least 40 prometaphases per slide). 

Moreover, due to the large number of the FISH signals, a competitor DNA (C0t) procedure 

was employed in order to suppress stray signals (Zwick M.S. et al., 1997). The main 
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problems were related to the use of a new methodology and to the fact that large amounts 

of genomic DNA were required for each hybridization experiment. 

Nevertheless, we obtained an encouraging result for two different biotypes (3 and 5): the 

discovery that the shattering gene does not undergo translocation. 

This induces to think, first of all, that the phenotypic effect is due to the formation of new 

“association groups” of the genes situated in the translocated segment, which change their 

position with respect to the original one. The translocation should therefore be reciprocal. 

Further researches by using FISH method could confirm the reciprocity of the 

translocation. 

In recent years it was realized that one of the shattering gene activation on chromosome 1 

is due to a single-nucleotide polymorphism (SNP) which can explain about 70% of the 

non-shattering character associated to this gene whereby this SNP probably affects a 

regulatory region (Konishi et al., 2006). 

The genotype of our eight shattering red rice biotypes was compared with the rice cultivars 

‘Nipponbare’ (shattering), ‘Kasalath’ (non shattering), ‘Perla’ (non shattering) and ‘Sprint’ 

(shattering). 

The genotype of our biotypes was found to coincide with that of ‘Nipponbare’, except for 

the SNP of the non-shattering character, which turned out to coincide with that of cv 

‘Kasalath’. These results lead to important conclusions. 

Since the eight biotypes, as well as ‘Nipponbare’, ‘Perla’ and ‘Sprint’, belong to the 

subspecies japonica, an overall genotype similarity was expected. 

Nevertheless, while the ‘Nipponbare’ and ‘Perla’ genotypes completely coincide at all the 

SNP loci considered in this work, the genotypes of red rice and ‘Sprint’ differ for a single 

SNP causing the activation of the shattering gene qSH1. 

These considerations led to another logical conclusion, i.e. that the qSH1 SNP is largely 

responsible for the shattering character also for the red rice biotypes. 

Other variants associated to the AT repeat 2 and SNP8 loci were noticed in the red rice 

genome during this research, but no correlation was found, up to now, between genotype 

and phenotype of the biotypes involved. 

Other QTLs for shattering character were noticed on chromosomes 1, 3, 4, 7, 8 and 11, in 

other cultivated rice species which partially explain the shattering character, although the 
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responsible gene was identified only in three of these QTLs: 1, 4 and 7 (Hyeonso et al., 

2010). 

That is why we decided to take into account only these three QTLs of chromosomes 1, 4 

and 7 (Konishi et al., 2006; Changbao et al., 2006; Hyeonso et al., 2010). 

The analysis of the involved genes of chromosomes 4 and 7 in our eight red rice biotypes 

has revealed the QTLs found on these chromosomes are problaby not involved in the 

shattering character of the red rice biotypes. 

We may conclude, on the basis of the results obtained so far, that shattering is largely (if 

not totally) dependent, both for our biotypes and for some cultivated rices (‘Perla’ and 

‘Sprint’), on the mutation (qSH1-SNP) present on chromosome 1, and that the differences 

between the phenotypes of the eight red rice biotypes could be due to translocations 

causing the association of new groups of genes contained in the translocated segment.  

Our analysis provides a wide overview of a possible correlation between the different 

phenotypes of the eight biotypes, shattering level, karyotypic differences connected with a 

specific translocation for each biotype and the fact that both these translocation and the 

gene responsible for the shattering of the eight biotypes are always present in 

chromosome 1. 

This basic research could open the way to further studies which are currently in progress, 

and could reveal other karyotypic variants characterizing additional phenotypically distinct 

biotypes.  

The identification of a pattern of chromosomal, morphological and genotypic diversification 

within the same variety could promote the development of suitable techniques limiting the 

expansion of the weedy red rice.  

We may conclude that the investigation of the relationship between the various 

translocations and the expression of the shattering gene would require further and more 

sophisticated analyses. 
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